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Preface

Intended Audience

This manual discusses the processor module of Digital’s Alpha AXP com-
puter systems designed for the LSB platform.  It is intended for developers
of system software and for Digital service personnel.  It discusses the func-
tions and operations of the KN7AA CPU module at register level.  The
manual assumes programming knowledge at machine language level and
familiarity with the OpenVMS AXP and DEC OSF/1 AXP operating sys-
tems.

Document Structure

The material is presented in 14 chapters.

Chapter 1, KN7AA CPU Module Overview,  presents an overall intro-
duction to the KN7AA CPU module. 

Chapter 2, Address Space, discusses the address space, memory and I/O, 
supported by the DECchip 21064.  

Chapter 3, Alpha AXP Architecture Overview, discusses data types
and instructions of the Alpha AXP architecture to prepare the user for the
rest of the document. 

Chapter 4, DECchip 21064 Overview, describes the organization of the
central processor of the KN7AA CPU module.   It discusses such topics as
functional units, internal cache, instruction pipeline, exceptions and inter-
rupts, and internal processor registers. 

Chapter 5, Cache Memory, describes the elements and operations of the
two-level cache hierarchy, which includes the primary cache and the
backup cache.  

Chapter 6, LSB Bus Interface, describes the functions and operations of
the LEVI gate arrays that provide the CPU module interface to the LSB
bus.  It discusses processor-initiated and LSB bus-initiated transactions,
LEVI address and data paths, and the LEVI controllers.

Chapter 7, Console Overview, gives a brief description of the various ele-
ments that comprise the console.  It also describes the Gbus registers,
which perform console control, diagnostic, and interrupt-related functions. 

Chapter 8, I/O Operations, describes the mailbox data structure, the op-
eration of the mailbox, interrupt handling, and I/O registers.

Chapter 9, CPU Module Registers, lists the LSB required and CPU-
specific registers, and provides bit-level functional descriptions of each 
register.  
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Chapter 10, Privileged Architecture Library Code, describes the es-
sentials of the PALcode and discusses the PALmode environment.

Chapter 11, OpenVMS AXP System Support, discusses memory man-
agement performed by the OpenVMS AXP operating system and gives the
structure of a process within the OpenVMS AXP environment.

Chapter 12, DEC OSF/1 AXP System Support, discusses memory man-
agement performed by the DEC OSF/1 AXP operating system and gives
the structure of a process within the DEC OSF/1 AXP environment.

Chapter 13, Initialization, gives an overview of the CPU module initiali-
zation, describes the methods and process of initialization, system configu-
ration, and bootstrapping of the operating system. 

Chapter 14, Error Handling, describes how the KN7AA module handles
various types of errors.  It discusses the three categories of errors from the
viewpoint of error handling routines: processor-detected hard errors,
module-detected and processor-recognized hard errors, and processor-
corrected soft errors.  Error isolation parse trees and individual fault dis-
cussions are intended to assist the error routine programmer.

Conventions Used in This Document

Unpredictable Results and Undefined Operations

Results of operations termed UNPREDICTABLE may vary from moment
to moment, implementation to implementation, and instruction to instruc-
tion within implementations.  Software must never use UNPREDICT-
ABLE results. 

Operations termed UNDEFINED may vary from moment to moment, im-
plementation to implementation, and instruction to instruction within im-
plementations.  UNDEFINED operations may halt the processor or cause
it to lose information.  However, they do not cause the processor to hang,
that is, reach a state from which there is no transition to a normal state of
instruction execution.  Nonprivileged software cannot invoke UNDE-
FINED operations.

Register and Bit Designations

Certain conventions are followed in register descriptions and in references
to bits and bit fields:

• Registers are referred to with their mnemonics, such as LCNR regis-
ter.  The full name of a register (for example, Module Error Regis-
ter) is spelled out only at the top of the register description page, or
when the register is first introduced.  

• Bits and fields are enclosed in angle brackets.  For example, bit <31>;
bits <31:16>.  For clarity of reference, bits are usually specified by
their numbers or names enclosed in angle brackets adjacent to the reg-
ister mnemonic, such as LMERR<3:0> or LMERR<PMAPPE>,
which are equivalent designations. 

• When the value of a bit position is given explicitly in a register dia-
gram, the information conveyed is as follows:
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• Acronyms are used in register description tables to indicate the access
type of the bit(s).  The  entry in the Type column of a register descrip-
tion table may include the initialization values of the bits.  For exam-
ple,  entry “R/W,  0” indicates a read/write bit that is initialized to zero.

MBZ.  Fields in registers or data structures noted as must be zero (MBZ)
must never be filled by software with a nonzero value.  If the processor en-
counters a nonzero value in an MBZ field, an Illegal Operand exception oc-
curs.

SBZ.  Fields in registers or data structures noted as should be zero (SBZ)
should be filled by software with a zero value.  A nonzero value in an SBZ
field produces UNPREDICTABLE results and may produce extraneous
instruction-issue delays.

RAZ.  Fields in registers or data structures noted as read as zero (RAZ)
return a value of zero when read.

IGN.  Fields (in registers or data structures) noted as Ignore (IGN) are ig-
nored when written. 

Bit Value Meaning

0

1

X

Reads as zero; ignored on writes.

Reads as one; ignored on writes.

Does not exist in hardware. The value of the bit is UN-
PREDICTABLE on reads and ignored on writes.

Acronym Access Type

RC

R

R/W

R0

W

W1C

W1S

Read to clear.  The value is written by hardware and re-
mains unchanged until read by software or PALcode. 

Read only.  May be read by software, PALcode, or hard-
ware.  Written by hardware.  Software or PALcode
writes are ignored.

Read/write.  May be read and written by software,
PALcode, or hardware.

Reads as zero.  Read only.  Writes are ignored.

Write only.  May be written by software or PALcode.  It
is read by hardware.  Reads by software or PALcode re-
turn an unpredictable value.

Write 1 to clear.  The value may be read by software or
PALcode.  Software or PALcode writes of 1 to the posi-
tion cause hardware to clear the bit. Software or
PALcode writes of 0 do not modify the state of the bit.  

Write 1 to set.   May be read and written by software,
PALcode, or hardware.  Set  by software or PALcode
with a write of 1. 



xiv

Documentation Titles

Table 1 lists the books in the DEC 7000/10000 documentation set.  

Table 1 DEC 7000/10000 Documentation

                                                                           
Title

 7000 Systems          
Order Number

10000 Systems     
Order Number

Installation Kit EK–7000B–DK EK–1000B–DK

Site Preparation Guide EK–7000B–SP EK–1000B–SP

Installation Guide EK–700EB–IN EK–100EB–IN

Hardware User Information Kit EK–7001B–DK EK–1001B–DK

Operations Manual EK–7000B–OP EK–1000B–OP

Basic Troubleshooting EK–7000B–TS EK–1000B–TS

Service Information Kit—DEC 7000 EK–7002B–DK EK–1002B–DK

Platform Service Manual EK–7000A–SV EK–1000A–SV

System Service Manual EK–7002B–SV EK–1002A–SV

Pocket Service Guide EK–7700A–PG EK–1100A–PG

Advanced Troubleshooting EK–7701A–TS EK–1101A–TS

Reference Manuals

Console Reference Manual EK–70C0B–TM

KN7AA CPU Technical Manual EK–KN7AA–TM

MS7AA Memory Technical Manual EK–MS7AA–TM

I/O System Technical Manual EK–70I0A–TM

Platform Technical Manual EK–7000A–TM

Upgrade Manuals

KN7AA CPU Installation Card EK–KN7AA–IN

MS7AA Memory Installation Card EK–MS7AA–IN

KZMSA Adapter Installation Guide EK–KXMSX–IN

DWLAA Futurebus+ PIU Installation Guide EK–DWLAA–IN

DWLMA XMI PIU Installation Guide EK–DWLMA–IN

DWMBB VAXBI Installation Guide EK–DWMBB–IN

H7237 Battery PIU Installation Guide EK–H7237–IN

H7263 Power Regulator Installation Card EK–H7263–IN

BA654 DSSI Disk PIU Installation Guide EK–BA654–IN

BA655 SCSI Disk and Tape PIU Installation Guide EK–BA655–IN

Removable Media Installation Guide EK–TFRRD–IN
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Table 1  DEC 7000/10000 Documentation (Continued)

            
Title

 7000 Systems          
Order Number

10000 Systems     
Order Number

Related Documentation

DECchip 21064-AA, -BA Microprocessor Hardware
Reference Manual EC–N0079–72

Alpha Architecture Reference Manual EY–L520E–DP
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Chapter 1

KN7AA CPU Module Overview

The KN7AA CPU module is a high performance, dual-instruction issue,
RISC (reduced instruction set computer) central processor unit designed
around the 64-bit DECchip 21064 microprocessor and is intended for use in
midrange compute servers.  It operates at a peak clock rate of 200 MHz 
and communicates with main memory and I/O subsystems by way of the
LSB bus. Figure 1-1 shows how the KN7AA CPU module fits in an Alpha
AXP computer system that uses the LSB bus. 

Figure 1-1 Block Diagram of a DEC 7000 or DEC 10000 System

The CPU module is an Alpha AXP architecture implementation that  runs
optimized versions of OpenVMS AXP and DEC OSF/1 AXP.  It operates in
multiple as well as single processor configurations.  

All backplane slots except slot 8, which is dedicated to the IOP module, can
accept CPU or memory modules.  It is strongly recommended, however,
that the first CPU module be placed in slot 0 for optimum performance. 

The KN7AA CPU module is comprised of three major sections: 

• CPU chip (DECchip 21064)

• Backup cache (B-cache)

• LSB interface (LEVI) 

Figure 1-2 shows the major sections of the CPU module, which includes on-
board ROMs that permit booting from supported devices and provide self-
test diagnostics on power-up.

BXB-0054C-92

MemoryProcessors

IOP

LSB

I/O Bus
Adapter
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Figure 1-2 KN7AA CPU Module Block Diagram

1.1  DECchip 21064

The DECchip 21064 processor is a single-chip, super-scalar, super-
pipelined processor with dual-instruction issue.  Features include: 

• Internal 8-Kbyte data cache (D-cache) and 8-Kbyte instruction cache
(I-cache)

• Pipelined floating-point unit

• Demand-paged memory management unit consisting of:

— A 12-entry I-stream translation buffer with eight entries for 8-
Kbyte pages and four entries for 4 Mbyte pages

— A 32-entry D-stream translation buffer with each entry able to map
a single 8-Kbyte, 64 Kbyte, 512 Kbyte, or 4-Mbyte page (see discus-
sions of granularity hint in Sections 11.1.4 and 12.1.4).  

• Parity and ECC support

• Chip and module level test support

• Cache and memory subsystem interface (EDAL interface)

The macroinstruction pipelined design of the DECchip 21064 allows sig-
nificant parallel processing.  The DECchip 21064 pipelines macroinstruc-
tion decode and operand fetch with macroinstruction execution.  When the
macropipeline is operating smoothly, the instruction unit (Ibox), which
parses instructions and fetches operands, is running  several  macroins-
tructions ahead of the execution unit (Ebox).  Branch predictions allow
compilers to generate optimized code flow.  Outstanding writes to registers
or memory locations are  kept in a scoreboard to ensure that data is not
read before it has been written.
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The DECchip 21064 uses a set of subroutines, called Privileged Architec-
ture Library code (PALcode), that is specific to a particular Alpha AXP op-
erating system implementation and hardware platform.  These subrou-
tines provide operating system primitives for context switching, interrupts,
exceptions, and memory management.  The subroutines can be invoked by
hardware or CALL_PAL instructions.  PALcode is written in standard ma-
chine code with some implementation-specific extensions that provide di-
rect access to low-level hardware functions.  PALcode supports optimiza-
tion for multiple operating systems, flexible memory management
implementations, and multi-instruction atomic sequences. 

1.2  Backup Cache (B-Cache)

The external backup cache (B-cache) is a 4-Mbyte superset of the primary
cache (P-cache).  It is a physically addressed, direct mapped, write back,
mixed I-stream and D-stream cache with a block and fill size of 64 bytes. 
It consists of three sets of RAMs: 

B-data
B-tag
B-stat

Each block of data (B-data) has a tag (B-tag) and three status bits (B-stat)
associated with it. The status bits are Valid, Dirty, and Shared. 

1.3  LSB  Interface (LEVI)

The interface to the LSB bus is called LEVI,  which consists of two chips:
LEVI-A and LEVI-B.   LEVI-A contains most LSB required registers, im-
plements all command execution, LSB arbitration, and B-cache manipula-
tion functions.  It also contains a P-cache backmap (P-map) to allow the
CPU to do invalidate filtering and to make intelligent update vs. invalidate
decisions in response to LSB write traffic. LEVI-A uses an external RAM
structure to implement a backmap of the B-cache to filter bus traffic from
the B-cache while still maintaining cache coherence.

LEVI-B completes the 128-bit data path between the DECchip 21064 and
the LSB bus. A 14-bit communication bus between LEVI-A and LEVI-B
provides a path that allows look-aside ECC checking on incoming memory
traffic. 
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Chapter 2

Address Space

The DECchip 21064 allows for 34 bits of physical address space.  The
KN7AA module defines which portion of this space is cacheable or
noncacheable.  Cacheable address space is commonly referred to as mem-
ory space and noncacheable space as I/O space.  The KN7AA module segre-
gates I/O space into LSB CSR space, local Gbus space, and broadcast
space.   Figure 2-1 shows the portion of LSB address space accessible to the
DECchip 21064 processor.

Figure 2-1 KN7AA Address Space

2.1  Memory Space Map

All of memory in an LSB system is accessed as 64-byte blocks.  The
KN7AA module maps DECchip 21064 address bits <33:5> to LSB address
bits <33:5>.  LSB address bits <39:34> are always zero during nonCSR
LSB command cycles generated by the KN7AA module.  

0 0000 0000

3 DFFF FFFF
3 E000 0000

3 EFFF FFFF
3 F000  0000

3 FFFF FFFF

BXB-0199B-93

Memory
15.5 Gbytes

Reserved 

I/O 256 Mbytes
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2.2  I/O Space Map

The KN7AA module maps the I/O space into the highest 256 Mbytes of the
34-bit DECchip 21064 physical address space.  When DECchip 21064 ad-
dress bits <33:28> are all ones, the KN7AA module defines these accesses
to be noncached.   Figure 2-2 shows the KN7AA I/O space map.

Figure 2-2 I/O  (Noncacheable) Space Map

2.2.1  LSB CSR Map

All LSB-visible CSRs are defined to be 32 bits wide and aligned on 64-byte
boundaries.  LSB CSRs are accessed using the Read CSR and Write CSR
commands.  Bits D <22:1> of the address field in an LSB CSR read/write
command cycle are used to specify all LSB CSRs (LSB bits D <33:23> and
D <0> are always zero during CSR command cycles).

The KN7AA module maps the 128-Mbyte LSB CSR space into the next to
the highest 128 Mbytes of the DECchip 21064 34-bit physical address
space.  When DECchip 21064 address bits <33:27> are all ones, the
KN7AA module uses LSB CSR commands with DECchip 21064 physical
address bits <27:6> mapped to LSB command cycle D <22:1>.  D <34:23>
and D <0> are driven with zeros by the KN7AA module during CSR com-
mand cycles.   Table 2-1 shows the base addresses of the nodes on the LSB
bus.

21064
Byte Address
3 F000 0000

3 F7FF FFFF
3 F800 0000

3 F83F FFFF
3 F840 0000

3 F87F FFFF

.  .  .  

3 F9C0 0000

3 F9FF FFFF
3 FA00 0000

3 FA3F FFFF
3 FA40 0000

3 FDFF FFFF
3 FE00 0000

3 FE3F FFFF
3 FE40 0000

3 FFFF FFFF

128MB of Gbus Space

LSB Node 0 CSRs (64K CSR Locations)

Reserved

LSB Broadcast Space (64K CSR Locations)

Reserved

BXB-0663-93

LSB Node 1 CSRs (64K CSR Locations)

LSB Node 7 CSRs (64K CSR Locations)

IOP: LSB Node 8 CSRs (64K CSR Locations)

.  .  .
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Table 2-1 KN7AA LSB Node Base Addresses

2.2.2  Gbus Map

The KN7AA module allocates the first 128 Mbytes of the LSB I/O space for
local (Gbus) use.  This region is called private space.  References to this re-
gion are serviced by resources local to the module and, therefore, are never
accessed with LSB CSR or memory commands. 

The KN7AA module provides access to ROM, EEROM, the console UARTs,
and the watch chip through the Gbus.  All Gbus addresses are located on
64-byte boundaries.  Figure 2-3 shows the allocation of the Gbus space seg-
ments. 

Node Number Module 21064 Base Address

0
1
2
3
4
5
6
7
8

CPU
CPU/Memory
CPU/Memory
CPU/Memory
CPU/Memory
CPU/Memory
CPU/Memory
CPU/Memory
I/O

3 F800 0000
3 F840 0000
3 F880 0000
3 F8C0 0000
3 F900 0000
3 F940 0000
3 F980 0000
3 F9C0 0000
3 FA00 0000
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Figure 2-3 Gbus Space Map

2.2.3  Broadcast Space

Broadcast space is used for write-only registers that are written in all
nodes in a single bus transaction.  This region is used to implement inter-
rupts on the LSB.  The base address of the broadcast space is 3 FE00 0000.

21064
Byte Address

FPROM4: 128Kb
SROM: 32Kb from 3 F260 0000  to 3 F27F FFFF

3 F000 0000

3 F07F FFFF
3 F080 0000

3 F0FF FFFF
3 F100 0000

3 F17F FFFF
3 F180 0000

3 F1FF FFFF
3 F200 0000

3 F27F FFFF
3 F280 0000

3 F2FF FFFF
3 F300 0000

3 F37F FFFF
3 F380 0000

3 F3FF FFFF
3 F400 0000

3 F47F FFFF
3 F480 0000

3 F4FF FFFF
3 F500 0000

3 F57F FFFF
3 F580 0000

3 F5FF FFFF
3 F600 0000

3 F67F FFFF
3 F680 0000

3 F6FF FFFF
3 F700 0000

3 F77F FFFF
3 F780 0000

3 F7FF FFFF

FPROM0: 128Kb

FPROM1: 128Kb

FPROM2: 128Kb

FPROM3: 128Kb

FPROM5: 128Kb

FPROM6: 128Kb

EEPROM:   8Kb

DUART0

DUART1

DUART2

Reserved

Watch Chip

Reserved

Miscellaneous Registers

Reserved

BXB-0662-93
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Chapter 3

Alpha AXP Architecture Overview

The Alpha AXP architecture is a 64-bit load/store RISC architecture de-
signed with particular emphasis on clock speed, multiple instruction issue,
and multiple processors.  The architecture has the following characteris-
tics: 

• All registers are 64 bits in length, and all operations are performed be-
tween 64-bit registers.  

• All instructions are 32 bits in length.  

• There are 32 integer registers and 32 floating-point registers.

• Memory operations are either loads or stores.  

• Memory is accessed by 64-bit virtual byte addresses in conformity with
the little-endian format of the LSB bus.

This chapter presents an overview of the Alpha AXP architecture.  It fo-
cuses on only two of the elements that make up the architecture: data
types and instructions.   The information given in this chapter is meant to
provide insight to the material discussed in this document.   The program-
mer should refer to the Alpha Architecture Reference Manual for a thor-
ough discussion of the topics covered in this chapter.

3.1  Data Types

The Alpha AXP architecture provides hardware support to the following
subset of data types: 

Byte
Word
Longword
Quadword
D_floating (not fully supported by Alpha AXP hardware)
F_floating (32-bit)
G_floating (64-bit)
S_floating (IEEE single, 32-bit) 
T_floating (IEEE double, 64-bit) 

The remaining data types (octaword, H_floating, D_floating (except
load/store and convert to/from G_floating), variable-length bit field, charac-
ter string,  trailing numeric string, leading separate numeric string, and
packed decimal string) can be emulated by PALcode.  Hardware-supported
data types are discussed in detail in the Alpha Architecture Reference Man-
ual. 
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3.2  Instructions

The Alpha AXP architecture supports the following types of instructions:

Memory integer load /store
Control
Integer arithmetic
Logical and shift
Byte manipulation
Floating-point
Memory format floating-point
Branch format floating-point
Floating-point operate format
Miscellaneous
VAX compatibility

These instruction types can be grouped under four instruction format
classes that contain 0, 1, 2, or 3 register fields.  All formats have a 6-bit
opcode.  The next section gives brief descriptions of the Alpha instruction
classes.  Refer to the Alpha Architecture Reference Manual for a thorough
discussion of instructions supported by the Alpha AXP architecture.  

3.2.1  Instruction Format Classes

The Alpha AXP architecture supports the following four instruction for-
mats:

• PALcode 

• Branch

• Load/Store (Memory)

• Operate

Figure 3-1 shows the formats for the four classes of Alpha instructions.  

Figure 3-1 Alpha AXP Instruction Formats

PALcode  instructions specify, in the function code field, complex opera-
tions to be performed.

31 26 25 21 20 16 15 0

OPCODE NUMBER

BXB-0665-93

5 4

OPCODE RA DISP

OPCODE RA RB DISP or FUNCTION

OPCODE RA RB FUNCTION RC

PALcode

Branch

Memory

Operate

FORMAT:
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Conditional branch instructions test register Ra and specify a signed
21-bit PC-relative longword target displacement.  Subroutine calls put the
return address in register Ra.

Load and store instructions move longwords or quadwords between
register Ra and memory, using Rb plus a signed 16-bit displacement as the
memory address.

Operate instructions for floating-point and integer operations are both
represented in Figure 3-1 by the operate format illustration and are as fol-
lows:

• Floating operations use Ra and Rb as source registers and write the re-
sult in register Rc.  There is an 11-bit extended opcode in the function
field.

• Integer operations use register Ra and register Rb or an 8-bit literal as
the source operand and write the result in register Rc.  Integer operate
instructions can use the Rb field and part of the function field to spec-
ify an 8-bit literal.  There is a 7-bit extended opcode in the function
field.

3.2.2  Instruction Set Characteristics

The Alpha AXP instruction set has the following characteristics:

• All instructions are 32 bits long and have a regular format.

• There are 32 integer registers (R0 through R31), each 64 bits wide. 
R31 reads as zero and writes to R31 are ignored.

• There are 32 floating-point registers (F0 through F31), each 64 bits
wide.  F31 reads as zero and writes to F31 are ignored.

• All integer data manipulation is between integer registers, with up to
two variable register source operands (one may be an 8-bit literal) and
one register destination operand.

• All floating-point data manipulation is between floating-point regis-
ters, with up to two variable register source operands and one register
destination operand.

• All memory reference instructions are of the load/store type that move
data between registers and memory.

• There are no branch condition codes.  Branch instructions test an inte-
ger or floating-point register value, which may be the result of a previ-
ous compare.

• Integer and logical instructions operate in quadwords.

• Floating-point instructions operate on G_floating, F_floating, IEEE
double, and IEEE single operands.  D_floating "format compatibility,"
in which binary files of D_floating numbers may be processed, but
without the last 3 bits of fraction precision, is also provided.

• A minimal number of VAX compatibility instructions are included.
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3.3  Architecturally Defined OpenVMS AXP IPRs

The Alpha AXP architecture defines OpenVMS internal processor registers
(IPRs) that can be accessed by software.  These registers are read and writ-
ten with Move From Processor Register (MFPR) and Move To Processor
Register (MTPR) instructions.  Many of these registers will be referred to
throughout discussions in this document.  All architecturally required
IPRs are discussed in the Alpha Architecture Reference Manual.   Table 3-1
lists the Alpha AXP OpenVMS IPRs (not to be confused with the DECchip
21064 IPRs).  



       Alpha AXP Architecture Overview   3-5

Table 3-1 Alpha AXP OpenVMS Internal Processor Registers

Name Mnemonic Access1

Address Space Number Register

AST Enable Register

AST Summary Register

Data Align Trap Fixup Register

Floating-Point Enable Register

Interprocessor Interrupt Request Register

Interrupt Priority Level Register

Machine Check Error Summary Register

Performance Monitor Register

Privileged Context Block Base Register

Processor Base Register

Page Table Base Register

System Control Block Base Register

Software Interrupt Request Register

Software Interrupt Summary Register

TB Check Register

TB Invalidate All Register

TB Invalidate All Process Register

TB Invalidate Single Register

TB Invalidate Single Data Register

TB Invalidate Single Instruction Register

Kernel Stack Pointer

Executive Stack Pointer

Supervisor Stack Pointer

User Stack Pointer

Virtual Page Table Base Register

Who-Am-I Register

ASN

ASTEN

ASTSR

DATFX

FEN

IPIR

IPL

MCES

PERFMON

PCBB

PRBR

PTBR

SCBB

SIRR

SISR

TBCHK

TBIA

TBIAP

TBIS

TBISD

TBISI

KSP

ESP

SSP

USP

VPTB

WHAMI

R

R/W*

R/W*

W

R/W

W

R/W*

R/W

W*

R

R/W

R

R/W

W

R

R

W

W

W

W

W

None

R/W

R/W

R/W

R/W

R

1Access Types:

  R—Access by MFPR only
R/W—Access by MTPR or MFPR
R/W*—Access by MTPR or MFPR.  Read and write by MTPR
W—Access by MTPR only
W*—Read and write access by MTPR
None—Not accessible by  MTPR or MFPR.  Accessed by PALcode routines as needed.  
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Chapter 4

DECchip 21064 Overview

The implementation of the Alpha AXP architecture is defined by a combi-
nation of the DECchip 21064 hardware and the Privileged Architecture Li-
brary code (PALcode).  This chapter presents an overview of the DECchip
21064 micro-architecture. The PALcode is discussed in Chapter 8.   Sec-
tions in this chapter include:

• Functional Units

• Internal Cache

• Pipeline Organization

• Scheduling and Issuing Rules

• PALcode Instructions

• Exceptions and Interrupts

• Internal Processor Registers

For more information on some of these topics, consult the DECchip 21064-
AA, -BA  Microprocessor Hardware Reference Manual and the Alpha Archi-
tecture Reference Manual.

Figure 4-1 shows a block diagram of the DECchip 21064. 
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Figure 4-1 Block Diagram of the DECchip 21064 

4.1  Functional Units

Instructions are processed in four functional units or boxes in the DECchip
21064: 

• Ibox (central control unit)

• Ebox (integer execution unit) 

• Abox (address generation, load/store and bus interface unit)

• Fbox (floating-point unit)

The functional units operate independently of each other.  Each unit can
accept at most one instruction per cycle; however, if code is correctly sched-
uled, the DECchip 21064 can issue two instructions to two independent
units in a single cycle. 

4.1.1  Ibox

The primary function of the Ibox is to issue instructions to the Ebox, Abox,
and Fbox. The Ibox implements the following major elements to provide
this function: 

• Branch prediction logic

• Instruction translation buffers (ITB)

• Interrupt logic

BXB-0447-93
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• Performance counters

The Ibox decodes two instructions in parallel and checks that the required
resources are available for both instructions.  If resources are available,
then both instructions are issued.  The Ibox does not issue instructions out
of order.  If the resources are available for the second instruction, but not
for the first instruction, then the Ibox issues neither.  If the Ibox issues
only the first of a pair of instructions, the Ibox does not advance another
instruction to attempt dual issue again.  Dual issue is only attempted on
aligned quadword pairs.

4.1.1.1 Branch Prediction Logic

The DECchip 21064 offers a choice of branch prediction strategies
selectable through the ICCSR IPR. The I-cache records the outcome of
branch instructions in a single history bit provided for each instruction lo-
cation in the I-cache. This information can be used as the prediction for the
next execution of the branch instruction. The prediction for the first execu-
tion of a branch instruction is based on the sign of the displacement field
within the branch instruction itself. 

• If the sign bit is negative, the instruction prefetcher predicts the  con-
ditional branches to be taken. 

• If the sign is positive, the instruction prefetcher predicts the condi-
tional branches  not to be taken.  

• Alternatively, if the history table is disabled, branches can be predicted
based on the sign of the displacement field at all times. 

The DECchip 21064 provides a four-entry subroutine return stack that is
controlled by the hint bits in the BSR, HW_REI, and jump to subroutine
instructions (JMP, JSR, RET, or JSR_COROUTINE).  The chip also pro-
vides a means of disabling all branch prediction hardware. 

4.1.1.2 Instruction Translation Buffers

The Ibox contains two instruction translation buffers (ITB).

• An eight-entry, fully associative translation buffer that  caches re-
cently used I-stream page table entries for 8-Kbyte pages.

• A four-entry, fully associative translation buffer that supports the larg-
est granularity hint option (512 * 8-Kbyte pages) as described further
in this manual and more extensively in the Alpha Architecture Refer-
ence Manual.  

The instruction translation buffers—hereafter referred to as the small-
page ITB and large-page ITB—use a not-last-used (NLU) replacement al-
gorithm. 

In addition, the ITB includes support for an extension called the super-
page, which can be enabled by the MAP bit in the ICCSR IPR.  Superpage
mappings provide one-to-one virtual PC<33:13> to physical PC<33:13>
translation when virtual address bits <42:41> = 2.   When translating
through the superpage, the PTE<ASM> bit used in the I-cache is always
set.  Access to the superpage mapping is only allowed while executing in
kernel mode. 
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PALcode fills and maintains the ITBs.  The operating system, through
PALcode, is responsible for ensuring that virtual addresses can only be
mapped through a single ITB entry (in the large page, small page, or
superpage) at the same time.  

The Ibox presents the 43-bit virtual program counter (VPC) to the ITB
each cycle while not executing in PALmode.  If the PTE associated with the
VPC is cached in the ITB, then the Ibox uses the PFN and protection bits
for the page that contains the VPC to complete the address translation and
access checks. 

Each PTE entry in the ITB contains an address space match (ASM) bit.
The DECchip 21064 ITB supports a single address space number (ASN)
through the PTE<ASM> bit.  Writes to the ITBASM IPR invalidate all en-
tries  that do not have their ASM bit set. This provides a simple method of
preserving entries that map operating system regions while invalidating
all others.

The ITB’s tag array is updated simultaneously from the TB_TAG IPR
when the ITB_PTE IPR is written.  Reads of the ITB_PTE IPR require two
instructions. The first instruction sends the PTE data to the
ITB_PTE_TEMP IPR and  the second instruction, reading from the
ITB_PTE_TEMP IPR, returns the PTE entry to the register file.  Reading
or writing the ITB_PTE IPR increments the TB entry pointer correspond-
ing to the large/small page selection indicated by the TB_CTL, which al-
lows reading the entire set of  ITB_PTE IPR entries. 

4.1.1.3 Interrupt Logic

The DECchip 21064 supports three sources of interrupts:

•  Hardware—Six level-sensitive hardware interrupts sourced by the in-
terrupt request pins

• Software—Fifteen software interrupts sourced by an on-chip IPR
(SIRR) 

• Asynchronous system trap (AST)—Four AST interrupts sourced by a
second internal IPR (ASTRR)

All interrupts are independently maskable by on-chip enable registers to
support a software controlled mechanism for prioritization. In addition,
AST interrupts are qualified by the current processor mode and the cur-
rent state of SIER<2>.  

By providing distinct enable bits for each independent interrupt source, a
software controlled interrupt priority scheme can be implemented by 
PALcode or the operating system with maximum flexibility.  For example,
the DECchip 21064 can support a six-level interrupt priority scheme 
through the six hardware interrupt request pins.  This is done by defining
a distinct state of the Hardware Interrupt Enable IPR (HIER) for each in-
terrupt priority level (IPL). The state of the HIER determines the current
interrupt priority. The lowest interrupt priority level is produced by ena-
bling all six interrupts (setting bits <6:1>).  The next is produced by ena-
bling five interrupts (setting bits <6:2>),  and so on, to the highest inter-
rupt priority level,  which is produced by enabling only a single interrupt
(setting only bit <6> and clearing  bits <5:1>).  When all interrupt enable
bits are cleared, the processor cannot be interrupted from the HIRR IPR. 
Each state (<6:1>, <6:2>, <6:3>, <6:4>, <6:5>, <6>) represents an individ-
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ual IPL.  If these are the only states allowed in the HIER IPR, a six-level
hardware interrupt priority scheme can be controlled entirely by PALcode.

The scheme is extensible to provide multiple interrupt sources at the same
interrupt priority level by grouping enable bits. Groups of enable bits must
be set and cleared together to support multiple interrupts of equal priority
level. This method reduces the total available number of distinct levels.  

Since enable bits are provided for all hardware, software, and AST inter-
rupt requests, a priority scheme can span all sources of processor inter-
rupts. The only exception to this rule is the following restriction on AST
interrupt requests:

Four AST interrupts are provided, one for each processor operating mode—
kernel, executive, supervisor, and user.  AST interrupt requests are quali-
fied such that AST requests corresponding to a given mode are blocked
whenever the processor is in a higher mode regardless of the state of the
AST Interrupt Enable Register.  In addition, all AST interrupt requests are
qualified in the DECchip 21064 with SIER<2>. 

When the processor receives an interrupt request that is enabled, hard-
ware reports or delivers an interrupt to the exception logic if the processor
is not currently executing PALcode.  Before vectoring to the interrupt serv-
ice PALcode dispatch address, the pipeline is completely drained and all
outstanding data cache fills are completed.   The restart address is saved
in the Exception Address IPR (EXC_ADDR) and the processor enters
PALmode.  The cause of the interrupt may be determined by examining
the state of the interrupt request registers. 

Hardware interrupt requests are level-sensitive and, therefore, may be re-
moved before an interrupt is serviced. If they are removed before the inter-
rupt request register is read, the register will return a zero value.

4.1.1.4 Performance Counters

The DECchip 21064 contains a performance recording feature. The imple-
mentation of this feature provides a mechanism to count various hardware
events and cause an interrupt upon counter overflow. Interrupts are trig-
gered six cycles after the event, and therefore, the exception program
counter may not reflect the exact instruction causing counter overflow.
Two counters are provided to allow accurate comparison of two variables
under a potentially nonrepeatable experimental condition. Counter inputs
include:

•  Issues 

• Non-Issues 

• Total cycles 

• Pipe dry 

• Pipe freeze 

• Mispredicts and cache misses 

• Counts for various instruction classifications 

In addition, the DECchip 21064 provides one chip pin input to each
counter to measure external events at a rate determined by the selected
system clock speed.
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4.1.2  Ebox

The Ebox contains the 64-bit integer execution data path, which consists of
the following elements:

• Adder 

• Logic box 

• Barrel shifter

• Byte zapper

• Bypassers

• Integer multiplier

The integer multiplier retires four bits per cycle.  The Ebox also contains
the 32-entry 64-bit integer register file (IRF in Figure 4-1).  The register
file has four read ports and two write ports that allow reading operands
from and writing operands (results) to the integer execution data path.

4.1.3  Abox

The Abox contains four main elements:

• Data translation buffer

• Bus interface unit (BIU)

• Load silos

• Write buffer

4.1.3.1 Data Translation Buffer

The 32-entry, fully associative, data translation buffer (DTB) caches re-
cently used D-stream page table entries and supports all four variants of
the granularity hint option, as described in the Alpha Architecture Refer-
ence Manual.    Superpage mapping modes, selected through ABOX_CTL
<5:4>, provide virtual to physical address translation for two regions of the
virtual address space.  The first mode enables superpage mapping when
virtual address bits <42:41> = 2.  In this mode, the entire physical address
space is mapped multiple times to one quadrant of the virtual address
space defined by VA <42:41> = 2. The second mode maps a 30-bit region of
the total physical address space defined by PA <33:30> = 0 into a single
corresponding region of virtual space defined by VA<42:30> = 1FFE (hex). 
Superpage translation is only allowed in kernel mode.  The operating sys-
tem, through PALcode, should ensure that translation buffer entries, in-
cluding those in the superpage regions, do not map overlapping virtual ad-
dress regions at the same time. 

The DECchip 21064 DTB supports a single address space number (ASN)
with  the PTE<ASM> bit. Each PTE entry in the DTB contains an address
space match (ASM) bit. Writes to the DTBASM IPR invalidate all entries
that do not have their ASM bit set. This provides a simple method of pre-
serving entries that map operating system regions while invalidating all
others. 

For load and store instructions, the effective 43-bit virtual address is pre-
sented to the DTB. If the PTE of the supplied virtual address is cached in
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the DTB, the PFN and protection bits for the page that contains the ad-
dress are used by the Abox to complete the address translation and access
checks.

The DTB is filled and maintained by PALcode.  Note that the DTB can be
filled in kernel mode by setting ICCSR<HWE>. 

The DTB’s tag array is updated simultaneously from the TB_TAG IPR
when the DTB_PTE is written. Reads of the DTB_PTE require two instruc-
tions. The first instruction sends the PTE data to the Data Translation
Buffer Page Table Entry Temporary IPR (DTB_PTE_TEMP).  The second
instruction, reading from the DTB_PTE_TEMP IPR,  returns the PTE en-
try to the register file. Reading or writing the DTB_PTE increments the
TB entry pointer of the DTB, which allows reading the entire set of
DTB_PTE entries. 

4.1.3.2 Bus Interface Unit 

The bus interface unit (BIU) controls the interface to the DECchip 21064
EDAL interface. The BIU responds to three classes of CPU-generated re-
quests: 

• D-cache fills

• I-cache fills

• Write buffer-sourced commands 

The BIU resolves simultaneous internal requests using a fixed priority
scheme in which D-cache fill requests are given highest priority, followed
by I-cache fill requests.  Write buffer requests have the lowest priority.

The BIU contains logic to directly access an external cache to service inter-
nal cache fill requests and writes from the write buffer.  The BIU services
reads and writes that do not hit in the external cache with help from exter-
nal logic. 

Internal data transfers between the CPU and the BIU are made through a
64-bit bidirectional bus. Since the internal cache fill block size is 32 bytes,
cache fill operations result in four data transfers across this bus from the
BIU to the appropriate cache.  Also, because each write buffer entry is 32
bytes wide, write transactions may result in four data transfers from the
write buffer to the BIU.

4.1.3.3 Load Silos

The Abox contains a memory reference pipeline that can accept a new load
or store instruction every cycle until a D-cache fill is required.  Since the
D-cache lines are only allocated on load misses, the Abox can accept a new
instruction every cycle until a load miss occurs.  When a load miss occurs,
the Ibox stops issuing all instructions that use the load port of the register
file or are otherwise handled by the Abox.  This includes LDx, STx,
HW_MTPR,  HW_MFPR, FETCH, FETCH_M, RPCC, RS, RC, and MB. It
also includes all memory format branch instructions, JMP, JSR,
JSR_COROUTINE, and RET.  However, a JSR with a destination of R31
may be issued.

Because the result of each D-cache lookup is known late in the pipeline
(stage 6) and instructions are issued in pipe stage 3, there can be two in-
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structions in the Abox pipeline behind a load instruction that misses the
D-cache. These two instructions are handled as follows:

• Loads that hit the D-cache are allowed to complete — hit under miss.

• Load misses are placed in a silo and replayed in order after the first
load miss completes. 

• Store instructions are presented to the D-cache at their normal time
with respect to the pipeline. They are siloed and presented to the write
buffer in order with respect to load misses. 

To improve performance, the Ibox is allowed to restart the execution of
Abox-directed instructions before the last pending D-cache fill is complete.
D-cache fill transactions result in four data transfers from the BIU to the
D-cache. These transfers can each be separated by one or more cycles de-
pending on the characteristics of the external cache and memory subsys-
tems. The BIU attempts to send the quadword of the fill block that the
CPU originally requested in the first of these four transfers (it is always
able to accomplish this for reads that hit in the external cache). Therefore,
the pending load instruction that requested the D-cache fill can complete
before the D-cache fill finishes. D-cache fill data accumulates one quad-
word at a time into a "pending fill" latch, rather than being written into
the cache array as it is received from the BIU. When the load miss silo is
empty and the requested quadword for the last outstanding load miss is re-
ceived, the Ibox resumes execution of Abox-directed instructions despite
the still-pending D-cache fill. When the entire cache line has been received
from the BIU, it is written into the D-cache data array whenever the array
is not busy with a load or a store.

4.1.3.4 Write Buffer

The Abox contains a write buffer for two purposes:

• To minimize the number of CPU stall cycles by providing a high
bandwidth (but finite) resource for receiving store data.  This is re-
quired since the DECchip 21064 can generate store data at the peak
rate of one quadword every CPU cycle, which is greater than the rate
at which the external cache subsystem can accept the data.  

• To attempt to aggregate-store data into aligned 32-byte cache blocks to
maximize the rate at which data may be written from the DECchip
21064 into the external cache (B-cache).

The write-merging operation of the write buffer may result in the order of
off-chip writes being different from the order in which their corresponding
store instructions were executed. Further, the write buffer may collapse
multiple stores to the same location into a single off-chip write transaction. 
If strict write ordering is required, or it is desired that multiple stores to
the same location result in multiple off-chip write sequences, software
must insert a memory barrier instruction between the store instructions of
interest.  

In addition to store instructions, MB, STQ_C, STL_C, FETCH, and
FETCH_M  instructions are also written into the write buffer and sent off-
chip. Unlike stores, however, these write buffer-directed instructions are
never merged into a write buffer entry with other instructions.

The write buffer has four entries, each of which has storage for up to 32
bytes. The buffer has a "head" pointer and "tail" pointer. The buffer puts
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new commands  into empty tail entries and takes commands out of
nonempty head entries. The  head pointer increments when an  entry is
unloaded to the BIU, and the tail pointer increments when new data is put
into the tail entry. The head and tail pointers only point to the same entry
when the buffer has zero or four nonempty entries.

Suppose for a moment that no writes ever merge with existing nonempty
entries. In this case the ordering of writes with respect to other writes will
be maintained. The write buffer never reorders writes except to merge
them into nonempty entries. Once a write merges into a nonempty slot, its
"programmed" order is lost with respect to both writes in the same slot and
writes in other slots. 

The write buffer attempts to send its head entry off-chip by  requesting the
BIU when one of the following conditions is met: 

• The write buffer contains at least two valid entries. 

• The write buffer contains one valid entry and at least 256 CPU cycles
have elapsed since the execution of the last write buffer-directed in-
struction. 

• The write buffer contains an MB instruction. 

• The write buffer contains an STQ_C or STL_C instruction. 

• A load miss is pending to an address currently valid in the write buffer 
that requires the write buffer to be flushed. The write buffer is com-
pletely flushed regardless of which entry matches the address. 

4.1.4  Fbox

The Fbox is on-chip, pipelined, and capable of executing instructions in
both Digital and IEEE floating-point formats.  IEEE floating-point data
types S_floating and T_floating are supported with all rounding modes ex-
cept round to +/− infinity, which can be provided in software.  F_floating
and G_floating Digital floating-point data types are supported fully.  Sup-
port for D_floating format is limited. 

4.1.4.1 Operation

The Fbox contains:

• A 32-entry, 64-bit floating-point register file (FRF in Figure 4-1)

• A user-accessible control register, FPCR, containing:

— Round mode controls

— Exception flag information

The Fbox can accept an instruction every cycle, with the exception of
floating-point divide instructions. The latency for data-dependent, non-
divide instructions is six cycles. 

For divide instructions, the Fbox does not compute the inexact flag.  Conse-
quently, the INE exception flag in the FPCR register is never set for IEEE
floating-point divide using the inexact enable (/I) qualifier.  To deliver
IEEE-conforming exception behavior to the user, DECchip 21064 FPU
hardware always traps on DIVS/SI and DIVT/SI instructions. The intent is
for the arithmetic exception handler in either PALcode or the operating
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system to identify the source of the trap, compute the inexact flag, and de-
liver the appropriate exception to the user.  The exception associated with
DIV/SI and DIVT/SI is imprecise.  Software must follow the rules specified
by the Alpha AXP architecture associated with the software completion
modifier to ensure that the trap handler can deliver correct behavior to the
user.

4.1.4.2 IEEE Floating-Point Conformance

The DECchip 21064 supports the IEEE floating-point operations as de-
fined by the Alpha AXP architecture.  Support for a complete implementa-
tion of the IEEE Standard for Binary Floating-Point Arithmetic
(ANSI/IEEE Standard 754-1985)  is provided by a combination of hard-
ware and software as described in the Alpha Architecture Reference Man-
ual.  The DECchip 21064 supports IEEE floating conformance as follows:

• When operating without the /Underflow qualifier, the DECchip 21064
replaces underflow results with exact zero even if the correct result
would  have been negative zero as defined in the IEEE Standard.  This
is an Alpha AXP architecture value-added behavior for improved per-
formance over either hardware or software Denormal handling.  When
strict IEEE compliance is required, the /Underflow modifier is neces-
sary and the software must provide the correct  result (including nega-
tive zero). 

• The DECchip 21064 supports Infinity operands only when used in the
CMPT instruction.  Other instructions using Infinity operands cause
Invalid Operation (INV) arithmetic traps. 

• NaN, Denormal, or Infinity (except when used in CMPT) input oper-
ands produce Invalid Operation (INV) arithmetic traps when used with
arithmetic operation instructions. CPYSE/CPYSN, FCMOV instruc-
tions, and MF_FPCR/MT_FPCR are not arithmetic operations, and
will pass NaN, Denormal, and Infinity values without initiating arith-
metic traps.  Input operand traps take precedence over arithmetic re-
sult traps. 

• The DECchip 21064 does not produce a NaN, Denormal, or Infinity re-
sult. 

• The DECchip 21064 supports IEEE normal and chopped rounding
modes in hardware.  Instructions designating plus infinity and minus
infinity rounding modes cause precise exceptions to the OPCDEC
PALcode entry point.  This implies that the EXC_ADDR IPR will be
loaded with the address of the  faulting instruction and all following
instructions will be aborted. 

• The DIVS and DIVT with /Inexact modifier instructions report an In-
exact  (INE) arithmetic trap on all results of operations that do not in-
volve  NaN, Infinity, or Denormal input operands.  Operations using
NaN, Infinity,  and Denormal input operands generate Invalid Opera-
tion (INV) arithmetic traps. 

• Floating-point exceptions generated by the DECchip 21064 are re-
corded in two places. 

— The FPCR register, as defined in the Alpha AXP architecture and
accessible by the MT/MF_FPCR instructions, records the occur-
rence of all exceptions that are detected (except SWC), whether or
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not the corresponding trap is enabled (through the instruction
modifiers).  This register can only be cleared through an explicit
clear command (MT_FPCR) so that the exception information it re-
cords is a summary of all exceptions that have occurred since the
last clear.  

— In addition, if an exception is detected and the corresponding trap
is enabled, the DECchip 21064 will record the condition in the
EXC_SUM IPR and initiate an arithmetic trap.  As a special case,
in order to support Inexact exception behavior with the DIVS/I and
DIVT/I instructions, the FPCR will not record an Inexact exception,
although the DECchip 21064 will always set the INE bit in the
EXC_SUM register during these instructions.  This behavior allows
software emulation of the division instruction with accurate report-
ing of potential Inexact exceptions.  

4.2  Internal Cache 

The DECchip 21064 includes two on-chip caches, a data cache (D-cache)
and an instruction cache (I-cache).  These two internal caches are referred
to as P-cache in this document.

The D-cache has a size of 8 Kbytes.  It is a write-through, direct-mapped,
read allocate physical cache and has 32-byte blocks.  System components
can keep the D-cache coherent with memory by using the invalidate bus. 

The I-cache is an 8-Kbyte, direct-mapped physical cache.  An I-cache block,
or line, contains 32 bytes of I-stream data with associated tag, as well as a
six-bit ASN field, a one-bit ASM field, and an eight-bit branch history field. 
The I-cache does not contain hardware for maintaining coherency with
memory and is unaffected by the invalidate bus.

The DECchip 21064 also contains a single-entry I-cache stream buffer
that, together with its supporting logic, reduces the performance penalty
due to I-cache misses incurred during in-line instruction processing. 
Stream buffer prefetch requests never cross physical page boundaries, but
instead wrap around to the first  block of the current page. 

4.3  Pipeline Organization

The DECchip 21064 has a seven-stage pipeline for integer operate and
memory reference instructions.  Floating-point operate instructions pro-
gress through a ten-stage pipeline. The Ibox maintains state for all pipe-
line stages to track outstanding register writes and determine I-cache ac-
cess results (hit/miss). 

