
KDM70 Controller Service
Manual

Order Number: EK–KDM70–SV–001A

For Internal Use Only

February, 1990
December, 1991

Copyright © 1990

All Rights Reserved.
Printed in U.S.A.

0

This document was prepared using VAX DOCUMENT, Version 1.2

Contents

PREFACE xv

CHAPTER 1 GENERAL INFORMATION AND SUBSYSTEM OVERVIEW 1–1

1.1 MINIMUM REVISIONS FOR SUPPORT ON KDM70 1–1

1.2 KDM70 MAINTENANCE PHILOSOPHY 1–2
1.2.1 Service Delivery Strategy 1–2
1.2.2 Maintenance Strategy 1–2

1.3 MAINTENANCE FEATURES 1–3

1.4 KDM70 I/O SUBSYSTEM OVERVIEW 1–3
1.4.1 The KDM70 Controller to Host Interface 1–5

1.4.1.1 The Extended Memory Interconnect Bus • 1–5
1.4.1.2 MSCP, TMSCP, and DUP Protocols • 1–6

1.4.2 The KDM70 Controller to Mass Storage Interface 1–8

1.5 ELECTROSTATIC PROTECTION 1–9

CHAPTER 2 KDM70 CONTROLLER FUNCTIONAL DESCRIPTION 2–1

2.1 INTRODUCTION 2–1

2.2 FAILOVER 2–1

2.3 KDM70 CONTROLLER HARDWARE FUNCTIONAL OVERVIEW 2–2
2.3.1 Buffer Memory and Data Structures 2–3
2.3.2 The CVAX Kernel 2–6
2.3.3 The XMI State Machine 2–9
2.3.4 The XMI Interface 2–10
2.3.5 SI State Machine (SISM) 2–12

2.3.5.1 Buffer Memory Temporarily Stores Data and Data
Structures • 2–16

iii

Contents

2.3.6 Composite Block Diagram of the KDM70 Controller 2–16

2.4 SOFTWARE ARCHITECTURE OVERVIEW 2–20

2.5 THREAD STRUCTURE 2–21
2.5.1 Host Interface 2–22
2.5.2 Disk MSCP Server 2–22
2.5.3 Tape MSCP Server 2–22
2.5.4 Diagnostic Utility Protocol Server 2–22
2.5.5 Disk Drive Interface 2–22
2.5.6 Tape Drive Interface 2–23
2.5.7 Port Recognition and State Change Detection 2–23
2.5.8 High-Level Diagnostic and Utility Program 2–23
2.5.9 Low-Level Diagnostic and Utility Program 2–23

2.6 SOFTWARE TRANSFER COMMAND FLOW 2–23
2.6.1 KDM70 Software Concepts and Constructs 2–23
2.6.2 Host Data Structures: Command Ring and Response

Ring 2–24
2.6.3 Device Data Structures: Ringleader, SI Work Blocks, and

XI Work Blocks 2–24

2.7 TRANSFER COMMAND FLOW THROUGH THE KDM70
CONTROLLER 2–25

CHAPTER 3 KDM70 CONTROLLER INITIALIZATION AND OPERATION 3–1

3.1 INTRODUCTION 3–1

3.2 DEMON FLOW 3–1
3.2.1 KDM70 Core Hardware Initialization Test 3–2
3.2.2 DEMON 3–2
3.2.3 MIST 3–2
3.2.4 MIST Errors 3–2

3.3 FUNCTIONAL INTIALIZATION ENTRY 3–3

iv

Contents

CHAPTER 4 KDM70 CONTROLLER ERROR ANALYSIS 4–1

4.1 TROUBLESHOOTING REFERENCE MATERIAL 4–1

4.2 INTRODUCTION 4–1

4.3 HOST ERROR LOG 4–1

4.4 KDM70 CONTROLLER ERRORS 4–2

4.5 ERRORS DURING KDM70 CONTROLLER MODULE INTERNAL
SELF-TEST (MIST) 4–2

4.6 KDM70 CONTROLLER BUG CHECKS 4–4

4.7 SOFTWARE-DETECTED BUG CHECKS 4–5

4.8 HARDWARE-DETECTED BUG CHECKS 4–5

4.9 LAST CRASH ERROR LOG PACKETS 4–5

4.10 SOFTWARE LOGIC ERROR FORMAT 4–8

4.11 HOST INTERFACE HARDWARE ERROR FORMAT 4–9

4.12 DRIVE INTERFACE HARDWARE ERROR FORMAT 4–10

4.13 CONTROLLER MEMORY ERROR FORMAT 4–11

4.14 INTERNAL BUS HARDWARE ERROR FORMAT 4–12

4.15 POLICY PROCESSOR ERROR FORMAT 4–13

4.16 REAL-TIME INTERNAL ERROR LOG 4–15

v

Contents

4.16.1 Real-Time Internal Error Log to Host Error Log
Relationship 4–16

4.16.2 Interpreting Real-Time Internal Error Log Fields 4–16

4.17 EVENT CODE 01EA: FAULT MANAGEMENT ANALYSIS EVENT 4–17
4.17.1 Board 1 Bad Page List Overflow 4–18
4.17.2 Board 2 Bad Page List Overflow 4–19
4.17.3 Code Store EEPROM Entry Overflow 4–20
4.17.4 CVAX Cache Set Failure 4–21

4.18 KDM70 BOARD 1 REGISTER DESCRIPTIONS 4–22
4.18.1 Read Diagnostic Register 4–22
4.18.2 CVAX Data and Address Lines Address Register 4–23
4.18.3 Write Diagnostic Register 4–24
4.18.4 HIB Bus Register 4–24
4.18.5 CXHIC Control and Status Register 4–26
4.18.6 XISM Status Register 4–27

4.19 KDM70 BOARD 2 REGISTER DESCRIPTIONS 4–28
4.19.1 HIB Bus Register 4–28
4.19.2 Read Diagnostic Register 4–29
4.19.3 Write Diagnostic Register 4–30

4.20 PHYSICAL MEMORY ADDRESS MAP 4–32

4.21 PHYSICAL I/O SPACE 4–33

CHAPTER 5 INVOKING DIAGNOSTICS, EXERCISERS, AND UTILITIES 5–1

5.1 INTRODUCTION 5–1

5.2 HOW TO RUN DIAGNOSTICS, EXERCISERS, AND UTILITIES 5–1

5.3 KDM70-RESIDENT PROGRAMS 5–2

5.4 INVOKING KDM70 CONTROLLER-RESIDENT PROGRAMS 5–3

vi

Contents

5.5 HSCPAD = DIAGNOSTIC UTILITY PROTOCAL (DUP) VIRTUAL
TERMINAL PROGRAM FOR VMS 5–3
5.5.1 COMMANDS to use DUP on VMS 5–3
5.5.2 Running Programs On Line from VMS 5–4
5.5.3 Running Programs Standalone from the VAX Diagnostic

Supervisor 5–5

5.6 EVRLN OVERVIEW 5–5

5.7 INVOKING EVRLN 5–5

5.8 EVRLN COMMANDS 5–6
5.8.1 EVRLN HELP Command 5–6
5.8.2 EVRLN CAT Command 5–7
5.8.3 EVRLN EXIT Command 5–7
5.8.4 EVRLN INFO Command 5–8
5.8.5 EVRLN RUNL Command 5–8
5.8.6 EVRLN RUNS Command 5–8

CHAPTER 6 FORMAT AND VERIFY UTILITIES 6–1

6.1 INTRODUCTION 6–1

6.2 DISK FORMATTER UTILITY (FORMAT) 6–1
6.2.1 Invoking FORMAT 6–1

6.2.1.1 Invoking FORMAT On Line from VMS • 6–1
6.2.1.2 Invoking FORMAT Standalone from the VAX Diagnostic

Supervisor • 6–2
6.2.2 Running FORMAT 6–3
6.2.3 FORMAT Errors and Information Messages 6–4

6.2.3.1 Error Message Variables • 6–4
6.2.3.2 Fatal Error Messages • 6–5
6.2.3.3 Warning Message • 6–6
6.2.3.4 Information Messages • 6–6
6.2.3.5 Error Messages • 6–6
6.2.3.6 Success Messages • 6–7

6.3 DISK VERIFIER UTILITY (VERIFY) 6–8
6.3.1 Invoking VERIFY 6–10

6.3.1.1 Invoking VERIFY On Line from VMS • 6–10
6.3.1.2 Invoking VERIFY Standalone from the VAX Diagnostic

Supervisor • 6–11

vii

Contents

6.3.2 Interrupting VERIFY 6–11
6.3.3 VERIFY Errors and Information Messages 6–11

6.3.3.1 Fatal Error Messages • 6–11
6.3.3.2 Warning Messages • 6–12
6.3.3.3 Informational Messages • 6–14

CHAPTER 7 ILEXER: IN-LINE EXERCISER 7–1

7.1 ILEXER OVERVIEW 7–1

7.2 INVOKING ILEXER 7–1
7.2.1 Invoking ILEXER On Line from VMS 7–1
7.2.2 Invoking ILEXER Standalone from the VAX Diagnostic

Supervisor 7–2

7.3 RUNNING ILEXER 7–2

7.4 ILEXER RUNTIME OPTIONS 7–3
7.4.1 Bad Block Replacement 7–3
7.4.2 Disk and Tape Selection 7–3
7.4.3 Disk Drive Runtime Parameters 7–3

7.4.3.1 Disk Write Enable • 7–3
7.4.3.2 Disk Initial Write • 7–3
7.4.3.3 Disk Test Selection • 7–4
7.4.3.4 Disk LBN Range • 7–4

7.4.4 Tape Runtime Parameters 7–4
7.4.4.1 Tape Test Selection • 7–4
7.4.4.2 Recording Density • 7–4
7.4.4.3 Tape Speed • 7–5
7.4.4.4 Record Size • 7–5
7.4.4.5 Record Count • 7–5

7.4.5 ILEXER Common Configuration Parameters for Disk or
Tape 7–5
7.4.5.1 Data Pattern • 7–5
7.4.5.2 Data Compare • 7–5
7.4.5.3 Additional Drives • 7–6
7.4.5.4 Report Interval • 7–6
7.4.5.5 Hard Errors • 7–6
7.4.5.6 Soft Errors • 7–6
7.4.5.7 Data Compare Errors • 7–6

7.4.6 ILEXER Runtime Performance Summary 7–7

7.5 TERMINATING ILEXER 7–7

viii

Contents

CHAPTER 8 ILDEVO: IN-LINE DEVICE OPERATIONS TEST 8–1

8.1 ILDEVO OVERVIEW 8–1

8.2 INVOKING ILDEVO 8–1
8.2.1 Invoking ILDEVO On Line from VMS 8–1
8.2.2 Invoking ILDEVO Standalone from the VAX Diagnostic

Supervisor 8–1

8.3 RUNNING ILDEVO 8–2
8.3.1 Default Mode for Disks 8–3
8.3.2 Tailor Mode for Disks 8–3
8.3.3 Internal Mode for Disks 8–4

8.4 ILDEVO DISK DRIVE TEST DESCRIPTIONS 8–5
8.4.1 Basic Communications Test 8–5
8.4.2 Drive Interrogation Test 8–5
8.4.3 Drive On-line and Setup Test 8–5
8.4.4 Read Test 8–6
8.4.5 Seek (Positioning) Test 8–6
8.4.6 Write/Read Test 8–7
8.4.7 Format Test 8–7
8.4.8 Error Detection Test 8–7
8.4.9 Exercise Test 8–8
8.4.10 Disconnect Test 8–8

8.5 ILDEVO TAPE TEST DESCRIPTIONS 8–9
8.5.1 User Setup Test 8–10
8.5.2 Basic Communication Test 8–10
8.5.3 Formatter Interrogation and Setup Test 8–10
8.5.4 On-line and Setup Test 8–11
8.5.5 Device Internal Diagnostic Test 8–11
8.5.6 Drive Interrogation and Setup Test 8–11
8.5.7 Tape Movement Test 8–12

8.5.7.1 Tape Initial Write • 8–13
8.5.7.2 Read Forward Test • 8–13
8.5.7.3 Read Reverse Test • 8–13
8.5.7.4 Tape Positioning Test • 8–13
8.5.7.5 Write/Read Test • 8–13
8.5.7.6 Exercise Test • 8–14
8.5.7.7 Write/Read Summary • 8–14

ix

Contents

8.5.8 Error Detection Test 8–14
8.5.9 Disconnect Test 8–15

8.6 ERROR MESSAGES 8–15

CHAPTER 9 DKUTIL 9–1

9.1 DKUTIL OVERVIEW 9–1

9.2 INVOKING DKUTIL 9–1
9.2.1 Invoking DKUTIL On Line from VMS 9–1
9.2.2 Invoking DKUTIL Standalone from the VAX Diagnostic

Supervisor 9–1

9.3 RUNNING DKUTIL 9–2

9.4 COMMAND MODIFIERS 9–2

9.5 COMMAND DESCRIPTIONS 9–5
9.5.1 DEFAULT Command 9–5
9.5.2 DISPLAY Command 9–7
9.5.3 DUMP Command 9–9
9.5.4 EXIT Command 9–10
9.5.5 GET Command 9–11
9.5.6 POP Command 9–11
9.5.7 PUSH Command 9–12
9.5.8 REVECTOR Command 9–12

9.6 ERROR MESSAGES 9–12
9.6.1 Error Message Variables 9–13
9.6.2 Information and Error Messages 9–13

CHAPTER 10 EVRAE 10–1

10.1 EVRAE OVERVIEW 10–1

x

Contents

10.2 USING EVRAE 10–1

10.3 EVRAE OPTIONS 10–2

10.4 EVRAE ERROR INFORMATION 10–3

CHAPTER 11 EVRLJ SUBSYSTEM EXERCISER 11–1

11.1 EVRLJ OVERVIEW 11–1
11.1.1 Controller Verification Test 11–1
11.1.2 Subsystem Functional Test 11–2
11.1.3 Subsystem Exerciser (Deterministic) 11–2
11.1.4 Modifiable Subsystem Exerciser 11–2
11.1.5 Memory Access Verification Test 11–2

11.2 INVOKING EVRLJ 11–2

11.3 EVRLJ PARAMETERS 11–2
11.3.1 Device-Specific Test Parameters 11–4

CHAPTER 12 EVRLM FUNCTIONAL CODE UPDATE UTILITY 12–1

12.1 EVRLM OVERVIEW 12–1

12.2 INVOKING EVRLM 12–1

12.3 USING THE EVRLM HELP FACILITY 12–2

12.4 KDM70 SOFTWARE REVISION NUMBERING SCHEME 12–3

12.5 USING THE DISPLAY OPTION 12–4
12.5.1 Display Bad Page List 12–4
12.5.2 Display EEPROM Suspect Page List 12–5
12.5.3 Display SRAM Suspect Page List 12–5

xi

Contents

12.5.4 Display MIST Internal Error Log 12–6
12.5.5 Display Real-time Error Log 12–11
12.5.6 Display Up-Time Count 12–11
12.5.7 Display Software Revision Number 12–11
12.5.8 Display Unique Identifier 12–11

12.6 RUNNING EVRLM 12–12

12.7 EVRLM ERRORS 12–13
ERROR 1 — GET HARDWARE PARAMETER TABLE
FAILED 12–14
ERROR 2 — ALLOCATION OF HOST
COMMUNICATION AREA FAILED 12–15
ERROR 3 — ALLOCATION OF SCRATCH PAD
FAILED 12–15
ERROR 4 — NODE RESET FAILED 12–16
ERROR 100 — ALLOCATION OF CONTROLLER
IMAGE FILE BUFFER FAILED 12–17
ERROR 110 — CONTROLLER FAILED TO SET STEP
BIT 12–17
ERROR 111 — CONTROLLER FATAL ERROR
DETECTED 12–18
ERROR 112 — CALL TO $SETIMR FAILED 12–18
ERROR 113 — ERROR WHILE INITIALIZING
CONTROLLER 12–19
ERROR 120 — ERROR WHILE OPENING
CONTROLLER IMAGE FILE 12–19
ERROR 121 — ERROR CONNECTING TO THE
CONTROLLER IMAGE FILE 12–21
ERROR 122 — ERROR WHILE READING IMAGE
FILE 12–21
ERROR 123 — DISCONNECT ERROR 12–22
ERROR 124 — CLOSE ERROR 12–22
ERROR 130 — ERROR READING UPDATE FLAG 12–23
ERROR 132 — ERROR WRITING UPDATE FLAG 12–23
ERROR 133 — CONTROLLER UPDATE FLAG
INCORRECTLY WRITTEN 12–24
ERROR 134 — UNABLE TO SET EEPROM ADDRESS 12–24
ERROR 135 — UNABLE TO WRITE EEPROM 12–25
ERROR 136 — UNABLE TO READ EEPROM 12–25
ERROR 137 — ONE BYTE VERIFIED WRITTEN
INCORRECTLY 12–26
ERROR 138 — EXCESSIVE BYTES WRITTEN
INCORRECTLY 12–26

12.8 ERROR RECOVERY PROCEDURES 12–27

xii

Contents

CHAPTER 13 KDM70 PATCH UTILITY 13–1

13.1 INVOKING PATCH 13–1
13.1.1 Invoking PATCH On Line from VMS 13–1
13.1.2 Invoking PATCH Standalone from the VAX Diagnostic

Supervisor 13–1

13.2 SOFTWARE REVISION NUMBERING SCHEME 13–2

13.3 RUNNING PATCH 13–2
13.3.1 PATCH Commands 13–2

13.4 NEW PATCH COMMANDS 13–3
13.4.1 PATCH Error Messages 13–4

APPENDIX A KDM70 CONTROLLER BUG CHECK CODES A–1

A.1 INTRODUCTION A–1

A.2 KDM70 BUG CHECK CODES A–1
A.2.1 Software Bug Checks A–1
A.2.2 Hardware Bug Checks A–26

APPENDIX B KDM70 CONTROLLER ERROR CODES B–1

B.1 SA ERROR CODES B–1

B.2 MSCP CONTROLLER EVENT CODES B–3

B.3 KNOWN TAPE ERRORS B–4

B.4 TAPE TMSCP EVENT CODES B–5

xiii

Contents

APPENDIX C XMI REGISTER SUMMARY C–1

C.1 INTRODUCTION C–1
C.1.1 Examining Registers C–2
C.1.2 XDEV: Device Type Register C–2
C.1.3 XBE: Bus Error Register C–4
C.1.4 XFADR and XFAER Registers C–5

C.1.4.1 XFADR — Failing Address Register • C–5
C.1.4.2 XFAER — Failing Address Extension Register • C–5

C.1.5 PE and IP Registers C–6
C.1.5.1 Initialization and Polling Register (IP) • C–6

C.1.6 SA Register C–6

APPENDIX D POWER-UP AND MIST DIAGNOSTICS D–1

D.1 MIST AND DEMON TEST DESCRIPTIONS D–1

D.2 KDM70 CORE HARDWARE TEST DESCRIPTIONS D–1
D.2.1 KDM70 Core Hardware Test Descriptions D–1

INITIALIZATION TEST D–1
BOOT UVPROM TEST D–2
CVAX PSL TEST D–2
CVAX GPR TEST D–2
SSC RAM TEST D–2
INSTRUCTIONS TEST D–2
EEPROM INTERFACE TEST D–2
CVAX PARITY DETECTOR TEST D–3
SRAM TEST D–3
EEPROM TEST AND CODE TRANSFER D–3
TRANSFER TO PHYSICAL SPACE MIST D–3

D.3 KDM70 MODULE INTERNAL SELF-TESTS D–3
BUS ERROR TEST D–3
BOARD 2 EEPROM TEST D–4
VIC TEST D–4
VIC INIT ROUTINE D–4
BOARD 1 HIB TEST D–4
BOARD 2 HIB TEST D–5
BOARD 1 SRAM TEST D–5
DPC RIF TEST D–5
CXHIC RIF TEST D–5
XMI CRAM TEST D–6
XMI CRAM LOAD ROUTINE D–6
XMI CRAM VERIFY TEST D–6
XMI INTERNAL LOOPBACK TEST D–6

xiv

Contents

XMI EXTERNAL LOOPBACK TEST D–6
BOARD 2 SRAM TEST D–7
CVAX CACHE TEST D–7
MEMORY MAP ROUTINE D–7
MMU TEST D–7
VIRTUAL SPACE TRANSITION D–7
EEPROM TEST AND CODE TRANSFER D–7
TIMERS TEST D–8
SOFTWARE INTERRUPTS TEST D–8
XMI WORKBLOCK TEST D–8
SISM CRAM LOAD ROUTINE D–8
SISM CRAM VERIFY TEST D–9
SISM CRAM ROLLING READ TEST D–9
SIECL CALIBRATE ROUTINE D–9
SISM MICROBIST TEST D–9
EXTERNAL REGISTER SUBTEST D–10
MICROCODE SUBTEST D–10
SISM SECTOR TEST D–11
SISM RTCS TEST D–11
SISM OPCODE VALIDATE TEST D–12
SISM DIAGNOSTIC READ TEST D–12

APPENDIX E ELECTROSTATIC DISCHARGE (ESD) PART LIST E–1

E.1 INTRODUCTION E–1

INDEX

EXAMPLES
4–1 Last Crash Error Log 4–6
6–1 Sample FORMAT Session 6–3
8–1 Disk Drive Test Example 8–9
11–1 EVRLJ Runtime Example 11–5
11–2 EVRLJ Error Report 11–7
12–1 Code Update Utility—Partial Screen Display 12–12

FIGURES
1–1 KDM70 Controller Configured with XMI as a System Bus 1–4
1–2 Layered Structure of MSCP, TMSCP, and DUP Protocols 1–7
1–3 Ground Strap 1–10
2–1 KDM70 Controller Subsystem Functional Block Diagram 2–3
2–2 Functional Example of a Data Transfer 2–5

xv

Contents

2–3 CVAX Kernel Block Diagram 2–8
2–4 XISM Block Diagram 2–10
2–5 XMI Interface Block Diagram 2–12
2–6 SISMs Block Diagram 2–15
2–7 KDM70 T2022 Module Block Diagram 2–18
2–8 KDM70 T2023 Module Block Diagram 2–19
2–9 Server Layer/Device Layer Diagram 2–20
2–10 KDM70 Software Block Diagram 2–21
2–11 Command and Response Rings 2–24
2–12 Ringleader 2–25
2–13 Buffers Associated with a Transfer Command 2–26
2–14 Application Message Block 2–27
2–15 Atomic Transfer Descriptor (ATD) 2–28
3–1 DEMON Flow 3–1
3–2 KDM70 Controller Functional Initialization 3–3
4–1 Status Code Decoding (Hex) 4–4
4–2 Software Logic Error Format 4–8
4–3 Host Interface Hardware Error Format 4–9
4–4 Drive Interface Hardware Error Format 4–10
4–5 Controller Memory Error Format 4–11
4–6 Internal Bus Hardware Error Format 4–12
4–7 Policy Processor Error Format 4–13
4–8 Board 1 BPL Overflow 4–18
4–9 Board 2 BPL Overflow 4–19
4–10 Code Store EEPROM Entry Overflow 4–20
4–11 CVAX Cache Set Failure 4–21
4–12 Physical Memory Address Map 4–32
4–13 Physical I/O Space Map 4–33
5–1 KDM70 Controller-Resident Programs 5–2
12–1 Backplane Pin Location 12–29
C–1 XDEV C–3
C–2 XBE C–4
C–3 XFAR and XFAER Registers C–5
C–4 PE and IP Registers C–6
C–5 SA Register C–6

TABLES
4–1 LED Code Interpretation 4–3
4–2 KDM70 Controller-Specific SA Codes 4–7
4–3 Machine Check Codes 4–14
4–4 Internal State Information 1 4–14
4–5 Internal State Information 2 4–15
4–6 Memory System Error Register 4–15
4–7 Fault Management Events 4–17

xvi

Contents

4–8 Read Diagnostic Register 4–23
4–9 Write Diagnostic Register 4–24
4–10 Board 1 HIB Bus Register 4–25
4–11 CXHIC Control and Status Register 4–26
4–12 XISM Status Register 4–27
4–13 XISM Status Error Codes 4–27
4–14 HIB Bus Register 4–28
4–15 Read Diagnostic Register 4–29
4–16 Write Diagnostic Register 4–30
4–17 SISM Status Register 4–31
4–18 SISM Status Error Codes 4–31
4–19 KDM70 Physical Memory Map 4–32
5–1 KDM70 Controller-Resident Programs 5–3
5–2 EVRLN Commands 5–6
12–1 Internal Error Log — Error Identifiers 12–6
13–1 PATCH Commands 13–2
13–2 New PATCH Commands 13–3
13–3 PATCH Error Messages 13–5
B–1 KDM70 SA Error Codes B–1
B–2 KDM70 Controller Event Codes B–3
B–3 TMSCP Event Codes B–5
C–1 XMI Nodespace Registers C–1
C–2 XMI Nodespace Offsets C–2
E–1 ELECTROSTATIC DISCHARGE PART NUMBER LIST E–1
E–2 STATIC SHIELDING BAG PART NUMBER LIST E–1

xvii

Preface

This manual describes how to maintain and service the KDM70 controller.

Intended Audience

This document is for Digital Customer Services engineers and support
engineers who service and maintain the KDM70 controller.

Scope

This guide does not cover KDM70 installation. Information on installation
is in the KDM70 User Guide. The user guide also includes detailed
equipment specifications.

Related Documentation

For more information related to the KDM70 controller, see the KDM70
Controller User Guide (EK–KDM70–UG)

Troubleshooting Reference Material

Refer to the following documents to run diagnostics and interpret error
logs:

• Getting Started with VAXsimPLUS (AA–KN79A–TE)

• VAXsimPLUS User Guide (AA–KN80A–TE)

• VAXsimPLUS Field Service Manual (AA–KN82A–TE)

• DSA Error Log Manual (EK–DSAEL–MN)

xv

1 General Information and Subsystem Overview

1.1 Minimum Revisions for Support on KDM70

OPERATING SYSTEM SUPPORT

VMS
The minimum release of VMS with full support for the KDM70 is V5.3-1.

ULTRIX
The minimum release of ULTRIX with full support for the KDM70 is V4.2.

TA90 minimum revision

Revision 2.3 is the minimum revision of TA90 formatter software that will support the KDM70.
TA90’s at a revision level less than 2.3 will not be accessible and attempts to use a down rev TA90
will result in an error log.

TS78 minimum revision

Revision 5 is the minimum revision of TS78 formatter software that will support the KDM70.
When a TS78, below rev 5, is connected to a KDM70, the KDM70 will log false formatter requested
errors.

SI cable external minimum length

The KDM70 requires a minimum external SI cable length of 12 feet. Cables less than 12 feet may
result in SI pulse errors (Event Code = 10B). Six foot cable to tape drives is now an unsupported
configuration. The six foot cable, period, is unsupported, if you read some of the SI documentation,
but it will be supported on the RA90/RA70 drives because of the SA70 packaging in the VAX 6000.

MINIMUM KDM70 REVISION LEVEL

The minimum hardware version for the T2022 is rev E1.
The minimum hardware version for the T2023 is rev C1.

VAX-6000-M500 requires 2.4
VAX9000 requries 2.5
ESE-EP requires 2.4
ESE-EP HBS Requires 2.4 or 2.5 and PATCH 2
TA91 Requires V3.0

1–1

General Information and Subsystem Overview

Vax 6000 Console ROM/EEPROM Minimum Revision

CPU Type = 62xx, ROM = 3.1, EEPROM = 2.0/3.6
CPU Type = 63xx, ROM = 4.1, EEPROM = 2.0/4.4
ROM = 6.0 does not require any patches
CPU Type = 64xx, ROM(0 & 1) = 1.0, EEPROM = 1.00/1.01

1.2 KDM70 Maintenance Philosophy
The KDM70 maintenance philosophy is to replace modules after analyzing
module LEDs, system error logs, or software tools, such as VAXsimPLUS.
Do not attempt to repair module components in the field.

1.2.1 Service Delivery Strategy
Real-time faults detected in the controller subsystem are recorded in the
supporting system host error log.

Host error logs contain detailed information on intermittent and hard
controller errors. This information can be used to isolate the field
replaceable unit (FRU).

Controller-resident diagnostics are used to validate repairs to the KDM70
controller.

1.2.2 Maintenance Strategy
The following outlines the steps to successfully service the KDM70
controller:

1 Observe the status of the Go/No Go LEDs and module state LEDs.

2 Examine and analyze VAXsimPLUS.

3 Examine and analyze the system error logs.

4 Correlate the failure symptoms to the probable failing module through
service documentation.

5 Replace the FRU only after a prime FRU is identified from the
previous steps.

6 Verify repair through controller-resident diagnostics.

7 Verify that the controller is on line and operational through normal
system-level commands that access the repaired unit.

Use host-based diagnostics only as a last resort to obtain information
about symptoms and only if system error logs are unavailable.

1–2

General Information and Subsystem Overview

1.3 Maintenance Features
The KDM70 controller provides a number of maintenance features,
including:

• Go/No Go power-up self-tests (module internal self-tests)

• Go/No Go LEDs (amber) on each module

• Module (T2022) (red) LEDs

• Controller-based diagnostic and utility programs

• Host-based error logging

1.4 KDM70 I/O Subsystem Overview
The KDM70 I/O subsystem consists of eight parallel ports. These ports are
capable of supporting any combination of:

• RA-series disk drives

• Electronic storage elements, such as the ESE20

• TA-series magnetic tape drives

Consult the KDM70 Controller User Guide for KDM70 controller
configuration guidelines. Figure 1–1 shows how the KDM70 controller
fits into the overall I/O subsystem.

1–3

General Information and Subsystem Overview

Figure 1–1 KDM70 Controller Configured with XMI as a System Bus

CPU 0

KDM70
CONTROLLER

CPU N MEM 0 MEM N

SDI/STI BUSES

CXO-2833A

CPU BUS

XMI BUS
ADAPTER

XMI (I/O BUS)

STORAGE OPTIONS

Because the KDM70 controller is an intelligent Digital Storage
Architecture (DSA) controller, it performs the following functions:

• Handles I/O management traditionally performed by the host

• Communicates with the host over the extended memory interconnect
(XMI) bus using the following protocols:

– Mass storage control protocol (MSCP)

– Tape mass storage control protocol (TMSCP)

– Diagnostic utility protocol (DUP)

• Communicates with mass storage media over the standard disk
interface/standard tape interface (SDI/STI) bus

Communication in the KDM70 controller I/O subsystem is broken down
into two sections:

• The KDM70 controller to the host

• The KDM70 controller to mass storage

1–4

General Information and Subsystem Overview

1.4.1 The KDM70 Controller to Host Interface
The interface between the host and the KDM70 controller consists of:

• The extended memory interconnect (XMI) bus

• Mass storage control protocol (MSCP)
Tape mass storage control protocol (TMSCP)
Diagnostic utility protocol (DUP)

1.4.1.1 The Extended Memory Interconnect Bus
The XMI bus provides the communications link between the KDM70
controller and the host CPU. The bus includes the following features:

Feature Explanation

Limited length XMI clocks are distributed to each node over
individual and equal length clock lines.

Pended A node can request a read type transaction (Read,
Interlock Read, or Ident) and release the bus after
sending the command. The data source requests the
bus to complete the read transaction when the data is
available.

Synchronous All transfers (discrete parts of a transaction) occur in
fixed time intervals determined by XMI clocks.

The XMI identifies each device, including the KDM70 controller, as a
node. Each node is identified by the backplane slot occupied by the module
containing the XMI interface.

Because the largest XMI bus has 14 backplane slots, an XMI system
can support 14 nodes. However, because the KDM70 controller requires
two backplane slots and uses one node ID, no more than seven KDM70
controllers may be placed on a 14-node XMI bus.

Note: There may be other system-dependent restrictions. Consult
system-specific user documentation.

Features of the XMI bus include:

• A maximum usable bandwidth of 100 Mbytes/second.

• Multiplexed address and data lines.

• Maximum transfer size of 16 words (hexaword) per transaction.

• Centralized bus arbitration.

• Simultaneous bus arbitration and data transfers.

• Bus error detection and reporting by all nodes.

• One gigabyte of address capability.

• Power-up and host-requested self-tests on all nodes.

• Two independent request queues: one for bus commanders and one for
bus responders.

1–5

General Information and Subsystem Overview

• Interlocked read and write operations permitted to memory and I/O
space.

• Four consecutive data cycles allowed to complete a multicycle transfer.

• Parity protection of information transfer lines.

• A receiver/transmitter handshake required for all transfers.

• Data transfers that move naturally aligned data blocks.

• Octaword read transfers that are wraparound reads.

1.4.1.2 MSCP, TMSCP, and DUP Protocols
MSCP, TMSCP, and DUP protocols define command and response
messages that pass between the host system and the KDM70 controller.
The protocols make device-dependent characteristics, such as device
geometry and error recovery strategies, invisible to the host system.
Instead, the host system sees error-free disk and tape media with specific
storage capacities.

The protocols are layered to simplify message transfers. Figure 1–2
illustrates the layered structure of the protocols.

The high-level processes, class driver and class server, provide I/O control
of the storage device. Each high-level process has a logical connection
made possible by the low-level processes called port drivers. The port
drivers transfer information across the XMI bus.

1–6

General Information and Subsystem Overview

Figure 1–2 Layered Structure of MSCP, TMSCP, and DUP Protocols

XMI PORT
SERVER

DUP
CLASS
SERVER

MSCP
CLASS
SERVER

TMSCP
CLASS
SERVER

DUP
CLASS
DRIVER

MSCP
CLASS
DRIVER

TMSCP
CLASS
DRIVER

HOST SYSTEM KDM70

XMI PORT
DRIVER

COMMUNI-
CATIONS
PROTOCOL

XMI BUS

LOGICAL
CONNEC-
TION

CXO-2896A

The following description illustrates how messages are passed between the
host and the KDM70 controller:

1 The class driver assembles a command packet and stores it in the host
memory command buffer. The command packet defines:

• The unit number of the target disk or tape drive

• The type of data transfer (read, write, or compare)

• The amount of data to transfer

• The location of the host buffer

• The logical block number (LBN), if the transfer involves a disk
drive

2 The host port driver attaches envelope information to define the
command packet as MSCP, TMSCP, or DUP.

3 The host port driver accesses the KDM70 controller initialization and
polling (IP) register.

4 The KDM70 controller port driver reads the command packet from host
memory, removes the envelope information, and passes the command
packet to the appropriate class server.

1–7

General Information and Subsystem Overview

5 The class server reduces the command packet into discrete commands
for the storage device. These commands include device management,
such as positioning, data transfer, and, if necessary, error-recovery
procedures.

6 The KDM70 controller completes the requested operations.

7 The class server builds a response packet that contains the completion
status of the host request and passes the packet to the KDM70
controller port driver.

8 The KDM70 controller port driver attaches the envelope information
to the response packet and writes it to the response buffer in host
memory.

9 The KDM70 controller port driver interrupts the host system to signal
that a response message is available in host memory.

10 The class driver reads the response message.

One class driver and one class server are present for each class device.
One port driver supports multiple controllers connected to the system.
One KDM70 controller port driver supports the MSCP, TMSCP, and DUP
class servers.

1.4.2 The KDM70 Controller to Mass Storage Interface
A standard disk interface (SDI) connects the KDM70 controller to a disk
drive; a standard tape interface (STI) connects the KDM70 controller to
a tape formatter. Both buses are physically the same; however, protocols
that define command and response message transfers across the buses
differ.

The SDI and the STI buses consist of four directional coaxial lines. Two
lines carry directional information from the KDM70 controller to a storage
device. The remaining two lines carry directional information from a
storage device to the KDM70 controller. The four lines are:

• Real-time controller state (RTCS) line

• Command/write data (WCD) line

• Response/read data (RD) line

• Real-time drive state (RTDS) line

Note: If the RTDS line connects to a tape formatter instead of a disk
drive, the line is called real-time formatter state (RTFS).

The buses are radial configurations with a separate copy of the bus
connecting to each storage device. Each bus receives service independent
of the other buses and with equal priority.

The SDI and STI buses have the following common characteristics:

• Each detects extra or missing pulses on each of the four lines.

• Each defines errors in command and response messages exchanges.

• Each defines errors in data transfers across the SDI/STI.

1–8

General Information and Subsystem Overview

• Each synchronizes transfers to the clock rate of the external storage
device.

The protocols further define specific attributes of the SDI and the STI.
For example, the SDI protocol defines commands and responses that
support disk operations. Similarly, the STI protocol defines commands and
responses that support tape operations.

1.5 Electrostatic Protection
Static protection eliminates static build-up or discharges static build-up
quickly and safely.

If the charged object is a conductor, grounding eliminates discharge. The
grounding cord connects the wrist strap and the conductive work surface
to ground.

CAUTION: To avoid product damage, use grounding straps when handling
static-sensitive modules and components. Appendix E lists part
numbers and descriptions for approved electrostatic discharge
kits and materials.

Use the following guidelines when handling static-sensitive components
and modules:

1 Be properly grounded when handling modules, components, or static-
sensitive devices.

2 Use static-protective containers to transfer modules and components
(including bags and tote boxes).

Figure 1–3 shows the location of the electrostatic discharge (ESD) kit.

When using an ESD wrist strap:

1 Ensure the wrist strap fits snugly for proper conductivity.

2 Do not overextend the grounding cord.

3 Attach the alligator clip securely to a clean, unpainted, grounded,
metal surface, such as the cabinet chassis or module cage.

1–9

General Information and Subsystem Overview

Figure 1–3 Ground Strap

INSIDE
FRONT
DOOR

CONTROL
PANEL

TK TAPE
DRIVE

INSIDE
FRONT
CABINET

VAXBI
CARD
CAGE

XMI
CARD
CAGE

FAN

ESD
KIT

CXO-2883A

1–10

2 KDM70 Controller Functional Description

2.1 Introduction
This chapter provides a brief hardware and software functional description
of the KDM70 controller.

2.2 Failover
Failover between two KDM70’s in different CPUs is automatic and
supported providing the configuration is correct. The main concern is
in device naming; if the disk is on controller PUA on one node, it must
also be on controller PUA on the other. The disk can only be online to
one controller at a time and other cluster members will access it via the
MSCP server. The MSCP server must be loaded on both nodes and both
nodes must have the same allocation class. The disk must have both ports
enabled. If the serving node fails, the other node will bring it online and
begin serving the disk.

KDM70 Supported Failover:

• Drive Port failover from KDM to KDM

• Drive Port failover from KDM to KDB, and KDB to KDM

• CPU failover of drive from KDM to KDM on different nodes

• CPU failover of drive from KDM to KDB, and KDB to KDM

Requirements for DISK failover on KDM70 Adapters:

• The disk(s) must be served at boot time

• KDM70 adapters must be located on different systems

• The KDM70 must have the same device mnemonic on both nodes; for
example if the KDM70 is PUA0 on node 1, it must also be PUA0 on
node 2

Note:

• Failover between two KDMs on the same CPU is not supported

• Tape failover is not supported on Local Adapters

• Local controller failover to an HSC is not supported by VMS

2–1

KDM70 Controller Functional Description

2.3 KDM70 Controller Hardware Functional Overview
The KDM70 controller is a specialized computer system. It uses
a CVAX (3.8 VAX unit of performance (VUP) CPU) processor to
execute policy software and state machines to manage data transfers.
Figure 2–1 provides a functional block diagram consisting of the following
components:

Component Description

Buffer memory A place that temporarily stores data transferred
between host memory and the storage devices.
Buffer memory also contains data structures to define
state machine transfers.

CVAX kernel A CVAX processor with dedicated memory and
support logic.

XMI state machine (XISM) A state machine that manages direct memory access
DMA block data transfers between the host memory
and the KDM70 controller buffer memory.

XMI interface A dual-access communications path to the XMI bus.
One path is controlled by the CVAX, the other path is
controlled by the XISM.

Storage interconnect state
machine (SISMs)

Two identical state machines that manage data
transfers between the KDM70 controller buffer
memory and the external disk drives or tape
formatters.

Miscellaneous logic Supporting logic, such as diagnostic and error
registers.

Characteristics of the KDM70 controller include:

1 The policy processor (CVAX) and policy software are external to the
data transfer path.

2 State machines can execute data transfers simultaneously with other
state machines.

3 Data buffers have a defined format that contain 512 data bytes and a
2-byte error detection code (EDC).

4 CVAX and state machines execute extensive internal diagnostic tests
on power-up or on demand.

The KDM70 controller’s buffer memory consists of three types of data structures:

1 Work rings provide a circular work schedule of order-independent work
requests for state machines.

2 Work lists compose the work ring and schedule order-dependent work
for state machines.

3 Work blocks compose the work lists and define work for state
machines.

2–2

KDM70 Controller Functional Description

State machines traverse work rings, looking for and executing work blocks,
without intervention from policy software.

Figure 2–1 KDM70 Controller Subsystem Functional Block Diagram

XMI
INTERFACE

HOST

XMI

MISC
LOGIC

STANDARD
INTERFACE
STATE
MACHINE A
(SISM A)

D/C CHAN A PORT
INTERFACE

PORT 0

MISC
LOGIC

STANDARD
INTERFACE
STATE
MACHINE B
(SISM B)

PORT
INTERFACE

BUFFER
MEMORY
(64K X 32
PLUS 4
PARITY
BITS)

T2022 MODULE T2023 MODULE

STATUS

D/C CHAN B

STATUS

SISMs

CVAX PROCESSOR
AND
PROGRAM MEMORY

CVAX KERNEL

CVAX
CONTROL

CVAX
CONTROL

XISM

INTERNAL BUS (HIB)

PORT 1

CVAX
CONTROL

CVAX
CONTROL

PORT 2

PORT 3

PORT 4

PORT 5

PORT 6

PORT 7

CXO-2859A

2.3.1 Buffer Memory and Data Structures
Producer and consumer work blocks transfer data between host memory
and storage devices. A work block is flagged as a consumer or a producer
work block when it is created by the CVAX. A bit position in the work
block is defined as the premature flag.

2–3

KDM70 Controller Functional Description

A work block with a clear premature flag is a producer work block and can
execute immediately. Producer work blocks cause a state machine to write
KDM70 data buffers with data obtained from host memory or a storage
device.

A work block that contains a set premature flag is a consumer work block.
It cannot execute until a state machine completes the associated producer
work block without error and clears the premature flag. Consumer work
blocks cause a state machine to read KDM70 data buffers and transfer the
data to host memory or to a storage device.

Figure 2–2 and the following example illustrate a transfer between a
disk drive and the host memory system. The example assumes the host
requested a read of one disk sector.