Figures 4-2, 4-3, and 4-4 show the integer operate, memory reference, and
the  floating-point operate pipelines for the Ibox, Ebox, Abox, and Fbox. 
The first four cycles are executed in the Ibox;  the last stages are box spe-
cific. There are bypassers in all the boxes that allow the results of one in-
struction to be used as operands of a following instruction without having
to be written to the register file. 
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Figure 4-2 Integer Operate Pipeline

Figure 4-3 Memory Reference Pipeline

Figure 4-4 Floating-Point Operate Pipeline
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4.3.1  Static and Dynamic Stages

The DECchip 21064 integer pipeline divides instruction processing into
four static and three dynamic stages of execution. The DECchip 21064
floating-point pipeline maintains the first four static stages and adds six
dynamic stages of execution. The first four stages consist of: 

• Instruction fetch

• Swap 

• Decode

• Issue logic 

These stages are static because instructions can remain valid in the same
pipeline stage for multiple cycles while waiting for a resource, or stalling
for other reasons.  

Dynamic stages always advance state and are unaffected by any stall (also
referred to as freeze) in the pipeline.  A pipeline freeze may occur while
zero instructions issue, or while one instruction of a pair issues and the
second is held at the issue stage.  A pipeline freeze implies that a valid in-
struction or instructions are present to be issued but cannot proceed. 

Upon satisfying all issue requirements, instructions are allowed to con-
tinue through any pipeline toward completion.  Instructions cannot be held
in a given pipe stage after they are issued.  It is up to the issue stage to
ensure that all resource conflicts are resolved before an instruction is al-
lowed to continue.  The only means of stopping instructions after the issue
stage is a chip-internal abort condition. 

4.3.2  Aborts

Aborts can result from a number of causes.  In general, they are grouped
into two classes:

• Exceptions (including interrupts)  

• Nonexceptions 

There is one basic difference between the two classes: exceptions require
that the pipeline be drained of all outstanding instructions before restart-
ing the pipeline at a redirected address.  In both exceptions and non-
exceptions, the pipeline must be flushed of all instructions that were
fetched after the instruction that caused the abort condition.  This includes
stopping one instruction of a dual-issued pair in the case of an abort condi-
tion on the first instruction of the pair. 

The non-exception case, however, does not need to drain the pipeline of all
outstanding instructions ahead of the aborting instruction.  The pipeline
can be immediately restarted at a redirected address.  Examples of non-
exception abort conditions are branch mispredictions, subroutine
call/return mispredictions, and instruction cache misses.  Data cache
misses do not produce abort conditions but can cause pipeline freezes. 

If an exception occurs, the processor aborts all instructions issued after the
excepting instruction as described.  Due to the nature of some error condi-
tions, this can occur as late as the write cycle.  Next, the address of the
excepting instruction is latched in the EXC_ADDR IPR.  When the pipeline
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is fully drained, the processor begins instruction execution at the address
given by the PALcode dispatch.  The pipeline is considered drained when: 

• All outstanding writes to both the integer and floating-point register
file have completed and arithmetic traps have been reported. 

• All outstanding instructions have successfully completed memory man-
agement and access protection traps. 

4.3.3  Nonissue Conditions

There are two basic reasons for nonissue conditions:

• A pipeline freeze when a valid instruction or pair of instructions are
prepared to issue but cannot due to a resource conflict.  This type of
non-issue cycle can be minimized through code scheduling. 

• Pipeline bubbles when there is no valid instruction in the pipeline to
issue.  Pipeline bubbles exist due to abort conditions as described in
Section 4.3.2.  In addition, a single pipeline bubble is produced when-
ever a branch-type instruction is predicted to be taken, including sub-
routine calls and returns.  Pipeline bubbles are reduced directly by the
hardware through bubble squashing, but can also be effectively mini-
mized through careful coding practices.  Bubble squashing involves the
ability of the first four pipeline stages to advance whenever a bubble is
detected in the pipeline stage immediately ahead of it while the pipe-
line is otherwise frozen.  

4.4  Scheduling and Issuing Rules

The following sections cover scheduling and issuing rules. 

4.4.1  Instruction Class Definition

The scheduling and dual issue rules covered in this section are only per-
formance related. There are no functional dependencies related to schedul-
ing or dual issuing. The scheduling and issuing rules are defined in terms
of producer-consumer instruction classes.   Table 4-1 lists all the instruc-
tion classes and indicates the functional box that executes the particular
class of instructions.  
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Table 4-1 Producer-Consumer Classes

4.4.2  Producer-Consumer Latency

Figure 4-5 shows in a matrix form the issue rules that the DECchip 21064
enforces regarding producer-consumer latencies.   Each row and column in
the matrix is a class of Alpha AXP instructions.  A 1 in the producer-
consumer latency matrix indicates one cycle of latency.  A one cycle latency
means that if instruction B uses the results of instruction A, then instruc-
tion B can be issued one cycle after instruction A is issued.  

When determining latency for a given instruction sequence, first identify
the class of each instruction.  The following example lists the classes in the
comment field: 

ADDQ R1, R2, R3 ; IADDLOG class 
SRA R3, R4, R5 ; SHIFT class 
SUBQ R5, R6, R7 ; IADDLOG class 
STQ R7, D(R10) ; ST class

The SRA instruction consumes the result (R3) produced by the ADDQ in-
struction.  The latency associated with an iadd-shift producer-consumer
pair as specified by the matrix is one.  That means that if the ADDQ was
issued in cycle n, the SRA could be issued in cycle n+1.  

Class Name Box Instruction List

LD Abox All loads (HW_MFPR, RPCC, RS, RC, STC — producers only:  
FETCH — consumer only). 

ST Abox All stores (HW_MTPR) 

IBR Ebox Integer conditional branches

FBR Fbox Floating-point conditional branches

JSR Ebox Jump to subroutine instructions JMP, JSR,  RET, or
JSR_COROUTINE (BSR, BR producer only) 

IADDLOG Ebox ADDL ADDL/V ADDQ ADDQ/V SUBL SUBL/V SUBQ SUBQ/V 
S4ADDL S4ADDQ S8ADDL S8ADDQ  S4SUBL S4SUBQ S8SUBL
S8SUBQ LDA LDAH AND BIS XOR BIC ORNOT EQV 

SHIFTCM Ebox SLL SRL SRA EXTQL EXTLL EXTWL EXTBL EXTQH EXTLH
EXTWH  MSKQL MSKLL MSKWL MSKBL MSKQH MSKLH
MSKWH  INSQL INSLL INSWL INSBL INSQH INSLH INSWH
ZAP ZAPNOT  CMOVEQ CMOVNE CMOVLT CMOVLE CMOVGT
CMOVGE CMOVLBS CMOVLBC

ICMP Ebox CMPEQ CMPLT CMPLE CMPULT CMPULE CMPBGE

IMULL Ebox MULL MULL/V

IMULQ Ebox MULQ MULQ/V UMULH

FPOP Fbox Floating-point operates except divide

FDIV Fbox Floating-point divide
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The SUBQ instruction consumes the result (R5) produced by the SRA in-
struction.  The latency associated with a shift-iadd producer-consumer
pair, as specified by the matrix, is two.  That means that if the SRA was
issued in cycle n,  the SUBQ could be issued in cycle n+2.  The Ibox injects
one no-op cycle in the pipeline for this case. 

The final case has the STQ instruction consuming the result (R7) produced
by the SUBQ instruction.  The latency associated with an iadd-st producer-
consumer pair, when the result of the iadd is the store data, is zero.  This
means that the SUBQ and STQ instruction pair can be dual-issued if
prefetched in the same quadword.

Figure 4-5 Producer-Consumer Latency Matrix

Notes to Figure 4-5: 

X in Figure 4-5 indicates an impossible state, or a state not encountered
under normal circumstances. For example, a floating-point branch would
not follow an integer compare. 

BXB-0448-93

LD   JSR   IADDLOG   SHIFTCM   ICMP  IMULL  IMULQ  FPOP FIDV     FDIV
F/S       G/T

LD
ST

IBR
JSR

IADDLOG
SHIFTCM

ICMP
IMUL

FBR
FPOP
FDIV

2
2/0
1
2

1
1
1
1

X
X
X

2
2/0
2
2

2
2
2
2

X
X
X

2
2/0
1
2

2
2
2
2

X
X
X

3
3
3
3

3
3
3
3

3
3
3

3
3
3
3

3
3
3
3

X
X
X

21
21/20

21
 21•

 21•
 21•
21•

 21/19

X
X
X

23
23/22

23
 23•

 23•
 23•
 23•

23/21

X
X
X

X
A/4
X
X

X
X
X
X

6
6
6

X
A/32

X
X

X
X
X
X

34
34

34/30

X
A/61

X
X

X
X
X
X

63
63

63/59   

Producer
Consumer 1

2

3 43 4

1 For loads, a D-cache hit is assumed.  The latency for a D-cache miss
is dependent on the system configuration.

2 For some producer classes, two latencies, X/Y, are given with ST con-
sumer class.  The X represents the latency for the base address of
store;  the Y represents the latency for store data.  Floating-point re-
sults cannot be used as the base address for load or store operations.

3 For IMUL followed by IMUL, two latencies are given.  The first rep-
resents the latency with data dependency;  in other words, the sec-
ond IMUL uses the result from the first.  The second is the multiply
latency without data dependencies.

4 For FDIV followed by FDIV, two latencies are given.  The first repre-
sents the latency with data dependency;  the second FDIV uses the
result from the first.  The second is division latency without data de-
pendencies.

4

1
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Producer-producer latencies, also known as write-after write-conflicts, are
restricted only by the register write order.  For most instructions, this is
dictated by issue order; however, IMUL, FDIV, and LD instructions may
require more time than other instructions to complete and, therefore, must
stall following instructions that write the same destination register to pre-
serve write ordering.  In general, only cases involving an intervening
producer-consumer conflict are of interest.  They can occur commonly in a
dual-issue situation when a register is reused.  In these cases, producer-
consumer latencies are equal to or greater than the required producer-
producer latency as determined by write ordering and therefore dictate the
overall latency.  An example of this case is shown in the code: 

LDQ R2,D(R0)  ;  R2 destination 
ADDQ R2,R3,R4  ;  wr-rd conflict stalls execution ;              
                  ;  waiting for R2 
LDQ R2,D(R1)  ;  wr-wr conflict may dual-issue when             
                  ;  addq issues

4.4.3  Instruction Issue Rules

The following conditions prevent instruction issue:

• No instruction can be issued until all of its source and destination reg-
isters are clean; in other words, all outstanding writes to the destina-
tion register are guaranteed to complete in issue order and there are
no outstanding writes to the source registers or those writes can be by-
passed. 

• No LD, ST, FETCH, MB, RPCC, RS, RC, TRAPB, HW_MXPR, or BSR,
BR, JSR (with destination other than R31) can be issued after an MB
instruction until the MB has been acknowledged on the external EDAL
interface. 

• No IMUL instructions can be issued if the integer multiplier is busy. 

• No SHIFT, IADDLOG, ICMP, or ICMOV instruction can be issued ex-
actly three cycles before an integer multiplication completes. 

• No integer or floating-point conditional branch instruction can be is-
sued in the cycle immediately following a JSR, JMP, RET,
JSR_COROUTINE, or HW_REI instruction. 

• No TRAPB instruction can be issued as the second instruction of a
dual-issue pair. 

• No LD instructions can be issued in the two cycles immediately follow-
ing an STC. 

• No LD, ST, FETCH, MB, RPCC, RS, RC, TRAPB, HW_MXPR or BSR,
BR, JSR (with destination other than R31) instruction can be issued
when the Abox is busy due to a load miss or write buffer overflow.  For
more information, see Section 4.1.3.3.

• No FDIV instruction can be issued if the floating-point divider is busy. 

• No floating-point operate instruction can be issued exactly five or ex-
actly six cycles before a floating-point divide completes. 
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4.4.4  Dual-Issue Table

Table 4-2 can be used to determine instruction pairs that can  issue in a
single cycle.  Instructions are dispatched using two internal data paths or
buses. For more information about instructions and their opcodes and 
definitions, refer to the Alpha Architecture Reference Manual.  The buses
are referred to in Table 4-2 as IB0, IB1, and IBx.

Any instruction identified with IB0 in the table can be issued in the same 
cycle as any instruction identified with IB1.  An instruction that is  identi-
fied as IBx may be issued with either IB0 or IB1.

Dual-issue is attempted if the input operands are available as defined by
the producer-consumer latency matrix (Figure 4-5) and the  following re-
quirements are met:

• Two instructions must be contained within an aligned quadword.

• The instructions must not both be in the group labeled as IB0. 

• The instructions must not both be in the group labeled as IB1. 

• No more than one of JSR, integer conditonal branch, BSR, HW_REI,
BR, or  floating-point branch can be issued in the same cycle. 

• No more than one of load, store, HW_MTPR, HW_MFPR, MISC,
TRAPB, HW_REI,  BSR, BR, or JSR can be issued in the same cycle. 

NOTE:  Producer-consumer latencies of zero indicate that dependent operations  be-
tween these two instruction classes can dual issue. For example, ADDQ R1,
R2, R3, and STQ R3, D(R4). 
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Table 4-2 Opcode Summary (with Instruction Issue Bus)

4.5  PALcode Instructions

Five opcodes are provided by the Alpha AXP architecture as implement-
ation-specific privileged instructions.  These instructions are defined inde-
pendently for each Alpha AXP hardware implementation to provide
PALcode software routines with access to specific hardware state and func-
tions.  All PALcode instructions are described in the Alpha Architecture
Reference Manual.  

4.5.1  Required PALcode Instructions 

The PALcode instructions listed in Table 4-3 must be supported by all Al-
pha AXP implementations. 

00 08 10 18 20 28 30 38

0/8 PAL*
IB1

LDA
LB0

INTA*
IB0

MISC*
IB1

LDF
IBx

LDL
IBx

BR
IB1

BLBC
IB1

1/9 RSVD
IB1

LDAH
IB0

INTL*
IB0

HW_MFPR
IB1

LDG
IBx

LDQ
IBx

FBEQ
IB0

BEQ
IB1

2/A RSVD
IB1

RSVD
IB1

INTS*
IB0

JSR
IB1

LDS
IBx

LDL_L
IBx

FBLT
IB0

BLT
IB1

3/B RSVD
IB1

LDQ_U
IBx

INTM*
IB0

HW_LD
IB1

LDT
IBx

LDQ_L
IBx

FBLE
IB0

BLE
IB1

4/C RSVD
IB1

RSVD
IB1

RSVD
IB1

RSVD
IB1

STF
IB0

STL
IB1

BSR
IB1

BLBS
IB1

5/D RSVD
IB1

RSVD
IB1

FLTV*
IB1

HW_MTPR
IB1

STG
IB0

STQ
IB1

FBNE
IB0

BNE
IB1

6/E RSVD
IB1

RSVD
IB1

FLTI*
IB1

HW_REI
IB1

STS
IB0

STL_C
IB1

FBGE
IB0

BGE
IB1

7/F RSVD
IB1

STQ_U
IB1

FLTL*
IB1

HW_ST
IB1

STT
IB0

STQ_C
IB1

FBGT
IB0

BGT
IB1

Key to Opcode Summary

FLTI*—IEEE floating-point instruction opcodes
FLTL*—Floating-point operate instruction opcodes
FLTV*—VAX floating-point instruction opcodes
INTA*—Integer arithmetic instruction opcodes
INTL*—Integer logical instruction opcodes
INTM*—Integer multiply instruction opcodes
INTS*—Integer shift instruction opcodes
JSR*—Jump instruction opcodes
MISC*—Miscellaneous instruction opcodes
PAL*—PALcode instruction (CALL_PAL) opcodes
RSVD*—Reserved for Digital 
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Table 4-3 Required PALcode Instructions

4.5.2  PALcode Instructions That Require Recognition

The PALcode instructions listed in Table 4-4 must be recognized by mne-
monic and opcode in all operating system implementations, but the effect
of each instruction is dependent on the implementation.  

Table 4-4 PALcode Instructions That Require Recognition

4.5.3  Architecturally Reserved PALcode Instructions

The instructions shown in Table 4-5 are implementation dependent and
are specific to the DECchip 21064.  These instructions are executed in the
PALcode environment.  They produce OPCDEC exceptions (see Table 10-1)
if executed while not in the PALcode environment.  These instructions are
mapped using the architecturally reserved opcodes (PAL19, PAL1B,
PAL1D, PAL1E, PAL1F).  They can only be used while executing chip-
specific PALcode. 

                      Mnemonic
OpenVMS AXP             OSF/1 AXP Type Operation

HALT Halt Privileged Halt processor

IMB imb

DRAINA draina

SWPPAL swppal

Unprivileged

Privileged

Privileged

I-stream memory barrier

Drains aborts

Swap PALcode

                    Mnemonic
OpenVMS AXP         OSF/1 AXP Name

BPT bpt

BUGCHK bugchk

GENTRAP gentrap

RDUNIQUE rdunique

WRUNIQUE wrunique

Breakpoint trap

Bugcheck trap

Generate trap

Read unique value

Write unique value
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Table 4-5 PALmode Instructions Specific to the DECchip 21064

NOTE:  PALcode uses the HW_LD and HW_ST instructions to access memory out-
side the realm of normal Alpha AXP memory management. 

4.6  Exceptions and Interrupts

Both exceptions and interrupts divert execution from the normal flow of
control.  An exception is typically handled by the current process, while an
interrupt is caused by some activity outside the current process and typi-
cally transfers control outside the process.

The DECchip 21064 processor services 32 interrupt priority levels (IPLs)
divided into 16 software levels (0 to 15) and 16 hardware levels (16 to 31). 
User programs and most operating system software runs at IPL 0 which
may be thought of as process IPL.  Higher IPLs have higher priority.

The system control block (SCB) specifies the entry points for exception and
interrupt service routines. The block is 8 Kbytes long, and must be page
aligned.  The physical address of its first byte is specified by the value in
the System Control Block Base (SCBB) IPR.  The operating system or con-
sole software must initialize the SCB before any interrupts are enabled.

The SCB consists of 512 entries, each 16 bytes long.  The first 8 bytes of an
entry, the vector, specify the operating system virtual address of the serv-
ice routine associated with that entry.  The second 8 bytes, the parameter,
are an arbitrary quadword value to be passed to the service routine.  Refer
to the Alpha Architecture Reference Manual for details on the system con-
trol block and SCB entries.

4.6.1  Exceptions

The Alpha architecture defines three types of exceptions:

• Faults
A fault is an exception condition that occurs during an instruction and
leaves the registers and memory in a consistent state such that elimi-
nation of the fault condition and subsequent reexecution of the instruc-
tion will give correct results.  The PC saved in the exception stack
frame is the address of the faulting instruction. An REI to the PC will
reexecute the faulting instruction.

• Arithmetic Trap
An arithmetic trap is an exception condition that occurs at the comple-
tion of the operation that caused the exception.  Since several instruc-

Mnemonic Operation

HW_MTPR Move data to processor register

HW_MFPR Move data from processor register

HW_LD Load data from memory

HW_ST Store data in memory

HW_ REI Return from PALmode exception
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tions may be in various stages of execution at any time, it is possible
for multiple arithmetic traps to occur simultaneously.  The PC that is
saved in the exception stack frame is that of the next instruction that
would have been issued if the trapping condition(s) had not occurred. 
A CALL_PAL REI to this PC will not reexecute the trapping instruc-
tion(s),  nor will it reexecute any intervening instructions; it will sim-
ply continue execution from the point at which the trap was taken.

• Synchronous Trap
A synchronous trap is an exception condition that occurs at the comple-
tion of the operation that caused the exception, and no subsequent in-
struction is issued before the trap occurs. 

4.6.2  Interrupts

The KN7AA module uses the provided hardware interrupts as shown in
Table 4-6.  The handling of interrupts from the LSB, interval timer, and
UARTs is accomplished with both hardware and PALcode.

Table 4-6 KN7AA Interrupts

   OpenVMS
 IPL16          IPL 10 OSF/1 Condition

irq_h
Signal

1F           31

18–1E     24–30

17           23

16           22

15           21

14           20

10–13     16–19

01–0F     01–15

7

N/A1

6

5

4

3

N/A

0–2

Ctrl/P detection
Node halt (LCNR<NHALT>)
Machine check (LSB ERR or KN7AA-detected error)

Unused

LSB level 3 interrupt

Internal timer
Interprocessor interrupt
LSB level 2 interrupts

LSB level 1 interrupts

KN7AA console UARTs
LSB level 0 interrupts
Processor-corrected errors2

Unused

Software interrupt asserted

5
5
4

3

2
2
2

1

0
0
x

x

1  Not applicable.

2  Only DECchip 21064-BA (rev 3) chips generate internal interrupts at IPL 20.  Rev 2 DECchip 21064 chips do not
correct correctable errors.  These chips generate hard errors at IPL 31 instead.
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The Alpha AXP processor IPL is defined by the processor state managed by
PALcode.  The contents of the HIER, SIER, and ASTER DECchip 21064
IPRs defines the processor IPL.  It is the responsibility of PALcode to man-
age the contents of these registers to conform to the processor IPL defined
by the Alpha AXP architecture.  The PALcode gets entered whenever the
processor IPL is low enough (HIER, SIER, and ASTER contain appropriate
values) and one of the six interrupt signals is asserted. 

4.7  Internal Processor Registers

The DECchip 21064 contains a number of registers referred to throughout
this document as IPRs (internal processor registers).  The IPRs are used by
the DECchip hardware and the PALcode to implement functions required
by the Alpha AXP architecture.  Detailed descriptions are provided for only
those IPRs whose functions are defined at bit level. 

4.7.1  IPR Access

PALcode initializes the ICCSR<HWE> to zero.  This means that the IPRs
are not visible to the user software.  They are accessible only in PALmode
by using the HW_MFPR or HW_MTPR instruction (see Figure 4-6).  These
instructions select the IPR group and reference an IPR within the group. 
It is possible to access IPRs in different groups with a single instruction by
setting their respective bits (PAL, ABX, and IBX) in the HW_MFPR or
HW_MTPR instruction, provided the IPRs from the different groups share
the same index.  Setting the PAL, ABX, and IBX fields to zero generates a
no-op.  

Figure 4-6 HW_MFPR and HW_MTPR Instruction Format

Refer to Section 10.7 for the field descriptions of the HW_MFPR and
HW_MTPR instructions.

NOTE:  There are two registers per processor that are associated with the LDQ_L/
LDL_L and STQ_C/STL_C instructions: the lock_flag single-bit register
and the locked_physical_ address register.  The use of these registers is de-
scribed in the Alpha Architecture Reference Manual.  These registers are re-
quired by the Alpha AXP architecture but are not implemented by the
DECchip 21064.  They must be implemented in the application.  

Table 4-7 lists the DECchip 21064 IPRs.  It also indicates the access type
and the index of each IPR. 

31 26 25 21 20 16 15 4 08 7 6 5

OPCODE RA RB IGN INDEX

BXB-0618-92

PAL
ABX
IBX
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Table 4-7 DECchip 21064 Internal Processor Registers

Name Mnemonic Access Index

Ibox

Translation Buffer Tag Register1

Instruction Translation Buffer PTE Register1

Instruction Cache Control/Status Register

Instruction Translation Buffer PTE_TEMP Register1

Exception Address Register

Serial Line Receive Register

Instruction Translation Buffer ZAP Register1

Instruction Translation Buffer ASM Register1

Instruction Translation Buffer IS Register1

Processor Status Register

Exception Summary Register

PALcode Base Address Register

Hardware Interrupt Request Register

Software Interrupt Request Register

Asynchronous Trap Request Register

Hardware Interrupt Enable Register

Software Interrupt Enable Register

AST Interrupt Enable Register

Serial Line Interrupt Clear Register

Serial Line Transmit Register

TB_TAG

ITB_PTE

ICCSR

ITB_PTE_TEMP

EXC_ADDR

SL_RCV

ITBZAP

ITBASM

ITBIS

PS

EXC_SUM

PAL_BASE

HIRR

SIRR

ASTRR

HIER

SIER

ASTER

SL_CLR

SL_XMIT

W

R/W

R/W

R

R/W

R

W

W

W

R/W

R/W

R/W

R

R/W

R/W

R/W

R/W

R/W

W

W

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

16

17

18

19

22

1  Used in PALmode only.  
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Table 4-7   DECchip 21064 Internal Processor Registers (Continued)

Table 4-8 shows the reset states of the DECchip 21064 IPRs and indicates
the registers that need to be initialized by power-up PALcode.

Name Mnemonic Access Index

Abox

Translation Buffer Control Register

Data Translation Buffer PTE Register

Data Translation Buffer PTE_TEMP Register

Memory Management CSR Register

Virtual Address Register

Data Translation Buffer ZAP Register

Data Translation Buffer ASM Register

Data Translation Buffer IS Register

BIU Address Register

BIU Status Register

D-Cache Status Register

Fill Address Register

Abox Control Register

Alternate Processor Mode Register

Cycle Counter Register

Cycle Counter Control Register

BIU Control Register

Fill Syndrome Register

B-Cache Tag Register

Flush IC Register

Flush IC_ASM Register

PAL

PALcode Temporary Registers

TB_CTL

DTB_PTE

DTB_PTE_TEMP

MMCSR

VA

DTBZAP

DTASM

DTBIS

BIU_ADDR

BIU_STAT

DC_STAT

FILL_ADDR

ABOX_CTL

ALT_MODE

CC

CC_CTL

BIU_CTL

FILL_SYND

BC_TAG

FLUSH_IC

FLUSH_IC_ASM

PAL_TEMP

W

R/W

R

R

R

W

W

W

R

R

R

R

W

W

W

W

W

R

R

W

W

R/W

0

2

3

4

5

6

7

8

9

10

12

13

14

15

16

17

18

19

20

21

23

31–00  

1  Used in PALmode only.
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Table 4-8 DECchip 21064 IPR Reset State

IPR Reset State Comment1

TB_TAG

ITB_PTE

ICCSR

ITB_PTE_TEMP

EXC_ADDR

SL_RCV

ITBZAP

ITBASM

ITBIS

PS

EXC_SUM

PAL_BASE

HIRR

SIRR

ASTRR

HIER

SIER

ASTER

SL_CLR

SL_XMIT

TB_CTL

DTB_PTE

DTB_PTE_TEMP

Undefined

Undefined

Cleared except
ASN, PC0, PC1

Undefined

Undefined

Undefined

Not applicable

Not applicable

Not applicable

Undefined

Undefined

Clear

Not applicable

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

Floating-point disabled, single-issue mode, pipe mode
enabled, JSR predictions disabled, branch predictions
disabled, branch history table disabled, performance
counters reset to zero, Perf Cnt0: Total Issues/2, Perf
Cnt1: D-cache Misses, superpage disabled

PALcode must do an ITBZAP on reset before writing
the ITB (must do HW_MTPR to ITBZAP IR). 

PALcode must set processor status.

PALcode must clear the Exception Summary IPR and
the exception write mask by doing 64 reads.

Cleared on reset.

PALcode must initialize. 

PALcode must initialize. 

PALcode must initialize. 

PALcode must initialize. 

PALcode must initialize. 

PALcode must initialize. 

PALcode must initialize.  Appears on external pin.

PALcode must select between SP/LP DTB prior to any
TB fill.

1  The B-cache parameters BC RAM read speed, BC RAM write speed, BC write enable control, and BC size are all         
undetermined on reset.  These parameters must be initialized before enabling the B-cache. 
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Table 4-8   DECchip 21064 IPR Reset State (Continued)

4.7.2  IPR Descriptions

This section provides detailed descriptions of the DECchip 21064 IPRs. 
The list of the DECchip 21064 IPRs includes IPRs that do not carry func-
tional fields and some pseudoregisters.  These IPRs are the following:

• Virtual Address Register (VA)  
When D-stream faults or DTB misses occur, the effective virtual ad-
dress associated with the fault or miss is latched in the read-only VA
IPR.  The VA and MMCSR registers are locked against further updates
until the software reads the VA IPR.  The VA IPR is unlocked after re-
set.  PALcode must explicitly unlock this register whenever its entry
point is higher in priority than a DTB miss.

IPR Reset State Comment

MMCSR

VA

DTBZAP

DTASM

DTBIS

BIU_ADDR

BIU_STAT

DC_STAT

FILL_ADDR

ABOX_CTL

ALT_MODE

CC

CC_CTL

BIU_CTL

FILL_SYND

BC_TAG

PAL_TEMP

Undefined

Undefined

Not applicable

Not applicable

Not applicable

Not applicable

Undefined

Undefined

Undefined

Cleared

Undefined

Undefined

Undefined

Cleared

Undefined

Undefined

Undefined

Unlocked on reset.

Unlocked on reset.

PALcode must do an ITBZAP on reset.   See ITBZAP.

 

Potentially locked.

Potentially locked.

Potentially locked.

<11:0> <- ^x0100 Write buffer enabled, machine
checks disabled, correctable read interrupts disabled,
I-cache  stream buffer disabled, superpages 1 and 2
disabled, endian mode disabled, D-cache disabled,
forced hit mode off.

Cycle counter is disabled on reset.

B-cache disabled, parity mode undefined, chip enable
asserts during RAM write cycles, B-cache forced-hit
mode disabled. BC_PA_DIS field cleared. BAD_TCP
cleared. BAD_DP cleared.

Potentially locked.

Potentially locked.

1  The B-cache parameters BC RAM read speed, BC RAM write speed, BC write enable control, and BC size are all
undetermined on reset.  These parameters must be initialized before enabling the B-cache. 
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• Instruction Translation Buffer ZAP Register (ITBZAP)
A write to this IPR invalidates all 12 instruction translation buffer
(ITB) entries. It also resets both the NLU pointers to their initial state. 
The ITBZAP IPR is only written to in PALmode.

• Instruction Translation Buffer ASM Register (ITBASM)
A write to this IPR invalidates all ITB entries in which the <ASM> bit
is equal to zero. The ITBASM IPR is only written to in PALmode.

• Instruction Translation Buffer IS Register (ITBIS)
A write to the ITBIS IPR invalidates all 12 ITB entries.  It also resets
both the NLU pointers to their initial state.  The ITBIS IPR is only
written to in PALmode.

• Data Translation Buffer ZAP Register (DTBZAP)
The DTBZAP is a pseudoregister.  Any  write to this register invali-
dates all 32 DTB entries.  It also resets the NLU pointer to its initial
state. 

• Data Translation Buffer ASM Register (DTBASM)
The DTBASM is a pseudoregister.  Any write to this register invali-
dates all 32 DTB entries in which the ASM bit is zero. 

• Data Translation Buffer Invalidate Single Register (DTBIS)
Any write to this pseudoregister will invalidate the DTB entry, which
maps the virtual address held in the integer register.  The integer reg-
ister is identified by the Rb field of the HW_MTPR instruction, used to
perform the write.  

• Flush Instruction Cache Register (FLUSH_IC)
Any write to this pseudoregister flushes the entire instruction cache.

• Flush Instruction Cache ASM Register (FLUSH_IC_ASM)
Any write to this pseudoregister invalidates all I-cache blocks in which
the ASM bit is clear.

• PAL_TEMP IPRs 
These 32 registers provide temporary storage for PALcode.  They are
accessed by way of the HW_MTPR and HW_MFPR instructions. 

The descriptions of the rest of the DECchip 21064 IPRs follow.
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TB_TAG—Translation Buffer Tag Register

Table 4-9 TB_TAG IPR Bit Definitions

Index
Access

Ibox 0
W

The TB_TAG IPR holds the tag for the next translation buffer up-
date operation in the instruction translation buffer (ITB) or the
data translation buffer (DTB).   The tag is written to a temporary
register and not transferred to the ITB or DTB until the Instruc-
tion Translation Buffer Page Table Entry (ITB_PTE) or the Data
Translation Buffer Page Table Entry (DTB_PTE) IPR is written. 
The entry to be written is chosen at the time of the ITB_PTE or
DTB_PTE write operation by a not-last-used (NLU) algorithm, im-
plemented in hardware. 

IGN

IGN

0
0

1
2

1
3

4
2

4
3

6
3

BXB-0283-93

0
0

2
1

2
2

4
2

4
3

6
3

VA<42:13>

VA<42:22>

IGN

IGN

Small Page Format:

TB_CTL<GH> = 11 Format (ITB only):

Name Bit(s) Type Function

VA <42:13> W Virtual Address.   Bits extracted from the vir-
tual address to form the tags for the small pages
(8 Kbytes) of the ITB. 

VA <42:22> W Virtual Address.   Bits extracted from the vir-
tual address to form the tags for the large pages
(4 Mbytes) of the ITB. 
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ITB_PTE—Instruction Translation Buffer PTE Register

Index
Access

Ibox 1
R/W

The ITB_PTE IPR represents 12 page table entries split into two
distinct arrays.  The first eight PTEs provide small page (8 Kbytes)
translations while the remaining four provide large page (4
Mbytes) translations.  The entry to be written is selected  by a not-
last-used algorithm implemented in hardware for each array inde-
pendently,  and the status of the TB_CTL IPR.  Writes to the
ITB_PTE IPR use the memory format bit positions as described in
the Alpha Architecture Reference Manual, with the exception that
some fields are ignored.

Refer to the chapter discussing the appropriate operating system
support in this manual for the bit definitions of the PTE.

IGN PFN<33:13> IGN

BXB-0284 -93

URE
SRE
ERE
KRE
ASM

IGN

0
0

0
3

0
4

0
5

0
7

0
8

0
9

1
0

1
1

1
2

3
1

3
2

5
2

5
3

6
3

Write Format:

IGN

0
0

0
9

1
0

1
1

1
2

1
3

3
3

3
4

3
5

6
3

Read Format:
0
8

RAZ PFN<33:13> RAZ

URE
SRE
ERE
KRE

ASM
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ICCSR—Instruction Cache Control/Status Register

Address
Access

Ibox 2
R/W

The ICCSR IPR contains various Ibox hardware enables.  The only
architecturally defined bit  in this register is the floating-point en-
able (FPE), which enables floating-point instructions.  When
cleared, all floating-point instructions generate FEN exceptions. 
Most bits of this IPR are cleared by hardware at reset.  Fields that
are not cleared at reset include ASN, PC0, and PC1.

NOTE:  The hardware enable bit allows the PALcode instructions to execute
in kernel mode.  This bit is intended for diagnostic or operating system al-
ternative PALcode routines only.  It does not allow access to the ITB IPRs if
not running in PALmode. 

IGN ASN
<5:0> IGN

BXB-0286-92

FPE
MAP
HWE

DI

RSVD

BHE
JSE
BPE

PIPE

PC MUX1<2:0>
PC MUX0<3:0>

MBZ
RSVD

PC0
MBZ
PC1

0
0

0
1

0
2

0
3

0
4

0
5

0
7

0
8

1
1

1
2

3
1

3
2

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
6

4
7

5
2

5
3

6
3

Write Format :

0
0

0
1

0
2

0
3

0
8

0
9

1
2

1
3

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
7

2
8

3
3

3
4

3
5

6
3

Read Format:

RAZ
ASN
<5:0>

FPE
MAP
HWE

DI
BHE
JSE
BPE
PIPE

PC1
PC0
RAZ

RAZ

RSVD

RSVD

PC MUX0<3:0>
PC MUX1<2:0>
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Table 4-10 ICCSR IPR Bit Definitions

Name Bit(s) Type Function

ASN

FPE

MAP

HWE

DI

BHE

JSE

BPE

PIPE

W<52:47>
R<33:28>

W<42>
R<23>

W<41>
R<22>

W<40>
R<21>

W<39>
R<20>

W<38>
R<19>

W<37>
R<18>

W<36>
R<17>

W<38>
R<19>

R/W, 0

R/W, 0

R/W, 0

R/W, 0

R/W, 0

R/W, 0

R/W, 0

R/W, 0

R/W, 0

Address Space Number.  The ASN field is used with
the I-cache to further qualify cache entries and avoid
some cache flushes. The ASN is written to the I-cache
during fill operations and compared with the I-stream
data on fetch operations. Mismatches invalidate the
fetch without affecting the I-cache.

Floating-Point Enable.  If set, floating-point instruc-
tions can be issued. If clear, floating-point instructions
cause FEN exceptions.

Map.  If set, it allows superpage I-stream memory
mapping of virtual PC <33:13> directly to physical PC
<33:13> essentially bypassing ITB for virtual PC ad-
dresses containing virtual PC <42:41>  = 2. Superpage
mapping is allowed in kernel mode only.  The I-cache
ASM bit is always set.  If clear, superpage mapping is
disabled. 

Hardware Enable.  If set, it allows the five PALRES
instructions (see the Alpha Architecture Reference
Manual) to be issued in kernel mode. If cleared, at-
tempts to execute PALRES instructions while not in
PALmode result in OPCDEC exceptions.

Dual Issue.  If set, dual-instruction issue is enabled. 
If cleared, instructions can only single issue.

Branch History Enable.  Used with BPE to select
branch prediction. 

Jump Subroutine Enable.  If set, it enables the JSR
stack to push a return address. If cleared, JSR stack is
disabled.

Branch Prediction Enable.  Used with BHE to se-
lect branch prediction.  See description of BHE above.

Pipeline.  If clear, it  causes all hardware interlocked
instructions to drain the machine and waits for the
write buffer to empty before issuing the next instruc-
tion. Examples of instructions that do not cause the
pipe to drain include HW_MTPR, HW_REI, conditional
branches, and instructions that have a destination reg-
ister of R31. If set, pipeline proceeds normally.

BPE BHE Prediction

0
1
1

X
0
1

Not taken
Sign of displacement
Branch history table
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Table 4-10   ICCSR IPR Bit Definitions (Continued)

Name Bit(s) Type Function

PCMUX1 W<34:32>
R<15:13>

R/W, 0 Performance Counter Mux 1.

MUX1 Input Comment

000

001

010

011

100

101

110

111

D-cache miss

I-cache miss

Dual issues

Branch
mispredicts

FP instruc-
tions

Integer oper-
ate

Store instruc-
tions

PERF_CNT_H
= 1

Counts total D-cache
misses.

Counts total I-cache
misses.

Counts cycles of dual is-
sue.

Counts both conditional
branch mispredictions
and JSR or HW_REI
mispredictions. Condi-
tional branch mispre-
dictions cost 4 cycles and
others cost 5 cycles of
pipeline delay. 

Counts total floating-
point operate instruc-
tions;  that is, no FP
branch, load, or store.

Counts integer operate
instructions including
LDA and LDAH with
destination other than
R31.

Counts total store in-
structions.

Counts external events
supplied to a pin at a se-
lected system clock cycle
interval.
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Table 4-10  ICCSR IPR Bit Definitions (Continued)

Name Bit(s) Type Function

PCMUX0

PC1

PC0

W<11:8>
R<12:9>

W<0>
R<2>

W<3>
R<1>

R/W, 0

R/W

R/W0

Performance Counter Mux 0.

Performance Counter 1.  If clear, it enables performance
counter 1 interrupt request after 212 events counted.  If set,
it enables performance counter 1 interrupt request after 28

events counted.

Performance Counter 0.  If clear, it enables performance
counter 0 interrupt request after 216 events counted.  If set,
it enables performance counter 0 interrupt request after
212 events counted.

MUX0 Input Comment

000X

001X

010X

011X

100X

1011

1010

110X

111X

Total Issues/2

Pipeline Dry

Load Instruc-
tions

Pipeline Frozen

Branch Instruc-
tions

PALmode

Total cycles

Total Non-
issues/2

PERF_CNT_H
= 0

Counts total issues di-
vided by 2; dual issue in-
crements count by 1.

Counts cycles where
nothing issued due to
lack of valid I-stream
data. Causes include I-
cache fill, misprediction,
branch delay slots, and
pipeline drain for excep-
tion.

Counts all Load instruc-
tions.

Counts cycles where
nothing issued due to re-
source conflict.

Counts all conditional
branches, unconditional
branches, JSR, and
HW_REI instructions.

Counts cycles while exe-
cuting in PALmode.

Counts total cycles.

Counts total non_issues
divided by 2; that is, no
issue increments count
by 1.

Counts external events
supplied to a pin at a se-
lected system clock cycle
interval.
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Performance Counters

The performance counters are reset to zero upon power-up. Otherwise they
are never cleared. The counters are intended as a means of counting events
over a long period of time, relative to the event frequency.  They provide no
means of extracting intermediate counter values.  

Since the counters continuously accumulate selected events, despite inter-
rupts being enabled, the first interrupt after selecting a new counter input
has an error bound as large as the selected overflow range. Some inputs
can overcount events occurring simultaneously with D-stream errors that
abort the actual event very late in the pipeline. 

For example, when counting load instructions, attempts to execute a load
resulting in a TB miss exception will increment the performance counter
after the first aborted execution attempt and again after the TB fill routine
when the load instruction reissues and completes.

Performance counter interrupts are reported six cycles after the event that
caused the counter to overflow. Additional delay can occur before an inter-
rupt is serviced if the processor is executing PALcode that always disables
interrupts. Events occurring during the interval between counter overflow
and interrupt service are counted toward the next interrupt.

Only in the case of a complete counter wrap-around while interrupts are
disabled will an interrupt be missed.

The six cycles before an interrupt is triggered implies that a maximum of
12 instructions may have completed before the start of the interrupt serv-
ice routine. 

When counting I-cache misses, no intervening instructions can complete
and the exception PC contains the address of the last I-cache miss.  Branch
mispredictions allow a maximum of only two instructions to complete be-
fore start of the interrupt service routine. 
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ITB_PTE_TEMP—Instruction Translation Buffer PTE_TEMP
Register

Index
Access

Ibox 3
R

The ITB_PTE_TEMP IPR is a holding register for ITB_PTE read
data.  Reads of  ITB_PTE require two instructions to return data to
the register file.  The two instructions are as follows: 

1.   Read the ITB_PTE IPR data to the ITB_PTE_TEMP IPR.  

2.   Read the ITB_PTE_TEMP IPR data to the integer register file. 

The ITB_PTE_TEMP IPR is updated on all ITB accesses, both            
read and write.   A read of the ITB_PTE to the ITB_PTE_TEMP          
should be followed closely by a read of the ITB_PTE_TEMP to the     
register file.   Refer to the PTE descriptions in Chapters 9 and 10 for
the bit definitions of this register.

BXB-0285-92

0
0

0
9

1
0

1
1

1
2

1
3

3
3

3
4

3
5

6
3

0
8

RAZ PFN<33:13> RAZ

URE
SRE
ERE
KRE

ASM
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EXC_ADDR—Exception Address Register

Table 4-11 EXC_ADDR IPR Bit Definitions

EXC_ADDR IPR Usage

The instruction pointed to by the EXC_ADDR IPR did not complete its exe-
cution.  The EXC_ADDR IPR is written by hardware after an exception to
provide a return address for PALcode.  The HW_REI instruction executes a
jump to the address contained in the EXC_ADDR IPR.  EXC_ADDR<0> is
used to indicate  PALmode to the hardware.  

CALL_PAL exceptions load the EXC_ADDR with the PC of the instruction
following the CALL_PAL. This function allows CALL_PAL service routines
to return without needing to increment the value in the EXC_ADDR IPR.

This feature requires careful treatment in PALcode.  Arithmetic  traps and
machine check exceptions can prompt CALL_PAL exceptions resulting in
an incorrect value being saved in the EXC_ADDR IPR.  In the cases  of an

Index
Access

Ibox 4
R/W

The EXC_ADDR IPR is a read/write register used to restart the sys-
tem after exceptions or interrupts.  

0
0

0
1

0
2

6
3

BXB-0288-93

IGN
PAL

PC<63:2>

Name Bit(s) Type Function

PC

PAL

<63:2>

<0>

R/W

R/W

Program Counter.   Contains bits <63:2> of the PC. 
This field is written by hardware following an exception
to provide a return address for PALcode.

PALmode.   If set, the value in EXC_ADDR<63:2> is cor-
rect.  When clear, the HW_REI instruction executes a
jump to native (nonPALmode) mode, enabling address
translation.
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arithmetic trap or machine check exception (only in these  cases),
EXC_ADDR<1>  takes on special meaning. PALcode servicing these two
exceptions must: 

• Interpret a zero in EXC_ADDR<1> as indicating that the PC in
EXC_ADDR<63:2> is too large by a value of 4 bytes and subtract 4 be-
fore executing an HW_REI from this address. 

• Interpret a one in EXC_ADDR<1> as indicating that the PC in
EXC_ADDR<63:2> is correct and clear EXC_ADDR<1>. 

All other PALcode entry points except reset can expect EXC_ADDR<1> to
be zero.

The logic allows the following code sequence to conditionally subtract 4
from the address in the EXC_ADDR register without the use of an addi-
tional  register.  This code sequence must be present in arithmetic trap and
machine check flows only. 

  HW_MFPR  Rx,  EXC_ADDR     ; read EXC_ADDR into GPR
 SUBQ    Rx,  2, Rx         ; subtract 2 causing borrow                    
                            ; if bit <1>=0
 BIC     Rx, 2, Rx          ; clear bit [1]
 HW_MTPR Rx,  EXC_ADDR      ; write back to EXC_ADDR

NOTE:  Using the HW_MTPR instruction to update the EXC_ADDR register while
in the native mode is restricted to bit <0> being equal to zero.  The combina-
tion of the native mode and  EXC_ADDR<0> being equal to one causes UN-
DEFINED behavior.  This combination is only possible through the use of
ICCSR<HWE>. 
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SL_RCV—Serial Line Receive Register

Table 4-12 SL_RCV IPR Bit Definitions

Index
Access

Ibox 5
R

The SL_RCV IPR contains a single read-only bit (RCV) which is
used with the interrupt control registers, the sRomD_h signal, and
the sRomClk_h signal to provide an on-chip serial line function. 

RAZ

BXB-0289-93

RCV

0
0

0
2

0
3

0
4

6
3

RAZ

Name Bit(s) Type Function

RCV <3> R Serial Line Receive.   This bit is functionally connected to
the sRomD_h pin after the I-cache is loaded from the exter-
nal SROM.  Using a software timing loop, RCV can be read
to receive external data one bit at a time.

A serial line interrupt is requested on detection of any tran-
sition on the receive line that sets the SL_REQ bit in the
HIRR IPR.  The serial line interrupt can be disabled by
clearing HIER<SL_EN>.
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PS—Processor Status Register 

Index
Access

Ibox 9
R/W

The PS IPR contains only the current mode bits of the architectur-
ally defined PS.   Refer to the Alpha Architecture Reference Manual
for the functional descriptions of the current mode bits. 

IGN

BXB-0290-92

CM1
CM0

0
0

0
1

0
2

3
3

3
4

3
5

6
3

RAZ

Read Format:

0
0

0
2

0
3

0
4

0
5

6
3

Write Format:

RAZ

CM0
RAZ

CM1

IGN
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EXC_SUM—Exception Summary Register

Index
Access

Ibox 10
R/W

The EXC_SUM IPR records the various types of arithmetic traps
that occurred since the last time the EXC_SUM was written
(cleared).  When the result of an arithmetic operation produces an
arithmetic trap, the corresponding EXC_SUM bit is set.

The register containing the result of the operation is recorded in
the Exception Register Write Mask parameter (see the Alpha Ar-
chitecture Reference Manual), as a single bit in a 64-bit field speci-
fying registers F31–F0 and I31–I0. The EXC_SUM IPR provides a
one-bit window to the Exception Register Write Mask parameter.
This is visible only through the EXC_SUM IPR.

Each read to the EXC_SUM shifts one bit in order F31–F0 then
I31–I0. The read also clears the corresponding bit.  The EXC_SUM
must be read 64  times to extract the complete mask and clear the
entire register.  If no integer traps are present (IOV=0), only the
first 32 bits of the corresponding register in the floating-point reg-
ister file need to be read and cleared.

Any write to EXC_SUM clears bits <8:2> and does not affect the
write mask bit.

The write mask parameter bit clears three cycles after a read.
Code intended to read the parameter must allow at least three cy-
cles between reads.  This allows the clear and shift operations to
complete in order to ensure reading successive bits.  