2–4

KDM70 Controller Functional Description

Figure 2–2 Functional Example of a Data Transfer

CVAX POLICY SOFTWARE
ASSIGNS BUFF MEMORY
AND BUILDS WORKBLOCKS

ONE OR MORE DEFINED
DATA BUFFERS

PREMATURE

CONSUMER
WORKBLOCK

BUFFER IS WRITTEN
FROM SISM

SISM TRANSFERS FROM
DISK TO MEMORY

1 NOT PREMATURE

PRODUCER
WORKBLOCK

0

STEP

SISM CLEARS
PREMATURE FLAG

NOT PREMATURE

PRODUCER
WORKBLOCK

0

NOT PREMATURE

CONSUMER
WORKBLOCK

0

STEP

CVAX POLICY SOFTWARE
RELEASES BUFF
MEMORY RESOURCES

XISM NOTIFIES
CVAX POLICY SOFTWARE

XISM TRANSFERS FROM
MEMORY TO XMI

BUFFER IS READ
BY XISM

XMI

DISK

STEP

STEP

STEP

CXO-2860A

1

2

3

4

5

2–5

KDM70 Controller Functional Description

1 The policy software builds two work blocks defining the transfer as
a two-step process. Each work block uses the same data buffer in
KDM70 buffer memory.

• The first work block, a producer work block, defines a transfer
from a disk drive to the KDM70 data buffer.

• The second work block, a consumer work block, defines a transfer
from the KDM70 data buffer to a host memory buffer.

2 The SISM transfers the requested disk sector to the prescribed KDM70
data buffer.

3 If the transfer completes without error, the SISM clears the premature
flag in the consumer work block. (Any detected error prevents
modification of the premature flag in the consumer work block.)

4 The XISM detects the premature flag is clear and executes the
consumer work block to transfer the KDM70 data buffer to the host
memory buffer.

5 When the transfer completes, the consumer state machine (XISM, in
this example) writes completion status into a status buffer and notifies
the policy software that the transfer completed.

2.3.2 The CVAX Kernel
The CVAX kernel executes policy software characterizing the KDM70
controller as an intelligent DSA controller. The CVAX kernel performs the
following functions:

• Maintains the logical communication path with host class drivers

• Determines storage device characteristics

• Reduces MSCP, TMSCP, and DUP command packets into state
machine work blocks

• Optimizes transfer requests

• Implements error-recover strategies

To maintain the logical communication path, the CVAX transfers command
and response packets with the host memory system, as explained in the
following list:

1 When the CVAX requires a command packet, it requests the XMI
interface to execute a series of quadword or octaword reads from the
host command buffer.

2 As each read completes, the CVAX transfers the received data to the
CVAX memory system.

3 When the CVAX returns a response packet to the host response buffer,
the process reverses.

4 The CVAX transfers data from its memory to the XMI interface, then
requests the XMI interface to perform a quadword or octaword write to
the host response buffer.

2–6

KDM70 Controller Functional Description

5 The process continues until the response is completely transferred.

When a device is brought on line, the storage device characteristics must
be defined. The CVAX policy software uses device characteristics to
manage data transfers with the storage device.

High-level host requests in the form of command packets are reduced
into state machine work blocks by the controller. A host request to read a
single sector may require a number of work blocks to perform the following
functions:

• Initiate a seek operation to the disk drive

• Test if the seek operation completed properly

• Transfer data from the disk sector to a KDM70 data buffer

• Complete the data transfer by moving the data from the KDM70 data
buffer to host memory

Optimization maximizes data throughput by ordering work blocks to use
device geometry. Optimization is possible only with random access devices,
such as disk drives.

Note: Because tape drives are sequential access devices, optimization of
tape transfers is not possible.

Error-recovery procedures make storage devices appear error free to the
host system. The policy software implements error-recovery strategies
defined, in part, by the storage device. In cases where error recovery is not
possible, the KDM70 controller notifies the host system of the error.

Figure 2–3 provides a block diagram of the CVAX Kernel.

2–7

KDM70 Controller Functional Description

Figure 2–3 CVAX Kernel Block Diagram

SYSTEM
SUPPORT
CHIP (SSP)

CVAX
(CONTAINS
INTERNAL
CACHE)

HIB/CDAL
INTERFACE

PROGRAM
MEMORY

CVAX
CLOCK
(CCLK)

BOOT
PROM

VECTORED
INT CTRL
(VIC)

MISC
LOGIC

CODE
STORE

CDAL

ADDRESS AND
CONTROL TO
XMI INTERFACE

HIB

PROM
CTRL

CXO-2861A

The components in Figure 2–3 are explained in the the following table:

Component Description

CVAX Provides a 32-bit virtual memory microprocessor with
an internal cache system. The CVAX executes the
policy software contained in program memory.

CVAX clock (CCLK) Provides the KDM70 controller with system clocks. It
also synchronizes VIC or SSC operations.

System support chip Supplies the interval timer to the CVAX and interfaces
the Boot PROM to the CVAX.

Vectored interrupt controller
(VIC)

Provides a programmable interrupt controller. It
prioritizes interrupt requests from state machines, the
XMI interface, and the KDM70 internal bus (HIB) error
logic and assigns them to CVAX interrupt request
levels. The VIC supplies the interrupt vector to the
CVAX when the CVAX acknowledges an interrupt
asserted by the VIC.

Boot programmable read-only
memory (PROM)

Supports 32 Kbytes of CVAX start-up code. Start-up
code verifies the integrity of the CVAX Kernel before
loading program memory and control store random
access memory (CRAM) of the state machines.

Code store Holds 384 Kbytes of code image. The code image
includes policy software loaded into program memory
and microcode loaded into state machine CRAM after
system initialization.

2–8

KDM70 Controller Functional Description

Component Description

Program memory Contains executable policy software loaded from
code store and provides working areas for CVAX
policy software. Program memory is protected by
byte parity and supports CVAX cache operations.
Because program memory is on the CVAX side of
the HIB/CDAL interface, it effectively removes the
CVAX Kernel from the main data path of the KDM70
controller.

KDM70 internal bus to CVAX
data and address lines
(HIB/CDAL) interface

Stores address and data for CVAX-initiated references
to devices on the HIB. Those devices include state
machines, buffer memory, and various diagnostic
registers.

Miscellaneous logic Includes diagnostic registers, error registers, and
programmable array logic (PAL) to support the CVAX
Kernel.

2.3.3 The XMI State Machine
The XMI state machine (XISM) manages block data transfers between
host memory and KDM70 buffer memory. Each transfer uses standard
512-byte data buffers. As each buffer transfers (partial data buffers are
zero filled), the XISM generates an error detection code (EDC) across the
data buffer. When the buffer transfer completes, the XISM performs the
following functions:

• Compares the generated EDC to the EDC read from the KDM70 buffer
memory (buffer memory read operations)

• Stores the generated EDC in buffer memory immediately following
byte 512 of the data buffer (buffer memory write operations)

The XISM performs all block data transfers with KDM70 buffer memory.
Block transfers are controlled by work blocks defining the following
operations:

• Compare operations between a host memory buffer and an KDM70
memory buffer

• Compare operations between two KDM70 memory buffers

• Read transfers from a host memory buffer to a KDM70 memory buffer

• Write transfers from a KDM70 memory buffer to a host memory buffer

Figure 2–4 shows a block diagram of the XISM.

2–9

KDM70 Controller Functional Description

Figure 2–4 XISM Block Diagram

HIB

CXO-2862A

ADDR
LATCHES

DATA
XCVRS

DATA
BUFFERS

PARITY
GEN/CHK XICDPC CRAM

XICDPC DAL

ADDRESS AND CONTROL
TO XMI INTERFACE

The XISM in Figure 2–4 contains the following components:

Component Description

Data transceivers Permit the XISM to transfer data with the buffer
memory system

CRAM Contains microcode to control XICDPC operations

Data buffers Permit CVAX loading of CRAM after system
initialization

Address latches Drive the HIB address bus with addresses of source
or target KDM70 buffer memory locations

XICDPC Functions as the XISM data path controller

Parity generator/checker Maintains the integrity of XISM data transfers

2.3.4 The XMI Interface
The XMI interface manages communications with the host bus. It
implements XMI protocol required to perform XMI transactions and
provides command and data ports to the CVAX and the XISM.

The CVAX control and data port consists of registers that queue CVAX
requests for XMI transactions. The registers hold:

• XMI commands (read, write, or interrupt)

• Addresses of host memory source or destination data

• Interrupt vectors

• Interrupt levels

2–10

KDM70 Controller Functional Description

The registers also provide an octaword buffer to temporarily store data.
The octaword buffer permits the XMI interface to transfer up to an
octaword per CVAX requested transaction. The CVAX transfers data
to or from the octaword buffer and CVAX program memory.

The XISM control and data port is similar to the CVAX control and data
port. It also contains registers to hold the XMI command (read or write)
and addresses of host memory source or destination data. However, the
XISM control and data port has two octaword data buffers. The octaword
buffers wrap around to provide a circular address space. This allows the
XMI interface to transfer one octaword buffer to host memory while the
XISM transfers the other octaword buffer to KDM70 buffer memory.

Note: Transfers must complement each other. If the XMI interface is
writing one octaword buffer, the XISM can only read the other
octaword buffer. The reverse is also true.

Because the CVAX and the XISM can request XMI transactions, the XMI
interface may have two commands pending internally. But, only one
transaction will be pending on the XMI bus.

Note: If commands are queued to both control and data ports, the XMI
interface alternates between commands, unless policy software
requests:

• XISM transactions to be suspended

• A specific number of XISM transactions to complete

Figure 2–5 provides a block diagram of the XMI interface.

2–11

KDM70 Controller Functional Description

Figure 2–5 XMI Interface Block Diagram

HIB

XLATCHs
(7 REQ)

ADDRESS AND
CONTROL FROM
XISM

ADDRESS AND
CONTROL FROM
CVAX

XCLOCK

CHXIC

DATA
XCVRS

CVAX/
XISM
MUX

XMI XCI

CXO-2878A

The components in Figure 2–5 are described in the following table:

Component Description

XLATCH Provides the primary interface to the XMI bus. Each XLATCH
includes a read path and a transmit path. The read path transfers
the contents of the XMI to the XCI (XMI chip interface). The transmit
path transfers data from the XCI to the XMI. To facilitate pre-fetching
of data for write-type operations, the transmit path contains two
stages.

XCLOCK Provides two sets of clocks synchronized to the XMI. One set drives
the XLATCHs, the other set drives the CXHIC.

CXHIC Provides the protocol required to interface to the XMI bus. Included
in the CXHIC are the XMI required registers and the octaword buffers
to support transfers with the host system.

Data
transceivers

Interface the KDM70 HIB to the CXHIC.

CVAX/XISM
multiplexer

Selects address and control information from the CVAX or the XISM.
The address selects a CXHIC register. The control information
specifies the type of register operation.

2.3.5 SI State Machine (SISM)
Two SISMs perform data transfers and diagnostic tests. Each SISM
executes work blocks that define the following operations:

• Command and response transfers

2–12

KDM70 Controller Functional Description

• Diagnostic tests

• Disk read or write transfers

• Disk format transfers

• Tape read or write transfers

Command and response transfers, as well as diagnostic tests, can transfer
less than standard length buffers. Disk or tape transfers use standard
512-byte data buffers. Each buffer is protected by an error detection code
(EDC) and, in the case of disk buffers, an error correcting code (ECC).

Figure 2–6 shows a block diagram of the SISMs, including two each of the
following:

• CSIC (CMOS storage interface controller)

• SIECL (storage interface emitter coupled logic)

• HIB interface

• CRAM (control-store random access memory)

• CRAM data transceivers

• Pulse transformers

Each CSIC converts data from the parallel format of the KDM70 HIB
to the serial format required by the SIECL. The CSIC connects to each
SIECL through data and control channels. The CSIC connects to one
SIECL through a local port status path and to the other CSIC through a
synchronization and remote test multiplexer path. As a result, the CSIC
can access all eight ports of the KDM70 controller.

The CSIC performs the following functions:

• Generates the ECC for disk write data

• Checks the ECC for disk read data

• Generates EDC for every block transfer to KDM70 buffer memory

• Checks EDC on every block transfer from KDM70 buffer memory

• Detects header compare errors during disk read or write operations

• Implements some of the SDI and STI protocols

Each SIECL converts data from the CSIC serial format to a pulse-encoded
format required on the SDI/STI bus. The SIECL connects to both CSICs
through data and control channels and to one CSIC through a local port
status path. The two data and control channels allow the SIECL ports
to transfer data simultaneously over two ports. One transfer would be
controlled by the CSIC connected to channel A, the other transfer would
be controlled by the CSIC connected to channel B. The local port status
path allows the SIECL to drive the status of its four ports to the local
CSIC.

Each HIB interface transfers address, data, and control information
between the HIB and the CSIC data and address lines (DALs).

2–13

KDM70 Controller Functional Description

Each CRAM contains microcode to control a CSIC. Microcode is parity
protected and can be read or written by the CVAX kernel.

CRAM data transceivers interface CRAM to the HIB and permit the CVAX
to load and verify SISM microcode during controller initialization.

Pulse transformers isolate the SDI/STI bus from the SIECL.

2–14

KDM70 Controller Functional Description

Figure 2–6 SISMs Block Diagram

HIB
INTF

CSIC DAL

CRAM

MISC
LOGIC

CRAM
DATA
XCVRS

CSIC

SIECL

P O R T 0

P O R T 1

P O R T 2

P O R T 3

X

F

M

R

LOCAL PORT
STATUS

DATA/CMD
CHAN A

SISM A

PORT INTERFACE A

CSIC DAL

CRAM CSIC

SIECL

P O R T 7

P O R T 6

P O R T 5

P O R T 4X

F

M

R

SISM B

PORT INTERFACE B

CRAM
DATA
XCVRS

MISC
LOGIC

LOCAL PORT
STATUS

DATA/CMD
CHAN B

HIB
INTF

HIB

CXO-2879A

S
Y

N
C

H
R

O
N

IZ
A

T
IO

N
 A

N
D

 S
T

A
T

U
S

2–15

KDM70 Controller Functional Description

2.3.5.1 Buffer Memory Temporarily Stores Data and Data Structures
Buffer memory provides 256 Kbytes of temporary storage for state machine
data structures and data buffers. The data structures, which are work
blocks linked as work lists and work rings, define and schedule work for
the state machine. The data buffers hold data that is transferred between
the host memory and the external storage devices.

2.3.6 Composite Block Diagram of the KDM70 Controller
Figure 2–7 and Figure 2–8 provide a complete block diagram of the
KDM70 controller.

2–16

K
D

M
70

C
ontroller

F
unctionalD

escription

F
igure

2–7
K

D
M

70
T

2022
M

odule
B

lock
D

iagram

VECTORED
INT CTRL

HIB/CDAL
INTERFACE

CVAX
(CONTAINS
INTERNAL
CACHE)

BOOT
PROM

PROM
CTRLSYSTEM

SUPPORT
CHIP

SYSTEM
CLOCK
CHIP

MISC
LOGIC

CODE
STORE

PROGRAM
MEMORY

MISC
LOGIC

ADDRESS AND
CONTROL TO
XMI INTERFACE

DATA
XCVRS

ADDR
LATCHES

DATA
XCVRS

DATA
BUFFERS

CRAMXICDPC
XICDPC
DAL

PARITY
GEN/CHK

XICDPC

CVAX/
XISM
MUX

CHXIC
XLATCHs
(7 REQ)

HIB

HIB

TO/
FROM
T2023

CVAX CORNER

XISM
XMI INTERFACE

XMI XCI

ADDRESS AND
CONTROL FROM
CVAX

ADDRESS AND
CONTROL TO
XMI INTERFACE

CXO-2880A

CDAL

2–18

KDM70 Controller Functional Description

Figure 2–8 KDM70 T2023 Module Block Diagram

HIB
INTF

CSIC DAL

CRAM

MISC
LOGIC

CRAM
DATA
XCVRS

CSIC

SIECL

P O R T 0

P O R T 1

P O R T 2

P O R T 3

X

F

M

R

LOCAL PORT
STATUS

DATA/CMD
CHAN A

SISM A/B

CSIC DAL

CRAM CSIC

SIECL

P O R T 7

P O R T 6

P O R T 5

P O R T 4

R

M

F

X

CRAM
DATA
XCVRS

MISC
LOGIC

LOCAL PORT
STATUS

DATA/CMD
CHAN B

HIB
INTF

HIB

CXO-2881A

TO/FROM
T2022

MISC
LOGIC

BUFFER
MEMORY
64K X 32
PLUS 4
PARITY
BITS

S
Y

N
C

H
R

O
N

IZ
A

T
IO

N
 A

N
D

 S
T

A
T

U
S

2–19

KDM70 Controller Functional Description

2.4 Software Architecture Overview
The KDM70 software is stored in nonvolatile ROM (EEPROM) memory on
the T2022 processor module. The KDM70 software architecture is divided
into two distinct layers (Figure 2–9):

1 Server layer

2 Device layer

The server layer consists of code that implements disk and tape MSCP
and DUP protocol and also implements the high-level diagnostic interface
into these servers.

The second layer, the device layer, consists of components unique to the
hardware implementation. Disk communication management, SDI disk
data error recovery or the XMI port layer are all examples of device layers
that manipulate data structures and hardware in providing services to the
server layer.

Figure 2–9 Server Layer/Device Layer Diagram

DISK
MSCP
SERVER

TAPE
MSCP
SERVER

DUP
SERVER

SCS
DIRECTORY

SERVER
LAYER
COMPONENTS

SDI DISK
DATA
ERROR
RECOVERY

XMI
PORT

(ETC)

DISK
COMMUNICATION
MGT

DEVICE
LAYER
COMPONENTS

CXO-2882A

Figure 2–10 represents the overall KDM70 software architecture. The
functional blocks in this figure are not related to the server/device layers
in Figure 2–9. Functional blocks in Figure 2–10 may contain components
from both layers. Each functional block represents a collection of smaller
software compilable components called source modules. In turn, source
modules are comprised of code written procedures.

2–20

KDM70 Controller Functional Description

Figure 2–10 KDM70 Software Block Diagram

PHYSICAL HOST BUS

HOST
INTERFACE

DISK MSCP
SERVER

HIGH-LEVEL
DIAGNOSTIC
OR UTILITY
PROGRAM

DUP
SERVER

TAPE MSCP
SERVER

LOW-LEVEL DIAGNOSTIC
OR UTILITY PROGRAM

PORT RECOGNITION AND
STATE CHANGE DETECTION

TA-SERIES
TAPE DRIVES

DISK DRIVE
INTERFACE

TAPE DRIVE
INTERFACE

RA-SERIES
DISK DRIVES

CXO-2884A

2.5 Thread Structure
The functional blocks in Figure 2–10 operate independently and in
parallel. Functions operate in a separate machine context (hardware
context) from other functions. The interfaces between functions consist of
queues, semaphores and data structures. Note that a machine’s hardware
context is defined by the state of general registers, stack pointer, program
counter, and processor status register. To execute functional threads
in a logical, orderly fashion, the exec provides synchronization services
and scheduling for the multiple processes waiting to run. The exec uses

2–21

KDM70 Controller Functional Description

queues, semaphores, and timers in synchronizing the various threads and
services provided by the KDM70 controller.

2.5.1 Host Interface
The host interface controls the host bus hardware and implements port
communications policy, the system service protocol (SSP) connection,
and communications policies. The host interface provides message and
block data services, as well as system communication services (SCS) and
directory services to the servers.

2.5.2 Disk MSCP Server
The MSCP server interfaces to the host disk class driver through the
host interface. Physical drive services required by MSCP protocol are
invoked through the disk drive interface. The disk MSCP services are also
provided to high-level diagnostic and DUP programs through the host disk
class driver. Finally, drive state changes are monitored by the disk MSCP
server through the port recognition and state change function.

2.5.3 Tape MSCP Server
The tape MSCP server is the analog function of the disk MSCP server
used to control tape devices.

2.5.4 Diagnostic Utility Protocol Server
The diagnostic utility protocol server manages connection and
communication services to host-based and on-board diagnostics. KDM70
DUP interfaces to the host-based DUP class driver through the host
interface.

2.5.5 Disk Drive Interface
The disk drive interface controls policy for disk hardware, drive
communications, and drive transfers. The disk function provides the
following services:

• Transfers data services to the disk MSCP server

• Provides low-level diagnostic and utility programs

• Recognizes the port

• Detects state changes

The disk drive interface uses the host interface to map host buffer operations required for data
transfers from the host to storage.

2–22

KDM70 Controller Functional Description

2.5.6 Tape Drive Interface
The tape drive interface is the tape equivalent of the disk drive interface,
which uses TMSCP.

2.5.7 Port Recognition and State Change Detection
The port recognition and state change detection function monitors SI port
state changes and device state changes. State changes are reported to the
disk or tape MSCP server. These functions also help the disk or tape drive
interfaces determine the type of device attached to a particular SI port.

2.5.8 High-Level Diagnostic and Utility Program
The high-level diagnostic/utility function works with the DUP server to
control program execution and operates on targeted devices. Normal disk
and tape services are provided by the disk/tape MSCP servers through the
host interface. Programs run in parallel with normal controller functions.

2.5.9 Low-Level Diagnostic and Utility Program
The low-level diagnostic and utility function uses the DUP server to
control program execution and operate on targeted devices. Programs run
in parallel with normal controller functions.

2.6 Software Transfer Command Flow
The software transfer command flow is a high-level overview of how the
KDM70 software processes transfer commands. This example assumes an
error-free transfer. Relevant data structures are included in this overview.

2.6.1 KDM70 Software Concepts and Constructs
The KDM70 software is divided into software modules that perform
specific tasks. Each module is connected to other modules through a series
of linked data structures, queues, and semaphores.

Executing processes or tasks in the KDM70 controller cannot be
interrupted by a waiting process. The executing process runs to completion
and then clears its own scheduling bit, indicating completion of the its
task.

Software data structures are packets of information used to pass device
characteristics and status information. Data structures are used to pass
MSCP commands and associated flags and command modifiers. Data
structures include command and response packets, which allow the host,
controller, and target devices to communicate their status and the status
of MSCP commands.

2–23

KDM70 Controller Functional Description

2.6.2 Host Data Structures: Command Ring and Response Ring
Host memory uses two data structures called the command ring and the
response ring to pass and receive MSCP commands and MSCP-related
information (Figure 2–11). Both rings are circular buffers. The host
uses these data structures to store pointers to areas of host memory that
contain MSCP command packets. These packets also contain system
services protocol (SSP) information used in performing system overhead
functions.

Figure 2–11 Command and Response Rings

31 30 00

O F PHYSICAL ADDRESS OF BUFFER

O BIT = OWNERSHIP BIT

0 = HOST OWNS DESCRIPTOR
1 = PORT OWNS DESCRIPTOR

F BIT = FLAG BIT

PORT RETURNS DESCRIPTOR TO HOST:

0 = DESCRIPTOR PROCESSING NOT COMPLETED
1 = DESCRIPTOR PROCESSING COMPLETED

HOST RETURNS DESCRIPTOR TO PORT:

0 = PORT NOT TO INTERRUPT ON RING TRANSITION
1 = PORT IS TO INTERRUPT ON RING TRANSITION

* RING TRANSITION = COMMAND RING GOING FROM FULL TO NOT - FULL
RESPONSE RING GOING FROM EMPTY TO NOT - EMPTY

*
*

CXO-2885A

The KDM70 controller checks the state of the high-order bit in the
command ring to determine if there is an outstanding MSCP command
(packet). A set high-order bit indicates an outstanding command. The
KDM70 notifies the host that it has accessed either the command ring or
response ring by writing a non-zero value to a register called the command
interrupt reason or response interrupt reason. This, in turn, generates an
interrupt to the host.

2.6.3 Device Data Structures: Ringleader, SI Work Blocks, and XI Work
Blocks

The device side of the controller includes the ringleader. One ringleader
exists for each port. The ringleader is a circular structure with the tail
pointing to the head of the structure (Figure 2–12). Processed work blocks
are placed on the ringleader in the order received. Work blocks cause the
controller state machines (SI and XMI) to do work by sending or receiving
data to and from the device attached to the KDM70 ports.

2–24

KDM70 Controller Functional Description

Figure 2–12 Ringleader

CXO-2886A

 0

 4

 8

 12

 16

 20

 24

 28

 32

 36

SISM RING LEADER POINTER

ADDRESS

40

IF "NON_EMPTY", DIRECT POINTER

IF "NON_EMPTY", DIRECT POINTER

IF "NON_EMPTY", DIRECT POINTER

IF "NON_EMPTY", DIRECT POINTER

XI RING LEADER POINTER

QUEUE OF CURRENT TRANSACTIONS

QUEUE OF CURRENT TRANSACTIONS

POINTER TO SI RING LEADER FOR NEXT PORT

POINTER TO XMI RING LEADER FOR NEXT PORT

SMPTR *SI_PORT_RING_LEADER

SMPTR *XI_PORT_RING_LEADER

SMWB *SI_NORMAL_WL_PTR

SMWB *SI_ERROR_WL_PTR

SMWB *XI_NORMAL_WL_PTR

SMWB *XI_ERROR_WL_PTR

BITFIELD: FLAGS

LINKS *FIRST

LINKS *LAST

_RLEADER *SI_NEXT_RL_PTR

_RLEADER *XI_NEXT_RL_PTR

2.7 Transfer Command Flow Through the KDM70 Controller
This section describes an MSCP disk transfer command through the
KDM70 controller. The terms data structure, structure, and buffers
are used interchangeably. Threads, tasks, and processes are also used
interchangeably. Refer to Figure 2–13 during this discussion.

When the host has work for the controller to perform, the host places an
address of an MSCP command packet in the host command ring. This
action sets the high-order bit in the command ring, which generates an
interrupt to the controller. The controller, through its executive function,
schedules the host port thread to run.

2–25

K
D

M
70

C
ontroller

F
unctionalD

escription

F
igure

2–13
B

uffers
A

ssociated
w

ith
a

Transfer
C

om
m

and

PORT RING LEADER

HEADER

AMB ATD

TB

NORMAL WRKLIST

LINKS/ ID LINKS/ID

LINKS/ID

NEXT ATD FLAGS

FLAGS:DISK/TAPE

CF

LINK TO HOLD Q LINK/ID

CB PTR PCB PTR

MSCP

UCB PTR

SI WRKBLK

XMI WRKBLK

UCB

LINK TO AMB

HARDWARE RECAP

PTR TO UCB

UIB CB

ERROR WRKLIST

SSP ENVELOPE

ATD LINK

THIS DATA

UIB PTR

TF

LINK/ID

MESSAGE

MISC

AMB KNOWN LIST

FREE TB QUE

PTR:FRAMELIST

PTR TO SPB

BYTE COUNT

STRUCTURE
NEXT UIB

TB PTR

HEAD:FRAGM LIST

PCB

PORT STATUS
OWNERSHIP
INFORMATION

FLAGS

AMB FREE LIST

PTR TO TB

CONTAINS

1ST SI WRKBLK

SERV PROC BLK

PTR TO PCB

ALL UNIT

LAST SI WRKBLK

HOST TIMER

RECEIVE OPCODE1ST XI WRKBLK

HOST TIMER EXP

NEXT WORKBLOCKLAST XI WRKBLK

CONNECT ID

NEXT WRKBLK PTR

PARENT ATD PTR

SEND CMD QUE

DATAGRAM FREEQ

TARGET DEVICE
INFORMATION:
CYLINDER, GRP
USED BY DPX

AND SUBUNIT
CHARACTERISTICS
INFORMATION

UNIT NUMBER

UNIT AND
SUBUNIT
INFORMATION

CMD HOLD QUE

TRANSACT FLAGS

CXO-2887A

2–26

KDM70 Controller Functional Description

The host port thread reads in the MSCP packet from the referenced
host address. The MSCP packet is stored in a data structure called
the application message block (AMB) in controller program memory
(Figure 2–14). The AMB also contains SSP-related information, state
context information, and pointers to other data structures used to process
the MSCP command.

Figure 2–14 Application Message Block

CXO-2888A

_LINKS, ID

NEXT AMB

ATD - COUNT

LINK TO HOLDING QUEUE

CB - POINTER

UIB - POINTER

SSP - ENVELOPE

MSCP COMMAND

MESSAGE

MISCELLANEOUS

The host port thread then passes the AMB to the disk server thread, clears
its own scheduling bit, and returns to a wait state.

The arrival of the AMB on the disk server threads input queue causes
the disk server’s scheduling bit to be set. The now executing disk server
thread validates the AMB by comparing the MSCP command, including
any flags or modifiers, to a table of legal MSCP opcodes.

Once the AMB has been validated, the disk server thread compares the
target device’s unit number, referenced in the MSCP command, to the
units associated unit control block (UCB). The UCB is a data structure
containing the selected device’s unit and subunit characteristics and unit
context.

Once the UCB is validated and the device is ready for a transfer, the disk
server thread locates a data structure called the atomic transfer descriptor
(ATD) (Figure 2–15). An ATD represents a transfer of contiguous logical
block numbers (LBNs), all within the same cylinder. (If a transfer crosses
cylinder boundaries, multiple ATDs must be built to accommodate the
transfer.) Relevant MSCP command packet information from the AMB
is copied into the ATD, such as byte count, MSCP opcode, end flags,
modifiers, and the LBN to be used.

2–27

KDM70 Controller Functional Description

Figure 2–15 Atomic Transfer Descriptor (ATD)

CXO-2889A

ID

 PARENT AMB

MSCP END CODE

MSCP ENDING STATUS

BYTE COUNT

LBN

SECTOR COUNT

CYLINDER NUMBER

STARTING GROUP NUMBER

STARTING TRACK NUMBER

MSCP OPCODE

LINKS

LINKS

ID

ID

MSCP MODIFIERS

_LINKS *FLINK

_LINKS *BLINK

SIZE

TYPE

FLAGS

_AMB *PARENT

END

OP

MODIFIERS

END_STATUS

BYTE_COUNT

LBN

SECT_COUNT

CYLNUM

GROUP

TRACK

BC_STORE ORIGINAL BYTE COUNT

The disk server sends the ATD through a queued interface to the disk
transfer manager (DPX) (TPX for tape). The disk server clears its
scheduling bit and waits for more work.

The DPX receives the ATD from a structure to which the PCB is pointing,
called the input queue. The input queue receives new work for each port.
The input queue is a standard receive queue with semaphore; that is, it is
a blocking queue.

DPX checks if the work pipeline is currently full. If it is full, the work is
left on the port input queue. If work can be done, DPX calls a transfer
routine.

DPX then allocates a transaction block (TB) (2 per port) for the operation.
DPX computes the number of transfer fragments (TFs) and communication
fragments (CFs) required for the transfer to occur, and then allocates
them.

DPX allocates the needed buffers for the data and calls the disk interface
manager to initiate the transfer.

2–28

KDM70 Controller Functional Description

The TB is a holder for the TF and CF. Both the TF and CF contain two
work blocks. The TF has an SI side and an XI side. The CF has a send
and receive side. The send and receive opcodes show the start of the work
blocks.

After DPX builds its TB, TFs, and CFs and allocates the necessary buffers
from data memory, DPX sends the TB to the state machine management
code. The state machine processes the work block portion of the TFs and
CFs and queues the TFs and CFs to the ringleader of the selected port.

After the state machines execute the work blocks, the TB is marked
‘‘success normal’’ and is sent back to the DPX on the PCB hardware
recapture queue. If the transaction completes error free, the DPX removes
the completed TB from the queue and retires it along with other reserved
resources used during the transfer.

DPX then returns the associated ATD back to the disk server thread.
The disk server thread retires the ATD and AMB, freeing those resources
for other commands. The disk server thread calls a response routine
and notifies the host, through the host response ring, that the transfer
completed successfully.

2–29

3 KDM70 Controller Initialization and Operation

3.1 Introduction
This chapter describes KDM70 controller boot sequence and initialization.
This chapter is intended as a high-level overview.

3.2 DEMON Flow
Figure 3–1 shows the logical connections between the diagnostic execution monitor (DEMON),
module internal self-test (MIST) and KDM70 controller functional code. Logically represented in
the flow is error handling by MIST/DEMON.

Figure 3–1 DEMON Flow

CVAX
RESTART

DEMON

SOFT INIT
MAINTENANCE INIT
OR UPDATE INIT

HARD INIT
(SYSTEM RESET/POWER UP)

DEMON REQUESTED AS A
SUBROUTINE

SUCCESSFUL COMPLETION
OF HARD INIT MIST

LAST FAIL ERROR
PACKET AND MIST
MAINTENANCE
PACKET

ERROR AND
PROGRESS
REPORTINGKDM70 CONTROLLER

FUNCTIONAL
CODE

MIST
SEQUENCER

CORE
HARDWARE
TEST

CONTROL
TRANSFER

FRU CALLOUT
AND GO/NO GO
LEDs

INTERNAL
FAULT
BLOCK

INDIVIDUAL
MIST TESTS

ERROR REPORTING

CXO-2890A

3–1

KDM70 Controller Initialization and Operation

3.2.1 KDM70 Core Hardware Initialization Test
The hardcore initialization tests check the sanity of the CVAX
microprocessor and supporting hardware. Hardcore tests execute from
boot programmable read-only memory (PROM). Refer to Appendix D for a
description of hardcore tests.

3.2.2 DEMON
DEMON is invoked after the occurence of one of the following:

• Completion of core hardware tests during a port hard initialization
(hard init)

• Port soft initialization (soft init) (requested by the host)

• Maintenance initialization (requested by the host)

• Port update initialization (requested by the host)

• A functional code thread call

A hard init is caused by:

• KDM70 controller power-up

• Host initiation of a node reset

• Manual reset of the KDM70 controller

After the succesful completion of core hardware tests, CVAX control is transferred to the DEMON,
which controls further execution of MIST tests.

3.2.3 MIST
MIST performs the following functions:

• Executes all MIST tests

• Tests SI corner

• Verifies RAM memory

• Tests the state machine

Refer to Appendix D for a description of MIST tests.

After MIST has successfully completed, DEMON turns on the Go/No Go
LEDs, writes a successful completion code to the FRU callout LEDs, and
writes the last crash error log packet.

3.2.4 MIST Errors
If an error occurs during MIST testing, the following steps are performed:

1 MIST FAIL is asserted in the diagnostic write register.

2 Error information is logged to an on-board internal error log (both
modules).

3–2

KDM70 Controller Initialization and Operation

3 A host reset of the KDM70 controller is enabled.

4 MIST attempts to clear any errors or write error information into the
SA register.

Nonfatal faults are cleared and recovery is attempted. If recovery
succeeds, testing continues. If recovery fails, the fault is considered
fatal and handled as such.

Soft and maintenance initializations are handled similiarly; however, no
hardcore tests are executed.

3.3 Functional Intialization Entry
Once MIST testing has completed, the KDM70 controller functional code is
invoked to complete the intialization process. Refer to Figure 3–2.

Figure 3–2 KDM70 Controller Functional Initialization

CVAX
RESTART

SET UP
SCRATCH
AND FREE
PAGE POOLS

ENTER
EXEX MAIN
FUNC CODE

INIT LAST
CRASH ERR
PACKET

INIT THREADS

SUBSYSTEM
INITIALIZED

MIST/DEMON
ENTERED

CORE
HARDWARE
TEST

SET UP
INTERRUPT
CONTROL
VEC (SCB)

INIT XMI
PORT(S)

FUNCTIONAL
CODE ENTRY

SET UP
TRANSIENT
ERROR LOGS
(HOST)

INITIALIZE
TCB AND

INITIALIZE
SYSCOM

INIT SSP
DATA STRUC

ALLOCATE
TF AND CFS

INIT PORT
REC AND DET

INIT XI/SI
RINGLEADER

CXO-2891A

The KDM70 controller functional code takes control from DEMON once
MIST has completed. The following components are initialized and set up
to complete KDM70 initialization:

3–3

KDM70 Controller Initialization and Operation

SYSCOM Scratch and free page pools

Interrupt control vector tables Transient error logs

Main functional code XMI port

Thread control blocks (TCBs) Systems services protcol (SSP) data structures

The last crash fatal error
packet

The XI and SI (work blocks) ringleaders

Resources for transaction
fragments (TFs) and
connection fragments (CFs)

Port recognition and detection (PRD) queues

KDM70 controller threads

3–4

KDM70 Controller Initialization and Operation

3–5

4 KDM70 Controller Error Analysis

4.1 Troubleshooting Reference Material
Refer to the following documentation when troubleshooting:

• Getting Started with VAXsimPLUS (AA–KN79A–TE)

• VAXsimPLUS User Guide (AA–KN80A–TE)

• VAXsimPLUS Field Service Manual (AA–KN82A–TE)

• DSA Error Log Manual (EK–DSAEL–MN)

Note: The DSA Error Log Manual provides a general description of DSA
error logs. Refer to device-specific error log manuals for detailed
error description.

4.2 Introduction
This chapter describes errors that may occur during the KDM70 controller
module internal self-test (MIST) and during normal KDM70 controller
operation. In addition, this chapter explains how to evaluate errors and
determine their cause. For information on errors that occur during a
KDM70 in-line diagnostic or utility, refer to the specific diagnostic or
utility description.

4.3 Host Error Log
The host error log is used to record error information for eventual use by
Digital Customer Services.

The error information in the host error log is in the form of error log
packets produced by the host or KDM70 controller in response to error
conditions. These error log packets may include specific information on the
operation of the KDM70 controller, its attached drives, or other elements
of the system (host processor, memory, software, and so on) that may be
important in diagnosing problem sources.

The host software records error information in the host error log for the
following events related to the KDM70 controller:

1 Controller initialization

2 Controller-detected errors

3 Device errors

4–1

KDM70 Controller Error Analysis

Some error log reports may reflect changes in the configuration or
operation of the system that are informational and do not represent an
error condition. The following are examples of error log reports that are
not error conditions:

• Completion of the initialization sequence between the port driver and
the KDM70 controller

• Attention messages pertaining to availability of a disk or tape drive

Error log reports provide error/status information that occurred during the
error. Error logs have the following benefits:

1 Error information can be obtained without recreating the error with
diagnostics.

2 Error information can be obtained on intermittent errors, even if the
error cannot be duplicated with diagnostic or exerciser programs.

3 Error information can be obtained without interrupting work.

4 Error reports may indicate possible problem areas, including failing
unit serial number, revision levels, error codes, status indicators, and
other applicable information.

4.4 KDM70 Controller Errors
There are three major types of KDM70 controller errors. Refer to the appropriate section for fault
isolation.

• Module internal self-test (MIST) errors, Section 4.5

• Fault management events detected during self test, Section 4.17

• Fatal controller errors detected by functional code, Section 4.6

4.5 Errors During KDM70 Controller Module Internal Self-Test (MIST)
The KDM70 controller self-test is executed during powerup and also
during a node reset. A node reset will occur during system initialization or
as requested by the operating system port driver.

Both amber LEDs are turned off at the beginning of MIST. These LEDs
will be turned on only if the self-test is successful. A failure during MIST
will result in both amber LEDs off, and an error code displayed in the red
LEDs on board 1 (T2022). See Table 4–1.

As part of the error reporting for self-test failures, MIST will write a
KDM70 conttroller-specific error code in the SA register. This code will
provide module isolation and further detail on the test that failed. The SA
code is available either in the error log, or by examining the SA register
from the local console terminal. This register will contain valid error
information only if the error bit (15) is set. Refer to Table B–1 for a
complete listing of SA codes.

4–2

KDM70 Controller Error Analysis

15 10 0
+------+--+--+--+--+--------------------------------------+
ERR					SA ERROR CODE
+------+--+--+--+--+--------------------------------------+

Note: The SA register may be examined from the console at node base
address + 44. See Table C–1 to determine the correct node base
address.

>>> Examine 21900044 ;node 2
>>> 21900044 0000835F ;Board 2 SRAM Test

MIST failures are also written to an internal error log. This information
is primarily used by manufacturing for module repair. It will contain an
error identifier and other specific failure information. In some cases it may
be useful to Digital Customer Services for module isolation.

The MIST internal error log is a ring buffer that contains information on
the last six errors. This internal error log may be used in cases where the
failure is intermittent, or the LED code is not available. See Chapter 12
for details.

Table 4–1 LED Code Interpretation

LED Code (Hex) Description FRU

0 (0000) Successful completion of MIST N/A

2 (0010) Reserved N/A

3 (0011) Reserved N/A

4 (0100) Host Memory Test failure T2022

5 (0101) Board 2 failure T2023

6 (0110) Unexpected Restart Occurred N/A

7 (0111) Waiting for Update Init N/A

8 (1000) Code update in progress N/A

9 (1001) Board 1 - Board 2 interface error T2022, T2023 or bus
cable

A (1010) Board 1 failure T2022

B (1011) Forced update mode T2022

C (1100) Core SRAM test failure T2022

D (1101) Core CVAX Parity test failure T2022

E (1110) Core hardware test failure T2022

F (1111) Failure at boot time T2022

4–3

KDM70 Controller Error Analysis

Codes are in Hex and should be read from the top (most significant bit) to
the bottom (least significant bit). See Figure 4–1. (Refer to Appendix D for
more information on MIST testing.)

Figure 4–1 Status Code Decoding (Hex)

CXO-2843A

T2023
(SI) T2022

(PROCESSOR)

8
4
2

1

VALUES FOR
READING RED LEDs

INTERMODULE
CABLE

4.6 KDM70 Controller Bug Checks
KDM70 controller bug checks occur when an error is detected by functional
code during normal controller operation. Bug checks result in a last crash
error log packet (LCELP) being written to an internal buffer. This buffer
is sent to the host error log during controller initialization. The LCELP is
also written to an internal real-time error log, which may be displayed by
running EVRLM from the VAX diagnostic supervisor, Chapter 12.

There are two types of KDM70 controller bug checks: software and
hardware. A software bug check may be distinguished from a hardware
bug check by bit 31 of the bug check code. If bit 31 is clear, a software bug
check exists; otherwise, the bug check was detected by KDM70 hardware.

Note: Appendix A contains a complete list of all KDM70 bug check codes
and the recommended actions.

4–4

KDM70 Controller Error Analysis

4.7 Software-Detected Bug Checks
Software bug checks are inconsistencies detected by KDM70 functional
software. Software bug checks do not necessarily mean the KDM70
software is at fault. It simply means that software detected the failure.

To troubleshoot this type of failure, look for other error symptoms. Avoid
replacing hardware on the first failure. If many types of bug checks occur,
the KDM70 software is probably not the problem.

If only one software bug check occurs (for example, the same bug check
code), this failure is probably caused by the KDM70 functional code.
Report these failures to KDM70 engineering by submitting a PRISM
report.

4.8 Hardware-Detected Bug Checks
Hardware bug checks result from an error detected by the KDM70
hardware (a control RAM parity error). These errors are reported in
the same way as software bug checks, by sending a last crash error log
packet to the host error log.