0
0

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0
9

3
2

3
3

3
4

6
3

BXB-0291-93

IOV
INE

UNF
FOV

RAZ

MSK

DZE
INV

SWC
RAZ

RAZ
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Table 4-13 EXC_SUM IPR Bit Definitions

Name Bit(s) Type Function

MSK

IOV

INE

UNF

FOV

DZE

INV

SWC

<33>

<8>

<7>

<6>

<5>

<4>

<3>

<2>

RC

WA

WA

WA

WA

WA

WA

WA

Mask.  Exception Register Write Mask parameter window.

Integer Overflow.  When set, indicates Fbox convert to in-
teger overflow or integer arithmetic overflow.

Inexact Error.  When set, indicates floating inexact error.

Underflow.  When set, indicates floating-point underflow.

Floating-Point Overflow.  When set, indicates floating-
point overflow.

Divide by Zero.   When set, indicates divide by zero.

Invalid.  When set, indicates invalid operation.

Software Completion.   When set, indicates software com-
pletion possible. The bit is set after a floating-point instruc-
tion containing the /S modifier completes with an arithmetic
trap and all previous floating-point instructions that
trapped since the last HW_MTPR EXC_SUM also contained
the /S modifier. The SWC bit is cleared whenever a floating-
point instruction without the /S modifier completes with an
arithmetic trap.  The bit remains cleared regardless of addi-
tional arithmetic traps until the register is written by way of
an HW_MTPR instruction.  The SWC bit is always cleared
upon any HW_MTPR write to the EXC_SUM IPR.
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PAL_BASE—PALcode Base Address Register

Table 4-14 PAL_BASE IPR Bit Definitions

Index
Access

Ibox 11
R/W

The PAL_BASE IPR contains the base address for PALcode.  This
register is cleared by the hardware at reset.  It establishes the ref-
erence (base) address to which an offset is added to determine the
entry point to the PALcode.

0
0

1
3

1
4

3
3

3
4

6
3

BXB-00292-93

IGN/RAZ PAL_BASE<33:14> IGN/RAZ

Name Bit(s) Type Function

PAL_BASE <33:14> R/W PALcode Base Address.  Contains the PALcode base ad-
dress.
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HIRR—Hardware Interrupt Request Register

Index
Access

Ibox 12
R

The HIRR IPR provides a record of all currently outstanding inter-
rupt requests and summary bits at the time of the read.  For each
bit of the HIRR<5:0>, there is a corresponding bit of the Hardware
Interrupt Enable IPR (HIER) that must be set to enable that inter-
rupt. 

In addition to returning the status of the hardware interrupt re-
quests, a read of the HIRR returns the state of the software inter-
rupt and AST requests. 

NOTE:  A read of the HIRR can return a value of zero if the hardware inter-
rupt was released before the read (passive release). 

The register guarantees that the HWR bit reflects the status as
shown by the HIRR bits.  All interrupt requests are blocked while
executing in PALmode.  

0
0

0
1

0
2

0
3

0
4

0
5

0
7

0
8

0
9

1
0

1
2

1
3

1
4

2
8

2
9

3
2

6
3

BXB-0293-93

USEK ASTRR[3:0]
SLR

HIRR[2:0]
PC0
PC1

SIRR[15:1]

Read Format:

RAZ

3
3

HIRR[5:3]
CRR
ATR

SWR
HWR
RAZ
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Table 4-15 HIRR IPR Bit Definitions

Name Bit(s) Type Function

ASTRR[3:0]

SIRR[15:1]

SLR

HIRR[5:0]

PC0

PC1

CRR

ATR

SWR

HWR

<32:29>

<28:14>

<13>

<12:10>
<7:5>

<9>

<8>

<4>

<3>

<2>

<1>

R

R

R

R

R

R

R

R

R

R

AST Request.  Corresponds to AST requests 3 through
0 (USEK).   When a bit is set, the corresponding inter-
rupt request is posted.  The four bits are expanded as fol-
lows:

Software Interrupt Request.    Corresponds to soft-
ware interrupt requests 15 through 1.  When a bit is set,
the corresponding interrupt request is posted.

Serial Line Interrupt Request.  When set, a serial
line interrupt request is posted.  See also SL_RCV,
SL_XMIT, and SL_CLR.

Hardware Interrupt Request.   Reflects the state of
signals Irq_h [5:0].  Any bit set in the HIRR field indi-
cates an interrupt request on the corresponding Irq_h
line. 

Performance Counter 0 Interrupt Request.  When
set, indicates that an interrupt request is posted by PC0.

Performance Counter 1 Interrupt Request.  When
set, indicates that an interrupt request is posted by PC1.

Correctable Read.   When set, indicates that a
correctable read error interrupt request is posted. This
interrupt is cleared by way of the SL_CLR IPR. 

Asynchronous Trap Request.  Is set if any AST re-
quest and corresponding enable is set.  This bit also re-
quires that the processor mode be equal to or higher than
the request mode.  SIER[2] must be asserted to allow
AST interrupt requests.

Software.   Is set if any software interrupt request and
corresponding enable is set. 

Hardware.  Is set if any hardware interrupt request
and corresponding enable is set.

ASTRR Operating Mode

3 
2
1
0

UAR: User AST request
SAR: Supervisor AST request
EAR: Executive AST request
KAR: Kernel AST request
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SIRR—Software Interrupt Request Register

Index
Access

Ibox 13
R/W

The SIRR IPR is used to control software interrupt requests.  For
each bit of the SIRR there is a corresponding bit of the Software
Interrupt Enable IPR (SIER) that must be set to request an inter-
rupt.  Reads of the SIRR return the complete set of interrupt re-
quest registers and summary bits.  All interrupt requests are
blocked while executing in PALmode.    See  Table 4-15 for the
SIRR IPR bit definitions. 

0
0

3
2

3
3

4
7

4
8

6
3

Write Format:

IGN SIRR[15:1] IGN

0
0

0
1

0
2

0
3

0
4

0
5

0
7

0
8

0
9

1
0

1
2

1
3

1
4

2
8

2
9

3
2

6
3

BXB-0294-93

USEK ASTRR[3:0]
SLR

HIRR[2:0]
PC0
PC1

SIRR[15:1]

Read Format:

RAZ

3
3

HIRR[5:3>\]
CRR
ATR

SWR
HWR
RAZ
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ASTRR—Asynchronous Trap Request Register

Index
Access

Ibox 14
R/W

The ASTRR IPR contains bits to request AST interrupts in each of
the processor modes.   To generate an AST interrupt, the corre-
sponding enable bit in the ASTER IPR must be set.  Also, the proc-
essor must be in the selected processor mode or higher privilege as
described by the current value of the PS CM bits.   AST interrupts
are enabled if SIER[2] is asserted.  This provides a mechanism to
lock out AST requests over certain IPL levels.  

All interrupt requests are blocked while executing in PALmode.
Reads of the ASTRR IPR return the complete set of interrupt re-
quest registers and summary bits.  See  Table 4-15 for the ASTRR
IPR bit definitions. 
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USEK ASTRR[3:0]
SLR

HIRR[2:0]
PC0
PC1

SIRR[15:1]

Read Format:

RAZ

3
3

HIRR[5:3]
CRR
ATR

SWR
HWR
RAZ
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Write Format:

IGN IGN

KAR
EAR

UAR
SAR
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HIER—Hardware Interrupt Enable Register

Index
Access

Ibox 16
R/W

The HIER IPR is used to enable corresponding bits of the HIRR re-
questing interrupt. The PC0, PC1, SLE, and CRE bits of this regis-
ter enable: 

1.  Performance counter interrupts
2.  Serial line interrupts
3.  Correctable read error interrupts

There is a one-to-one correspondence between the interrupt re-
quests and enable bits.  As with the reads of the interrupt request
registers, reads of the HIER IPR return the complete set of inter-
rupt enable registers.  See  Table 4-15 for details.
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SLE

IGN IGN

1
4

HIER
[5:0] IGN

PC1 PC0 CRE
IGN
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UAE
SAE
EAE
KAE

Read Format:

Write Format:

RAZ SIER[15:1] RAZ

SLE
HIER[2:0]

PC0
PC1

HIER[5:3]
CRE
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Table 4-16 HIER IPR Bit Definitions

Name Bit(s) Type Function

SLE

ASTRR[3:0] 

SIER[15:1]

PC1

HIER[5:0]

PC0

CRE

W<32>
R<13>

<32:29>

<28:14>

W<15>
R<8>

W<14:9>
R<12:10>
R<7:5>

W<8>
R<9>

W<2>
R<4>

R/W

R

R

R/W

R/W

R/W

R/W

Serial Line Interrupt Enable.  If set, enables the se-
rial line interrupts.  See also SL_RCV, SL_XMIT, and
SL_CLR.

AST Interrupt Enable.   Corresponds to AST inter-
rupt enable bits 3 through 0 (USEK).   If a bit is set in
this field, the corresponding interrupt is enabled.  The
four bits are expanded as follows:

Software Interrupt Enable.  Corresponds to software
interrupt requests 15 through 1.  Any bit set in this
field indicates that the corresponding software inter-
rupt is enabled.

Performance Counter 1 Interrupt Enable.  When
set, enables PC1 interrupts.

Hardware Interrupt Enable.   Interrupt enable bits
for signals Irq_h[5:0].  Any bit set in this field enables
the corresponding hardware interrupt. 

Performance Counter 0 Interrupt Enable.  When
set, enables PC0 interrupts.

Correctable Read Error Interrupt Enable.   If set,
enables the interrupt.  The interrupt request is cleared
by way of the SL_CLR. 

ASTRR[3:0] Operating Mode

3 
2
1
0

UAE: User AST interrupt enable
SAE: Supervisor AST interrupt enable
EAE: Executive AST interrupt enable
KAE: Kernel AST interrupt enable
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SIER—Software Interrupt Enable Register 

Index
Access

Ibox 17
R/W

The SIER IPR is used to enable corresponding bits of the SIRR re-
questing interrupts.  There is a one-to-one correspondence be-
tween the interrupt requests and enable bits.  As with the reads of
the interrupt request registers, reads of the SIER return the com-
plete set of interrupt enable registers.  

Refer to Table 4-16 for bit definitions of the SIER.
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UAE
SAE
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Read Format:

Write Format:

RAZ SIER[15:1] RAZ

SLE
HIER[2:0]

PC0
PC1

HIER[5:3]
CRE
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IGN SIER[15:1] IGN
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ASTER—AST Interrupt Enable Register 

Index
Access

Ibox 18
R/W

The ASTER IPR is used to enable corresponding bits of the ASTRR
requesting interrupts. There is a one-to-one correspondence be-
tween the interrupt requests and enable bits.  As with the reads of
the interrupt request registers, reads of the ASTER return the
complete set of interrupt enable registers. 

Refer to Table 4-16 for bit definitions of the ASTER.
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Read Format:

Write Format:

RAZ SIER<15:1> RAZ

SLE
HIER<2:0>

PC0
PC1

HIER<5:3>
CRE
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IGN IGN

KAE
EAE

UAE
SAE
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SL_CLR—Interrupt Clear Serial Line Register

Table 4-17 SL_CLR IPR Bit Definitions

Index
Access

Ibox 19
W

The SL_CLR IPR is a write-only register that clears: 

1.  Serial line interrupt requests

2.  Performance counter interrupt requests

3.  CRD interrupt requests

The indicated bit must be written with a zero to clear the selected
interrupt source. 
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SLC

IGN IGN

1
4

IGN IGN

PC1 PC0 CRD
IGN

Name Bit(s) Type Function

SLC

PC1

PC0

CRD

<32>

<15>

<8>

<2>

W0C

W0C

W0C

W0C

Serial Line Clear.  Clears the serial line interrupt request.

Performance Counter 1.  Clears the performance counter
1 interrupt request.

Performance Counter 0.  Clears the performance counter
0 interrupt request.

Correctable Read.   Clears the correctable read error in-
terrupt request.



       DECchip 21064 Overview   4-53

SL_XMIT—Serial Line Transmit Register

Index
Access

Ibox 22
W

The SL_XMIT IPR contains a single write-only bit.  This bit is used
with the interrupt control registers, the sRomD_h signal, and the
sRomClk_h signal to provide an on-chip serial line function.  The
TMT bit is functionally connected to the sRomClk_h signal after
the I-cache is loaded from the external SROM.   Writing the TMT
bit can be used to transmit data off chip, one bit at a time,  under a
software timing loop.
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TMT

IGN IGN

BXB-0299-93
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TB_CTL—Translation Buffer Control Register 

Table 4-18 TB_CTL IPR Bit Definitions

Index
Access

Abox 0
W

The TB_CTL IPR controls the granularity of the translation buffer.
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IGN IGN
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Name Bit(s) Type Function

GH <6:5> R/W Granularity Hint.   Selects between the DECchip 21064
TB page mapping sizes when writing or reading the ITB
and the DTB.  There are two sizes in the ITB and four
sizes in the DTB.  

TB_CTL<6:5> ITB Page Size DTB Page Size

00
01
10
11

8 Kbytes
8 Kbytes
8 Kbytes
512*8 Kbytes

8 Kbytes
8*8 Kbytes
64*8 Kbytes
512*8 Kbytes
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DTB_PTE—Data Translation Buffer PTE Register

Index
Access

Abox 2
R/W

The DTB_PTE IPR represents the 32-entry DTB.  The entry to be
written is chosen by a not-last-used (NLU) algorithm implemented
in the hardware.  Writes to the DTB_PTE IPR use the memory for-
mat bit positions as described in the Alpha Architecture Reference
Manual,  with the exception that some fields are ignored.  The
valid bit is not represented in hardware.

Refer to the chapter discussing the appropriate operating system
support in this manual for the bit definitions of the PTE.
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IGN PFN<33:13>
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IGN IGN

UWE
SWE
EWE
KWE

URE
SRE
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KRE

ASM
IGN

FOW
FOR
IGN
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DTB_PTE_TEMP—Data Translation Buffer PTE_TEMP
Register 

Index
Access

Abox 3
R

The DTB_PTE_TEMP IPR is a holding register for the DTB_PTE
read data.  Reads of the DTB_PTE require two instructions to re-
turn the data to the register file.  The two instructions are as fol-
lows: 

1.  Read the DTB_PTE register data to the DTB_PTE_TEMP.

2.  Read the DTB_PTE_TEMP register data to the integer register   
     file. 

The ITB_PTE_TEMP IPR is updated on all ITB accesses, both          
read and write.  A read of the ITB_PTE to the ITB_PTE_TEMP         
should be followed closely by a read of the ITB_PTE_TEMP to          
the register file.

Refer to Chapter 9 (OpenVMS AXP System Support) or Chapter 10 
(DEC OSF/1 AXP System Support) for the bit definitions of the
PTE. 
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3
3

ASM

BXB-0602-93
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UWE
SWE
EWE
KWE

FOR
FOW
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MMCSR—Memory Management CSR Register

Table 4-19 MMCSR IPR Bit Definitions

Index
Access

Abox 4
R

The MMCSR IPR saves information about D-stream faults.  The VA 
and MMCSR IPRs are locked against further updates until the soft-
ware reads the VA.   PALcode must explicitly unlock this register
whenever its entry point is higher in priority than a DTB miss. 
The MMCSR bits are only modified by the hardware when the reg-
ister is not locked, and a memory management error or a DTB miss
occurs.  The MMCSR IPR is unlocked after reset. 
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RAZ
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RAOPCODE
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FOW
FOR
ACV
WR

Name Bit(s) Type Function

OPCODE

RA

FOW

FOR

ACV

WR

<14:9>

<8:4>

<3>

<2>

<1>

<0>

R

R

R

R

R

R

Opcode.   Contains the Opcode field of the faulting in-
struction. 

Register A.  The RA field of the faulting instruction. 

Fault on Write.  Set if the reference was a write and the
PTE’s FOW bit was set.

Fault on Read.   Set if the reference was a read and the
PTE’s FOR bit was set.

Access Violation.  Set if reference caused an access vio-
lation. 

Write.   Set if reference that caused error was a write.



4-58   DECchip 21064 Overview

BIU_ADDR—BIU Address Register

Table 4-20 BIU_ADDR IPR Bit Definitions

Index
Access

Abox 9
R

The BIU_ADDR IPR contains the physical address associated with
errors reported by BIU_STAT<7:0>.  Its contents are meaningful
only when one of BIU_HERR, BIU_SERR, BC_TPERR, or
BC_TCPERR are set.  Reads of the BIU_ADDR register unlock both
BIU_ADDR and BIU_STAT<7:0>.

0
0

0
1

0
2

3
3

3
4

6
3

BXB-0613-93

RAZ

AddressRAZ

0
4

0
5

RB/LL

Name Bit(s) Type Function

ADDRESS

RB/LL

<33:5>

<4:2>

R

R

Address.  Reflects the states of adr_h signals [33:5] asso-
ciated with the EDAL interface transaction that resulted
in the error indicated in BIU_STAT<7:0>.  

Read_Block or Load_Locked.  If the BIU_CMD field of
the BIU_STAT IPR indicates that the transaction that re-
ceived the error was Read_Block or Load_Locked, then the
state of RB/LL is UNPREDICTABLE.  If the BIU_CMD
field of the BIU_STAT IPR encodes any EDAL interface
command other than Read_Block or Load_Locked, then
RB/LL reads as zeros.
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BIU_STAT—BIU Status Register

Index
Access

Abox 10
R

Bits <6:0> of the BIU_STAT IPR are locked against further updates
when one of the following bits is set:

BIU_HERR
BIU_SERR
BC_TPERR 
BC_TCPERR 

The  address associated with the error is latched and locked in the
BIU_ADDR IPR.   BIU_STAT<7:0> and BIU_ADDR are unlocked
when the BIU_ADDR register is read. When FILL_ECC or
FILL_DPERR is set, BIU_STAT<13:8> are locked against further
updates.  The address associated with the error is latched and
locked in the FILL_ADDR IPR.  BIU_STAT <14:8> and FILL_ADDR
are unlocked when the FILL_ADDR IPR is read.

This register is not unlocked or cleared by reset and needs to be
explicitly cleared by PALcode.
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FATAL2
FILL_QW
FILL_IRD

FILL_DPERR

RAZ

FILL_CRD
FILL_ECC

FATAL1
BIU_CMD

BC_TCPERR
BC_TPERR
BIU_SERR
BIU_HERR
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Table 4-21 BIU_STAT IPR Bit Definitions

Name Bit(s) Type Function

FATAL2

FILL_QW

FILL_IRD

FILL_DPERR

FILL_CRD

FILL_ECC

FATAL1

BIU_CMD

<14>

<13:12>

<11>

<10>

<9>

<8>

<7>

<6:4>

R

R

R

R

R

R

R

R

Fatal 2.  When set, indicates that a primary cache fill op-
eration resulted in either a multi-bit ECC error or in a
parity error while FILL_ECC or FILL_DPERR was al-
ready set.

Fill Quadword.   Identifies the quadword within the
hexword primary cache fill block that caused the error.
This field is only meaningful when either FILL_ECC or
FILL_DPERR is set.   FILL_QW can be used together with
FILL_ADDR<33:5> to get the complete physical address of
the bad quadword.

Fill  I-Cache Read.   When set, indicates that the error
that caused FILL_ECC or FILL_DPERR to be set occurred
during an I-cache fill.  When clear, indicates that the error
occurred during a D-cache fill.  This bit is only meaningful
when either FILL_ECC or FILL_DPERR is set. 

Fill Data Parity Error.  When set, indicates that the
BIU received data with a parity error from outside the
CPU chip while performing either a D-cache or I-cache fill.
FILL_DPERR is only meaningful when the CPU chip is in
parity mode, as opposed to ECC mode.

Fill  Correctable Read.  When set, indicates that the in-
formation latched in BIU_STAT <13:8>, FILL_ADDR IPR,
and FILL_SYND IPR relates to an errored quadword that
does not contain multi-bit errors in either of its component
longwords.  This bit is only meaningful when FILL_ECC is
set. 

Fill ECC Error.  When set, indicates that P-cache fill
data received from outside the CPU chip contained an
ECC error.

Fatal 1.  When set, indicates that an external cycle was
terminated with the cAck_h pins indicating
HARD_ERROR, or that a B-cache tag probe encountered
bad parity in the tag address RAM or the tag control RAM
while one of BIU_HERR, BIU_SERR, BC_TPERR, or
BC_TCPERR was already set.

BIU Command.  Latches the cycle type on the cReq_h
pins when a BIU_HERR, BIU_SERR, BC_TPERR, or
BC_TCPERR error occurs.
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Table 4-21 BIU_STAT IPR Bit Definitions (Continued)

Name Bit(s) Type Function

BC_TCPERR

BC_TPERR

BIU_SERR

BIU_HERR

<3>

<2>

<1>

<0>

R

R

R

R

B-Cache Tag Control Parity Error.  When set, indi-
cates that an external cache tag probe encountered bad
parity in the tag control RAM.

B-Cache Tag Parity Error.  When set, indicates that
an external cache tag probe encountered bad parity in the
tag address RAM.

BIU Soft Error.  When set, indicates that an external
cycle was terminated with the cAck_h pins indicating
SOFT_ERROR.

BIU Hard Error.  When set, indicates that an external
cycle was terminated with the cAck_h pins indicating
HARD_ERROR.



4-62   DECchip 21064 Overview

DC_STAT—D-Cache Status Register

Table 4-22 DC_STAT IPR Bit Definitions

Index
Access

Abox 12
R

The DC_STAT IPR is intended for use by diagnostics.   For chip re-
visions less than 3, PALcode must first issue the following instruc-
tion before issuing the load or store whose D-cache lookup result is
to be recorded into DC_HIT:

     HW_MTPR R31, 4B (hex)

For pass 3 chips, software need not execute the HW_MTPR instruc-
tion before using DC__STAT.  Also, the field marked Unpredictable
reads zero in the pass 3 chips. 
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UnpredictableRAZ

DC_HIT
CHIP_ID

Name Bit(s) Type Function

DC_HIT

CHIP_ID

<3>

<2:0>

R

R

D-Cache Hit.  Indicates whether the last load or store in-
struction processed by the Abox hit (DC_HIT set) or
missed (DC_HIT clear) the D-cache. Loads that miss the
D-cache can be completed without requiring external
reads.

Chip Identification.  This field has a value of 111 (bin)
for Revision 3 DECchip 21064 processors.  Any other value
in this field indicates a lower revision level.  
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FILL_ADDR—Fill Address Register

Table 4-23 FILL_ADDR IPR Bit Definitions

Index
Access

Abox 13
R

The FILL_ADDR IPR stores the physical address associated with
errors reported by BIU_STAT<14:8>.   The contents of this IPR are
meaningful only when FILL_ECC or FILL_DPERR is set.  Reads of
the FILL_ADDR unlock FILL_ADDR, BIU_STAT<14:8>, and
FILL_SYNDROME.
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PA/UNP
RAZ

AddressRAZ

0
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0
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Name Bit(s) Type Function

ADDRESS

PA/UNP

<33:5>

<4:2>

R

R

Address.  Identifies the 32-byte cache block that the CPU
was attempting to read when the error occurred.

Physical Address or Unpredictable.  If the FILL_IRD
bit of the BIU_STAT IPR is clear, it indicates that the er-
ror occurred during a D-stream cache fill.  At such times,
PA/UNP contains bits <4:2> of the physical address gener-
ated by the load instruction that triggered the cache fill. If
FILL_IRD is set, then the state of PA/UNP is UNPRE-
DICTABLE. 
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ABOX_CTL—Abox Control Register 

Table 4-24 ABX_CTL IPR Bit Definitions

Index
Access

Abox 14
W

The ABX_CTL IPR controls the Abox functions.  PALcode writes to
this register at initialization and keeps an image of the register
which appears in error log entries  and is readable by the user. 
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DC_FHIT
DC_EN

MBZMBZ

EMD_EN
SPE_2
SPE_1

IC_SBUF_EN
CRD_EN

MCHK_EN
WB_DIS

Name Bit(s) Type Function

DC_FHIT

DC_EN

EMD_EN

<11>

<10>

<6>

W, 0

W, 0

W, 0

D-Cache Force Hit.  When set, this bit forces all D-
stream references to hit in the D-cache. This bit takes
precedence over DC_EN. That is, when DC_FHIT is set
and DC_EN is clear, all D-stream references hit in the D-
cache.

D-Cache Enable. When clear, this bit disables and
flushes the D-cache. When set, this bit enables the D-
cache.

Endian Mode Enable.  Used to provide limited hard-
ware support for big endian data formats.  When set,  this
bit inverts  the physical address bit <2> for all D-stream
references.  The chip endian mode is only selected during
PALcode initialization. 
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Table 4-24  ABX_CTL IPR Bit Definitions (Continued)

Name Bit(s) Type Function

SPE_2

SPE_1

IC_SBUF_EN

CRD_EN

MCHK_EN

WB_DIS

<5>

<4>

<3>

<2>

<1>

<0>

W, 0

W, 0

W, 0

W, 0

W, 0

W, 0

Superpage Enable 2.   When set, enables one-to-one
superpage mapping of the D-stream virtual addresses
with VA <33:13> directly to physical addresses PA
<33:13>, if virtual address bits VA <42:41> = 2.  Virtual
address  bits VA <40:34> are ignored in this translation. 
Access is only allowed in kernel mode.

Superpage Enable 1.  When set, enables one-to-one
superpage mapping of the D-stream virtual addresses
with VA <42:30> = 1FFE to the physical addresses with
PA <33:30> = 0.  Access is only allowed in kernel mode.

I-Cache Stream Buffer Enable.  When set, enables op-
eration of a single-entry I-cache stream buffer.

Correctable Read Interrupt Enable.  When set, the
Abox generates an interrupt request whenever an EDAL
interface transaction is terminated with a cAck_h code of
SOFT_ERROR.

Machine Check Enable.   When set, the Abox generates
a machine check when errors (that are not correctable by
the hardware) are encountered. When cleared, uncorrect-
able errors do not cause a machine check. However, the 
BIU_STAT, DC_STAT, BIU_ADDR, and FILL_ADDR
IPRs are updated and locked when the errors occur.

Write Buffer Unload Disable.   When set, prevents the
write buffer from sending write data to the BIU.  This bit
should only  be set by diagnostics. 
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ALT_MODE—Alternate Processor Mode Register

Table 4-25 ALT_MODE IPR Bit Definitions

Index
Access

Abox 15
W

The ALT_MODE IPR stores information that specifies the alternate
processor mode.
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AM

IGNIGN

Name Bit(s) Type Function

AM <4:3> W Alternate Mode.  Specifies the alternate processor mode
used by HW_LD and HW_ST instructions that have their
ALT bit (<14>) set.  The alternate modes are selected as
follows: 

AM Processor Mode

00
01
10
11

Kernel
Executive
Supervisor
User
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CC—Cycle Counter Register 

Index
Access

Abox 16
W

The DECchip 21064 supports a cycle counter, as described in the
Alpha Architecture Reference Manual.  When enabled, the CC IPR
increments once each CPU cycle.  The HW_MTPR Rn, CC writes
the CC<63:32> with the value held in the Rn<63:32>;  bits <31:0> are
not changed.  

This IPR is read by the RPCC instruction and is written to by the
HW_MTPR Rn, CC instruction as defined in the Alpha Architecture
Reference Manual.   
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Write Format:
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CounterOffset

Read Format:
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CC_CTL—Cycle Counter Control Register

Index
Access

Abox 17
W

The CC_CTL IPR is used to write to the CC IPR.  The HW_MTPR
Rn, CC_CTL instruction writes the CC<31:0> with the value held in
Rn <31:0>;  bits <63:32> bits are not changed.  The CC<3:0> must be
written with zero.   If Rn<32> is set, then the counter is enabled;
otherwise, the counter is disabled. 
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CounterIGN
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BIU_CTL—BIU Control Register

Table 4-26 BIU_CTL IPR Bit Definitions

Index
Access

Abox 18
W

The BIU_CTL IPR is a write-only register that controls the operat-
ing parameters of the BIU interface and the B-cache.  PALcode
writes to this register at initialization and keeps an image of the
register which appears in error log entries  and is readable by the
user. 

0
0

0
1

0
2

0
3

0
4

0
7

0
8

1
1

1
2

1
3

2
8

3
0

3
1

3
2

3
6

3
7

6
3

BXB-0606-93

BAD_DP
BC_PA_DIS

BAD_TCP
BC_SIZE

BC_WE_CTL<15:1>MBZ

MBZ
BC_WR_SPD
BC_RD_SPD

BC_FHIT
OE

ECC
BC_EN

2
7

Name Bit(s) Type Function

BAD_DP

BC_PA_DIS

<36>

<35:32>

W, 0

W, 0

Bad Data Parity.  When set, causes the DECchip
21064 to invert the value placed on bits <0, 7, 14, 21> of
the check_h [27:0] field during off-chip writes. This pro-
duces bad parity when the DECchip 21064 is in parity
mode and bad check bit codes when in ECC mode.

B-Cache Physical Address Disable.  This 4-bit field is
used to prevent the CPU chip from using the B-cache to
service reads and writes based upon the quadrant of
physical address space that they reference. The corre-
spondence between this bit field and the physical 
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Table 4-26  BIU_CTL IPR Bit Definitions (Continued)

Name Bit(s) Type Function

BAD_TCP

BC_SIZE

BC_WE_CTL

<31>

<30:28>

<27:13>

W, 0

W, 0

W, 0

address space is as follows: 

When a read or write reference is presented to the BIU,
the values of BC_PA_DIS, BC_EN, and the physical ad-
dress bits <33:32> determine whether an attempt is to
be made to use the B-cache to satisfy the reference. If
the B-cache is not to be used for a given reference, the
BIU does not probe the tag store and makes the appro-
priate system request immediately. The value of
BC_PA_DIS has no impact on which portions of the
physical address space may be cached in the P-cache.
System components control this by way of the dRAck_h
field of the EDAL interface.

Bad Tag Control Parity.  When set, causes the
DECchip 21064 to write bad parity into the tag control
RAM whenever DECchip 21064 does a fast B-cache
write.

B-Cache Size.  This field is used to indicate the size of
the B-cache as follows: 

B-Cache Write Enable Control.  This field is used to
control the timing of the write enable and chip enable
signals during writes into the data and tag control
RAMs. It consists of 15 bits, where each bit determines
the value placed on the write enable and chip enable sig-
nals during a given CPU cycle of the RAM write access.
When a given bit of the BC_WE_CTL is set, the write en-
able and chip enable signals are asserted during the cor-
responding CPU cycle of the RAM access.  BIU_CTL-
<13> corresponds to the second cycle of the write access, 

BIU_CTL Bits Physical Address

<35>
<34>
<33>
<32>

PA <33:32> = 3
PA <33:32> = 2
PA <33:32> = 1
PA <33:32> = 0

BC_SIZE Size of B-Cache 

000
001
010
011
100
101
110

128 Kbytes
256 Kbytes
512 Kbytes
   1  Mbyte
   2  Mbytes
   4  Mbytes
   8  Mbytes
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Table 4-26  BIU_CTL IPR Bit Definitions (Continued)

Name Bit(s) Type Function

BC_WR_SPD

BC_RD_SPD

BC_FHIT

OE

ECC

BC_EN

<11:8>

<7:4>

<3>

<2>

<1>

<0>

W, 0

W, 0

W, 0

W, 0

W, 0

W, 0

BIU_CTL<14> to the third CPU cycle, and so on. The
write enable signals will never be asserted in the first
CPU cycle of a RAM write access.  Unused bits in this
field must be written with zeros.

B-Cache Write Speed.  Indicates to the BIU the write
cycle time of the RAMs used to implement the off-chip B-
cache, measured in CPU cycles.  It should be written
with a value equal to one less than the write cycle time
of the B-cache RAMs.

The access times for writes must be in the range of 16 to
2 CPU cycles, which means that the values for the
BC_RD_SPD field are in the range of 15 to 1.

B-Cache Read Speed.  Indicates to the BIU the read
access time of the RAMs used to implement the off-chip
B-cache, measured in CPU cycles.  It should be written
with a value equal to one less than the read access time
of the B-cache RAMs.

The access times for reads must be in the range of 16 to
4 CPU cycles, which means that the values for the
BC_RD_SPD field are in the range of 15 to 3. 

B-Cache Force Hit.  When this bit is set and the
BC_EN bit is also set, all EDAL interface Read_Block
and Write_Block transactions are forced to hit in the B-
cache.  Tag and tag control parity are ignored.  The
BC_EN takes precedence over BC_FHIT.  When BC_EN
is cleared and BC_FHIT is set, no tag probes occur and
external requests are directed to the cReq_h pins. 

NOTE:  The BC_PA_DIS field takes precedence over
BC_FHIT. 

Output Enable.  When set, the DECchip 21064 does
not assert its chip enable signals during RAM write cy-
cles, thus allowing the corresponding pins to be con-
nected to the output enable pins of the cache RAMs.

Error Checking and Correction.  When set, the
DECchip 21064 generates/expects ECC on the check_h
pins.  When cleared, the DECchip 21064 gener-
ates/expects parity on four of the check_h signals.

B-Cache Enable.   When cleared, the B-cache is dis-
abled.  When the B-cache is disabled, the BIU does not
probe the B-cache tag store for read/write references; it
launches a request on cReq_h immediately.
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FILL_SYND—Fill Syndrome Register 

Table 4-27 FILL_SYND IPR Bit Definitions

Index
Access

Abox 19
R

The FILL_SYND  IPR stores the syndrome bits.   If the DECchip
21064 is in ECC mode and an ECC error is recognized during a P-
cache fill operation, the syndrome bits associated with the bad
quadword are locked in the FILL_SYND IPR.  A syndrome value of
zero means that no errors were found in the associated longword.
The FILL_SYND IPR is unlocked when the FILL_ADDR IPR is
read. Table 4-28 lists the syndromes associated with correctable
single-bit errors. 

If the processor is in parity mode and a parity error is recognized
during a P-cache fill operation, the FILL_SYND IPR indicates
which of the longwords in the quadword got bad parity. 

0
0

0
6

0
7

1
3

1
4

6
3

BXB-0609-93

LO<6:0>HI<6:0>RAZ

Name Bit(s) Type Function

HI<6:0>

LO<6:0>

<13:7>

<6:0>

R

R

High <6:0>.  Contains the syndrome associated with the
upper longword of the quadword.  If the processor is oper-
ating in parity mode, bit <0> (FILL_SYND<7>) of this
field is set to indicate that the upper longword was cor-
rupted.  Bits <6:1> (FILL_SYND<13:8>) read as zeros in
parity mode. 

Low <6:0>.  Contains the syndrome associated with the
lower longword of the quadword.  If the processor is oper-
ating in parity mode, bit <0> (FILL_SYND<0>) of this
field is set to indicate that the lower longword was cor-
rupted.  Bits <6:1> (FILL_SYND<6:1>) read as zeros in
parity mode. 
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Table 4-28 Syndromes for Single-Bit Errors

Data Bit Syndrome  (Hex) Check Bit Syndrome (Hex)

<0>
<1>
<2>
<3>
<4>
<5>
<6>
<7>
<8>
<9>
<10>
<11>
<12>
<13>
<14>
<15>
<16>
<17>
<18>
<19>
<20>
<21>
<22>
<23>
<24>
<25>
<26>
<27>
<28>
<29>
<30>
<31>

4F
4A
52
54
57
58
5B
5D
23
25
26
29
2A
2C
31
34
0E
0B
13
15
16
19
1A
1C
62
64
67
68
6B
6D
70
75

0
1
2
3
4
5
6

01
02
04
08
10
20
40
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BC_TAG—B-Cache Tag Register

Index
Access

Abox 20
R

The BC_TAG IPR is loaded with  the results of every B-cache tag
probe, unless locked.   When a tag, tag control parity, or primary
fill data error (parity or ECC) occurs, BC_TAG is locked against
further updates.  PALcode may read the LSB of this register by us-
ing the HW_MFPR instruction.  Each time an HW_MFPR from
BC_TAG completes, the contents of BC_TAG are shifted one bit po-
sition to the right, so that the entire register can be read using a
sequence of HW_MFPRs.   PALcode can unlock the BC_TAG with
an HW_MTPR to BC_TAG.  Successive HW_MFPRs from the
BC_TAG must be separated by at least one null cycle. 

0
0

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

6
3

BXB-0610-93

TAGCTL_V
TAGCTL_S
TAGCTL_D
TAGCTL_P

HIT

RAZ TAG<33:17>

TAGADR_P
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Table 4-29 BC_TAG IPR Bit Definitions

Name Bit(s) Type Function

TAGADR_P

TAG<33:17>

TAGCTL_V

TAGCTL_S

TAGCTL_D

TAGCTL_P

HIT

<22>

<21:5>

<4>

<3>

<2>

<1>

<0>

R

R

R

R

R

R

R

Tag Address Parity.  Reflects the state of the
tagAdrP_h signal of the DECchip 21064 when a tag, tag
control, or data parity error occurs. 

Tag.  Contains the tag that is being probed currently.

NOTE:  Unused bits in the TAG field are always clear,
based on the size of the B-cache, as determined by
BIU_CTL<BC_SIZE>. 

Tag Control Valid.  Reflects the state of the tagCtlV_h
signal of the DECchip 21064 when a tag, tag control, or
data parity error occurs. 

Tag Control Shared.  Reflects the state of the tag-
CtlS_h signal of the DECchip 21064 when a tag, tag con-
trol, or data parity error occurs. 

Tag Control Dirty.  Reflects the state of the tagCtlD_h
signal of the DECchip 21064 when a tag, tag control, or
data parity error occurs. 

Tag Control Parity.  Reflects the state of the tag-
CtlP_h signal of the DECchip 21064 when a tag, tag con-
trol, or data parity error occurs. 

Hit.  When set, indicates that there was a tag match
when a tag, tag control, or data parity error occurred.
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Chapter 5

Cache Memory 

The KN7AA CPU module features a two-level cache memory.  The first
level is implemented on the DECchip 21064 and is referred to as the pri-
mary cache (P-cache).  The second level resides on the module, external to
the DECchip 21064, and is referred to as the backup cache (B-cache).  
Both caches are accessed with physical addresses.  Memory access is per-
formed hierarchically.  Instruction and data are first sought from the P-
cache, then the B-cache, and finally from memory/another CPU.  Figure
5-1 shows the KN7AA CPU module cache organization.

Figure 5-1 KN7AA CPU Module Cache Organization
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5.1  P-Cache

The P-cache consists of an 8-Kbyte instruction cache (I-cache) and an 8-
Kbyte write-through data cache (D-cache).  The I-cache and the D-cache
are physically addressed, direct-mapped caches with 32-byte blocks.  The
I-cache is used to service requests from the Ibox.  The D-cache is used to
service requests from the DECchip 21064 load/store unit.  

The P-cache is a subset of the B-cache at all times.  

5.2  B-Cache

The B-cache is implemented in three RAM structures:  B-tag, B-data, and
B-stat, located between the DECchip 21064 and the LSB interface.  

The B-cache stores 4 Mbytes of data.  It is organized as direct-mapped,
with a block (line) size of 64 bytes to match the LSB bus. For each block,
the following information is stored:

• Tag: Consists of bits <33:22> of the physical address

• Tag parity bit:  Reflects even parity over the field

• Valid bit (V):  Indicates whether the line can be considered

• Shared bit (S):  Indicates whether this line might be resident in an-
other cache in the system

• Dirty bit (D):  Indicates whether the line has been written to by this
CPU and has more recent data than memory.

• Status parity bit:  Reflects even parity over the V, S, and D bits. 

The B-cache organization groups the status bits in a single 64K X 4 RAM
(B-stat) and allows these bits to be updated without changing the value of
the tag.  This in turn allows the CPU to set the Dirty bit on write hits to
nonshared blocks.  In general, the tag field is only loaded by the LSB inter-
face, and the status and data stores are loaded by both the processor and
the LSB interface. 

5.3  B-Cache States

The B-cache state is defined by the three status bits: Valid, Shared, and
Dirty.  Table 5-1 shows the legal combinations of the status bits.

From the perspective of the DECchip 21064, a tag probe for a read is suc-
cessful if the tag matches the address and the V bit is set. A tag probe for a
write is successful if the tag matches the address, the V bit is set, and the
S bit is clear.
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Table 5-1 B-Cache States

5.4  B-Cache State Changes

The state of any given cache line in the B-cache is affected by both proces-
sor actions and actions of other nodes on the LSB bus.  

Table 5-2 shows what effect processor actions have on the state of a given
B-cache line and the resulting/required bus traffic.   Table 5-3 shows what
effect bus actions have on the state of a given B-cache line, and the result-
ing/required module action.  In these tables, Match means that the tag
stored at the index matches the supplied address and the <V> bit is set for
the index.  Dirty means that the  <D> and <V> bits are set for the index. 
Invalid means that the <V> bit is not set.

LSB writes always clean (make non-dirty) the cache line in both the initi-
ating node and all nodes that choose to take the update. They also update
the appropriate location in main memory.

The KN7AA CPU module decides whether to take an update or not as a
function of the state of the P-cache backmap (P-map,  Section 5.6.1). If the
LSB interface determines that the block referenced by an LSB write com-
mand is resident in the P-cache, the relevant block is updated in the B-
cache with the LSB write data and also invalidated in the P-cache.  If  the
LSB interface determines that the block referenced by an LSB write com-
mand is not resident in the P-cache (therefore not "interesting"), but is
resident in the B-cache, it invalidates the relevant block in the B-cache.

    B-Stat
V S D State of Cache Line Assuming Tag Match

 0 X X

 1 0 0

 1 0 1

1 1 0

1 1 1

Valid miss.

Valid for read or write.  This cache line contains the only cached copy of the
block.  The copy in memory is identical to this block.

Valid for read or write.  This cache line contains the only cached copy of the
block.  The contents of the block have been modified more recently than the
copy in memory. 

Valid for read or write but writes must be broadcast on the bus.  This cache
line may also be present in the cache of another CPU.  The copy in memory is
identical to this block.

Valid for read or write but writes must be broadcast on the bus.  This cache
line may also be present in the cache of another CPU.  The contents of the
block have been modified more recently than the copy in memory.
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Table 5-2 Effect of Processor Action on B-Cache Line

For diagnostic and system performance measurement purposes, the
KN7AA module implements two alternate behavior modes in response to
LSB writes.  LMODE<WMODE> allows selection of either the normal
mode as described, using the P-map, or forces all LSB writes to cause a B-
cache invalidate/update. 

Processor
Request Tag Probe Result1 Action on LSB

LSB
Response

Next Cache
State

Read

Read

Write

Write

Read

Read

Write

Write

Read

Read

Write

Write

Read

Write

Write

Write

Invalid

Invalid

Invalid

Invalid

_____            _____
Match AND Dirty
_____            _____
Match AND Dirty
_____            _____
Match AND Dirty
_____           _____ 
Match AND Dirty

_____            
Match AND Dirty
_____            
Match AND Dirty
_____            
Match AND Dirty
_____            
Match AND Dirty

Match
                     ______
Match AND Shared
                    
Match AND Shared
                    
Match AND Shared

Read

Read

Read

Read, Write

Read

Read

Read

Read, Write

Read, Wr-Victim

Read, Wr-Victim

Read, Wr-Victim

Read, Write,  Wr-
Victim

None

None

Write

Write

______
Shared

Shared
______
Shared

Shared

______
Shared

Shared
______
Shared

Shared

______
Shared

Shared
______
Shared

Shared

None

None
______
Shared

Shared

______  _____
Shared, Dirty
              _____
Shared, Dirty
______  
Shared, Dirty
              _____
Shared, Dirty

______  _____
Shared, Dirty
              _____
Shared, Dirty
______ 
Shared, Dirty
              _____
Shared, Dirty

______  _____
Shared, Dirty
             _____
Shared, Dirty
______  
Shared, Dirty
              _____
Shared, Dirty

No change
______  
Shared, Dirty
______  _____
Shared, Dirty
             _____
Shared, Dirty

 

                                                                                                                                                                ______1 An overscore on a cache block status bit indicates the complement of  the state.  For example, Shared = Not Shared.
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Table 5-3 Effect of LSB Bus Action on B-Cache Line

The KN7AA CPU module also compares incoming LSB addresses to those
found in the LLOCK register,  LVICT register, and LWPEND register (see
Chapter 6).  The behavior of the KN7AA CPU module in these cases is
shown in Table 5-4. 

Table 5-4 KN7AA CPU Module Response to Incoming Addresses

LSB
Operation Tag Probe Result1

Module
Response

Next Cache
State Comment

Read

Write

Read

Read

Write

Write

_____
Match OR Invalid
_____
Match OR Invalid
                    _____
Match AND Dirty

Match AND Dirty

Match AND line is 
interesting

Match AND line is
uninteresting

______  _____
Shared, Dirty
______  _____
Shared, Dirty
             _____
Shared, Dirty

Shared, Dirty

             _____
Shared, Dirty

 ______  _____
Shared, Dirty

No change

No change
             _____
Shared, Dirty

Shared, Dirty

             _____
Shared, Dirty

Invalid

This module must
supply the data.

This module takes
the update.

This module takes
the invalidate.

                                                                                                                                                                  ______1 An overscore on a cache block status bit indicates the complement of  the state.  For example, Shared = Not Shared.

LSB
Operation

Address Register
Matched Module Response Action

Read

Write

Read

Write

Read

Write

LLOCK register

LLOCK register

LVICT register

LVICT register

LWPEND register

LWPEND register

Shared
_____
Dirty

Shared, Dirty
______  _____
Shared, Dirty

Shared 
              _____
Shared, Dirty

No action

Clear LLOCK<31>

Supply data from victim buffer

Invalidate victim buffer; remove
bus request

No action

Accept update to B-cache

                                                                                                                                                                  ______1 An overscore on a cache block status bit indicates the complement of  the state.  For example, Shared = Not Shared.
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5.5  Write Policy

The KN7AA module performs LSB write operations as follows: 

• Victims
If a given cache line is valid and dirty and the tag does not match the
address for the given processor request, the line must be written back
to memory.  To enhance performance, this victim is written back to
memory after the refill.  The victim data must be removed from the B-
cache data store and held in a victim buffer (see Section 5.7) for later
transmission on the LSB bus.  While a block is in a victim buffer, the
KN7AA must respond to all reads and writes that reference the block
(see Table 5-4). 

• Shared Blocks
If the response to a tag probe for a processor write is shared, the write
must be broadcast on the LSB bus. 

5.6  Cache Backmaps

The KN7AA CPU module implements two backmaps (or duplicate tag
stores) that keep track of the contents of the P-cache and the B-cache.
They are referred to as P-map and B-map.  The backmaps are cycled with
every  bus transaction to allow the KN7AA CPU module to properly re-
spond to a given bus command/address. 

5.6.1  P-Map

The P-map is located in the LEVI gate arrays and consists of four identical
structures, each 64 entries deep. Each P-map entry contains a value that is
equal to the difference between the B-cache tag (address bits <33:22>) and
the P-cache tag (address bits <31:12>), valid bit, and an even parity bit.
Thus, the P-map is 12 bits wide: Address bits <21:12>, V, and P.  The P-
map is loaded by the DECchip 21064 during B-cache D-stream read hits
and by the LSB interface during B-cache D-stream read misses.  The LSB
interface control can read the P-map whenever an LSB write hits in the
B-map.

The KN7AA CPU module enforces inclusion, which ensures that the valid
contents of the P-cache are always a subset of the valid contents of the B-
cache. Therefore, the KN7AA CPU module must invalidate P-cache lines
whenever the given block becomes invalid in the B-cache. This occurs on
refills (either a dirty victim or a nonshared victim) and on updates. 

When an update occurs on the LSB bus, and the given address yields a tag
match and the entry is valid in the P-map, the B-cache takes the update
and the CPU module invalidates the corresponding entry in the P-cache. 

5.6.2  B-Map

The B-map is located on the module and is a structure 64K entries deep. 
Each entry consists of the B-cache tag (address bits <33:22>), valid bit, and
even parity bit. The B-map is written by the LSB interface at the same
time that the B-cache tag is written (within the context of B-cache manipu-
lation, due to either processor action or bus action).  The B-map is read on
every LSB bus command/address cycle.  The contents of the B-map inform
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the KN7AA CPU control logic when to request the B-cache to form an ap-
propriate bus response.  The processor does not read or write the B-map. 
The LSB interface only reads and writes the B-map in the LSB time do-
main.