Hardware bug checks do not necessarily require you to replace a KDM70
module. For example, a memory parity error results in a hardware bug
check. The port driver resets the controller, and MIST adds the bad page
to the bad page list. The KDM70 functions normally until it exceeds the
maximum number of bad pages. See Section 4.17 for further details on the
KDM70 bad page list.

4.9 Last Crash Error Log Packets
A last crash error log packet (LCELP) is the result of a bug check in the
controller. It does not indicate a problem with the new connection. During
controller initialization, functional code determines if there is a valid
LCELP. If so, it is sent to the host error log as part of the initialization
process.

The following example shows a last crash error log:

4–5

KDM70 Controller Error Analysis

Example 4–1 Last Crash Error Log

V A X / V M S SYSTEM ERROR REPORT COMPILED 27-NOV-1956 18:54
PAGE 1.

******************************* ENTRY 1. *******************************
ERROR SEQUENCE 63. LOGGED ON: SID 0A000005
DATE/TIME 26-NOV-1956 13:50:20.68 SYS_TYPE 02410201
SCS NODE: BARNUN VAX/VMS V5.3

ERL$LOGMESSAGE ENTRY KA62B CPU REV# 6. FW REV# 4.1
XMI NODE # 1.

"DSA" PORT SUB-SYSTEM, UNIT _BARNUN$PUA0:

MESSAGE TYPE 0004
UDA PORT MESSAGE

MSLG$L_CMD_REF 00000000
MSLG$W_SEQ_NUM 0000

SEQUENCE #0.
MSLG$B_FORMAT 001

CONTROLLER ERROR
MSLG$B_FLAGS 01

SEQUENCE NUMBER RESET
UNRECOVERABLE ERROR

MSLG$W_EVENT 000A2
CONTROLLER ERROR
HOST CMD TIMEOUT/LASTFAIL ERR

MSLG$Q_CNT_ID 87002489
021B0001

UNIQUE IDENTIFIER, 000187002489(X)
DISK CLASS DEVICE (166)
KDM70 CONTROLLER

MSLG$B_CNT_SVR 22
CONTROLLER SOFTWARE VERSION #34.

MSLG$B_CNT_HVR 00
CONTROLLER HARDWARE REVISION #0.

"LASTFAIL" CODE 837E 3
"LASTFAIL" CODE
INTERNAL BUS HW ERROR

CONTROLLER DEPENDENT INFORMATION

BUGCK CODE C068202C4
XMI TRANS ERR 0000

XMI TRANSIENT ERROR CNT = 0.
MEM TRANS ERR 0000

MEMORY TRANSIENT ERROR CNT = 0.
CDAL ADR 401C0004
BD1 READ DIAG 664FFF8F
B1 HIB BUS 05F4FFC1
BD2 READ DIAG 030560AC
BD2 HIB BUS FCFFD70B
PC 8020FC91

ERROR PSL 00000000
INTERRUPT PRIORITY LEVEL = 00.
PREVIOUS MODE = KERNEL
CURRENT MODE = KERNEL

4–6

KDM70 Controller Error Analysis

The following list explains the callouts in the example:

1 Controller error format packet.

2 Event code 0A indicates an LCELP.

3 SA code determines the format of the KDM70 controller-specific
information contained in the LCELP.

4 KDM70 controller error-specific bug check code.

The codes listed in Table 4–2 are KDM70-specific SA codes seen in LCELP.
These codes are used to describe the format of the LCELP and provide
further detail on the failure.

Table 4–2 KDM70 Controller-Specific SA Codes

SA Code Description Figure

37A Software logic error (Figure 4–2)

37B Host interface hardware error (Figure 4–3)

37C Drive interface hardware error (Figure 4–4)

37D Controller memory error (Figure 4–5)

37E Internal bus hardware error (Figure 4–6)

37F Policy processor error (Figure 4–7)

4–7

KDM70 Controller Error Analysis

4.10 Software Logic Error Format
A software logic error format packet is used to report all software-detected
bug checks (Figure 4–2). Software bug checks are inconsistencies detected
by the KDM70 software. The information supplied in this error log packet
is primarily for use by KDM70 engineering.

Figure 4–2 Software Logic Error Format

31 00

SA CODE (37A) 20

24

28

32

36

40

44

48

52

56

KDM BUG CHECK CODE

XMI TRANSIENT
ERROR COUNT

MEMORY TRANSIENT
ERROR COUNT

CXO-2915A

SAVED R0

SAVED R1

SAVED FRAME POINTER

SCHEDULER LONGWORD

CURRENT TCB

SAVED PSL

SAVED PC

4–8

KDM70 Controller Error Analysis

4.11 Host Interface Hardware Error Format
The host interface hardware error format packet is used to report
errors associated with the XMI state machine (Figure 4–3). An error
detected during a CVAX or DMA (XMI state machine) transfer on the
XMI is reported using this error log format. Error-specific registers are
supplied in this packet. They may be needed for fault isolation. Refer to
Section 4.18 and Section 4.19 for the register description.

Figure 4–3 Host Interface Hardware Error Format

31 00

SA CODE (37B) 20

24

28

32

36

40

44

48

52

56

KDM BUG CHECK CODE

XMI TRANSIENT
ERROR COUNT

CXHIC CSR

XMI PAGE OFFSET

XMI PAGE ADDRESS

XMI COMMAND

MEMORY TRANSIENT
ERROR COUNT

SAVED PSL

XISM STATUS

SAVED PC

CXO-2928A

4–9

KDM70 Controller Error Analysis

4.12 Drive Interface Hardware Error Format
The drive interface hardware error format packet is used to report errors
associated with the SI state machine (Figure 4–4). Error-specific registers
are supplied in this packet. They may be needed for fault isolation. Refer
to Section 4.18 and Section 4.19 for the register description.

Figure 4–4 Drive Interface Hardware Error Format

31 00

SA CODE (37C) 20

24

28

32

36

40

44

48

52

56

KDM BUG CHECK CODE

XMI TRANSIENT
ERROR COUNT

MEMORY TRANSIENT
ERROR COUNT

BD2 READ DIAGNOSTIC REGISTER

BD2 HIB BUS REGISTER

CXO-2913A

SISM B STATUS REGISTER

SISM A STATUS REGISTER

STATUS LONGWORD

SAVED PSL

SAVED PC

4–10

KDM70 Controller Error Analysis

4.13 Controller Memory Error Format
The controller memory error format packet is used to report KDM70
memory parity errors (Figure 4–5). The failing address will determine in
which module the error occurred.

In most cases, module replacement is not required. The KDM70 will add
the failing location to the bad page list. This prevents its use by functional
code. Once the error threshold is reached, a fault management event error
log will be sent (see Section 4.17). The KDM70 controller will continue to
function normally until it reaches the maximum number of bad pages.

Figure 4–5 Controller Memory Error Format

31

SA CODE (37D) 20

24

28

32

36

40

44

48

52

56

KDM BUG CHECK CODE

XMI TRANSIENT
ERROR COUNT

BD1 CDAL ADDRESS REGISTER

PC

MEMORY TRANSIENT
ERROR COUNT

PSL

CXO-2911A

FAILING ADDRESS

MACHINE CHECK CODE

CVAX INTERNAL STATE INFO 1

CVAX INTERNAL STATE INFO 2

00

4–11

KDM70 Controller Error Analysis

4.14 Internal Bus Hardware Error Format
The internal bus hardware error format packet is used to report KDM70
parity errors detected on the internal bus (HIB) (Figure 4–6). The internal
bus provides the data path between board 1 and board 2.

Error-specific registers are supplied in this packet. They may be needed
for fault isolation. Refer to Section 4.18 and Section 4.19 for a description
of these registers.

Figure 4–6 Internal Bus Hardware Error Format

31 0

SA CODE (37E) 20

24

28

32

36

40

44

48

52

56

KDM BUG CHECK CODE

XMI TRANSIENT
ERROR COUNT

BD1 CDAL ADDRESS REGISTER

BD1 READ DIAGNOSTIC REGISTER

BD1 HIB BUS REGISTER

PC

MEMORY TRANSIENT
ERROR COUNT

BD2 READ DIAGNOSTIC REGISTER

PSL

BD2 HIB BUS REGISTER

CXO-2912A

0

4–12

KDM70 Controller Error Analysis

4.15 Policy Processor Error Format
A policy processor error format packet is used to log KDM70 machine
checks Figure 4–7. A machine check occurs as a result of serious microcode
or hardware error conditions.

Figure 4–7 Policy Processor Error Format

31 00

SA CODE (37F) 20

24

28

32

36

40

44

48

52

56

KDM BUG CHECK CODE

XMI TRANSIENT
ERROR COUNT

BD1 CDAL ADDRESS REGISTER

PC

MEMORY TRANSIENT
ERROR COUNT

PSL

CXO-2914A

MACHINE CHECK CODE

CVAX INTERNAL STATE INFO 1

CVAX INTERNAL STATE INFO 2

MOST RECENT MEMORY ADDRESS

4–13

KDM70 Controller Error Analysis

The following table explains the machine check codes:

Table 4–3 Machine Check Codes

Machine Check Code (Hex) Description

01 CVAX Floating Point Accelerator — protocol error

02 CVAX Floating Point Accelerator — reserved
instruction

03 CVAX Floating Point Accelerator — unknown error

04 CVAX Floating Point Accelerator — unknown error

05 Process PTE in P0 space (TB miss)

06 Process PTE in P1 space (TB miss)

07 Process PTE in P0 space (M = 0)

08 Process PTE in P1 space (M = 0)

09 Undefined interrupt ID code

0A Impossible microcode state (MOVCx)

80 Read bus error, normal read

81 Read bus error, SPTE, PCB, or SCB read

82 Write bus error, normal write

83 Write bus error, SPTE or PCB write

The following table describes the bit fields in internal state information 1:

Table 4–4 Internal State Information 1

Bit Field Field Description

<31:24> Current contents of OPCODE <7:0>

<23:20> 1111

<19:16> Current contents of HSIR <3:0>

<15:8> Current contents of Cache Disable Register <7:0>

<7:0> Current contents of Memory System Error Register <7:0>, Table 4–6

4–14

KDM70 Controller Error Analysis

The following table describes the bit fields in internal state information 2:

Table 4–5 Internal State Information 2

Bit Field Field Description

<31:24> Current contents of SC <7:0>

<23:22> 11

<21:16> Current contents of STATE <5:0>

<15> Current contents of VAX CANT RESTART bit

<14:12> 111

<11:8> Current ALU condition codes

<7:0> Delta PC at time of exception

The following table describes the bit fields in the memory system error
register:

Table 4–6 Memory System Error Register

Bit Field Field Description

<31:8> Always read as 0’s

<7> 1 = Cache Hit, 0 = Cache Miss

<6> DAL parity error

<5> Machine check abort - DAL parity error

<4> Machine check abort - Cache parity error

<3:2> Always read as 0’s

<1> Cache data error

<0> Cache tag error

4.16 Real-Time Internal Error Log
The real-time internal error log contains a copy of the last six KDM70
controller bug checks. This internal error log may be accessed by running
EVRLM. Refer to Chapter 12 for assistance in displaying the real-time
error log.

4–15

KDM70 Controller Error Analysis

4.16.1 Real-Time Internal Error Log to Host Error Log Relationship
The real-time internal error log contains the same bug check information
as the host error log, but is displayed in a different format. This is
valuable for two reasons:

1 If the failure prevents the controller from sending an error log packet
to the host.

2 If the host error log is not enabled or because the system does not
support error logging.

If host error logs are available, use them to determine what type of error
has occurred. The host error log formatter is much easier to read and is
available on line. The utility used to display this error log is EVRLM, and
must be run standalone.

4.16.2 Interpreting Real-Time Internal Error Log Fields
The real-time internal error log is a ring buffer located in board 1 (T2022)
EEPROM. There is also a duplicate copy located in board 2 (T2023)
EEPROM. This error log contains the last six KDM70 controller bug
checks. Note that multiple occurrences of the same bug check will only
be logged once if all of the extended status longwords (ESLs) are the
same. The bug check will, however, be logged to the system error log. The
following is an example of a KDM70 controller real-time internal error log:

Bug Check Code C068202C 00000000 00000000
ESL 1 00000000 00000000 00000000
ESL 2 401C0004 00000000 00000000
ESL 3 664FFF8F 00000000 00000000
ESL 4 05F4FFC1 00000000 00000000
ESL 5 030560AC 00000000 00000000
ESL 6 FCFFD70B 00000000 00000000
ESL 7 8020FC91 00000000 00000000
ESL 8 00000000 00000000 00000000
Time Stamp 00000050 00000000 00000000

.

.

.

In the example, the bug check code is called out. For a detailed description
on each KDM70 controller bug check code, refer to Appendix A.

The format of the ESLs is determined by the type of bug check. In the
example, the bug check code is C068202C. This code is described as an
internal bus error, which follows the format described in Figure 4–6.
The ESLs are also decoded by the VMS error formatter, as shown in
Example 4–1.

4–16

KDM70 Controller Error Analysis

4.17 Event Code 01EA: Fault Management Analysis Event
Fault management analysis events are recoverable and indicate that
hardware needs to be replaced under scheduled maintenance. Event Code
01EA is an informational message that the KDM70 controller has reached
an error threshold. The controller will continue to operate normally
until the maximum error threshold is reached. This maximum threshold
depends on the type of error and is shown in the error log packet.

Fault management analysis event error logs have an MSCP event code of
1EA. Information in the maintenance error log packet (MELP) is formatted
by the KDM70 self-test code (MIST). These packets are returned to the
host error log during KDM70 initialization.

Port error codes are used to describe specific fault management events.
There are four possible port error codes as listed in Table 4–7. Figure 4–8
through Figure 4–11 show the four possible error log formats.

Table 4–7 Fault Management Events

Port Error
Code Description

1 Board 1 bad page list overflow

2 Board 2 bad page list overflow

3 Code store EEPROM entry overflow

4 CVAX cache failure

4–17

KDM70 Controller Error Analysis

4.17.1 Board 1 Bad Page List Overflow
This error log indicates that the number of entries in the board 1 (T2022)
bad page list has reached or surpassed its threshold. The error log packet
contains the number of entries in the bad page list, the maximum number
allowed, and the address of the most recent error.

The error log packet format of a board 1 bad page list overflow is shown in
Figure 4–8.

Figure 4–8 Board 1 BPL Overflow

31 0

4

8

12

20

24

CXO-2926A

COMMAND REFERENCE NUMBER

SEQUENCE NO. RESERVED

FLAGS FORMATEVENT CODE=1EA

PORT ERR CODE=1 CHVRSN

CONTROLLER IDENTIFIER

NO. OF PAGES IN BAD PAGE LIST

28

32

MAXIMUM NO. OF BAD PAGES ALLOWED

LAST ADDRESS FLAGGED AS BAD

EXPECTED DATA

ACTUAL DATA

36

40

44UPTIME COUNT IN DAYS

0

0

4–18

KDM70 Controller Error Analysis

4.17.2 Board 2 Bad Page List Overflow
This error log indicates that the number of entries in the board 2 (T2023)
bad page list has reached or surpassed its threshold. The error log packet
contains the number entries in the bad page list, the maximum number
allowed, and the address of the most recent error.

The error log packet format of a board 2 bad page list overflow is shown in
Figure 4–9.

Figure 4–9 Board 2 BPL Overflow

31 0

4

8

12

20

24

CXO-2927A

COMMAND REFERENCE NUMBER

SEQUENCE NO. RESERVED

FLAGS FORMATEVENT CODE=1EA

PORT ERR CODE=2 CHVRSN

CONTROLLER IDENTIFIER

NO. OF PAGES IN BAD PAGE LIST

28

32

MAXIMUM NO. OF BAD PAGES ALLOWED

LAST ADDRESS FLAGGED AS BAD

EXPECTED DATA

ACTUAL DATA

36

40

44

CHVRSN

UPTIME COUNT IN DAYS

0

0

4–19

KDM70 Controller Error Analysis

4.17.3 Code Store EEPROM Entry Overflow
The KDM70 software is stored in EEPROM on board 1 (T2022). The
software is copied from EEPROM to SRAM during self-test. The EEPROM
is protected by ECC and EDC. Errors during the copy process will be
corrected by ECC. Up to 8 bytes per 1K block can be corrected. The correct
data will be written to SRAM and written back to the EEPROM.

EEPROM errors will not be logged until an error threshold has been
reached. Exceeding the error threshold will cause an error log packet to be
sent.

If the number of ECC corrections becomes excessive, the controller may
be reset by the port driver before all corrections can be completed. If this
occurs, an SA code of 375 (hex) will be written by MIST. As shown in
Table B–1, this code is described as ‘‘Extended ECC Recovery: EEPROM.’’

The error log packet format of a code store EEPROM overflow is shown in
Figure 4–10.

Figure 4–10 Code Store EEPROM Entry Overflow

31 0

4

8

12

20

24

CXO-2925A

COMMAND REFERENCE NUMBER

SEQUENCE NO. RESERVED

FLAGS FORMATEVENT CODE=1EA

PORT ERR CODE=3 CHVRSN

CONTROLLER IDENTIFIER

NO. OF BAD BYTES IN 1K BLOCK

UPTIME COUNT IN DAYS

28

32

FAILING EEPROM ADDRESS

0

0

4–20

KDM70 Controller Error Analysis

4.17.4 CVAX Cache Set Failure
If a CVAX (T2022) cache error is detected during self-test, the failing group
will be disabled. The controller will continue the initialization process.
Although a bad cache will impact performance, the KDM70 controller will
be available for use.

The error log packet format of a CVAX cache failure is shown in
Figure 4–11.

Figure 4–11 CVAX Cache Set Failure

31 00

4

8

12

20

24

CXO-2924A

COMMAND REFERENCE NUMBER

SEQUENCE NO. RESERVED

FLAGS FORMATEVENT CODE=1EA

PORT ERR CODE=4 CHVRSN

CACHE GROUP IN ERROR

CONTROLLER IDENTIFIER

CHSVRN

0

4–21

KDM70 Controller Error Analysis

4.18 KDM70 Board 1 Register Descriptions
The following section describes the KDM70 board 1 (T2022) registers.
These registers are not accessible from the local console. The register
contents are supplied as part of the last crash error log packet.

4.18.1 Read Diagnostic Register
The board 1 read diagnostic register is updated once every CVAX cycle.
When an error is detected, the register’s contents are frozen until they are
read by the software error handling code, thus freeing them for further
data capture.

This register shows the data source selected at the time of error and
additional data that may be needed for fault isolation.

4–22

KDM70 Controller Error Analysis

Table 4–8 Read Diagnostic Register

Bit Field Field Description

00 JUMPER 1 H - Selects MIST code to execute after a Node Reset

01 JUMPER 2 H - Selects MIST code to execute after a Node Reset

02 DPC IDLE L - The board 1 Data Path Controller uCode is in the
IDLE state

03 REGISTERED WRITE L - Write in progress

04 NXM ACCESS H - CVAX attempted to access a location outside the
decode range

05 Reserved

06 Reserved

07 BOARD 2 CHIP SELECT L - Board 2 selected at time of error

08 DBUF - Board 2 Memory selected at time of error

09 SICA - SI State Machine A selected at time of error

10 SICB - SI State Machine B selected at time of error

11 RAM1 - Board 1 (Bank 1) memory selected at time of error

12 RAM2 - Board 1 (Bank 2) memory selected at time of error

13 RAM3 - Board 1 (Bank 2) memory selected at time of error

14 DPCS - Board 1 Data Path Controller selected at time of error

15 CXHIC - Board 1 XMI Controller selected at time of error

19:16 CVAX CYCLE STATUS/DATA PARITY at time of error

20 XMI Backplane Identifier L (XMI 1 or XMI 2)

21 Board 2 EEPROM DATA L

22 Board 2 Serial EEPROM Write L

23 Board 2 EEPROM CLK L

24 Reserved

25 Vectored Interrupt Controller Intr Ack Error L(Board 1)

26 Board 1 Data Path Controller Parity Error L

27 CVAX Parity Error L - Parity error detected on CDAL

31:28 Reserved

4.18.2 CVAX Data and Address Lines Address Register
The board 1 CVAX data and address lines (CDAL) address register is
updated with the current address on the CVAX data and address lines
every processor cycle until an error is detected. Then, the register latches
the address on the bus at the time of the error.

This register remains frozen with the error address so that error recovery
code can read this register and obtain the location of the faulty device. If
this register is read without an error condition, then the register’s own
address is received on the DAL bus.

4–23

KDM70 Controller Error Analysis

4.18.3 Write Diagnostic Register
The board 1 write diagnostic register provides software control of the
KDM70 hardware. Resets to the VIC, DPC, CXHIC, and board 2 are
removed by writing ones to the appropriate bits of this register.

The write diagnostic register is used by MIST to force parity errors on any
of the KDM70 internal buses and to receive or disable error interrupts.

Table 4–9 Write Diagnostic Register

Bit Field Field Description

00 CVAX DATA FORCED ERROR CHECKING H

01 HIB ADDRESS FORCED ERROR CHECKING H

02 HIB CONTROL FORCED ERROR CHECKING H

03 XIC DATA FORCED ERROR CHECKING H

04 CXHIC RESET L

05 BOARD 2 RESET L

06 VIC RESET L

07 DPC RESET L

08 WRITE ENABLE H - Enables writes to the EEPROM

09 MIST FAIL H - Failure during self-test

10 MIST DONE H

11 DIAGNOSTIC PRIORITY INTERRUPT REQUEST L

12 XIC ERROR RESET L - Clears the Board 1 HIB Bus Register

13 CVAX DPE DISABLE L - Disables CVAX parity checking

14 ERROR DISABLE L - Disables Memory Error Interrupts

15 CVAX PARITY FORCED ERROR CHECKING H

16 Reserved

17 SER EEPROM WR L

18 SER EEPROM DATA H

19 BDR2 EEPROM CLK H

20 LED ENA H - Enable Board 1 module LED (Amber)

21 XMI REQ DIS H

22 PREEMPT H - Allow preemption of work block execution by DPC

23 DPC TEST L - Enable DPC test mode

31:24 Reserved

4.18.4 HIB Bus Register
The HIB bus register contents consist of the address bus, control bus, and
chip selects. If HIB errors are detected, the clock to the HIB bus register
is inhibited until the error condition is cleared. By freezing the contents of
this register, error recovery code can determine the type of operation and
location.

4–24

KDM70 Controller Error Analysis

This register allows module isolation for FRU callouts. MIST verifies
the integrity of the board 1 HIB address and control buses by writing to
locations on board 2 while this module is held reset. Then, diagnostics
read back the contents of the HIB bus register and compare the captured
data with the address and control data generated during the write
operation. If the two quantities match, board 1 is functioning properly.
If the two quantities do not match, board 1 is the suspect module and is
called out as the failing module.

Table 4–10 Board 1 HIB Bus Register

Bit Field Field Description

8:0 HIB/CVAX ADDRESS

17:9 HIB ADDRESS LINES H

18 HIB ADDRESS LOW PARITY H - HIB Address Parity (8:0)

19 HIB ADDRESS HIGH PARITY H - HIB Address Parity (17:09)

20 BRD2 Chip Select

21 SICA Chip Select

22 SICB Chip Select

23 DPC Chip Select

24 CXHIC Chip Select

25 HIB MEMORY SELECT L - Board 2 Data Buffer Memory select

26 HIB WRITE L - Board 1 Write in Progress

30:27 HIB BYTE MASK

31 HIB CONTROL BUS PARITY H

4–25

KDM70 Controller Error Analysis

4.18.5 CXHIC Control and Status Register
The KDM70 controller communicates to the host through a custom chip
(CXHIC). The CXHIC is used to control XMI transfers. The CXHIC control
and status register contains 32 bits of control and status information. It
is read/write accessible only by policy software. It is not accessible to the
host system or the XMI state machine. It is used to report errors in the
XMI interface located on board 1. Table 4–11 describes the bit fields of the
CXHIC CSR.

Table 4–11 CXHIC Control and Status Register

Bit Field Field Description

3:0 DMA Transfer Count

4 DMA Transaction Count Enable

5 CVAX Transaction Commander ID Enable

9:6 Reserved for future use

10 CXHIC Transaction Timeout Error

11 CXHIC Command or Write Data NOACK Error

12 CXHIC Read Response Error

13 CXHIC Read Sequence Error

14 CXHIC No Read Response Error

15 Internal Bus (HIB) Parity Error

16 Assert Lockout

17 DMA Transaction OK

18 DMA Transaction Not OK

19 CVAX Transaction OK

20 CVAX Transaction Not OK

21 Ident Response Sent

22 LOCK Response Received - Invalid response

23 CXHIC Masked Error Summary

24 Register Collision Error

25 Internal Byte Parity Error

26 Diagnostic Loopback Mode

27 Diagnostic Forced Error - Diagnostic mode

31:28 KDM70 controller node number

4–26

KDM70 Controller Error Analysis

4.18.6 XISM Status Register
The XISM status register contains the state of the XMI state machine.
Table 4–12 describes the bit fields of the XISM status register.

Table 4–12 XISM Status Register

Bit Field Field Description

21:0 Reserved

22 XMI State Machine Parity Error

24:23 Reserved

29:26 Error Code - Table 4–13

30 Reserved

31 Error Summary

The following table describes the error codes in the XSIM status register
(bits <29:26>.)

Table 4–13 XISM Status Error Codes

Error Code Description

0001 Internal EDC error

0010 XMI compare error

0011 Buffer compare error

0100 DPC timeout error

0101 CXHIC error

0110 XMIC error

0111 Programming error

4–27

KDM70 Controller Error Analysis

4.19 KDM70 Board 2 Register Descriptions
The following section describes the KDM70 board 2 (T2023) registers.
These registers are not accessible from the local console. The register
contents are supplied as part of the last crash error log packet.

4.19.1 HIB Bus Register
The HIB bus error register on board 2 continually captures address,
control, and parity information about transactions on the HIB as seen on
board 2. When an error occurs, the clock enable for the register is removed
and the information is preserved.

Table 4–14 HIB Bus Register

Bit Field Field Description

00 SIC A BUS GRANT L - CSIC A granted control of HIB

01 SIC B BUS GRANT L - CSIC B granted control of HIB

02 XI GRANT L - XMI State Machine granted control of HIB

03 READ H

04 MEM BM0 L - HIB Date byte mask

05 MEM BM1 L - HIB Date byte mask

06 MEM BM2 L - HIB Date byte mask

07 MEM BM3 L - HIB Date byte mask

25:08 B2 HIB ADDR H - Board 2 HIB Address lines

26 CTRL PERR L - Parity error on the control lines received from board 1

27 ADDR PERR L - Parity error on the address lines received from board 1

28 HIB DATA0 PERR L - HIB parity error on byte 0

29 HIB DATA1 PERR L - HIB parity error on byte 1

30 HIB DATA2 PERR L - HIB parity error on byte 2

31 HIB DATA3 PERR L - HIB parity error on byte 3

4–28

KDM70 Controller Error Analysis

4.19.2 Read Diagnostic Register
The board 2 read diagnostic register is latched at the time of error. It
contains error and status information related to the SI state machine
located on board 2 (T2023).

Table 4–15 Read Diagnostic Register

Bit Field Field Description

10:00 SISM A ADDRESS

21:11 SISM B ADDRESS

22 SIECL A SHIFT REG OUT H

23 SIECL B SHIFT REG OUT H

24 SISM A PERR FDBCK1 L - SI State Machine A parity error

25 SISM B PERR FDBCK1 L - SI State Machine B parity error

26 BD2 EE DATA H

27 BUS ERR REG EN L

28 CRAM A OVERFLOW H

29 CRAM B OVERFLOW H

30 CHAN A PORT ENA H

31 XMI UPDATE EN H - Read from XMI Backplane

4–29

KDM70 Controller Error Analysis

4.19.3 Write Diagnostic Register
The diagnostic write register on board 2 is used by MIST to force error
conditions and test the error detection logic on board 2.

Table 4–16 Write Diagnostic Register

Bit Field Field Description

00 SIECL A DIAG MODE A H

01 SIECL A DIAG MODE B H

02 FORCE PULSE ERROR A H

03 SIECL A SH REG CLK EN H

04 SISM A EN H

05 SISM A CRAM TEST H

06 SIC A RESET L

07 Reserved

08 SIECL SHIFT REG IN H

09 SIECL B DIAG MODE A H

10 SIECL B DIAG MODE B H

11 FORCE PULSE ERROR B H

12 SIECL B SH REG CLK EN H

13 SISM B EN H

14 SISM B CRAM TEST H

15 SIC B RESET L

16 DIAG2 WR BIT11 H

17 DIAG CLK EN H

18 HIB FEC H

19 HIB CTRL FEC H

20 CLR PERR L

21 CAL CLK TEST A H

22 CAL CLK TEST A H

23 MANUAL DIAG CLK L

24 EEWR DIAG24 H

25 EEDATA DIAG25 H

26 EECLK DIAG26 H

27 SISM A RD EN L

28 SISM B RD EN L

29 SISMCODE WR RD EN H

30 YELLOW LED ON H

31 Reserved

4–30

KDM70 Controller Error Analysis

The following table describes the fields in the SISM status register:

Table 4–17 SISM Status Register

Bit Field Field Description

7:0 Major Event Counter - Transfers remaining in current work block

15:8 Transfer Word Counter - Serial transfers remaining for current operation

23:16 Error Code - Table 4–18

27:24 0

28 State Machine Number - 0 = SISM A, 1 = SISM B

29 Halt - Halted after detecting a fatal error

30 1

31 Error Summary

The following table describes the error codes of the SISM status register
(<23:16>):

Table 4–18 SISM Status Error Codes

Error Code Description

00-0F Reserved

10 SISM Running

11 Running Tape - SISM processing tape work blocks

20 Fatal Error Halt - Work block Error

30 HALT: Halted due to invalid next work block pointer

40 Unresolved Error Halt

50 Internal SISM error

60 Program Error

70 SERDES Overrun

80-F0 Diagnostic Codes

4–31

KDM70 Controller Error Analysis

4.20 Physical Memory Address Map
Memory on board 1 is divided between SRAM and EEPROM banks. The
EEPROM is used for nonvolatile storage of KDM70 software. The code
image is copied from EEPROM to SRAM during self-test.

Memory on board 2 consists of SRAM and serial EEPROM. The SRAM is
used for data memory. It is allocated by functional code as needed for data
transfers. Serial EEPROM contains non-volatile module history (serial
numbers, revision, and so on).

Table 4–19 and Figure 4–12 show the physical address ranges of KDM70
controller memory.

Table 4–19 KDM70 Physical Memory Map

Address Range

Physical
Loca-
tion Purpose Type

100000 - 1BFFFF T2022 Program execution SRAM

1C0000 - 1FFFFF T2022 Code store, error logs, bad page
list

EEPROM

000000 - 0FFFFF T2023 Data buffers SRAM

Data buffer memory is contained on board 2. The address range for board
2 memory is 000000 through 0FFFFF. This information enables you to
translate a physical address location to board 1 or board 2.

Figure 4–12 Physical Memory Address Map

200000

1E0000

1C0000

180000

140000

100000

000000

DATA BUFFER

SRAM BANK 1

SRAM BANK 2

SRAM BANK 3

EEPROM BANK 1

EEPROM BANK 2

EEPROM BANK 3

CXO-2916A

4–32

KDM70 Controller Error Analysis

4.21 Physical I/O Space
Figure 4–13 shows the physical addresses for KDM70 I/O space.

Figure 4–13 Physical I/O Space Map

201407FC

CXO-2917A

20140000

20040000

2000E000

2000D000

2000C800

2000C400

2000C000

2000A000

20009C00

20009800

20008C00

20008804

20008800

20008400

20008000
CSIC A REGISTERS

CSIC B REGISTERS

BOARD 2 DIAGNOSTIC READ REG

BOARD 2 DIAGNOSTIC WRITE REG

BD2 HIB BUS REGISTER

CXHIC REGISTER

DPC REGISTER

XISM uCODE

BOARD 1 DIAGNOSTIC READ REG

BOARD 1 DIAGNOSTIC WRITE REG

BD1 CDAL ADDR REGISTER

VIC REGISTERS

BD1 HIB BUS REGISTER

SSC REGISTERS

MONITOR FLAGS

20009400

20009000
SISM uCODE (LOWER)

SISM uCODE (UPPER)

BOOT ROM

4–33

5 Invoking Diagnostics, Exercisers, and Utilities

5.1 Introduction
This chapter describes the on-line and standalone implementation of
diagnostics, exercisers, and utilities. Refer to individual chapters for
program-specific information.

5.2 How to Run Diagnostics, Exercisers, and Utilities
Sometimes it is necessary to run diagnostics, exercisers, and utilities when
troubleshooting disks and tapes attached to the KDM70 controller. For the
purpose of this discussion, diagnostics, exercisers, and utilities are referred
to as programs.

You must first decide if you will run the program on line or in standalone
mode. It is always preferred that you run the programs on line. Taking
a system off line should be done only in extreme cases and only after
obtaining permission from the customer.

Figure 5–1 shows how KDM70 controller-resident programs (such as
ILDEVO) are accessed. The resident diagnostics are accessed through
the diagnostic utility protocol (DUP). DUP supplies the connection
management and communications services to diagnostics running in the
KDM70 controller. This connection is provided by HSCPAD/FYDRIVER
when running on line under VMS, or by ‘‘EVRLN.EXE’’ when running
standalone from the VAX diagnostic supervisor. Any of the resident
programs listed in Table 5–1 are accessed in the same manner.

5–1

Invoking Diagnostics, Exercisers, and Utilities

Figure 5–1 KDM70 Controller-Resident Programs

$ SET/HOST/DUP/SERVER=DUP/LOAD=EVRLN.KDM PUA0/DEVICE
$ SET/HOST/DUP/SERVER=DUP/TASK=ILDEVO PUA0/DEVICE

DS> ATTACH KDM70 HUB DUx NODE_NUMBER_ BR_LEVEL
DS> SELECT DUx
DS> RUN EVRLN
EVRLN> RUNL ILDEVO

STANDALONE
DIAGNOSTIC
SUPERVISOR

ON-LINE VMS

HSCPAD.EXE

DUP
SERVER

MSCP
SERVER

TMSCP
SERVER

DKUTIL FORMAT ILDEVO ILEXER VERIFY
KDM70
FUNCTIONAL
CODE

KDM70 EEPROM IMAGE

FYDRIVER

EVRLN.EXE

KDM70 PROCESSOR MODULE - T2022
CXO-2943A

5.3 KDM70-Resident Programs
The programs shown in Table 5–1 are resident on the KDM70 controller
processor module (T2022). They may be accessed through a DUP
connection either from VMS or standalone from the VAX diagnostic
supervisor.

5–2

Invoking Diagnostics, Exercisers, and Utilities

VMS uses the FYDRIVER for the required DUP connection. This
connection is provided by ‘‘EVRLN.EXE’’ when running standalone from
the VAX diagnostic supervisor.

Table 5–1 KDM70 Controller-Resident Programs

Task Description

DKUTIL Disk Utility

FORMAT Disk Formatter

ILEXER In-line Exerciser - Disk/Tape

ILDEVO In-line Device Operations Test - Disk/Tape

VERIFY Disk Verify

5.4 Invoking KDM70 Controller-Resident Programs
The following procedures describe how to run the KDM70 controller-
resident programs, either on line or standalone.

5.5 HSCPAD = Diagnostic Utility Protocal (DUP) virtual terminal program
for VMS

The DUP virtual terminal program dupterm provides access to the
diagnostic and utility features of DSA (DIGITAL Storage Architecture)
intelligent disk and tape controllers which are running under the control
of the VMS Operating system.

Depending upon the particular controller, operations may include
the execution of controller resident diagnostics and utilities or those
downloaded from the host system.

Further information regarding the operation of the utility and diagnostic
capabilities associated with a particular controller may be obtained from
the appropriate documentation set for that controller.

5.5.1 COMMANDS to use DUP on VMS
SET HOST/DUP

PARAMETER

node-name

node-name/device

Specifies the node name of the storage controller. If, HSC then enter
SCS node name (ie, rock). If, KDM then enter pudriver name/device (ie,
pua0/device).

QUALIFIERS

/LOG

5–3

Invoking Diagnostics, Exercisers, and Utilities

/LOG[=filespec]

/NOLOG (default)

Controls whether a log file for the session is kept. If you use the /LOG
qualifier without the file specification, the log information is stored in the
file HSCPAD.LOG.

/LOAD

/LOAD=supplied-program-name

Specifies the supplied utility or diagnostic program name. It is first loaded
to the target storage controller. Then executes under the direction of the
server.

Either this qualifier or the TASK qualifier is required.

/SERVER

/SERVER=DUP

The only server applicable to the KDM70 is DUP.

/TASK

/TASK=local-program-name

Specifies the local utility or diagnostic program name to be executed on
the target storage controller under direction of the server.

Either this qualifier or the LOAD qualifier is required.

EXAMPLES

$ SET HOST/DUP/SERVER=DUP/TASK=DIRECT
PUA0/DEVICE %HSCPAD-I-LOCPROGEXE, Local
program executing - type ^\ to exit

The SET HOST/DUP command in this example connects the user terminal
to the utility program called DIRECT executing on a KDM storage
controller named PUA0 under direction of the DUP server.

$ SET HOST/DUP/SERVER=DUP/LOAD=PATCH.KDM
PUA0/DEVICE %HSCPAD-I-SUPPROGEXE, Supplied
program executing - type ^\ to exit... Done!

The SET HOST/DUP command in this example down-line loads a supplied
utility program called PATCH.KDM and then connects the user terminal
to that program which is excuting on PUA0.

5.5.2 Running Programs On Line from VMS
Use the following procedure to access and run on-line programs. Go
to Section 5.5.3 for instructions on accessing and running programs in
standalone mode.

Note: You cannot run on-line diagnostics, exercisers, and utilities
without first running EVRLN.KDM. It is important that you follow
this procedure.

5–4

Invoking Diagnostics, Exercisers, and Utilities

$ RUN SYS$SYSTEM:SYSGEN

SYSGEN>CONNECT FYA0/NOADAPTER

SYSGEN>EXIT

$ SET DEFAULT SYS$MAINTENANCE

$ SET HOST/DUP/SERVER=DUP/LOAD=EVRLN.KDM PUA0/DEVICE

$ SET HOST/DUP/SERVER=DUP/TASK=ILDEVO PUA0/DEVICE

5.5.3 Running Programs Standalone from the VAX Diagnostic Supervisor
Use the following procedure to invoke programs from VAX DS:

DS> ATTACH KDM70 HUB DUx N BR
| |
| |__________ BUS REQUEST
|
|____________ NODE NUMBER

DS> SELECT DUx

DS> RUN EVRLN

EVRLN> RUNL ILDEVO

5.6 EVRLN Overview
EVRLN is a standalone DUP control program that runs under the VAX
diagnostic supervisor (VAX/DS). EVRLN enables the local and supplied
DUP diagnostics and utilities to run when on-line testing is not possible.
EVRLN must be invoked prior to running in-line diagnostics on the
KDM70 controller.

EVRLN is located in the SYS$MAINTENANCE area of the system disk (in
a VMS-based system) or on the local load media, which also contains the
VAX diagnostic supervisor (VAX/DS). EVRLN supports only one controller
at a time. Multiple controllers must be tested individually.

5.7 Invoking EVRLN
To invoke EVRLN, boot the VAX/DS in standalone mode. At the VAX/DS
prompt (DS), attach and select the KDM70 controller. The following is a
example of this procedure:

DS> ATTACH KDM70 HUB DUx N BR
DS> SELECT DUx
DS> RUN EVRLN

The variables are described in the following table:

5–5

Invoking Diagnostics, Exercisers, and Utilities

Variable Explanation

n The XMI node number, in hex, for the KDM70 controller. The node
number is determined by the slot location in which T2022 is placed.
If T2022 were placed in slot two, the XMI node number would be 2.

br The bus request level (4–7). The normal bus request level is 5.

EVRLN performs the following steps:

1 Initialize the KDM70 controller and check for errors.

2 Establish a DUP connection.

5.8 EVRLN Commands
The commands listed in Table 5–2 are legal EVRLN commands.

Table 5–2 EVRLN Commands

Command Description

HELP Prints information on EVRLN commands

CAT Prints a catalog of SUPPLIED and LOCAL DUP programs

INFO Prints information about the selected controller

RUNS Executes a SUPPLIED DUP program

RUNL Executes a LOCAL DUP PROGRAM

EXIT Terminates EVRLN and returns control to VAX/DS

5.8.1 EVRLN HELP Command
There are two levels of HELP available. The first is the VAX/DS help
facility. It is invoked at the DS> prompt and provides information on the
ATTACH sequence for supported controllers and drive types. It is invoked
in the following way:

DS> HELP EVRLN ATTACH

EVRLN also provides the second level of help. It is invoked in the
following way:

EVRLN> HELP

The following message is printed when HELP is invoked:

5–6

Invoking Diagnostics, Exercisers, and Utilities

EVRLN will allow the field engineer to run both SUPPLIED and/or
LOCAL DUP programs. To get information about the controller
(microcode revision, hardware revision, DUP extension, etc.)
type INFO. To find out what programs are available for the
device selected, type CAT.

To run a DUP program, type RUNL to run a LOCAL program (or
optionally type RUNS to run a SUPPLIED program) followed by
the program name (no extension) to be run.

Additional information is available on the following topics --
type HELP <topic> after the EVRLN> prompt.

CAT EXIT INFO RUNL RUNS

5.8.2 EVRLN CAT Command
CAT is a directory lookup command that provides a listing of available
DUP programs. Use the CAT command in the following manner:

EVRLN>CAT

EVRLN prints the contents of a text file called EVRLNCAT.TXT. Since
this is not a true directory look-up, the information may not match the
contents of SYS$MAINTENANCE directory. For example, if a copy of a
new DUP SUPPLIED program is added to SYS$MAINTENANCE, it will
not be reflected in EVRLNCAT.TXT unless the information is added. The
following disclaimer is printed:

THIS IS NOT A TRUE DIRECTORY LOOKUP. IT IS JUST A PRINTOUT OF AN
ASCII FILE, WHICH MAY NOT MATCH THE ACTUAL CONTENTS OF YOUR DIRECTORY.

If a requested program is not in the directory, a PROGRAM NOT FOUND
error message is printed by EVRLN:

There are no LOCAL programs available for this controller.

If any other message comes back, a message indicating the problem is
printed. For example:

Unable to run DIRECT program on controller. Reason for failure:

PROGRAM NOT FOUND

5.8.3 EVRLN EXIT Command
EXIT returns control to the VAX/DS. A CTRL/C aborts a running program.

A running DUP program must first be aborted with CTRL/C, which
returns control to EVRLN. Use the EXIT command to exit to the VAX/DS
prompt.