5.7  Victim Buffer

The KN7AA CPU module implements a victim buffer to hold the contents
of a victimized block in the B-cache. A victim block is a B-cache line that is
valid and dirty but has a tag mismatch for a processor request. The proces-
sor tag probe yields a miss and the appropriate block is fetched from mem-
ory.  However, the block in the B-cache at this index must be written back
to memory since it is dirty. The KN7AA CPU module posts the miss refill
to the bus before actually performing the victim write.

A single victim block and victim address pair is stored in the LEVI chips
for later transmission on the bus.  While the victim buffer contains a valid
victim, the KN7AA CPU module treats this block like a second set in the
B-cache, compares all bus addresses to the victim address, and responds to
bus reads and writes as required by the bus protocol (see Table 5-4). 

The KN7AA CPU module has a single victim buffer.  It therefore does not
process a second B-cache miss before writing the victim block to memory.

5.8  B-Cache Operating Modes

The backup cache has two modes of operation:

• B-cache on

• B-cache force hit

The operating modes are controlled by two bits in the BIU_CTL register:
BC_ENB (bit <0>) and BC_FHIT (bit <3>).

Table 5-5 shows how the operating mode of the B-cache is selected. 

Table 5-5 Selection of the B-Cache Operating Mode

The On state is the normal operating mode of the B-cache.  It is selected by
setting BIU_CTL<0> and clearing BIU_CTL<3>. 

NOTE:  In reality, the B-cache is never off.   If  BIU_CTL<0> is cleared, the proces-
sor bypasses the B-cache and goes directly to the LSB.  This function should
be used only by diagnostics.

The B-cache force hit mode is selected by setting BC_FHIT (BIU_CTL<3>)
when the B-cache is enabled.  When this bit is set, all memory space reads
and writes to the B-cache, both I-stream and D-stream, are forced to hit. 
The tag store state is not changed.  The data RAMs are accessed as if the

BIU_CTL<3> BIU_CTL<0> Operating Mode

0

1

1

1

B-cache on

Force hit
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tag store access produced a dirty-valid hit.   In a multiprocessor environ-
ment, the B-cache must be flushed of all dirty blocks before force hit mode
is selected. 

Force hit mode is intended to be used only for testing and initialization. 
Tag store parity and data RAM ECC errors are detected in this mode.

5.9  Cache Initialization

On power-up or following a reset, the processor microcode and the console
firmware initialize the P-cache and the B-cache.  In the initialized state,
the P-cache is enabled for I-stream and D-stream operations, and the B-
cache is on.  

CAUTION:  The cache subsystem is initialized to a determined state.  Software must
never turn the B-cache off once the system is up and running.  Turning the
B-cache off during normal operation places the system in an UNDETER-
MINED state. 
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Chapter 6

LSB Bus Interface

The CPU module connects to the LSB bus through LEVI, the LSB inter-
face,  which is implemented in two gate array chips, LEVI-A and LEVI-B.  
LEVI controls all the tags, maps, and data RAMs on the CPU module.  It
contains the P-map, which maps the processor P-cache.   

LEVI performs the following major tasks:

• Translates CPU, memory, and I/O space references to the appropriate
LSB transactions.

• Supports control of writebacks to memory and cache fills from memory
in reponse to processor actions.

• Supports control of cache invalidates, cache updates, and cache block
transfers to the LSB bus in response to LSB actions.

• Initiates reads and writes to the CPU node private address space (the
Gbus on the CPU module).

• Supports LSB required interrupt logic.

• Implements all LSB required registers.

This chapter discusses the role of LEVI in transactions between the CPU
module and other modules on the LSB bus.  Sections include:

• LEVI Address Path

• LEVI Data Path

• LEVI Controllers

• Interfacing Rules

• Address Space Mapping

• LEVI Transactions

Figure 6-1 shows a block diagram of the LEVI chips.
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Figure 6-1 LEVI Block Diagram

6.1  LEVI Address Path

The LEVI address path (see Figure 6-1) is implemented in the LEVI-A
chip. It consists of the following major elements:

• P-Map
The P-map consists of four 64 X 16 dual-ported RAMs maintained ex-
clusively by LEVI.  Each entry in the P-map represents a P-cache block
in the processor.  LEVI writes to the P-map during processor read hits
to the B-cache.   One use of the P-map is deciding whether to update or
invalidate a B-cache block during LSB writes from another node.  If
the LSB write hits in the P-map, the update is taken; otherwise LEVI
invalidates the B-cache.   Another use is to invalidate P-cache blocks
that are being displaced by B-cache fills.

• LVICT Register
LEVI keeps the address of the last victimized B-cache block and a valid
bit in the LVICT register.  Once the LSB Victim Write takes place, the
Valid bit is cleared.  Should another LSB (non-Victim) write match the
address in the LVICT register, LEVI invalidates its own LVICT regis-
ter (see Table 5-4).

• LLOCK Register
The address is latched and LLOCK<31> is set when the processor is-
sues an LDxL instruction.  LLOCK<31> is cleared after a successful
STxC instruction.  LSB reads that hit in the LLOCK register cause
LEVI to respond “Shared” so that all subsequent writes to the address
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are visible on the LSB bus.  LSB writes that hit in the LLOCK register
cause LEVI to clear the LLOCK<31> (see Table 5-4).

• LWPEND Register
This register contains the address of the pending write and a valid bit. 
If an LSB Write hits the LWPEND register, LEVI-A takes the update
even if the write missed in the P-map to assure that the write about to
be issued has the latest data (see Table 5-4).

6.2  LEVI Data Path

The LEVI data path, like the LSB bus and CPU module data paths, is 156
bits wide: 128 bits of data and 28 bits of ECC (7 bits for each longword). 
Note that LEVI treats the data and ECC bits identically since there is no
ECC correction between the B-cache and the LSB bus. 

An array of buffers in the LEVI data path serve to store data and synchro-
nize data movement within LEVI.  The buffers are implemented in both
LEVI chips, as shown in Figure 6-1.  The main buffer elements on the
LEVI data path are the following: 

• Fill Buffer
The fill buffer works with the LEVI buffer on the module to receive,
and possibly hold, four octawords of LSB data headed for the B-cache. 
The data pipeline shifts from the gate array  time domain to the clock-
forwarded module time domain in the fill buffer.  The fill buffer also
merges write buffer data with LSB data following B-cache write
misses.

• Get Buffer
The get buffer also works with the LEVI buffer; it captures B-cache
blocks headed for the LSB bus.  The data pipeline shifts back from the
module to the gate array time domain in the get buffer.

• Write Buffer
The write buffer captures two octawords of write data from the proces-
sor in three situations:

B-cache write misses
B-cache write hits to shared blocks
CSR writes

The write buffer also receives a write data mask (LEVI-A gets four of
eight bits; LEVI-B gets all eight bits) and ADDR<5> from the proces-
sor.  The mask and address bits indicate which longwords are to be
merged with B-cache data.

• Stall Buffer
The stall buffer holds four octawords of B-cache data for broadcast onto
the LSB bus.  It also merges write buffer data with B-cache data dur-
ing writes to shared blocks and processor CSR writes.

• Victim Buffer
The victim buffer holds B-cache blocks victimized by cache fills.  The
buffer holds only a single cache block so transactions that cause other
victims are held off until the current victim reaches the LSB bus.
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6.3  LEVI Controllers

The control functions on the LEVI transactions are implemented in three
controllers in the LEVI chips:

• LEVI processor controller (LPC)

• LEVI data controller (LDC)

• LSB controller (LC)

6.3.1  LEVI Processor Controller

The LPC provides the control interface between the processor and LEVI. 
It fields requests from the processor and initiates LEVI responses.  Major
functions include:

• LoadLock/StoreCond
The LPC first probes the cache; misses generate requests to the LSB
controller for LSB transactions.

• Gbus Read
The LPC asks the LSB controller for a CSR read and does extra hand-
shaking on the Gbus.  It appears on the LSB as a private command
(not a CSR read).

• Gbus Write
The LPC controls the write to the LEVI write buffer, then handshakes
with the Gbus and acknowledges the processor.  No LSB transaction is
requested.

• Processor Read Fill
After a processor read miss and after LEVI has received the missed
data from the LSB bus,  the LPC loads the processor with the two
octawords it has waited for.  The LEVI data controller (LDC) briefly in-
terrupts the B-cache fill after the first octaword write to allow the proc-
essor to load two octawords from the LEVI buffer.  The LDC then com-
pletes the final three octaword writes.

• Processor Write Data
The LPC controls the processor writes to the write buffer on LEVI
when the processor cannot write directly to the B-cache.  

• P-Cache Invalidates
Whenever LEVI invalidates P-map entries, the LPC invalidates the
corresponding P-cache entries in the processor.  

The LPC runs in the processor time domain.

6.3.2  LEVI Data Controller

The LDC directs data traffic moving between the LSB and the B-cache
based on requests from the LC.  Each transaction described below moves
one B-cache block.  The LDC is involved in the following transactions:

• GetRAM
GetRAM moves one B-cache block to the LSB by way of the stall buffer. 
The LSB controller (LC) requests this transfer when another node has
issued a read to a block and the local (and only valid) copy is dirty.
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• GetWBRAM
GetWBRAM is used on processor writes to shared B-cache blocks and
processor CSR writes.  The fetched B-cache block is conditionally
merged with the contents of the write buffer (based on the values of
the write data mask and ADDR<5>) before being driven onto the LSB
by way of the stall buffer.  

• GetVic
GetVic is used to route B-cache blocks that are victimized by B-cache
fills to the victim buffer.  Note that blocks in the victim buffer must
await an LSB slot; blocks in the stall buffer have already had their
LSB slots allocated (by the LC).

• FillRAM
FillRAM moves one block directly from the LSB to the B-cache.  The
LC requests this to take an update to a shared block or to complete the
first read of a processor write miss to a shared B-cache block.

• FillProcRAM
FillProcRAM is requested following processor read misses.  The LDC
moves data from the LSB to the fill buffer and the LEVI buffer on the
module.   The data pipeline is frozen briefly after the first octaword
write to the B-cache to allow  the LPC to load the first two octawords
into the processor (in its own time domain) by way of the LEVI buffer. 
The LPC then releases the processor but retains control of the B-cache
so that the LDC can write the remaining three octawords to the         
B-cache.

• FillProc
FillProc services processor CSR reads.  This transaction is identical to
FillProcRAM discussed above except that writes to the B-cache are
suppressed.  (CSR data is not cached.) 

• FillWBRAM
FillWBRAM merges processor write data in the Write buffer with the
incoming LSB data and writes the result into the B-cache.  Merging is
based on the values of the write data mask and ADDR<5>.  The LC re-
quests this transaction following processor write misses to blocks that
are not shared.

The LDC uses clock forwarding on the CPU module for data transfers be-
tween LEVI and the B-cache.

6.3.3  LSB Controller

The LC is the central controller of the LEVI chipset.  It receives requests
from the LPC and issues requests to the LPC,  LDC, and the LSB arbiter. 
The LC responds to both processor-initiated and LSB-initiated transac-
tions.  Specifically,  the LC performs the following functions:

• Controls the address path and LEVI access to the B-map, B-stat, and
B-tag RAMs on the CPU module.

• Schedules all LEVI and CPU module operations except B-cache hits
and Gbus transactions.  Requests from the LC to the LPC and LDC
move data around the module, the gate arrays, and the LSB bus.

• Asserts the LSB address and control signals (CNF, ERR) according to
LSB protocol.  LSB SHARED and DIRTY are asserted based on the re-
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sults of B-tag and B-stat lookup.  LSB STALL is asserted when re-
quired by internal conflicts. 

• The LC also controls B-cache access from the processor or LEVI with
the LSynch signal (Section 6.4.1).

The LC schedules transfers of data between the LEVI and the CPU module
during dedicated LSB cycles.  

6.4  Interfacing Rules

Logic on the CPU module synchronizes dual-ported accesses to the B-cache
and the P-map,  since these components are accessed by both the processor
and LEVI.  LSB arbitration rules govern node accesses to the LSB bus. 

All cache data is longword ECC protected (seven bits per longword).  LEVI
does look-aside ECC error detection but no ECC error correction. 

The LEVI chips calculate ECC for each longword and compare it against
the received ECC.  Any difference between calculated and received ECC in-
dicates an error,  which is signaled to the system.  The ECC for longword 0
and a partial ECC syndrome for longword 1 are passed each cycle from
LEVI-B to LEVI-A.

6.4.1  Dual-Ported Access Synchronization

Dual-ported B-cache and P-map accesses are synchronized with the
LSynch semaphore.   LSynch is also used to synchronize access to the CPU
module data path during Gbus references.  

Whenever LSynch is deasserted (default state), the processor can read or
write the B-stat, B-tag, and B-data RAMs directly. 

NOTE:  The B-map RAMs are never accessed by the processor.

During LoadLock and StoreCond requests, whenever LSynch is
deasserted, the LPC can read or write the B-stat, B-tag, and B-data RAMs
directly.

During  RBlock and WBlock requests to Gbus addresses, whenever LSynch
is deasserted, the LPC can transfer data between the processor and the
Gbus buffer on the CPU module.  LEVI has priority to assert LSynch and
access the B-cache to service LSB transactions, since the LSB is non-
pended. LEVI also accesses the B-cache to complete processor transactions
that miss the B-cache.  When the LC asserts LSynch, the processor and the
LPC suspend B-stat/B-tag references (tag probes), P-map updates
(PMapWE), and B-data references within a fixed number of LSB cycles.
The LEVI is then free to access any resource within the CPU module until
it deasserts LSynch at the completion of the LSB-related access. 

6.4.2  LSB Arbitration

LEVI watches all LSB traffic to adhere to the arbitration rules.  Specifi-
cally, read, write,  or victim transactions from any node that reference a
common memory bank cannot occur more frequently than once every three
transactions (or once every 15 LSB cycles).  CSR transactions are also lim-
ited in the same manner.
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6.5  Address Space Mapping

The LEVI chips define which portion of the address space is cacheable or
noncacheable. Cacheable address space is memory space and noncacheable
address space is I/O space. The LEVI chips further separate I/O space into
LSB bus CSR space and local Gbus space. 

The LEVI interface ensures that processor references to memory result in
an LSB bus read or write command, while references to I/O space result in
an LSB read CSR, write CSR command, or private command. 

Table 6-1 gives the encodings of commands that LEVI can send to the LSB
bus. 

Table 6-1 LSB Command Field Encodings

6.6  LEVI Transactions

As the CPU module’s interface to the LSB bus, LEVI responds to transac-
tions initiated from two sources:

• Processor (CPU chip)

• LSB bus (other nodes)

These transactions require that both the processor and LEVI have access
to the B-cache on the CPU module and the P-map in LEVI.  The dual-
ported accesses to these components are synchronized with the LSynch
semaphore (Section 6.4.1).  The two LEVI chips operate in both the proces-
sor and the LSB bus time domains. 

6.6.1  Processor-Initiated Transactions

LEVI responds to the following processor requests:

• Read/Write Hit
During a D-stream read hit, LEVI updates its P-map.  It takes no other
action.  

• Block Read/Write
LEVI captures B-stat and B-tag data, arbitrates for the LSB bus, is-
sues the read/write command code on the bus, receives/drives data on 
the bus, and updates all tags, maps, and B-stat bits.

LSB D<37:35> Command

000
001
010
011
100
101
110
111

Read
Write
Reserved
Write Victim
Read CSR
Write CSR
Reserved
Private
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• LoadLock/StoreCond
LEVI waits for LSynch to deassert, if necessary, then probes the B-tag. 
On an LDxL (LoadLock) command that hits in the B-cache, LEVI com-
pletes the read request and sets LLOCK<31>.  If  the LDxL is a B-
cache miss, LEVI issues an LSB bus read command and sets
LLOCK<31>.  On an STxC (StoreCond) request from the processor,
LEVI checks LLOCK<31>. If this bit is set, (success) and the B-cache
tag lookup results in a hit, LEVI immediately completes the write and
clears LLOCK<31>.  If the tag probe results in a miss, and
LLOCK<31> is set,  LEVI issues an LSB bus write command.  On an
STxC, if LLOCK<31> is clear, LEVI returns failed status to the proces-
sor. 

• Gbus Read/Write
LEVI waits for LSynch to deassert, if necessary.  For Gbus reads,
LEVI-A arbitrates for the LSB bus, issues a private command, for-
wards data from the Gbus to the processor by way of the LSB bus. 
Gbus writes slip through LEVI to the Gbus without an LSB transac-
tion.

The processor can be engaged in only one external operation at a time.
This means that once the processor makes a transaction request to LEVI,
it remains idle until released by LEVI.  

6.6.2  LSB-Initiated Transactions

LEVI responds to transactions initiated by other nodes on the LSB.  These
transactions include: 

• Read
LEVI checks each read address against the B-map. If there is a match,
LEVI then checks the B-stat RAMs.  It returns B-cache data if the
Dirty bit is set.  LEVI returns a victimized block, which is sitting in the
victim buffer, if the block’s address matches the read address.

• Write
When the write address matches that of a valid block in the B-map,
LEVI reacts as follows.  If the address also hits in the P-map, LEVI
takes the update and invalidates the P-cache block in the processor. 
Otherwise, the B-cache block is simply invalidated.  Note that this be-
havior can be altered with the LMODE register.

• Victim Write
LEVI ignores victim writes from other nodes.  

• CSR Read/Write 
Only registers in the LSB node space can be read or written from the
LSB.  Gbus registers cannot be accessed from the LSB.  Note that
LEVI can also respond to its own processor-generated CSR transac-
tions on the bus.

• Private
Private transactions are used to return Gbus data to the processor, to
allow access to the B-tag, B-stat, B-map, and P-map structures directly
by the processor, and to resolve STxC boundary conditions.  LEVI does
not respond to private commands from other modules.  

LEVI is pipelined to track up to three interleaved LSB transactions.
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6.6.3  Transaction Ordering

The processor controller (LEVI PC, Section 6.3.1) and the LSB controller
(LEVI LC, Section 6.3.3) work together to guarantee strict ordering of
transactions issued on the LSB.  Processor and LEVI actions proceed in
stages as shown in Table 6-2.

Table 6-2 Processor-LEVI Actions During Transactions

Processor Action LEVI Action

P1. The processor issues a request
with address A1.

P2.  The processor can issue a new
request with address A2 any time
after L1 completes.

In response to P1, LEVI performs
the following actions:

L1.  LEVI initiates an LSB trans-
action with address A1.

L2.  If P1 was a WBlock and L1
was an LSB Read that received a
shared response, LEVI issues an
LSB Write with address A1.

L3.  If L1 was an LSB Read and
the B-cache block being displaced
had the Dirty bit set, LEVI issues
an LSB Write Victim command. 

In response to P2, LEVI performs
the following action:

L4. LEVI initiates an LSB trans-
action with address A2.
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Chapter 7

Console Overview

The KN7AA CPU module supports the LSB system console with combined
hardware/software elements that control the system at power-up, on reset, 
or on CPU halts.   This chapter describes the console hardware that re-
sides on the CPU module.  Sections include:

• CPU Console Hardware

• Console Program Invocation

• Console Registers

The console user interface and commands are discussed in the Console Ref-
erence Manual. 

7.1  CPU Console Hardware

The KN7AA CPU module provides hardware to support the console func-
tions.  This hardware includes:

• A serial ROM (read-only memory) for first-level console program stor-
age 

• A set of FEPROMs (flash programmable ROMs) for second-level con-
sole program storage 

• An EEPROM (electrically erasable/programmable ROM) for miscella-
neous parameter/log storage 

• A set of UARTs (universal asynchronous receivers/transmitters) that
allow the console program to communicate serially  with one console
terminal and the system power supplies

• A watch chip that provides a programmable internal timer and a
battery-backed-up time-of-year (TOY) clock for use by operating sys-
tem software

• A set of parallel I/O ports for functions such as LED status indicators
and node identification 

• A serial I/O port for manufacturing diagnostic use

The CPU module provides access to ROM, EEPROM, console UARTs, the
watch chip,  and other functions through the 8-bit Gbus.  

All Gbus component registers and memory stores are located in node pri-
vate space, which means that their addresses are constant and are inde-
pendent of slot identification.  Table 7-1 gives the address ranges allocated
to the Gbus components.
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Every Gbus memory store byte or register byte is located on a 64-byte,
naturally aligned boundary. For example, the first byte of FEPROM stor-
age is located at byte address 3 F000 0000; the second byte is at 3 F000
0040. Also note that a single 128-Kbyte FEPROM consumes 8 Mbytes of
address space. This addressing restriction implies that processor code can-
not be executed from this address space. 

Table 7-1 Gbus Components

7.1.1  Serial ROM

After power-up, node reset, or system reset, but before any instructions are
executed, the DECchip 21064 automatically loads its internal I-cache
through the serial I/O port from an external, 8-Kbyte serial ROM (SROM).

The SROM contains the first level of console/diagnostic/bootstrap code (se-
rial ROM code). This code initializes all programmable features of the
DECchip 21064, diagnosing any faults detected along the bootstrap path
and bootstrapping code execution out to the second level of console /diag-
nostic/ bootstrap code (the main console program). The first level bootstrap
copies the main console program code from FEPROM storage to the B-
cache and transfers control flow to the B-cache.  Once the serial ROM is
loaded into the B-cache, the same serial I/O port becomes available for use
by software as a diagnostic interface. 

7.1.2  Serial Port

The DECchip 21064 provides an initialization and diagnostic interface in
the form of a serial I/O port. The serial I/O port is a full duplex connection

Component Address

Console ROM

Console EEPROM

UART registers

Watch registers

Gbus$WHAMI

Gbus$LEDs

Gbus$PMask

Gbus$Intr

Gbus$Halt

Gbus$LSBRST

Gbus$Misc

Gbus$RMode

Gbus$LTagRW

3 F000 0000 to 3 F37F FFC0

3 F380 0000 to 3 F3FF FFC0

3 F400 0000 to 3 F500 00C0

3 F600 0000 to 3 F600 0FC0

3 F700 0000

3 F700 0040

3 F700 0080

3 F700 00C0

3 F700 0100

3 F700 0140

3 F700 0180

3 F780 0000

3 F780 0100
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between the CPU chip and a module connector. The port is accessed and
controlled through internal processor registers. 

The serial I/O port drives a LED indicator, which may flash as data is
transmitted over the serial port, but is otherwise available to diagnostic
code as a status indicator.

7.1.3  FEPROMs

The console program is stored in a set of 128K X  8 FEPROM chips. This
code does not appear in a structure of contiguous locations in the proces-
sor’s address space.  Specifically, each byte of FEPROM storage appears on
a 64-byte naturally aligned boundary. This implies that the console pro-
gram cannot execute directly out of FEPROM, but instead must be copied
into a more compact contiguous space in cacheable memory and executed
from there. This process of copying the code store and transferring control
flow is known as the first-level bootstrap and is performed by the serial
ROM code, as explained in Section 7.1.1.

The FEPROMs can be programmed online without assistance from an ex-
ternal programming device. The FEPROMs cannot be patched;  they can
only be erased and programmed as a whole.

7.1.4  EEPROM

A single 8K X 8 EEPROM is used for miscellaneous parameter and log
storage.  This store does not appear in a contiguous address space.  Each
byte of EEPROM storage appears on a 64-byte boundary.

The EEPROM can be written to byte-by-byte online, without assistance
from an external programming device. 

7.1.5  UARTs

The CPU module has six serial communication lines but uses only three.  
The communication lines are named and assigned as follows:

• UART0A is connected to the LSB local console terminal line LOC_RX/
LOC_TX (computer room terminal for field service).

• UART1B is connected to the LSB power supply status lines PS_RX and 
PS_TX.

• UART2A is dedicated to Ctrl/P character detection. Its receive line can
tap receive characters off LOC_RX, OP_RX, or RD_RX as selected by
the Gbus$PMask register.  Its transmit line is unused.  UART2A ena-
ables IPL 15 interrupts.  If no serial lines are selected for console op-
eration (the processor is halt-protected), then all receive characters re-
sult in an IPL 15 interrupt.  For UART2A to detect Ctrl/P characters,
all control settings must be programmed to match the console terminal
UART.

• UART0B, UART1A, and UART2B are unused.

The LSB console serial lines are connected to all CPU slots.  After power-
up or system initialization, the CPU modules arbitrate for use of the com-
mon console lines;  the winner is allowed to drive them.  The default con-
figuration of the serial lines at power-up is as follows:
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Baud rate set to 9600
No parity 
One stop bit 
8-bit characters

One physical component (DUART) implements two UARTs, hence the
naming of the UARTs as UART0A, UART0B, and so on, where the number
indicates the physical component and the letter indicates the individual
UART within the component. Control of these UARTs is accomplished
through a set of registers in each UART.  These registers are listed in Ta-
ble 7-2.

7.1.5.1 Ctrl/P Character Detection and Halt Protection

UART2A is dedicated to detecting Ctrl/P characters received from the con-
sole terminal. 

UART2A intercepts a copy of all UART receive characters from the console
terminal line and compares for Ctrl/P.  Ctrl/P characters result in an IPL
1F interrupt (halt)  posted to the processor (reflected in the Gbus$Halt reg-
ister).  Note that the IPL 1F interrupt is in addition to the IPL 15 inter-
rupt.  

7.1.5.2 UART Register Addressing

Each UART in a DUART component is controlled independently through
its own set of registers (some registers are shared between two UARTs
within a DUART).  All UART registers are either read only (for status and
data receive) or write only (for control and data transmit).  Read registers
and write registers share common addresses, that is, reading and writing a
single address accesses two separate registers.

For each UART there are two read registers and two write registers that
are directly accessible in the processor’s address space: RR0, WR0, RR8,
and WR8.   RR0 and WR0 are the main status and control registers for the
UART.  RR8 and WR8 are the data receive and transmit registers. 

For each UART there are a number of other control and status registers
that are indirectly accessible through RR0 and WR0. These registers are
accessed by writing the correct index value into WR0 and then reading
RR0 or writing WR0. After the second read/write operation occurs, the in-
dex value is automatically reset back to zero.

7.1.6  Watch Chip

A watch chip resides on the Gbus and provides a battery-backed-up time-
of-year clock and 50 bytes of battery-backed-up RAM.  The chip contains a
built-in crystal oscillator, an internal timer, and a 10-year lithium battery. 

7.2  Console Program Invocation

The DECchip 21064 operates in console mode when the CPU module en-
counters one of the following conditions:

• System reset through power-up, control panel reset, or reset through
the Gbus$LSBRST register 
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• Module reset performed by setting NRST (LCNR<30>)

• Module halted by setting NHALT (LCNR<29>) 

• Ctrl/P character received from the console terminal 

7.3  Console Registers

Table 7-2 lists the console registers with their addresses and indicates the
components in which they are implemented. 

A number of console/diagnostic/interrupt related registers listed in Table
7-2 are referred to with a prefix of Gbus$. These registers provide the fol-
lowing control and status functions: 

• Node identification

• LED status indicators 

• Interrupt status summaries 

• Console terminal selection 

• Halt protection

• System reset

This section provides descriptions of individual Gbus registers.  The re-
maining console registers are listed in Table 7-2 for reference only.  All
Gbus registers are eight bits wide.  

Table 7-2 Console Registers 

Register Address Implementation

UARTxx$WR01

UARTxx$WR1
UARTxx$WR2
UARTxx$WR3
UARTxx$WR4
UARTxx$WR5
UARTxx$WR6
UARTxx$WR7

UARTxx_BASE1

Index 0001 
Index 0010 
Index 0011 
Index 0100 
Index 0101 
Index 0110 
Index 0111

DUART chip
DUART chip
DUART chip
DUART chip
DUART chip
DUART chip
DUART chip
DUART chip

1 UART Base Addresses:

   xx = 0B; BASE = 3 F400 0000
xx = 0A; BASE = 3 F400 0080
xx = 1B; BASE = 3 F480 0000
xx = 1A; BASE = 3 F480 0080
xx = 2B; BASE = 3 F500 0000
xx = 2A; BASE = 3 F500 0080  
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Table 7-2   Console Registers (Continued)

Register Address Implementation

UARTxx$WR8
UARTxx$WR9
UARTxx$WR10
UARTxx$WR11
UARTxx$WR12
UARTxx$WR13
UARTxx$WR14
UARTxx$WR15
UARTxx$RR0
UARTxx$RR1
UARTxx$RR2
UARTxx$RR3
UARTxx$RR8
UARTxx$RR10
UARTxx$RR13
UARTxx$RR15
Watch$Seconds
Watch$Minutes
Watch$Hours
Watch$Day_of_Month
Watch$Month
Watch$Year
Watch$CSRA
Watch$CSRB
Watch$CSRC
Watch$CSRD
Backup RAM (50 bytes)
Gbus$WHAMI
Gbus$LEDs
Gbus$PMask
Gbus$Intr
Gbus$Halt
Gbus$LSBRST
Gbus$Misc
Gbus$RMode
Gbus$LTagRW

UARTxx_BASE+40H
Index 1001 
Index 1010 
Index 1011 
Index 1100 
Index 1101 
Index 1110 
Index 1111 
UARTxx_BASE 
Index 0001 
Index 0010 
Index 0011 
UARTxx_BASE+40H
Index 1010 
Index 1101
Index 1111 
3 F600 0000
3 F600 0080
3 F600 0100
3 F600 01C0
3 F600 0200
3 F600 0240
3 F600 0280
3 F600 02C0
3 F600 0300
3 F600 0340
3 F600 0380 to 3 F600 0FC0
3 F700 0000
3 F700 0040
3 F700 0080
3 F700 00C0
3 F700 0100
3 F700 0140
3 F700 0180
3 F780 0000
3 F780 0100

DUART chip
DUART chip
DUART chip
DUART chip
DUART chip
DUART chip
DUART chip
DUART chip
DUART chip
DUART chip
DUART chip
DUART chip
DUART chip
DUART chip
DUART chip
DUART chip
Watch chip 
Watch chip 
Watch chip 
Watch chip 
Watch chip 
Watch chip 
Watch chip 
Watch chip 
Watch chip 
Watch chip 
Watch chip
CPU module
CPU module
CPU module
CPU module
CPU module
CPU module
CPU module
CPU module
LEVI 

1 UART Base Addresses:

   xx = 0B; BASE = 3 F400 0000
xx = 0A; BASE = 3 F400 0080
xx = 1B; BASE = 3 F480 0000
xx = 1A; BASE = 3 F480 0080
xx = 2B; BASE = 3 F500 0000
xx = 2A; BASE = 3 F500 0080
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Gbus$WHAMI

Table 7-3 Gbus$WHAMI Register Bit Definitions

Address
Access

3 F700 0000
RO

The Gbus$WHAMI register provides information on system con-
figuration and reflects the status of certain backplane signals.

4 3 07 6 5 2

BXB-0243A-93

NID
MFG
LSB_BAD
LSB_CONWIN
RSVD
REQ_MODE

Name Bit(s) Type Function

REQ_MODE <7> RO Request Mode.  Indicates the maximum number of
CPU modules that this CPU module supports in a sys-
tem.   

Gbus$WHAMI
       <7> CPUs Allowed in LSB Slots

          0
          1

0–3
0–7
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Table 7-3   Gbus$WHAMI Register Bit Definitions (Continued)

            

Name Bit(s) Type Function

LSB_CONWIN

LSB_BAD

MFG

NID

<5>

<4>

<3>

<2:0>

RO

RO

RO

RO

LSB CONWIN.    Reflects the inverted state of the
LSB_CONWIN L backplane signal. When set, indi-
cates that Gbus$LEDs<1> is clear (asserted) in one
or more CPU modules. 

LSB Bad.  Reflects the inverted state of the
LSB_BAD L backplane signal. When set, indicates
that LSB_BAD L is driven by one or more CPU mod-
ules.

Manufacturing Status.  Used by manufacturing.

Node ID.  Identifies the CPU module by the slot   
(0–7) where it resides. 
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Gbus$LEDs

Table 7-4 Gbus$LEDs Register Bit Definitions

Address
Access

3 F700 0040
R/W

The Gbus$LEDs register is used for lighting a series of LEDs on the
module to aid in debug and to indicate self-test status. Writing a
zero to a bit in this register lights the corresponding LED.

4 3 07 6 5 12

BXB-0240-92

STP_L
CONWIN_L
RUN_L
LED3_L

LED4_L
LED5_L
LED6_L
LED7_L

Name Bit(s) Type Function

LEDs_L

RUN_L 

CONWIN_L

STP_L

<7:3>

<2>

<1>

<0>

R/W

R/W

R/W

R/W

LEDs Low.  When a bit in this field is set, the associ-
ated LED signal is asserted low. 

RUN Low.  When set, the associated LED signal is as-
serted low.  The state of this bit also indicates whether
the currently running software is the operating system
(and not the diagnostic/console program).

CONWIN Low.  When set, the associated LED signal
is asserted low.  Also drives the backplane signal
LSB_CONWIN L.  The state of this signal can be read
through the Gbus$WHAMI register.

Self-Test Passed Low.  When set, the associated LED
signal is asserted low.  
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Gbus$PMask 

Table 7-5 Gbus$PMask Register Bit Definitions

                                                

Address
Access

3 F700 0080
R/W

The Gbus$PMask register controls halts to the processor. 

4 3 07 12

RSVD

BXB-0242-92

HALT_EN
SEL_CONS_TERM
PHALT_EN

Name Bit(s) Type Function

RSVD

PHALT_EN

<7:4>

<3>

R/W, 1

R/W, 1

Reserved.  Initialized to ones. 

Ctrl/P Halt Enable.  When set, enables Ctrl/P
characters received by the UART selected in the Se-
lect Console Terminal field of this register to halt
the processor. The Halt Enable bit of this register
must also be set for a Ctrl/P character to generate a
halt.
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Table 7-5  Gbus$PMask Register Bit Definitions (Continued)

Name Bit(s) Type Function

SEL_CONS_TERM

HALT_EN 

<2:1>

<0>

R/W, 1

R/W, 1

Select Console Terminal.   Selects one of three
console terminals for Ctrl/P character detection. 

Halt Enable.  When set, enables halts to the  
processor, including halts generated by
LCNR<NHALT> or by detection of a Ctrl/P char-
acter received by a UART selected in the Select
Console Terminal field of this register.  When
clear, all halts to the processor are disabled. 
PHALT_EN must also be set for Ctrl/P characters
to generate a halt.

Gbus$PMask
     <2:1>

     Console Terminal
            Selected

       00

       01

       10

       11

UART0A (local terminal)

UART0B (Reserved)

UART1A (remote diagnostic      
control)

UART2A placed into module-
level loopback mode.  In this
mode, the UART2A receive
line is driven by the UART2A
transmit line.  PHALT_EN
(bit <3> of this register) must
be zero (Ctrl/P halts disabled)
while modifying
SEL_CONS_TERM to avoid
erroneous halts.
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Gbus$Intr

Table 7-6 Gbus$Intr Register Bit Definitions

Address
Access

3 F700 00C0
R/W

The Gbus$Intr register stores interrupt summary information.
Specifically, it provides a means to determine the source of IPL 14,
IPL 15, and IPL 16 interrupts to the processor. 

4 3 07 6 5 12

0

BXB-0244-92

DUART0_INT
DUART1_INT
LSB0
LSB1

RSVD
LSB2
IP
INTIM

Name Bit(s) Type Function

INTIM

IP

LSB2

RSVD

<7>

<6>

<5>

<4>

RO, 0

W1C, 0

RO, 0

R0

Interval Timer.  When set, indicates that the watch
chip is asserting its interval timer output.

Interprocessor.  When set, indicates that the LEVI-
A chip has detected a write to the LIPINTR register
with data selecting this node.

LSB 2.  When set, indicates that the LEVI-A chip has
an LSB level 2 interrupt pending.

Reserved.  Reads as zero.



       Console Overview   7-13

Table 7-6  Gbus$Intr Register Bit Definitions (Continued)

Name Bit(s) Type Function

LSB1

LSB0

DUART1_INT

DUART0_INT

<3>

<2>

<1>

<0>

RO, 0

RO, 0

RO, 0

RO, 0

LSB 1.  When set, indicates that the LEVI-A chip
has an LSB level 1 interrupt pending.

LSB 0.  When set, indicates that the LEVI-A chip
has an LSB level 0 interrupt pending.

DUART1 Interrupt.  When set, indicates that
either UART1A or UART1B is requesting an inter-
rupt for the processor. This bit is cleared when all
possible DUART1 interrupt sources are cleared.

DUART0 Interrupt.  When set, indicates that
either UART0A or UART0B is requesting an inter-
rupt for the processor. This bit is cleared when all
possible DUART0 interrupt sources are cleared.
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Gbus$Halt

Table 7-7 Gbus$Halt Register Bit Definitions

Address
Access

3 F700 0100
R/W

The Gbus$Halt register summarizes halt and power conditions. 

4 3 07 6 5 12

0 0

BXB-0241-92

RSVD
NHALT
LSB_SEC
LDC_PWR_OK

PWR_MODA_OK
PWR_MODB_OK
Ctrl/P_HALT
RSVD

Name Bit(s) Type Function

RSVD

Ctrl/P_HALT

PWR_MODB_OK

PWR_MODA_OK

<7>

<6>

<5>

<4>

R0

W1C, 0

RO

RO

Reserved.  Reads as zero.

Ctrl/P Halt.   Set when a Ctrl/P character is received
by the UART selected in the Gbus$PMask register.

Power Module B Okay.   Set when Power Module B
of the I/O PIUs (plug-in unit) is working properly.  
Cleared when Module B fails. 

Power Module A Okay.   Set when Power Module A
of the I/O PIUs (plug-in unit) is working properly. 
Cleared when Module A fails. 
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Table 7-7   Gbus$Halt Register Bit Definitions (Continued)

Name Bit(s) Type Function

LDC_PWR_OK

LSB_SEC

NHALT

RSVD

<3>

<2>

<1>

<0>

RO

RO

RO

R0

LDC Power Okay.  Is set when all local disk con-
verters (LDC) in the platform are working properly. 
Cleared when no LDCs are installed or when one or
more of the LDCs  fails. 

LSB Secure.   Reflects the inverted state of the
backplane signal LSB_SECURE L.  When set, indi-
cates that the control panel keyswitch is in the Se-
cure position and that Ctrl/P halts to the processor
are disabled by hardware.  

Node Halt.   Reflects the state of LCNR<NHALT>. 

Reserved.  Reads as zero.
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Gbus$LSBRST

Address
Access

3 F700 0140
R/W

The Gbus$LSBRST register is used for initiating a system reset se-
quence.  When the CPU chip writes any value to this register, the
LSB RESET signal is asserted for 512 LSB cycles.

07

BXB-0264-92
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Gbus$Misc

Table 7-8 Gbus$Misc Register Bit Definitions

Address
Access

3 F700 0180
R/W

The Gbus$Misc register controls various system functions.

3 07 12

RSVD

BXB-0239-92

EXPSEL
BAD

Name Bit(s) Type Function

RSVD

BAD

<7:3>

<2>

RO, 1

R/W, 1

Reserved.  Initialized to ones.

Bad.  When set, causes the module to drive LSB BAD which,
in turn, lights the control panel fault LED.  The state of this
bit does not affect the Self-Test-Passed LED on the module or
the STP bits in the Gbus$LEDs and LCNR registers.  This bit
allows software to assert LSB BAD on behalf of another sys-
tem component.  To determine if any module is driving LSB
BAD, software should read Gbus$WHAMI<LSB_BAD>, not
Gbus$Misc<BAD>.
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Table 7-8   Gbus$Misc Register Bit Definitions (Continued)

Name Bit(s) Type Function

EXPSEL <1:0> R/W, 1 Expander Select.   Selects which cabinet the power supply
UART lines are logically connected to, and therefore, which of
three 48V regulators are connected to the power supply lines.

Gbus$Misc
    <1:0> Power Supply Connection

00

01

10

11

PS lines logically connected to main CPU
cabinet.

PS lines logically connected to right ex-
pander cabinet.

PS lines logically connected to left ex-
pander cabinet.

PS transmit line is looped back to PS re-
ceive line.
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Gbus$RMode

Address
Access

3 F780 0000
R/W

The Gbus$RMode register is a write-only register.   A write to it
sets LDIAG<FRIGN> and logically disconnects the CPU module
from the LSB bus.   This register is intended for use as a backup
system should there be a problem with the LSB interface and
writes to the LDIAG  register be unsuccessful (writes to the LDIAG
register require a successful LSB transaction while writes to Gbus
space are completed without any LSB access).  Note that software
should  write to the LDIAG register as a first choice and use the
Gbus$RMode register only if the write to the LDIAG register fails. 

07

BXB-0264-92
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Gbus$LTagRW

Address
Access

3 F780 0100
R/W

The Gbus$LTagRW register, when used with LTAGA, LTAGW, and
LDIAG registers, allows software to read and write the B-cache, B-
map, and P-map tags.  See descriptions of the LTAGA, LTAGW, and
LDIAG registers in Chapter 9.  

07

BXB-0264-92
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Chapter 8

I/O Operations

I/O operations handled by the KN7AA CPU module include I/O reads, 
I/O writes, and device interrupts.  The DECchip 21064 uses four
hardcoded SCB vectors for all device interrupts.  Interrupt service rou-
tines at the four SCB vectors are required to determine the source of the
interrupt  and invoke the appropriate service routine.

From the perspective of I/O operations, registers are divided into two
groups:  local registers and remote registers.  Registers that reside on the
KN7AA CPU module and the LSB bus are local registers.   Those that re-
side on I/O buses are remote registers.  Local registers are directly acces-
sible to software; remote registers are not.  Access to remote registers is
achieved by means of the mailbox protocol.  The LMBOX register is pro-
vided to assist software in the mailbox protocol.  

8.1  Mailbox Data Structure

Remote control and status registers (CSRs) are accessed through 64-byte
naturally aligned mailbox data structures located in main memory.  Read
requests are posted in mailboxes.  Data is returned in memory with
status in the following quadword.  Mailboxes are allocated and managed
by the operating system software.  Figure 8-1 shows a mailbox data struc-
ture.

Figure 8-1 Mailbox Data Structure

63 48 47 40 39 32 31 012

SBZ SBZ CMD

BXB-0174 A-92

RBADR <63:0>

WDATA <63:0>

MBZ

RDATA <31:0>

STATUS
E
R
R

D
O
N

UNPREDICTABLE

UNPREDICTABLE

MASKQW 0

QW 1

QW 2

QW 3

QW 4

QW 5

QW 6

QW 7

56 55

HOSE BW

2930

UNPREDICTABLE
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Table 8-1 describes the mailbox data structure.  Refer to the DEC 7000
AXP System/VAX 7000 I/O System Technical Manual for a detailed de-
scription of the mailbox protocol.

Table 8-1 Mailbox Data Structure

8.2  Mailbox Operation

The I/O module services mailbox requests by means of four mailbox pointer
CSRs (LMBPR registers; see Section 8.4) located in the I/O module’s node
space.  There is one LMBPR address for each CPU node.  Software sees
only one LMBPR register address, but the CPU module replaces the least
significant two bits of the address (that is, D<2:1>) with the least signifi-
cant two bits of the node ID (that is, NID<1:0>).  If a given LMBPR regis-
ter is in use when it is written to, the I/O module does not acknowledge it
and CNF is not asserted.  Processors use the lack of CNF assertion on
writes to the LMBPR register to indicate a busy status.  The write is
retried later under software control. 

To perform a write to the LMBPR register, microcode must know the ad-
dress of the LMBPR register and the address of the mailbox data structure
to be loaded into the LMBPR register.  Another memory structure needs to
be created to pass this information to microcode.  This structure is called
the Mailbox Pointer and consists of two longwords.  Figure 8-2 shows the
mailbox pointer structure.  Table 8-2 gives the bit definitions of the
mailbox pointer structure. 

Field Bit(s) Type
Quad-
word Function

HOSE

MASK

CMD

RBADR

WDATA

RDATA

STATUS

ERR

DON

<55:48>

<39:32>

<29:0>

<63:0>

<63:0>

<31:0>

<63:2>

<1>

<0>

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

0

0

0

1

2

4

5

5

5

Hose.  Used to determine which remote bus the
command is meant for. 

Mask.  Contains the byte mask.  The I/O mod-
ule does not use this field.

Command.  Contains the command.   Value is
I/O bus adapter specific. 

Remote Broadcast Address.  Contains the ad-
dress to be broadcast on the remote bus.

Write Data.  Contains the write data to be
broadcast on the remote bus.

Read Data.  Contains read data returned from
the remote bus.

Status.  Contains status information provided
by the remote bus.

Error.  When set, indicates that a mailbox op-
eration failed.

Done.  Status bit set by the I/O module when a
mailbox operation is complete.



       I/O Operations   8-3

Figure 8-2 Mailbox Pointer Structure

Table 8-2 Mailbox Pointer Structure

When software has created the mailbox data structure and the mailbox
pointer structure, it can start the I/O operation.  An MTPR to the LMBOX
register (Section 8.4) initiates the I/O operation.  Microcode reads the
MB_ADDR field out of the mailbox pointer structure and then writes the
value to the LMBPR register using the address provided in the mailbox
pointer structure.   An EDAL store conditional command is used to per-
form the write.   Microcode then checks the Zero Condition Code bit
(PSL<2>) in the BIU_STAT register to determine if the write passed or
failed.  If the write passed, PSL<2> is set; otherwise, PSL<2> is cleared. 
Software can loop on the MTPR to the LMBOX register until the write
passes.

After the I/O module has accepted the write to LMBPR, it performs the I/O
operation.  Software can now poll the status bit in the mailbox data struc-
ture until the I/O operation is complete.  When the I/O operation has com-
pleted, DON in the mailbox data structure (see Table 8-1) is set.  If an er-
ror occurred during the transaction, LBER<E> (see Chapter 9) is also set. 
If the operation was an I/O write, no further action is required.  If the op-
eration was an I/O read, software can now fetch the returned data from the
RDATA field in the mailbox data structure. 

8.3  Device Interrupt Handling

The  KN7AA module uses the device interrupts as shown in Table 8-3.  In-
terrupts from the LSB and the UARTs (device interrupts) are handled by
both hardware and software.  After an interrupt has been posted to the
CPU chip through one of the four IRQ lines, the CPU chip passes control to
the operating system through four dedicated SCB entry points.  Table 8-3
shows the device interrupt sources and their matching SCB entry points.  

31 06 5

MB_ADDR MBZ

BXB-0176-92

LMBPR_ADDR

Name Bit(s) Type Function

MB_ADDR

LMBPR_ADDR

<31:6>

<31:0>

WO

WO

Mailbox Address.  Contains the physical ad-
dress of the mailbox data structure.  Since this
structure is aligned on a 64-byte boundary, bits
<5:0> of the address must be zero.

LMBPR Address.  Contains the virtual address
of the LMBPR register.
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Table 8-3 KN7AA CPU Interrupts

For IPL 16 and IPL 17 interrupts, software reads the Gbus$Intr register to
determine if the interrupt is posted by an LSB I/O device, another proces-
sor in the system, or a UART.  If an interprocessor or a UART interrupt
has been received, software can directly pass control to the appropriate
service routine.  For LSB I/O interrupts, software must get the device in-
terrupt vector from the I/O module.

8.4  I/O Operation Registers

Two registers are used for I/O operations:

• Mailbox Pointer CSR (LMBPR)

• Mailbox Register (LMBOX)

The LMBPR register resides on the IOP module and is described in the
DEC 7000 AXP System/VAX 7000 I/O System Technical Manual.  The de-
scription of the LMBOX register follows. 

Interrupt
Level (Hex) Interrupt Condition

DECchip
21064  IRQ
Pin

SCB 
Vector

17
16
16
15
15
14

LSB level 3 interrupts
Interprocessor interrupt
LSB level 2 interrupts
Console UARTs
LSB level 1 interrupts
LSB level 0 interrupts

3
2
2
1
1
0

DC
D8
D8
D4
D4
D0
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LMBOX—LSB Mailbox Register

Table 8-4 LMBOX Register Bit Definitions

Address
Access

BB + 00
R/W

The LMBOX register contains the physical address of the mailbox
pointer structure. 