5–7

Invoking Diagnostics, Exercisers, and Utilities

5.8.4 EVRLN INFO Command
INFO provides the following information about a selected controller:

• Software revision

• Hardware revision

• DUP extension

• Controller class

• Model and unique identifier

5.8.5 EVRLN RUNL Command
A RUN LOCAL (RUNL) command causes EVRLN to issue an EXECUTE
LOCAL PROGRAM command with the given program name. If no local
program is available by the selected name, the following error message is
printed:

DUP LOCAL program not found -- "Name_of_program"

The name_of_program string is the program requested in the command.

Control then returns to the EVRLN> prompt.

The format of the RUNL command is:

RUNL <program_name>

In order to abort a running program, type CTRL/Y or CTRL/C.

5.8.6 EVRLN RUNS Command
When a RUN SUPPLIED PROGRAM (RUNS) command is received,
EVRLN appends the DUP extension to the end of the supplied program
name and attempts to open the latest revision of the file on the load device.
If the file does not exist, the following error message is printed:

DUP SUPPLIED program not found -- program_name.DUP_extension

The string program_name is the program requested with the the RUNS
command (without the DUP extension). Control returns to the EVRLN
prompt.

The request is executed and control returns to EVRLN> prompt when
the program completes, hangs, detects a controller error, or aborts from a
CTRL/Y or CTRL/C.

The format of the RUNS command is:

RUNS <program_name>

5–8

6 FORMAT and VERIFY Utilities

6.1 Introduction
This chapter contains the information required to run the VERIFY and
FORMAT utilities.

Topics in this chapter include initiating the utility, using commands,
and interpreting error messages. The utilities are interactive and are
prompt-oriented.

Note: A prompt displayed in square brackets is the default.

6.2 Disk Formatter Utility (FORMAT)
FORMAT is used to format 512-byte disks. It can format the read-only
DBN space or the LBN area and the read-only DBN space.

CAUTION: Before using the FORMAT utility, make sure you are familiar with
the DSA. Otherwise, you may destroy user data.

The DBN area is always formatted. If the user requests it, the LBN area
also is formatted.

CAUTION: Using CTRL/C or CTRL/Y to abort the FORMAT utility may destroy
the contents of the FCT and/or the RCT. The FORMAT utility
should only be aborted under fatal or unrecoverable disk failure
conditions.

6.2.1 Invoking FORMAT
FORMAT is a utility that can be invoked either on line or in standalone
mode.

6.2.1.1 Invoking FORMAT On Line from VMS
Use the following procedure to access and run on-line programs. Go to
Section 6.2.1.2 for instructions on accessing and running programs in
standalone mode.

Note: You cannot run on-line diagnostics, exercisers, and utilities
without first running EVRLN.KDM. It is important that you follow
this procedure.

6–1

FORMAT and VERIFY Utilities

$ RUN SYS$SYSTEM:SYSGEN

SYSGEN>CONNECT FYA0/NOADAPTER

SYSGEN>EXIT

$ SET DEFAULT SYS$MAINTENANCE

$ SET HOST/DUP/SERVER=DUP/LOAD=EVRLN.KDM PUA0/DEVICE

$ SET HOST/DUP/SERVER=DUP/TASK=FORMAT PUA0/DEVICE

6.2.1.2 Invoking FORMAT Standalone from the VAX Diagnostic Supervisor
Use the following procedure to invoke FORMAT from VAX DS:

DS> ATTACH KDM70 HUB DUx N BR
| |
| |__________ BUS REQUEST
|
|____________ NODE NUMBER

DS> SELECT DUx

DS> RUN EVRLN

EVRLN> RUNL FORMAT

You can enter responses to more than one prompt by separating the
responses with commas. For example, if unit D133 is formatted with no
special options, you can type D133,Y,N at the first prompt.

The following prompt asks for the unit number of the disk to format:

Select drive to FORMAT (Dnnnn) [] ?

The next prompt determines whether the LBN (user data) area should be
formatted or whether only the DBN (diagnostic) area should be formatted.

Format user data area (Y/N) [N] ?

Enter N to execute and format only DBN space. Enter Y to execute and
format LBN space. The program prompts for special options for debugging
purposes and to to increase data reliability.

Select special options (Y/N) [N] ?

Enter N to allow FORMAT to start processing. Enter Y to enable the
special options. The following three special option prompts appear.

Revector blocks with 1 symbol ECC errors (Y/N) [N] ?

Normally, blocks discovered during the check pass of formatting with
one-symbol ECC errors are not retired. The program assumes this level of
error is tolerable. Enter Y to retire , all blocks with solid (nontransient)
ECC errors. However, in all cases, blocks with two-symbol (or more) ECC
errors are always retired, regardless of the drive’s ECC symbol threshold.

The second special option prompt is:

Revector blocks with transient errors (Y/N) [N] ?

6–2

FORMAT and VERIFY Utilities

After a track is formatted, it is read once. If an error is detected, blocks
with errors are read twice more. If those blocks show errors again, they
are retired and the track is reformatted. If those blocks show no errors
again, they are not retired. Such errors are considered tolerable transient
errors. Enter Y to retire any block with an error.

The third special option prompt is:

Report position of bad blocks (Y/N) [N] ?

Blocks retired during the format process are reported with a single line
printout. The type, block number, and cause are printed. Enter Y to print
the PBN number, cylinder, track, group, and position as well.

6.2.2 Running FORMAT
The following is a sample session using FORMAT, under VAX/DS and
EVRLN.

After booting the diagnostic supervisor, issue the following commands:

Example 6–1 Sample FORMAT Session

DS> ATTACH KDM70 HUB DUB 4 5
DS> SEL DUB
DS> RUN EVRLN
EVRLN> RUNL FORMAT

*** FORMAT (Disk Formatter) V 001 *** 10-June-1989 18:04:47 ***

Select drive to FORMAT (Dnnnn) [] ? D1
Format user data area (Y/N) [N] ? Y
Select special options (Y/N) [N] ? Y
Revector blocks with 1 symbol ECC errors (Y/N) [N] ?
Revector blocks with transient errors (Y/N) [N] ?
Report position of bad blocks (Y/N) [N] ?

*** Format begun at 18:05:06.
*** 2 cylinders left in DBN space at 18:05:08.
*** LBN 534149 is bad (FCT), a primary revector to RBN 16186.
*** LBN 532332 is bad (FCT), a primary revector to RBN 16131.
*** LBN 531210 is bad (FCT), a primary revector to RBN 16097.
*** LBN 522770 is bad (FCT), a primary revector to RBN 15841.
*** 1413 cylinders left in LBN space at 18:06:01.
*** LBN 498954 is bad (FCT), a primary revector to RBN 15119.
*** 413 cylinders left in LBN space at 18:14:56.
.......(deleted some LBN data here...)
*** LBN 133982 is bad (FCT), a primary revector to RBN 4060.
*** LBN 114144 is bad (FCT), a primary revector to RBN 3458.
*** 313 cylinders left in LBN space at 18:15:49.
*** 213 cylinders left in LBN space at 18:16:42.
*** 113 cylinders left in LBN space at 18:17:35.
*** LBN 9075 is bad (FCT), a primary revector to RBN 275.
*** LBN 9020 is bad (FCT), a primary revector to RBN 270.
*** LBN 8453 is bad (FCT), a primary revector to RBN 256.
*** 13 cylinders left in LBN space at 18:18:28.

*** Format completed at 18:19:07.

Example 6–1 Cont’d on next page

6–3

FORMAT and VERIFY Utilities

Example 6–1 (Cont.) Sample FORMAT Session

Statistics:
0 Bad RBNs,

10 Revectored LBNs,
10 Primary Revectored LBNs,

0 Non-Primary Revectored LBNs,
0 Bad Blocks in the RCT Area,
0 Bad Blocks in DBN Area,
0 Blocks Retried in Check Pass.

* *
* VERIFY must be RUN to complete FORMAT verification! *
* *

*** FORMAT is exiting.

CAUTION: The message in the box indicates VERIFY must be run to complete
verification. This is an essential step and should not be skipped.

The example output is a session with an RA70 disk drive that has 10 bad
PBNs in the FCT. The PBNs were retired because they were in the FCT.
The informational message is printed every 100 cylinders to show the pace
at which progress is being made.

Note: The final statistics indicate 10 LBNs were revectored. These blocks
were not retried during the check pass.

6.2.3 FORMAT Errors and Information Messages
This section describes the error and information messages printed by
FORMAT.

6.2.3.1 Error Message Variables
Variable output in the error and information messages is shown in bold
print. These fields are formed as follows:

n = A decimal number
x = The way a block was found bad: FCT or check
xBN = A space: DBN, XBN, or LBN
hh = Hours
mm = Minutes
ss = Seconds

6–4

FORMAT and VERIFY Utilities

6.2.3.2 Fatal Error Messages
This section describes the fatal error messages printed by FORMAT.

*** Cannot Position to DBN Area. — FORMAT attempts to verify
it has positioned the heads to the DBN area before it formats the disk.
FORMAT does this by reading the first sector of every track in the DBN
area until a sector is read without a header error. This fatal error message
is printed if no such sector can be found.

*** DBN Format Error (Drive FORMAT Command Failed). — A
FORMAT command fails for five retries when formatting the DBN area.

*** Drive Is Write Protected. — The requested drive is hardware
write-protected and therefore cannot be formatted.

*** FCT Does Not Have Enough Good Copies of Each Block. — Any
block in the FCT does not have two good copies.

*** Invalid FCT. — One or more PBNs remain to be processed. When
the program finishes formatting the LBN area, it checks to see if all PBNs
in the FCT have been processed. It usually indicates an FCT where some
PBNs are out of order.

*** FCT Read Error. — All copies of some given block of the FCT cannot
be successfully read.

*** FCT Write Error. — All copies of some given block of the FCT cannot
be successfully written.

*** FORMAT Initialization Failure: Storage Could Not Be
Acquired. — FORMAT cannot acquire enough data buffers or control
blocks to start formatting.

*** LBN Format Error (Drive FORMAT Command Failed). — A
FORMAT command fails for five retries when formatting the LBN area.

*** RCT Does Not Have Enough Good Copies of Each Block. — Any
block in the RCT does not have two good copies.

*** RCT Is Full. — So many bad blocks are encountered that the RCT
overflows.

*** RCT Read Error. — All copies of some given block of the RCT cannot
be successfully read.

*** RCT Write Error. — All copies of some given block of the RCT cannot
be successfully written.

*** Too Many Bad RBNs Found Before RCT Was Formatted. —
More RBNs than can be recorded in memory are encountered before the
RCT area has been formatted.

*** Unsuccessful SDI Command. — The drive fails to respond to an
SDI command. FORMAT issues SEEK, RECALIBRATE, and DRIVE
CLEAR SDI commands.

6–5

FORMAT and VERIFY Utilities

6.2.3.3 Warning Message
The FORMAT utility prints only one warning message.

*** WARNING: Possible Head Addressing Problem. — No sector was
successfully read from one or more tracks in the DBN area. Note that all
cylinders are checked. This is a simple check for a bad head.

6.2.3.4 Information Messages
Following are the informational messages printed by FORMAT.

*** LBN n Is Bad (x), A Non-Primary Revector. — Prints for LBNs
retired by being revectored to some RBN other than the primary RBN;
they are marked in the RCT as nonprimaries. They are formatted with a
header code of non-primary or with a header code of bad if their header
area is bad.

*** LBN n Is Bad (x), A Primary Revector to RBN n. — Prints for
LBNs retired by being revectored to the first RBN on the same track; they
are marked in the RCT as primaries. They are formatted with a header
code of primary.

*** LBN n Is Bad (x), in the RCT Area. — Retired LBNs in the RCT
area are formatted with a header code of bad.

*** RBN n Is Bad (x). — Retired RBNs are marked bad in the RCT and
are formatted with a header code of bad.

*** Cylinder n, Group n, Track n, Position n, PBN n. — The
information in this message identifies the position of the bad block. This
message prints if the user requested the special option to print bad block
position.

*** FORMAT: Aborted by User! — FORMAT was aborted. The disk
may be in an unusable state if the format has begun.

*** n Cylinders Left in xBN Space at hh:mm:ss — Prints after
every 100 cylinders are formatted to record the progress of the FORMAT
program.

*** Only DBN Area Formatted (n Bad DBNs). — FORMAT is
formatting the DBN area only. It prints after the format of the DBN
area is completed. After this message prints, the program terminates.

*** Drive Went Offline. — The unit selected went off line or was
declared inoperative while FORMAT was running.

6.2.3.5 Error Messages
Following are the error messages printed by FORMAT.

*** Drive Does Not Exist. — The unit requested does not exist.
FORMAT reprompts for the correct input.

*** Input Value Must Be "Y" or "N". — FORMAT expected a Y or N but
received a different value. FORMAT reprompts with the same question.

*** No Default Is Allowed. — FORMAT expected a value but received
null input. FORMAT reprompts with the same question.

6–6

FORMAT and VERIFY Utilities

*** Input Value Is an Invalid Drive Specification. —- FORMAT
expected input in the form Dnnn but received a different response.
FORMAT reprompts with the same question.

*** Tape Drives Are Not Allowed. — FORMAT expected the name
of a disk drive but instead received the name of a tape drive. FORMAT
reprompts with the same question.

*** Drive Could Not Be Acquired. — The unit requested is unavailable.
It may be in use by a host of another diagnostic, or it may be inoperative.
The program reprompts for another unit.

*** Drive Could Not Be Brought Online, MSCP Status: m. — the
unit requested is available but the ONLINE command failed. The unit is
released and FORMAT reprompts for another unit.

6.2.3.6 Success Messages
Following is the FORMAT success message.

*** Format Begun at hh:mm:ss. — FORMAT is formatting the disk.

*** Format Completed at 18:19:07. — successfully completed.

6–7

FORMAT and VERIFY Utilities

6.3 Disk Verifier Utility (VERIFY)
VERIFY checks the integrity of the disk architectural structure. This
utility helps Digital Customer Services personnel ensure disks conform to
the Digital standard disk format.

VERIFY may print various messages during the test. These messages
have significance only when VERIFY reports the drive is bad.

Note: The VERIFY utility only reads the disk. It does not destroy user
data and does not perform bad block replacement.

The following steps describe the process by which this utility verifies a
disk:

1 The first block of the factory control table (FCT) is read to determine
how the disk is formatted. The following items are printed:

Mode Date first formatted

Date last formatted Format instance

State of the FCT Number of bad PBNs

Scratch area parameters (offset, size of not
last, and size of last)

Flags

Format version

2 The first block of the revector control table (RCT) is then read. The
information in the RCT is printed, including the serial number, flags,
and bad block replacement variables (LBN being replaced, replacement
RBN, and bad RBN).

3 All copies of the first two blocks in the RCT (used by bad block
replacement) are read and compared. Discrepancies or bad blocks
are reported.

4 All copies of the rest of the RCT are read and compared. Any
discrepancies or bad blocks are reported. The information about
revectors and bad RBNs is dumped. A summary of the number of bad
blocks and revectors by type is printed.

5 All copies of FCT block 0 are read and compared, and bad blocks or
discrepancies are reported.

6 All copies of the appropriate FCT subtable are read (if not null) and
bad blocks or discrepancies are reported.

7 The list of bad PBNs is printed. Each entry is printed with the header
bits, PBN number, and xBN number (in parentheses) as separate
fields. If a bad PBN that should be in the RCT is found, the xBN
field is printed in brackets instead of parentheses. An error message
indicating the total number of PBNs is printed at the end of the bad
PBN list.

8 After reading and dumping the FCT, a quick scan of DBN space is
done. Every block is accessed only once. Counts of various errors are
recorded for a summary printed at the end of the scan. If more than
nine positioner errors are detected, a message is printed suggesting
DBN space be reformatted.

6–8

FORMAT and VERIFY Utilities

9 All LBN space up to the RCT and all RBNs are scanned. Any block
with an error is reread five more times to determine the type of error.
Information about bad blocks and revectors collected in this phase is
compared with information collected from reading the RCT. During the
scan, four error classes can be found:

6–9

FORMAT and VERIFY Utilities

Error Description

Structure errors Considered inconsistencies; always reported.

Permanent
recoverable errors

Usually ECC errors; reported if requested.

Permanent
unrecoverable errors

Considered inconsistencies; always reported.

Transient errors Occurs if one of the five reads of a block with an error
does not report an error. Transient errors are reported if
requested.

10 At the end of the scan, certain other errors are reported. Some errors
can only be determined by examining information collected during the
scan.

11 Finally, a summary, by type, of the errors detected and certain
other information is printed. If no inconsistencies were discovered,
a message prints saying the drive is OK. Otherwise, the message
indicates the number of inconsistencies.

Note: VERIFY under the KDM70 controller only runs on drives
formatted in 512-byte sector mode. Otherwise, a fatal message
is printed and VERIFY exits.

VERIFY does not run on drives without RBNs, such as an ESE. A
fatal error message is printed and VERIFY exits.

6.3.1 Invoking VERIFY
VERIFY is a utility and can be invoked either online or in standalone
mode.

6.3.1.1 Invoking VERIFY On Line from VMS
Use the following procedure to access and run on-line programs. Go to
Section 6.3.1.2 for instructions on running programs in standalone mode.

Note: You cannot run on-line diagnostics, exercisers, and utilities
without first running EVRLN.KDM. It is important that you follow
this procedure.

$ RUN SYS$SYSTEM:SYSGEN

SYSGEN>CONNECT FYA0/NOADAPTER

SYSGEN>EXIT

$ SET DEFAULT SYS$MAINTENANCE

$ SET HOST/DUP/SERVER=DUP/LOAD=EVRLN.KDM PUA0/DEVICE

$ SET HOST/DUP/SERVER=DUP/TASK=VERIFY PUA0/DEVICE

6–10

FORMAT and VERIFY Utilities

6.3.1.2 Invoking VERIFY Standalone from the VAX Diagnostic Supervisor
Use the following procedure the invoke VERIFY from standalone mode:

DS> ATTACH KDM70 HUB DUx N BR
| |
| |__________ BUS REQUEST
|
|____________ NODE NUMBER

DS> SELECT DUx

DS> RUN EVRLN

EVRLN> RUNL VERIFY

6.3.2 Interrupting VERIFY
To interrupt VERIFY, press CTRL/Z and Return. Or, you can use CTRL/Y,
CTRL/C, or CTRL/ \ (backslash). However, CTRL/Z is not recognized by
VERIFY when running under VAX/DS.

6.3.3 VERIFY Errors and Information Messages
This section describes error and information messages that may be printed
by VERIFY.

Error message fields with variable output print are in bold print.
Definitions for these fields are:

xCT = FCT or RCT
n = A decimal number
xBN = LBN, RBN, or XBN
m = MSCP status
e = Error: ECC, EDC, and so on

6.3.3.1 Fatal Error Messages
Following is a list of the error messages fatal to the VERIFY utility. The
program terminates after printing one of these messages.

*** All Copies of xCT Block n Are Bad: —- All copies of some block in
either the RCT or the FCT are bad. The program cannot continue to run
because vital information is missing. In any case, it has verified that the
unit is bad.

*** Drives Formatted in 576 Byte Mode Are not Supported. —- The
mode field in FCT block zero indicates the unit is formatted in 576-byte
mode. In this case, VERIFY cannot run because it cannot read sectors 576
bytes long.

*** Drive Went Offline. —- The unit selected goes offline while VERIFY
is running.

*** VERIFY Initialization Failure: Storage Could Not Be Acquired.
—- VERIFY cannot acquire the necessary resources to run or the disk
functional code is not loaded.

*** Mode Is Bad or Format Is in Progress on this Unit: —- The mode
field in FCT block 0 of the selected unit is not valid.

6–11

FORMAT and VERIFY Utilities

*** Drives with No RBNs Are Not Supported: —- The drive has no
RBNs. One such drive is the ESE20.

6.3.3.2 Warning Messages
The following messages are warning messages. In many cases, they are
true warnings; in other cases, they simply precede a reprompt.

*** n Bad PBNs (in [...] above) Not in the RCT. —- The count is not 0.
After the RCT has been collected, the appropriate subtable of the FCT is
read. The list of PBNs is printed. The collected RCT is searched for RBNs
and non-RCT LBNs corresponding to PBNs; they should be there. If they
are not found, the LBN or RBN corresponding to the PBN is printed in
brackets and counted.

*** Drive Could Not Be Brought Online, MSCP status: m. —- The
unit requested is available but the ONLINE command failed. The unit is
released. You are prompted for another unit.

*** Copy n of xCT Block n (xBN n) Does Not Compare. —- A block
does not compare to the first good one. All copies of every RCT or FCT
block are read and compared to the first good copy read.

*** LBN n, a Non-Primary Revector, Is Improper. —- A nonprimary
LBN is not a revector but is recorded in the RCT as such. When VERIFY
reads an LBN with a header indicating it is a nonprimary revector, it looks
it up in the collected RCT information and flags the fact.

*** LBN n, a Primary Revector, Is Improper. —- An LBN is not a
primary revector but is recorded in the RCT as such. When VERIFY reads
an LBN with a header indicating it is primarily revectored, it looks it up
in the collected RCT information and flags the fact. This message prints
after the scan for unflagged blocks in the RCT.

*** LBN n Revectors to RBN n Which Is Bad. —- VERIFY finds an
RBN is good (can be read with error recovery) or only has a forced error
(after error recovery), it looks it up in the collected RCT table. If the RBN
is found, VERIFY re-marks it as good. This message prints after the scan
for unflagged blocks in the RCT.

*** Drive Does Not Exist. —- The unit number entered does not
correspond to any known unit. The program reprompts for the unit
number.

*** Drive Could Not Be Acquired. —- The unit requested is
unavailable. It may be in use by a host or another diagnostic, or it may be
inoperative. The program reprompts for another unit.

*** xBN n Has a Hard EDC Error. —- LBNs and RBNs have a bad EDC
(neither correct nor forced error). This error is classed as an inconsistency.

*** xBN n Is Bad but Not in the RCT. —- VERIFY accesses a particular
track for LBNs or RBNs only once. LBNs or RBNs with errors are
recorded. They are then read five more times, one LBN or RBN at a
time. If errors are detected each time the LBN or RBN is accessed, and all
of the errors are header errors but the LBN or RBN is not recorded in the
RCT, this error message is printed.

6–12

FORMAT and VERIFY Utilities

*** xBN n has An Error, MSCP Status: m —- The return from the I/O
operation is not a SUCCESS or a forced error, EDC error, or uncorrectable
ECC error.

*** Input Value Must Be "Y" or "N". —- Verify expected a Y or N but did
not receive one. The program reprompts with the same question.

*** No Default Allowed. —- VERIFY expected a value but received a
null input. The program reprompts with the same question.

*** Input Value is an Invalid Drive Specification. —- VERIFY
expected a string in the form Dnnn but received a different string. The
program reprompts with the same question.

*** Tape Drives Are Not Allowed.— You replied to the prompt with a
drive specification for a tape drive. The program reprompts with the same
question.

*** LBN n, A Primary, Is Not in the RCT. —- VERIFY accesses a
particular track for LBNs or RBNS only once. LBNs where errors are
detected in this initial pass are recorded. They are then reread five more
times, one LBN at a time. If the header for the LBN indicates that it is
a primary but the LBN is not recorded in the RCT, this error message is
printed.

This section contains a list of Warning and Informational messages.
Warning messages are always printed. Informational messages are only
printed if requested by the operator.

*** LBN n Has Corrupted Data (Forced Error). — Prints if you
answer Y to the FORMAT prompt. However, if the unit underwent bad
block replacement, this message is printed only if information messages
were requested.

Normally, all LBNs have a correct EDC indicating their data is good.
However, a bad block replacement that occurs when the data could not
be recovered produces a revectored LBN with a forced error flag. This
indicates the data probably is bad. No such LBNs should exist just after
FORMAT has run.

*** RBN n Is Good But Not Used for a Revector. — A good RBN
with a valid EDC is found in the verification pass but not recorded in the
RCT as used. Unused RBNs on a disk are written with a forced error
indication. (The EDC is the complement of the proper EDC.) No such
records should exist just after FORMAT has been run. This message
prints only if you answered Y to the FORMAT prompt. However, if the
unit underwent bad block replacement, this message is printed only if
informational messages are requested.

*** RBN n Marked Bad in the RCT Was Not Bad. — Prints if the
question was answered with a "Y" to the prompt about FORMAT. However,
if the unit has been subject to bad block replacement, this message is
printed only if informational messages are requested. When VERIFY
reads a bad RBN (bad header or header code of bad), it looks it up in the
collected RCT information and flags the fact it was indeed found to be bad.
If bad RBNs recorded in the RCT are in fact all right, this flag is not set.
No such RBNs should exist just after FORMAT has been run.

6–13

FORMAT and VERIFY Utilities

*** xBN n Has an Uncorrectable ECC Error. — Prints conditionally.
For example, no LBN should have an uncorrectable ECC error; it should
be revectored either by FORMAT or by bad block replacement. Thus, for
an LBN, this error is considered an inconsistency. Also, FORMAT should
have discovered all RBNs with uncorrectable ECC errors and marked them
as bad in the RCT. If an RBN is found with an uncorrectable ECC error,
but that RBN is not in the RCT, it is also considered an inconsistency.
In both of these cases, this message is printed. If an RBN is discovered
with an uncorrectable ECC error marked bad in the RCT, this message is
printed only if information messages are requested.

6.3.3.3 Informational Messages
Following are descriptions of the informational messages printed
by VERIFY. Note that this type of message may or may not need
informational messages enabled in order to print.

*** VERIFY: Aborted by User! — VERIFY was aborted.

*** Drive is OK. — No inconsistencies were discovered.

*** There Were n Inconsistencies Found for this Drive. —
Inconsistencies were discovered.

*** Copy n of xCT Block n (xBN n) Is Bad. — RCT or FCT blocks
cannot be read correctly with error recovery.

*** NOTE: Table Is Null or Empty (no bad PBNs). — FCTs are null or
empty FCTs. This message prints whether or not informational messages
are enabled.

*** DBN Area Should Probably Be Reformatted. — More than nine
DBNs were detected with position errors. This message prints whether or
not informational messages are enabled.

*** LBN n, a Primary Has a Bad Header (is Non-Primary). — LBNs
are recorded in the RCT as primary revectors but have garbled headers.
Such a condition is abnormal but not erroneous. This message prints if
informational messages are enabled.

*** xBN n Has a Transient (n out of 6) Error. — An LBN or RBN has
been read six times with a least one error-free. This message prints when
informational and transient error messages are enabled. The number of
times that errors were detected is indicated in the message.

*** xBN n Has a n Symbol Correctable ECC Error. — LBNs or RBNs
have solid ECC errors (errors on all six accesses) that are correctable.
This message prints when informational messages are enabled. The
highest number of symbols corrected on any given access is indicated in
the message.

*** xBN n Has a Solid Unrecoverable e Error. — LBNs or
RBNs appear errors on all six accesses. This message appears when
informational messages are enabled. The errors include those other than
ECC or EDC. The record is read a seventh time with error recovery to
determine if the error is correctable. If it is not, a warning message is
printed.

6–14

7 ILEXER: In-line Exerciser

7.1 ILEXER Overview
ILEXER is a KDM70 controller-resident high-level exerciser designed
to verify the data transfer capabilities of the KDM70 subsystem. The
subsystem includes the disk and/or tape drives attached to the KDM70
controller, as well as the controller-resident software.

Note: ILEXER writes to the customer area of the disk (LBN). It does not
use the diagnostic write area of the disk (DBN). Ensure customer
data has been protected through back-up procedures.

7.2 Invoking ILEXER
ILEXER is initiated by a host command through a DUP connection to the
KDM70 controller. The KDM70 controller can use either of the following
host DUP control programs:

• EVRLN: VAX/DS standalone environment

• HSCPAD: VMS on-line environment

7.2.1 Invoking ILEXER On Line from VMS
Use the following procedure to access and run on-line programs. Go
to Section 7.2.2 for instructions on accessing and running programs in
standalone mode.

Note: You cannot run on-line diagnostics, exercisers, and utilities
without first running EVRLN.KDM. It is important that you follow
this procedure.

$ RUN SYS$SYSTEM:SYSGEN

SYSGEN>CONNECT FYA0/NOADAPTER

SYSGEN>EXIT

$ SET DEFAULT SYS$MAINTENANCE

$ SET HOST/DUP/SERVER=DUP/LOAD=EVRLN.KDM PUA0/DEVICE

$ SET HOST/DUP/SERVER=DUP/TASK=ILEXER PUA0/DEVICE

7–1

ILEXER: In-line Exerciser

7.2.2 Invoking ILEXER Standalone from the VAX Diagnostic Supervisor
Use the following procedure to invoke ILEXER from VAX DS:

DS> ATTACH KDM70 HUB DUx N BR
| |
| |__________ BUS REQUEST
|
|____________ NODE NUMBER

DS> SELECT DUx

DS> RUN EVRLN

EVRLN> RUNL ILEXER

7.3 Running ILEXER
The following is an example of an ILEXER run:

EVRLN> RUNL ILEXER

*** ILEXER (InLine Exerciser) V 001 *** 29-AUG-1989 17:46:37 ***

Enable Bad Block Replacement (Y/N) [N] ?
Available Disk Drives: D0001 D0002 D0003 D0004 D0010 D0012 D0607
Available Tape Drives: NONE
Select next drive to test (Tnnnn/Dnnnn) [] ? D1
Write enable drive (Y/N) [N] ?

*** Available tests are ***

1. Random I/O
2. Seek Intensive I/O
3. Data Intensive I/O
4. Oscillatory Seek

Select test number (1:4) [1] ? 1
Select start block number (0:547040) [0] ?
Select end block number (0:547040) [547040] ?
Select data pattern number 0=ALL (0:15) [0] ?
Select another drive (Y/N) [] ? N
Select execution time limit, 0=Infinite, minutes (0:65535) [0] ? 2
Select report interval, minutes (0:65535)[1]? 1
Select hard error limit (0:32) [0] ?
Report soft errors (Y/N) [N] ?

Execution Performance Summary at 29-AUG-1989 17:53:34

Unit Serial Number Requests KB Read KB Written Hard Soft ECC
D0001 182507185 2037 4579 0 0 0 0

Execution Performance Summary at 29-AUG-1989 17:54:34

Unit Serial Number Requests KB Read KB Written Hard Soft ECC
D0001 182507185 4093 9250 0 0 0 0

Execution Performance Summary at 29-AUG-1989 17:54:34

Unit Serial Number Requests KB Read KB Written Hard Soft ECC
D0001 * 182507185 4098 9259 0 0 0 0

*** ILEXER is exiting. ***

7–2

ILEXER: In-line Exerciser

7.4 ILEXER Runtime Options
ILEXER prompts you for various options and parameters, which are
explained in the following sections.

7.4.1 Bad Block Replacement
ILEXER prompts you to enable or disable bad block replacement (BBR)
during testing:

> Enable Bad Block Replacement (Y/N) [N]?

Enter Y to enable BBR or N to disable BBR for all drives under test.

7.4.2 Disk and Tape Selection
ILEXER displays the disk and tape drives available for testing.

> Available Disk Drives: D0006 D0018 D0076 D0149 D0152
> Available Tape Drives: T0000 T0001

This is followed by a selection prompt:

> Select next drive to test (Tnnnn/Dnnnn) [] ? D6

Leading zeros may be omitted. There is no default answer for this prompt.
ILEXER has separate categories of prompts, depending on whether you
choose to test a disk drive or tape drive. Those prompts are listed in the
following sections.

7.4.3 Disk Drive Runtime Parameters
If you chose to test a disk drive, the following prompts are displayed:

7.4.3.1 Disk Write Enable
ILEXER does not write to the user area of the disk unless enabled through
this parameter. ILEXER displays the following question:

> Write enable drive (Y/N) [N]?

Enter N to write protect the selected disk drive.

CAUTION: A Y destroys the user data area of the disk. Protect user data by
first backing up the data on the disk drive to be tested.

ILEXER verifies a Y response with the following prompt:

> Should user data really be overwritten (Y/N) [N]?

Enter Y to write enable the disk drive. Enter N to cause ILEXER to issue read-only commands.

7.4.3.2 Disk Initial Write
This prompt allows specific data patterns to be protein to a disk drive. (A
data pattern is written only to the selected area of the disk to be tested.
This parameter is prompted for later in the program.)

> Perform initial write (Y/N) [N] ?

Enter N to prevent an initial write. Enter Y to enable an initial write to the selected drive.

7–3

ILEXER: In-line Exerciser

7.4.3.3 Disk Test Selection
The disk portion of ILEXER consists of four tests. The tests are displayed
in a message menu followed by a prompt requiring a number, as in the
following example:

> *** Available tests are:
> 1. Random I/O
> 2. Seek Intensive I/O
> 3. Data Intensive I/O
> 4. Oscillatory Seek

> Select test number (1:4) [1]?

Illegal responses cause ILEXER to reprompt.

7.4.3.4 Disk LBN Range
The range of logical block numbers (LBNs) can be specified when
exercising disk drives. Two prompts allow you to select the starting
and ending range of block numbers to be exercised.

> Select start block number (0:1216664) [0] ?

> Select end block number (0:1216664) [1216664] ?

The end block number is adjusted to reflect the response to the start block
prompt. The response must be a number in the range specified. The
default is the entire LBN range.

7.4.4 Tape Runtime Parameters
If you chose to test a tape drive, the following prompts are displayed.

7.4.4.1 Tape Test Selection
The tape portion of ILEXER consists of three tests. The tests are displayed
in a message menu followed by a prompt requiring a number, as in the
following example:

> *** Available tests are:
> 1. Random I/O
> 2. Position Intensive I/O
> 3. Data Intensive I/O

> Select test number (1:3) [3]?

Illegal responses cause ILEXER to reprompt.

7.4.4.2 Recording Density
ILEXER allows you to specify the recording density to be used. Only the
densities supported by the type of tape drive under test are shown.

> *** Available Tape Density Values:
> 1 PE 1600 BPI
> 2 GCR 6250 BPI

> Select density (1, 2) [2]?

The response must be a number in the range specified. Any other response is illegal and causes
ILEXER to reprompt for a legal value.

7–4

ILEXER: In-line Exerciser

7.4.4.3 Tape Speed
ILEXER allows automatic speed management of tape speed on tape drives
with speed selection. The following prompt is presented if the tape drive
supports speed selection:

> Automatic speed management (Y/N) [Y]?

Enter Y to direct the drive to automatically select tape speed based upon recording density. Enter
N to use the drive’s default speed.

7.4.4.4 Record Size
ILEXER permits you to specify the size of the record to be written. The
following prompt is displayed:

> Select tape record size, bytes (4:65536) [8192] ?

The response must in the range specified. Any other response is illegal and causes ILEXER to
reprompt for a legal value. The default record size is 8 Kbytes.

7.4.4.5 Record Count
ILEXER allows you to specify the number of records to read/write. The
following prompt is displayed:

> Select tape record count (0:65536) [0] ?

Note: Enter a zero to specify a read or write to the end of tape (EOT).

The response must be a number in the specified range. Any other response
is illegal and causes ILEXER to reprompt for a legal value.

7.4.5 ILEXER Common Configuration Parameters for Disk or Tape
The following parameters are common to disk or tape.

7.4.5.1 Data Pattern
One of 16 data patterns can selected for testing disk or tape. The following
prompt is displayed:

> Select data pattern number 0=ALL (0:15) [0] ?

The response must be a number in the range specified. Any other response
is illegal and causes ILEXER to reprompt for a legal value. The default
causes ILEXER to use all 16 patterns, one for each 512-byte buffer.

7.4.5.2 Data Compare
ILEXER permits comparisons of data read with the expected patterns
when INITIAL WRITE has been selected. The following prompt is
displayed:

> Data compare (Y/N) [N] ?

Enter N to prevent the data check. Enter Y to perform a data check. This
generates a second prompt. (The media must have been previously written
with one of the disk patterns.)

> Data compare on all reads (Y/N) [N] ?

Enter Y to implement data checking for every read. Enter N to implement
data checking on only 15 percent of disk reads.

7–5

ILEXER: In-line Exerciser

7.4.5.3 Additional Drives
Additional drives may be configured for testing. The following prompt is
displayed:

> Select another drive (Y/N) [] ? Y

Enter Y to repeat the drive configuration sequence, starting in
Section 7.4.2. Enter N to stop the drive configuration sequence and start
the execution control sequence.

7.4.5.4 Report Interval
ILEXER displays a periodic activity report for all drives. The report
interval may specified with the following prompt:

> Select report interval, minutes (0:65536)[1] ?

The response must be in the range specified. Any other response is
illegal and causes ILEXER to reprompt for a legal value. A 0 disables the
periodic report; the default interval is 1 minute.

7.4.5.5 Hard Errors
You can specify the number of hard errors allowed for each drive during
testing. If the limit is exceeded for a drive, ILEXER drops the drive from
further testing. The following prompt is used for this parameter:

> Select hard error limit (0:32) [0] ?

The response must be in the range specified. Any other response is illegal
causes ILEXER to reprompt for a legal value. Zero is the default response
and allows unlimited hard errors for all drives.

7.4.5.6 Soft Errors
You can enable or disable the display of soft errors with this parameter.
The following prompt is displayed:

> Report soft errors (Y/N) [Y] ?

Enter Y to enable the display of soft errors. Enter N to disable the display
of soft errors.

7.4.5.7 Data Compare Errors
Data compare errors are called out for each drive, along with the LBN,
byte offset into the bad sector, the expected longword, and actual longword.
The following is an example of a data compare error display:

> *** Compare Error (Pattern)

> Disk Unit 6
> LBN 818
> Offset 0
> Good Data 0001CCCC
> Real Data 000070AC

> *** 17-NOV-1858 00:05:19

7–6

ILEXER: In-line Exerciser

7.4.6 ILEXER Runtime Performance Summary
Once each report interval, ILEXER displays the execution performance
summary. The summary lists drives configured for test, along with
number of requests issued, KBytes read and written, and error counts
for the drive. The following example shows a summary:

> -------ERRORS-------
> Unit Serial Number Requests KB Read KB Written Hard Soft ECC
> ----- ------------- -------- -------- ---------- ------ ------ ------
> D0006 70203686 142 247 92 0 0 0
> D0018 * 166610 115 57 0 8 0 0

Note: Drives that have been dropped due to errors are displayed with an
asterisk (*).

7.5 Terminating ILEXER
ILEXER terminates under any one of the following conditions:

• The execution time limit is reached.

• The operator sends a DUP ABORT through a CTRL/C.

• All drives under test have been dropped due to error(s).

When completed, ILEXER displays the final execution performance summary and the following
message:

> ***
> *** ILEXER is exiting.
> ***

7–7

ILEXER: In-line Exerciser

7–8

8 ILDEVO: In-Line Device Operations Test

8.1 ILDEVO Overview
The in-line device operations test (ILDEVO) is a KDM70 controller-
resident low-level diagnostic program that exercises individual disk or
tape drives. ILDEVO is a disk/tape data integrity test.

ILDEVO requires exclusive access to the device under test. Therefore, the
device under test must be off line to system users.

Note: ILDEVO uses only the diagnostic write area of the disk (DBN).

8.2 Invoking ILDEVO
ILDEVO can be invoked on line from VMS or in standalone mode.

8.2.1 Invoking ILDEVO On Line from VMS
Use the following procedure to access and run on-line programs. Go
to Section 8.2.2 for instructions on accessing and running programs in
standalone mode.

Note: You cannot run on-line diagnostics, exercisers, and utilities
without first running EVRLN.KDM. It is important that you follow
this procedure.

$ RUN SYS$SYSTEM:SYSGEN

SYSGEN>CONNECT FYA0/NOADAPTER

SYSGEN>EXIT

$ SET DEFAULT SYS$MAINTENANCE

$ SET HOST/DUP/SERVER=DUP/LOAD=EVRLN.KDM PUA0/DEVICE

$ SET HOST/DUP/SERVER=DUP/TASK=ILDEVO PUA0/DEVICE

8.2.2 Invoking ILDEVO Standalone from the VAX Diagnostic Supervisor
Use the following procedure to run ILDEVO from standalone mode.

8–1

ILDEVO: In-Line Device Operations Test

DS> ATTACH KDM70 HUB DUx N BR
| |
| |__________ BUS REQUEST
|
|____________ NODE NUMBER

DS> SELECT DUx

DS> RUN EVRLN

EVRLN> RUNL ILDEVO

ILDEVO is initiated by a host command through a DUP connection to the
KDM70 controller. The KDM70 controller can use either of the following
host DUP control programs:

• EVRLN: VAX/DS standalone environment

• HSCPADD: VMS on-line environment

8.3 Running ILDEVO
When ILDEVO has successfully started, a message similar to the following
is printed:

ILDEVO version 0.00

Port Drive
Number State Device Type Number(s)

0 Available Tape TA79 10
1 Available Disk RA60 79
2 Available Tape TA90 4, 6
3 Host Unknown
4 Available Disk RA82 11
5 Host Unknown
6 Host Unknown
7 Available Tape TA81 0

Next, the following prompt is displayed:

Enter (D)isk, (T)ape or (P)ort number to test

[(Show all disks and tapes), D0 - D4095, T0 - T4095, P0 - P7] ? D79

Enter the type of device to be tested: Select one of the following:

D for disk
T for tape
P for port

The selected device must be followed by a unit or port number.

Refer to Section 8.4 for descriptions of disk drive tests. Refer to Section 8.5
for descriptions of tape drive tests.

After you select a device type and unit to test, ILDEVO prompts for one of
the following modes of operation:

• Default mode runs through each diagnostic test once. (Section 8.3.1)

• Tailor mode allows you to loop on a test or perform repetitive iterations
of a test. (Section 8.3.2)

8–2

ILDEVO: In-Line Device Operations Test

• Internal drive diagnostic mode executes drive-resident diagnostics
available on the device selected. Not all devices have self-tests.
Consult device-specific documentation. (Section 8.3.1)

The following prompt is displayed:

Do you wish to run ILDEVO in:
Default mode (run through all tests once)
Tailor mode (loop on test or multiple passes)
Internal drive diagnostic mode (execute drive resident diagnostics)

[(Default), Tailor, Internal] ?

Enter D for the Default mode, T for the Tailor mode, or I the Internal
mode.

8.3.1 Default Mode for Disks
The default mode performs the following tests on the selected disks:

• Basic Communication test

• Disk Interrogation and Setup test

• On-line and Setup test

• Disk Internal Diagnostic test

• Read test

• Seek (Positioning) test

• Write/Read test

• Format test

• Error Detection test

• Exercise test

• Disconnect test

8.3.2 Tailor Mode for Disks
Tailor mode is really a loop-on-selected-test mode or loop-on-entire-test
mode. The following message is printed in Tailor mode:

1) Basic communication test
2) Disk interrogation and setup test
3) On-line and setup test
4) Disk internal diagnostic test
5) Read test
6) Seek (positioning) test
7) Write/read test
8) Format test
9) Error detection test

10) Exercise test
11) Disconnect test

Enter test number to loop on [(Run all tests), 1 - 11] ?

Select one of the diagnostics and ILDEVO will loop on the selected test until interrupted by a
CTRL/ \ (control backslash), or CTRL/C if in standalone mode.

8–3

ILDEVO: In-Line Device Operations Test

If you enter RETURN, ILDEVO prompts for the number of passes
requested for the entire chain of tests. The following prompt is displayed:

Number of passes [(0),0 - 65535] ?

Enter the desired number of passes and carriage return. Zero allows an
infinite number of passes.

8.3.3 Internal Mode for Disks
If internal mode is selected, tests 1 through 3 are executed. When the tests
are completed, ILDEVO prompts for further testing with the following
prompt:

Test 4: Device internal diagnostic test
Drive test number or exit [0 - FFFF, EXit] ?

Type EXIT to execute the diagnose region zero text, which is followed by
device internal diagnostics tests, which are device dependent. See the
device-specific documentation for listings of device internal diagnostics.
Not all devices can access resident diagnostics.

The following example contains an example of ILDEVO test run:

ILDEVO version 1.00
Port Drive

Number State Device Type Number(s)
0 Available Disk RA82 3
1 Host Unknown
2 Available Disk RA90 607
3 Available Disk RA70 1
4 Host Unknown
5 Available Disk RA70 2
6 Available Disk RA70 12
7 Available Disk RA70 4

Enter (D)isk, (T)ape or (P)ort number to test
[(Show all disks and tapes),D0 - D4095, T0 - T4095, P0 - P7] ? D1
Do you wish to run ILDEVO in:
Default mode (run through all tests once)
Tailor mode (loop on test or multiple passes)
Internal drive diagnostic mode (execute drive resident diagnostics)
[(Default), Tailor, Internal] ?

Test 1: Basic communication test
Test 2: Disk interrogation and setup test
Test 3: On-line and setup test

RA70 (drive type 18), SDI Version 4
Microcode revision 76, Hardware revision 7

Test 4: Device internal diagnostic test

***** Do not abort ILDEVO until further notice. *****
***** Aborting ILDEVO at this point may cause the controller to crash *****

*** ILDEVO may now be aborted ***

8–4

ILDEVO: In-Line Device Operations Test

Results from SDI DIAGNOSE command:
Drive type: 18
Test 5: Read test
Test 6: Seek (positioning) test
Test 7: Write/read test
Test 8: Format test
Test 9: Error detection test

Subtest 1 Level 1 GROUP SELECT with illegal group number
Subtest 2 Level 2 SEEK with illegal cylinder number
Subtest 3 Write on write protected drive

Test 10: Exercise test
Test 11: Disconnect test
ILDEVO diagnostic complete
No errors occurred

8.4 ILDEVO Disk Drive Test Descriptions
The following ILDEVO subtests test SDI disk drives only. Refer to
Section 8.5 for information on tests for tape drives.

8.4.1 Basic Communications Test
The device is initialized and the diagnostic checks that clocks are
deasserted, then reasserted.

8.4.2 Drive Interrogation Test
This portion of ILDEVO is centered around the results of a level two GET
STATUS command. Errors are reported during testing.

If drive interrogation fails, the test loops on drive interrogation
indefinitely.

8.4.3 Drive On-line and Setup Test
ILDEVO brings the target device on line and sets up internal data
structures. The following commands are issued to the target device:

• GET COMMON CHARACTERISTICS

The following errors can be generated by this command:

– No Device on Port — No clocks are present on selected port.

– A Device Failed to Deassert Clocks After Init — No clock pulse
interrupts are present.

– Drive Failed to Reassert Clocks After Init — Deasserted clocks
exceed the time-out period.

– Receiver Ready — Receiver ready is not asserted after the
reassertion of clocks.

• ONLINE

• GET STATUS

• CLEAR ERRORS

8–5

ILDEVO: In-Line Device Operations Test

• CHANGE MODE

• RUN

• GET SUBUNIT CHARACTERISTICS

• CHANGE CONTROLLER FLAGS (Set to zero)

• RECALIBRATE

The target device is now initialized. The device name, number, SDI
version, microcode, and hardware revision are reported.

If the Drive On-line and Setup test fails, the test loops indefinitely.

8.4.4 Read Test
If the Drive On-line and Setup test discovers that the drive cannot be
spun up, the Read test is skipped. Otherwise, the Read test performs the
following steps:

1 ILDEVO reads FCT block zero to ensure the drive is in 512-byte/sector
mode. If so, ILDEVO seeks to the first read-only DBN cylinder, group,
and track and ensures at least one sector can be correctly read.

2 Data is compared to a known pre-written data pattern.

3 This test is repeated on all read-only cylinders, groups and tracks.
Each track must have at least one readable sector or an error is
reported. If errors are detected, the drive is marked inoperative when
ILDEVO exits.

Two errors can cause the Read test to terminate:

1 ILDEVO attempts to read at least one copy of the first block of the
FCT. An error is reported if all copies of the FCT (block zero) are
unreadable. The drive is marked inoperative and ILDEVO exits.

2 ILDEVO checks the media mode. If the drive is other than 512
bytes/sector, an error is reported, the device is marked inoperative,
and ILDEVO exits.

8.4.5 Seek (Positioning) Test
The Seek test consists of performing sawtooth seeks across most of the
drive while verifying the head’s position at each endpoint. A formula used
for computing endpoints ensures thorough testing of the entire disk. LBN,
XBN, and DBN spaces are all checked.

If the Seek test fails, the test loops indefinitely.

8–6

ILDEVO: In-Line Device Operations Test

8.4.6 Write/Read Test
This test is skipped if either the Drive On-line and Setup test discovers
that the drive could not be spun up or if the drive is write protected.

ILDEVO continues to execute if write or read errors are detected; however,
the drive is marked inoperative when ILDEVO exits.

The test performs the following steps:

1 A seek is issued to the first cylinder, group, and track of the DBN
space. This entire track is written with known data.

2 ILDEVO attempts to read at least one sector, performing data
compares on the data read. If an error occurs during the write/read,
the next sector is used. At least one sector must pass the write/read
test on each track.

This test is performed on every track in writable DBN space.

8.4.7 Format Test
The Format test is skipped if the Drive On-line and Setup test discovers
that the drive cannot be spun up, if the drive is write protected, or if data
corruption or positioning errors are detected during the Write/Read test.

Otherwise, the Format test issues a seek and read (for positioning) to the
last writable track in DBN space. A FORMAT command is issued for the
first half of the track. At least one sector must be read successfully from
the first half of the formatted track.

8.4.8 Error Detection Test
The Error Detection test is skipped if the Drive On-line and Setup test
discovers that the drive cannot be spun up.

The Error Detection test tests the drives ability to detect and report error
conditions. ILDEVO forces the following errors:

• A GROUP SELECT to a nonexistent group

• A level 2 SEEK to a nonexistent cylinder

• A write operation on a write-protected drive — skipped if the drive is
write protected.

Error conditions are detected through the protocol error (PE) bit in
response to an ILDEVO-issued GET STATUS command.

8–7

ILDEVO: In-Line Device Operations Test

8.4.9 Exercise Test
The Exercise test is skipped if the Drive On-line and Setup test discovers
that the drive cannot be spun up or if the drive is write protected.

This test is performed only in the writable DBN area.

ILDEVO continues testing if data errors are detected during the Exercise
test. If errors are detected, the drive is marked inoperative when ILDEVO
completes.

The Exercise test is similar to the Write/Read test, except that ILDEVO
picks a random DBN and performs a write, then a read on the selected
DBN space. All data reads have ECC and EDC checked, as well as
having the data compared against known patterns. The disk’s operation
during this test is similar to its normal on-line operation, except the data
transferred is in the DBN space and not the LBN space.

Two hundred operations (reads/writes) are performed before this test
completes.

8.4.10 Disconnect Test
Once the Exercise test has completed, a DISCONNECT command is sent
to the drive. (If errors occur during this operation, they are reported.) The
drive is released to the KDM70 subsystem.

If errors occur during the test, the drive is released in a inoperative state.

If ILDEVO executed without an error, the drive is enabled. All resources
requested for ILDEVO execution return to the subsystem, and a
completion message is displayed. The following example shows a sample
test of the disk drive:

8–8

ILDEVO: In-Line Device Operations Test

Example 8–1 Disk Drive Test Example

ILDEVO version 0.00
Port Drive

Number State Device Type Number(s)
0 Host Unknown
1 Available Disk RA70 238
2 Available Disk RA80 139
3 Available Disk RA81 43
4 Available Disk RA82 39
5 Available Disk RA90 18
6 Available Disk ESE20 122
7 Available Disk ESE20 119

Enter (D)isk, (T)ape or (P)ort number to test
[(Show all disks and tapes),D0 - D4095, T0 - T4095, P0 - P7] ? D18

Do you wish to run ILDEVO in:
Default mode (run through all tests once)
Tailor mode (loop on test or multiple passes)
Internal drive diagnostic mode (execute drive resident diagnostics)

[(Default), Tailor, Internal] ?

Test 1: Basic communication test
Test 2: Disk interrogation and setup test
Test 3: On-line and setup test

RA90 (drive type 19), SDI Version 4
Microcode revision 10, Hardware revision 16

Test 4: Device internal diagnostic test
Results from SDI DIAGNOSE command:
Drive type: 19
Device reported the following binary information after a DIAGNOSE
(displayed in hex, right to left):
0F 0E 0D 0C 0B 0A 09 08 07 06 05 04 03 02 01 00 Offset
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 000
Test 5: Read test
Test 6: Seek (positioning) test
Test 7: Write/read test
Test 8: Format test
Test 9: Error detection test
Test 10: Exercise test
Test 11: Disconnect test
ILDEVO diagnostic complete
No errors occurred

ILDEVO complete

8.5 ILDEVO Tape Test Descriptions
The Tape test exercises the formatter and the selected tape drive. A
scratch tape must be mounted on the selected unit. The tape test of
ILDEVO consists the following subtests:

• Basic Communication test

• Formatter Interrogation and Setup test

• On-line and Setup test

• Device Internal Diagnostic test

• Drive Interrogation and Setup test

• Tape Movement Test

8–9

ILDEVO: In-Line Device Operations Test

• Disconnect test

Tests are preceded by a warning that user data will be destroyed. The
following format is used:

All customer data will be destroyed, continue [(No), YES] ?

Any answer other than Y causes this test to abort.

If a port with a tape formatter is selected for testing, ILDEVO prompts for
which transport to test.

8.5.1 User Setup Test
After selecting Tape for the device to be tested, ILDEVO prints the
following message:

Do you wish to run ILDEVO in:
Default mode (run through all tests once)
Tailor mode (loop on test or multiple passes)
Internal drive diagnostic mode (execute drive resident diagnostics)

[(Default), Tailor, Internal] ?

If you select Tailor mode, ILDEVO prints the following message:

The following tests are available for this device:

1) Basic Communication

2) Formatter Interrogation and Setup Test

3) On-line and Setup Test

4) Device Internal Diagnostic Test

5) Drive Interrogation and Setup Test

6) Tape Movement test

7) Disconnect Test

Enter test number to loop on [(Run all tests),1 - 11] ? Return

ILDEVO either requests you to input a test number or begins testing. Test
descriptions are given in the following sections.

8.5.2 Basic Communication Test
The device is initialized and the diagnostic checks that clocks are
deasserted then reasserted.

8.5.3 Formatter Interrogation and Setup Test
This portion of ILDEVO is centered around the results of a Level 2 GET
SUMMARY STATUS command. If a successful response is received,
testing continues to the On-line and Setup Test.

If the Formatter Interrogation and Setup test fails, the test loops
indefinitely.

8–10

ILDEVO: In-Line Device Operations Test

8.5.4 On-line and Setup Test
ILDEVO brings the formatter on line and sets up its internal data
structures. Errors encountered during formatter setup (such as Level
2 communication errors) are reported in ASCII format.

ILDEVO uses the response from the GET FORMATTER
CHARACTERISTICS command to convert short and long SDI timeouts to
facilitate timing of outstanding commands.

Next, ILDEVO executes a normal error recovery using the following
sequence of commands:

• ONLINE GET UNIT CHARACTERISTICS

• GET SUMMARY STATUS

• CLEAR FORMATTER ERRORS

Errors detected in the GET SUMMARY STATUS response are not reported
because these errors existed before the test was run, and therefore would
confuse the results of the test.

Finally, ILDEVO issues a CHANGE CONTROLLER FLAGS command and
sets all flags to zero and then proceeds to the next test.

If the On-line and Setup test fails, the test loops indefinitely.

8.5.5 Device Internal Diagnostic Test
ILDEVO sends a DIAGNOSE command requesting the formatter to
diagnose region 0. This region is supported by all STI tape drives. Tests
consist of the drive’s power-up self-tests.

A failure in device internal testing causes the test to loop on the formatter
resident diagnostic indefinitely.

8.5.6 Drive Interrogation and Setup Test
The following parameters are tape specific:

• Tape density — The default tests all tape densities supported by the
drive.

• Tape speed — Automatic speed manager (ASM) may be selected or
testing defaults to include all tape speeds, including the automatic
tape speed function.

• Testing data pattern — The default is a standard data pattern.
Otherwise, the words and data that make up the data pattern (0000—
FFFF) are can be selected through ILDEVO prompting.

Once the drive is set up, ILDEVO proceeds to the Tape Movement tests.

If the Drive Interrogation and Setup test fails, the test loops indefinitely.
If the unit to be tested is not found, a setup error message is printed and
the test finishes.

8–11

ILDEVO: In-Line Device Operations Test

8.5.7 Tape Movement Test
The Tape Movement test consists of a number of subtests. Each test is
repeated for each combination of speed and density of the unit under test.

Both state machines must be on line to execute tape movement tests.

The Tape Movement tests are executed in the order the appear.

8–12

ILDEVO: In-Line Device Operations Test

8.5.7.1 Tape Initial Write
An error during the Tape Initial Write test causes ILDEVO to retry the
failing operation until it succeeds or is aborted. However, if an end of
tape (EOT) is detected during the test, a SETUP error message is printed
indicating a longer tape should be mounted. ILDEVO aborts further
testing.

A number of write algorithms are employed to ensure good data is being
written to tape. After each operation (write or write tape mark), a GET
EXTENDED STATUS command is sent to the drive. The gap count is then
compared against a known good gap count.

ILDEVO then issues a SET UNIT EXECUTION MODE command, which
sets the diagnose (DI) bit. This ensures that good data is written to the
tape.

8.5.7.2 Read Forward Test
ILDEVO skips two gaps, reads a 1-byte record, skips another gap and
reads a 2-byte record. After each read and skip combination, ILDEVO
issues a GET EXTENDED DRIVE STATUS. Gap counts are compared
against a known good gap count.

An error during the Read Forward test causes ILDEVO to retry the failing
operation until it succeeds or is aborted.

8.5.7.3 Read Reverse Test
If the tape drive selected for testing does not support read reverse, this
test is skipped.

This test executes the same as Read Forward test, except in reverse. The
tape is left at the beginning of tape (BOT).

An error in the Read Reverse test causes ILDEVO to retry the operation
until it succeeds or is aborted.

8.5.7.4 Tape Positioning Test
Each response to the POSITION TAPE and READ commands is checked
for correct tape position. ILDEVO issues a GET EXTENDED DRIVE
STATUS and checks to ensure that the intended tape position matches the
actual tape position.

A number of tape positioning algorithms are used to ensure the unit is
functioning properly.

An error in the Tape Positioning test causes ILDEVO to retry the failing
operation until it succeeds or is aborted.

8.5.7.5 Write/Read Test
This test is started when ILDEVO issues an INITIATE REWIND
command. Records are written in varying lengths and then read backward
and forward.

An error in the Write/Read test causes ILDEVO to retry the failing
operation until it succeeds or is aborted.

8–13

ILDEVO: In-Line Device Operations Test

8.5.7.6 Exercise Test
This test is started when ILDEVO issues an INITIATE REWIND
command. The test performs the following operations:

1 The test gets a random number ranging from the number of records to
the start of the tape to the number of records to the end of the tape.

2 If the random number is positive, the test moves forward that number
of records. If the number is negative, it moves backward that number
of records (plus 1 if read reverse is not supported).

3 If the random number is zero, the test does not move. However, if read
reverse is not supported, the test moves backward one record.

4 If the number is negative or zero, the test reads in reverse. If the
number is positive or read reverse is not supported, the test reads
forward.

5 The test checks the record number of the record read to make sure it
is the correct record.

6 The test sends a GET EXTENDED DRIVE STATUS command and
checks the gap count to ensure it is correct.

At the end of Read/Positioning test, an INITIATE REWIND command is
sent to the drive.

An error in the Write/Read test causes ILDEVO to retry the failing
operation until it succeeds or is aborted.

8.5.7.7 Write/Read Summary
At the end of all the Write/Read tests, a summary of the results is printed.
Errors are divided into eight categories. The following is an example of
the format used for this report:

Tape transfer error summary:
Double Track Single Track

Correction Correction Other Other Other
Media Read Read Read Read Error Error Error
Error Fwd Rev Fwd Rev A B C

0 0 0 0 0 0 0 0
ILDEVO diagnostic complete
No errors occurred

ILDEVO complete

8.5.8 Error Detection Test
ILDEVO uses previously written records to position the tape at the start
of a 512-byte record. The following two exchanges are attempted:

1 Read a 512-byte record with a byte count of 511

2 Read a 512-byte record with a byte count of 513

If the formatter/controller does not detect each of the incorrect record
lengths, an error message is printed.

8–14

ILDEVO: In-Line Device Operations Test

8.5.9 Disconnect Test
After the drive tests have completed, a DISCONNECT command is sent
to the device under test. (If errors occur during this operation, they are
reported.) The device is released back to the KDM70 subsystem.

If errors occurred during the test, the drive is released in an inoperative
state. If ILDEVO executes without errors, the drive is enabled.

Once released back to the system, all resources requested for ILDEVO
execution are returned to the subsystem, and a completion message is
printed.

8.6 Error Messages
Messages printed by ILDEVO have the following format:

**** KDM70 In-line Device Operations Test V0.0 **** 13-JUL-1989 10:05:35 ****
Hard error number 156, Port 7, Test 4, Subtest 1, Pass 1

where:

error number is the number assigned to this error.
port number is included on ILDEVO errors and messages.
test is the number of the executing test that failed.
subtest is the number of the executing subtest that failed.
pass is the current pass count.

8–15

ILDEVO: In-Line Device Operations Test

8–16

9 DKUTIL

9.1 DKUTIL Overview
DKUTIL is a general utility for displaying disk structures and disk data.
Unlike some other utilities, DKUTIL is a command language interpreter.
It is intended for debugging utilities, diagnostics, error recovery, and bad
block replacement. DKUTIL has become a general utility for displaying
disk structure and data.

Initially, the program goes into command mode. You issue a GET
command to obtain the unit to which other commands are to be applied.
DKUTIL then returns to the command mode, prompting for a command,
executing it, and prompting for another command.

9.2 Invoking DKUTIL
DKUTIL can be invoked on line or in standalone mode.

9.2.1 Invoking DKUTIL On Line from VMS
Use the following procedure to access and run on-line programs. Go
to Section 9.2.2 for instructions on accessing and running programs in
standalone mode.

Note: You cannot run on-line diagnostics, exercisers, and utilities
without first running EVRLN.KDM. It is important that you follow
this procedure.

$ RUN SYS$SYSTEM:SYSGEN

SYSGEN>CONNECT FYA0/NOADAPTER

SYSGEN>EXIT

$ SET DEFAULT SYS$MAINTENANCE

$ SET HOST/DUP/SERVER=DUP/LOAD=EVRLN.KDM PUA0/DEVICE

$ SET HOST/DUP/SERVER=DUP/TASK=DKUTIL PUA0/DEVICE

9.2.2 Invoking DKUTIL Standalone from the VAX Diagnostic Supervisor
Use the following procedure to invoke DKUTIL from standalone mode:

9–1

DKUTIL

DS> ATTACH KDM70 HUB DUx N BR
| |
| |__________ BUS REQUEST
|
|____________ NODE NUMBER

DS> SELECT DUx

DS> RUN EVRLN

EVRLN> RUNL DKUTIL

9.3 Running DKUTIL
DKUTIL uses the following commands:

• DEFAULT

• DISPLAY

• DUMP

• EXIT

• GET

• POP

• PUSH

• REVECTOR

You can shorten commands, command options, and modifiers. For
example, DUMP can be entered as DUM, DU, or D. To prevent shortened
commands from becoming confusing, use enough letters to make the
command unique. The shortened command depends on an order based
on history and expected frequency of usage. Thus, D specifies DUMP, DI
specifies DISPLAY, and DE specifies DEFAULT.

In the following descriptions, only the command (or part of the command)
in bold print must be specified.

Some command options take optional parameters which, if omitted,
default.

9.4 Command Modifiers
You can add modifiers to some commands. Modifiers are preceded by
a slash (one slash for each modifier). The following commands are
equivalent:

DUMP /NOEDC RBN 0
DUMP RBN/NOEDC 0
DUMP RBN 0/NOEDC
DUMP RBN 0 /NOEDC

Modifiers are processed left to right and applied to the current default
modifiers. The DUMP command is the exception. The default modifiers
for DUMP can be changed via the DEFAULT command. The initial default
modifiers for DUMP are /DATA, /EDC, and /IFERROR.

9–2

DKUTIL

The following is a sample session using DKUTIL. This example is
standalone and runs under EVRLN.

EVRLN> RUNL DKUTIL

*** DKUTIL (Disk Utility) V 001 *** 15-SEP-1989 09:00:00 ***

DKUTIL> GET D95

Serial Number: 0172200370
Mode: 512
First Formatted: 02-AUG-1987 00:35:47
Date Formatted: 28-JUL-1988 00:05:09
Format Instance: 4
FCT: VALID
Bad PBNs in FCT: 26 (512), 0 (576)

DKUTIL> DIS/F FCT

Factory Control Table for D0095

Serial Number: 0172200370
Mode: 512
First Formatted: 02-AUG-1987 00:35:47
Date Formatted: 28-JUL-1988 00:05:09
Format Instance: 4
FCT: VALID
Bad PBNs in FCT: 26 (512), 0 (576)

Scratch Area Offset: 63
Size (Not Last): 417
Size (Last): 289

Flags: 000000
Format Version: 0

C 244865 (LBN 237213), C 556854 (LBN 540498), C 526287 (LBN 510826),
C 480242 (LBN 466118), C 470981 (LBN 457139), C 449212 (LBN 435999),
A 2043 (LBN 2011), A 1699 (LBN 1648),

DKUTIL> REV 1000

*** BBR attempted for LBN 1000, MSCP Status: BBR (Success).

DKUTIL> DIS/F RCT

*** Revector Control Table for D0095

Serial Number: 0172200370
Flags: 000000

LBN Being Replaced: 1000
Replacement RBN: 30
Bad RBN: 0

1000 *-> 33, 25512 --> 822, 139512 --> 4500

RCT Statistics: 0 Bad RBNs.
3 Bad LBNs.
3 Primary Revectors.
0 Probationary RBNs.
0 Bad RCT Blocks.

0 Bad First Copy RCT Blocks.

DKUTIL> DEF/NODATA
DKUTIL> DUMP LBN 1000

****** Buffer for LBN 1000, MSCP Status: Success

Error Code 52: Block Number: 1000 (000003E8)

Recovery Flags: 000 ECC Symbols Corrected: 0

9–3

DKUTIL

Retry Counts: 0 Recovery Command: 0

Header: 6000001E 6000001E 6000001E 6000001E

EDC: 0045 EWC: 0000

ECC: 4C00 5800 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000

DKUTIL> DIS CHAR LBN 1000

Characteristics for LBN 1000 (000003E8)

Cylinder 2, Group 8, Track 0, Position 6

PBN 1026 (000402)

Primary RBN 30 (6000001E) in RCT Block 3 at Offset 120

DKUTIL> DIS CHAR DISK

Drive Characteristics for D0095

Type: RA70

Media: FIXED

Cylinders: 1511 LBN. 4 XBN. 2 DBN

Geometry: 1 tracks/group, 11 groups/cylinder, 11 tracks/cylinder
33 LBNs/track, 1 RBNs/track, 34 sectors/track, 34 XBNs/track
374 XBNs/cylinder, 363 LBNs/cylinder, 11 RBNs/cylinder

Group Offset: 8 (LBN), 8 (XBN)

LBNs: 547041 (host), 548493 (total)

RBNs: 16621

XBNs: 1496

DBNs: 374 (read/write), 374 (read only)

PBNs: 567041

RCT: 198 (size), 132 (non-pad), 7 (copies)

FCT: 204 (size), 131 (non-pad), 7 (copies)

SDI Version: 4

Transfer Rate: 116

Timeouts: 3 (short), 7 (long)

Retry Limit: 5

Error Recover: 9 command levels

ECC Threshold: 4 symbols

Revision: 60 (microcode), 6 (hardware)

Drive ID: 180E00000000

Drive Type ID: 18

DBN RO Groups: 11

Preamble Size: 14 (data), 4 (header)

DKUTIL> DUMP RCT BLOCK 3/DATA

****** RCT Block 3, Copy 1 ******

****** Buffer for LBN 547043, MSCP Status: Success

9–4

DKUTIL

Data = 00000000 00000000 00000000 00000000
+16 2000008D 00000000 00000000 00000000
+32 00000000 00000000 00000000 00000000
+48 00000000 00000000 00000000 00000000
+64 00000000 00000000 00000000 00000000
+80 00000000 00000000 00000000 00000000
+96 00000000 00000000 00000000 00000000

+112 00000000 00000000 200003E8 00000000
+128 00000000 00000000 00000000 00000000
+144 00000000 00000000 00000000 00000000
+160 00000000 00000000 00000000 00000000
+176 00000000 00000000 00000000 00000000
+192 00000000 20000670 00000000 00000000
+208 00000000 00000000 00000000 00000000
+224 00000000 00000000 00000000 00000000
+240 200007DB 00000000 00000000 00000000
+256 00000000 00000000 00000000 00000000
+272 00000000 00000000 00000000 00000000
+288 00000000 00000000 00000000 00000000
+304 00000000 00000000 00000000 00000000
+320 00000000 00000000 00000000 00000000
+336 00000000 00000000 00000000 00000000
+352 00000000 00000000 00000000 00000000
+368 00000000 00000000 00000000 00000000
+384 00000000 00000000 00000000 00000000
+400 00000000 00000000 00000000 00000000
+416 00000000 00000000 00000000 00000000
+432 00000000 00000000 00000000 00000000
+448 00000000 00000000 00000000 00000000
+464 00000000 00000000 00000000 00000000
+480 00000000 00000000 00000000 00000000
+496 00000000 00000000 00000000 00000000

EDC: 6D5F EWC: 0000

DKUTIL> EXIT

*** DKUTIL is exiting.

9.5 Command Descriptions
The DKUTIL commands are described in the following paragraphs.
Command options are separated by lines in the syntax specification.
Parameters are enclosed in braces ({}). Options in brackets ([]) can be
omitted.

9.5.1 DEFAULT Command
The DEFAULT command is outlined as follows:

• Purpose: To change the default modifiers for the DUMP command.

• Syntax: DEFAULT.

• Parameters: None.

• Modifiers: Shown in the following table.

9–5

DKUTIL

Modifier
Related
Modifier Default Description

/IFERROR NOIFERROR ON Dumps the error, header, and ECC fields in the buffer if an
error occurs when reading the block. When this modifier is
used with the /RAW modifier, the error must occur on the
reread of the block with the header code extracted from the
first read.

/ERRORS NOERRORS OFF Dumps the error fields in the buffer.

/EDC NOEDC ON Dumps the EDC and calculated EDC fields in the buffer.

/ECC NOECC OFF Dumps the ECC fields in the buffer.

/DATA NODATA ON Displays the data in the buffer unless the /NZ modifier is also
specified.

/HEADERS NOHEADERS OFF Displays the header fields in the buffer.

/ALL NONE The same as /ERRORS/EDC/ECC/DATA/HEADERS.
Requests all fields be displayed. Its opposite, /NONE,
requests no fields be displayed. When using the /NONE
qualifier, only the MSCP status line prints.

/RAW NORAW Allows reading the original LBN that was revectored rather
than the RBN that would be read without the /RAW qualifier.
/RAW only affects revectored (primary or non-primary) LBNs.
If /IFERROR is in effect, this modifier applies only to dumping
a revectored LBN.

/NZ NONZ OFF Prevents the data from being displayed if it is all zeros.
Instead, a single line indicating the data is zero is printed. It
has no effect if the /DATA modifier is not specified or if it is
defaulted OFF.

/BBR NOBBR OFF Usually inhibited when a block is accessed. If this modifier is
specified, bad block replacement can occur. It only occurs,
however, if the error recovery code detects the block being
accessed as bad and the block is an LBN in the host area.

/ORIGINAL NOORIGINAL OFF Saves the first data seen for display. When a block is
accessed for dumping, the data is seen twice by the program
if an error occurs. It is seen first just after the K detects the
error and sends it to error recovery. It is seen again after
error recovery takes place and the data has been corrected
or reread. Usually, the data is saved for displaying when it is
last seen.

• Usage: The modifiers specified are applied to the current default
modifiers for the DUMP command. The result becomes the new
default. Examples are:

DEFAULT/NONE
DEF/RAW/NODATA
DE/A/OR/NZ

9–6

DKUTIL

9.5.2 DISPLAY Command
The DISPLAY command is outlined as follows:

• Purpose: To display the disk characteristics, the characteristics of a
given block, the error history in the drive, the FCT, and/or the RCT.

• Syntax:

— DISPLAY ALL

— DISPLAY CHARACTERISTICS DBN {block}

— DISPLAY CHARACTERISTICS DISK

— DISPLAY CHARACTERISTICS LBN {block}

— DISPLAY CHARACTERISTICS PBN {block}

— DISPLAY CHARACTERISTICS RBN {block}

— DISPLAY CHARACTERISTICS XBN {block}

— DISPLAY ERRORS /PROMPT

— DISPLAY FCT

— DISPLAY RCT

• Parameters: Block is a number specifying the DBN, LBN, PBN, RBN,
or XBN whose characteristics are displayed. The default radix is
decimal, and can be changed to hex by prefixing the number with the
letter X.

• Modifiers:

— /FULL — Displays all defined fields in xCT block 0. /FULL applies
only to the RCT and FCT command options. For the RCT option,
the bad block replacement fields in RCT block 0 are only displayed
if the appropriate flags in the flags field are set. These flags
indicate they are currently in use (BBR). This modifier forces all
fields to be displayed, regardless of the flags’ settings. For the FCT
option, the scratch area parameters, format version, and format
flags are normally not displayed. This modifier forces all fields in
FCT block 0 to be displayed.

— /PROMPT— Prompts for further input after displaying a full page
of error information.

— /NOITEMS — Does not display the individual items in the FCT
or RCT. It applies only to the FCT and RCT command options. If
given, only the block 0 information is displayed.

• Usage:

— DISPLAY ALL — Displays FCT, RCT, disk characteristics, and
error history.

— DISPLAY CHARACTERISTICS DISK — Displays the following
characteristics:

9–7

DKUTIL

Drive type Media Cylinders

Geometry Group offsets Number of LBNs

Number of
RBNs

Number of
XBNs

Numbers of DBNs

Number of
PBNs

RCT
parameters

FCT parameters

SDI version Transfer rate SDI timeouts

SDI retry limit Error recovery
command
levels

ECC threshold

Revision
levels

Drive ID Drive type ID

DBN
Read/Only
groups

Preamble
sizes

— DISPLAY CHARACTERISTICS xBN {block} — Displays the
characteristics of the given block. For DBNs and XBNs, these are
the block numbers in decimal and hex. Cylinder, group, track,
position, and PBN are also in decimal and hex. For RBNs, the
RCT block numbers and offset also are displayed. For LBNs, the
primary RBN number and its RCT block number and offset also
are displayed. For PBNs, the display depends on the type of block:
DBN, LBN, RBN, or XBN.

— DISPLAY ERRORS — Reads the error history in the drive. The
error history in the drive is read from region 2, offset 0, and
dumped in hexadecimal. For RA60 drives an end message is
printed indicating there is no error region. The RA70, RA80,
RA81, and RA82 drives display only 16 bytes of error log data.
Succeeding drives display the error log header and all selected
error log entries.

— DISPLAY FCT — Displays the information in FCT block 0.
Certain fields are not displayed unless the /FULL modifier is
given. The list of bad PBNs is displayed unless the /NOITEMS
modifier is given. For each item in the list, the header bits, PBN
number, type (DBN, LBN, RBN, or XBN), and xBN number are
displayed.

— DISPLAY RCT — Displays the information in RCT block 0.
Certain fields are not displayed unless the /FULL modifier is
given. The list of revectors, bad RBNs, and probationary RBNs
are displayed unless the /NOITEMS modifier is given. For bad and
probationary RBNs, just the RBN number is displayed (in decimal).
For revectors, the LBN number and RBN number to which it is
revectored are displayed (in decimal). A primary revector is
distinguished by the character sequence ‘‘–>’’. A non-primary
revector is distinguished by the character sequence ‘‘*->’’.

— Examples are:

DISPLAY/FULL ALL
DI/F A

9–8

DKUTIL

DI C D
DIS CHAR LBN 1000
DI/NOI RCT

9.5.3 DUMP Command
The DUMP command is outlined as follows:

• Purpose: To dump the given block or table of blocks.

• Syntax:

— DUMP BUFFER

— DUMP DBN {block}

— DUMP FCT [BLOCK {number}] [COPY {copy}]

— DUMP LBN {block}

— DUMP RBN {block}

— DUMP RCT [BLOCK {number}] [COPY {copy}]

— DUMP XBN {block}

• Parameters:

— Block is a number specifying the DBN, LBN, RBN, or XBN to be
dumped. The default radix is decimal. It can be changed to hex by
prefixing the number with the letter X.

— Number is the relative block number in the FCT or RCT to be
dumped. The default radix is decimal and can be changed to hex
by prefixing the number with the letter X. The value must be in
the range 1 through the FCT or RCT block size. That is, the first
block is number 1 (not 0) and the block must lie in the range.

— Copy specifies which copy of the given block in the FCT or RCT
is to be dumped. The first copy is number 1. The value must not
exceed the number of copies.

— DUMP xBN {block} — The specified DBN, LBN, RBN, or XBN
is read in and dumped subject to the given modifiers. The block
number must be specified.

— DUMP xCT [BLOCK {number}] [COPY {copy}] — If a BLOCK
number is given, that block in the FCT or RCT is read in and
dumped. If none is specified, every block in the FCT or RCT is
read in and dumped. If COPY is not specified, it defaults to copy 1.

— Examples of DUMP command parameters are:

DUMP RCT BLOCK 3 COPY 4
DU/NZ RCT C 2
DU LBN 1000
D F B 2
D X 0

9–9

DKUTIL

• Modifiers:

Modifier
Related
Modifier Default Description

/IFERROR NOIFERROR ON Dumps the error, header, and ECC fields in the buffer when
an error occurs while reading the block. When used with the
/RAW modifier, the error must occur on the read of the LBN
(reread) with the header code extracted from the RBN (first
read). Refer to Section 9.5.1.

/ERRORS NOERRORS OFF Dumps the error fields in the buffer.

/EDC NOEDC ON Dumps the EDC and calculated EDC fields in the buffer.

/ECC NOECC OFF Dumps the ECC fields in the buffer.

/DATA NODATA ON Displays the data in the buffer unless the /NZ modifier is also
specified.

/HEADERS NOHEADERS OFF Displays the header fields in the buffer.

/ALL NONE The same as /ERRORS/EDC/ECC/DATA/HEADERS. It
requests display of all fields. Its opposite, /NONE, requests
display of no fields. When using the /NONE qualifier, only the
MSCP status line prints.

/RAW NORAW Allows a read of the original revectored LBN (rather than the
RBN that would be read without the /RAW qualifier). /RAW
only affects revectored (primary or non-primary) LBNs. If
in effect, the /IFERROR modifier applies only to dumping a
revectored LBN.

/NZ NONZ Prevents data from being displayed when it is all 0s. Instead,
a single line prints indicating the data is 0s. /NZ has no effect
unless the /DATA modifier is specified. It also has no effect if
/DATA is not specified (or is defaulted OFF).

/BBR NOBBR OFF Permits bad block replacement. Normally, bad block
replacement is inhibited when a block is accessed. BBR
occurs if the block being accessed is detected as bad by the
error recovery code and is an LBN in the host area.

/ORIGINAL NOORIGINAL Saves the first data seen for display. When a block is
accessed for dumping, the data is seen twice by the program
when an error occurs. It is seen first just after the program
detects the error and sends it to error recovery. It is seen
again after error recovery takes place and the data has
been corrected or reread. Normally, the data is saved for
displaying when it is last seen.

9.5.4 EXIT Command
The EXIT command is outlined as follows:

• Purpose: To terminate execution of the program.

• Syntax: EXIT.

• Parameters: None.

• Modifiers: None.

9–10

DKUTIL

• Usage: The current drive is released, all resources are returned, and
the program exits. Examples are:

EXIT
E

9.5.5 GET Command
The GET command is outlined as follows:

• Purpose: To obtain a drive or change the current drive.

• Syntax: GET {drive}.

• Parameters: Drive is a valid drive unit specification of the form Dnnn.

• Modifiers:

— /NOIMF — Allows the reading of FCT block 0 to determine the
mode and the reading and writing of RCT block 0 to verify the
RCT is sane. If this modifier is specified, the IMF MSCP modifier
is not used in the on-line mode and these actions take place. By
default, a new drive is brought on line with the IMF (MD.IMF)
MSCP modifier.

— /WP — Brings the drive on line with the MSCP SET WRITE
PROTECT modifier (MD.SWP) and WRITE PROTECT unit flag
(UF.WPS). The drive is then software or volume write-protected.

— /NOWP — Brings the drive on line with the MSCP SET WRITE
PROTECT modifier. The drive is not software or volume write-
protected.

— NOONLINE — The drive is acquired but not brought on line with
the MSCP ONLINE command. Only the display characteristics
and display errors commands can be executed on a drive in this
state.

• Usage: The current drive is released. The new drive is acquired and
then brought on line with the requested modifiers and unit flags. If
the drive is nonexistent, in use, or inoperative, the user is put back in
command mode. The modifiers cannot be changed for this other unit.
Examples are:

GET D133
G/WP D64

9.5.6 POP Command
The POP command is outlined as follows:

• Purpose: To restore the data in the current buffer from the save buffer.

• Syntax: POP.

• Parameters: None.

• Modifiers: None.

9–11

DKUTIL

• Usage: The data in the save buffer is restored to the current buffer.
The data in the current buffer is lost. Examples are:

POP
P

9.5.7 PUSH Command
The PUSH command is outlined as follows:

• Purpose: To save the data in the current buffer in the save buffer.

• Syntax: PUSH.

• Parameters: None.

• Modifiers: None.

• Usage: The data previously in the current buffer is saved in the save
buffer. The data in the save buffer is lost. Examples are:

PUSH
PU

9.5.8 REVECTOR Command
The REVECTOR command is outlined as follows:

• Purpose: To force bad block replacement for one or more given LBNs.

• Syntax: REVECTOR {block}.

• Parameters: Block is a number specifying the LBN to be replaced.
The default radix is decimal. It can be changed to hex by prefixing the
number with the letter X.

• Modifiers: None.

• Usage: The specified LBNs are sent to the bad block replacement
module to be revectored. If the LBNs are not valid or not in the
RCT, the revector fails and an error message prints. Otherwise, the
result of the replace attempt is printed in a message. The data in the
replacement RBN is read from the specified LBN. Examples are:

REVECTOR 1000
R 100

9.6 Error Messages
DKUTIL error messages conform to the KDM70 controller utility error
message format.

9–12

DKUTIL

9.6.1 Error Message Variables
Certain portions of the error messages are variable and have the following
meanings:

n = A decimal number
par = BLOCK, COPY, DBN, LBN, PBN, RBN, REVECTOR OR XBN
parm = The part of the command in error
status = MSCP status
text = The actual text in error
xBN = DBN, LBN, and so on
xCT = FCT or RCT

9.6.2 Information and Error Messages
The following is a list of the DKUTIL information and error messages:

• *** Drive went offline. — The selected unit went off line when
DKUTIL attempted I/O to the selected drive.

• *** Nonexistent unit number. — The unit number entered does not
correspond to any known unit. DKUTIL goes into command mode and
you must issue a GET or EXIT command at the DKUTIL> prompt.

• *** Drive could not be acquired. — The unit requested is
unavailable. The unit may be in use by a host or another diagnostic
or it may be inoperative. DKUTIL goes into command mode and you
must issue a GET or EXIT command at the DKUTIL> prompt.

• *** Drive could not be brought on line, MSCP status: status. —
The requested unit is available, but the ONLINE command failed. The
unit is released, and DKUTIL then goes into command mode. Issue a
GET or EXIT command at the DKUTIL> prompt.

• *** Invalid input value specification. — An invalid number is
entered in a command line.

• *** Input value is an invalid drive specification. — The command
line contains an invalid drive specification.

• *** Missing parameter. — A command line is entered with a
required parameter missing.

• *** No buffer to dump. — The DUMP BUFFER command is
entered, and there is no current buffer. This can only happen if a
drive has just been selected.

• *** Missing modifier. — A command line is entered with a slash (/)
followed by a blank or is entered at the end of the line. A modifier is
expected, but is missing.

• *** n is an invalid par number; range is M-M. — An out-
of-range number is entered for a value for the DUMP, DISPLAY
CHARACTERISTICS, or REVECTOR command.

• *** xxx is an invalid param. — An invalid command, command
option, modifier, block type, or SET option is specified in a command
line.

9–13

DKUTIL

• *** Copy n of xCT Block n (xBN n) is bad. — FCT or RCT blocks
cannot be read correctly with error recovery when the FCT or RCT is
being read just after a drive has been selected. It also occurs when the
DISPLAY FCT or DISPLAY RCT command is being used.

• *** All copies of xCT Block n are bad. — All copies of FCT or RCT
blocks are bad. It occurs when the FCT or RCT is being read just after
a drive has been selected or when the DISPLAY FCT or DISPLAY RCT
command is being used.

• *** Unable to read error log. — The DISPLAY ERRORS command
is unable to execute the read memory command.

• *** Error log not implemented in drive. — The DISPLAY
ERRORS command is executed on an RA60 drive.

• *** No drive is acquired. — The requested command requires that
a drive be acquired before the command can be executed. A drive can
be acquired and not brought on line by using the /NOONLINE modifier
with the GET command.