31 0

BXB-0175-92

MBXREG

Name Bit(s) Type Function

MBXREG <31:0> WO Mailbox Register.  Contains the physical address of
the mailbox pointer structure. 
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Chapter 9

CPU Module Registers

The KN7AA CPU module, like the memory and I/O modules on the LSB
bus, contains two groups of registers: 

• LSB required registers

• CPU-specific registers

LSB required registers are used for internode communication over the LSB
bus.  CPU-specific registers are used to perform functions specific to the
CPU module.
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9.1  Register Mapping

All CPU module registers reside in node space.  The only exceptions to this
rule are the two interrupt registers, LIOINTR and LIPINTR, which reside
in LSB broadcast space.

CPU module registers are mapped to the node space as offsets to a base
address (BB).  The base address is implemented in hardware and depends
on the node ID, which is determined by the LSB backplane slot  occupied
by the module.  Table 9-1 gives the physical base addresses of nodes on the
LSB bus.    

Table 9-1 LSB Node Space Base Addresses

Table 9-2 lists the CPU module registers and gives the address of each reg-
ister as an offset from a selected node space base address. 

NOTE:  Two CPU registers listed in Table 9-2, LIOINTR and LIPINTR, are located
in LSB broadcast space, the base address of which is 3 FE00 0000. 

Node ID Module
Physical Base Address (BB)
                  (Byte)

0
1
2
3
4
5
6
7
8

CPU/Memory
CPU/Memory
CPU/Memory
CPU/Memory
CPU/Memory
CPU/Memory
CPU/Memory
CPU/Memory
I/O

3 F800 0000
3 F840 0000
3 F880 0000
3 F8C0 0000
3 F900 0000
3 F940 0000
3 F980 0000
3 F9C0 0000
3 FA00 0000
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Table 9-2 CPU Module Registers

Register Name Mnemonic
 Address
(Byte Offset) 

LSB Required

Device Register
Bus Error Register
Configuration Register
Memory Mapping Register 0
Memory Mapping Register 1
Memory Mapping Register 2
Memory Mapping Register 3
Memory Mapping Register 4
Memory Mapping Register 5
Memory Mapping Register 6
Memory Mapping Register 7
Bus Error Syndrome Register 0
Bus Error Syndrome Register 1
Bus Error Syndrome Register 2
Bus Error Syndrome Register 3
Bus Error Command Register 0
Bus Error Command Register 1
I/O Interrupt Register 
Interprocessor Interrupt Register 

CPU-Specific

Mode Register 
Module Error Register 
Lock Address Register 
Diagnostic Control Register 
Tag Address Register 
Tag Write Data Register 
Console Communication Register 0
Console Communication Register 1
Performance Counter Control Register
Performance Counter 0 Register
Performance Counter 1 Register
Last Miss Address Register 

LDEV 
LBER
LCNR
LMMR0
LMMR1
LMMR2
LMMR3
LMMR4
LMMR5
LMMR6
LMMR7
LBESR0
LBESR1
LBESR2
LBESR3
LBECR0
LBECR1
LIOINTR
LIPINTR

LMODE
LMERR
LLOCK 
LDIAG 
LTAGA
LTAGW
LCON0
LCON1
LPERF
LCNTR0
LCNTR1
LMISSADDR

BB1 + 0000
BB + 0040
BB + 0080
BB + 0200
BB + 0240
BB + 0280
BB + 02C0
BB + 0300
BB + 0340
BB + 0380
BB + 03C0
BB + 0600
BB + 0640
BB + 0680
BB + 06C0
BB + 0700
BB + 0740
BSB2 + 0000
BSB + 0040

BB + 0C00
BB + 0C40
BB + 0C80
BB + 0D00
BB + 0D40
BB + 0D80
BB + 0E00
BB + 0E40
BB + 0F00
BB +0F40
BB + 0F80
BB + 0FC0

1  BB  is the node space base address of the CPU module in hex.

2  BSB is the broadcast space base address, which is 3 FE00 0000. 



9-4   CPU Module Registers

9.2  Register Descriptions 

LSB required registers have the following characteristics:

• All writes are 32 bits wide.  Byte or word operations are not supported.

• Writes directed to a read-only register may be accepted and acknowl-
edged, but no action is taken, and the content of the register is not af-
fected.

CPU-specific registers appear in the LSB CSR space.  
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LDEV—Device Register 

Table 9-3 LDEV Register Bit Definitions

Address
Access

BB + 0000 
R/W

The LDEV register is loaded during initialization with information
that identifies a node.  

31 0

DREV

BXB-0100-92

1516

DTYPE

Name Bit(s) Type Function

DREV <31:16> R/W, 0 Device Revision.   Identifies the revision level
of an LSB node.  For the KN7AA CPU module,
the value of this field is zero. 

DTYPE <15:0> R/W, 0 Device Type.  Identifies the type of node.  For
the KN7AA CPU module, the value of this field
is set to 8001 (hex). 



9-6   CPU Module Registers

LBER—Bus Error Register

Address
Access

BB + 0040
R/W

The LBER register stores the error bits that are flagged when an
LSB  node detects errors in the LSB operating environment  and
logs the failing commander ID.  The status of this register remains
locked until software resets the error bit(s). 

31 18 17 16 15 14 13 12 11 10 9 4 3 08 7 6 5 12

RSVD

NSES
CTCE
DTCE

CDPE
CPE2
CPE
CE2

CNFE
STE
TDE

CDPE2

DIE
SHE
CAE

NXAE

19

BXB-0101-92

<3>
<2>
<1>
<0>

<7>
<6>
<5>
<4>

<11>
<10>
<9>
<8>

<15>
<14>
<13>
<12>

<18>
<17>
<16>

CE
UCE2
UCE

E
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Table 9-4 LBER Register Bit Definitions

Name Bit(s) Type Function

RSVD

NSES

CTCE

DTCE

DIE

SHE

CAE

NXAE

CNFE

STE

TDE

<31:19>

<18>

<17>

<16>

<15>

<14>

<13>

<12>

<11>

<10>

<9>

R0

R, 0

W1C, 0

W1C, 0

W1C, 0

W1C, 0

W1C, 0

W1C, 0

W1C, 0

W1C, 0

W1C, 0

Reserved.  Read as zero.

Node-Specific Error Summary.   Set when an error
condition is reported in the LMERR register. 

Control Transmit Check Error.   Set when an LSB con-
trol line is driven incorrectly by the CPU module.   When
CTCE is set, ERR is asserted by the CPU module for one
cycle. 

Data Transmit Check Error.    Set when the CPU mod-
ule detects an error while driving the D<127:0> and 
ECC<27:0> lines during a data or command cycle.   When
DTCE is set, ERR is asserted by the CPU module for one
cycle.

Dirty Error.   Set if the CPU module receives an asserted
DIRTY signal during a cycle when DIRTY signals are not
allowed.  When DIE is set, ERR is asserted by the CPU
module for one cycle.

Shared Error.   Set if the CPU module receives an as-
serted SHARED signal during a cycle when SHARED sig-
nals are not allowed.  When SHE is set, ERR is asserted
by the CPU module for one cycle.

Command/Address  Error.   Set if the CPU module re-
ceives an asserted CA signal during a cycle when CA sig-
nals are not allowed.  When CAE is set, ERR is asserted
by the CPU module and error registers are locked.

Nonexistent Address Error.   Set when the CPU mod-
ule does not receive confirmation for a command it sent on
the LSB.  When NXAE is set, ERR is asserted by the CPU
module for one cycle.

CNF Error.   Set if the CPU module receives a confirma-
tion signal during a cycle that does not permit confirma-
tion.  When CNFE is set, ERR is asserted by the CPU
module for one cycle.

STALL Error.    Set when the CPU module receives a
STALL signal during a cycle that does not permit stalls.  
When STE is set, ERR is asserted by the CPU module for
one cycle.

Transmitter During Error.   Set  if a CE, UCE, CPE, or
CDPE error occurs during a cycle when the CPU module
was driving  D<127:0>.   When TDE is set, ERR is as-
serted by the CPU module for one cycle.
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Table 9-4  LBER Register Bit Definitions (Continued)

Name Bit(s) Type Function

CDPE2

CDPE

CPE2

CPE

CE2

CE

UCE2

UCE

E

<8>

<7

<6>

<5>

<4>

<3>

<2>

<1>

<0>

W1C, 0

W1C, 0

W1C, 0

W1C, 0

W1C, 0

W1C, 0

W1C, 0

W1C, 0

W1C, 0

Second CSR Data Parity Error.   Set when a second
parity error occurs while CDPE is set on a CSR data cycle.

CSR Data Parity Error.  If a parity error occurs during
a CSR data cycle, the CPU module sets CDPE, asserts
ERR for one cycle, and locks the error registers.

Second Command Parity Error.   Set when a second
parity error occurs on a command cycle while CPE is set. 

Command Parity Error.   If a parity error occurs on a
command cycle, the CPU module sets CPE, asserts ERR
for one cycle, and locks the error registers. 

Second Correctable Data Error.   Set when  a second
correctable ECC error occurs on a data cycle while CE is
set.

Correctable Data Error.   If the CPU module detects an
ECC error on the LSB, it sets CE, asserts ERR for one cy-
cle, and locks the error registers.

Second Uncorrectable Data Error.   Set when  the
CPU module detects a second uncorrectable data error
while UCE is set.  

Uncorrectable Data Error.   If the CPU module detects
an uncorrectable ECC error on the LSB during a data cy-
cle, it sets UCE, asserts ERR for one cycle, and locks the
error registers. 

Error.   Set whenever the CPU module detects assertion
of ERR on the LSB. 
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LCNR—Configuration Register

Table 9-5 LCNR Register Bit Definitions

Address
Access

BB + 0080
R/W

The LCNR register contains LSB configuration setup and status in-
formation.   

31 30 29 28 27 0

RSTSTAT
NHALT
NRST
STF

BXB-0102-92

CEEN

RSVD

1

Name Bit(s) Type Function

STF

NRST

NHALT

RSTSTAT

RSVD

CEEN

<31>

<30>

<29>

<28>

<27:1>

<0>

W1C, 1

W,  0

R/W, 0

W1C, 0

R0

R/W, 0

Self-Test Fail.  When set, indicates that this node has
not yet completed self-test.

Node Reset.  When set, the node enters console mode
and undergoes a reset sequence. 

Node Halt.  When set, a CPU node enters console
mode. 

Reset Status.   When set, provides an indication to con-
sole software that a given CPU node should not attempt
to become the boot processor,  but should rather join an
already running system.  This bit is set when NRST
(LCNR<30>) is set.   It is cleared with a write of one, at
system power-up, or with an LSB RESET command. 
This bit is not cleared in a reset sequence caused by set-
ting NRST. 

Reserved.  Read as zero. 

Correctable Error Detection  Enable.  When set, en-
ables detection of correctable errors.
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LMMR0–7—Memory Mapping Registers 

Table 9-6 LMMR Register Bit Definitions

Address
Access

BB + 0200 to BB + 03C0
R/W

Eight LMMR registers define the memory configuration for all
memory modules installed in the system.   They are copies of the
equivalent AMR registers in memory modules installed in the sys-
tem.  Each LMMR register is associated with the LSB module
whose node ID matches the three lower bits of the LMMR address. 
Thus, LMMR0 is associated with node 0,  LMMR1 is associated with
node 1, and so on.  LMMR registers are loaded during system in-
itialization when the memory modules are initialized and config-
ured.  

31 17 16 11 10 9 4 3 0

BXB-0104-92

8 5

RSVDMODULE_ADDR

2 1

NBANKS
AW

IA
INT
EN

Name Bit(s) Type Function

MODULE_ADDR

RSVD

<31:17>

<16:11>

R/W

R0

Module Address.  Specifies the most significant
bits of the base address of the memory region
spanned by the memory module associated with
this register (LMMR0–LMMR7).  These bits cor-
respond to bits <39:25> of the byte address or
D<34:20> of the command cycle.

Reserved.  Read as zero.  
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Table 9-6  LMMR Register Bit Definitions (Continued)

Name Bit(s) Type Function

NBANKS

AW

IA

INT

EN

<10:9>

<8:5>

<4:3>

<2:1>

<0>

R/W

R/W

R/W

R/W

R/W

Number of Banks.  Specifies the number of in-
dividual memory banks (1, 2, 4, or 8) contained
on the memory module associated with this reg-
ister (LMMR0–7). The value of this field deter-
mines how many bits of the memory address (0,
1, 2, or 3) are inserted into the bank number.

Address Width.  Specifies the number of valid
bits in MODULE_ADDR (LMMR<31:17>), start-
ing from the MSB.  The remaining bits of MOD-
ULE_ADDR are ignored. 

Interleave Address.  Specifies which inter-
leave, within a group of interleaved modules, is
served by the module associated with this regis-
ter (LMMR0–7).

Interleave. Specifies the number of memory
modules interleaved with this module (1, 2, or 4).  
This value determines the number of bits in the
INT field (0, 1, or 2, starting from the LSB) that
are compared to the LSBs of the memory ad-
dress.

Enable.  When set,  indicates that the module
associated with this register (LMMR0–7) is in-
stalled, and it is a memory module.

  LMMR
<10:9>

Banks per
Module

Bits in Bank
Number

00
01
10
11

1
2
4
8

0
1
2
3

 LMMR
<2:1>

Modules
Interleaved

Address Bits
Compared

00
01
10
11

1
2
4
Reserved

0
1
2
Reserved



9-12   CPU Module Registers

LBESR0-3—Bus Error Syndrome Registers

Table 9-7 LBESR Register Bit Definitions

Address
Access

BB + 0600 06C0
R

The LBESR registers contain the syndrome computed from the
LSB Data and ECC fields received during the cycle when an error
was detected.  The syndrome is the bit-by-bit difference between
the ECC check code generated from the received data and the ECC
field received over the bus.   The LBESR registers lock only on the
first occurrence of an ECC error (LBER<CE> or LBER<UCE>). 
Subsequent ECC errors set LBER<CE2> or LBER<UCE2> until
software clears those error bits.

31 0

SYND_0

7 6

RSVD

SYND_1RSVD

SYND_2RSVD

SYND_3RSVD

BXB-0105-92

Name Bit(s) Type Function

RSVD

SYND_0

SYND_1

SYND_2

SYND_3

<31:7>

<6:0>

<6:0>

<6:0>

<6:0>

R0

R

R

R

R

Reserved.  Read as zero.

Syndrome 0.  Syndrome computed from D<31:0>
and ECC<6:0> during error cycle.

Syndrome 1.  Syndrome computed from  D<63:32>
and ECC<13:7> during error cycle.

Syndrome 2.  Syndrome computed from D<95:33>
and ECC<20:14> during error cycle.

Syndrome 3.  Syndrome computed from D<127:96>
and ECC<27:21> during error cycle.
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Syndrome Values

A syndrome of zero indicates no ECC error for the given longword.   Table
9-8 gives the syndromes for all single-bit errors.  Any non-zero syndrome
not listed in Table 9-8 indicates a double-bit error.

Table 9-8 Syndromes for Single-Bit Errors

Bit
Syndrome          
    (Hex) Bit

Syndrome
   (Hex)

Data<0>
Data<1>
Data<2>
Data<3>
Data<4>
Data<5>
Data<6>
Data<7>
Data<8>
Data<9>
Data<10>
Data<11>
Data<12>
Data<13>
Data<14>
Data<15>
Data<16>
Data<17>
Data<18>
Data<19>

4F
4A
52
54
57
58
5D
23
25
26
29
2A
2C
31
34
0E
0B
13
15

Data<20>
Data<21>
Data<22>
Data<23>
Data<24>
Data<25>
Data<26>
Data<27>
Data<28>
Data<29>
Data<30>
Data<31>
ECC<0>
ECC<1>
ECC<2>
ECC<3>
ECC<4>
ECC<5>
ECC<6>

16
19
1A
1C
62
64
67
68
6B
6D
70
75
01
02
04
08
10
20
40
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LBECR0,1—Bus Error Command Registers

Table 9-9 LBECR Register Bit Definitions

Address
Access

BB + 0700 and BB + 0740
R

The LBECR registers save the contents of the LSB command and
address fields during the command cycle when an error is de-
tected.  The following errors detected by the CPU module lock the
LBECR registers:

LSB uncorrectable ECC error (LBER<1>)
LSB correctable ECC error (LBER<3>)
LSB command parity error (LBER<5>)
LSB CSR data parity error (LBER<7>)
LSB nonexistent address error (LBER<12>)
LSB arbitration drop error (LMERR<10>
LEVI P-map parity error (LMERR<3:0>)
LEVI B-cache tag parity error (LMERR<4>)
LEVI B-cache status parity error (LMERR<5>)
LEVI B-map parity error (LMERR<6>)

31 20 19 18 17 16 15 14 11 10 0

CA <31:0>

7 6       5          3   2    

RSVD CID

BXB-0106A-92

CID3 P CMD CA

CNF

DIRTY
SHARED

DCYCLE

Name Bit(s) Type Function

CA

RSVD

<31:0>

<31:20>

R

R0

Command/Address.  Contents of D<31:0> during the
command cycle. 

Reserved.  Read as zero.
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Table 9-9  LBECR Register Bit Definitions (Continued) 

Name Bit(s) Type Function

DCYCLE

DIRTY

SHARED

CNF

CID

CID3

P

CMD

CA

<19:18>

<17>

<16>

<15>

<14:11>

<10:7>

<6>

<5:3>

<2:0>

R

R

R

R

R

R

R

R

R

Data Cycle.  Indicates which data cycle had data error.

Dirty.  Set when DIRTY is asserted for the current com-
mand.

Shared.  Set when SHARED is asserted for the current
command.

Confirmation.   Set when CNF is asserted for the cur-
rent command.

Commander ID.  Contents of REQ<3:0> during com-
mand cycle.

Commander ID 3.   This field is the duplicate of CID
(bits <14:11>).  It reads the same as CID.  In some early
versions of the KN7AA module, CID3 reads as zero.  

Parity.  Contents of D<38> during command cycle. 

Command.  Contents of D<37:35> during command cy-
cle.  CMD is decoded as follows:

Command/Address.  Contents of D<34:32> during com-
mand cycle.

LBECR <19:18> Data Cycle in Error

00
01
10
11

0
1
2
3

Command Function

000
001
010
011
100
101
110
111

Read
Write
Reserved
Write Victim
Read CSR
Write CSR
Reserved
Private
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LIOINTR—I/O Interrupt Register 

Table 9-10 LIOINTR Register Bit Definitions

Interrupt Mapping

Each  interrupt target is assigned four bits of interrupt in the LIOINTR
register corresponding to the four I/O interrupt levels. A given CPU only
looks at the four bits that correspond to its target assignment. This allows
interrupts to be targeted to a single CPU or up to four CPUs, depending on
the data supplied in the bus CSR write transaction from the I/O module.

This register appears in LSB broadcast space.  Writes that address this lo-
cation are accepted without regard to node ID.  Thus, all CPUs accept

Address
Access

BSB + 0000
R/W

The LIOINTR register is used by the LSB I/O module to signal in-
terrupts from the LSB I/O system to processors.   

NOTE:  A maximum of four processors can receive interrupts regardless of
the system configuration.  In a multiprocessor system with more than four
CPU modules, only CPU0 to CPU3 can receive interrupts.

31 16 15 12 11 4 3 0

CPU0

8 7

RSVD CPU1CPU2CPU3

BXB-0109-92

Name Bit(s) Type Function

RSVD

CPU3

CPU2

CPU1

CPU0

<31:16>

<15:12>

<11:8>

<7:4>

<3:0>

R0

W1S

W1S

W1S

W1S

Reserved.  Read as zero. 

CPU3 I/O Interrupt. When a bit is set in this
field, an interrupt is posted to CPU3. 

CPU2 I/O Interrupt. When a bit is set in this
field, an interrupt is posted to CPU2. 

CPU1 I/O Interrupt. When a bit is set in this
field, an interrupt is posted to CPU1. 

CPU0 I/O Interrupt. When a bit is set in this
field, an interrupt is posted to CPU0. 
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writes to the register.  The register bits are write one to set (W1S).  Multi-
ple writes with a value of one to a given bit in this register post an equal
number of interrupts to the targeted CPU.  Reads to this location are unde-
fined.  Any given CPU implements only four bits of this register. 

Table 9-11 shows the mapping of LSB interrupt levels to DECchip 21064 
interrupt levels. 

Table 9-11 LSB Interrupt Mapping

When any of the four interrupt-pending bits is set, the LEVI gate array
correspondingly asserts the IOINTR<3:0> signals.  The CPU  module then
uses these signals to assert the appropriate interrupt request to the
DECchip 21064.  The LEVI-A gate array also watches for LSB CSR reads
to the LILID0–3 registers in the IOP module.  When an LSB CSR read for
LILID0 is asserted on the LSB bus, the LEVI-A gate array correspondingly
deasserts IOINTR<0>.  The LEVI-A gate array performs the same function
on LILID3, LILID2, and LILID1.

NOTE:  At least one CPU module must reside in slots 0 to 3.

LSB Interrupt Level DECchip 21064 IPL (Dec)

3

2

1

0

IPL 23 

IPL 22 

IPL 21 

IPL 20 
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LIPINTR—Interprocessor Interrupt Register 

Table 9-12 LIPINTR Register Bit Definitions

Address
Access

BSB + 0040
R/W

The LIPINTR register is used by the CPU modules to signal
interprocessor interrupts. 

31 16 15 0

RSVD MASK

BXB-0120-92

Name Bit(s) Type Function

RSVD

MASK

<31:16>

<15:0>

R0

W1S, 0

Reserved.  Read as zero. 

Interprocessor Interrupt Mask.  When a
given bit is set, an interprocessor interrupt is
posted to a specific processor.  Bits are mapped
to specific CPUs within a multiprocessor system
as follows: 

LIPINTR Bits DECchip 21064 CPU

<15:8>

<7>

<6>

<5>

<4>

<3>

<2>

<1>

<0>

Not used.

CPU7

CPU6

CPU5

CPU4

CPU3

CPU2

CPU1

CPU0
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Interprocessor Interrupt

When a processor wishes to post an interrupt to another processor, it sim-
ply writes to the LIPINTR register to set the relevant bit.  The bits in
LIPINTR<7:0> are write one to set (W1S). 

This register appears in LSB broadcast space. Writes that address this lo-
cation are accepted without regard to node ID.  Thus, all CPUs accept
writes to the register.  Reads to this location are undefined.

The contents of LIPINTR<7:0> are qualified by the node ID.  If a given
CPU node is selected, the LEVI-A gate array asserts the IPINTR signal for
one processor external clock.  The CPU module ORs this signal and issues
the appropriate interrupt request to the DECchip 21064.  
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LMODE—Mode Register 

Address
Access

BB + 0C00
R/W

The LMODE register contains mode setup for an operational CPU
module (as opposed to the LDIAG register which provides mode
setup for a CPU module while running diagnostics). 

NOTE:  Pass 1 or 2 and Pass 3 LEVI bit definitions of the LMODE register
are given in separate tables. See bits <19:16> for the LEVI revision.

31 20 19 16 15 14 13 12 11 10 9 4 3 08 7 6 5 12

RSVD

BXB-0626-93

RSVD
CLR_LOCK

STCOND_TO
LOCK_MODE

LOCK_ALL
PMODE
WMODE

BSIZE

LEVI_REV
RSVD

LOCK_IN
REQ_MODE

31 17 16 15 11 10 9 4 3 08 7 6 5 12

RSVD RSVD

LEVI_REV
CLR_LOCK

STCOND_TO

LOCK_MODE
PMODE
WMODE

BSIZE

LEVI Pass 3

LEVI Pass 1 or 2
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Table 9-13 LMODE Register Pass 1 and Pass 2 LEVI Bit Definitions

Name Bit(s) Type Function

RSVD

LEVI_REV

RSVD

CLR_LOCK

STCOND_TO

LOCK_MODE

PMODE

WMODE

BSIZE

<31:17>

<16>

<15:11>

<10>

<9:8>

<7:6>

<5:4>

<3:2>

<1:0>

R0

R, X 

R0

W, 0

R/W, 0

R/W, 0

R/W, 0

R/W, 0

R/W, 0

Reserved.  Read as zero. 

LEVI Revision.  When clear, indicates pass 1 LEVI-
A.  When set, indicates pass 2 LEVI-A.  See Table
9-14 for pass 1, pass 2, and pass 3 LEVI_A codes.

Reserved.  Read as zero. 

Clear Lock.   When set, forces LEVI to deassert
LSB_LOCKOUT and clear any relevant saved state
irrespective of the state of LOCK_TIME, and so on.

Store Conditional Timeout.   Unused on the
KN7AA module.  Should be written with zeros.

Lock Mode.   Unused on the KN7AA module.  Should
be written with zeros.

P-Cache Mode.   Allows LEVI to work with CPU
chips with varying internal cache organizations.  The
value of this field for the KN7AA module is 01 (bin),
which denotes an 8K D-cache and an 8K I-cache. 

Write Mode.  Selects the behavior of LEVI in re-
sponse to LSB writes.

B-Cache Size.   Tells LEVI about the size of the B-
cache. 

LMODE
<3:2> LEVI Behavior

00

01

10

11

Use results of P-map lookup to determine
invalidate/update.

Invalidate the B-cache.

Update the B-cache.

LEVI behavior undefined. 

LMODE
<1:0> B-Cache Size

00
01
10
11

4 Mbytes
LEVI behavior undefined.  
LEVI behavior undefined.  
LEVI behavior undefined.  
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Table 9-14 LMODE Register Pass 3 LEVI Bit Definitions

Name Bit(s) Type Function

RSVD

LEVI_REV

RSVD

LOCK_IN

REQ_MODE

RSVD

CLR_LOCK

STCOND_TO

<31:20>

<19:16>

<15>

<14>

<13:12>

<11>

<10>

<9:8>

R0

R, X 

R0

R/W, 0

R/W, 0

R0

W, 0

R/W, 0

Reserved.  Read as zero. 

LEVI Revision.   Indicate revision of LEVI-A.  

Reserved.  Reads as zero. 

Lock In.  When set, LEVI-A asserts LSB 
LOCKOUT if LEVI-A signal R_CRD is asserted.  
This bit should be set along with
LMODE<LOCK_ALL>.  The use of LOCK_IN is
intended for system debug only and should nor-
mally be cleared.

Request Mode.   Determine the CPU module con-
figurations by controlling the number of LSB REQ
lines used by LEVI-A for arbitration.  This field
should allow no more than are allowed by
Gbus$WHAMI<REQ_MODE>.

Reserved.  Read as zero. 

Clear Lock.   When set, forces LEVI to deassert
LSB_LOCKOUT and clear any relevant saved
state irrespective of the state of LOCK_TIME, and
so on.

Store Conditional Timeout.   Unused on the
KN7AA module.  Should be written with zeros.

LMODE
<19:16> LEVI Revision

0000
0001
0011
All else

Pass 1 LEVI-A
Pass 2 LEVI-A
Pass 3 LEVI-A
Reserved

LMODE
<13:12> CPUs Allowed in LSB Slots

00
11
All else

0 to 3
0 to 7
Reserved
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Table 9-14  LMODE Register Pass 3 LEVI Bit Definitions (Continued)

Name Bit(s) Type Function

LOCK_MODE

LOCK_ALL

PMODE

WMODE

BSIZE

<7>

<6>

<5:4>

<3:2>

<1:0>

R/W, 0

R/W, 0

R/W, 0

R/W, 0

R/W, 0

Lock Mode.   Unused on the KN7AA module. 
Should be written with zero. 

Lock All.  When set, prevents all LSB transac-
tions (except secondary and victim writes) if LSB
LOCKOUT is asserted by another node.  This bit
should be set along with LMODE<LOCK_IN>. 
The use of LOCK_ALL is intended for debug only. 
This bit should normally be cleared. 

P-Cache Mode.   Allows LEVI to work with CPU
chips with varying internal cache organizations. 
The value of this field for the KN7AA module is 01
(bin), which denotes an 8K D-cache and an 8K I-
cache. 

Write Mode.  Selects the behavior of LEVI in re-
sponse to LSB writes.

B-Cache Size.   Tells LEVI about the size of the
B-cache. 

LMODE
<3:2> LEVI Behavior

00

01

10

11

Use results of P-map lookup to deter-
mine invalidate/update.

Invalidate the B-cache.

Update the B-cache.

LEVI behavior undefined. 

LMODE
<1:0> B-Cache Size

00
01
10
11

4 Mbytes
1 Mbyte
16 Mbytes
LEVI behavior undefined.  
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LMERR—Module Error Register 

Table 9-15 LMERR Register Bit Definitions

Address
Access

BB + 0C40
R/W

The LMERR register provides module-specific error information. 
If any bits are set in this register, NSES (LBER<18>) is also set. 

31 11 10 9 4 3 08 7 6 5

RSVD

BXB-0122-92

ARBDROP
ARBCOL

BDATADBE
BDATASBE

BMAPPE
BSTATPE

BTAGPE
PMAPPE

Name Bit(s) Type Function

RSVD

ARBDROP

ARBCOL

<31:11>

<10>

<9>

R0

W1C, 0 

W1C, 0 

Reserved.  Read as zero. 

Arbitration Drop.  Set when the LEVI arbitration
logic detects an LSB cycle in which a node has
failed to assert a command after having gained ac-
cess to the LSB bus.  When ARBDROP is set, the
LSB command and address are latched in the
LBECR register.

Arbitration Collision.   Set when the LEVI arbi-
tration logic detects an attempt to arbitrate for the
LSB bus in an illegal time slot. 
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Table 9-15  LMERR Register Bit Definitions (Continued)

Name Bit(s) Type Function

BDATADBE

BDATASBE

BMAPPE

BSTATPE

BTAGPE

PMAPPE

<8>

<7>

<6>

<5>

<4>

<3:0>

W1C, 0 

W1C, 0 

W1C, 0 

W1C, 0 

W1C, 0 

W1C, 0 

B-Cache Data Double-Bit Error.   When set,
indicates that the LEVI chips have detected a
double-bit ECC error when unloading the B-
cache RAMs.   This bit is set when data being
transmitted on the LSB bus incurs a double-bit
error.  The address and the associated ECC syn-
drome are latched in the LBECR and LBESR
registers, respectively. 

B-Cache Data Single-Bit Error.  When set,
indicates that the LEVI chips have detected a
single-bit ECC error when unloading the B-data
RAMs.   This bit is set when data being trans-
mitted on the LSB bus incurs a single-bit error. 
The address and the associated ECC syndrome
are latched in the LBECR and LBESR registers,
respectively. 

B-Map Parity Error.  When set, indicates that
the LEVI-A chip has detected bad parity when
reading the B-map RAMs.  The associated ad-
dress is latched in the LBECR register.

B-Cache Status Store Parity Error. When
set, indicates that the LEVI-A chip has detected 
bad parity when reading the B-stat RAM.  The
associated address is latched in the LBECR reg-
ister for LSB probes.  For LEVI probes due to
processor misses (LDx_L and so on),
BIU_STAT<0> is set and the address is latched
in the FILL_ADDR register. 

B-Cache Tag Store Parity Error.  When set,
indicates that the LEVI chips have detected bad
parity when reading the B-tag RAMs.  The asso-
ciated address is latched in the LBECR register
for LSB probes.  For LEVI probes due to proces-
sor misses (LDx_L and so on), BIU_STAT<0> is
set and the address is latched in the
FILL_ADDR register. 

P-Map Parity Error.  A bit is set in this field if
the LEVI-A chip detects bad parity when read-
ing one of the four internal P-map RAM struc-
tures.  The associated address is latched in the
LBECR register.
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LLOCK—Lock Address Register

Table 9-16 LLock Register Bit Definitions

Address
Access

BB + 0C80
R

The LLOCK register contains the physical address and lock bit of
the most recently executed LDxL instruction that referenced mem-
ory space.

31 30 29 28 0

LADR

BXB-0126-92

RSVD
LOCK

  RSVD

1

Name Bit(s) Type Function

LOCK

RSVD

LADR

RSVD

<31>

<30:29>

<28:1>

<0>

W1C, 0

R0

R, 0

R0

Lock.  When set, indicates that the LLOCK register
contains a valid address used in the most recent
memory space LDx_L instruction executed by the
processor and that no LSB writes that reference the
same 64-byte LSB block have occurred.  This bit is
used to determine the response to a subsequent
STx_C instruction.  Software can clear this bit ex-
plicitly with an LSB write to the 64-byte block refer-
enced in LLOCK<28:1>. 

Reserved.  Read as zero. 

Lock Address.  Lock address bits <33:6>.

Reserved.  Reads as zero. 
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LDIAG—Diagnostic Control Register

Table 9-17 LDIAG Register Bit Definitions

Address
Access

BB + 0D00
R/W

The LDIAG register allows a diagnostic program to manipulate
various sections of the CPU module for complete testing.

31 11 10 4 3 07 6 5 12

RSVD

BXB-0121-92

TAG_SEL
FRIGN
FBDP
FBCP

FDBE
FSBE

FSHARE
FDIRTY

PMAP_DIS

8

Name Bit(s) Type Function

RSVD

TAG_SEL

<31:11>

<10:8>

R0

R/W, 0 

Reserved.  Read as zero. 

Tag Select.  Specifies which tag store is to be
read/written when Gbus$LtagRW is accessed.

When LDIAG is being used to read a tag, only one
bit in TAG_SEL is allowed to be set.  If more than
one bit is set in TAG_SEL when Gbus$LtagRW is
written, all specified tags are written. 

LDIAG<10:8> Tag Store Selected

100
010
001

B-cache
B-map
P-map
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Table 9-17  LDIAG Register Bit Definitions (Continued)

Name Bit(s) Type Function

FRIGN

FBDP

FBCP

FDBE

FSBE

FSHARE

FDIRTY

PMAP_DIS

<7>

<6>

<5>

<4>

<3>

<2>

<1>

<0>

R/W,  1

R/W, 0

R/W, 0

R/W,  0

R/W,  0 

R/W,  0 

R/W,  0 

R/W,  0 

Force LSB Ignore.  When set, forces the
LEVI gate arrays to ignore all LSB bus traffic
except transactions initiated by this node. 
When FRIGN transitions from set to clear, the
LEVI gate array sets LSB ERR to allow all
LSB arbitration to resync.

Force Bad Data Parity.  When set, forces the
LEVI-A gate array to assert bad parity on the
LSB during CSR data cycles. 

Force Bad Command Parity.  When set,
forces the LEVI-A gate array to assert bad par-
ity on the LSB during CSR command cycles.  

Force Double-Bit Error. Allows a diagnostic
program to force the LEVI gate arrays to load
data into the B-cache with double-bit ECC er-
rors.  When set, LEVI inverts every ECC bit for
each longword loaded into the B-cache from the
LSB bus.   This bit is only relevant when the
LEVI gate arrays are loading the B-cache data
store (fills).

Force Single-Bit Error.  Allows a diagnostic
program to force the LEVI gate arrays to load
data into the B-cache with single-bit ECC er-
rors.  When set, LEVI inverts one ECC
bit for each longword loaded into the B-cache
from the LSB bus.   This bit is only relevant
when the LEVI gate arrays are loading the B-
cache data store (fills).

Force Share.  When set, the LEVI-A chip re-
sponds to all LSB memory transactions from
other nodes with assertion of SHARED.

Force Dirty.  When set, the LEVI-A chip re-
sponds to all LSB memory space read transac-
tions that hit in the B-map with assertion of
DIRTY and supplies the data from the B-cache
to the LSB. 

P-Map Disable.  On LEVI-A pass 3 chips,
when set, disables the P-map and causes LEVI-
A to behave as if all lockups hit in the P-map. 
This bit is don’t care for earlier revisions of
LEVI-A.  It should be written with zero. 
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Diagnostic Notes

The following notes offer additional information for performing diagnostics
on the CPU module.

• How to Make the B-Cache Emulate Main Memory 
The CPU module can be made to present its cache as main memory to
the LSB environment by setting BIU_CTL<FHIT>, LDIAG<FDIRTY>,
and LMODE<WMODE>=10 (bin).   The selection of this mode is possi-
ble under the following two conditions: (1)  Only a single CPU module
is placed in this mode;  (2) No memory module is present in the system.

• How to Read/Write Tags
The combinations of LDIAG, LTAGA, LTAGW, and Gbus$LtagRW reg-
isters allow diagnostic programs or error recovery programs to read or
write any tag store on the CPU module.  LDIAG<TAG_SEL> selects
the tag store of interest;  LTAGA selects the location in the tag store; 
LTAGW supplies the value to be written into the tag;  and
Gbus$LtagRW provides the mechanism.  The use of the Gbus register
allows LEVI to perform the tag access without the need for any special
setup (that is, FRIGN).  Even though the Gbus registers are specified
to be a byte in length, reads from Gbus$LtagRW return a full longword
of data, since no physical Gbus location is actually being read.  Gbus
address space is used for convenience only. 

Writing Tags
1.  Write LDIAG<TAG_SEL> to select the tag store.
2.  Write LTAGA to select the location.
3.  Write LTAGW to specify the value to be written.
4.  Write Gbus$LtagRW with any random data.  This action triggers 

LEVI to perform the tag write as set up.

Reading Tags
1.  Write LDIAG<TAG_SEL> to select the tag store.
2.  Write LTAGA to select the location.
3.  Read Gbus$LtagRW.  This action triggers LEVI to perform the 
     tag read as set up.  The data returned is the value from the se-
     lected tag location in the format specified by the LTAGW register.
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LTAGA—Tag Address Register 

Table 9-18 LTAGA Register Bit Definitions

Address
Access

BB + 0D40
R/W

The LTAGA register provides a means by which a diagnostic pro-
gram can specify the location to be accessed in the CPU cache data
and tag RAM structures.

31 19 18 0

TAG_ADDR

BXB-0123-92

RSVD

Name Bit(s) Type Function

RSVD

TAG_ADDR

<31:19>

<18:0>

R0

R/W, 0 

Reserved.  Read as zero. 

Tag Address.  Specifies the location (tag address
bits <23:5>) to be accessed in the tag store se-
lected by LDIAG<TAG_SEL>. 
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LTAGW—Tag Write Data Register 

Table 9-19 LTAGW Register Bit Definitions

Address
Access

BB + 0D80
R/W

The LTAGW register provides a means by which a diagnostic pro-
gram can specify the value to be loaded into the CPU caches and
tag RAM structures.

31 30 29 28 27 0

TAG_DATA

BXB-0124-92

PMAPP
VALID
SHARED
DIRTY

26 25 24 23

BTAGP
BSTATP
BMAPP

RSVD

Name Bit(s) Type Function

RSVD

DIRTY

SHARED

VALID

PMAPP

<31>

<30>

<29>

<28>

<27>

R0

R/W, 0 

R/W, 0 

R/W, 0 

R/W, 0 

Reserved.  Reads as zero. 

Dirty.   Loaded into the Dirty field (if any) of the B-stat
store specified in LDIAG<TAG_SEL> when WTAG
(LDIAG<4>) is set.

Shared.  Loaded into the Shared field (if any) of the B-
stat store specified in LDIAG<TAG_SEL> when WTAG
(LDIAG<4>) is set.

Valid.   Loaded into the Valid field (if any) of the B-stat
store specified in LDIAG<TAG_SEL> when WTAG
(LDIAG<4>) is set.

P-Map Parity.  Specifies the value to be loaded in the
B-map parity location when the Gbus$LtagRW register
is written.  PMAPP covers tag data bits <23:10> and the
valid bit (even parity). 
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Table 9-19  LTAGW Register Bit Definitions (Continued)

Name Bit(s) Type Function

BMAPP

BSTATP

BTAGP

TAG_DATA

<26>

<25>

<24>

<23:0>

R/W, 0

R/W, 0 

R/W, 0 

R/W, 0 

B-Map Parity.  Specifies the value to be loaded in the
B-map parity location when the Gbus$LtagRW register
is written.  BMAPP covers tag data bits <33:22> and the
valid bit (even parity). 

B-Stat Parity.  Specifies the value to be loaded in the B-
stat parity location when the Gbus$LtagRW register is
written.  BSTATP covers the Shared, Dirty, and Valid
bits.

B-Tag Parity.  Specifies the value to be loaded in the B-
tag parity location when the Gbus$LtagRW register is
written.  BTAGP covers tag data bits <33:22> (even par-
ity). 

Tag Data.  Loaded into the tag store specified in
LDIAG<TAG_SEL> when the Gbus$LtagRW register is
written.  Mapping is performed as follows:

LTAGW<23:0> Tag RAM Structure

<23:12>
<23:12>
<13:0>

<33:22>
<33:22>
<23:10>

B-cache tag
B-map tag
P-map tag
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LCON0,1—Console Communication Registers 

Table 9-20 LCON Register Bit Definitions

Address
Access

BB + 0E00 and BB + 0E40
R/W

The LCON register provides a nonmemory communication location
for the KN7AA console firmware. The value contained in this regis-
ter has no direct effect on any CPU module hardware.  

31 0

CON_COM_DATA0

BXB-0129-92

CON_COM_DATA1

0

1

Name Bit(s) Type Function

CON_COM_DATA0

CON_COM_DATA1

<31:0>

<31:0>

R/W, 0

R/W, 0

Console Communication Data 0.  Data
stored in the LCON0 register. 

Console Communication Data 1.  Data
stored in the LCON1 register. 
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LPERF—Performance Counter Control Register 

Address
Access

BB + 0F00
R/W

The LPERF register defines how the LEVI performance registers
(LCNTR0, LCNTR1, and LMISSADDR) behave.   Each counter reg-
ister has an event select field, control bits, and an overflow bit. 
Some of the events to be counted are subject to the node ID mask.
The LMISSADDR register loads miss addresses based on the value
of the Miss Address Frequency field

NOTE:  Pass 1 or 2 and Pass 3 LEVI bit definitions of the LMISSADDR
register are given in separate tables.  See LMODE<LEVI_REV> for the
LEVI revision.

BXB-0634-93

LEVI Pass 3

LEVI Pass 1 or 2
31 24 23 22 21 20 16 15 14 13 12 4 3 08 7 12

N_MASK LC1_SEL LC0_SEL MBZ

LC1_HLT
LC1_RUN

RSVD

MA_FREQ
LC1_OVFL
LC0_OVFL

LC0_HLT
LC0_RUN

RSVD

31 24 23 22 21 20 16 15 14 13 12 4 3 08 7 5 12

N_MASK<7:0> LC1_SEL RSVD

N_MASK<8>
MA_FREQ
LC1_OVFL
LC0_OVFL

LC0_SEL

LC0_HLT
LC0_RUN

RSVD

LC1_HLT
LC1_RUN

RSVD
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Table 9-21 LPERF Register Pass 1 and Pass 2 LEVI Bit Definitions

Name Bit(s) Type Function

N_MASK

LC1_HLT

LC1_RUN

RSVD

LC1_SEL

<31:24>

<23>

<22>

<21>

<20:16>

R/W, 0

W, 0

W, 0

R0

R/W, 0

Node Mask.   When a bit is set in this field, LSB reads,
LSB writes, or victim writes are counted for the associated
node.  The bits are in one-to-one correspondence, so that bit
<31> is associated with node 7, bit <30> with node 6, and
so on, except for bit <24>, which is associated with node 0
and the IOP.  More than one bit may be set, allowing trans-
actions from multiple nodes to be counted.  This field ap-
plies to both LCNTR registers.

LCNTR1 Halt.  Write one to disable LCNTR1 counting.

LCNTR1 Run.  Write one to enable LCNTR1 counting.

Reserved.  Reads as zero. 

LCNTR1 Select.  Selects event for the LCNTR1 register.

LPERF
<20:16>1 Event to Count in LCNTR1

00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000
10001
10010
10011
10100
Other

Misses due to reads
Misses due to writes
Misses due to shared blocks
LDL_X instructions
STC_X failures
LSB B-map hits
Bank conflict delays —LSB cycles
Arbitration losses
Victim buffer hits —wrapped only
CSR reads
CSR writes
LMBPR writes
LSB interrupts
Gbus reads
Gbus writes
LSB reads —subject to node mask
LSB writes —subject to node mask
Victim writes —subject to node mask
Stall cycles
Total memory latency
Carry out from LCNTR0
Reserved

1  When counting victim buffer hits, LC1_SEL = 01000 counts only hits
for which LEVI has to swap (or wrap) the first and second hexwords to
satisfy the read request in the proper order.  LC0_SEL = 01000 counts
all (wrapped or unwrapped) hits.
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Table 9-21  LPERF Register Pass 1 and Pass 2 LEVI Bit Definitions (Continued)

Name Bit(s) Type Function

LC0_HLT

LC0_RUN

RSVD

LC0_SEL

RSVD

<15>

<14>

<13>

<12:8>

<7:4>

W, 0

W, 0

R0

R/W, 0

R0

LCNTR0 Halt.   Writing one disables LCNTR0 counting.

LCNTR0 Run.   Writing one enables LCNTR0 counting.

Reserved.  Reads as zero. 

LCNTR0 Select.  Selects event for the LCNTR0 register.

Reserved.  Read as zero. 

LPERF
<12:8>1 Event to Count in LCNTR0

00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000
10001
10010
10011
10100
Other

Misses due to reads
Misses due to writes
Misses due to shared blocks
LDL_X instructions
STC_X failures
LSB B-map hits
Bank conflict delays —LSB cycles
Arbitration losses
Victim buffer hits —wrapped or unwrapped
CSR reads
CSR writes
LMBPR writes
LSB interrupts
Gbus reads
Gbus writes
LSB reads —subject to node mask
LSB writes —subject to node mask
Victim writes —subject to node mask
Stall cycles
Total memory latency
Carry out from LCNTR1
Reserved

1  When counting victim buffer hits, LC1_SEL = 01000 counts only
hits for which LEVI has to swap (or wrap) the first and second
hexwords to satisfy the read request in the proper order.  LC0_SEL =
01000 counts all (wrapped or unwrapped) hits.
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Table 9-21  LPERF Register Pass 1 and Pass 2 LEVI Bit Definitions (Continued)

Name Bit(s) Type Function

MA_FREQ

LC1_OVFL

LC0_OVFL

<3:2>

<1>

<0>

R/W, 0

R, 0

R, 0

Miss Address Frequency.  Determines how often the
LMISSADDR register loads the last miss address. 

LCNTR1 Overflow.  Records overflow from the LCNTR1
register.  Clears when the LCNTR1 register is reset.  

LCNTR0 Overflow.  Records overflow from the LCNTR0
register.  Clears when the LCNTR0 register is reset.  

LPERF
<3:2> Miss Frequency

00
01
10
11

Load every 32nd miss address
Load every 64th miss address
Load every 128th miss address
Load every 256th miss address
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Table 9-22 LPERF Register Pass 3 LEVI Bit Definitions

Name Bit(s) Type Function

N_MASK

LC1_HLT

LC1_RUN

RSVD

LC1_SEL

<31:24>

<23>

<22>

<21>

<20:16>

R/W, 0

W, 0

W, 0

R0

R/W, 0

Node Mask.   When a bit is set in this field,  LSB reads,
LSB writes, or victim writes are counted for the associated
node.  The bits are in one-to-one correspondence, so that bit
<31> is associated with node 7, bit <30> with node 6, and bit
<24> for node 0.  The IOP module (node 8) is associated with
LPERF<4>.  More than one bit may be set, allowing trans-
actions from multiple nodes to be counted.  This field applies
to both LCNTR registers.

LCNTR1 Halt.  Write one to disable LCNTR1 counting.

LCNTR1 Run.  Write one to enable LCNTR1 counting.

Reserved.  Reads as zero. 

LCNTR1 Select.  Selects event for the LCNTR1 register.

LPERF
<20:16>1 Event to Count in LCNTR1

00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000
10001
10010
10011
10100

Our node LSB read due to RBlock (miss)
Our node LSB R/W due to WBlock (miss/shd)
Our node LSB write due to WBlock (shared)
Our node LDxL requests (hit or miss)
Our node STxC failures (hit, miss, or shared)
Another node write this B-map hit
Bank conflict delays—complex
Arbitration losses—complex
Other node LSB read, this VB hit (wrapped) 
Our node LSB READ_CSR 
Our node LSB WRT_CSR 
Our node LSB WRT_CSR to LMBPR (mailbx)
Any node WRT_CSR to broadcast space
Our node RBlock to Gbus space
Our node WBlock to Gbus space
LSB reads —subject to N_MASK<8:0>
LSB writes —subject to N_MASK<8:0>
Victim writes —subject to N_MASK<8:0>
LSB cycles with STALL asserted 
Total memory latency—complex
Carry out from LCNTR0

1  When counting victim buffer hits, LC1_SEL = 01000 counts only hits
for which LEVI has to swap (or wrap) the first and second hexwords to
satisfy the read request in the proper order.  LC0_SEL = 01000 counts
all (wrapped or unwrapped) hits.
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Table 9-22  LPERF Register Pass 3 LEVI Bit Definitions (Continued)

Name Bit(s) Type Function

LC0_HLT

LC0_RUN

RSVD

<15>

<14>

<13>

W, 0

W, 0

R0

LCNTR0 Halt.   Writing one disables LCNTR0 counting.

LCNTR0 Run.   Writing one enables LCNTR0 counting.

Reserved.  Reads as zero. 

LPERF
<20:16> Event to Count in LCNTR11

10101
10110
10111
11000
11001
11010
11011
11100
11101
11110
11111

All LSB cmds (subject to N_MASK<8:0>)
LSB cycles without STALL asserted
LSB cycles (all)
Mem-space RBlk assert time (RBlk latency)
Mem-space WBlk assert time (WBlk latency)
Mem-space LDxL assert time (LDxL latency)
Mem-space STxC assert time (STxC latency)
Our node LSB READ due to LDxL (miss)
Our node LSB R/W due to STxC (miss o shrd)
Our node STxC requests (hit, miss, shrd, fail)
Our node MB requests (Barrier)

1  When counting victim buffer hits, LC1_SEL = 01000 counts only
hits for which LEVI has to swap (or wrap) the first and second
hexwords to satisfy the read request in the proper order.  LC0_SEL =
01000 counts all (wrapped or unwrapped) hits.
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Table 9-22  LPERF Register Pass 3 LEVI Bit Definitions (Continued)

Name Bit(s) Type Function

LC0_SEL <12:8> R/W, 0 LCNTR0 Select.   Selects event for the LCNTR0 register.

LPERF
<12:8>1 Event to Count in LCNTR0

00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000
10001
10010
10011
10100
10101
10110
10111
11000
11001
11010
11011
11100
11101
11110
11111

Our node LSB read due to RBlock (miss)
Our node LSB R/W due to WBlock (miss/shd)
Our node LSB write due to WBlock (shared)
Our node LDxL requests (hit or miss)
Our node STxC failures (hit, miss, or shared)
Another node write this B-map hit
Bank conflict delays—complex
Arbitration losses—complex
Other node LSB read, this VB hit 
Our node LSB READ_CSR 
Our node LSB WRT_CSR 
Our node LSB WRT_CSR to LMBPR
(mailbx)
Any node WRT_CSR to broadcast space
Our node RBlock to Gbus space
Our node WBlock to Gbus space
LSB reads —from any node
LSB writes —from any node
Victim writes —from any node
LSB cycles with STALL asserted 
Total memory latency—complex
Carry out from LCNTR1
All LSB cmds (from any node)
LSB cycles without STALL asserted
LSB cycles (all)
Mem-space RBlk assert time (RBlk latency)
Mem-space WBlk assert time (WBlk latency)
Mem-space LDxL assert time (LDxL latency)
Mem-space STxC assert time (STxC latency)
Our node LSB READ due to LDxL (miss)
Our node LSB R/W due to STxC (miss or shd)
Our node STxC requests (hit, miss, shrd, fail)
Our node MB requests (Barrier)

1  When counting victim buffer hits, LC1_SEL = 01000 counts only
hits for which LEVI has to swap (or wrap) the first and second
hexwords to satisfy the read request in the proper order.  LC0_SEL =
01000 counts all (wrapped or unwrapped) hits.



       CPU Module Registers   9-41

Table 9-22  LPERF Register Pass 3 LEVI Bit Definitions (Continued)

Name Bit(s) Type Function

RSVD

N_MASK<8>

MA_FREQ

LC1_OVFL

LC0_OVFL

<7:5>

<4>

<3:2>

<1>

<0>

R0

R/W, 0

R/W, 0

R, 0

R, 0

Reserved.  Read as zero. 

Node Mask<8>.  When set, LCNTR1 counts node masked
events from node 8, the IOP.  This bit is an extension of
the N_MASK field (LPERF<34:24>).

Miss Address Frequency.  Determines how often the
LMISSADDR register loads the last miss address. 

LCNTR1 Overflow.  Records overflow from the LCNTR1
register.  Clears when the LCNTR1 register is reset.  

LCNTR0 Overflow.  Records overflow from the LCNTR0
register.  Clears when the LCNTR0 register is reset.  

LPERF
<3:2> Miss Frequency

00
01
10
11

Load every 32nd miss address
Load every 64th miss address
Load every miss address
Load every 256th miss address
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LCNTR0,1—Performance Counter Registers

Table 9-23 LCNTR Register Bit Definitions

Address
Access

BB + 0F40 and BB + 0F80
R

The LCNTR registers count events selected by the Select (LC0_SEL
and LC1_SEL) and N_MASK fields of the LPERF register.  Each
register is a 32-bit counter with an associated overflow bit
(LPERF<0> for LCNTR0 and LPERF<1> for LCNTR1).  With the
correct values of the Select fields, the LCNTR registers can be cas-
caded to form a single 64-bit register.  The two counters are en-
abled and disabled independently through their associated LPERF
control bits.  The LCNTR registers can be read while the counters
are stopped or running.  The registers can also be stopped and re-
started without resetting to zero.  A write to an LCNTR register re-
sets the counter and the associated overflow bit in the LPERF reg-
ister, and sets the counter to the stopped state.  Writes to LCNTR
registers are ignored. 

31 0

EV_COUNT0

BXB-0228-92

EV_COUNT1

Name Bit(s) Type Function

EV_COUNT0

EV_COUNT1

<31:0>

<31:0>

R, 0

R, 0

Event Count 0.  Number of events (selected
through LPERF<LC0_SEL>) that occurred while
LCNTR0 was enabled.  Writes ignored.

Event Count 1.  Number of events (selected
through LPERF<LC1_SEL>) that occurred while
LCNTR1 was enabled.  Writes ignored.
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LMISSADDR—Last Miss Address Register 

Table 9-24 LMISSADDR Register Pass 1 and Pass 2 LEVI Bit Definitions

Address
Access

BB + 0FC0
R/W

The LMISSADDR register captures every nth B-cache miss address
determined by LPERF<MA_FREQ>.  The miss may be due to a
read, a write, or a shared block. 

NOTE:  Pass 1 or 2 and Pass 3 LEVI bit definitions of the LMISSADDR
register are given in separate tables.  See LMODE<LEVI_REV> for the
LEVI revision.

BXB-0633-93

LEVI Pass 3

LEVI Pass 1 or 2
31 29 28 0

MISS_ADDR

RSVD

31 30 29 0

MISS_ADDR<33:5>

MISS_CMD
NEW_SAMPLE

28

Name Bit(s) Type Function

RSVD

MISS_ADDR

<31:29>

<28:0>

R0

R/W, 0

Reserved.  Read as zero. 

Missed Address.  Block address of one of the last n
B-cache misses.  LPERF<MA_FREQ> determines the
value of n.  
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Table 9-25 LMISSADDR Register Pass 3 LEVI Bit Definitions

Name Bit(s) Type Function

NEW_SAMPLE

MISS_CMD

MISS_ADDR

<31>

<30:29>

<28:0>

R0

R

R

New Sample.   Set every time a new address is
loaded into the LMISSADDR register; cleared after
the register is read. 

Miss Command.  Indicates how the B-cache miss
was generated.

Block address of one of the last n B-cache misses. 
LPERF<MA_FREQ> determines the value of n.  

LMISSADDR
<30:29> Miss Command

00

01

10

11

I-stream read miss:  LSB read due
to an I-stream RBlock or LDxL.

D-stream read miss:  LSB read due
to a D-stream RBlock or LDxL.

Write miss:  LSB read due to
WBlock or STxC.

Write to shared block:  LSB write
due to WBlock or STxC.
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Chapter 10

Privileged Architecture Library Code

This chapter describes the DECchip 21064 privileged architecture library
code (PALcode).   It covers the following topics: 

• PALcode

• PALmode Environment

• Invoking PALcode

• PALcode Entry Points

• PALmode Restrictions

• Implementation of Architecturally Reserved Opcodes

10.1  PALcode

The Alpha AXP architecture defines an innovative feature called PALcode 
that allows many different physical implementations to coexist, each one
adhering to the same programming interface specification.  PALcode has
characteristics that make it appear to be a combination of microcode, ROM
BIOS, and system service routines, though the analogy to any of these
other items is not exact.  PALcode exists for several major reasons:

• There are some necessary support functions that are too complex to
implement directly in a processor chip’s hardware, yet cannot be han-
dled by a normal operating system software routine.  Routines to fill
the translation buffer, acknowledge interrupts, and dispatch excep-
tions are some examples. In some architectures, these functions are
handled by microcode, but the Alpha AXP architecture is careful not to
mandate the use of microcode for reasonable chip implementations.

• There are functions that must run atomically, yet involve long se-
quences of instructions that may need complete access to all the under-
lying computer hardware.  An example of this is the sequence that re-
turns from an exception or interrupt.

• There are some instructions that are necessary for backward compati-
bility or ease of programming; however, these are not used often
enough to dedicate them to hardware, or are so complex that they
would jeopardize the overall performance of the computer.  For exam-
ple, an instruction that does a VAX-style interlocked memory access
might be familiar to someone used to programming on a CISC ma-
chine, but is not included in the Alpha AXP architecture.  Another ex-
ample is the emulation of an instruction that has no direct hardware
support in a particular chip implementation.
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In each of these cases, PALcode routines are used to provide the function.
The routines are nothing more than programs invoked at specified times,
and read in as I-stream code in the same way that all other Alpha AXP
code is read.  Once invoked, however, PALcode runs in a special mode.

10.2  PALmode Environment

PALcode runs in a special environment called PALmode, defined as fol-
lows:

• I-stream memory mapping is disabled.  Because the PALcode is used to
implement translation buffer fill routines, I-stream mapping clearly
cannot be enabled.

• The program has privileged access to all of the computer hardware. 
Most of the functions handled by PALcode are privileged and need con-
trol of the lowest levels of the system.

• Interrupts are disabled.  If a long sequence of instructions needs to be
executed atomically, interrupts cannot be allowed.

One important aspect of PALcode is that it uses normal Alpha AXP in-
structions for most of its operations; that is, the same instruction set that
nonprivileged Alpha AXP programmers use.  There are a few extra instruc-
tions that are available only in PALmode which will cause an OPCDEC ex-
ception (see Table 10-1) if attempted while not in PALmode.  The Alpha
AXP architecture allows some flexibility in what these special PALmode
instructions do. On the DECchip 21064 the special PALmode-only instruc-
tions perform the following functions:

• Read or write internal processor registers (HW_MFPR, HW_MTPR) 

• Perform memory load or store operations without invoking the normal
memory management routines (HW_LD, HW_ST)

• Return from an exception or interrupt (HW_REI). 

Refer to Section 10.7 for detailed information on these special PALmode in-
structions.

When executing in PALmode, there are certain restrictions for using the
privileged instructions because PALmode gives the programmer complete
access to many of the internal details of the DECchip 21064. 

CAUTION:  It is possible to cause unintended side effects by writing what appears to be
perfectly acceptable PALcode.  As such, PALcode is not something that
many users will want to change.  

Refer to Section 10.5 for additional information on PALmode restrictions.

10.3  Invoking PALcode

PALcode is invoked at specific entry points, under certain well-defined con-
ditions.  PALcode can be thought of as a series of callable routines, with
each routine indexed as an offset from a base address.  The base address of
the PALcode is programmable (stored in the PAL_BASE IPR) and is nor-
mally set by the system reset code. 

When an event occurs that needs to invoke PALcode, the DECchip 21064
first drains the pipeline.  The current PC is loaded into the EXC_ADDR
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IPR, and the appropriate PALcode routine is dispatched.  These operations
occur under direct control of the chip hardware.  The machine is now op-
eratng in PALmode.  When the HW_REI instruction is executed at the end
of the PALcode routine, the hardware executes a jump to the address con-
tained in the EX_ADDR IPR.  The least significant bit is used to indicate
PALmode to the hardware. Generally, upon return from a PALcode rou-
tine, the least significant bit is clear, in which case the hardware will load
the new PC, enables interrupts, enables memory mapping, and dispatches
back to the user.

10.3.1  Categories of Hardware-Initiated PALcode

The most basic use of PALcode is to handle complex hardware events. 
PALcode is called automatically when the particular hardware event is
sensed. This use of PALcode is similar to other architectures’ use of
microcode. There are several major categories of hardware-initiated
PALcode:

• When the DECchip 21064  is reset, it enters PALmode and executes
the RESET PALcode.  The system remains in PALmode until an
HW_REI instruction is executed and EXC_ADDR<0> is cleared. It
then continues execution in non-PALmode (native mode), as just de-
scribed. It is during this initial RESET PALcode execution that the
rest of the low level system initialization is performed, including any
modification to the PAL_BASE IPR.

• When a system hardware error is detected by the DECchip 21064, the
DECchip invokes one of several PALcode routines, depending upon the
type of error.  Errors such as machine checks, exceptions, reserved or
privileged instruction decode, and data fetch errors are handled in this
manner.

• When the DECchip 21064 senses an interrupt, it dispatches the ac-
knowledgment of the interrupt to a PALcode routine that does the nec-
essary information gathering, then handles the situation appropriately
for the given interrupt.

• When a D-stream or I-stream translation buffer miss occurs, one of
several PALcode routines is called to perform the TB fill. The memory
management algorithms or even the existence of a virtual to physical
page mapping is flexible.  In the simplest case, this could be an auto-
matic one-to-one translation from virtual to physical address.  On a
normal operating system these routines would consult page tables and
perform the translation and fill based upon the PTE contents.

These elements are all very basic hardware-related functions, and would
be difficult to implement efficiently using normal operating system service
routines.

10.3.2  CALL_PAL Instruction

The other mechanism used to invoke PALcode is the CALL_PAL instruc-
tion.  This is a special instruction that dispatches to PALcode at a specific
entry point using the same set of steps as the hardware-activated
PALcode.  That is, the pipeline is drained, the PC is saved, and the appro-
priate dispatch to an offset from the PALcode base is performed.  The only
difference is that the dispatch is controlled by the program through an in-
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struction, rather than through a hardware event or error.  Also,
PAL_CALL instructions place PC + 4 in the EXC_ADDR IPR.

The CALL_PAL instruction format includes a single parameter, the func-
tion field, that defines which CALL_PAL routine to invoke.  Only a subset
of all the possible CALL_PAL function values are supported with hardware
dispatches in the DECchip 21064. These dispatches are described in Sec-
tion 10.4.  CALL_PAL routines can perform different functions for differ-
ent operating systems running on the DECchip 21064.  Unlike the basic
hardware-generated PALcode, the CALL_PAL operations are largely op-
tional and based upon what the system implementation needs.

There is a subtle difference between the two basic uses of PALcode:
hardware-dispatched and CALL_PAL-dispatched.  The hardware-invoked
PALcode functions are necessary in some form for almost any useful com-
puter system.  For example, when the DECchip 21064 detects a serious
system error, it will dispatch to the machine check (MCHK) PALcode entry
point. The exact PALcode that resides at this entry point can do whatever
is reasonable, based upon system needs.  

The CALL_PAL instruction is totally under the control of the executing
program for dispatch.  If the program never executes one of the instruc-
tions that is included in the CALL_PAL list, then none of that PALcode
will ever be run.  Even here, the PALcode that does run once invoked, is
executing in PALmode and is under the same restrictions as the hardware-
activated PALcode.

The DECchip 21064 supports hardware dispatch for both privileged and
nonprivileged CALL_PAL instructions.  That is, some of the functions that
are passed to the CALL_PAL instruction are considered special.  The des-
ignation of privileged or nonprivileged refers to whether the user can call
that particular CALL_PAL, and not the mode that it eventually runs in. 
Without exception, every CALL_PAL instruction will dispatch to PALcode
that runs in PALmode.  Only kernel users can call privileged CALL_PAL
instructions.

The difference between privileged and nonprivileged CALL_PAL instruc-
tions is that the former can only be executed in kernel mode.  Otherwise,
they are vectored to offset 13E0 (OPCDEC) from the PAL_BASE IPR.

These are both CALL_PAL instructions, dispatched in exactly the same
way, and when executed enter PALmode, do their function, and return to
the user.  The only difference is that before execution, a check is made to
determine if the user is in the correct mode.  If a nonkernel mode user at-
tempts to execute a privileged CALL_PAL instruction, an OPCDEC
PALcode routine is run instead of the CALL_PAL function.  In addition, if
a CALL_PAL function code that is not supported by the DECchip 21064
hardware dispatch is attempted, an OPCDEC exception is taken.

10.4  PALcode Entry Points

PALcode entry points are prioritized.  Table 10-1 lists the entry points
from the highest priority (first row, RESET) to the lowest.  The table indi-
cates only the entry point offset, bits <13:0>.  The high-order bits of the
new PC (bits <33:14>) are provided by the PAL_BASE IPR.  The value in
this IPR  at power-up is zero.

NOTE:  PALcode at entry points of higher priority than DTB_MISS must unlock
possible MMCSR IPR and VA IPR locks.



       Privileged Architecture Library Code   10-5

Table 10-1 PALcode Entry Points

PALcode functions are implemented by way of the CALL_PAL instruction.
CALL_PAL instructions cause exceptions in the hardware.  As with all ex-
ceptions, the EXC_ADDR IPR is loaded by hardware with a possible  re-
turn address. 

CALL_PAL exceptions do not load the EXC_ADDR IPR with the address of
the CALL_PAL instruction. They load the EXC_ADDR IPR with the ad-
dress of the instruction following the CALL_PAL. PALcode supporting the
desired PALmode function need not increment the EXC_ADDR IPR before
executing an HW_REI instruction to return to native mode. This feature
requires special handling in the arithmetic trap and machine check
PALcode flows.  See the description of the EXC_ADDR IPR for more com-
plete information.

To improve speed of execution, a limited number of CALL_PAL instruc-
tions are directly supported in hardware with dispatches to specific ad-
dress offsets.

Entry Name
Offset From 
PAL_BASE IPR Cause

RESET 

MCHK

ARITH

INTERRUPT 

D-stream errors

ITB MISS

ITB_ACV

CALL_PAL 

OPCDEC

FEN

0000

0020

0060

00E0

01E0, 08E0
09E0, 11E0

03E0

03E0

2000, 2040, 2080,
20C0 through 3FC0 

13E0

17E0

Uncorrected hardware error.

Arithmetic exception.

Includes corrected hardware error.

See Table 10-2.

ITB miss.

I-stream access violation.

128 locations based on instruction 7, 5..0. See the
next table entry.

Reserved or privileged opcode.  Reserved opcodes
are listed in Table 4-2 and marked RSVD.  The
privileged opcodes include both the HW_x instruc-
tions and the privileged CAL_PALL instructions. 
Any attempt to issue a privileged instruction while
the processor is not in kernel mode (PS<CM1:CM0>
is not equal to zero) causes a trap to the OPCDEC
exception. 

Floating-point operation attempted with:  

1. FP instructions disabled by way of
ICCSR<FPE>

2. FP IEEE round to +/− infinity

3. FP IEEE with datatype field other than S,T,Q
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The DECchip 21064 provides the first 64 privileged and 64 unprivileged
CALL_PAL instructions with regions of 64 bytes. This produces hardware
PALcode entry points described as follows:

Privileged CALL_PAL Instructions [00000000:0000003F]

Offset(Hex) = 2000 + ([5:0] shift left 6)

Unprivileged CALL_PAL Instructions [00000080:000000BF]

Offset(Hex) = 3000 + ([5:0] shift left 6)

The CALL_PAL instructions that do not fall within the ranges [0000:003F]
and [0080:00BF] result in an OPCDEC exception. 

CALL_PAL instructions that fall within the range [00000000:0000003F]
while the DECchip 21064 is not executing in kernel mode will result in an
OPCDEC exception.

The hardware recognizes four classes of D-stream memory management
errors.

• Bad virtual address (incorrect sign extension) 

• DTB_MISS 

• Alignment error 

• ACV, FOR, FOW

 The following errors get mapped into four PALcode entry points:

• UNALIGN

• DTB_MISS PALmode

• DTB_MISS native mode 

• D_FAULT

Table 10-2 shows the priorities of these entry points with respect to each
other.  A particular D-stream memory reference may generate errors that
fall into more than one of the four error classes that the hardware recog-
nizes.

Table 10-2 D-Stream Error PALcode Entry Points

BAD_VA DTB_MISS UNALIGN PAL Other Offset (Hex)

1

1

0

0

0

0

x

x

1

1

0

0

1

0

x

x

1

0

x

x

1

0

x

x

x

x

x

x

x

1

11E0 UNALIGN

01E0 D_FAULT

09E0 DTB_MISS PAL

08E0 DTB_MISS Native

11E0 UNALIGN

01E0 D_FAULT
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10.5  PALmode Restrictions

Many of the PALmode restrictions involve waiting n cycles before using
the results of a PALcode instruction.  Inserting n instructions between the
two time-sensitive instructions is the typical method of waiting for n cy-
cles.  Because the DECchip 21064 can dual-issue instructions, it is possible
to write code that requires 2*n + 1 instructions to wait n cycles.  Due to the
resource requirements of individual instructions and the DECchip 21064
hardware design, multiple copies of the same instruction cannot be dual is-
sued.  This is used in some of the following examples.  Explanations of
PALmode restrictions follow: 

• As a general rule, HW_MTPR instructions require at least four cycles
to update the selected IPR.  At least three cycles of delay must be in-
serted before using the result of the register update.

The following instructions will pipeline correctly and do not require
software timing except for accesses of the TB IPRs:

— Multiple reads

— Multiple writes

— Read followed by write

These cycles can be guaranteed by either including seven instructions,
which do not use the IPR in transition, or proving through the dual-
issue rules and/or state of the machine, that at least three cycles of de-
lay will occur.  Multiple copies of a HW_MTPR instruction (used as a
no-op instruction) can be used to pad cycles after the original
HW_MTPR.  Multiple copies of the same instruction will never dual is-
sue.  Because of this, the maximum number of instructions necessary
to ensure at least three cycles of delay is three, as shown in Example
10-1.

Example 10-1 Code for a Delay of Three Cycles

HW_MTPR Rx, HIER        ; Write to HIER
HW_MFPR R31, 0          ; NOP mxpr instruction
HW_MFPR R31, 0          ; NOP mxpr instruction
HW_MFPR R31, 0          ; NOP mxpr instruction
HW_MFPR Ry, HIER        ; Read from HIER

The HW_REI instruction uses the ITB if the EXC_ADDR IPR contains
a nonPALmode VPC (VPC<0> = 0). By the previous rule, it is implied
that at least 3 cycles of delay must be included after writing the ITB
before executing a HW_REI instruction to exit PALmode.
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The following are exceptions to the general rule: 

— HW_MFPR instructions reading a PAL_TEMP IPR can never occur
exactly two cycles after an HW_MTPR instruction writing a
PAL_TEMP IPR.  The solution results in code shown in Example
10-2.

Example 10-2 Reading PAL_TEMP After a Write to PAL_TEMP

HW_MTPR Rx, PAL_R0     ; Write PAL temp [0]
HW_MFPR R31, 0         ; NOP mxpr instruction
HW_MFPR R31, 0         ; NOP mxpr instruction
HW_MFPR R31, 0         ; NOP mxpr instruction
HW_MFPR Ry, PAL_R0     ; Read PAL temp [0]

This code guarantees three cycles of delay after the write before the
read.  It is also possible to make use of the cycle immediately follow-
ing an HW_MTPR instruction to execute an HW_MFPR instruction
to the same (accomplishing a swap) or a different PAL_TEMP IPR. 
The swap operation only occurs if the HW_MFPR instruction imme-
diately follows the HW_MTPR.  This timing requires great care and
knowledge of the pipeline to ensure that the second instruction does
not stall for one or more cycles.  Use of the slot to accomplish a read
from a different PAL_TEMP IPR requires that the second instruc-
tion will not stall for exactly one cycle.  This is much easier to in-
sure.   An HW_MFPR instruction can stall for a single cycle as a re-
sult of a write-after-write conflict.

— The EXC_ADDR IPR can be read by an HW_REI instruction only
two cycles after the HW_MTPR.  This is equivalent to one interven-
ing cycle of delay. This translates to code shown in Example 10-3.

Example 10-3 Reading the EXC_ADDR IPR

HW_MTPR Rx, EXC_ADDR    ; Write EXC_ADDR
HW_MFPR R31, 0   ; NOP cannot dual issue with either
HW_REI           ; Return

• An HW_MTPR operation to the DTBIS IPR cannot be sourced from by-
passed path. All data being moved to the DTBIS IPR must be sourced
directly from the register file. One way to ensure this is to provide at
least three cycles of delay before using the result of any integer opera-
tion (except MUL) as the source of an HW_MTPR DTBIS.  This is
shown in Example 10-4.

NOTE:  Note:  MUL should not be used as a source of DTBIS data.
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Example 10-4 Using Result of Integer Operation as Source of HW_MTPR DTBIS

ADDQ R1,R2,R3     ; Source for DTBIS address
ADDQ R31,R31,R31  ; Cannot dual issue with above,                  
                  ; 1st cycle of delay
ADDQ R31,R31,R31  ; 2nd cycle of delay
ADDQ R31,R31,R31  ; 3rd cycle of delay
ADDQ R31,R31,R31  ; May dual issue with below, else
                  ; 4th cycle of delay
HW_MTPR R3,DTBIS  ; R3 must be in register file, no
                  ; bypass possible

• At least one cycle of delay must occur after an HW_MTPR TB_CTL be-
fore an HW_MTPR ITB_PTE  or an HW_MFPR ITB_PTE.  This must
be done to allow setup of the ITB large page or small page decode.

• The first cycle (the first one or two instructions) at all PALcode entry
points cannot execute a conditional branch instruction or any other in-
struction that uses the JSR stack hardware. This includes the follow-
ing instructions:

— JSR

— JMP

— RET

— JSR_COROUTINE

— BSR

— HW_REI

— All box opcode except BR

• Table 10-3 lists the number of cycles required after an HW_MTPR in-
struction before a subsequent HW_REI instruction for the specified
IPRs.  These cycles can be ensured by inserting one HW_MFPR R31,0
instruction or other appropriate instruction(s) for each cycle of delay
required after the HW_MTPR.

Table 10-3 HW_MTPR Restrictions

• When loading the CC IPR, bits <3:0> must be loaded with zero. Load-
ing nonzero values in these bits can cause an inaccurate count.

IPR Cycles Between HW_MTPR and HW_REI

DTBIS, ASM, ZAP

ITBIS, ASM, ZAP

xIER

xIRR

ICCSR<FPE>

PS

0

2

3

3

4

4
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• An HW_MTPR DTBIS cannot be combined with an HW_MTPR ITBIS
instruction.  The hardware will not clear the ITB if both the Ibox and
Abox IPRs are simultaneously selected. Two instructions are needed to
clear each TB individually, as shown in Example 10-5.

Example 10-5 Clearing the ITB and DTB

HW_MTPR Rx,ITBIS
HW_MTPR Ry,DTBIS

• Three cycles of delay are required between:

— HW_MTPR xIER and HW_MFPR xIRR

— HW_MTPR xIRR and HW_MFPR xIRR

— MTPS and LD or ST

— MTPS and HW_MFPR xIRR

— HW_MTPR ALT_MODE and HW_LD/HW_ST ALT_MODE

• The following operations are disabled in the cycle immediately follow-
ing an HW_REI instruction:

— HW_MxPR ITB_TAG 

— HW_MxPR ITB_PTE 

— HW_MxPR ITB_PTE_TEMP

This rule implies that it is not a good idea to ever allow exceptions
while updating the ITB.  The ITB IPR will not be written if:

— An exception interrupts flow of the ITB miss routine and attempts
to REI back.

— The return address begins with an HW_MxPR instruction to an
ITB IPR. 

— The REI is predicted correctly to avoid any delay between the two
instructions.

Example 10-6 shows the code for this operation.

Example 10-6 Write to ITB Ignored Following REI

HW_REI              ; return from interrupt
HW_MTPR R1,ITB_TAG  ; attempts to execute very next
                    ; cycle, instr ignored

• The following  registers can only be accessed in PALmode:

— ITB_TAG

— ITB_PTE 

— ITB_PTE_TEMP 

If the instruction HW_MTPR or HW_MFPR is applied to these IPRs
while not in PALmode, the instruction will be ignored even if
ICCSR<HWE> is set.
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• When writing the PAL_BASE IPR, exceptions cannot occur.  An excep-
tion occurring simultaneously with a write to the PAL_BASE IPR can
leave the register in a metastable state. All asynchronous exceptions
but reset can be avoided under conditions shown in Example 10-7.

Example 10-7 Conditions for Avoiding Asynchronous Exceptions

PALmode .................... blocks all interrupts
machine checks disabled ..... blocks I/O error exceptions
  (by way of the ABOX_CTL reg or MB isolation)
Not under trap shadow ....... avoids arithmetic traps

The trap shadow is defined as:

less than  3 cycles after a non-mul integer operate that 
   may overflow
less than 22 cycles after a MULL/V instruction
less than 24 cycles after a MULQ/V instruction
less than  6 cycles after a non-div fp operation that may
   causea trap
less than 34 cycles after a DIVF or DIVS that may cause a
   trap
less than 63 cycles after a DIVG or DIVT that may cause a
   trap

• The sequence HW_MTPR PTE, HW_MTPR TAG is not allowed.  At
least two null cycles must occur between HW_MTPR PTE and
HW_MTPR TAG. 

• The MCHK exception service routine must check the EXC_SUM IPR
for simultaneous arithmetic errors. Arithmetic traps will not trigger
exceptions a second time after returning from exception service for the
machine check.

• Three cycles of delay must be inserted between HW_MFPR DTB_PTE
and HW_MFPR DTB_PTE_TEMP as shown in Example 10-8.

Example 10-8 Delay Between HW_MFPR DTB_PTE and HW_MFPR DTB_PTE_TEMP

HW_MFPR Rx,DTB_PTE      ; reads DTB_PTE into DTB_PTE_TEMP
                        ; IPR
HW_MFPR R31,0           ; 1st cycle of delay
HW_MFPR R31,0           ; 2nd cycle of delay
HW_MFPR R31,0           ; 3rd cycle of delay
HW_MFPR Ry,DTB_PTE_TEMP ; read DTB_PTE_TEMP into register
                        ; file Ry

• Three cycles of delay must be inserted between HW_MFPR ITB_PTE
and HW_MFPR ITB_PTE_TEMP, as shown in Example 10-9. 



10-12   Privileged Architecture Library Code

Example 10-9 Delay Between HW_MFPR ITB_PTE and HW_MFPR ITB_PTE_TEMP 

HW_MFPR Rx,DTB_PTE      ; reads DTB_PTE into DTB_PTE_TEMP
                        ; IPR
HW_MFPR R31,0           ; 1st cycle of delay
HW_MFPR R31,0           ; 2nd cycle of delay
HW_MFPR R31,0           ; 3rd cycle of delay
HW_MFPR Ry,DTB_PTE_TEMP ; read DTB_PTE_TEMP into register
                        ; file Ry

• The content of the destination register for HW_MFPR Rx, DTB_PTE or
HW_MFPR Rx, ITB_PTE is UNPREDICTABLE.

• Two HW_MFPR DTB_PTE instructions cannot be issued in consecu-
tive cycles. This implies that more than one instruction can be neces-
sary between the HW_MFPR instructions if dual issue is possible.
Similar restrictions apply to the ITB_PTE IPR.

• Reading the EXC_SUM and BC_TAG IPRs require special timing. Re-
fer to Chapter 3 for specific information. 

• DMM errors occurring one cycle before HW_MxPR instructions to the
ITB_PTE will not stop the TB pointer from incrementing to the next
TB entry even though the HW_MxPR instruction will be aborted by
the DMM error. This restriction only affects performance and not func-
tionality.  

• PALcode that writes multiple ITB entries must write the entry that
maps the address contained in the EXC_ADDR IPR last.

• HW_STC instructions cannot be followed, for two cycles, by any load
instruction that may miss in the D-cache.

• Updates to the ASN field of the ICCSR IPR require at least 10 cycles of
delay before entering native mode that can reference the ASN during
I-cache access. If the ASN field is updated in kernel mode by way of 
the HWE bit of the ICCSR IPR, it is sufficient that all I-stream refer-
ences during this time be made to pages with the ASM bit set to avoid
use of the ASN.

• HW_MTPR instructions that update the TB_CTL IPR cannot follow an
HW_MTPR instruction that updates the DTB_PTE or ITB_PTE IPR by
one cycle.

• The HW_MTPR instructions that update the following IPRs require
delays as shown in Table 10-4:

— ICCSR (ASN field) 

— FLUSH_IC

— FLUSH_IC_ASM

The purpose of the delay is to ensure that the update occurs before the
first instruction fetch in native mode, since the pipeline may currently
contain instructions that were fetched before the update (which would
remain valid during a pipeline stall). It is necessary that at least one
instruction be issued during each cycle of the delay to ensure that the
pipeline is cleared of all instructions fetched prior to the update.
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If the update is performed in kernel mode through the use of the HWE
bit of the ICCSR, it is sufficient that all I-stream references during this
time be made to pages with the ASM bit set to avoid use of the ASN.  

Table 10-4 HW_MTPR Cycle Delay

• Machine check exceptions taken while in PALmode can load the
EXC_ADDR IPR with a restart address one instruction earlier than
the correct restart address.  Some HW_MxPR instructions may have
already completed execution even if the restart address indicates the
HW_MxPR as the return instruction.  Reexecution of some HW_MxPR
instructions can alter the machine state TB pointers, EXC_ADDR IPR
mask.

The mechanism used to stop instruction flow during machine check ex-
ceptions causes the machine check exception to appear as a D-stream
fault on the following instruction in the hardware pipeline. In the
event that the following instruction is a HW_MxPR, a D-stream fault
will not abort execution in all cases. The EXC_ADDR will be loaded
with the address of the HW_MxPR instruction as if it were aborted. 
An HW_REI to this restart address will incorrectly reexecute this in-
struction.

Machine check service routines should check for MxPR instructions at
the return address before continuing.

10.6  TB Miss Flows

This section describes hardware-specific details to aid the PALcode pro-
grammer in writing ITB and DTB fill routines.  These flows highlight the
trade-offs and restrictions between PALcode and hardware. The PALcode
source that is released with the DECchip 21064 should be consulted before
any new flows are written.   The discussions assume a working knowledge
of the Alpha AXP memory management architecture (see Chapters 11 and
12). 

10.6.1  ITB Miss

When the Ibox encounters an ITB miss it:

1. Latches the VPC of the target instruction-stream reference in the
EXC_ADDR IPR. 

2. Flushes the pipeline of any instructions following the instruction
which caused the ITB miss. 

3. Waits for any other instructions that may be in progress to complete.

4. Enters PALmode.

IPR Cycle Delay

ICCSR (ASN field only)

FLUSH_IC

FLUSH_IC_ASM

8

9

9
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5. Jumps to the ITB miss PALcode entry point. 

The recommended PALcode sequence for translating the address and fill-
ing the ITB is as follows:

1. Create some scratch area in the integer register file by writing the
contents of a few integer registers to the PAL_TEMP register file.

2. Read the target virtual address from the EXC_ADDR IPR.

3. Fetch the PTE (this can take multiple reads) using a physical-mode
HW_LD instruction. If this PTE’s valid bit is clear, report TNV or ACV
as appropriate. 

4. The Alpha Architecture Reference Manual states that translation buff-
ers cannot contain invalid PTEs;  the PTE’s valid bit must be explicitly
checked by PALcode.  Since the ITB’s PTE RAM does not hold the
FOE bit, the PALcode must also explicitly check this condition.  If the
PTE’s valid bit is set and FOE bit is clear, PALcode can fill an ITB en-
try.

5. Write the original virtual address to the TB_TAG IPR using
HW_MTPR.  This writes the TAG into a PAL_TEMP IPR and not the
actual tag field in the ITB.

6. Write the PTE to the TB_CTL to select between the large page or
small page TB regions. Wait at least one cycle before executing the
next step.

7. Write the PTE to the ITB_PTE IPR using HW_MTPR. This
HW_MTPR causes both the TAG and PTE fields in the ITB to be writ-
ten.

NOTE:  It is not necessary to delay issuing the HW_MTPR to the
ITB_PTE after the MTPR to the ITB_TAG is issued.

8. Restore the contents of any modified integer registers to their original
state using the HW_MFPR instruction.

9. Restart the instruction stream using the HW_REI instruction.

10.6.2  DTB Miss

When the Abox encounters a DTB miss, it: 

1. Latches the referenced virtual address in the VA IPR and other infor-
mation about the reference in the MMCSR IPR. 

Locks the VA and MMCSR IPR against further modifications. 

Latches the PC of the instruction that generated the reference in the
EXC_ADDR IPR. 

2. Drains the machine as described in Section 10.6.1. 

3. Jumps to the DTB miss PALcode entry point. 

Unlike ITB misses, DTB misses can occur while the CPU is executing in
PALmode.  The recommended PALcode sequence for translating the ad-
dress and filling the DTB is as follows: 

1. Create some scratch area in the integer register file by writing the
contents of a few integer registers to the PAL_TEMP register file.
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2. Read the requested virtual address from the VA IPR.  The act of read-
ing this register unlocks the VA and MMCSR IPRs.  The MMCSR IPR
is updated only when D-stream memory management errors occur.  It
will retain information about the instruction that generated the DTB
miss. This can be useful later.

3. Fetch the PTE.  This operation can require multiple reads.  If the
Valid bit of the PTE is clear, a Translation Not Valid (TNV) or Access
Violation (ACV) must be reported unless the instruction which caused
the DTB miss was FETCH or FETCH_M.  This can be checked by way
of  the opcode field of the MMCSR IPR.   If the value in this field is 18
(hex), then a FETCH or FETCH_M instruction caused this DTB miss. 
As mandated in the Alpha Architecture Reference Manual, the subse-
quent TNV or ACV should not be reported.   Therefore, PALcode
should:

a. Read the value in EXC_ADDR IPR

b. Increment the value by four

c. Write the value back to EXC_ADDR IPR 

4. Write the register that holds the contents of the PTE to the DTB_CTL. 
This has the effect of selecting one of the four possible granularity 
hint sizes. 

5. Write the original virtual address to the TB_TAG IPR.  This writes the
TAG into a PAL_TEMP IPR and not the actual tag field in the DTB.

6. Write the PTE to the DTB_PTE IPR.  This HW_MTPR causes both the
TAG and PTE fields in the DTB to be written. 

NOTE:  It is not necessary to delay issuing the HW_MTPR to the
DTB_PTE after the MTPR to the DTB_TAG is issued.

7. Restore the contents of any modified integer registers.

8. Restart the instruction stream using the HW_REI instruction.

10.7   Implementation of Architecturally Reserved Opcodes 

PALcode uses the Alpha AXP instruction set for most of its operations. 
The DECchip 21064 maps the architecturally reserved opcodes (PAL19,
PAL1B, PAL1D, PAL1E, and PAL1F) to:

• A move-to and a move-from processor register (HW_MTPR,
HW_MFPR) 

• A special load and store (HW_LD, HW_ST) 

• A return from PALmode exception or interrupt (HW_REI) 

These instructions produce an OPCDEC exception (see Table 10-1) if exe-
cuted while not in the PALmode environment.  If ICCSR<HWE> is set,
these instructions can be executed in kernel mode.

Register checking and bypassing logic is provided for PALcode instructions
as it is for nonPALcode instructions when using general purpose registers.

NOTE:  Explicit software timing is required for accessing the hardware-specific
IPRs and the PAL_TEMPs.   These constraints are described in Section
10.5.
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10.7.1  HW_MFPR and HW_MTPR Instructions

The IPR specified by the PAL, ABX, IBX, and index field is written/read
with the data from the specified integer register. 

CAUTION:  Writing/reading IPRs can produce side effects. 

Coding restrictions (see Section 10.5) are associated with accessing various
registers. Separate bits are used to access the following: 

Abox IPRs 
Ibox IPRs 
PAL_TEMPs 

It is possible for an HW_MTPR instruction to write multiple registers in
parallel if they both have the same index.  

Figure 10-1 shows the format of the HW_MFPR and HW_MTPR instruc-
tions.  Table 10-5 describes the HW_MFPR and HW_MTPR instruction
fields. 

Figure 10-1 HW_MFPR and HW_MTPR Instruction Format

Table 10-5 HW_MFPR and HW_MTPR Field Descriptions

10.7.2  HW_LD and HW_ST Instructions

PALcode uses the HW_LD and HW_ST instructions to access memory out-
side the realm of normal Alpha AXP memory management.  The effective
address of these instructions is calculated as follows:

   addr <- (SEXT(DISP) + RB) AND NOT (QW | 11 (bin))

31 26 25 21 20 16 15 4 08 7 6 5

OPCODE RA RB IGN INDEX

BXB-0618-92

PAL
ABX
IBX

Field Function

OPCODE

RA/RB

PAL  

ABX    

IBX   

Is either 25 (HW_MFPR) or 29 (HW_MTPR).

Contain the source (HW_MTPR) or destination (HW_MFPR) IPR number. The
RA and RB fields must always be identical.

If set, this HW_MFPR or HW_MTPR instruction is referencing a PAL tempo-
rary register, PAL_TEMP.

If set, this HW_MFPR or HW_MTPR instruction is referencing a register in the
Abox.

If set, this HW_MFPR or HW_MTPR instruction is referencing a register in the
Ibox.
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Figure 10-2 shows the format of the HW_LD and HW_ST instructions.  Ta-
ble 10-6 describes the fields of the HW_LD and HW_ST instruction fields. 

Figure 10-2 HW_LD and HW_ST Instruction Format

Table 10-6 HW_LD and HW_ST Instruction Field Descriptions

10.7.3  HW_REI Instruction

The HW_REI instruction uses the address in the Ibox EXC_ADDR IPR to
determine the new virtual program counter (VPC).  Bit <0> of the
EXC_ADDR IPR indicates the state of the PALmode bit on the completion
of the HW_REI.  If EXC_ADDR<0> is set, then the processor remains in
PALmode.  This allows PALcode to transition from PALmode to non-
PALmode. The HW_REI instruction can also be used to jump from
PALmode to PALmode. This allows PAL instruction flows to take advan-
tage of the D-stream mapping hardware in the DECchip 21064, including
traps.  

31 26 25 21 20 16 15 014 13 12 11

OPCODE RA RB DISP

BXB-0618A-93

PHY
ALT

RWC
QW

Field Function

OPCODE

RA/RB

PHY

ALT

RWC

QW

DISP

Is either 27 (HW_LD) or 31 (HW_ST).

Contain register numbers, interpreted in the normal fashion for loads and
stores.

If clear, the effective address of the HW_LD or HW_ST is a virtual address. If
set, then the effective address of the HW_LD or HW_ST is a physical address.

For virtual-mode HW_LD and HW_ST instructions, this bit selects the processor
mode bits that are used for memory management checks.  If ALT is clear, the
current mode bits of the PS IPR are used; if ALT is set, the mode bits in the
ALT_MODE IPR are used.

Physical-mode load-lock and store-conditional variants of the HW_LD and
HW_ST instructions may be created by setting both the PHY and ALT bits.

The RWC (read-with-write check) bit, if set, enables both read and write access
checks on virtual HW_LD instructions.

The quadword bit specifies the data length. If it is set, the length is quadword. 
If it is clear, the length is longword.

The DISP field holds a 12-bit signed byte displacement.
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Figure 10-3 shows the format of the HW_REI instruction.  Table 10-7 de-
scribes the HW_LD and HW_ST instruction fields. 

Figure 10-3 HW_REI Instruction Format

Table 10-7 HW_REI Instruction Field Descriptions

Positions <15,14> in the HW_REI instruction contain the branch predic-
tion hint bits.  The DECchip 21064 pushes the contents of the EXC_ADDR
IPR on the JSR prediction stack.  Bit <15> must be set to pop the stack to
avoid misalignment. 

The next address and PALmode bit are calculated as follows:

VPC <- EXC_ADDR AND {NOT 3}
PALmode <- EXC_ADDR[0]

31 26 25 21 20 16 15 014 13

OPCODE RA RB IGN

BXB-0618B-93

1 0

Field Function

OPCODE

RA/RB

Contains 30.  

Contain register numbers, which should be R31.  Otherwise, a stall will occur. 
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Chapter 11

OpenVMS AXP System Support

This chapter discusses memory management performed by the OpenVMS
AXP operating system and gives the structure of a process within the
OpenVMS AXP environment.  Consult the Alpha Architecture Reference
Manual (hereafter referred to as AARM in this chapter) for a thorough dis-
cussion of these topics.

11.1   OpenVMS Memory Management 

Memory management is the control of the allocation and use of physical
memory.  It is implemented by a combination of hardware and software.
Typically, in a multiprogramming system, several processes may reside in
physical memory at the same time.  OpenVMS Alpha uses memory protec-
tion and multiple address spaces to ensure that one process will not affect
either other processes or the operating  system.

To  improve further software reliability, four hierarchical access modes
provide memory access control.  They are, from most to least privileged:
kernel, executive, supervisor, and user.  Protection is specified at the indi-
vidual page level, where a page may be inaccessible, read only, or read/
write for each of the four access modes. Accessible pages can be restricted
to have only data or instruction access.

A program uses virtual addresses to access its data and instructions. How-
ever, before these virtual addresses can be used to access memory, they
must be translated into physical addresses.  Memory management soft-
ware maintains tables of mapping information (page tables) that keep
track of where each virtual page is located in physical memory. The proces-
sor uses this mapping information when it translates virtual addresses to
physical addresses.

Therefore, memory management provides both memory protection and
memory mapping mechanisms.  The OpenVMS Alpha memory manage-
ment architecture is designed to meet several goals: 

• Provide a large address space for instructions and data.

• Allow programs to run on hardware with physical memory smaller
than the virtual memory used.

• Provide convenient and efficient sharing of instructions and data.

• Allow sparse use of a large address space without excessive page table
overhead.

• Contribute to software reliability.
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• Provide independent read and write access protection.

11.1.1  Virtual Address Space

A virtual address is a 64-bit unsigned integer specifying a byte location
within the virtual address space.  Implementations support subsets of  the
address space in one of four sizes (43, 47, 51, or 55 bits) as a function of
page size. The minimal virtual address size supported is 43 bits.  If an im-
plementation supports less than 64-bit virtual addresses, it must check
that all the VA<63:vaSize> bits are equal to VA<vaSize−1>.  This gives
two disjoint ranges for valid virtual addresses. For example, for a 43-bit
virtual address space valid virtual address ranges are 0 to 3FF FFFF
FFFF and FFFF FC00 0000 0000 to FFFF FFFF FFFF FFFF.  Accesses to
virtual addresses outside the valid virtual address ranges for an imple-
mentation cause an access violation exception.  

The virtual address space is broken into pages, which are the units of relo-
cation, sharing, and protection.  The page size ranges from 8 Kbytes to 64
Kbytes.  System software should, therefore, allocate regions with differing
protection on 64-Kbyte virtual address boundaries to ensure image com-
patibility across all Alpha implementations.

Memory management provides the mechanism to map the active part of
the virtual address space to the available physical address space.  The op-
erating system controls the virtual-to-physical address mapping tables and
saves the inactive parts of the virtual address space on external storage
media.  

The processor generates a 64-bit virtual address for each instruction and
operand in memory.  The virtual address consists of three level-number
fields, and a byte_within_page field.  Figure 11-1 shows the virtual address
format.

Figure 11-1 Virtual Address Format

The byte_within_page field can be either 13, 14, 15, or 16 bits depending
on a particular implementation.  Thus, the allowable page sizes are 8
Kbytes, 16 Kbytes, 32 Kbytes, and 64 Kbytes.  Each level-number field con-
tains 0-n bits, where n is, for example, 9 with an 8-Kbyte page size.  The
level-number fields are the same size for a given implementation. 

The level-number fields are a function of the page size; all page table en-
tries at any given level do not exceed one page.  The PFN field in the PTE
is always 32 bits wide.  Thus, as the page size grows, the virtual and physi-
cal address size also grows. 