• *** No drive is online. — The requested command requires that
a drive be acquired and brought on line before the command can be
executed.

• *** DKUTIL: Aborted by user! — DKUTIL is aborted by typing
CTRL/Y or CTRL/C.

• *** Tape drives are not allowed. — A tape drive was specified for
the GET command. DKUTIL then goes into command mode and you
must issue a GET or EXIT command at the DKUTIL> prompt.

• *** Extraneous parameters. — Extra parameters are added to
a command. The command should be reentered without the extra
parameters.

• *** Missing parm. — A required command, command option, or
SET option is left out in a command line. The command should be
reentered with the correct syntax.

• *** Bad entry in Copy n of xCT Block n (xBN n) at Offset nnn:
xxxxxxxx. — During a display of the items in the FCT or RCT (due
to a DISPLAY FCT or DISPLAY RCT command), an invalid entry is
found.

• *** BBR is disabled. — A REVECTOR command is issued to a drive
for which BBR is disabled because of a previous BBR failure or the
drive is write-protected.

• *** BBR attempted for LBN n, MSCP Status: status. — A BBR is
attempted. BBR is attempted in response to a REVECTOR command
or when GET/NOIMF is issued for a drive which has a pending BBR.

9–14

10 EVRAE

10.1 EVRAE Overview
EVRAE is a generic level 2R on-line disk exerciser that runs under
the VAX diagnostic supervisor (VAX/DS). EVRAE can exercise up to 16
disk drives. Although EVRAE is primarily a disk exerciser, it also tests
controller functionality.

EVRAE is intended to test the functional level of DSA disk drives and only
provides PASS/FAIL information. The error messages are informational in
nature. If EVRAE fails, run other on-line exercisers for more specific fault
isolation.

EVRAE can be used for the following:

• To verify ECO installations, new installations, and repairs

• To implement preventive maintenance

10.2 Using EVRAE
Note: EVRAE requires that all drives under test be mounted for

exclusive access. Use the following VMS command before running
EVRAE.

$ MOUNT/FOREIGN DUA5 ; Mount the device to test

Use the following procedure to invoke EVRAE:

1 Invoke the VAX diagnostic supervisor (VAX/DS). Refer to the
appropriate VAX/DS user documentation for more information.

2 Use the ATTACH command at the VAX/DS prompt to attach the
KDM70 controller:

DS> ATTACH
Device type? KDM70
Device link? HUB
Device name? DUA
XMI node # (1,2,3,4,B,C,D,E) ? 2
Bus Request Level (4 - 7) ? 5

This sequence attaches the KDM70 controller to the HUB. The HUB
is the XMI main I/O bus for the KDM70. The prompts also ask for
the KDM70 controller designation, the XMI node number, and the bus
request level.

3 Use the same ATTACH command format to attach disk drives for
testing as in the following example:

10–1

EVRAE

DS> ATTACH
Device type? RA90
Device link? DUA
Device name? DUA3

This example attaches the RA90 fixed disk to the KDM70 controller.
The controller designation and unit number are also specified.

4 Select the device for testing. Issue the SELECT command at the
VAX/DS prompt, as in the following example:

DS> SELECT DUA3

5 Invoke EVRAE, which can be run in the autostart mode or in the
manual mode.

To start EVRAE in the autostart mode, type the following command:

DS> RUN EVRAE

EVRAE displays the following prompts:

FOR UNIT _DUAn, VOLUME "name" ALLOW WRITES TO CUSTOMER DATA AREA
ON THIS PLATTER [(No), Yes])

6 Enter NO to prevent EVRAE from performing writes to the LBN
area of the selected disk drive. If a volume is labeled SCRATCH,
writes/reads are performed only on the DBN area of the disk.

Enter YES to begin testing on the selected devices. The following
warning and confirmation message appears:

** WARNING - CUSTOMER DATA WILL BE OVERWRITTEN! ... CONFIRM [(No), Yes]

If you issue the /SECTION:MANUAL qualifier, various runtime
parameter options are displayed, which are explained in the next
section.

Note that after EVRAE is started, it can be interrupted with a CTRL/C
to examine the summary report. Typing CONTINUE after EVRAE has
been interrupted restarts EVRAE.

10.3 EVRAE Options
The following section documents EVRAE runtime options. Included in this
section are parameter descriptions and parameter prompts.

Set the QUICK (verify) flag to reduce runtime from 10 minutes to 1 minute.
Use either of the following commands:

DS> SET FLAGS QUICK

DS> SET QUICK

Number of minutes per pass (0 for no limit) [(10), 0-65535(D)]
: Allows you to select the time interval between passes in minutes.
Selecting zero puts EVRAE in an infinite pass loop.

Hard error limit for dropping a unit (0 for no limit) [(32), 0-
65535(D)]: Allows you to select the upper error threshold limit for each
unit under test.

10–2

EVRAE

Specify non-default starting and ending LBNs [(No), Yes]: Answer
NO to enables testing over the entire LBN area of the disk. Answer YES
to limit testing to within selected starting and ending LBNs. The next two
prompts selects the starting and ending LBNs.

_Dxan starting LBN [(0), 0-max(D)]: Allows you to select starting LBN
for each unit selected for testing.

_Dxan ending LBN [(max), n-max(D)]: Allows you to select the ending
LBN for each unit selected for testing.

Random seek mode [(Yes), No]: Enables random block I/O within the
selected LBN range. Answer NO to enable starting block numbers to be
sequentially selected.

Enable read data checks if not already enabled [(Yes), No]: Answer
NO to disable read data compares. Answer YES to enable read data
compares.

The remaining questions only refer to write-enabled disks.

Write only [(No), Yes]: Answer NO to enable read/write operations.
Answer YES to enable writes only.

Enable write data checks if not already enabled [(Yes), No]: Answer
YES to enable host data compares after each write operation. Answer NO
to disable host data compares.

User-defined data pattern [(No), Yes]: Answer YES to define a data
pattern. Answer NO to select between 21 data available data patterns.

Select predefined data pattern (0 for sequential selection) [(0),
0-21(D)]: Select zero to causes data patterns 1–21 to be sequentially used
for each write operation. Pattern number one (1) is a random pattern.
(Refer to <REFERENCE>(evraepat) for data patterns.)

Number of words in data pattern [(16), 1-16(D)]: Select the number of
words for the user-defined data pattern.

Pattern value [00000000-0000FFFF(X)]: Select the pattern value for the
user-defined data pattern.

10.4 EVRAE Error Information
EVRAE provides three levels of informational error messages:

1 System-fatal error

2 Device-fatal error

3 Hard error

Level 3 error messages include the list of possible messages associated with a particular error.

Units are dropped from testing if one of the following conditions occur:

1 A unit exceeds its error threshold limit.

2 A device-fatal error is detected during testing.

10–3

EVRAE

Interrupting EVRAE with a CTRL/C and then restarting with a RUN
command or a START command clears the inactive status bit of all
dropped units. Testing is restarted with the devices hard or fatal error
count set to zero.

A system fatal error causes EVRAE to abort. This error indicates not
enough system resources were allocated to EVRAE for testing.

Error Number 1 Level 1: Failed to get memory space for I/O buffers

10–4

EVRAE

10–5

11 EVRLJ Subsystem Exerciser

11.1 EVRLJ Overview
The EVRLJ subsystem exerciser is a level 3 diagnostic that runs under
the control of the VAX diagnostic supervisor (VAX/DS). This diagnostic
exercises UDA50–A, KDB50, or KDM70 disk subsystems to verify that the
subsystems are properly functioning.

Note: This diagnostic can only access the customer data area on the
drives under test. Any operations requiring a write to the drive
should only be used if the customer data has been adequately
backed up or, on drives with removable media, a scratch pack is
put in the drive.

Note: EVRLJ version 2.2 is required for KDM70 controller support.

The EVRLJ subsystem exerciser uses the MSCP interface to the selected
disk controller to perform extensive input/output operations on selected
standard disk interface-compatible disk drives and selected controllers.
The following is a listing of tests within EVRLJ:

1 Controller Verification test

2 Subsystem Functional test

3 Deterministic subsystem exerciser

4 Modifiable subsystem exerciser

5 Memory Access Verification test

11.1.1 Controller Verification Test
The verification test can test two controllers at a time to make sure they
properly initialize and pass module internal self-tests (MISTs). Controller
memory and data path memory are verified through read/write operations.
This test consists of the following subtests:

1 Bus Address subtest

2 Diagnostic Wrap Mode subtest

3 Controller Interrupt subtest

4 Controller RAM Verification subtest

11–1

EVRLJ Subsystem Exerciser

11.1.2 Subsystem Functional Test
The Subsystem Functional test is a multidrive test. Controllers and drives
are initialized and set on line and available. EVRLJ performs reads, seeks,
and data compare operations on the selected devices.

11.1.3 Subsystem Exerciser (Deterministic)
The Subsystem Exerciser test is a multidrive exerciser. This test
sequentially writes a test data pattern to all blocks in the customer
data area (LBN space) of the disk. The first 512 blocks of data are read
and compared while remaining blocks are read.

11.1.4 Modifiable Subsystem Exerciser
The Modifiable Subsystem Exerciser test is a multidrive exerciser. You can
modify this exerciser by selecting the test parameters. This test performs
extensive simultaneous I/O operations to selected devices.

11.1.5 Memory Access Verification Test
The Memory Access Verification test exercises multiple controllers. This
test makes sure the controller can perform data transfers to and from host
memory locations.

11.2 Invoking EVRLJ
Refer to the VAX Diagnostic Supervisor User Guide (EK–VXDSU–UG–00n)
for instructions on how to load and start the VAX diagnostic supervisor.

11.3 EVRLJ Parameters
EVRLJ allows you to modify runtime parameters, which are described in
this section.

DO YOU WISH TO CHANGE THE GLOBAL TEST PARAMETERS [(No), Yes]

Enter YES to modify global parameters through a series of diagnostic
queries. Enter NO to use the default parameters and to begin testing.
Defaults parameters are in parenthesis. No further intervention is
required of the operator.

DRIVE HARD ERROR LIMIT [(1), 0-65535 (D)]

The value selected becomes the upper hard-error threshold. If a device
exceeds this limit, it is dropped from further testing. Enter zero to set
the the hard error threshold to allow unlimited errors. This prevents the
device from being dropped, regardless of the error count.

EXERCISER TIME LIMIT IN MINUTES [(60), 0-65535 (D)]

11–2

EVRLJ Subsystem Exerciser

You can select how long to run EVRLJ. Enter zero to run the test until
either the error threshold has been exceeded or the program is aborted.

MINUTES BETWEEN STATISTICAL REPORTS [(15), 0-65535 (D)]

You can choose the elapsed time between reports. Enter zero to disable
reports.

PRINT SOFT ERROR MESSAGES [(Yes), No]

Enter YES to print soft errors. Enter NO to print hard errors, preparation
errors, system fatal errors, and device fatal errors.

DO DATA PATTERN VERIFICATION ON READS [(No), Yes]

Select YES only if all disk drives have been initially written with the
deterministic subsystem exerciser. The deterministic subsystem exerciser
and operator subsystem exerciser can be run by using the following
VAX/DS command:

DS>Run EVRLJ/section:exercise

Enter YES to perform data compares on read operations, using a standard
data pattern. Data compare operations are random. Enter NO to disable
data pattern verifications.

USE VARIABLE LENGTH TRANSFERS [(Yes), No]

Enter YES to enable variable-length data transfers. Enter NO to enable
fixed-length data transfers.

MAXIMUM TRANSFER SIZE IN BLOCKS [(16), 1-256 (D)]

Enter the maximum number of sectors to be read/written during one I/O
operation. Select the default to vary the sector size randomly between the
minimum and maximum.

ENABLE ERROR RETRIES [(Yes), No]

Enter YES to enable retries. Enter NO to disables error retries. The error
is then logged as a hard error.

ENABLE ECC DATA CORRECTION [(Yes), No]

Enter YES to enable ECC error correction. Enter NO to enable ECC errors
to be treated as hard errors and top disable retries.

RANDOMLY ACCESS DRIVE [(Yes), No]

Enter NO to enable sequential data transfers starting from the lowest
LBN and continuing to the highest LBN. Enter YES to enable random
access data transfers.

DATA PATTERN - 0 FOR RANDOM SELECTION [(0), 0-16 (D)]

This applies to write-enabled drives only. You can select 15 data patterns
with an optional 16th operator-defined pattern capability. Enter the
default (zero) to randomly use any one of the 15 data patterns. (Refer to
<REFERENCE>(ept) for available data patterns.)

MODIFY DATA PATTERN 16 [(No), Yes]

11–3

EVRLJ Subsystem Exerciser

This question is displayed only if zero or sixteen patterns are chosen from
the previous query. Enter YES to modify the pattern or NO to default to a
standard data pattern.

NUMBER OF WORDS IN DATA PATTERN 16 [(1), 1-16 (D)]

This question is asked only if the MODIFY DATA PATTERN 16 function
is selected. Enter the number of words to be used in the pattern. The
maximum number of words per data pattern is 16.

DATA WORD [(00000000), 00000000-0000FFFF (X)]

This question is asked if data pattern 16 is selected for modification. The
question is repeated until all words in the pattern have been defined.

11.3.1 Device-Specific Test Parameters
The following questions are device-specific parameter questions. These are
disk-dependent parameters.

DO YOU WISH TO CHANGE THE DEVICE SPECIFIC TEST PARAMETERS [(No), Yes]

Enter NO to enable device default parameters. The system disables
all other prompts. Enter YES to generates a series of device-specific
parameter questions.

THESE QUESTIONS REFER TO CONTROLLER AT NODE ID XX (H), DRIVE DUxn

This is device identifier message ensuring the proper unit has been
selected for parameter modification.

DO YOU WISH TO WRITE TO THE CUSTOMER DATA AREA [(No), Yes]

Answer YES to write-enable customer data areas of the selected disk
drive.

Caution: Customer data will be destroyed. Ensure proper back-up methods
have been employed before continuing.

Enter NO to write-protect the selected drive and disable write operations.

ARE YOU SURE CUSTOMER DATA CAN BE DESTROYED [(No), Yes]

This question protects customer data areas from accidental corruption.

TEST OVER THE ENTIRE DISK [(Yes), No]

Enter YES to test the entire customer data area. Enter NO to enable the
selection of the LBN range. A series of questions follow, allowing you to
specify the range.

NUMBER OF BEGIN/END SETS TO USE [(1), 1-4 (D)]

Select a number to begin one of the four BEGIN/END sets.

STARTING LBN [(0), 0-4294967295 (D)]

END LBN [(0), 0-4294967295 (D)]

Select starting and ending LBN ranges for each BEGIN/END set selected.
The valid range starts at zero and ends at the selected drive’s upward
LBN boundary. The ending LBN must be greater than or equal to the
starting LBN.

11–4

EVRLJ Subsystem Exerciser

Event flag 23 can be set to cause this program to default to write testing
on all selected disk drives. If an operator is present (the operator flag is
set) and event flag 23 is set, the following message will be printed before
asking the drive specific questions:

WARNING!!!
Event flag 23 is set so all writable disk drives will be written!
Are you sure customer data can be destroyed [(No), Yes]

Enter YES to write-enable all selected disk drives. Enter NO to clear this
event flag and to disable writes to selected drives.

The following is a runtime example of EVRLJ after booting VAX/DS in the
standalone mode:

Example 11–1 EVRLJ Runtime Example

DS> ATTACH KDM70 HUB DUx 2 5
DS> ATTACH RA60 DUx DUx6
DS> ATTACH RA90 DUx DUx4
DS> SELECT DUx6
DS> SELECT DUx4
DS> SET TRACE
DS> RUN EVRLJ

..Program: EVRLJ - Level 3 Subsystem Exerciser, rev 1.0, 5 tests,
at 10:06:17.65. Testing: _DUx _DUx16

Testing: _DUx6, _DUx4

Diagnostic started at: 21-JUN-1989 12:59:20.30

Unknown interrupt (error 500) errors can occur, if running this
diagnostic on an 8200/8300 CPU module (T1001) below revision E.
This can also occur on an 8250/8350 CPU module (T1001-YA) below
revision B. If you are below these revisions, install one of the
following FCOs.

CPU Module FCO Updated/Revision
8200 T1001 82XBX-I002 E
8250 T1001-YA 82XBX-I002 B
8300 T1001 82XBX-I002 E
8350 T1001-YA 82XBX-I002 B

Do you wish to change the global test parameters [(No), Yes] yes
Drive hard error limit [(1), 1-65535(D)]
Minutes between summary reports - 0 for no reports [(15), 0-65535 (D)]
Exerciser time limit in minutes - 0 for no limit [(60), 0-65535 (D)]
Print soft errors [(Yes), No]
Do data pattern verification on reads [(No), Yes]
Use variable length transfers [(Yes), No]
Maximum transfer size in blocks [(16), 1-256 (D)]
Enable error retries [(Yes), No]
Enable ECC data correction [(Yes), No]
Randomly access drives [(Yes), No]
Data pattern - 0 for random selection [(0), 0-16 (D)]
Modify Data Pattern 16 [(No), Yes]

Do you wish to change the device specific test parameters [(No), Yes] yes

The questions refer to controller at node id 02 (H), drive
Do you wish to write to the customer data area [(No), Yes] yes
Are you sure the customer data area can be destroyed [(No), Yes] yes
Test over the entire disk [(Yes), no]

Example 11–1 Cont’d on next page

11–5

EVRLJ Subsystem Exerciser

Example 11–1 (Cont.) EVRLJ Runtime Example

Test 1: Controller Functional Test
Subtest 1: Bus Address Subtest
Subtest 2: Diagnostic wrap mode subtest

Subtest 3: Controller Interrupt Subtest
Subtest 4: Controller RAM Verification Subtest

Test 2: Subsystem Functional Test
Test #2 in progress Time now is: 21-JUN-1989 12:59:20.30
Diagnostics runtime: 0 00:02:13.82

Subsystem I/O Summary:

Device Unique Bytes Bytes Bytes Bytes ECC
Name Identifier Written Read Accessed Compared Data

_DUx 2 ** 00018476468782 16384 512 65536 0 0
_DUx6 2 4 00092874467348 16384 512 65536 0 0
_DUx4 2 19 00013439879874 16384 512 65536 0 0

Device Error Summary:

Device Device Volume Hard/Fatal Soft
Name Type Serial Number Errors Errors

_DUx KDM70 0 0
_DUx6 RA60 000000198373932 0 0
_DUx4 RA90 000000907844987 0 0

Test #4 in progress Time now is: 21-JUN-1989 12:59:20.30
Diagnostics runtime: 0 00:003:31.73

Subsystem I/O Summary:

Device Unique Bytes Bytes Bytes Bytes ECC
Name Identifier Written Read Accessed Compared Data

_DUx 2 ** 00018476468782 1M 800256 369152 0 0
_DUx6 2 4 00092874467348 1M 800256 369152 0 0
_DUx4 2 19 00013439879874 1M 1M 224789 0 0

Device Error Summary:

Device Device Volume Hard/Fatal Soft
Name Type Serial Number Errors Errors

_DUx KDM70 0 0
_DUx6 RA60 000000198373932 0 0
_DUx4 RA90 000000907844987 0 0

11–6

EVRLJ Subsystem Exerciser

The following is an EVRLJ sample error report:

Example 11–2 EVRLJ Error Report

*** EVRLJ - Level 3 VAX UDA50-A/KDB50/KDM70 Subsystem Exerciser - 1.1 ***
Pass 1, test 3, subtest 0, error 422, 16-JUL-1986 10:23:56.09
Soft error while testing DUx2:

SDI Error error log message received

For controller at address 772150 (O), drive type RA81
Operation status: [status code 00EB (H)]

Disk drive error - drive detected error
Operation continuing.
Controller model type: 6, device class: 1.
Controller hardware version: 0, software version: 5.
Drive model type: 5, device class: 2.
Drive hardware version: 6, software version: 7.
The drive volume serial number is 1.
The disk block where the failure occurred is 0.
Drive status (right to left (H)): 19 4D 0D 04 66 00 0A 00 00 80 04 1B
Message buffer contents (right to left (H)) Byte offset (D)

00EB4103 00000002 00000013 00100038 :0
00000CBB 00010005 01064141 414141C5 :16
00000000 00000001 00000607 02050000 :32
00000000 194D0D04 66000A00 0080041B :48

*** End of soft error number 422 ***

All error message reports follow the same format.

11–7

EVRLJ Subsystem Exerciser

11–8

12 EVRLM Functional Code Update Utility

12.1 EVRLM Overview
EVRLM is an operating system-independent, code update utility for VAX-
based processors. It is used to update KDM70 functional code in the field
and manufacturing environment.

Note: All functions noted in this chapter can now be done On-Line
and this is the "preferred method". These On-Line functions are done
via a host operating system (VMS or ULTRIX) dup connection. Most
functions are done via "PATCH.KDM", On-Line code loads are done via
dup-supplied-programs. Forced Code Update procedure must still be done
via VDS. Refer to section 12.7 for this procedure.

EVRLM is also a menu-driven utility that uses a DISPLAY function for
viewing device internal error logs, bad page lists, software revision levels,
and other device-relevant information.

The following sections provide a basic description of EVRLM and detail its
use when updating code and when using DISPLAY functions.

12.2 Invoking EVRLM
EVRLM is run from the diagnostic supervisor in standalone mode. The
procedure is slightly different than the customer update function. To run
EVRLM, use the following procedure. In this example, the load media is
the TK50:

12–1

EVRLM Functional Code Update Utility

>>> B CSA1/R5:10

DS> ATTACH
Device type? KDM70
Device link? HUB
Device name? DUx
XMI node # (1,2,3,4,B,C,D,E) ? 2
Bus request Level (4 - 7) ? 5
DS> SELECT DUx
DS> RUN EVRLM

..Program: EVRLM -- LEVEL 3 KDM70 EEPROM UPDATE UTILITY,
revision 1.0, 1 test,

at 12:00:00
Testing: _DUx

KDM70 Code Update Utility Menu
Functions That May be Performed:

1) Perform Code Update
2) Display Bad Page List
3) Display EEPROM Suspect Page List
4) Display SRAM Suspect Page List
5) Display MIST Internal Error Log
6) Display Real Time Error Log
7) Display up-Time Count
8) Display Software Revision Number
9) Display Unique Identifier
10) Display This Menu
11) Exit This Program

Enter your choice by number: [(10), 1-11(D)]

The boot command boots to the diagnostic supervisor prompt (DS>). By
running EVRLM from the diagnostic supervisor, the menu and selection
functions are enabled. The following sections document the display
functions.

12.3 Using the EVRLM Help Facility
Use the following command, at the diagnostic supervisor prompt to invoke
the EVRLM HELP facility:

DS> HELP EVRLM

The help command invokes EVRLM to display informational text
describing EVRLM in general terms. Help is available on the following
topics:

• Device: Information on supported devices

• Data_structures: Data structures supported by this help facility

• Code_update: The function of the code update procedure

• Attach: How to use the ATTACH command

• Sections: Menu options

• Default: Defaults associated with EVRLM

• Quick: Quick flag

• Event: No event flags are supported

• Summary: A summary of hard/soft errors

12–2

EVRLM Functional Code Update Utility

Information on data structures can be obtained by typing the following
command:

DS> HELP EVRLM DATA_STRUCTURES name_of_data_structure

Where name_of_data_structure refers to the name of the data structure
to be displayed. Information can be obtained on the following data
structures:

• Bad page list

• EEPROM suspect page list

• SRAM suspect page list

• MIST internal error log

• Real-time error log

• Software revision number

• Unique identifier

Information is presented in the form of the DISPLAY function for the
selected data structure. This includes a description of the fields of the
displayed data structure.

12.4 KDM70 SOFTWARE REVISION NUMBERING SCHEME
It is reported as a hex byte. The hex byte is converted to decimal, with the
LSD reflecting the MINOR revision and the MSD’s showing the MAJOR
revision.

Note: If the software rev byte is 80(Hex) or greater, then the KDM70
software is proto-type software and is not supported by Customer
Services.

For example, after loading V2.4 KDM70 software image, version 2.4 would
report as software version of 24(18 hex) in XMI XDEV register and in host
error logs. The 24 should be read as 2.4.

The software version reported via SSP (during initialization) will only
reflect the MAJOR revision number (ie, if the KDM70 software were at
revision 2.4, SSP will report it as a Ucode revision of 2)

New major releases increment the high order digit(s) and resets the the
low order digit (ie, 2.x -> 3.0). New minor releases increment the low order
digit by 2 (2.0 -> 2.2 -> 2.4 -> 2.6 -> 2.8). If any patches get applied (via
PATCH.KDM), the full version number will be ORed with 1. Thus, all
unpatched versions will be even and all patched versions will be odd.

Note: Prior to V3.0, if a patch were applied, the updated version number
was only reflected in the host error logs. Use of the PATCH Display
List was required to show if any patch had been applied.

The KDM70 Software Revisions show up in the following places:

12–3

EVRLM Functional Code Update Utility

XMI XDEV register (bits 31-24)

Read the register via host CPU command, O/S read. etc. The Most
significant byte will be the KDM70 software revision (displayed
in hex).

TMSCP datagrams (errlogs)

Reported via a (T)MSCP error log message in the "csvrsn" field
This is normally displayed in hex, with the error log format
text output converting the hex number to decimal.

SSP driver initialization (Known by many names; uqssp, pudriver,
puport)

At step 4, the SA register (bits 3-0) contains the MOD 16 value
of the KDM70 software version.

DUP connection via PATCH.KDM

Using the PATCH command, Display version, the KDM70 software
number is displayed as a three digit decimal number. Starting
with KDM70 software V3.0, use of the PATCH display image command
will display detailed information about the software build
location and time.

12.5 Using the DISPLAY Option
To use the DISPLAY option, enter the menu option after the following
prompt:

Enter your choice by number: [(10), 1-11(D)]

EVRLM further prompts for module selection through the following
prompt:

ARE YOU REFERRING TO BOARD 1 OR 2: [(1), 1-2(D)]

Select either board 1 (T2022) or board 2 (T2023). EVRLM displays the
requested information.

The following sections describe the individual DISPLAY options.

12.5.1 Display Bad Page List

12–4

EVRLM Functional Code Update Utility

The bad page list is displayed in the following manner:

Displaying Bad Page List

Byte Byte Address & Expected Returned Time
Code Page Frame Number Data Data Stamp

3 00100000 05234871 05234870 00000010
3 1FFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
3 1FFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
3 1FFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
3 1FFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
3 1FFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
3 1FFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

Information is presented in the same format for board 1 or 2.

31 30 29 9 8 0
--
Byte Code	Page Frame Number	Byte Address
--

Byte code is a code which designates the parity bit that is in error. This
code is valid only if the actual contents field is equal to the expected
contents field. Listed below are the valid byte codes:

00 - Byte 0 parity bit
01 - Byte 1 parity bit
10 - Byte 2 parity bit
11 - Byte 3 parity bit

12.5.2 Display EEPROM Suspect Page List
The EEPROM suspect page list is displayed in the following manner:

Suspect Expected Actual Number of Time
Address Data Data Bytes in Error Stamp

FFFFFFFF 23 FF FF FFFFFFFF
FFFFFFFF FF FF FF FFFFFFFF
FFFFFFFF FF FF FF FFFFFFFF

Information is presented in the same format for board 1 or 2.

12.5.3 Display SRAM Suspect Page List
The SRAM suspect page list is displayed in the following manner:

Displaying SRAM Suspect Page List

Suspect Error Time
Address Count Stamp

FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFF FFFFFFFF

Information is presented in the same format for board 1 or 2.

12–5

EVRLM Functional Code Update Utility

12.5.4 Display MIST Internal Error Log
The MIST internal error log is displayed in the following manner:

Displaying Internal Error Log

Test # 00 00 00
Error ID 00EC 0000 0000
Test Addr 8020AF5D 00000000 00000000
ESL 1 00008204 00000000 00000000
ESL 1 00000000 00000000 00000000
ESL 2 00000000 00000000 00000000
ESL 3 00000000 00000000 00000000
ESL 4 00000000 00000000 00000000
ESL 5 00000000 00000000 00000000
ESL 6 00000000 00000000 00000000
ESL 7 00000000 00000000 00000000
Time Stamp 00000008 00000008 00000008

Information is presented in the same format for board 1 or 2.

The following table may be used to provide further detail on a specific
failure. Only the error identifier is described. The additional information
provided in the MIST internal error log is intended primarily for use by
manufacturing to assist in the module repair process. In the previous
example, the error ID of EC is described as a ‘‘Code Transfer Failure’’.
(See Table 12–1.) This failure was caused by excessive EEPROM errors
detected when trying to copy the KDM70 code image from EEPROM to
SRAM.

Table 12–1 Internal Error Log — Error Identifiers

Error
Identifier Description

F000 Failure during testing of Bd1 SRAM

F001 Failure during testing of Data Buf

F002 Failure of only 1 CVAX cache set

F003 EEPROM code byte(s) ECC corrected

0004 Unexpected CVAX restart occurred

0008 Unexpected interrupt/exception

000C Unexpected NXM or bus timeout (ERR)

0010 Unexpected MEMERR interrupt

0014 Access fail of Bd1 Read Reg - (Fs)

0016 Error bit causing Read Reg to lock up

0018 Stuck-at-0 fault in Bd1 Read Reg

001C Stuck-at-1 fault in Bd1 Read Reg

0020 Stuck-at-0 fault in Bd1 Write Reg

0024 Stuck-at-1 fault in Bd1 Write Reg

0028 Attempted bus timeout failed (VIC)

002C Attempted NXM timeout failed (all)

0030 Failure of B1 RD Reg to clock after

12–6

EVRLM Functional Code Update Utility

Table 12–1 (Cont.) Internal Error Log — Error Identifiers

Error
Identifier Description

0034 Failure of single NXM address bit

0038 Failure to generate CVAX PERR L

003C Failure to generate MEMERR interrupt

003E Failure of a PERR X L line

0040 Failure with a byte mask bit going

0044 Contents of SSC TO Control invalid

0048 Invalid data read from Err Addr Reg

0054 Unexpected mach chk in bus err test

0058 Read of Read Reg failed to clear

0059 Failure of RDY PAL or Processor

005A Failure of RDY PAL or XIC/Processor

005B Failure of RDY PAL or Board 2

005C Failure in attempt to read or write

0060 Failure during VIC registers test

0064 VIC failure to initialize properly

0068 VIC IRQ line is stuck-at-0

006C Failure of VIC to recognize request

0070 VIC IRQ line is stuck-at-1

0072 CVAX IPL failure

0074 Failure during programmable timers

0078 Failure of programmable timer

007C Failure of interval timer interrupt

0080 Failure of interval timer to occur

0084 Failure of byte mask to SRAM Bank 2

0088 Failure of byte mask to Scratchpad

008C Failure of byte mask to Data Buffer

0090 CVAX Failure to execute Bd1 word

0094 CVAX Failure to execute Bd1 word

0098 CVAX Failure to execute Bd1 quadword

009C CVAX Failure to execute Bd1 quadword

00A0 CVAX Failure to execute Bd2 word

00A4 CVAX Failure to execute Bd2 word

00A8 CVAX Failure to execute Bd2 quadword

00AC CVAX Failure to execute Bd2 quadword

00B4 Failure detected on virtual write

00B8 Translation Buffer failure

00BC Failure detected on virtual read

12–7

EVRLM Functional Code Update Utility

Table 12–1 (Cont.) Internal Error Log — Error Identifiers

Error
Identifier Description

00C0 Failure on forced TNV exception

00C4 Failure on forced ACV exception

00C8 Failure on forced ACV exception

00CC Failure during soft interrupts test

00D0 Failure in attempt to init the KSP

00D2 Failure of Bd2 EEPROM Checkerboard

00D4 Failure of a Bd2 EEPROM read

00D8 Bad data after Bd2 EEPROM read

00DC Overflow of Bd1 Bad Page List

00E0 Overflow of Bd2 Bad Page List

00E4 Voting test of B1 BPL failed

00E8 Voting test of B2 BPL failed

00EC Code Transfer Failed

00F0 Failure of INVR ADDR H signal

0104 HIB address error

0108 HIB address MUX error

010C HIB byte mask error

0110 CVAXII address MUX error

0114 HIB register chip select error

0118 HIB bus register init error

011C HIB Write signal error

0120 No DPC parity error interrupt

0122 No CVAX parity error

0124 Unexpected CVAX parity error

0126 No DPC parity error

0128 Unexpected DPC parity error

012C Bad HIB address parity

0130 Bad HIB control parity

0140 Bd2 Diagnostic Write Register error

0144 HIB Bus error on write operation

0148 HIB Bus error on read operation

014C Bd2 data value error on read

0150 No HIB Address parity error

0154 No HIB Control parity error

0158 No HIB Data parity error

015C Bd2 Bus Error Register error

0160 Bd2 Diagnostic Read Reg Parity error

12–8

EVRLM Functional Code Update Utility

Table 12–1 (Cont.) Internal Error Log — Error Identifiers

Error
Identifier Description

0164 Bd2 Diagnostic Write Reg Parity error

0200 CVAX port transaction failure

0204 CVAX port transaction not complete error

0208 CVAX port transaction did not fail on forced error

020A CXHIC Byte Mask failure

0210 Proper bit not set in Port Activity Register

0214 CXHIC register initialization failure

0215 DPC Idle failure

0216 No DPC Idle after pre-empt

0217 VIC did not see xmism intrrpt

0218 Unexpected workblock failure

0219 CVAX did not see sm interrupt

0224 XMISM timeout

0225 SM either didn’t fail or failed unexpectedly

0226 XMI Workblock error

0227 XMI Workblock data error

0228 DPC register initialization error

0230 Inconsistent signature after DPC self-test

0234 CXHIC/HIB interface failure

0238 DPC register failure

0240 XMI Control RAM location failure

0242 XMISM microcode verify failure

0244 DPC microcode parity checker failure

0248 HIB/DPC interface failure

024C DPC/Control RAM interface failure

0250 Stuck-at-0 fault in DPC register

0254 CXHIC auto-incremented unexpectedly

0258 CXHIC did not auto-increment when expected

025C CXHIC did not load next page frame when expected

0264 IBPE parity error failure

0268 Data compare fail on write transaction

026C Data compare fail on read transaction

0270 Failure of CXHIC to send MAR interrupt

0274 Failure of VIC to request MAR int

0278 Failure of CXHIC to send MES interrupt

027C Failure of VIC to request MES int

0280 Failure during initial access

12–9

EVRLM Functional Code Update Utility

Table 12–1 (Cont.) Internal Error Log — Error Identifiers

Error
Identifier Description

0284 HIB bus error detected during XMI

0288 Failure of XBE Error Summary interrupt

0300 SISM interrupt timed-out

0301 SISM WB remote status error

0302 SISM WB remote status error

0304 SI ucode too big for CRAM

0308 Bad lower SI CRAM value

030C Bad upper SI CRAM value

0310 SISM CRAM counter failure

0314 No parity error detected

0318 No interrupt from parity error

031C Parity error at wrong location

0320 Interrupt with no parity error detect

0324 No CRAM counter overflow

0328 SISM CRAM parity error detected

032C No SISM error in BER

0330 CSIC calibration counter failure

0334 SIECL calibrate failed

0340 Workblock Address Register pattern error

0344 SISM internal register error

0348 SI pulse error

034A SI Workblock remote status error

034C No SI pulse error

0350 SI data compare error

0354 SI address error

0358 SI port error

035A SI header error

035B SI transfer EDC error

035C SI transfer ECC error

0400 XMI port transaction command failed

0404 XMI port transaction data error

0408 XMI DMA transaction failure

040C XMI DMA byte mask failure

0410 XMI port transaction command failed

0500 RAM error detected

0E00 Purge/poll test failed

12–10

EVRLM Functional Code Update Utility

12.5.5 Display Real-time Error Log
The real-time error log contains a copy of the most recent last crash error
log packet(s). This error log is duplicated on board 1 (T2022) and board 2
(T2023). It will be used primarily by manufacturing to assist in the repair
process. In most cases this information will be available on line in the
system error log. If an error log is not available, the real-time error log
may be used for fault isolation.

The values displayed in the internal error log are determined by the type
of bug check that occurred. In the following example, a bug check code
of ‘‘C858C12A’’, is defined as a SISM control ROM parity error. The next
eight longwords are defined in Section 4.9 and are based on the MSCP
event. In this case, the event is a device interface hardware error. The
real-time internal error log is displayed in the following manner:

Displaying Internal Error log

Bug Check Code C858C12A 00000000 00000000
ESL 1 00000000 00000000 00000000
ESL 2 00000000 00000000 00000000
ESL 3 00000000 00000000 00000000
ESL 4 00000000 00000000 00000000
ESL 5 00000000 00000000 00000000
ESL 6 00000000 00000000 00000000
ESL 7 00000000 00000000 00000000
ESL 8 00000000 00000000 00000000
Time Stamp 11211050 00000000 00000000

12.5.6 Display Up-Time Count
The up-time count is displayed in the following manner:

Displaying Up Time Count

For node B the Up-Time count for board 2 is: 9 days

Information is presented in the same format for board 1 or 2.

12.5.7 Display Software Revision Number
The software revision number is displayed in the following manner:

Software Revision level : 00000001

Information is presented in the same format for board 1 or 2.

12.5.8 Display Unique Identifier
The unique identifier is displayed in the following manner:

Unique Identifier: 012345099899

12–11

EVRLM Functional Code Update Utility

The unique identifier consists of board one (T2022) serial number and
board two (T2023) serial number as follows:

63 56 55 48 47 24 23 0
--
CLASS	MODEL	T2022 Serial Number	T2023 Serial Number
--

12.6 Running EVRLM
The code update utility is used to install new versions of KDM70 controller
software. New versions of software are periodically released to improve
KDM70 controller performance or to add KDM70 controller features after
KDM70 controller’s initial introduction.

The following is an example for completing the code update using the VAX
diagnostic supervisor and the EVRLM utility booted from the VAX 6000
system console TK50/70 tape drive.

Note: The CPU key switch must be in the UPDATE position to run the
code update.

1 Shutdown the system by using the System Shutdown command.

2 Install the supplied tape, containing the new KDM70 controller code
image, into the TK50/70 tape drive.

3 At the system boot prompt, type the following command:

Example 12–1 Code Update Utility—Partial Screen Display

>>> B CSA1/R5:10

Initializing system.

(An initialization chart is displayed....)

Loading system software.

DIAGNOSTIC SUPERVISOR. ZZ-ExSAA-01.x-xxxx 10-June-1989 12:00:00

DS> ATTACH
Device type? KDM70
Device link? HUB
Device name? DUx
XMI node # (1,2,3,4,B,C,D,E) ? 2
Bus request Level (4 - 7) ? 5
DS> SELECT DUx
DS> RUN EVRLM

..Program: EVRLM -- LEVEL 3 KDM70 EEPROM UPDATE UTILITY,
revision 1.0, 1 test,

at 12:00:00
Testing: _DUx

KDM70 Code Update Utility Menu
Functions That May be Performed:

Example 12–1 Cont’d on next page

12–12

EVRLM Functional Code Update Utility

Example 12–1 (Cont.) Code Update Utility—Partial Screen Display

1) Perform Code Update
2) Display Bad Page List
3) Display EEPROM Suspect Page List
4) Display SRAM Suspect Page List
5) Display MIST Internal Error Log
6) Display Real Time Error Log
7) Display Up-time Count
8) Display Software Revision Number
9) Display Unique Identifier
10) Display This Menu
11) Exit This Program

Enter your choice by number: [(10), 1-11(D)] 1

Updating .

CODE UPDATE SUCCESSFULLY COMPLETED

KDM70 Code Update Utility Menu
Functions That May be Performed:

1) Perform Code Update
2) Display Bad Page List
3) Display EEPROM Suspect Page List

.

.

.
9) Display Unique Identifier
10) Display This Menu
11) Exit This Program

Enter your choice by number: [(10), 1-11(D)] 11

.. End of run, 0 errors detected, pass count is 1,
time is day-month-year time

12.7 EVRLM Errors
Generally, the code update utility is an error-free process. However, if
controller memory has been degraded or if the code loaded from the tape
has been corrupted, problems may arise. If the code update utility fails,
the KDM70 controller operates the same as before the code update was
attempted. Actual KDM70 code is not overwritten with new code until
testing ensures the probability of success. The following sections outline
EVRLM error handling.

If the KDM70 code update process fails and leaves the KDM70 controller
in an indeterminate state, refer to Section 12.8 for error recovery
procedures.

If an operation fails, the program displays the time of the failure, the
failing device, and information relevant to the failure.

This section lists the errors that EVRLM can return. And explanation of
the error and possible causes are included.

12–13

Error 1 — Get Hardware Parameter Table Failed

Error 1 — Get Hardware Parameter Table Failed

Error 1 - The Get Hardware Parameter Table system service failed.

*** EVRLM - Level 3 KDM70 EEPROM UPDATE UTILITY 1.0 ***
Pass "pass", Initialization section, error 1, "date" "time"
System fatal error while testing DUA: $DS_GPHARD failed

Media load error.

The Get Hardware Parameter Table system service failed.

Try new load media.

*** End of System error number 1 ***

This error indicates a bad load device, such as the TK tape. The GET
HARDWARE PARAMETER TABLE command provides information on
controller type and its XMI node number. If the information is not available, no
update can occur and the update is aborted.

12–14

Error 2 — Allocation of Host Communication Area Failed

Error 2 — Allocation of Host Communication Area
Failed

Error 2 - Allocation of the host communication area failed

*** EVRLM - Level 3 KDM70 EEPROM UPDATE UTILITY 1.0 ***
Pass "pass", Initialization section, error 2, "date" "time"
System fatal error while testing DUA: "device": $DS_GETBUF FAILED

Media load error.

Allocation of host communication area failed

Return status from $DS_GETBUF: 00000009

*** End of System fatal error number 2 ***

Buffer space was not allocated for the host communication area. The host
communication area is used for communication between EVRLM and the
KDM70 controller.

Recovery: The media is suspect, retry the update procedure. If the same
failure occurs, use a different update tape or load device.

Error 3 — Allocation of Scratch Pad Failed

Error 3 - Allocation of controller scratch pad area failed

*** EVRLM - Level 3 KDM70 EEPROM UPDATE UTILITY 1.0 ***
Pass "pass", Initialization section, error 3, "date" "time"
System fatal error while testing DUA: "device": $DS_GETBUF FAILED

Media load error.

Allocation of scratch pad area failed

Return status from $DS_GETBUF: 0000000A

*** End of System fatal error number 3 ***

Buffer space for the controller scratchpad area was not allocated.

Recovery: The media is suspect, retry the update procedure. If the same
failure occurs, use a different update tape or load device.