0
0

6
3

BXB-0627-93

Sext(Level 1 <Level Size -1>) Level 1 Level 2 Level 3 byte_within_page
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Table 11-1 Virtual Address Options

11.1.2  Physical Address Space

Physical addresses are at most 48 bits. A processor may choose to imple-
ment a smaller physical address space by not implementing some number
of high order bits.  The two most significant implemented physical address
bits select a caching policy or implementation dependent type of address
space.  Implementations will use these bits as appropriate for their sys-
tems.  For example, in a workstation with a 30-bit physical address space,
bit <29> might select between memory and non-memory like regions, and
bit <28> could enable or disable caching. 

11.1.3  Memory Management Control

Memory management is always enabled. Implementations must provide
an environment for PALcode to service exceptions and to initialize and
boot the processor.  For example, PALcode might run with I-stream map-
ping disabled and use the privileged CALL_PAL LDQP and STQP instruc-
tions to access data stored in physical addresses.

11.1.4  Page Table Entries

The processor uses a quadword PTE  (Figure 11-2) to translate virtual ad-
dresses to physical addresses.  A PTE contains hardware and software con-
trol information and the physical page frame number (PFN).  Fields in the
page table entry are interpreted as shown in Table 11-2.

Figure 11-2 Page Table Entry

Page Size    
  (Kbytes)

Byte Offset      
    (Bits)

Level Size
   (Bits)

    Virtual
Address (Bits)

   Physical
Address (Bits)

    8 

  16 

  32 

  64 
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14

15

16

10

11

12

13

43

47

51

55

45

46
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1
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Table 11-2 Page Table Entry Bit Definitions 

Name Bit(s) Function

PFN

RSVD

UWE

SWE

EWE

KWE

URE

SRE

ERE

KRE

RSVD

<63:32>

<31:16>

<15>

<14>

<13>

<12>

<11>

<10>

<9>

<8>

<7>

Page Frame Number.   The PFN field always points to a page bound-
ary.  If <V> is set, the PFN is concatenated with VA<byte_within_page>
to obtain the physical address; see Section 11.1.7.  If <V> is clear, this
field may be used by software.

Reserved.   To be used by software. 

User Write Enable.   Enables writes from user mode.  If this bit is a 0
and a STORE is attempted while in user mode, an access violation oc-
curs.  This bit is valid even when <V>=0.  

NOTE:  If a write enable bit is set and the corresponding read enable bit
is not, the operation of the processor is UNDEFINED.

Supervisor Write Enable.   Enables writes from supervisor mode.  If
this bit is a 0 and a STORE is attempted while in supervisor mode, an
access violation occurs.  This bit is valid even when <V>=0.

Executive Write Enable.   Enables writes from executive mode.  If
this bit is a 0 and a STORE is attempted while in executive mode, an
access violation occurs.   This bit is valid even when <V>=0.

Kernel Write Enable.   Enables writes from kernel mode.  If this bit is
a 0 and a STORE is attempted while in kernel mode, an access violation
occurs.  This bit is valid even when <V>=0.

User Read Enable.   Enables reads from user mode.  If this bit is a 0
and a LOAD or instruction fetch is attempted while in user mode, an ac-
cess violation occurs.  This bit is valid even when <V>=0. 

Supervisor Read Enable.   Enables reads from supervisor mode.  If
this bit is a 0 and a LOAD or instruction fetch is attempted while in su-
pervisor mode, an access violation occurs.  This bit is valid even when
<V>=0.

Executive Read Enable.   Enables reads from executive mode.  If this
bit is a 0 and a LOAD or instruction fetch is attempted while in execu-
tive mode, an access violation occurs.  This bit is valid even when
<V>=0.

Kernel Read Enable.   Enables reads from kernel mode.  If this bit is a
0 and a LOAD or instruction fetch is attempted while in kernel mode, an
access violation occurs.  This bit is valid even when <V>=0.

Reserved.   To be used by Digital in the future.  

NOTE:  This reserved bit will be used by future hardware systems and
should not be used by software even if PTE<V> is clear.
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Table 11-2  Page Table Entry Bit Definitions (Continued) 

11.1.5  Changes to Page Table Entries

The operating system changes PTEs as part of its memory management
functions.  For example, the operating system may set or clear the valid
bit, change the PFN field as pages are moved to and from external storage
media, or modify the software bits.  The processor hardware never changes
PTEs.

Software must guarantee that each PTE is always consistent within itself.
Changing a PTE one field at a time may give incorrect system operation,
for example, setting PTE<V> with one instruction before establishing

Name Bit(s) Function

GH

ASM

FOE

FOW

FOR

V

<6:5>

<4>

<3>

<2>

<1>

<0>

Granularity Hint.   Software may set these bits to a non-zero value to
supply a hint to translation buffer implementations that a block of pages
can be treated as a single larger page:

• The block is an aligned group of 8N pages, where N is the value of
PTE<6:5>, for example, a group of 1, 8, 64, or 512 pages starting at a
virtual address with page_size + 3*N low-order zeros.

• The block is a group of physically contiguous pages that are aligned
both virtually and physically.  Within the block, the low 3*N bits of
the PFNs describe the identity mapping, and the high 32-3*N PFN
bits are all equal. 

• Within the block, all PTEs have the same values for bits <15:0>,
that is, protection, fault, granularity, and valid bits. 

Hardware may use this hint to map the entire block with a single TB
entry instead of 8, 64, or 512 separate TB entries.  

Note that it is UNPREDICTABLE which PTE values within the block
are used if the granularity bits are set inconsistently. 

NOTE:  A granularity hint might be appropriate for a large memory
structure such as a frame buffer or nonpaged pool that in fact is mapped
into contiguous virtual pages with identical protection, fault, and valid
bits.

Address Space Match.  When set, this PTE matches all Address Space
Numbers.  For a given VA, ASM must be set consistently in all proc-
esses, otherwise the address mapping is UNPREDICTABLE.

Fault On Execute.  When set, a fault on execute exception occurs on
an attempt to execute an instruction in the page.  

Fault On Write.  When set, a fault on write exception occurs on an at-
tempt to write any location in the page.

Fault On Read.  When set, a fault on read exception occurs on an at-
tempt to read any location in the page.

Valid.   Indicates the validity of the the PFN field.  When <V> is set,
the PFN field is valid for use by hardware.  If <V> is clear, the PFN field
is reserved for use by software.  <V> does not affect the validity of
PTE<15:1>.
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PTE<PFN> with another.  Execution of an interrupt service routine be-
tween the two instructions could use an address that would map using the
inconsistent PTE.  Software can solve this problem by building a complete
new PTE in a register and then moving the new PTE to the page table us-
ing a Store Quadword instruction (STQ).  

Multiprocessing makes the problem more complicated.  Another processor
could be reading (or even changing) the same PTE that the first processor
is changing.  Such concurrent access must produce consistent results. 
Software must use some form of software synchronization to modify PTEs
that are already valid.  Once a processor has modified a valid PTE, it is
possible that other processors in a multiprocessor system may have old
copies of that PTE in their translation buffer.  Software must inform other
processors of changes to PTEs. 

Software may write new values into invalid PTEs using STQ instructions.
Hardware must ensure that aligned quadword reads and writes are atomic
operations.  The following procedure must be used to change any of the
PTE bits <15:0> of a shared valid PTE (PTE<0>=1) such that an access
that was allowed before the change is not allowed after the change. 

1. The PTE<0> is cleared without changing any of the PTE bits <63:32>
and <15:1>.

2. All processors do a TBIS for the VA mapped by the PTE that changed. 
The VA used in the TBIS must assume that the PTE granularity hint
bits are zero. 

3. After all processors have done the TBIS, the new PTE may be written
changing any or all fields.

NOTE:  This procedure allows the QUEUE instructions that have probed to check
that all can complete, to service a TB miss. The QUEUE instruction will
use the PTE even though the V bit is clear, if during its initial probe flow
the V bit was set. 

11.1.6  Memory Protection

Memory protection is the function of validating whether a particular type
of access is allowed to a specific page from a particular access mode.  Ac-
cess to each page is controlled by a protection code that specifies, for each
access mode, whether read or write references are allowed.

The processor uses the following to determine whether an intended access
is allowed:

• The virtual address used to index page tables

• The intended access type (read data, write data, or instruction fetch)

• The current access mode from the Processor Status

If the access is allowed and the address can be mapped (the PTE is valid),
the result is the physical address corresponding to the specified virtual ad-
dress. 

For protection checks, the intended access is read for data loads and in-
struction fetch, and write for data stores.

If an operand is an address operand, then no reference is made to memory.
Hence, the page need not be accessible nor mapped to a physical page.
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11.1.6.1 Processor Access Modes

There are four processor modes:

• Kernel

• Executive

• Supervisor

• User 

The access mode of a running process is stored in the Current Mode bits of
the Processor Status (PS).  Refer to the AARM for details. 

11.1.6.2 Protection Code

Every page in the virtual address space is protected according to its use.  A
program may be prevented from reading or writing portions of its address
space.  Associated with each page is a protection code that describes the
accessibility of the page for each processor mode.  The code allows a choice
of read or write protection for each processor mode.  

• Each mode’s access can be read/write, read-only, or no-access.

• Read and write accessibility are specified independently. 

• The protection of each mode can be specified independently.

The protection code is specified by 8 bits in the PTE; see Table 11-2. 

The OpenVMS Alpha architecture allows a page to be designated as exe-
cute only by setting the read enable bit for the access mode and by setting
the fault on read and write bits in the PTE.

11.1.6.3 Access Violation Fault

An access violation fault occurs if an illegal access is attempted, as deter-
mined by the current processor mode and the page’s protection field.

11.1.7  Address Translation

The page tables can be accessed from physical memory or (to reduce over-
head) through a mapping to a linear region of the virtual address space.
All implementations must support the virtual access method and are ex-
pected to use it as the primary access method to enhance performance.

11.1.7.1 Physical Access for Page Table Entries

Physical address translation is performed by accessing entries in a three-
level page table structure. The Page Table Base Register (PTBR) contains
the physical PFN of the highest level (Level 1) page table. Bits <level1> of
the virtual address are used to index into the first level page table to ob-
tain the physical PFN of the base of the second level (Level 2) page table. 
Bits <level2> of the virtual address are used to index into the second level
page table to obtain the physical PFN of the base of the third level (Level
3) page table.  Bits <level3> of the virtual address are used to index the
third level page table to obtain the physical PFN of the page being refer-
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enced.  The PFN is concatenated with VA <byte_within_page> to obtain
the physical address of the location being accessed.

If part of any page table resides in I/O space or in nonexistent memory, the
operation of the processor is UNDEFINED.

If the first-level or second-level PTE is valid, the protection bits are ig-
nored;  the protection code in the third-level PTE is used to determine ac-
cessibility.

If a first-level or second-level PTE is invalid, an access violation occurs if
the PTE<KRE> equals zero.  An access violation on a first-level or second-
level PTE implies that all lower-level page tables mapped by that PTE do
not exist.

NOTE:  This mapping scheme does not require multiple contiguous physical pages.
There are no length registers. With a page size of 8 Kbytes, 3 pages (24
Kbytes) map 8 Mbytes of virtual address space; 1026 pages (approximately
8 Mbytes) map an 8-Gbyte address space; and 1,049,601 pages (approxi-
mately 8 Gbytes) map the entire 8 Tbyte (243-byte) address space.

The algorithm to generate a physical address from a virtual address fol-
lows:

     IF {SEXT(VA<63:VA_SIZE>) NEQ SEXT (VA<VA_SIZE-1>} THEN
        {initiate access violation fault} 

     ! Read Physical   

     level1_pte ¬ ({PTBR * page_size} + {8 *                       
VA<level1_number>}) 

     IF level1_pte<V> EQ 0 THEN

        IF level1_pte<KRE> EQ 0 THEN
           {initiate access violation fault} 

        ELSE 
           {initiate translation not valid fault}

     ! Read Physical   

     level2_pte ¬ 
        ({level1_pte<PFN> * page_size} + {8 *
VA<level2_number>})  

     IF level2_pte<V> EQ 0 THEN
        IF level2_pte<KRE> EQ 0 THEN
           {initiate access violation fault} 
        ELSE 
           {initiate translation not valid fault}

     ! Read Physical   

     level3_pte ¬ 
        ({level2_pte<PFN> * page_size} + {8 *                              
VA<level3_number>})  

     IF {{{level3_pte<UWE> EQ 0} AND {write access} AND
{PS<CM> EQ 3}} OR
         {{level3_pte<URE> EQ 0} AND {read  access} AND
{PS<CM> EQ 3}} OR
         {{level3_pte<SWE> EQ 0} AND {write access} AND
{PS<CM> EQ 2}} OR
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         {{level3_pte<SRE> EQ 0} AND {read  access} AND
{PS<CM> EQ 2}} OR
         {{level3_pte<EWE> EQ 0} AND {write access} AND
{PS<CM> EQ 1}} OR
         {{level3_pte<ERE> EQ 0} AND {read  access} AND
{PS<CM> EQ 1}} OR
         {{level3_pte<KWE> EQ 0} AND {write access} AND
{PS<CM> EQ 0}} OR
         {{level3_pte<KRE> EQ 0} AND {read  access} AND
{PS<CM> EQ 0}}}
     THEN
        {initiate access violation fault} 
     ELSE 
        IF level3_pte<V> EQ 0 THEN
            {initiate translation not valid fault}

     IF {level3_pte<FOW> EQ 1} AND { write   access} THEN
        {initiate Fault On Write fault}
     IF {level3_pte<FOR> EQ 1} AND { read    access} THEN
        {initiate Fault On Read fault}
     IF {level3_pte<FOE> EQ 1} AND { execute access} THEN
        {initiate Fault On Execute fault}

     Physical_Address ¬ 
        {level3_pte<PFN> * page_size} OR              

VA<byte_within_page> 

11.1.7.2 Virtual Access for Page Table Entries

To reduce the overhead associated with the address translation in a three-
level page table structure, the page tables are mapped into a linear region
of the virtual address space. The virtual address of the base of the page ta-
ble structure is set on a systemwide basis and is contained in the VPTB. 

When a native mode DTB or ITB Miss occurs, the TBMISS flows attempt
to load the level 3 page table entry using a single virtual mode load in-
struction.

The algorithm involving the manipulation of the missing VA is:

    tmp ¬ left_shift(VA, {64 - {{lg(PageSize) *4} -9 }})
    tmp ¬ 
         right_shift(tmp,{64 - {{lg(PageSize)*4} -9} +               
lg(PageSize) -3})
    tmp ¬ VPTB OR tmp
    tmp<2:0> ¬  0

At this point, tmp contains the VA of the level 3 PTE.  An LDQ from that
VA will result in the acquisition of the PTE needed to satisfy the initial
TBMISS condition.

However, in the PALcode environment, if a TBMISS occurs during an at-
tempt to fetch the level 3 PTE, then it is necessary to use the longer se-
quence of three dependent loads.  

The AARM describes the VPTB used to contain the virtual address of the
base of the page table structure.

The mapping of the page tables necessary for the correct function of the al-
gorithm is done as follows:
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1. Select a 23*lg(page_size/8)+3 byte-aligned region (an address with
3*lg(page_size/8)+3 low order zeros) in the virtual address space.  This
value will be written into the VPTB.

2. Create a level 1 PTE to map the page tables as follows:

     Level1_PTE        ← 0     ! Init all fields to 0
     Level1_PTE<63:32> ← PFN of Level1 Pagetable
                 ! Set PFN to PFN of level1 pagetable
     Level1_PTE<8>     ← 1 ! Kernel Read Enable  (KRE)
     Level1_PTE<0>     ← 1     ! Valid bit

3. Write the created level 1 PTE into the level 1 page table entry that
corresponds to the VPTB value.

4. Set all level 1 and level 2 valid PTEs to allow kernel read access.

5. Write the VPTB with the selected base value.

NOTE:  No validity checks need be made on the value stored in the VPTB in a run-
ning system.  Therefore, if the VPTB contains an invalid address, the opera-
tion is UNDEFINED.  

11.1.8  Translation Buffer

To save actual memory references when repeatedly referencing the same
pages, hardware implementations include a translation buffer to remem-
ber successful virtual address translations and page states.

When the process context is changed, a new value is loaded into the Ad-
dress Space Number (ASN) with a Swap Privileged Context instruction
(CALL_PAL SWPCTX).  This causes address translations for pages with
PTE<ASM> clear to be invalidated on a processor that does not implement
address space numbers.  Additionally, when the software changes any part
(except for the Software field) of a valid PTE, it must also move a virtual
address within the corresponding page to the TBIS register (see AARM)
with the MTPR instruction.  

NOTE:   Some implementations may invalidate the entire translation buffer on an
MTPR to TBIS.  In general, implementations may invalidate more than the
required translations in the TB.

The entire translation buffer can be invalidated by doing a write to the
TBIA (CALL_PAL MTPR_TBIA, and all ASM=0 entries can be invalidated
by doing a write to TBIAP (CALL_PAL MTPR_TBIAP).  See AARM. 

The translation buffer must not store invalid PTEs.  Therefore, software is
not required to invalidate translation buffer entries when making changes
for PTEs that are already invalid. 

The TBCHK (see AARM) is available for interrogating the presence of a
valid translation in the translation buffer.

11.1.9  Address Space Numbers

The Alpha architecture allows a processor to optionally implement address
space numbers (process tags) to reduce the need for invalidation of cached
address translations for process-specific addresses when a context switch
occurs.  The supported ASN range is 0..MAX_ASN. 
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NOTE:  If an ASN outside the range 0..MAX_ASN is assigned to a process, the op-
eration of the processor is UNDEFINED. 

The ASN for the current process is loaded by software in the ASN (see
AARM) with a Swap Privileged Context instruction.  ASNs are processor
specific and the hardware makes no attempt to maintain coherency across
multiple processors. In a multiprocessor system, software is responsible for
ensuring the consistency of TB entries for processes that might be resched-
uled on different processors.

NOTE:  System software should not assume that the number of ASNs is a power of
two.  This allows, for example, hardware to use N TB tag bits to encode
2N−3 ASN values, one value for ASM=1 PTEs, and one for invalid. There
are several possible ways of using ASNs, and, in a multiprocessor system,
there are several complications.  Consider the case where a process that exe-
cuted on processor−1 is rescheduled on processor−2.  If a page is deleted or
its protection is changed, the TB in processor−1 has stale data.  One solu-
tion would be to send an interprocessor interrupt to all the processors on
which this process could have run and cause them to invalidate the
changed PTE. This results in significant overhead in a system with several
processors. Another solution would be to have software invalidate all TB en-
tries for a process on a new processor before it can begin execution if the
process executed on another processor during its previous execution.  This
ensures the deletion of possibly stale TB entries on the new processor.  A
third solution would assign a new ASN whenever a process is run on a
processor that is not the same as the last processor on which it ran.

11.1.10  Memory Management Faults

Five types of faults are associated with memory access and protection: 

•  Access Violation (ACV) 
Taken when the protection field of the third-level PTE that maps the
data indicates that the intended page reference would be illegal in the
specified access mode. An ACV fault is also taken if  <KRE> is zero in
an invalid first or second level PTE.

• Fault On Read (FOR) 
Occurs when a read is attempted with PTE<FOR> set.  

• Fault On Write (FOW)
Occurs when a write is attempted with PTE<FOW> set.

• Fault On Execute (FOE) 
Occurs when instruction execution is attempted with PTE<FOE> set.

• Translation Not Valid (TNV)
Taken when a read or write reference is attempted through an invalid
PTE in a first-, second-, or third-level page table. 

Refer to the AARM for a detailed description of these faults.

Note that these five faults have distinct vectors in the system control
block.

The ACV fault takes precedence over the TNV, FOR, FOW, and FOE
faults.

The TNV fault takes precedence over the FOR, FOW, and FOE faults.
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The faults FOR and FOW can occur simultaneously in the CALL_PAL
queue instructions, in which case the order that the exceptions are taken is
UNPREDICTABLE.  

11.2  OpenVMS AXP Process Structure

A process is the basic entity that is scheduled for execution by the proces-
sor.  A process represents a single thread of execution and consists of an
address space and both hardware and software context. 

The hardware context of a process is defined by:

• 31 integer registers and 31 floating-point registers

• Processor Status (PS)

• Program Counter (PC)

• 4 stack pointers

• AST Enable and AST Summary Registers (ASTEN and ASTSR) 

• Page Table Base Register (PTBR) 

• Address Space Number (ASN) 

• Floating-Point Enable Register (FEN) 

• Process Cycle Counter (PCC) 

• Process Unique Value  

• Data Alignment Trap (DAT)

• Performance Monitor Enable Register (PME)

NOTE:  Consult the AARM for detailed discussions of the parameters appearing in
the hardware context of a process.

The software context of a process is defined by operating system software
and is system dependent.

A process may share the same address space with other processes or have
an address space of its own. There is, however, no separate address space
for system software, and therefore, the operating system must be mapped
into the address space of each process.  

Saving the hardware context of the current process in memory followed by
loading the hardware context for a new process is termed context switch-
ing. Context switching occurs as one process after another is scheduled by
the operating system for execution.  

11.2.1  Hardware Privileged Process Context

The hardware context of a process is defined by a privileged part which is
context switched with the Swap Privileged Context instruction (SWPCTX),
and a nonprivileged part, which is context switched by operating system
software.

When a process is not executing, its privileged context is stored in a 128
byte naturally aligned memory structure called the Hardware Privileged
Context Block (see Figure 11-3). 
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Figure 11-3 Hardware Privileged Context Block

The Hardware Privileged Context Block (HWPCB) for the current process
is specified by the PCBB.

The Swap Privileged Context instruction (SWPCTX) saves the privileged
context of the current process into the HWPCB specified by the PCBB, 
loads a new value into the PCBB, and then loads the privileged context of
the new process into the appropriate hardware registers.  

The new value loaded into the PCBB, as well as the contents of the Privi-
leged Context Block, must satisfy certain constraints or an UNDEFINED
operation results:

• The physical address loaded into the PCBB must be 128-byte aligned
and describes 16 contiguous quadwords that are in a memory-like re-
gion.

• The value of the PTBR must be the PFN of an existent page that is in a
memory-like region.

It is the responsibility of the operating system to save and load the non-
privileged part of the hardware context. 

The SWPCTX instruction returns ownership of the current HWPCB to op-
erating system software and passes ownership of the new HWPCB from
the operating system to the processor. Any attempt to write a HWPCB
while ownership resides with the processor has UNDEFINED results. If
the HWPCB is read while ownership resides with the processor, it is UN-
PREDICTABLE whether the original or an updated value of a field is read.
The processor is free to update an HWPCB field at any time. The decision
as to whether or not a field is updated is made individually for each field.

If ASNs are not implemented, the ASN field is not read or written by
PALcode. 

The FEN bit reflects the setting of the FEN.
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The DAT bit controls whether data alignment traps that are fixed up in
PALcode are reported to the operating system.  If the bit is clear, the trap
is reported. If the bit is set, after the fixup, return is to the user. 

Setting the PME bit alerts any performance hardware or software in the
system to monitor the performance of this process.

The Process Unique value is that value used in support of multithread im-
plementations.  The value is stored in the HWPCB when the process is not
active.  When the process is active, the value may be cached in hardware
internal storage or kept in the HWPCB only.  

11.2.2  Asynchronous System Traps (AST)

Asynchronous System Traps (ASTs) are a means of notifying a process of
events that are not synchronized with its execution but must be dealt with
in the context of the process with minimum delay.

ASTs interrupt process execution and are controlled by the ASTEN and
ASTSR registers.

The ASTEN contains an enable bit for each of the four processor access
modes. When the bit corresponding to an access mode is set, ASTs for that
mode are enabled.  The AST enable bit for an access mode may be changed
by executing a Swap AST Enable instruction (SWASTEN) or by executing
an MTPR instruction specifying ASTEN (MTPR ASTEN). 

The ASTSR contains a pending bit for each of the four processor access
modes.  When the bit corresponding to an access mode  is set, an AST is
pending for that mode. 

Kernel mode software may request an AST for a particular access mode by
executing an MTPR instruction specifying ASTSR (MTPR ASTSR). 

Hardware or PALcode monitors the state of ASTEN, ASTSR, PS<CM>,
and PS<IPL>.  If PS<IPL> is less than 2, and there is an AST pending and
enabled for an access mode that is less than or equal to PS<CM> (that is,
an equal or more privileged access mode), an AST is initiated at IPL 2.

ASTs that are pending and enabled for a less privileged access mode are
not allowed to interrupt execution in a more privileged access mode.

11.2.3  Process Context Switching

Process context switching occurs as one process after another is scheduled
for execution by operating system software. Context switching requires the
hardware context of one process to be saved in memory followed by the
loading of the hardware context for another process into the hardware reg-
isters.

The privileged hardware context is swapped with the CALL_PAL Swap
Privileged Context instruction (SWPCTX).  Other hardware context must
be saved and restored by operating system software.

The sequence in which process context is changed is important since the
SWPCTX instruction changes the environment in which the context
switching software itself is executing. Also, although not enforced by hard-
ware, it is advisable to execute the actual context switching software in an
environment that cannot be context switched (that is,  at an IPL high
enough that rescheduling cannot occur).



       OpenVMS AXP System Support   11-15

The SWPCTX instruction is the only method provided for loading certain
internal processor registers. The SWPCTX instruction always saves the
privileged context of the old process and loads the privileged context of a
new process.  Therefore, a valid HWPCB must be available to save the
privileged context of the old process as well as load the privileged context
of the new process.
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Chapter 12

DEC OSF/1 AXP System Support

This chapter discusses memory management performed by the DEC OSF/1
AXP operating system and gives the structure of a process within the DEC
OSF/1 AXP environment.  Consult the Alpha Architecture Reference Man-
ual (hereafter referred to as AARM in this chapter) for a thorough discus-
sion of these topics.

12.1  DEC OSF/1 AXP Memory Management

Memory management is the control of the allocation and use of physical
memory.  It is implemented by a combination of hardware and software.
Typically, in a multiprogramming system, several processes may reside in
physical memory at the same time.  DEC OSF/1 AXP uses memory protec-
tion and multiple address spaces to ensure that one process will not affect
either other processes or the operating  system.

To  improve further software reliability, the DEC OSF/1 AXP operating
system provides two hierarchical access modes: kernel and user.  Protec-
tion is specified at the individual page level, where a page may be inacces-
sible, read only, or read/write for the user mode.  Accessible pages can be
restricted to have only data or instruction access.

A program uses virtual addresses to access its data and instructions.  How-
ever, before these virtual addresses can be used to access memory, they
must be translated into physical addresses.  Memory management soft-
ware maintains tables of mapping information (page tables) that keep
track of where each virtual page is located in physical memory. The proces-
sor uses this mapping information when it translates virtual addresses to
physical addresses.

Therefore, memory management provides both memory protection and
memory mapping mechanisms.  The DEC OSF/1 AXP memory manage-
ment architecture is designed to meet several goals: 

• Provide a large address space for instructions and data.

• Allow programs to run on hardware with physical memory smaller
than the virtual memory used.

• Provide convenient and efficient sharing of instructions and data.

• Allow sparse use of a large address space without excessive page table
overhead.

• Contribute to software reliability.

• Provide independent read and write access protection.
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12.1.1  Virtual Address Spaces

A virtual address is a 64-bit unsigned integer that specifies a byte location
within the virtual address space.  Implementations support the address
space in one of four sizes (43, 47, 51, or 55 bits) as a function of page size.
The minimal supported virtual address size is 43 bits. If an implementa-
tion supports less than 64-bit virtual addresses, it must check that all the
VA<63:vaSize> bits are equal to VA<vaSize−1>). This gives two disjoint
ranges for valid virtual addresses. For example, for a 43-bit virtual address
space, valid virtual address ranges are 0 to 3FF FFFF FFFF and FFFF
FC00 0000 0000 to FFFF FFFF FFFF FFFF.  Access to virtual addresses
outside of an implementation’s valid virtual address range cause an access
violation fault.

The virtual address space is divided into three segments.  The two bits VA
<vaSize−1:vaSize−2> select a segment as shown in Table 12-1.

Table 12-1 Virtual Address Space Segments

For kseg, the relocation, sharing, and protection are fixed.  For seg0 and
seg1, the virtual address space is broken into pages, which are the units of
relocation, sharing, and protection.  The page size ranges from 8 Kbytes to
64 Kbytes.  Therefore, system software should allocate regions with differ-
ing protection on 64-Kbyte virtual address boundaries to ensure image
compatibility across all Alpha implementations. 

Memory management provides the mechanism to map the active part of
the virtual address space to the available physical address space. The oper-
ating system controls the virtual-to-physical address mapping tables and
saves the inactive (but used) parts of the virtual address space on external
storage media.  

12.1.1.1  Segment Seg0 and Seg1 Virtual Address Format

The processor generates a 64-bit virtual address for each instruction and
operand in memory.  A seg0 or seg1 virtual address consists of three level-
number fields and a byte_within_page field, as shown in Figure 12-1.

Figure 12-1 Virtual Address Format
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The byte_within_page field can be either 13, 14, 15, or 16 bits depending
on a particular implementation.  Thus, the allowable page sizes are 8, 16,
32, and 64 Kbytes.  Each level-number field is 0-n bits long, where, for ex-
ample, n is 9 for an 8K page size.  Level-number fields are the same size
for a given implementation. 

The level-number fields are a function of the page size; all page table en-
tries at any given level do not exceed one page. The PFN field in the PTE is
always 32 bits wide. Thus, as the page size grows the virtual and physical
address size also grows.

In Table 12-2 the physical address column is the maximum physical ad-
dress supported by the smaller of seg0/seg1 or kseg, as indicated.  

Table 12-2 Virtual Address Options

12.1.1.2  Kseg Virtual Address Format

The processor generates a 64-bit virtual address for each instruction and
operand in memory.  A kseg virtual address consists of segment select field
with a value of 10 (bin) and a physical address field.  The segment select
field is the two bits VA<vaSize−1:vaSize−2>.  The physical address field is
VA<vaSize−3:0>.  The kseg virtual address format is shown in Figure 12-2.

Figure 12-2 Kseg Virtual Address Format

12.1.2  Physical Address Space

Physical addresses are at most vaSize−2 bits. This allows all of physical
memory to be accessed via kseg.  A processor may choose to implement a
smaller physical address space by not implementing some number of high
order bits. The two most significant implemented physical address bits se-
lect a caching policy or implementation-dependent type of address space.
Implementations will use these bits as appropriate for their systems. For
example, in a workstation with a 30-bit physical address space, bit <29>
might select between memory and non-memory like regions, and bit <28>
could enable or disable caching.
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12.1.3  Memory Management Control

Memory management is always enabled. Implementations must provide
an environment for PALcode to service exceptions and to initialize and
boot the processor. For example, PALcode might run with I-stream map-
ping disabled.

12.1.4  Page Table Entries

The processor uses a quadword page table entry (PTE) to translate seg0
and seg1 virtual addresses to physical addresses.  A PTE contains hard-
ware and software control information and the physical page frame num-
ber (PFN).  A PTE is a quadword with fields as shown in Figure 12-3.  Ta-
ble 12-3 gives the definitions of the PTE fields. 

Figure 12-3 Page Table Entry (PTE)

Table 12-3 Page Table Entry Bit Definitions 
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PFN

SW

RSV0

UWE

KWE

RSV1
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KRE

RSV2

<63:32>

<31:16>

<15:14>

<13>

<12>

<11:10>

<9>

<8>

<7>

Page Frame Number.   The PFN field always points to a page bound-
ary.  If V is set, the PFN is concatenated with the
VA<byte_within_page> to obtain the physical address.

Software.  Reserved for software. 

Reserved 0.  Reserved for hardware;  SBZ.

User Write Enable.   Enables writes from user mode.  If this bit is a 0
and a STORE is attempted while in user mode, an access violation oc-
curs.  This bit is valid even when <V>=0.  

Kernel Write Enable.  Enables writes from kernel mode.  If this bit is
a 0 and a STORE is attempted while in kernel mode, an access violation
occurs.  This bit is valid even when <V>=0.

Reserved 1.  Reserved for hardware;  SBZ.

User Read Enable.  Enables reads from user mode.  If this bit is a 0
and a LOAD or instruction fetch is attempted while in user mode, an ac-
cess violation occurs.  This bit is valid even when <V>=0. 

Kernel Read Enable.   Enables reads from kernel mode.  If this bit is a
0 and a LOAD or instruction fetch is attempted while in kernel mode, an
access violation occurs.  This bit is valid even when <V>=0.

Reserved 2.  Reserved for hardware;  SBZ.



       DEC OSF/1 AXP System Support   12-5

Table 12-3  Page Table Entry Bit Definitions (Continued) 

The operating system changes PTEs as part of its memory management
functions. For example, the operating system may set or clear the V bit,
change the PFN field as pages are moved to and from external storage me-
dia, or modify the software bits.  The processor hardware never changes
PTEs. 

Software must guarantee that each PTE is always consistent within itself.
Changing a PTE one field at a time can cause incorrect system operation,
such as setting PTE<V> with one instruction before establishing
PTE<PFN> with another.  Execution of an interrupt service routine be-
tween the two instructions could use an address that would map using the
inconsistent PTE.  Software can solve this problem by building a complete
new PTE in a register and then moving the new PTE to the page table by
using an STQ instruction. 

Multiprocessing makes the problem more complicated.  Another processor
could be reading (or even changing) the same PTE that the first processor
is changing. Such concurrent access must produce consistent results.  Soft-
ware must use some form of software synchronization to modify PTEs that

Name Bit(s) Function

GH

ASM

FOE

FOW

FOR

V

<6:5>

<4>

<3>

<2>

<1>

<0>

Granularity Hint.   Software may set these bits to a nonzero value to
supply a hint to translation buffer implementations that a block of pages
can be treated as a single larger page:

1.  The block is an aligned group of 8N pages, where N is the value of      
     PTE<6:5>, e.g., a group of 1, 8, 64, or 512 pages starting at a virtual  
     address with page_size + 3*N low-order zeros.  

2.  The block is a group of physically contiguous pages that are aligned   
      both virtually and physically.  Within the block, the low 3*N bits of  
      the PFNs describe the identity mapping and the high 32−3*N PFN   
      bits are all equal.  

3.  Within the block, all PTEs have the same values for bits <15:0>, i.e., 
      protection, fault, granularity, and valid bits. 

Hardware may use this hint to map the entire block with a single TB
entry, instead of 8, 64, or 512 separate TB entries. 

Address Space Match.  When set, this PTE matches all ASNs.  For a
given VA, ASM must be set consistently in all processes, otherwise the
address mapping is UNPREDICTABLE.

Fault On Execute.  When set, a fault on execute exception occurs on
an attempt to execute an instruction in the page. 

Fault On Write.  When set, a fault on write exception occurs on an at-
tempt to write any location in the page.

Fault On Read.  When set, a fault on read exception occurs on an at-
tempt to read any location in the page.

Valid.   Indicates the validity of the the PFN field.  When <V> is set, 
the PFN field is valid for use by hardware.  When V is clear, the PFN
field is reserved for use by software.  <V> does not affect the validity of
PTE<15:1>.
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are already valid. Whenever a processor modifies a valid PTE, it is possible
that other processors in a multiprocessor system may have old copies of
that PTE in their translation buffer.  Software must inform other proces-
sors of changes to PTEs.  Hardware must ensure that aligned quadword
reads and writes are atomic operations.  Hardware must not cache invalid
PTEs (PTEs with <V>=0) in translation buffers. 

12.1.5  Memory Protection

Memory protection is the function of validating whether a particular type
of access is allowed to a specific page from a particular access mode.  Ac-
cess to each page is controlled by a protection code that specifies, for each
access mode, whether read or write references are allowed. The processor
uses the following to determine whether an intended access is allowed:

• The virtual address, which is used either to select kseg mapping or
provide the index into the page tables.

• The intended access type (read or write).

• The current access mode base on processor mode.

For protection checks, the intended access is read for data loads and in-
struction fetches, and write for data stores.

12.1.5.1 Processor Access Modes

There are two processor modes, user and kernel.  The access mode of a
running process is stored in PS<MODE>.

12.1.5.2 Protection Code

Every page in the virtual address space is protected according to its use.  A
program may be prevented from reading or writing portions of its address
space.  Associated with each page is a protection code that describes the
accessibility of the page for each processor mode.

For seg0 and seg1, the code allows a choice of read or write protection for
each processor mode.  For each mode, access can be read/write, read only,
or no access.  Read and write accessibility and the protection for each mode
are specified independently. 

For kseg, the protection code is kernel read/write, user no access.

12.1.5.3 Access Violation Fault

An access violation memory management fault occurs if an illegal access is
attempted, as determined by the current processor mode and the page’s
protection.

12.1.6  Address Translation for Seg0 and Seg1

The page tables can be accessed from physical memory, or (to reduce over-
head) can be mapped to a linear region of the virtual address space.  The
following sections describe both access methods.
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12.1.6.1 Physical Access for Seg0 and Seg1 PTEs

Seg0 and seg1 address translation can be performed by accessing entries in
a three-level page table structure.  The PTBR (see AARM)  contains the
physical PFN of the highest level (Level 1) page table.  Bits <level1> of the
virtual address are used to index into the first level page table to obtain
the physical PFN of the base of the second level (Level 2) page table. Bits
<level2> of the virtual address are used to index into the second level page
table to obtain the physical PFN of the base of the third level (Level 3)
page table.  Bits <level3> of the virtual address are used to index the third
level page table to obtain the physical PFN of the page being referenced. 
The PFN is concatenated with VA<byte_within_page> to obtain the physi-
cal address of the location being accessed. 

If part of any page table does not reside in a memory-like region, or does
reside in nonexistent memory, the operation of the processor is UNDE-
FINED.

If the first level or second level PTE is valid, the protection bits are ig-
nored; the protection code in the third level PTE is used to determine ac-
cessibility.  If a first level or second level PTE is invalid, an access-
violation fault occurs if PTE<KRE>=0.  An access violation fault on a first
level or second level PTE implies that all lower level page tables mapped
by that PTE do not exist.

The algorithm to generate a physical address from a seg0 or seg1 virtual
address follows:

IF {SEXT(VA<vaSize-1:0>) neq VA} THEN
        { initiate access-violation fault}

level1_PTE ¬ ({PTBR * page_size} + {8 * VA<level1>}             
! Read physical
IF level1_PTE<v> EQ 0 THEN
        IF level1_PTE<KRE> eq 0 THEN
                { initiate access-violation fault}
        ELSE
                { initiate translation-not-valid fault}

level2_PTE ¬ ({level1_PTE<PFN> * page_size} + {8 *
VA<level2>} )   ! Read physical

IF level2_PTE<v> EQ 0 THEN
        IF level2_PTE<KRE> eq 0 THEN
                { initiate access-violation fault}

        ELSE
                { initiate translation-not-valid fault}

level3_PTE ¬ ({level2_PTE<PFN> * page_size} + {8 *
VA<level3>} )   ! Read physical

IF {{{level3_PTE<UWE> eq 0} AND {write access} AND
{ps<mode> EQ 1} } OR      
    {{level3_PTE<URE> eq 0} AND {read access} AND
{ps<mode> EQ 1} } OR      
    {{level3_PTE<KWE> eq 0} AND {write access} AND
{ps<mode> EQ 0} } OR      
    {{level3_PTE<KRE> eq 0} AND {read access} AND
{ps<mode> EQ 0} } }
        THEN
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                {initiate memory-management fault}
        ELSE
                IF level3_PTE<v> EQ 0 THEN
                        {initiate memory-management fault}

IF { level3_PTE<FOW> eq 1} AND {write access} THEN
        {initiate memory-management fault}

IF { level3_PTE<FOR> eq 1} AND {read access} THEN
        {initiate memory-management fault}

IF { level3_PTE<FOE> eq 1} AND {execute access} THEN
        {initiate memory-management fault}

Physical_address ¬ {level3_PTE<PFN> * page_size} OR
VA<byte_within_page>

12.1.6.2 Virtual Access for Seg0 or Seg1 PTEs

The page tables can be mapped into a linear region of the virtual address
space, reducing the overhead for seg0 and seg1 PTE accesses.  The map-
ping is done as follows:

1. Select a 23*lg(pageSize/8)+3  byte-aligned region (an address with
3*lg(pageSize/8)+3 low-order zeros) in the seg0 or seg1 address space. 
Set the virtual page table pointer (VPTPTR)  with a write virtual page
table pointer instruction (wrvptptr) to the selected value.  

2. Create a level1 PTE to map the page tables as follows:

level1_PTE = 0          ! Initialize all fields to 0
level1_PTE<63:32> = pfn_of_Level_1_pagetable
                        ! Set the PFN to the PFN of
the level one pagetable
level1_PTE<8>  = 1      ! Set the kernel read enable
bit
level1_PTE<0>  = 1      ! Set the valid bit

3. Set the level1 page table entry that corresponds to the VPTB to the
created level1_PTE.  

4. Set all level 1 and level 2 valid PTEs to allow kernel read access.  With
this setup in place, the algorithm to fetch a seg0 or seg1 PTE is:

tmp ← left_shift (va, {64 - {{lg(pageSize) *4} - 9}} )
tmp ← right_shift (tmp, {64 - {{lg(pageSize) *4} - 9}
+ lg(pageSize) - 3} )
tmp ← VPTB OR tmp
tmp<2:0> ← 0
level3_PTE ← (tmp)     ! Load PTE using its virtual  
                        ! address

The virtual access method is used by PALcode for most TB fills.  

12.1.7  Translation Buffer

To save actual memory references when repeatedly referencing the same
pages, hardware implementations include a translation buffer to remem-
ber successful virtual address translations and page states. When the proc-
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ess context is changed, a new value is loaded into the ASN with a swap
process context (swpctx) instruction.  This causes address translations for
pages with PTE<ASM> clear to be invalidated on a processor that does not
implement address space numbers. 

Additionally, when the software changes any part (except the software
field) of a valid PTE, it must also execute a CALL_PAL tbi instruction. 
The entire translation buffer can be invalidated by tbia, and all ASM=0 en-
tries can be invalidated by tbiap.  The translation buffer must not store in-
valid PTEs.  Therefore, the software is not required to invalidate transla-
tion buffer entries when making changes for PTEs that are already
invalid.

12.1.8  Address Space Numbers

The Alpha architecture allows a processor to optionally implement address
space numbers (process tags) to reduce the need for invalidation of cached
address translations for process-specific addresses when a context switch
occurs. 

The ASN for the current process is loaded by software in the ASN with an
swpctx instruction.  ASNs are processor specific and the hardware makes
no attempt to maintain coherency across multiple processors.  In a
multiprocessor system, software is responsible for ensuring the consistency
of TB entries for processes that might be rescheduled on different proces-
sors.

NOTE:  System software should not assume that the number of ASNs is a power of
two.  This allows, for example, hardware to use N TB tag bits to encode 2N

−3 ASN values, one value for ASM=1 PTEs, and one for invalid.  There are
several possible ways of using ASNs. There are several complications in a
multiprocessor system.  Consider the case where a process that executed on
processor−1 is rescheduled on processor−2.  If a page is deleted or its protec-
tion is changed, the TB in processor−1 has stale data.  One solution would
be to send an interprocessor interrupt to all the processors on which this
process could have run and cause them to invalidate the changed PTE. 
This results in significant overhead in a system with several processors. An-
other solution would be to have software invalidate all TB entries for a
process on a new processor before it can begin execution if the process exe-
cuted on another processor during its previous execution.   This ensures the
deletion of possibly stale TB entries on the new processor.  A third solution
would assign a new ASN whenever a process is run on a processor that is
not the same as the last processor on which it ran.

12.1.9  Memory Management Faults

On a memory-management fault, the fault code (MMCSR) is passed in a1
to specify the type of fault encountered, as shown in Table 12-4.
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Table 12-4 Memory Management Fault Type Codes

Faults are taken as follows: 

• A translation-not-valid fault is taken when a read or write reference is
attempted through an invalid PTE in a first, second, or third level page
table.

• An access violation fault is taken on a reference to a seg0 or seg1 ad-
dress when the protection field of the third level PTE that maps the
data indicates that the intended page reference would be illegal in the
specified access mode.  An access violation fault is also taken if <KRE>
is a zero in an invalid first or second level PTE.  An access violation
fault is generated for any access to a kseg address when the mode is
user (PS<MODE>=1). 

• A fault on read (FOR) occurs when a read is attempted with
PTE<FOR> set. 

• A fault on execute (FOE) occurs when an instruction fetch is attempted
with PTE<FOE> set. 

• A fault on write (FOW) occurs when a write is attempted with
PTE<FOW> set.  

12.2  DEC OSF/1 AXP Process Structure 

A process is a single thread of execution.  It is the basic entity that can be
scheduled and is executed by the processor.  A process consists of an ad-
dress space and both software and hardware context.  The hardware con-
text of a process is defined by the the following:

• 30 integer registers (excluding R31 and SP)

• 31 floating-point registers (excluding F31)

• Program Counter (PC)

• User stack pointer (USP) and kernel stack pointer (KSP) per process

• Processor Status (PS)

• Address Space Number (ASN) 

• Process Cycle Counter (PCC)

• Page Table Base Register (PTBR) 

• Process Unique value 

NOTE:  Consult the AARM for detailed discussions of the parameters appearing in
the hardware context of a process.

Fault MMCSR Value

Translation not valid
Access violation
Fault on read
Fault on execute
Fault on write

0
1
2
3
4
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While a process is executing, some of its hardware context is being updated
in the internal registers.  When a process is not being executed, its hard-
ware context is stored in memory in a software structure termed the proc-
ess control block (PCB).  Saving the process context in the PCB and load-
ing new values from another PCB for a new context is termed context
switching.  Context switching occurs as one process after another is sched-
uled for execution.

The PCB holds the state of a process, as shown in Figure 12-4.  

Figure 12-4 Process Control Block (PCB)

The contents of the PCB are loaded and saved by the swpctx instruction. 
The PCB must be quadword aligned and should be 64-byte aligned for best
performance. Kernel mode code can read the PTBR, the ASN, and the FEN
for the current process from the PCB.  Kernel mode code must use the
rdusp/wrusp instructions to access the USP.  The PCC must be read with
the rpcc instruction.  The unique value can be accessed with the
rdunique/wrunique instruction.
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Chapter 13

Initialization

The KN7AA CPU module can be initialized in three ways:

• Power-Up Sequence.  When the LSB system is powered up, the CPU
module generates a local reset signal.

• System Reset.  Whenever the LSB RESET signal is asserted, the
CPU module is initialized.  LSB RESET can be asserted by any node or
from the control panel keyswitch through CCL_RESET.

• Node Reset.  A single CPU module can be reset by setting
LCNR<NRST>. 

The processor chip (DECchip 21064) can be reset independently of the
other components on the CPU module through the serial I/O port. 

13.1  Initialization Overview

A CPU reset causes the console code to first invoke the on-board self-test
sequence.  Self-test begins by testing a very small portion of the CPU logic
and gradually expands the scope of testing until all hardware functions of
the module have been verified.  

Action subsequent to the completion of the CPU module self-test depends
on the state of LCNR<RSTSTAT>.  If the state of this bit indicates a
power-up or system reset,  CPU module self-test is followed by CPU-based
testing of other system components.

Once all appropriate testing has been completed, the KN7AA console pro-
gram determines a primary processor.  The primary processor is then re-
sponsible for displaying the results of all testing, configuring the LSB sys-
tem (memory, registers, and so on), and creating the software data
structures necessary to communicate between processors and the operat-
ing system.  The console program then enters its input loop.

If the CPU module reset was caused by a node reset, no additional system
components are tested.  CPU registers are set to their firmware-initialized
state, but no other LSB system configuration is performed.  There is no
change in the primary processor, and the console program enters its input
loop.

13.2  Self-Test

CPU self-test is a layered process that is called as the first part of the con-
sole entry sequence.  It starts with a simple load of code from the serial



13-2   Initialization

ROM (SROM) into the P-cache and augments itself through additional
ROM-resident code that is copied to the B-cache and runs from the B-
cache.  The process completes by returning a GO/NOGO status to the con-
sole entry sequence.  The following subsections summarize the various
stages in the CPU self-test.  A complete description and flowchart of self-
test sequences can be found in the Advanced Troubleshooting manuals. 