12–15

Error 4 — Node Reset Failed

Error 4 — Node Reset Failed

Error 4 - Node reset failed

*** EVRLM - Level 3 KDM70 EEPROM UPDATE UTILITY 1.0 ***
Pass "pass", Initialization section, error 4, "date" "time"
System fatal error while testing DUA: "device": NODE RESET FAILED

type_2_message

*** End of soft error number 4 ***

A node reset is used to initialize the KDM70 controller and invoke the
controller self-test sequence. The error message depends on the return
status from the system service call. There are three possible error messages:

1 The logical unit selected is too large.

Recovery: The media is suspect, retry the update procedure. If the same
failure occurs, use a different update tape or load device.

2 An attempt to set/clear a register adapter bit failed.

Recovery: The T2022 or current controller EEPROM image is suspect.
Retry the update procedure. If the same failure occurs, use the forced-
code update procedure. If the same failure occurs again, replace the
T2022 module.

3 Node self-test failed.

Recovery: The T2022 or current controller image is suspect; retry the
update procedure. If the same failure occurs, use the forced-code update
procedure. If the failure occurs again, replace T2022 module. NOTE: The
module LED codes may give additional information.

The error message is printed, and EVRLM returns the following prompt:

Controller failed self-test, do you wish to continue? [(No), Yes] YES

You can continue with the code update or abort.

12–16

Error 100 — Allocation of Controller Image File Buffer Failed

Error 100 — Allocation of Controller Image File
Buffer Failed

Error 100 - Error while allocating buffer space for controller image file

*** EVRLM - Level 3 KDM70 EEPROM UPDATE UTILITY - 1.0 ***
Pass "pass", test 1, subtest 0, error 100, "date" "time"
System fatal error while testing "device": $DS_GETBUF FAILED

Media load error.

Allocation of controller image file buffer failed

Return status from $DS_GETBUF: 00000009

*** End of System fatal error number 100 ***

Before the EEPROM code update is performed, the controller image file
is stored in a buffer located in host memory. This error indicates that the
allocation of the controller image file buffer failed.

Recovery: The media is suspect, retry the update procedure. If the same
failure occurs, use a different update tape or load device.

Error 110 — Controller Failed to Set Step Bit

Error 110 - Controller failed to set step bit during initialization

*** EVRLM - Level 3 KDM70 EEPROM UPDATE UTILITY - 1.0 ***
Pass "pass", test 1, subtest 0, error 110, "date" "time"
Hard error while testing "device":

STEP BIT DID NOT SET IN SA REGISTER DURING INITIALIZATION

Expected Data : 9C0 (H)

Returned Data : 8010 (H)

*** End of Hard error number 110 ***

Initialization of the controller is accomplished by sequencing through steps 1
through 4 of the SSP initialization. The sequencing for one step to the next
is accomplished by setting a particular step bit in the SA register. This error
indicates that a step bit did not set within 10 seconds. After the error message
is printed, the code update is aborted.

Recovery: This is a KDM70 controller error. Retry the code update. Refer to
Appendix B for SA error codes.

12–17

Error 111 — Controller Fatal Error Detected

Error 111 — Controller Fatal Error Detected

Error 111 - Controller fatal error detected during initialization

*** EVRLM - Level 3 KDM70 EEPROM UPDATE UTILITY - 1.0 ***
Pass "pass", test 1, subtest 0, error 111, "date" "time"
Hard error while testing "device":

CONTROLLER DID NOT RETURN CORRECT STATUS IN SA
REGISTER DURING INITIALIZATION

Expected data: 9C0 (H)

Returned data: 9CF (H)

*** End of Hard error number 111 ***

The controller returned an incorrect value in the SA register.

Recovery: This is a KDM70 controller error. Retry the code update. Refer to
Appendix B for SA Error Codes.

Error 112 — Call to $SETIMR Failed

Error 112 - Call to $SETIMR failed

*** EVRLM - Level 3 KDM70 EEPROM UPDATE UTILITY - 1.0 ***
Pass "pass", test 1, subtest 0, error 112, "date" "time"
Hard error while testing "device": UNABLE TO START TIMER

Media load error.

$SETIMR returned error status of : 00000011

*** End of Hard error number 112 ***

The VAX/DS system service call returned an error status.

Recovery: The media is suspect, retry the update procedure. If the same
failure occurs, use a different update tape or load device.

12–18

Error 113 — Error While Initializing Controller

Error 113 — Error While Initializing Controller

Error 113 - Error while initializing controller

*** EVRLM - Level 3 KDM70 EEPROM UPDATE UTILITY - 1.0 ***
Pass "pass", test 1, subtest 0, error 113, "date" "time"
Device fatal error while testing "device":

CONTROLLER INITIALIZATION FAILURE

Diagnostic will be aborted because of previous error

*** End of Device fatal error number 113 ***

The controller failed to initialize because of error messages 110 through 112.
This is an informational error message indicating that the controller could not
be initialized. The code update is aborted.

Error 120 — Error While Opening Controller Image
File

Error 120 - Error while opening controller image file

*** EVRLM - Level 3 KDM70 EEPROM UPDATE UTILITY 1.0 ***
Pass "pass", test 1, subtest 0, error 120, "date" "time"
System fatal error while testing "device": $OPEN FAILED

Media load error.

Error processing controller image file: "filename".

The system service call $OPEN returned the following error status:

type_2_message

Try new load media.

*** End of System fatal error number 120 ***

The OPEN EXISTING FILE command makes files available for processing. If
a file cannot be opened, one of the following messages is displayed and the
update aborted:

• File access error

• Dynamic memory error

• Bad device error

• Fab_error

• File not found error

• Bad file name error

• Invalid file organization error

• File read error

12–19

Error 120 — Error While Opening Controller Image File

Recovery: The media is suspect, retry the update procedure. If the same
failure occurs, use a different update tape or load device.

12–20

Error 121 — Error Connecting to the Controller Image File

Error 121 — Error Connecting to the Controller
Image File

Error 121 - Error while connecting to the controller image file

*** EVRLM - Level 3 KDM70 EEPROM UPDATE UTILITY 1.0 ***
Pass "pass", test 1, subtest 0, error 121, "date" "time"
System fatal error while testing "device": $CONNECT FAILED

Media load error.

Error processing controller image file: "filename".

The system service call $CONNECT returned error.

Try new load media.

*** End of System fatal error number 121 ***

The code update is aborted if no connection can be made to the controller
image file.

Recovery: The media is suspect, retry the update procedure. If the same
failure occurs, use a different update tape or load device.

Error 122 — Error While Reading Image File

Error 122 - Error while reading in image file

*** EVRLM - Level 3 KDM70 EEPROM UPDATE UTILITY 1.0 ***
Pass 1, test 1, subtest 0, error 122,"date" "time"
System fatal error while testing DUA: $GET FAILED

Media load error.

Error processing controller image file: "filename".

Unable to read a record from "filename" into host memory.

Try new load media.

*** End of system fatal error number 122 ***

An error occurred while trying to read the controller image file from load media
to host memory.

Recovery: The media is suspect, retry the update procedure. If the same
failure occurs, use a different update tape or load device.

12–21

Error 123 — Disconnect Error

Error 123 — Disconnect Error

Error 123 - Disconnect error

*** EVRLM - Level 3 KDM70 EEPROM UPDATE UTILITY 1.0 ***
Pass 1, test 1, subtest 0, error 123,"date" "time"
System fatal error while testing DUA: $DISCONNECT FAILED

Media load error.

Error processing controller image file "filename".

$DISCONNECT returned error status of "status".

Try new load media.

*** End of system fatal error number 123 ***

The program is aborted if I/O buffers and structures cannot be deallocated.

Recovery: The media is suspect, retry the update procedure. If the same
failure occurs, use a different update tape or load device.

Error 124 — Close Error

Error 124 - Close error

*** EVRLM - Level 3 KDM70 EEPROM UPDATE UTILITY 1.0 ***
Pass 1, test 1, subtest 0, error 124,"date" "time"
System fatal error while testing DUA: $CLOSE FAILED

Media Error

Error processing controller image file "filename".

$CLOSE returned error status of "status".

Try new load media.

*** End of system fatal error number 124 ***

If an open file cannot be closed after all processing of files has been
completed, the code update is aborted.

Recovery: This is a media load error. Retry the code update. If the update
still fails, try a new load media and retry the code update.

12–22

Error 130 — Error Reading Update Flag

Error 130 — Error Reading Update Flag

Error 130 - Error reading update flag

*** EVRLM - Level 3 KDM70 EEPROM UPDATE UTILITY 1.0 ***
Pass 1, test 1, subtest 0, error 130,"date" "time"
Device fatal error while testing "device":

Controller error.

Error reading update flags.

READ DATA command failed with a status of: "status"

*** End of Device fatal error number 130 ***

The KDM70 controller must set its controller update flag before code can be
updated. This error indicates the controller could not read the update flag.
The update is aborted.

Recovery: This is a KDM70 controller error. Retry the code update. If the
update still fails, refer to error recovery procedure.

Error 132 — Error Writing Update Flag

Error 132 - Error writing update flag

*** EVRLM - Level 3 KDM70 EEPROM UPDATE UTILITY 1.0 ***
Pass 1, test 1, subtest 0, error 132,"date" "time"
Device fatal error while testing "device":

Controller error.

Error writing update flag.

WRITE DATA command failed with a status of: "status"

*** End of Device fatal error number 132 ***

This error indicates that update flag could not be written.

Recovery: This is a controller error. Retry the code update. If the update still
fails, refer to error recovery procedure. retry the code update.

12–23

Error 133 — Controller Update Flag Incorrectly Written

Error 133 — Controller Update Flag Incorrectly
Written

Error 133 - Controller update flag incorrectly written

*** EVRLM - Level 3 KDM70 EEPROM UPDATE UTILITY 1.0 ***
Pass 1, test 1, subtest 0, error 133,"date" "time"
Device fatal error while testing "device":

Controller error.

Update flag incorrectly written.

*** End of Device fatal error number 133 ***

Once the update flag has been written, it is read to verify that it contains
the specified value. If after five retries the flag is still incorrect, the update is
aborted.

Recovery: This is a KDM70 controller error. Retry the code update. If the
update still fails, refer to error recovery procedure.

Error 134 — Unable to Set EEPROM Address

Error 134 - Unable to set EEPROM address

*** EVRLM - Level 3 KDM70 EEPROM UPDATE UTILITY 1.0 ***
Pass 1, test 1, subtest 0, error 134,"date" "time"
Device fatal error while testing "device":

Controller error.

Error setting EEPROM address

SET NEW ADDRESS command failed with a status of: "status"

*** End of Device fatal error number 134 ***

If the EEPROM address cannot be selected, then the code update is aborted.

Recovery: This is a KDM70 controller error. Retry the code update. If the
update still fails, refer to the error recovery procedure. Retry the code update.

12–24

Error 135 — Unable to Write EEPROM

Error 135 — Unable to Write EEPROM
Note: This error may corrupt the current EEPROM code image. The

KDM70 code was written to recover from these failures. Use the
error recovery procedure. If the update still fails, replace the
T2022 module.

Error 135 - Unable to write EEPROM.

*** EVRLM - Level 3 KDM70 EEPROM UPDATE UTILITY 1.0 ***
Pass 1, test 1, subtest 0, error 135,"date" "time"
Device fatal error while testing "device":

Controller error.

Error while writing to EEPROM

WRITE DATA command failed with a status of: "status"

*** End of Device fatal error number 135 ***

An error occurred while writing the controller image to EEPROM.

Recovery: This is a KDM70 controller error. Retry the code update. If the
update still fails, replace the T2022 module and retry the code update.

Error 136 — Unable to Read EEPROM
Note: This error may corrupt the current EEPROM code image. The

KDM70 code was written to recover from these failures. Use the
error recovery procedure. If the update still fails, replace the
T2022 module.

Error 136 - Unable to read EEPROM.

*** EVRLM - Level 3 KDM70 EEPROM UPDATE UTILITY 1.0 ***
Pass 1, test 1, subtest 0, error 136,"date" "time"
Device fatal error while testing "device":

Controller error.

Error while reading EEPROM

READ DATA command failed with a status of: "status"

*** End of Device fatal error number 136 ***

EEPROM written with new code is read and compared to the controller image
file stored in host memory. This error indicates a read failure of EEPROM.

Recovery: This is a KDM70 controller error. Retry the code update. If the
update still fails, replace the T2022 module and retry the code update.

12–25

Error 137 — One Byte Verified Written Incorrectly

Error 137 — One Byte Verified Written Incorrectly

Error 137 - One byte verified written incorrectly

*** EVRLM - Level 3 KDM70 EEPROM UPDATE UTILITY 1.0 ***
Pass 1, test 1, subtest 0, error 137,"date" "time"
Soft error while testing "device":

Controller error.

One byte verified written incorrectly.

*** End of soft error number 137 ***

A byte-by-byte comparison is performed after KDM70 EEPROM is written.
This error indicates one byte of EEPROM was found to be in error. The code
update process will continue

Recovery: This is an informational message only. No operator action is
required.

Error 138 — Excessive Bytes Written Incorrectly
Note: This error may corrupt the current EEPROM code image. The

KDM70 code was written to recover from these failures. Use the
error recovery procedure. If the update still fails, replace the
T2022 module.

Error 138 - Excessive bytes written incorrectly

*** EVRLM - Level 3 KDM70 EEPROM UPDATE UTILITY 1.0 ***
Pass 1, test 1, subtest 0, error 138, "date" "time"
Device fatal error while testing "device":

Controller error.

More than eight bytes verified written incorrectly within a 1K boundary.

ABORTING...

*** End of Device fatal error number 138 ***

A byte-by-byte comparison is performed after KDM70 EEPROM is written.
This error indicates more than 8 bytes of EEPROM are in error. The code
update process aborts.

Recovery: This is a KDM70 controller error. Retry the code update. If the
update still fails, replace the T2022 module and retry the code update.

12–26

EVRLM Functional Code Update Utility

12.8 Error Recovery Procedures
Normally the code update utility requires support from the current code
image to assist in the update process. The forced update procedure will
use code written in non-volatile ROM for this support.

1 Power down the system.

2 Place a jumper from pin E13 to E15 (T2022 slot). (See Figure 12–1.)

3 Power up the system and verify the KDM70 LED code is 1011. This
indicates that the KDM70 controller is in forced update mode.

4 Boot the diagnostic supervisor in standalone mode.

5 Attach and select the KDM70 controller to be updated, as shown in the
following example:

DS> ATTACH KDM70 HUB DUx 4 5

DS> SELECT DUx

DS> RUN EVRLM

The variables are explained in the following table:

Variable Meaning

x An alphabetic designation. Generally, the boot device controller
is assigned an A.

4 XMI node number — T2022 slot number

5 Bus request level

The following EVRLM error message is displayed:

..Program: EVRLM - LEVEL 3 code update UTILITY FOR KDM70 CONTROLLERS, revision
1.0, 1 test, at 15:08:22.73.
Testing _KDMA

******** EVRLM - LEVEL 3 code update UTILITY FOR KDM70 CONTROLLERS - 1.0 *****
Pass 0, Initialization section, error 2, 20-SEP-1989 15:20:48:56
System fatal error while testing KDMA: NODE RESET FAILED

Node self-test failed.

************* End of System fatal error number 2 **********

CONTROLLER FAILED SELF-TEST, DO YOU WISH TO CONTINUE? [(No), Yes]

6 To continue from this point, answer YES. Otherwise, the code update
procedure aborts. The code update program menu is displayed.

7 Select the perform code update option.

A message is printed indicating that the disaster mode is being
invoked.

12–27

EVRLM Functional Code Update Utility

The code update procedure completes with the following message:

EEPROMS updated

code update SUCCESSFULLY COMPLETED

8 Press Return to return to the code update program menu.

9 Remove the backplane jumper. (If the jumper is left in place, a self-test
failure error message is displayed after exiting from the update.)

10 Type EXIT to return the DS> prompt.

11 Exit from the VAX diagnostic supervisor.

If no errors occurred during the forced-code update, reboot the system.
Ensure that the KDM70 controller is functional by running on-line
exerciser programs, such as ILEXER or EVRAE.

12–28

EVRLM Functional Code Update Utility

Figure 12–1 Backplane Pin Location

1

45 15

31

32

33

34

35

36

37

38

39

40

41

42

43

44 14

13

12

11

10

9

8

7

6

5

4

3

2

16

60 30

46

47

48

49

50

51

52

53

54

55

56

57

58

59 29

28

27

26

25

24

23

22

21

20

19

18

17

1

45 15

31

32

33

34

35

36

37

38

39

40

41

42

43

44 14

13

12

11

10

9

8

7

6

5

4

3

2

16

60 30

46

47

48

49

50

51

52

53

54

55

56

57

58

59 29

28

27

26

25

24

23

22

21

20

19

18

17

15

14

13

JUMPER

CXO-2897A

J2

GROUND

12–29

EVRLM Functional Code Update Utility

12–30

13 KDM70 PATCH Utility

The PATCH utility provides a method of fixing KDM70 software
problems between major code updates. It allows modification of KDM70
program memory which is stored in EEPROM. Although PATCH release
instructions are included with each patch release, this chapter provides an
overview of PATCH commands and modifiers.

Note: The PATCH utility will write the current code image in EEPROM.
Verify that a backup code image is available before applying a
PATCH.

13.1 Invoking PATCH
The PATCH utility is a supplied program. It requires a DUP connection
in order to execute. A DUP connection may be supplied under VMS by
the FYDRIVER or standalone under the VAX diagnostic supervisor by
EVRLN.

13.1.1 Invoking PATCH On Line from VMS
Use the following commands to invoke PATCH on line from VMS:

$ RUN SYS$SYSTEM:SYSGEN

SYSGEN>CONNECT FYA0/NOADAPTER ; Load VMS DUP Driver

SYSGEN>EXIT

$ SET DEFAULT SYS$MAINTENANCE

$ SET HOST/DUP/SERVER=DUP/LOAD=PATCH.KDM PUA0/DEV

*** PATCH (KDM70 Patch Utility) V 001 *** 27-NOV-1856 11:43:20 ***

PATCH>

13.1.2 Invoking PATCH Standalone from the VAX Diagnostic Supervisor
Use the following commands to invoke PATCH using VAX DS.

13–1

KDM70 PATCH Utility

DS> ATTACH KDM70 HUB DUx 3 5

DS> SELECT DUx

DS> RUN EVRLN

EVRLN> RUNS PATCH

*** PATCH (KDM70 Patch Utility) V 001 *** 27-NOV-1856 11:43:20 ***

PATCH>

13.2 Software Revision Numbering Scheme
Refer to page 12-3 in the EVRLM Chapter.

13.3 Running PATCH
Use the following commands to run PATCH:

PATCH> DISPLAY LIST

*** CURRENT PATCHES: NONE

PATCH> PATCH 1

PATCH> RELOCATE 80000100

PATCH> MODIFY/LONG 1C0 C0AB3FE0

PATCH> MODIFY/LONG 1E0 D0A12FC0

PATCH> DISPLAY Patch

*** PATCH 001 Description ***

Address Current Changed
-------- -------- --------
800002C0 04049FD0 C0AB3FE0
800002E0 C1522014 D0A12FC0

PATCH> UPDATE E02AC1A0 ;Checksum supplied with PATCH release

PATCH> EXIT

13.3.1 PATCH Commands
Table 13–1 shows a summary of all PATCH commands.

Table 13–1 PATCH Commands

Command Parameter Qualifier Description

DELETE Address Delete first occurrence of
address in PATCH buffer. Use to
correct errors in PATCH buffer.

DISPLAY PATCH Display current changes in
PATCH buffer

LIST Display PATCH numbers
currently installed

13–2

KDM70 PATCH Utility

Table 13–1 (Cont.) PATCH Commands

Command Parameter Qualifier Description

VERSION Display current KDM70 software
version

RELOCATE Display current relocation
address

EXIT Exit from PATCH

RELOCATE Relocation
Address

Sets base address for the image
being patched

MODIFY Address /BYTE Modify a byte location in the
PATCH buffer

MODIFY Address /WORD Modify a word location in the
PATCH buffer

MODIFY Address /LONG Modify a longword location in the
PATCH buffer

PATCH Patch number Identifies the PATCH number
being applied

UPDATE Checksum Checksum supplied with the
PATCH release. This command
will verify the correct checksum
and copy the changes to KDM70
EEPROM

13.4 New PATCH Commands
Table 13–2 Shows a summary of new PATCH commands that are supported withg Version 3.0 of
the KDM70 software.

Table 13–2 New PATCH Commands

Command Parameter Qualifier Description

DISABLE CTRL_P Requires XMI_UPDATE to be
enabled. Disables CTRL_P
from console to break into the
MONITOR.

DISABLE SIL Requires XMI_UPDATE to be
enabled. Disables last crash
packet for spontaneous INIT.

ENABLE CTRL_P Requires XMI_UPDATE to be
enabled. Enables CTRL_P
from console to break into the
MONITOR.

ENABLE SIL Requires XMI_UPDATE to be
enabled. Enables last crash
packet for spontaneous INIT.

13–3

KDM70 PATCH Utility

Table 13–2 (Cont.) New PATCH Commands

Command Parameter Qualifier Description

RESET KDM70’s write a fatal error code
of x(8)380 in its SA register. The
Operating system will then reset
the controller upon detection of
a fatal SA code. This feature is
also used to force the KDM70 to
reload its code from EEPROM
to SRAM. This allows any
patches or options to take effect
immediately.

DISPLAY BOARD /B1 Displays all relevant information
for T2022.

DISPLAY BOARD /B2 Displays all relevant information
for T2023.

DISPLAY /FULL Causes entries in "lists to be
dumped even if they are "null".

DISPLAY BPL Bad Page List.

DISPLAY BPL2 Bad Page List Copy 2.

DISPLAY BPL3 Bad Page List Copy 3.

DISPLAY COMMENT Program Comments, applies only
to the loaded image.

DISPLAY ESPL EEPROM Suspect Page List.

DISPLAY HWRN Hardware Revision Number.

DISPLAY IMAGE Information about the loaded
image.

DISPLAY MIEL MIST Internal Error Logs.

DISPLAY OPTIONS Program Special Options.

DISPLAY RTEL Real Time Error Log.

DISPLAY SERIAL Serial Number of the board.

DISPLAY SSPL SRAM Suspect Page List.

DISPLAY SWRN Software Revision Number.

DISPLAY UPTIME Up Time.

13.4.1 PATCH Error Messages
The following error messages may be reported under the PATCH utility.
Error messages are generally procedural in nature; however, some errors
may result in fatal conditions. Suggested error recovery procedures are
included in this section.

13–4

KDM70 PATCH Utility

Table 13–3 PATCH Error Messages

Error Message Action

*** "Item" is an invalid command Re-enter a valid command.

*** Input value is out of range Re-enter a valid-range value.

*** Invalid PATCH address; range is 80201200 -
802597FE

Re-enter an address within the
valid range.

*** PATCH aborted by user! Results from a CTRL/C,
CTRL/Y, or a CTRL/ \ . Restart
the program.

*** No patch has been opened Issue the PATCH command
before modifying a location.

*** "Item" is an invalid option for DISPLAY Re-enter a valid DISPLAY
option.

*** "Item" is an invalid modifier Re-enter an appropriate
modifier for the MODIFY
command.

*** Checksum does not match Re-enter modified values;
ensure correct values have
been input by using the
DISPLAY command.

*** Missing parameter Supply missing parameter; use
DISPLAY to identify missing
parameters.

13–5

KDM70 PATCH Utility

13–6

A KDM70 Controller Bug Check Codes

A.1 Introduction
This appendix contains KDM70-specific bug check codes. There are
software bug check codes and hardware bug check codes. Software bug
check codes always have a zero as the most significant bit (MSB).

A.2 KDM70 Bug Check Codes
KDM70 bug checks are the result of an error detected during functional
code. There are two types of bug checks: software and hardware detected.
A description and recommended user action is provided for each bug check
code. The most likely solution is listed first.

A.2.1 Software Bug Checks
Software bug checks are inconsistencies detected by the KDM70 controller
software during normal controller operation. Software bug checks may be
caused by either hardware or software.

Software inconsistencies have two possible causes:

1 An internal data structure was corrupted due to an undetected
hardware error. This type of failure would typically cause many
different types of bug checks. Look for other error symptoms to assist
in fault isolation.

2 An unexpected condition occurred in the KDM70 controller software.
A true software design error is unlikely. If the same bug check code is
seen repeatedly, and this is the only failure, it should be reported to
KDM70 engineering by submitting a PRISM report.

A–1

KDM70 Controller Bug Check Codes

00006001: DCM_INCONSISTENT_STATUS

Facility: Disk communications management

Explanation: Bad communication status. When attempting to
translate an SI state machine code into an MSCP sub-event code,
an unknown SI status code was detected.

MSCP Event: Software logic error

User Action: Check the T2023, drive, and KDM70 controller
software.

0000A002: DER_ERROR_ANAL_FAILURE

Facility: SDI Disk Data Error Recovery

Explanation: Error Recovery could not determine the type of error to
retry and report.

MSCP Event: Software logic error

User Action: Check the T2023 and KDM70 controller software.

0000A003: RCT IS CORRUPT

Facility: SDI Disk Error Recovery

Explanation: Test Descriptor resulted in a return code of "RCT is
corrupt"

MSCP Event: Software Logic Error

User Action: This is not a KDM70 controller error. It indicates that
an attempt was made to mount a disk with a corrupted RCT.

0000E003: DPX_WRONG_DATA_TYPE

Facility: Disk physical transfer management

Explanation: The wrong data type was received as input. The ‘‘Type’’
field in the structure indicates the structure is not a transfer block
(TB).

MSCP Event: Software logic error

A–2

KDM70 Controller Bug Check Codes

User Action: If other types of bug checks are also reported, the
problem could be hardware, T2022 or T2023. If no other bug checks
are reported, the KDM70 software is most likely at fault.

A–3

KDM70 Controller Bug Check Codes

0000E004: DPX_INTERPRET_HANDLE_FAILURE

Facility: Disk physical transfer management

Explanation: The interpret handle routine failed. An invalid PTE
was found during the buffer handle resolution for a specific portion of
a transfer.

MSCP Event: Software logic error

User Action: T2022, KDM70 controller software, Host SCS/Port
software. Examine error logs for indications of host memory or XMI
errors. Corruption in the communications area is also a possibility.

0000E005: DPX_INCONSISTENT_PCB

Facility: Disk physical transfer management

Explanation: An inconsistent port control block exists. Error
recovery was called, but no error recovery status was supplied.

MSCP Event: Software logic error

User Action: Check the SI state machine (T2023) and KDM70
controller software.

0000E007: DPX_INVALID_RESUME_CASE

Facility: Disk physical transfer management

Explanation: The resume case specified in TB is invalid. Transfer
management called routines to allocate the TB, TF, CF and buffer for
a disk data transfer. Upon return from the allocation routines, the
resume case provided in the TB was not as expected.

MSCP Event: Software logic error

User Action: Look for other error symptoms. If no other errors
exist, it is most likely a KDM70 controller software problem. Other
symptoms may indicate hardware.

A–4

KDM70 Controller Bug Check Codes

0000E009: DPX_INCONSISTENT_BYTE_COUNT

Facility: Disk physical transfer management

Explanation: An inconsistent byte count was found during a compare
operation. Compare operations do a block-for-block comparison, which
requires the byte count to be 512. A value other than 512 causes a bug
check.

MSCP Event: Software logic error

User Action: Look for other error symptoms. If no other errors
exist, it is most likely a KDM70 controller software problem. Other
symptoms may indicate hardware.

0000E00A: DPX_UNDEFINED_TB_STATE

Facility: Disk physical transfer management

Explanation: The TB state code value is undefined. An abort
command was issued, but the TB state could not be determined.
Abort processing attempts to locate the TB (if allocated) on one of
several queues after examining the ATD or TMD state. If the ATD or
TMD state implies that the TB may be found on one of these queues, a
case instruction is used to locate the TB. If the TB cannot be located,
invoke a bug check.

MSCP Event: Software logic error

User Action: Unless other bug checks or errors are also being
reported, this is most likely a KDM70 controller software problem.

A–5

KDM70 Controller Bug Check Codes

0000E00B: DPX_RBN_NOT_VALID

Facility: Disk physical transfer management

Explanation: The facility tried to transfer an RBN on ESE. There
are no replacement blocks on ESEs. A replacement block number was
given to the transfer manager for an ESE.

MSCP Event: Software logic error

User Action: Look for other error symptoms. If no other errors
exist, it is most likely a KDM70 controller software problem. Other
symptoms may indicate hardware.

0000E00C: DPX_INVALID_BYTE_COUNT

Facility: Disk physical transfer management

Explanation: The byte count for multicopy transfer was not equal
to 512. Multicopy transfers are internal controller writes of the four
copies of the RCT.

MSCP Event: Software logic error

User Action: Look for other error symptoms. If no other errors
exist, it is most likely a KDM70 controller software problem. Other
symptoms may indicate hardware.

00010001:DSM_NO_UCBS

Facility: SDI disk/tape state machine management

Explanation: No UCBs exist.

MSCP Event: Software logic error

User Action: Look for other error symptoms. If no other errors
exist, it is most likely a KDM70 controller software problem. Other
symptoms may indicate hardware.

A–6

KDM70 Controller Bug Check Codes

0001E001: TCM_INCONSISTENT_STATUS

Facility: Tape communications management

Explanation: The facility found bad communication status and could
not translate an SI state machine code into a meaningful MSCP event
sub-code.

MSCP Event: Software logic error

User Action: Check the SI state machine (T2023), drive, and
KDM70 controller software.

00024001: TER_INVALID_ERROR_CODE

Facility: STI tape data error recovery

Explanation: The facility found an invalid error code. STI data error
recovery was called, but the error code was invalid.

MSCP Event: Software logic error

User Action: Check the tape formatter, SI state machine (T2023),
and KDM70 controller software.

00024002: TER_ERR_RECOV_INCONSISTENCY

Facility: STI tape data error recovery

Explanation: The direction of the tape error recovery retry is not the
original direction. The retry must be attempted in the same direction
as the error.

MSCP Event: Software logic error

User Action: Look for other error symptoms. If no other errors
exist, it is most likely a KDM70 controller software problem. Other
symptoms may indicate hardware.

A–7

KDM70 Controller Bug Check Codes

00028001: TPX_MEM_ALLOC_FAILED

Facility: Tape physical transfer management

Explanation: Memory allocation failed. Tape pipeline management
could not allocate memory buffers for a read reverse operation.

MSCP Event: Software logic error

User Action: Look for other error symptoms. If no other errors
exist, it is most likely a KDM70 controller software problem. Other
symptoms may indicate hardware.

00028002: TPX_INVALID_OPERATION

Facility: Tape physical transfer management

Explanation: The opcode in TMD is illegal. This indicates an invalid
tape operation.

MSCP Event: Software logic error

User Action: Look for other error symptoms. If no other errors
exist, it is most likely a KDM70 controller software problem. Other
symptoms may indicate hardware.

00028003: TPX_INVALID_RESUME_CASE

Facility: Tape physical transfer management

Explanation: The resume case specified in TB is invalid. Transfer
management called routines to allocate the TB, TF, CF, and buffer for
a disk data transfer. Upon return from the allocation routines, the
resume case in the TB was not as expected.

MSCP Event: Software logic error

User Action: Look for other error symptoms. If no other errors
exist, it is most likely a KDM70 controller software problem. Other
symptoms may indicate hardware.

A–8

KDM70 Controller Bug Check Codes

00028004: TPX_INTERPRET_HANDLE_FAILURE

Facility: Tape physical transfer management

Explanation: The interpret handle routine failed. An invalid PTE
was found during the buffer handle resolution for a specific portion of
a transfer.

MSCP Event: Software logic error

User Action: Look for other error symptoms. If no other errors
exist, it is most likely a KDM70 controller software problem. Other
symptoms may indicate hardware.

00028005: TPX_INVALID_ERROR_CODE

Facility: Tape physical transfer management

Explanation: The error code in the buffer list is invalid. The status
of the tape error recovery is not success, but the status of the command
does not indicate that the operation ever started. The SI state machine
reported an error before the operation started.

MSCP Event: Software logic error

User Action: Check the SI state machine (T2023) and KDM70
controller software.

0002A001: TSM_NO_UCBS

Facility: Tape state machine management

Explanation: No UCBs exist. The tape state management tried a
Get Unit Characteristics operation on a newly discovered unit, but no
UCBs were available.

MSCP Event: Software logic error

User Action: Look for other error symptoms. If no other errors
exist, it is most likely a KDM70 controller software problem. Other
symptoms may indicate hardware.

A–9

KDM70 Controller Bug Check Codes

0002E081: ILX_MAIN_NOWORK

Facility: ILEXER

Explanation: No work returned from the HLDI. There should always
be work outstanding for ILEXER once it is called.

MSCP Event: Software logic error

User Action: Look for other error symptoms. If no other errors
exist, it is most likely a KDM70 controller software problem. Other
symptoms may indicate hardware.

0002E082: ILX_MAIN_BOGUS

Facility: ILEXER

Explanation: An invalid end message was returned.

MSCP Event: Software logic error

User Action: Check the SI state machine (T2023) and KDM70
controller software.

0002E083: ILX_MAIN_TSTNUM

Facility: ILEXER

Explanation: The facility found an illegal device test number. The
test is not applicable for selected device.

MSCP Event: Software logic error

User Action: Look for other error symptoms. If no other errors
exist, it is most likely a KDM70 controller software problem. Other
symptoms may indicate hardware.

A–10

KDM70 Controller Bug Check Codes

0002E084: ILX_MAIN_STOPPING

Facility: ILEXER

Explanation: A command was received in a stopping state. The
number of outstanding commands did not reach zero.

MSCP Event: Software logic error

User Action: Look for other error symptoms. If no other errors
exist, it is most likely a KDM70 controller software problem. Other
symptoms may indicate hardware.

0002E085: ILX_MAIN_DEAD

Facility: ILEXER

Explanation: A command was received in a dead state. ILEXER
received a command after it had been stopped.

MSCP Event: Software logic error

User Action: Look for other error symptoms. If no other errors
exist, it is most likely a KDM70 controller software problem. Other
symptoms may indicate hardware.

0002E086: ILX_MAIN_BADSTATE

Facility: ILEXER

Explanation: The device is in wrong state to run the exerciser. HLDI
should have caught this before starting ILEXER.

MSCP Event: Software logic error

User Action: Look for other error symptoms. If no other errors
exist, it is most likely a KDM70 controller software problem. Other
symptoms may indicate hardware.

A–11

KDM70 Controller Bug Check Codes

0002E087: ILX_MAIN_NULLCB

Facility: ILEXER

Explanation: No device CB was supplied with the command.

MSCP Event: Software logic error

User Action: Look for other error symptoms. If no other errors
exist, it is most likely a KDM70 controller software problem. Other
symptoms may indicate hardware.

0002E088: ILX_MAIN_NOCMD

Facility: ILEXER

Explanation: No CMDs exist on the free queue.

MSCP Event: Software logic error

User Action: Look for other error symptoms. If no other errors
exist, it is most likely a KDM70 controller software problem. Other
symptoms may indicate hardware.

0002E101: ILX_PARM_NOSTORE

Facility: ILEXER

Explanation: No storage is available.

MSCP Event: Software logic error

User Action: Look for other error symptoms. If no other errors
exist, it is most likely a KDM70 controller software problem. Other
symptoms may indicate hardware.

A–12

KDM70 Controller Bug Check Codes

0002E102: ILX_PARM_WHOA

Facility: ILEXER

Explanation: The wrong command/unit was returned.

MSCP Event: Software logic error

User Action: Look for other error symptoms. If no other errors
exist, it is most likely a KDM70 controller software problem. Other
symptoms may indicate hardware.

0002E103: ILX_PARM_NOCOMP

Facility: ILEXER

Explanation: The command never completed.

MSCP Event: Software logic error

User Action: Look for other error symptoms. If no other errors
exist, it is most likely a KDM70 controller software problem. Other
symptoms may indicate hardware.

00032001: DLS_ALLOC_HANDLE

Facility: Diagnostic subroutine library

Explanation: The allocate buffer handle failed; an invalid buffer
handle was found.

MSCP Event: Software logic error

User Action: Look for other error symptoms. If no other errors
exist, it is most likely a KDM70 controller software problem. Other
symptoms may indicate hardware.

A–13

KDM70 Controller Bug Check Codes

00032002: DLS_DEALLOC_HANDLE

Facility: Diagnostic subroutine library

Explanation: The deallocate buffer handle failed; an invalid buffer
handle exists.

MSCP Event: Software logic error

User Action: Look for other error symptoms. If no other errors
exist, it is most likely a KDM70 controller software problem. Other
symptoms may indicate hardware.

00182001: KERNEL STACK INVALID

Facility: EXEC

Explanation: The kernel stack is not valid.

MSCP Event: Software logic error

User Action: Check the T2022 and KDM70 controller software.

00182002: RESERVED INSTR

Facility: EXEC

Explanation: Reserved instruction.

MSCP Event: Software logic error

User Action: Check the T2022 and KDM70 controller software.

A–14

KDM70 Controller Bug Check Codes

00182003: EXTENDED INSTR

Facility: EXEC

Explanation: Extended instruction.

MSCP Event: Software logic error

User Action: Check the T2022 and KDM70 controller software.

00182004: RESERVED OPERAND

Facility: EXEC

Explanation: Reserved operand.

MSCP Event: Software logic error

User Action: Check the T2022 and KDM70 controller software.

00182005: RESERVED ADDRESSING

Facility: EXEC

Explanation: Reserved addressing mode.

MSCP Event: Software logic error

User Action: Check the T2022 and KDM70 controller software.

A–15

KDM70 Controller Bug Check Codes

00182006: ACCESS VIOLATION

Facility: EXEC

Explanation: Access control violation.

MSCP Event: Software logic error

User Action: Check the T2022 and KDM70 controller software.

00182007: TRANSLATION NOT VALID

Facility: EXEC

Explanation: The translation is not valid.

MSCP Event: Software logic error

User Action: Check the T2022 and KDM70 controller software.

00182008: TRACE PENDING

Facility: EXEC

Explanation: Trace pending.

MSCP Event: Software logic error

User Action: Check the T2022 and KDM70 controller software.

A–16

KDM70 Controller Bug Check Codes

00182009: BREAKPOINT INSTRUCTION

Facility: EXEC

Explanation: Breakpoint instruction.

MSCP Event: Software logic error

User Action: Check the T2022 and KDM70 controller software.

0018200A: ARITHMETIC OVERFLOW

Facility: EXEC

Explanation: Arithmetic overflow.

MSCP Event: Software logic error

User Action: Check the T2022 and KDM70 controller software.

0018200D: UNUSED VECTOR

Facility: EXEC

Explanation: Unused vector.

MSCP Event: Software logic error

User Action: Check the T2022 and KDM70 controller software.

A–17

KDM70 Controller Bug Check Codes

00188081: DCP_BBR_ATD

Facility: Disk MSCP server

Explanation: The structure returned by DPX is not the ATD that
was sent.

MSCP Event: Software logic error

User Action: Look for other error symptoms. If no other errors
exist, it is most likely a KDM70 controller software problem. Other
symptoms may indicate hardware.

00188082: DCP_BBR_SCR

Facility: Disk MSCP server

Explanation: The structure returned by DPX is not the SCR that
was sent.

MSCP Event: Software logic error

User Action: Look for other error symptoms. If no other errors
exist, it is most likely a KDM70 controller software problem. Other
symptoms may indicate hardware.

00188101: DCP_DSP_GATE

Facility: Disk MSCP Server

Explanation: The gatekeeper found an invalid port state.

MSCP Event: Software logic error

User Action: Look for other error symptoms. If no other errors
exist, it is most likely a KDM70 controller software problem. Other
symptoms may indicate hardware.

A–18

KDM70 Controller Bug Check Codes

00188102: DCP_DSP_NUCB

Facility: Disk MSCP server

Explanation: No UCB was found after an update, although the port
previously had a UCB.

MSCP Event: Software logic error

User Action: Look for other error symptoms. If no other errors
exist, it is most likely a KDM70 controller software problem. Other
symptoms may indicate hardware.

00188103: DCP_DSP_ISC

Facility: Disk MSCP server

Explanation: An invalid port state transition exists.

MSCP Event: Software logic error

User Action: Look for other error symptoms. If no other errors
exist, it is most likely a KDM70 controller software problem. Other
symptoms may indicate hardware.

00188181: DCP_MSC_AK

Facility: Disk MSCP server

Explanation: The Make-Unit-Known routine was called when the
unit was already known.

MSCP Event: Software logic error

User Action: Look for other error symptoms. If no other errors
exist, it is most likely a KDM70 controller software problem. Other
symptoms may indicate hardware.

A–19

KDM70 Controller Bug Check Codes

00188182: DCP_MSC_SLQ

Facility: Disk MSCP server

Explanation: The Proc-Slow-Q queue was called for a null item.

MSCP Event: Software logic error

User Action: Look for other error symptoms. If no other errors
exist, it is most likely a KDM70 controller software problem. Other
symptoms may indicate hardware.

00188183: DCP_MSC_CTMO

Facility: Disk MSCP server

Explanation: A host connection timeout was found. This could
indicate a host hardware or software problem.

MSCP Event: Software logic error

User Action: Examine the error logs for other XMI or XMI-based
controller problems. Look for other error symptoms. Check the T2022
or KDM70 software.

For KDM70 Software Versions 3 and greater, this bug check no longer
occurs. It has been changed to an informational datagram, which will
have the following attributes.

————————————————————————-

COMMAND REFERENCE NUMBER = Zero.

SEQUENCE NUMBER = Zero.

FORMAT = Zero; an MSCP Controller error format error log message.

FLAGS = 83 (hex); Sequence number reset, non-error/informational
event, operation successful

EVENT CODE = A (hex); controller timeout.

CONTROLLER IDENTIFIER =

• The unique identifier is the controller serial number.

• The controller "class" is 02 (disk class device 166)

• The controller "model" is 1B (KDM70)

CSVRSN = Controller software version number.

A–20

KDM70 Controller Bug Check Codes

CHVRSN = Controller hardware revision number.

PORT ERROR CODE = The port error code of 14 (hex) which is defined
as "High level protocol incompatibility error".

CONTROLLER DEPENDENT INFORMATION =

The KDM70 bugcheck code of 00188183, which indicates that the host
has stopped communicating with the KDM70. After a host specified
timeout interval, the KDM70 declares the connection to the host is lost
via this bugcheck code.

00188184: DCP_MSC_SLII

Facility: Disk MSCP Server

Explanation: An invalid item was received on the miscellaneous
queue.

MSCP Event: Software logic error

User Action: Look for other error symptoms. If no other errors
exist, it is most likely a KDM70 controller software problem. Other
symptoms may indicate hardware.

A–21

KDM70 Controller Bug Check Codes

00188185: DCP_MSC_NK

Facility: Disk MSCP server

Explanation: The unit was not known.

MSCP Event: Software logic error

User Action: Look for other error symptoms. If no other errors
exist, it is most likely a KDM70 controller software problem. Other
symptoms may indicate hardware.

0018C181: DIM_FWB

Facility: Disk/tape state machine management

Explanation: The facility failed to find an XMI work block in error.

MSCP Event: Software logic error

User Action: Look for other error symptoms. If no other errors
exist, it is most likely a KDM70 controller software problem. Other
symptoms may indicate hardware.

0018C182: DIM_OWB

Facility: Disk/tape state machine management

Explanation: Orphaned SI work block. A work block was started but
did not finish. Neither SI state machine was operating on the same
port as the work block. Invoke a bug check.

MSCP Event: Software logic error

User Action: Check the SISM (T2023) and KDM70 controller
software.

A–22

KDM70 Controller Bug Check Codes

0018C183: DIM_BWO

Facility: Disk/tape state machine management

Explanation: Bad work block opcode.

MSCP Event: Software logic error

User Action: Look for other error symptoms. If no other errors
exist, it is most likely a KDM70 controller software problem. Other
symptoms may indicate hardware.

0018C184: DIM_INC

Facility: Disk/tape state machine management

Explanation: The XMI state machine did not complete its work and
is considered trapped in the work block.

MSCP Event: Software logic error

User Action: Check the XMI State Machine (T2022) and KDM70
controller software.

00192001: DUP_PROG_TMO

Facility: Diagnostic utility

Explanation: Diagnostic utility time out.

MSCP Event: Software logic error

User Action: Look for other error symptoms, T2022, KDM70 software

A–23

KDM70 Controller Bug Check Codes

00192002: DUP_HOST_TMO

Facility: Diagnostic utility

Explanation: The host failed to respond or poll within the timeout
period.

MSCP Event: Software logic error

User Action: Look for other error symptoms. T2022, KDM70
Software

0019C000: SCA_SYS_SIZ

Facility: SCA

Explanation: An attempt to allocate SYS handle failed because its
size is not 512.

MSCP Event: Software logic error

User Action: Look for other error symptoms. T2022, KDM70
Software

0019C001: SCA_MIS_BUF

Facility: SCA

Explanation: An attempt to allocate handle failed because
insufficient buffers were supplied.

MSCP Event: Software logic error

User Action: Look for other error symptoms. T2022, KDM70
Software

A–24

KDM70 Controller Bug Check Codes

0019C002: SCA_INV_HND

Facility: SCA

Explanation: An attempt to deallocate an invalid handle failed.

MSCP Event: Software logic error

User Action: Look for other error symptoms. T2022, KDM70
Software

001A6081: TIM_HQE

Facility: Tape state machine management

Explanation: The holding queue on the port control block is not
consistent. A TB should be on the PCB holding queue.

MSCP Event: Software logic error

User Action: Look for other error symptoms. If no other errors
exist, it is most likely a KDM70 controller software problem. Other
symptoms may indicate hardware.

A–25

KDM70 Controller Bug Check Codes

A.2.2 Hardware Bug Checks
Hardware bug checks are the result of errors detected by hardware during
execution of functional code. Refer to "User Action" for the specific bug
check code.

Note: Hardware bug checks do not necessarily mean that hardware must
be replaced. Check the "User Action" under the specific bug check
code encountered.

C048202B: EXC_MEM_ERR

Facility: EXEC

Explanation: A memory error was detected by memory error logic.

MSCP Event: Controller memory error

User Action: The KDM70 controller will report memory parity
errors via this bug check code. The page containing the parity error
will be logged to the Bad Page List and will no longer be used by
functional code. Once the threshold of bad pages has been reached,
a fault management event (1EA) errorlog will be generated. This
indicates that a call should be scheduled to replace either board 1
(T2022) or board 2 (T2023). The failing module is indicated in the
fault management event error log.

C0604029: XIM_CVAX_FAIL

Facility: XMI state machine management

Explanation: An error occurred while the CVAX channel was doing
an XMI transfer. The CVAX will retry the transfer. If it still fails,
perform a bug check.

MSCP Event: Host interface hardware error

User Action: Look for other error symptoms. T2022, KDM70
Software

A–26

KDM70 Controller Bug Check Codes

C068202C: EXC_BUS_ERR

Facility: EXEC

Explanation: A memory parity error was detected by HIB bus logic.

MSCP Event: Internal bus error

User Action: This error indicates a problem in the T2022/T2023
internal bus. This bugcheck has been resolved with hardware REV
E02 of the T2022 module.

A–27

KDM70 Controller Bug Check Codes

C070202D: EXC_MC_ERR

Facility: EXEC

Explanation: Machine check.

MSCP Event: Policy processor error

User Action: Check the T2022.

C458C12A: DIM_SST

Facility: Disk/tape state machine management

Explanation: The SISM status has an unrecoverable error code.

MSCP Event: Device interface hardware error

User Action: Check the T2023 and KDM70 controller software.

C458C3AA: DIM_ISE

Facility: Disk/tape state machine management

Explanation: The send work block status has an invalid error code.

MSCP Event: Device interface hardware error

User Action: Check the T2023 and KDM70 controller software.

A–28

KDM70 Controller Bug Check Codes

C4604029: XIM_CXH_FAIL

Facility: Disk/tape state machine management

Explanation: The CXHIC transaction timed out.

MSCP Event: Host interface hardware error

User Action: Check the T2022 and KDM70 controller software.

C460C1A9: DIM_XST

Facility: Disk/tape state machine management

Explanation: The XISM status has an unrecoverable error.

MSCP Event: Host interface hardware error

User Action: Check the T2022 and KDM70 controller software.

C858C12A: DIM_CPE

Facility: Disk/tape state machine management

Explanation: SISM control ROM parity error.

MSCP Event: Device interface hardware error

User Action: Check the T2023.

A–29

KDM70 Controller Bug Check Codes

C858C3AA: DIM_IRE

Facility: Disk/tape state machine management

Explanation: An invalid error code was found in the receive work
block. status

MSCP Event: Device interface hardware error

User Action: Check the T2023 and KDM70 controller software.

C8604029: XIM_CMES_NA

Facility: XMI state machine management

Explanation: CMES was not asserted on a CXHIC error.

MSCP Event: Host interface hardware error

User Action: Check the T2022 and KDM70 controller software.

C860C1A9: DIM_XES

Facility: Disk/tape state machine management

Explanation: The XISM is idle, but the DPC error summary is zero.

MSCP Event: Host interface hardware error

User Action: Check the T2022 and KDM70 controller software.

A–30

KDM70 Controller Bug Check Codes

CC58C12A: DIM_SMS

Facility: Disk/tape state machine management

Explanation: SISM failed to start on a work block.

MSCP Event: Device interface hardware error

User Action: Check the T2023 and KDM70 controller software.

CC58C3AA: DIM_IDE

Facility: Disk/tape state machine management

Explanation: An invalid error code was found in the disk buffer
status result.

MSCP Event: Device interface hardware error

User Action: Check the T2023 and KDM70 controller software.

CC604029: XIM_CXH_NBE

Facility: XMI state machine management

Explanation: A CXHIC transaction failed with no bus error.

MSCP Event: Host interface hardware error

User Action: Check the T2022 and KDM70 controller software.

A–31

KDM70 Controller Bug Check Codes

D058C12A: DIM_SMH

Facility: Disk/tape state machine management

Explanation: SISM failed to HALT.

MSCP Event: Device interface hardware error

User Action: Check the T2023 and KDM70 controller software.

D058C3AA: DIM_ITE

Facility: Disk/tape state machine management

Explanation: An invalid error code was found in the tape buffer
status result.

MSCP Event: Device interface hardware error

User Action: Check the T2023 and KDM70 controller software.

D0604029: XIM_CXH_DE

Facility: XMI state machine management

Explanation: CXHIC failed with both DTNOK and CTNOK asserted.

MSCP Event: Host interface hardware error

User Action: Check the T2022 and KDM70 controller software.

A–32

KDM70 Controller Bug Check Codes

D4604029: XIM_CXH_OK

Facility: XMI state machine management

Explanation: A CXHIC transaction timed out.

MSCP Event: Host interface hardware error

User Action: Check the T2022 and KDM70 controller software.

D8604029: XIM_DPC_NI

Facility: XMI state machine management

Explanation: DPC failed to enter the idle mode.

MSCP Event: Host interface hardware error

User Action: Check the T2022 and KDM70 controller software.

A–33

KDM70 Controller Bug Check Codes

A–34

B KDM70 Controller Error Codes

B.1 SA Error Codes
Table B–1 lists standard SA event codes associated with the KDM70
controller. SA codes 352(x) through 376(x) are written by module self-test
if an error occurs. SA codes 37A through 37F are used to identify fatal
controller errors detected during functional code.

The field replaceable unit (FRU) is called out whenever possible. In cases
where multiple FRUs are called out, the most likely FRU is listed first.

Table B–1 KDM70 SA Error Codes

Decimal Hex Description FRU Callout

850 352 Bus error test failure T2022

851 353 Board 2 EEPROM test failure T2023

852 354 Vectored intrpt. cntlr. test failure T2022

853 355 VIC init routine failure T2022

854 356 Board 1 (internal bus) HIB test failure T2022

855 357 Data path controller RIF test failure T2022

856 358 CXHIC register interface test failure T2022

857 359 XMI CRAM test failure T2022

858 35A XMI CRAM load test failure T2022

859 35B XMI CRAM verify test failure T2022

860 35C XMI internal loopback test failure T2022

861 35D XMI external loopback test failure T2022, XMI interface

862 35E Board 2 internal bus (HIB) test failure T2023

863 35F Board 2 SRAM test failure T2023

864 360 XMI workblock test failure T2022, XMI interface

865 361 Board 1 SRAM test failure T2022

866 362 CVAX cache test failure T2022

867 363 Memory map test failure T2022

868 364 Memory management test failure T2022

869 365 Virtual space transfer failure T2022

870 366 Code transfer routine failure T2022

871 367 Timers test failure T2022

872 368 Software interrupts test failure T2022

873 369 SISM CRAM load routine failure T2023

874 36A SISM CRAM verify test failure T2023

B–1

KDM70 Controller Error Codes

Table B–1 (Cont.) KDM70 SA Error Codes

Decimal Hex Description FRU Callout

875 36B SISM CRAM read test failure T2023

876 36C SIECL calibrate routine failure T2023

877 36D SISM microBIST test failure T2023

878 36E SISM sector test failure T2023

879 36F SISM RTCS test failure T2023

880 370 SISM OPCODE valid test failure T2023

881 371 SISM diagnostic read test failure T2023

882 372 Waiting for update init N/A

883 373 Soft initialization failure N/A

884 374 Purge/poll test failure T2022, XMI interface

885 375 Extended ECC recovery: EEPROM T2022

886 376 Unexpected restart T2022, T2023

890 37A Software logic error N/A

891 37B Host interface hardware error T2022

892 37C Drive interface hardware error T2023

893 37D Controller memory error T2022, T2023

894 37E Internal bus hardware error T2022, T2023, HIB Cable

895 37F Policy processor error T2022

B–2

KDM70 Controller Error Codes

B.2 MSCP Controller Event Codes
Table B–2 lists the MSCP event codes for controller detected errors.

Table B–2 KDM70 Controller Event Codes

HEX Code Description

00A Last-crash error log packet (LCELP)

02A Serdes overrun error

04A External EDC error

06A Software logic error

08A Internal EDC error

10A Controller overrun or underrun error

12A Controller memory error

16A Device interface hardware error

18A Host interface hardware error

1AA Internal bus error

1CA Policy processor error

1EA Fault management analysis event

20A Self-test error

B–3

KDM70 Controller Error Codes

B.3 Known Tape Errors
Protocol errors when drive not online

If a drive fails and drops offline (i.e., losses vacuum, check
errors, etc), KDM error recovery code will still attempt to is-
sue commands to the tape drive that are not legal to an offline
drive. These commands will be rejected thus causing a protocol
error. This results in error logs that are misleading.

Use the tape device error logs or device visual indicators to
troubleshoot the problem.

TA78/79

DATA LATE’s

Data late errors intermittently occur (Testing indicates approx-
imately 10%) on one TA7X drive when another TA7X drive connected
to the same formatter is performing a Rewind command with the
Erase modifier set. There are no data integrity issues, the
error is recoverable, and at best is a possible performance
impact. The error occurs with either the KDM or the HSC.

This is a TS78 Formatter Ucode bug. Based on the infrequent
use of Rewind-Erase and the fact that there have been no known
customer complaints, CLD’s, Prisms, etc., it has been recommend
that the TS78 Ucode not be changed to fix this problem and thus
there will not be an FCO to correct this problem.

WRITE-LENGTH

Write-length errors intermittently occur on TA7X drives when
writing the ID burst at 1600 BPI. This problem occurs on both
the KDM and HSC (although the HSC has a different error code).

The KDM hardware declares a "00CC" error (write length) which
means that Data Ready was dropped (by the drive) in the middle
of the transfer. This is a fatal error, and reported as such
to the host. The Error Number low and high bytes from the Get
Extended Drive Status are "0414" (Could not find gap after ID
code was written correctly).

There is no work ongoing to fix this problem and thus there will
not be an FCO to correct this problem.

B–4

KDM70 Controller Error Codes

TA81

The KDM70 will deliver an error log (event code = FF6B) after a
TA81 unload. This is a normal condition for TA81’s attached to a
KDM70, and should not be considered as a failure.

If an error occurs during normal TA81 tape operation, two error
logs will be delivered for each error (event code = FF6B).

B.4 Tape TMSCP Event Codes
Table B–3 shows new TMSCP event codes related to the KDM70 controller.

Table B–3 TMSCP Event Codes

Event
Code Description

02C Drive/Formatter timeout

04C Controller-detected transmission error

06B Data Ready Timeout

08B Acknowledge not asserted at start of transfer

0CB Receiver Ready not asserted at start of transfer

0CC Write length error

0EC Drive/Formatter-detected error

10C Controller-detected pulse/parity error

16C Drive/Formatter failed initialization

18C Drive/Formatter ignored initialization

1AC Receiver ready collision

1CB TA90 Micro-code not at minimum revision (2.3)

F6C Formatter requested error log

B–5

C XMI Register Summary

C.1 Introduction
Table C–1 lists the XMI nodespace base addresses for XMI registers. The
register offsets are listed in Table C–2. The base address is determined by
the physical location of the KDM70 controller processor module (T2022).
For example, a T2022 module located in XMI slot 3 would be seen as node
number 3. The XMI registers would begin at base address 21980000.

The register address is obtained by adding the base address to the offset
for the selected register. For example, to obtain the address of the KDM70
controller SA register for node 2, use the following formula:

21900000 + 44 = 21900044

Note: The example shown in Table C–1 is for a single XMI. Refer to
system-specific documentation for systems with multiple XMIs.

Table C–1 XMI Nodespace Registers

XMI Nodespace Base Address Node Number

2188 0000 Node 1

2190 0000 Node 2

2198 0000 Node 3

21A0 0000 Node 4

21A8 0000 Node 5

21B0 0000 Node 6

21B8 0000 Node 7

21C0 0000 Node 8

21C8 0000 Node 9

21D0 0000 Node 10

21D8 0000 Node 11

21E0 0000 Node 12

21E8 0000 Node 13

21F0 0000 Node 14

C–1

XMI Register Summary

The following table shows XMI node space offsets:

Table C–2 XMI Nodespace Offsets

Register Offset Size

(XDEV) Device type register 00 32 Bits

(XBE) Bus error register 04 32 Bits

(XFADR) Failing address register 08 32 Bits

(XFAER) Failing address extension register 2C 32 Bits

(IP) Initialization/Polling register,
read/write

40 16 Bits

(PE) Port error, read-only 40 16 Bits

(SA) Status register 44 16 Bits

(PD) Port data register 48 32 Bits

(IP) Initialization/Polling register, read-
only

4C 16 Bits

(PE) Port error register, read/write 4C 16 Bits

C.1.1 Examining Registers
To examine a register, halt the system by running system shutdown
procedures. At the console prompt, type:

>>> EXAMINE node_register_addr

To examine the SA register for node 1, using the offset from Table C–2.
Type the following command:

>>> EXAMINE 21880044

To examine the bus error register (XBE) for node 3, add the nodespace
offset to the register address as in the following example:

>>> EXAMINE 21980004

Using this method, you can examine all the registers listed in Table C–2.

C.1.2 XDEV: Device Type Register
The XDEV register contains node identification information. The
XDEV fields are loaded during initialization. A zero value indicates an
uninitialized node.

C–2

XMI Register Summary

Figure C–1 XDEV

31 24 23 20 19 16 15

SOFTWARE REV BD2 REV BD1 REV KDM70 DEVICE TYPE (0C22 HEX)

CXO-2892A

00

C–3

XMI Register Summary

The fields are defined as follows:

Field Description

Software revision The revision level of the KDM70 software

BD1 revision The hardware revision level of the T2022 module

BD2 revision The hardware revision level of the T2023 module.

KDM70 Device type The KDM70 device type code

C.1.3 XBE: Bus Error Register

Figure C–2 XBE

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 4 3 2 0

FCID

ENABLE HEXAWORD WRITES
SELF-TEST FAIL (STF)
EXTENDED TEST FAIL (ETF)
NODE-SPECIFIC ERROR

TRANSACTION TIMEOUT (TTO)
RESERVED
COMMAND NOACK (CNAK)
READ ERROR RESPONSE (RER)
READ SEQUENCE ERROR (RSE)
NO READ RESPONSE (NRR)
CORRECTED READ DATA (CRD)
WRITE DATA NOACK (WDNAK)
READ/IDENT DATA

WRITE SEQUENCE

PARITY ERROR (PE)
INCONSISTENT PARITY (IPE)
WRITE ERROR

XMI FAULT (XFAULT)
CORRECTED

XMI BAD (XBAD)
NODE HALT (NHALT)
NODE RESET (NRST)
ERROR SUMMARY (ES)

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 RSVD

SUMMARY (NSES)

NOACK (RIDNAK)

ERROR (WSE)

INTERRUPT (WEI)

CONFIRMATION (CC)

CXO-2893A

0 0 0 0 0

C–4

XMI Register Summary

C.1.4 XFADR and XFAER Registers
The XFADR and XFAER registers are used to log address, command, and
length information associated with a failing transaction. These registers
are loaded on every command cycle. On the occurrence of an XMI bus
error, loading is disabled, latching bits <63:0> of the XMI D lines.

Figure C–3 XFAR and XFAER Registers

31 28 27 26 25 16 15 00

CMD MBZ MASK

30 29

FLN

XFAER: FAILING ADDRESS EXTENSION REGISTER

FAILING ADDRESS

ADDRESS EXTENSION

0031

XFADR: FAILING ADDRESS REGISTER

CXO-2894A

C.1.4.1 XFADR — Failing Address Register
XFADR <31:30>: This field is used to log the value of XMI D <31:30>
during the command cycle of a failing transaction.

XFADR <29:0>: This field is used to log the value of XMI D <29:0> during
the command cycle of a failing transaction. For read and write transaction,
this field contains bit 39 and bits <28:0> of the address specified by the
transaction.

C.1.4.2 XFAER — Failing Address Extension Register
XFAER <31:28>: This field is used to log the value of XMI D <63:60>
during the command cycle of a failing transaction. During such cycles this
field contains the command code of the transaction.

XFAER <25:16>: This field is used to log the value of XMI D <57:48>
during the command cycle of a failing transaction. For read and write
transactions, this field contains bits <38:29> of the address specified in the
transaction.

XFAER <15:0>: This field is used to log the value of XMI D<47:32> during
the command cycle of a failing transaction. For write transactions, this
field contains the write mask, while for other transactions it is undefined.

C–5

XMI Register Summary

C.1.5 PE and IP Registers
The port error and initialization/polling register are each contain 16 bits.
The IP is contained in bits <15:0> and the PE is in bits <31:16>.

Figure C–4 PE and IP Registers

31 16 15

PORT ERROR (PE) INTERRUPT/POLLING REG (IP)

CXO-2895A

00

C.1.5.1 Initialization and Polling Register (IP)
The IP register has three functions for XMI controllers:

1 When read or written by the host with any value and a connection
between the host and KDM70 controller exists, causes the controller
to examine the current location of the command queue in the
communications area for commands. Note the term "polling" is used
to describe the controller’s access of the command queue. When read
by the host and a connection between the host and controller does not
exist, the device controller ignores the IP register read.

2 When written with a 1 by the host followed by a node HALT, causes
the controller to perform a soft initialization.

3 When written with a 2 by the host followed by a node HALT, causes
the controller to perform a maintenance initialization.

C.1.6 SA Register
The SA register is written by self-test (MIST) or functional code to indicate
that a failure has occurred. This register contains valid error information
only if the "ERR" bit is set. Refer to Table 4–2 for a description of KDM70
SA codes.

Figure C–5 SA Register

15 14 13 12 11 10 00

CXO-2932A

ERR SA ERROR CODE

C–6

XMI Register Summary

C–7

D Power-Up and MIST Diagnostics

D.1 MIST and DEMON Test Descriptions
This appendix describes the KDM70 controller power-up and module
internal self-test (MIST) diagnostics. The appendix is divided into two
sections:

• KDM70 core hardware tests

• KDM70 MIST diagnostics

D.2 KDM70 Core Hardware Test Descriptions
KDM70 core hardware diagnostics run from power-up until the MIST
diagnostics execute from SRAM. Testing is performed in two steps:

1 Test the processor boot hardware. This is the hardware involved in
fetching machine instructions from the boot UVPROM and executing it
within the CVAX.

2 Test hardware associated with loading and executing MIST code from
SRAM. Core hardware tests are stored and executed out of the Boot
UVPROM.

D.2.1 KDM70 Core Hardware Test Descriptions
This section describes KDM70 core hardware tests. Board 1 status LEDS
change during testing. They act as visual and readable progress code.

Initialization Test

The following registers are initialized/verified during the initialization test:

CVAX stack pointer (SP)
CVAX system control block base register (SCBB)
CVAX interrupt priority level (IPL) IPR
SSC bus timeout control register
SSC configuration register
SSC channel 0 match register
SSC channel 0 mask register
SSC channel 1 match register
SSC channel 1 mask register

D–1

Boot UVPROM Test

Boot UVPROM Test

An error detection code (EDC) check is performed on each page of core
hardware test code in the boot UVPROM.

CVAX PSL Test

The restart contents of the CVAX PSL are tested and all condition flag bits are
verified.

CVAX GPR Test

The CVAX GPR test performs a stuck-at-bit test and re-initialization of the
stack pointer. This is followed by stuck-at-bit testing of the remaining general
purpose registers.

SSC RAM Test

A checkerboard memory test is performed on SSC internal RAM. Additionally,
a byte read/write test verifies that the byte mask bits operate correctly between
the CVAX and the SSC.

Instructions Test

The VAX hardware instruction set is tested through the execution of a subset
of VAX macro instructions. Instruction access modes are also verified with
this test.

EEPROM Interface Test

The EEPROM interface test verifies that at least two of three copies of the
board 1 bad page list and parity data are equal. It then verifies the board 1
control store EEPROM for proper parity data contents.

D–2

CVAX Parity Detector Test

CVAX Parity Detector Test

The board 1 diagnostic write register is checked for stuck-at faults by writing
and reading different test patterns to/from the register. Additionally, the CVAX
bad parity detect logic is tested on longwords and single bytes.

SRAM Test

The SRAM test locates a section of good board 1 memory large enough to
hold MIST code, memory for MIST scratchpad, and memory for the code
transfer utility.

EEPROM Test and Code Transfer

This is a combination of EEPROM testing and code transfer testing using an
EDC/ECC algorithm. Validity testing and correction of bad bytes within MIST
physical space is performed. Good code is transferred to board 1 bank 1
SRAM, which was tested in the previous SRAM test.

Transfer to Physical Space MIST

This routine transfers execution control from the core hardware test in boot
ROM to the DEMON in board 1 SRAM for execution of the MIST.

D.3 KDM70 Module Internal Self-Tests
Once the core hardware tests have successfully run, the MISTs, which
test the KDM70 subsystem, are executed. Tests are executed in the order
listed.

Bus Error Test

The following circuitry is tested:

• Board 1 diagnostic read register

• Bus timeout detection logic in the SSC

• RDY and decoder PALs and associated address decode circuitry

• Nonexistent memory (NXM) detection logic

• Read and write parity checkers on the CDAL

D–3

Bus Error Test

• Serial EEPROM data and control bits in the board 1 diagnostic write
register.

Board 2 EEPROM Test

This test verifies board 2 serial EEPROM can be read. The test uses two out
of three longwords read from EEPROM.

VIC Test

This test verifies the vectored interrupt controller (VIC) chip. VIC reset and
enable are tested by writing the board 1 diagnostic write register. A stuck-at
test is performed on the read/write registers of the VIC, and the VIC’s interrupt
handling is tested through the use of the interrupt request bit in the board 1
diagnostic write register.

VIC Init Routine

The internal VIC registers are initialized to the required functional code state
with individual interrupts disabled.

Board 1 HIB Test

This test verifies board 1 HIB address/data, parity logic, and HIB bus register.
The following circuitry is tested:

• HIB bus register initialization

• HIB bus register address latch

• HIB bus address parity

• HIB bus CVAXII MUX

• HIB bus chip select

• HIB bus byte mask

• DPC data parity detection register

D–4

Board 2 HIB Test

Board 2 HIB Test

The board 2 HIB test verifies board 2 HIB address control and data logic. It
also verifies the data path for the board 2 diagnostic write register (DWR),
board 2 diagnostic read register (DRR), and board 2 error address register
(EAR). The following circuitry is tested:

• Board 2 DWR initialization

• Board 2 DWR read/write path

• Board 2 DRR/EAR data parity

• Board 2 HIB Address parity detect

• Board 2 HIB Control parity detect

• Board 2 HIB Data parity detect

• Board 2 SRAM data path

Board 1 SRAM Test

Board 1 SRAM test performs a checkerboard test of the remaining board 1
SRAM not tested during the core hardware test. The byte mask bits between
the CVAX and banks 1 and 2 of board 1 SRAM are also tested through
byte-wide writes and reads.

DPC RIF Test

This test verifies the HIB/DPC interface and the internal DPC registers. The
DPC internal self-test is used to perform a stuck-at test of the internal DPC
registers. The HIB/DPC interface is verified by writing and reading several
internal DPC registers. Initial DPC register states are also verified.

CXHIC RIF Test

This test is used to verify the CXHIC/HIB interface and the internal CXHIC
read/write registers. A thorough stuck-at test is performed on the read/write
registers, and the initial CXHIC register states are verified after a CXHIC
reset.

D–5

XMI CRAM Test

XMI CRAM Test

This routine verifies the DPC control RAMs by performing a checkerboard
memory test on them.

XMI CRAM Load Routine

This test loads the XMI microcode from board 1 SRAM into the DPC control
RAMs.

XMI CRAM Verify Test

This test verifies the loaded XMI microcode and the ability of the DPC to
detect microcode parity errors. Each microword in the CRAM is compared
to the corresponding longword in board 1 SRAM. The DPC is then put into a
special mode in which it sequences through each of its microcode addresses,
reading the microword and checking parity. During the load of XMI microcode,
a microword containing bad parity is written into the last location of DPC
control RAM. When this location is reached, the test ends.

XMI Internal Loopback Test

This test verifies the ability of the CXHIC to perform CVAX port read and write
transactions. All transactions are performed in loopback mode and therefore
do not rely on any circuitry on the XMI side of the CXHIC. Also verified during
the test is the ability of the CXHIC to properly increment the destination
address and to load the next page frame when required.

XMI External Loopback Test

This test is identical to the read/write transactions portion of the XMI internal
loopback test, except that loopback is not used. This allows the logic on the
XMI side of the CXHIC to be verified.

D–6

Board 2 SRAM Test

Board 2 SRAM Test

The board 2 SRAM test performs a checkerboard test of the entire board 2
data buffer memory. The byte mask bits between the CVAX and the board 2
SRAM are also tested by performing byte-wide writes and reads.

CVAX Cache Test

This test verifies the proper functionality of the CVAX internal cache memory.
A special diagnostic mode is used to force data patterns into the cache. The
patterns are then read back during cache hit cycles.

Memory Map Routine

This routine maps virtual memory into physical memory by setting up the
system page table in board 1 SRAM.

MMU Test

This test verifies proper functionality of the CVAX’s memory management
unit by writing data patterns into physical pages of board 1 SRAM and then
enabling mapping and reading back the corresponding virtual addresses.

Virtual Space Transition

This routine initializes the KDM70 environment for virtual space execution and
then turns on mapping. All remaining MIST tests execute from virtual space.

EEPROM Test and Code Transfer

This is a combination EEPROM test and code transfer using an EDC/ECC
algorithm to check the validity and, if required, correct bad bytes of the
MIST/functional code image, while at the same time transferring the good
code into board 1 SRAM.

D–7

Timers Test

Timers Test

This test is used to verify proper functionality of the two programmable timers
and the interval timer, all supplied by the SSC. Both polling and interrupt
modes of the programmable timers are checked.

Software Interrupts Test

This test verifies the ability of the CVAX to accept requests for software
interrupts and to properly service them. The software interrupt logic is
contained entirely within the CVAX.

XMI Workblock Test

This test verifies the interface between the DPC and the CXHIC during XMI
workblock transactions. It also verifies the DPC Idle signal, the ability to
preempt the XMIC state machine through software, and the ability of the
CXHIC and DPC to request interrupts when appropriate. Buffer to buffer
compare workblocks and XMI DMA read and write workblocks are used
during the testing.

SISM CRAM Load Routine

This routine loads both SI state machine (SISM) control RAMs with the SI
microcode instructions. The SISM microinstructions are 40 bits wide with even
parity in the most significant bit. The microcode is built with the CVAX MIST
image, and resides in instruction SRAM. Each SISM control RAM array is
5 bytes wide, and can accommodate up to 2K microinstruction. Both SISM
CRAMs are mapped into two locations of CVAX address space: the first
provides access to the lower four bytes of each microword, the latter provides
access to the upper byte of each microword. Access of all CRAM locations
is controlled via internal counters, which increment after each access. The
board 2 diagnostic write register (board 2 DWR) controls CRAM read/write
direction and internal counter reset.

The SISM CRAM load routine verifies the internal counter after each
microinstruction via the board 2 diagnostic read register (Board 2 DRR).
The routine sets up and loads the lower CRAM for SISM A, followed by a load
of SISM A upper CRAM. The procedure is repeated for SISM B.

The unused CRAM locations, if any are zero filled. The microcode parity (bit
39) of the last CRAM location (hex 7FF) is inverted, as a safeguard against
CRAM location counter error, and is used in a later test.

D–8

SISM CRAM Verify Test

SISM CRAM Verify Test

This test verifies the contents of both SISM control RAMs against the
microcode built with the MIST image. The routine sets up and reads the
lower CRAM for SISM A, followed by read of SISM A upper CRAM. The
procedure is repeated for SISM B. The SISM CRAM load routine verifies the
internal counter after each microinstruction via the board 2 diagnostic read
register (board 2 DRR). The unused locations are verified to contain zeros,
and the inverted parity at location 7FF is verified.

SISM CRAM Rolling Read Test

This test verifies that the SISMs can correctly access their control RAMs
without error. The CVAX starts each SISM on a sequential read of its CRAM,
ignoring the microinstruction. The CVAX waits for the SISM to detect a CRAM
parity error at location 7FF, then verifies the bad parity location and CRAM
overflow condition in the board 2 diagnostic read register (board 2 DRR).

SIECL Calibrate Routine

This routine is designed to calibrate the 12- and 20-nsec delay line circuitry in
both SIECLs. The routine is driven by the CVAX, without SISM activity. The
routine checks that the calibration counter in the CSIC is functioning properly.
The board 2DWR is then used to configure the 12-nsec clock into the CSIC
calibration counter. Calibration values are clocked serially into the CYCLE
using the board 2DWR; the CSIC calibration counter is then read twice, at a
0.5-millisecond interval. The counter values are compared to determine the
actual frequency of the CYCLE clock. The CYCLE calibration value range is
0-255, and a binary search algorithm is used to determine the optimum value.
The procedure is repeated for the SIECLs 20 nsec clock.

SISM MicroBIST Test

This test consists of four subtests. The following sections describe each
subtest.

D–9

External Register Subtest

External Register Subtest

This subtest verifies the interface between the CVAX and the CSIC external
registers. The test writes patterns to the SISM workblock address register
(WAR), selects the WAR using the SISM control register (CR), then reads and
verifies the pattern through the SISM read register (RR).

Microcode Subtest

The following list describes the SISM functions tested in the microcode
subtests:

• CSIC TMUX test 1: This tests the CSIC branch register through the
predefined jump function in microcode. This test ensures all microcode
branching executes correctly.

• CSIC WAR test: This test waits in a tight loop until the CSIC’s WAR is
written with an address in data buffer memory. The address is the first
location in data buffer memory of all the data for the remaining MicroBIST
microcode tests to read/write/etc.

• CSIC BIF test: This test reads a data pattern from buffer memory and
writes it into the SISM writable registers. The test also writes the data
pattern back to buffer memory.

• CSIC TMUX test 2: This test checks the functions of the primary and
secondary test MUXes. There are 18 tests in all and there is special data
set up by the CVAX and read in from buffer memory by the microcode
to set/clear various flags and to check these flags. The microcode writes
a value to indicate the state of the flags in the Test MUXes. The CVAX
checks the state written to memory and calls out any discrepancies after
the test is complete.

• CSIC SERDES tests 1 and 2: The function of the two tests is the same,
except that in the second, the CVAX sets the forced error bit in the
diagnostic write register, which causes the CSIC to see pulse/parity
errors. The CVAX writes the necessary data to buffer memory. This
microcode writes three words, allowing the data to loop in the SERDES
register. The microcode reads 17 consecutive words, which allows the
ECC and EDC logic to be exercised. The data is looped back through the
SERDES and written out to buffer memory, including the final status of the
test. The CVAX verifies that the data in buffer memory is correct.

• Internal register subtest: This test verifies the contents of the SISM’s
internal registers immediately following execution of the microcode test,
above. The CSIC register data path is 16 bits, and each register requires
two select and read operations. Each register is read by selecting (via
Control Register) the upper/lower internal register number, followed by a
read (via Read Register) of the upper/lower internal register value.

D–10

Microcode Subtest

• SISM data parity error subtest: This test checks the SISM data parity
detection logic. The CVAX first loads the SISM Workblock into data
memory. parity error interrupts are disabled, and the board 2 data parity
invert is set in the board 2 DWR. The CVAX starts the SISM and waits for
interrupt. This action directs the SISM to write data into data memory with
bad parity. The CVAX restarts the SISM, and again waits for an interrupt.
The SISM reads the location with bad parity, and the CVAX verifies that a
HIB Bus parity error was detected.

SISM Sector Test

The following steps are performed in this test:

1 CVAX loads workblock into memory and writes WAR to start SISM.

2 CVAX waits for an interrupt (or timeout).

3 SISM clears the sector counter and sets interrupt to synchronize with
CVAX.

4 CVAX clears the interrupt and verifies that the sector counter has a zero
value.

5 CVAX reads/writes to WAR to restart SISM.

6 SISM reads the desired sector count from workblock.

7 The counter is incremented and an interrupt is sent to CVAX.

8 CVAX clears the interrupt and verifies that the sector counter has the
desired value.

9 CVAX reads/writes to WAR to restart SISM.

10 The previous six steps are repeated one more time.

SISM RTCS Test

The following steps are performed in this test:

1 CVAX loads the workblock into memory and writes WAR to start SISM.

2 SISM reads the opcode longword with the port number.

3 SISM sets all possible state bits in the state frame; sets sync last.

4 SISM waits for two cycles of an RTCS reload; checks the state bits in
TMUX.

5 SISM checks the state and writes the status of the state bits as reflected
in TMUX.

6 SISM clears all state bits, including sync.

7 SISM waits for two cycles of an RTCS reload; checks the state bits in
TMUX.

8 SISM writes the status to buffer memory again.

D–11

SISM RTCS Test

9 CVAX waits for an interrupt/timeout; checks memory against expected
data.

SISM Opcode Validate Test

The following steps are performed in this test:

1 CVAX loads the workblock into memory and writes WAR to start SISM.

2 SISM reads the status pointers and opcode with the port number.

3 SISM tests PUNTL inactive:

• Read in any opcode with diagnostic port set

• Read in an opcode for a NOP on a real port

• Read in a real port and level 1 command

• Read in a real port and wait for rw/rdy command

• Read in a real port and wait for sector command

• Read in a real port and a disk read command

• Read in a real port and a tape read command

4 SISM tests for PUNTL active:

• Read in opcode with premature bit set

• Read in opcode with M bit set and IGNORE MARKED WB set in
SISM control reg

• Read in opcode with wait-for-sector command

• Test absence of sync

• Test absence of rw/rdy

• Test absence of receiver ready

5 SISM writes status of PUNT signal after each test.

SISM Diagnostic Read Test

This test consists of two subtests:

1 Diagnostic Read Setup: The diagnostic read setup workblock test is used
to initialize each SISM as either A or B. The CVAX loads a workblock into
memory, sets the appropriate A/B flag, and directs each SISM to execute
the workblock.

2 Diagnostic Read: The diagnostic read subtest exercises both SISMs
together. One SISM emulates an SI drive by sending data through
the CSIC data channel to the other SISM. The second SISM executes
functional microcode and reads the data sent by the first SISM. The
results are written to data memory. The CVAX loads send and receive
workblocks into data memory and starts both SISMs. When microcode

D–12

Power-Up and MIST Diagnostics

execution is complete, the CVAX verifies the data patterns written to
memory. The test is repeated with data flow between SISMs reversed.

D–13

Power-Up and MIST Diagnostics

D–14

E ELECTROSTATIC DISCHARGE (ESD) PART LIST

E.1 INTRODUCTION
This appendix lists the part numbers and part descriptions for
Electrostatic Discharge (ESD) kits and materials.

Table E–1 lists the part numbers and part description

Table E–1 ELECTROSTATIC DISCHARGE PART NUMBER LIST

PART
NUMBER PART DESCRIPTION

29-25435-00 ESD Demonstration Kit (110-volt)

29-25433-00 ESD Demonstration Kit (220-volt)

29-11762-00 Velostat Field Service Grounding Kit (see contents below)

The Velostat Field Service Grounding Kit (complete) listed in the Table
E–1 includes the following items:

• 10-foot coil cord (for wrist strap) (Part Number 29-25492-00)

• Velostat field service work surface (Part Number 29-25493-00)

• Insulated alligator clip (Part Number 29-25494-00)

• Wrist strap, small (Part Number 29-25496-00)

• Wrist strap, medium (Part Number 29-25497-00)

• Wrist strap, large (Part Number 29-25498-00)

Table E–2 lists the part numbers and part description for Static Shielding
Bags.

Table E–2 STATIC SHIELDING BAG PART NUMBER LIST

PART
NUMBER PART DESCRIPTION

99-07092-01 Static Shielding Bag, 4 inches x 6 inches i.d.

99-07092-02 Static Shielding Bag, 6 inches x 8 inches i.d.

99-07092-03 Static Shielding Bag, 8 inches x 12 inches i.d.

99-07092-04 Static Shielding Bag, 10 inches x 14 inches i.d.*

99-07092-05 Static Shielding Bag, 12 inches x 18 inches i.d.

99-07092-06 Static Shielding Bag, 14 inches x 18 inches i.d.

99-07092-07 Static Shielding Bag, 18 inches x 24 inches i.d.

99-07092-08 Static Shielding Bag, 15 inches x 20 inches i.d.

E–1

ELECTROSTATIC DISCHARGE (ESD) PART LIST

Table E–2 (Cont.) STATIC SHIELDING BAG PART NUMBER LIST

PART
NUMBER PART DESCRIPTION

* Minimum size shielding bag required for the each HSX50 board.

E–2

Index

B
boot sequence • 3–1
BUGCHECKS

and Last Crash Error Log Packet • 4–4
hardware-detected • 4–5
software-detected • 4–5

C
Code Update Utility • 12–12

D
diagnostics

ILEXER • 7–1
DKUTIL

DEFAULT command • 9–5
DISPLAY command • 9–7
DUMP command • 9–9
EXIT command • 9–10
GET command • 9–11
POP command • 9–11
PUSH command • 9–12
REVECTOR command • 9–12

DKUTIL command descriptions • 9–5
DKUTIL command modifiers • 9–2
DKUTIL command prompt • 9–3
DKUTIL command syntax • 9–2
DKUTIL error messages • 9–12
DKUTIL initiation • 9–1
DKUTIL sample session • 9–3
DUP • 5–3

E
Electrostatic protection • 1–9

guidelines • 1–9
Error analysis • 4–1

and fault management events • 4–17

Error analysis (Cont.)

interpreting bugcheck codes • A–1
KDM70 SA Error Codes • B–1
MSCP controller event codes • B–3
three type of KDM70 controller errors • 4–2
TMSCP event codes • B–5
using bugcheck codes • 4–4
using host error log • 4–1

error log • 4–1
error log example reports • 4–5
EVRAE Options

EVRAE Options • 10–2
EVRLM display options

EVRLM display options • 12–4

F
Fault Management Analysis Events • 4–17

and port error codes • 4–17
Fault Management Events

error log • 4–11
MSCP event code 01EA • 4–17

Format
CTRL/C caution • 6–1
CTRL/Y caution • 6–1

FORMAT
CAUTION • 6–1
error messages • 6–6
fatal error messages • 6–5
invoking on line from VMS • 6–1
overview • 6–1
sample session • 6–3
special option prompts • 6–2

G
Grounding, static protection • 1–9

I
ILDEVO

Index–1

Index

ILDEVO (Cont.)

invoking standalone from the VAX Diagnostic
Supervisor • 8–1

on line from VMS • 8–1
ILEXER

invoking on line from VMS • 7–1
invoking standalone from VAX Diagnostic

Supervisor • 7–2

L
Last Crash Error Log Packets • 4–5
LCELP • 4–5
LED Code

interpreting • 4–3

M
Maintenance strategy • 1–2
Minimum Revisions • 1–1
MIST

errors • 4–2
MIST failures • 4–3
Module Internal Self Test failures • 4–3

P
Port error codes

and fault management events • 4–17

S
Service delivery strategy • 1–2
Software Revision • 12–3
system error log • 4–1

T
Tape errors • B–4

V
VERIFY

errors and information messages • 6–11
invoking in standalone from VDS • 6–11
invoking on line from VMS • 6–10

Index–2