13.2.1  SROM Operation

Following the deassertion of reset to the DECchip 21064, the contents of
the SROM are loaded into the internal cache, the PC is pointed to location
zero and instruction execution is started. This code performs the following:

• A quick internal test of the processor chip

• Tests the external B-cache tag, status, and data store RAMs and asso-
ciated control

• Determines that access to the Gbus resources is operational

• Copies the balance of CPU self-test and the CPU console program from
the Gbus ROMs to the B-cache and, following a checksum verification,
transfers  control to it.

At any point in this process, the SROM code can signal failures through
the Gbus$LEDs register.

13.2.2  CPU Module Self-Test

Following the transfer of control from the SROM code to the main body of
CPU self-test in the B-cache, the CPU module is tested thoroughly.  High-
lights include:

• Test of all Gbus resources including the UARTs and the watch chip

• LEVI tests including LSB transfers

• Tests of all RAM structures 

13.2.3  Additional Power-Up Testing

If the CPU module self-test completes successfully, additional power-up
testing is next performed to verify untested system components.  Addi-
tional testing performed by all processors includes: 

• Tests of the processor/memory LSB interface

• Tests of CPU multiprocessor logic

• Tests of the LSB I/O port module

The boot processor then performs tests on interfaces to the I/O port.

13.3  Console Entry 

When the power-up test sequence is complete, the console code entry se-
quence continues.  This section briefly describes the system-level initializa-
tion functions that are required to start the operating system, which are
performed by the console code following self-test. 



       Initialization   13-3

13.3.1  Boot Processor Arbitration

The console program determines the boot processor.  A boot processor must
also be determined on an interim basis, between phases of power-up test
sequence, for the purpose of printing out test results.

The boot processor is selected dynamically.  Any processor in a multi-
processor system can become the boot processor.  By default, the CPU with
the lowest LSB node number that has passed all of its power-up tests thus
far, and is eligible, is selected as the boot processor.

If all processors fail self-test, or if all processors have been disabled
through console commands from becoming boot processors,  then no boot
processor is assigned.  In this case, a unique code is placed on the LEDs,
and all processors monitor the console terminal lines waiting for a se-
quence to be typed by the operator, which would force one of the processors
to become the boot processor.

The console set cpu command can be used to change the boot processor
once the console is running.  Refer to the Console Reference Manual for fur-
ther information on the set cpu command. 

13.3.2  Boot Processor System Setup

Following configuration of memory, the console creates data structures in
memory that are required to communicate between processors and with
the operating system.  These data structures include:

• Hardware restart parameter block (HWRPB)

• A physical memory descriptor

• A bitmap of good and bad pages of physical memory

• Console routines block (CRB)

• Console terminal block (CTB)

13.3.3  Operating System Startup

The KN7AA console program’s primary role in operating system startup is
to load and transfer control to the primary bootstrap program.  The
method the console generally uses to load the primary bootstrap program
is called bootblock booting.  To begin the boot, the console reads the first
logical block (LBN 0) on a disk.  This is the bootblock, which contains infor-
mation that points to the location of the primary bootstrap program on the
disk.  Using the same routines that read the bootblock, the console then
uses this information to load the primary bootstrap program.

When booting from a network, the console must request the bootstrap im-
age from an external server.

Once control is passed to the primary bootstrap, the console program’s only
remaining role is to allow access to console terminal routines and I/O rou-
tines.  The console terminal routines allow the operating system software
to send/receive characters to/from the console terminal.   The I/O routines
allow the primary bootstrap program to utilize the console boot drivers to
load the secondary bootstrap or operating system software.  
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Chapter 14

Error Handling

Errors detected by or reported to the KN7AA processor can occur any-
where in the system.  If errors occur during data movement within the
DECchip 21064 or its environment, they are detected by the DECchip
21064. Errors that occur during data movement external to the DECchip
21064 (B-cache, LEVI interface, and other nodes) are detected by the LEVI 
interface and reported to the DECchip 21064. 

The errors result in machine checks and are referred to error service rou-
tines in the PALcode.  The system control block (SCB) specifies the entry
points for the error service routines.  The handler for machine checks exe-
cutes in kernel mode, on the kernel stack, at IPL 31 (dec).  Table 14-1 lists
the error types and indicates their respective PALcode entry points.

Table 14-1 Error Entry Points to the PALcode Service Routines

This chapter covers the following topics: 

• Machine Check Overview

• DECchip 21064 Actions on Errors 

• PALcode Error Handling

The chapter discusses error conditions caused by failures at the hardware
level.  It also presents parse trees for all machine check errors to help the
programmer isolate the error to a particular fault.  However, it is not the
goal of this chapter to present an exhaustive discussion of error conditions. 
For further information on error handling, exceptions, interrupts, and ma-
chine checks, refer to the Alpha Architecture Reference Manual.  Consult
also the DEC 7000 AXP System Advanced Troubleshooting manual for in-
formation on software error flags. 

Error Type
    PALcode Entry Point 
      (Byte Offset, Hex) 

Processor Machine Check  

System Machine Check

Processor Correctable Machine Check1

670

660

630

1  The recovery method for this error is dependent on the DECchip 21064 revision num-
ber. 
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14.1  Machine Check Overview

The machine check exception is an indication of a serious system error. 
Under certain conditions the error may be recoverable.  Recoverability is a
function of the PALcode, the saved error state, and type of error.

Machine checks occur because of one of the following classes of errors:   
B-cache probes, CPU fill ECC errors, or external LSB control related errors
occurring synchronous to the outstanding DECchip 21064 EDAL (pin bus)
request. 

Notification of such errors happens in one of two ways.  The probe and fill
errors are internally generated machine checks done within the DECchip
21064.  The external LSB control error notification is done by the LEVI in-
terface using the cAck_h hard error response lines back to the outstanding
DECchip 21064 command/request. 

14.2  DECchip 21064 Actions on Errors

This section summarizes hardware flows for various error conditions han-
dled by the DECchip 21064.  When these errors occur during in-chip opera-
tions, they are detected by the DECchip 21064.  If they occur in off-chip in-
teractions, they may be recognized by the DECchip 21064.  These errors
may or may not be corrected by hardware. 

The DECchip 21064 reports corrected hardware errors through the
maskable corrected-read interrupt.  ABOX_CTL<CRD_EN>  controls
whether error hardware generates an interrupt request for corrected er-
rors.  HIER<CRE> is used to mask pending corrected-read interrupt re-
quests.  Corrected-read interrupts are masked when the CPU is in
PALmode.   

The DECchip 21064 reports uncorrected hardware errors by generating a
machine check trap to PALcode.  ABOX_CTL <MCHK_EN>  controls
whether machine checks are generated by uncorrectable hardware errors.  
The DECchip 21064-recognized hardware errors occur during interactions
between the DECchip 21064 BIU and off-chip hardware.  These errors fall
into three categories:

• Uncorrectable hardware errors recognized by system components while
processing requests generated by the DECchip 21064, and communi-
cated to the DECchip 21064 EDAL interface command acknowledge
field (cAck_h [2:0]).

• B-cache tag probe errors recognized by the DECchip 21064 during
DECchip 21064-controlled access of the B-cache.

— Tag address parity errors

— Tag control parity errors

• P-cache fill data errors recognized by the DECchip 21064.  These er-
rors could occur during the DECchip 21064 controlled reads of the
B-cache or during external read transactions between the DECchip
21064 and system components.

Errors may be recognized by system level components outside the context
of the DECchip 21064-generated requests.  These errors and their han-
dling depend upon the system implementation and are discussed in Sec-
tion 14.3. 
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14.2.1  Response to Single Errors

For the purpose of illustration, this section describes the response by the
DECchip 21064 to an error when its internal status registers are not al-
ready locked by some previous event.

Single-Bit I-Stream ECC Error

• Corrupted data put into I-cache;  block gets validated

• Machine check if enabled by ABOX_CTL<MCHK_EN>

• BIU_STAT:  FILL_ECC,  FILL_IRD, and FILL_CRD set

• FILL_ADDR <33:5> & BIU_STAT<FILL_QW> give bad QW’s address

• FILL_SYND contains syndrome bits associated with failing QW

• BIU_ADDR, BIU_STAT<6:0> locked;  contents are UNPREDICTABLE

• BC_TAG holds results of B-cache tag probe if B-cache was enabled for
this transaction

Single-Bit D-Stream ECC Error

• Corrupted data put into register file;  D-cache invalidated

• Machine check if enabled by ABOX_CTL<MCHK_EN>

• BIU_STAT:  FILL_ECC set;  FILL_IRD clear;  FILL_CRD set 

• FILL_ADDR <33:5> & BIU_STAT<FILL_QW> give bad QW’s address

• FILL_ADDR <4:2> contain PA bits<4:2> of location which the failing
load instruction attempted to read 

• FILL_SYND contains syndrome bits associated with failing quadword

• BIU_ADDR, BIU_STAT<6:0> locked;  contents are UNPREDICTABLE

• BC_TAG holds results of B-cache tag probe if B-cache was enabled for
this transaction

Double-Bit I-Stream ECC Error

• Corrupted data put into I-cache;  block gets validated

• Machine check if enabled by ABOX_CTL<MCHK_EN>

• BIU_STAT: FILL_DPERR set;  FILL_IRD set;  FILL_CRD clear

• FILL_ADDR<33:5> & BIU_STAT<FILL_QW> give bad QW’s address

• FILL_SYND identifies corrupted longword(s)

• BIU_ADDR, BIU_STAT<6:0> locked;  contents are UNPREDICTABLE

• BC_TAG holds results of B-cache tag probe if B-cache was enabled for
this transaction

Double-Bit D-Stream ECC Error

• Corrupted data put into register file;  D-cache invalidated

• Machine check if enabled by ABOX_CTL<MCHK_EN>
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• BIU_STAT:  FILL_DPERR set; FILL_IRD clear;  FILL_CRD clear

• FILL_ADDR<33:5> & BIU_STAT<FILL_QW> give bad QW’s address

• FILL_ADDR<4:2> contain PA bits<4:2> of location which the failing
load instruction attempted to read

• FILL_SYND identifies corrupted longword(s)

• BIU_ADDR, BIU_STAT<6:0> locked;  contents are UNPREDICTABLE

• BC_TAG holds results of B-cache tag probe if B-cache was enabled for
this transaction

BIU: Tag Address Parity Error

• Recognized at end of tag probe sequence

• Lookup uses predicted parity so transaction misses the B-cache

• BC_TAG holds results of B-cache tag probe 

• Machine check if enabled by ABOX_CTL<MCHK_EN> 

• BIU_STAT<BC_TPERR> set

• BIU_ADDR holds address

BIU:  Tag Control Parity Error

• Recognized at end of tag probe sequence

• Transaction forced to miss B-cache 

• BC_TAG holds results of B-cache tag probe

• Machine check if enabled by ABOX_CTL<MCHK_EN>

• BIU_STAT<BC_TCPERR> set

• BIU_ADDR holds address

BIU:  System External Transaction Terminated with CACK_SERR

• CRD interrupt posted if enabled by ABOX_CTL<CRD_EN>

• BIU_STAT:  BIU_SERR set;  BIU_CMD holds cReq_h <2:0>

• BIU_ADDR holds address

BIU:  System Transaction Terminated with CACK_HERR

• Machine check if enabled by ABOX_CTL<MCHK_EN>

• BIU_STAT<BIU_HERR> set;  BIU_CMD holds cReq_h <2:0>

• BIU_ADDR holds address

BIU:  I-Stream Parity Error (parity mode only)

• Data put into I-cache unchanged;  block gets validated

• Machine check if enabled by ABOX_CTL<MCHK_EN>

• BIU_STAT:  FILL_DPERR;  set, FILL_IRD set;  FILL_CRD clear
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• FILL_ADDR<33:5> & BIU_STAT<FILL_QW> give bad QW’s address

• FILL_SYND identifies failing longword(s)

• BIU_ADDR, BIU_STAT<6:0> locked;  contents are UNPREDICTABLE

• BC_TAG holds results of B-cache tag probe if B-cache was enabled for
this transaction

BIU:  D-Stream Parity Error (parity mode only)

• Data put into D-cache unchanged, block gets validated

• Machine check if enabled by ABOX_CTL<MCHK_EN>

• BIU_STAT:  FILL_DPERR set;  FILL_IRD clear

• FILL_ADDR <33:5> & BIU_STAT<FILL_QW> give bad QW’s address

• FILL_ADDR<4:2> contain PA bits<4:2> of location which the failing
load instruction attempted to read

• FILL_SYND identifies failing longword(s)

• BIU_ADDR, BIU_STAT<6:0> locked;  contents are UNPREDICTABLE

• BC_TAG holds results of B-cache tag probe if B-cache was enabled for
this transaction

14.2.2  Response to Multiple Errors

This section describes the DECchip 21064 response to multiple hardware
errors, that is, to errors that occur after an initial error and before execu-
tion of the PALcode exception handler associated with that initial error. 

The DECchip 21064 error reporting hardware consists of two sets of inde-
pendent error reporting registers.

• BIU_STAT<7:0> and BIU_ADDR contain information about the follow-
ing hardware errors:

— Correctable or uncorrectable errors reported with cAck_h <2:0> by
system components

— Tag probe parity errors in the tag address or tag control fields

• BIU_STAT<14:8>, FILL_ADDR, and FILL_SYND contain error infor-
mation about data fill errors.

The BC_TAG register contains information that can relate to any of the er-
ror conditions listed above.

Both sets of error registers can contain information about either corrected
or uncorrected hardware errors.  When a hardware error occurs, informa-
tion about that error is loaded into the appropriate set of error registers,
and those registers are locked against further updates until PALcode ex-
plicitly unlocks them.  If a second error occurs between the time that an
initial error occurs and the time that software unlocks the associated error
reporting registers, information about the second is lost.   

When the DECchip 21064 recognizes the second error, it still posts the re-
quired corrected-read interrupt or machine check;  however it does not
overwrite information previously locked in an error reporting register.  If
the second hardware error is not correctable and the error reporting regis-
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ter normally associated with this second error is already locked, the
DECchip 21064 will set a bit to indicate that information about an uncor-
rectable hardware error was lost.  Both sets of error registers have a bit to
report these fatal errors.

For example, BIU_STAT<FATAL1> is set by hardware to indicate that a
tag probe parity error or HARD_ERROR-terminated external transaction
occurred while BIU_STAT<6:0>, BIU_ADDR, and BC_TAG were already
locked due to some previous error.   If a SOFT_ERROR-terminated trans-
action occurs while these registers are locked, FATAL1 is not set, however.
Similarly, BIU_STAT<FATAL2> is set by hardware to indicate that a pri-
mary cache fill received either a parity or single- or double-bit ECC error
while BIU_STAT <13:8>, FILL_ADDR, FILL_SYND, and BC_TAG were
already locked.

14.3  PALcode Error Handling

A PALcode error handling routine is invoked when a machine check is
taken by the processor or other system components.  This section discusses
what these error routines are and offers guidance to the operating system
programmer in trying to diagnose the fault.  It covers the following  topics:

• Error log packets

• Processor machine check 670 errors

• System machine check 660 errors

• Processor correctable machine check 630 errors

Parse trees accompanying the discussions help the programmer isolate er-
rors to particular system faults. 

14.3.1  Error Log Packets

Error information is entered by PALcode in the form frames.  This section
provides the error log formats for various PALcode entry points and stack
frames for OpenVMS AXP and DEC OSF/1 AXP machine checks.  

When a machine check/interrupt occurs, the PALcode gathers information
to be included in the stack frame.  Upon entry to the service routine, R4
points to the frame.  

Subpackets may be appended to error log packets to provide additional in-
formation to help isolate a particular fault.  The following subpackets are
associated with error types discussed in this chapter:

• Processor Machine Check 670

DLIST—Disabled Resource List 
LSB—LSB Bus Snapshot
LMA—LSB Memory 
Log Adapter—LSB Adapter

• System Machine Check 660

DLIST—Disabled Resource List 
LSB—LSB Bus Snapshot
LMA—LSB Memory 
Log Adapter—LSB Adapter
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• Processor Correctable Machine Check 630

DLIST—Disabled Resource List 
LSB—LSB Bus Snapshot
LMA—LSB Memory 

Figure 14-1 shows the format of the 670/660 machine check error log
packet.

Figure 14-1 670/660 Machine Check Error Log Packet Format  

Figure 14-2 shows the stack frame of the 670/660 machine check. 

0
0

6
3

Errorlog Header
(## bytes)

:00

:##

Software Error Flags
(24 bytes)

:00

:nn

Common KN7AA Header Area
(64 bytes)

:00

:nn

KN7AA Machine Check Frame
(472 bytes OpenVMS, 488 bytes OSF/1)

:00

:nn

PALcode Revision

Machine Check Error Counters
(96 bytes)

:00

:nn

BXB-0635-93

LMMR Registers
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Figure 14-2 670/660 Stack Frame

Figure 14-3 shows the format of the 630 machine check error log packet. 
Figure 14-4 shows the stack frame of the 630 error log packet. 

Byte CountR

0
0

1
5

1
6

3
1

3
2

6
3

6
2

Proc$$offset = [110]Sys$$offset = [1A0]

Reason Mask

PAL Temps <1:31>

EXC_ADDR

EXC_SUM

EXC_MASK

ICCSR

PAL_BASE

HIER

HIRR

BXB-0639A-93

MM_CSR

DC_STAT

DC_ADDR

ABOX_CTL

BIU_STAT

BIU_ADDR

BIU_CTL

FILL_SYNDROME

FILL_ADDR

VA

BC_TAG

GBUS$: WHAMI <55:48>, PMASK <39:32>, INTR <23:16>, HALD <7:0>

LDEVLBER

LCNRLMERR

LBESR0LBESR1

LBESR2LBESR3

LBECR0LBECR1

LMODELLOCK

Offset

:      0

:+    8

:+  10

:+  18

:+110

:+118

:+120

:+128

:+130

:+138

:+140

:+148

:+150

:+158

:+160

:+168

:+170

:+178

:+180

:+188

:+190

:+198

:+1A0

:+1A8

:+1B0

:+1B8

:+1C0

:+1C8

:+1D0

Machine Check Frame Revision
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Figure 14-3 630 Error Log Packet Format  

Figure 14-4 630 Stack Frame 

0
0

6
3

Errorlog Header
(## bytes)

:00

:##

Software Error Flags
(24 bytes)

:00

:nn

Common KN7AA Header Area
(64 bytes)

:00

:nn

630 Machine Check Stack Frame
(88 bytes)

:00

:nn

PALcode Revision

Machine Check Error Counters
(96 bytes)

:00

:nn

BXB-0636-93

Reserved WHAMI

3
2

1
6

3
1

1
5

0
0

1
5

1
6

3
1

3
2

6
3

Byte CountR

6
2

Proc$$offset = [018]Sys$$offset = [058]

Machine Check Frame Revision

BIU_STAT

BIU_ADDR

BIU_CTL

FILL_SYND

FILL_ADDR

BC_TAG

DC_STAT

DC_ADDR

BXB-0637-93

Reason Mask
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14.3.2  Error Parse Trees

Parse trees (sorting diagrams) are used to represent how an error condi-
tion is examined by a deductive method.  The parse tree indicates which
registers and bits need to be checked to isolate and identify the error.  

The technique is illustrated in Example 14-1, which shows a portion of a
parse tree and assumes that LBER<NSES> is set (an error is detected). 

Example 14-1 Error Isolation Using a Parse Tree
 

Many error conditions can cause LBER<NSES> to be set.  To determine
the exact cause of the error, follow the arrows that branch out of
LBER<NSES>.  This requires reading the LMERR register.  If any one of
bits <10>, <9>, <6>, or a single bit in the field <3:0> is set in this register,
the source of the error is determined and no further inquiry is needed. 
However, if  LMERR <7> is set, reading of the LBECR1 register is re-
quired.  In this case, the states of bits LBECR1<CA> and LBCR1<CID>
are used to derive the source of error, as shown in the diagram.  If no bit-

1 2

BIU_STAT.FILL_ECC <8>

BIU_STAT.FILL_IRD <11>  

BC_TAG.HIT <0>

Not BC_TAG.HIT <0>

Should be a 630 or 670
   B-cache reference

BXB-0399-92

MCHK
660

Not BIU_STAT.FILL_IRD <11> 

BC_TAG.HIT <0>

Not BC_TAG.HIT <0>

Should be a 630 or 670
   B-cache reference

LBER.NSES <18> Select all...

ARB drop on write

ARB collision on write 

LEVI B map parity error (crash)

LEVI D map parity error (crash)

LMERR.ARBDROP <10>

LMERR.ARBCOL <9>

LMERR.BMAPPE <6>

LMERR.PMAPPE <3:0>

LBECR1.CA <37:35> = Read (000) and 
LBECR1.CID = Not_this_node

LEVI read of B-cache correctable 
   error

LEVI LSB victim write 
   correctable error (victim block)

LEVI LSB write correctable error

Inconsistent

LBECR1.CA <37:35> = Victim Write (011) and 
LBECR1.CID <14:11> = This_node

LBECR1.CA <37:35> = Write (001) and 
LBECR1.CID <14:11> = This_node

Else

A

B

Select one...

I-stream ECC error

D-stream ECC error 

LEVI read of B-cache correctable
   error from LSB REQ (Dirty blk)  

LMERR.BDATASBE <7>

Select all...
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state combination that isolates a particular single-bit error is found, then
an inconsistent error is indicated. 

Table 14-2 lists the registers that report error conditions.

Table 14-2 Registers That Report Error Conditions

14.3.3  Events Reported Through 670 Machine Checks

This section classifies and describes the errors that cause a 670 machine
check.  Figure 14-5 is the parse tree associated with the 670 machine
check.   Following the parse tree is a description of each type of error and,
when possible, a suggested recovery method. 

Register Location Address

BIU_STAT

DC_STAT

HIRR

LBER

LMERR

LBECR1

MERA

IOP_LBECR1

DECchip 21064

DECchip 21064

DECchip 21064

CPU module

CPU module

CPU module

Memory module

IOP module

Abox 10

Abox 12

Ibox 12

BB1 0040

BB  0C40

BB  0740

BB  2140

A00 0740

1BB is the node address of the module in hex.



14-12   Error Handling

Figure 14-5 Processor Machine Check 670 Parse Tree

1

BIU_STAT.FATAL1 <7>

DC_STAT <2:0> = 000
Cache fill second error

BXB-0414-92

MCHK
670

BIU_STAT.BIU_CMD = rblock (100) DECchip 21064 read B-tag
   address parity error

BIU_STAT.BC_TCPERR <3> Select one...

Bus interface unit second error

Select one...

BIU_STAT.FATAL2 <14>

BIU_STAT.BC_TPERR <2>

DC_STAT <2:0> = 111

BIU_STAT.BIU_CMD = wblock (101)

Else

DECchip 21064 rev. 2.1

DECchip 21064 rev. 3.0

DECchip 21064 write B-tag
   address parity error

BIU inconsistent error

BIU_STAT.BIU_CMD = wblock (101)

BIU_STAT.BIU_CMD = rblock (100) DECchip 21064 read B-tag
   control parity error
DECchip 21064 Write B-tag
   control parity errorElse
BIU inconsistent error

BIU_STAT.FILL_ECC <8> Select one...
BIU_STAT.FILL_IRD <11> I-stream ECC error

B

BC_TAG.HIT <0>
A

Not BC_TAG.HIT <0>

Not BIU_STAT.FILL_IRD <11> D-stream ECC error

D 

BC_TAG.HIT <0>
C

Not BC_TAG.HIT <0>
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Figure 14-5  Processor Machine Check 670 Parse Tree (Continued)

1

BIU_STAT.BIU_HERR <0> and
BIU_STAT.BIU_CMD = readblock <100>

LBER.NSES <18>

None of above

Read ARB drop

Read ARB collision

Inconsistent error (NSES)

1

BXB-0415-92

MCHK 670 Continued

LMERR.ARBDROP <10>

LMERR.ARBCOL <9>

Select all...

LBER.E <0> or
LBECR1.CID <14:11> = This_CPU

LBER.STE <10> or LBER.CNFE <11> or
LBER.CAE <13>

LSB cache protocol error

LSB synchronization failure

NXM to LSB I/O space 

LBER.SHE <14> and
LBER.DIE <15>

Multiple LSB command parity errors
LBER.CPE2 <6>

LBER.CPE <5>

LBER.CTCE <17>

LBER.UCE2 <2>

LBER.CDPE and LBECR1.CA = CSR Read

LBER.CDPE and LBECR1.CA = Private

LBER.CE2 <4>

Else

Select one...

LBER.NXAE <12> LSB nonexistent memory

NXM to LSB memory 

NXM to self I/O space 

LBECR.CA <37:35> = CSR Read

LBECR.CA <37:35> = Read

LBECR.CA <37:35> = Private

LSB command parity error

LSB control transmit check error

Multiple uncorrectable ECC errors

Read CSR parity error

CSR read to self

Multiple single ECC errors

Inconsistent (LSB)
LBER.E <0>

Previous system error latched
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Figure 14-5  Processor Machine Check 670 Parse Tree (Continued)

1 2 3

BIU_STAT.BIU_HERR <0> and
BIU_STAT.BIU_CMD = Writeblock <101>

Read ARB drop

Read ARB collision

LBER.NSES <18> and
LBECR.CA <37:35> = Read and
LBECR1.CID <14:11> = This_CPU 

LMERR.ARBDROP <10>

LMERR.ARBCOL <9>

None of above
Inconsistent error (NSES)

Write ARB drop

Write ARB collision

Inconsistent error (NSES)

LSB cache protocol error

LSB synchronization failure

1

LBER.NSES <18> and
LBECR.CA <37:35> = Write and
LBECR1.CID <14:11> = This_CPU 

LMERR.ARBDROP <10>

LMERR.ARBCOL <9>

None of above 

LBER.E <0> and
LBECR.CA <37:35> = Read and
LBECR1.CID <14:11> = This_CPU 

LBER.SHE <14> or
LBER.DIE <15>  

LBER.STE <10> or
LBER.CNFE <11> or
LBER.CAE <13>  

LBER.NXAE <12>   

Select one...

Select one...

Select all...

Read LSB nonexistent memory

BXB-0416-92

MCHK 670 Continued
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Figure 14-5  Processor Machine Check 670 Parse Tree (Continued)

1 2

Multiple LSB command  parity 
   errors
LSB read command parity error

LSB read control transmit check
   error
Multiple uncorrectable ECC errors 

Multiple single ECC errors

LBER.C <0> and
LBECR.CA <37:35 = Write and
LBECR1.CID <14:11> = This_CPU

LBER.CPE2 <6>

LBER.CPE <5>

LBER.CTCE <17>

LBER.UCE2 <2>

LBER.CE2 <4>

Else
Inconsistent (LSB) 

B-cache contains shared data

Select all...

LSB cache protocol error

LSB synchronization failure

Write LSB nonexistent memory

Multiple LSB command parity 
   errors
LSB write command parity error

LSB write control transmit check
   error

1

BXB-0417-92

MCHK 670 Continued2 3

LBER.NXAE <12>

LBER.CPE2 <6>

LBER.CPE <5>

LBER.CTCE <17>

LBER.UCE2 <2>

LBER.CE2 <4>

Else

LBER.SHE <14> or
LBER.DIE <15>

LBER.STE <10> or
LBER.CNFE <11> or
LBER.CAE <13>

Multiple uncorrectable ECC errors 

Multiple single ECC errors

Inconsistent (LSB) 
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Figure 14-5  Processor Machine Check 670 Parse Tree (Continued)

1 2

BIU_STAT.BIU_HERR <0> and
BIU_STAT.BIU_CMD = Loadlock <110>

I/O cycle

Select one...

LSB cache protocol error

LSB synchronization failure

LBER.E <0> and
LBECR.CA = CSR Write and
LBECR1.CID <14:11> = This_CPU

LBER.CPE <5>

LBER.CDPE <7>

LBER.NXAE <12>

Else

LMERR.ARBDROP <10>

LMERR.ARBCOL <9>

LMERR.BTAGPE <4>

LMERR.BSTATPE <5>

None of above 

Write CSR command parity error

Write CSR data parity error

Write CSR nonexistent memory

Inconsistent (LSB)

Previous system error latched

Select one...

Read ARB drop

Read ARB collision

1

BXB-0418-92

MCHK 670 Continued2

LBER.E <0>

LBER.SHE <14> or
LBER.DIE <15>

LBER.STE <10> or
LBER.CNFE <11> or
LBER.CAE <13>

LBER.NSES <18> 

LEVI B-cache tag parity error
   (lookup)
LEVI B-cache status parity error
   (lookup)
Inconsistent (NSES)
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Figure 14-5  Processor Machine Check 670 Parse Tree (Continued)

1 2

Getting memory data

Select all...

LSB cache protocol error

LSB synchronization failure

NXM to LSB memory

LBER.E <0> and
LBECR.CA = Read and
LBECR1.CID <14:11> = This_CPU

LBER.SHE <14> or
LBER.DIE <15>

Multiple LSB cmd parity errors

LSB command parity error

LSB control transmit check error

Multiple uncorrectable ECC errors

Multiple single ECC errors

Inconsistent (LSB)

Previous system error latched

Select all...

Read ARB drop

Read ARB collision

1

BXB-0419-92

MCHK 670 Continued2

LBER.NXAE <12>

LBER.CPE2 <6>

LBER.CPE <5>

LBER.CTCE <17>

LBER.UCE2 <2>

LBER.CE2 <4>

Else

LBER.STE <10> or
LBER.CNFE <11> or
LBER.CAE <13>

LBER.E <0>

BIU_STAT.BIU_HERR <0> and
BIU_STAT.BIU_CMD = Storecond <111>

LBER.NSES <18>
LMERR.ARBDROP <10>

LMERR.ARBCOL <9>

LMERR.BTAGPE <4>

LMERR.BSTATPE <5>

None of above

LEVI B-cache tag parity error 
   (lookup)
LEVI B-cache status parity error
   (lookup)
Inconsistent (NSES)

Select one...
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Figure 14-5  Processor Machine Check 670 Parse Tree (Continued)

Shared cache state

Select all... 

LSB cache protocol error

LSB synchronization failure

LSB nonexistent memory

LBER.E <0> and
LBECR.CA <37:35> = Write and
LBECR1.CID <14:11> = This_CPU

LBER.SHE <14> or
LBER.DIE <15>

Multiple LSB cmd parity errors

LSB command parity error

LSB control transmit check error

Multiple uncorrectable ECC errors

Multiple single ECC errors

Inconsistent (LSB)

Previous system error latched

Failure not understood

1

BXB-0420-92

MCHK 670 Continued2

LBER.NXAE <12>

LBER.CPE2 <6>

LBER.CPE <5>

LBER.CTCE <17>

LBER.UCE2 <2>

LBER.CE2 <4> 

Else

LBER.STE <10> or
LBER.CNFE <11> or
LBER.CAE <13>

Else

LBER.E <0>



       Error Handling   14-19

Figure 14-5  Processor Machine Check 670 Parse Tree (Continued)

HIRR.CRR <4>*

Else

I-stream read B-cache single-bit
   ECC error

I-stream read B-cache double-bit
   ECC error

Select one...

LBER.CE <3>

Not LBECR1.DIRTY <17>

LBECR1.DIRTY <17>

Select one...

I-stream LSB Read single bit ECC
   error, memory reference 

I-stream other CPU B-cache 
   reference

I-stream read EDAL single-bit 
   error

I-stream read memory double-bit
   error (forced bad LSB ECC)

I-stream read - other CPU
   B-cache writeback double-bit
   ECC error

I-stream read LSB double-bit 
   error

I-stream read EDAL double-bit
   error

BXB-0421-92

A B-cache hit I-stream (from BC_TAG.HIT <0>)

B

HIRR.CRR <4>*

LSB reference I-stream (from Not BC_TAG.HIT <0>)

Select one...

MERA.UCER <1>

Other CPU LMERR.BDATADBE <8>

Else

Else

LBER.UCE <1>

Else

* For a PASS2 DECchip 21064; PASS3 takes a 630 machine check.
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Figure 14-5  Processor Machine Check 670 Parse Tree (Continued)

HIRR.CRR <4>*

Else

D-stream read B-cache single-bit
   ECC error

D-stream read B-cache double-bit
   ECC error

Select one...

LBER.CE <3>

Not LBECR1.DIRTY <17>

LBECR1.DIRTY <17>

Select one...

D-stream memory read ECC error

D-stream other CPU B-cache 
   reference

D-stream read EDAL single-bit 
   error

D-stream read memory double-bit
   error (forced bad LSB ECC)

D-stream read - other CPU
   B-cache writeback double-bit
   ECC error

D-stream read LSB double-bit 
   error

D-stream read EDAL double-bit
   error

BXB-0422-92

C B-cache hit D-stream (from BC_TAG.HIT <0>)

D

* For a PASS2 DECchip 21064; PASS3 takes a 630 machine check.

LSB reference D-stream (from Not BC_TAG.HIT <0>)

Select one...

MERA.UCER <1>

Other CPU LMERR.BDATADBE <8>

Else

Else

LBER.UCE <1>

Else
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BIU Second Error

Description:  This bit sets when an external cycle is terminated with the
cAck_h pins indicating hard error or when a B-cache tag probe encounters
bad parity in the tag address or control RAM while an error bit which locks
the BIU_STAT register was already set.  Having this bit set indicates that
the system state for the second error was lost.  

Recovery procedure:  Since system state has been lost for at least one of
these fill errors recovery is not possible.

Restart condition:  None. Terminate the session.

Error logging:  Since this is just an additional status bit, no error logging is
suggested here.  Do the error logging according to the first error that was
latched.  Set software flag bit 95.

Cache Fill Second Error

Description:  The meaning of this error bit is different, based on the revi-
sion of the DECchip 21064. If the DECchip 21064 is rev 2.1, the occurrence
of this error indicates that multiple primary cache fill errors have oc-
curred.  Any fill error after the first will be lost.  Recovery is not possible. 
If the DECchip 21064 is rev 3.0, the occurrence of this bit means that a
multi-bit ECC error has been detected during a CPU chip cache fill.

Recovery procedure:   Since system state has been lost for at least one fill,
error recovery is not possible.

Restart condition:  None.  Terminate the session.

Error logging:  No error logging is suggested here.  Set software flag bit 94. 
The correct error logging of each case will be handled later on in the parse
tree.

DECchip 21064 Read B-Tag Address Parity Error

Description:  During a CPU B-cache lookup, the CPU detected an address
parity error within the tag.  BC_TAG holds the results of the probe.  The
physical address is latched in the BIU_ADDR register.  

Recovery procedure:   Software can attempt to recover the correct tag and
parity by looking at the same index into the B-map.  The correct tag can
then be loaded via the LTAGW register.  However, this is not advisable
and software should terminate the session.

Restart condition:  Crash the system.

Error logging:  For this error, the basic machine check entry will do.  All
error state associated with this error resides on this CPU module.  Set soft-
ware flag bit 1.  Also save the BIU_STAT and BIU_ADDR to the EEPROM
area reserved for machine check 670  detected tag and status errors.

DECchip 21064 Write B-Tag Address Parity Error

Description:  During a CPU B-cache lookup, the CPU detected an address
parity error within the tag.  BC_Tag holds the results of the probe. The
physical address is latched in the BIU_ADDR register.  

Recovery procedure:  Software can attempt to recover the correct tag and
parity by looking at the same index into the B-map.  The correct tag can



14-22   Error Handling

then be loaded via the LTAGW register.  However, this is not advisable
and software should terminate the session.

Restart condition:  Crash the system.

Error logging:  For this error, the basic machine check entry will do.  All
error state associated with this error resides on this CPU module.  Set soft-
ware flag bit 2.  Also save the BIU_STAT and BIU_ADDR to the EEPROM
area reserved for machine check 670 detected tag and status errors.

BIU Inconsistent Error

Description:  During a CPU B-cache lookup, the CPU detected either an
address parity error or control parity error within the tag.  However, with
this error, the BIU_CMD was not a type that should be doing a probe.

Recovery procedure:  None.

Restart condition: None.  System state appears corrupt.  Terminate the
session.

Error logging:  For this error, the basic machine check entry will do.  All
error state associated with this error resides on this CPU module.  Set soft-
ware flag bit 3.

DECchip 21064 Read B-Tag Control Parity Error

Description:  During a CPU B-cache lookup for a DECchip 21064 read, the
CPU detected a control parity error within the tag.  BC_Tag holds the re-
sults of the probe. The physical address is latched in the BIU_ADDR regis-
ter. 

Recovery procedure:  None.

Restart condition:  None.

Error logging:  For this error, the basic machine check entry will do.  All
error state associated with this error resides on this CPU module.  Set soft-
ware flag bit 4. Also save the BIU_STAT and BIU_ADDR to the EEPROM
area reserved for machine check 670 detected tag and status errors.

DECchip 21064 Write B-Tag Control Parity Error

Description:  During a CPU B-cache lookup for a DECchip 21064 write, the
CPU detected a control parity error within the tag.  BC_Tag holds the re-
sults of the probe. The physical address is latched in the BIU_ADDR regis-
ter. 

Recovery procedure:  None.

Restart condition:  None.

Error logging:  For this error, the basic machine check entry will do.  All
error state associated with this error resides on this CPU module.  Set soft-
ware flag bit 5. Also save the BIU_STAT and BIU_ADDR to the EEPROM
area reserved for machine check 670 detected tag and status errors.

I-Stream Read B-Cache Single-Bit ECC Error

Description:  During an I-stream reference with a B-cache hit, the
DECchip 21064 detected a correctable ECC error.  The failing syndrome is
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latched in the FILL_SYND register.  With a pass 2 DECchip 21064, this
error will be fatal.  No correction is accomplished.  With a pass 3 DECchip
21064, you will have taken the 630 error path and would not be here.
These error parse branches are in the machine check parse flow because
the DEC 7000 system initially shipped with the rev 2 DECchip 21064.

Recovery procedure:  None.

Restart condition:  Restart if corrected by PALcode or hardware.  Termi-
nate the user or system. 

Error logging:  For this error, the basic machine check entry will do.  All
error state associated with this error resides on this CPU module.  Set soft-
ware flag bit 6.

I-Stream Read B-Cache Double-Bit ECC Error

Description:  During an I-stream Reference with a B-cache hit, the
DECchip 21064 detected an uncorrectable ECC error.  The failing syn-
drome is latched in the FILL_SYND register.  This is a double-bit error,
and no correction can be performed.

Recovery procedure:  None.

Restart condition:  Terminate the session.

Error logging:  For this error, the basic machine check entry will do.  All
error state associated with this error resides on this CPU module.  Set soft-
ware flag bit 7.

I-Stream LSB Read Single-Bit ECC Error, Memory Reference

Description:  During an I-stream reference the DECchip 21064 detected a
correctable ECC error.  The failing syndrome is latched in the FILL_SYND
register.  With a pass 2 DECchip 21064, this error will be fatal.  No correc-
tion is accomplished.  With a pass 3 DECchip 21064, you will have taken
the 660 error path and would not be here. These error parse branches are
left in the machine check parse flow because the DEC 7000 system initially
shipped with the rev 2 DECchip 21064.

From parsing the error, it was found that the bus cycle associated with this
error had a CE error. Also, the dirty bit in LBECR1 was clear which im-
plies that a memory supplied the data.  Operating system software should
look and figure out which memory controller is associated with the latched
address and append a memory controller subpacket from the associated
memory. 

Recovery procedure:  None.

Restart condition:  Restart if corrected by PALcode or hardware.  Termi-
nate the user or session. 

Error logging:  For this error, the basic machine check entry with an LSB
subpacket and an LMA subpacket will be required.  Set software flag bit 8,
96 (LSB), and 97 (LMA) subpacket present bits.  

Additional parsing:  Memory address correlation.
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I-Stream Read Other CPU B-Cache Single-Bit ECC Error

Description:  During an I-stream reference the DECchip 21064 detected a
correctable ECC error.  The failing syndrome is latched in the FILL_SYND
register.  With a pass 2 DECchip 21064, this error will be fatal.  No correc-
tion is accomplished.  With a pass 3 DECchip 21064, you will have taken
the 660 error path and would not be here. These error parse branches are
left in the machine check parse flow because the DEC 7000 system initially
shipped with the pass 2 DECchip 21064.  Note that this error was caused
by a B-cache single-bit error that was sourced from another CPU node. 
The other CPU will be attempting to parse this error via its 660 error han-
dler. 

Recovery procedure:  None.

Restart condition:  Restart if corrected by PALcode.  Terminate the session.

Error logging:  For this error, the basic machine check entry with an LSB
subpacket will be required.  Set software flag bit 9 and 96 (LSB).

Additional parsing:  BDATASBE flow.

I-Stream Read EDAL Single-Bit ECC Error

Description:  During an I-stream reference the DECchip 21064 detected a
correctable ECC error.  The failing syndrome is latched in the FILL_SYND
register.  With a pass 2 DECchip 21064, this error will be fatal.  No correc-
tion is accomplished.  With a pass 3 DECchip 21064, you will have taken
the 630 error path and would not be here. These error parse branches are
left in the machine check parse flow because the DEC 7000 system initially
shipped with the rev 2 DECchip 21064.  Note that this error was caused by
the EDAL data path.  Note there were no LSB errors on this data transfer.

Recovery procedure:  None.

Restart condition:  Terminate the session.

Error logging:  For this error, the basic machine check entry is fine.  Set
software flag bit 11.

I-Stream Read Memory Double-Bit ECC Error

Description:  During an I-stream reference the DECchip 21064 detected an
uncorrectable ECC error.  The failing syndrome is latched in the
FILL_SYND register. This is fatal to the user or system as determined by
the operating system.  This error was caused by a memory RAM double-
bit error.

Recovery procedure:  None.

Restart condition:  Terminate the user or session. 

Error logging:  For this error, the basic machine check entry with an LMA
subpacket (the one associated with the error) will be required.  Set soft-
ware flag bit 12 and 97, the LMA subpacket present bit.

Additional parsing:  Memory address correlation.

I-Stream Read Other CPU B-Cache Double-Bit ECC Error

Description:  During an I-stream reference the DECchip 21064 detected an
uncorrectable ECC error.  The failing syndrome is latched in the
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FILL_SYND register.  This is fatal to the user or system as determined by
the operating system.  Note that this error was caused by another CPU’s
B-cache double-bit error.   The other CPU will be attempting to parse this
error via its 660 error handler. 

Recovery procedure:  None.

Restart condition:  Terminate the user or session.

Error logging:  For this error, the basic machine check entry with an LSB
subpacket will be required.  Set software flag bit 13 and 96 (LSB
subpacket).

Additional parsing:  BDATADBE flow.

I-Stream Read LSB Double-Bit ECC Error

Description:  During an I-stream reference the DECchip 21064 detected an
uncorrectable ECC error.  The failing syndrome is latched in the
FILL_SYND register. This is fatal to the user or system as determined by
the operating system.  Note that this error was caused by the LSB. 

Recovery procedure:  None.

Restart condition:  Terminate the user or session.

Error logging:  For this error, the basic machine check entry with an LSB
subpacket will be required.  Set software flag bit 14 and 96 (LSB
subpacket).

Additional parsing:  Memory address correlation.

I-Stream Read EDAL Double-Bit ECC Error

Description:  During an I-stream reference the DECchip 21064 detected an
uncorrectable ECC error.  The LSB was the source of the data.  However,
the data was correct (no errors) off of the LSB.  Because of this, it is as-
sumed the EDAL data path broke the data.  The failing syndrome is
latched in the FILL_SYND register.  This is fatal to the user or system as
determined by the operating system.  

Recovery procedure:  None.

Restart condition:  Terminate the user or session. 

Error logging:  For this error, the basic machine check entry is fine.  Set
software flag bit 15.

D-Stream Read B-Cache Single-Bit ECC Error

Description:  During a D-stream reference with a B-cache hit, the DECchip
21064 detected a correctable ECC error.  The failing syndrome is latched in
the FILL_SYND register.  With a pass 2 DECchip 21064, this error will be
fatal.  No correction is accomplished.  With a pass 3 DECchip 21064, you
will have taken the 630 error path and would not be here.  These error
parse branches are left in the machine check parse flow because the DEC
7000 system initially shipped with the rev 2 DECchip 21064.

Recovery procedure:  None.

Restart condition:  Terminate the session.
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Error logging:  For this error, the basic machine check entry will do.  All
error state associated with this error resides on this CPU module.  Set soft-
ware flag bit 16.

D-Stream Read B-Cache Double-Bit ECC Error

Description:  During a D-stream reference with a B-cache hit, the DECchip
21064 detected an uncorrectable ECC error.  The failing syndrome is
latched in the FILL_SYND register.  Note that this is a double-bit error,
and no correction can be performed.

Recovery procedure:  None.

Restart condition:  Terminate the user or session. 

Error logging:  For this error, the basic machine check entry will do.  All
error state associated with this error resides on this CPU module.  Set soft-
ware flag bit 17.

D-Stream LSB Read Single-Bit ECC Error, Memory Reference

Description:  During a D-stream reference the DECchip 21064 detected a
correctable ECC error.  The failing syndrome is latched in the FILL_SYND
register.  With a pass 2 DECchip 21064, this error will be fatal.  No correc-
tion is accomplished.  With a pass 3 DECchip 21064, you will have taken
the 660 error path and would not be here.  These error parse branches  are
left in the machine check parse flow because the DEC 7000 system initially
shipped with the pass 2 DECchip 21064.  Note that this error was caused
by an LSB single-bit error in which a memory was the source.

Recovery procedure:  None.

Restart condition:  Terminate the session.

Error logging:  For this error, the basic machine check entry with an LMA
subpacket (the one associated with the error) will be required.  Set soft-
ware flag bit 18 and 97, the LMA subpacket present bit.

Additional parsing:  Memory address correlation.

D-Stream Read Other CPU B-Cache Single-Bit ECC Error

Description:  During a D-stream reference the DECchip 21064 detected a
correctable ECC error.  The failing syndrome is latched in the FILL_SYND
register.  With a pass 2 DECchip 21064, this error will be fatal.  No correc-
tion is accomplished.  With a pass 3 DECchip 21064, you will have taken
the 660 error path and would not be here.  These error parse branches are-
left in the machine check parse flow because the DEC 7000 system initially
shipped with the rev 2 DECchip 21064.  Note that this error was caused by
another CPU’s B-cache.  The other CPU will be attempting to parse this
error via its 660 error handler. 

Recovery procedure:  None.

Restart condition:  Terminate the session.

Error logging:  For this error, the basic machine check entry with an LSB
subpacket will be required.  Set software flag bit 19 and 96,  the LSB
subpacket present bit. 

Additional parsing:  BDATASBE flow.
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D-Stream Read EDAL Single-Bit Error

Description:  During a D-stream reference the DECchip 21064 detected a
correctable ECC error.  The failing syndrome is latched in the FILL_SYND
register.  With a pass 2 DECchip 21064, this error will be fatal.  No correc-
tion is accomplished.  With a pass 3 DECchip 21064, you will have taken
the 630 error path and would not be here.  These error parse branches are
left in the machine check parse flow because the DEC 7000 system initially
shipped with the pass 2 DECchip 21064.  Note that this error was caused
by the EDAL data path.  There were no LSB errors.

Recovery procedure:  None.

Restart condition:  Restart if corrected by PALcode or hardware.  Termi-
nate the user or system.

Error logging:  For this error, the basic machine check entry is fine.  Set
software flag bit 21.

D-Stream Read Memory Double-Bit ECC Error

Description:  During a D-stream reference the DECchip 21064 detected an
uncorrectable ECC error.  The failing syndrome is latched in the
FILL_SYND register.  This is fatal to the user or system as determined by
the operating system.  This error was caused by a memory RAM double-bit
error. 

Recovery procedure:  None.

Restart condition:  Terminate the user or session.

Error logging:  For this error, the basic machine check entry with an LMA
subpacket (the one associated with the error) will be required.  Set soft-
ware flag bit 22 and 97, the LMA subpacket present bit.

Additional parsing:  Memory address correlation.

D-Stream Read Other CPU B-Cache Double-Bit ECC Error

Description:  During a D-stream reference the DECchip 21064 detected an
uncorrectable ECC error.  The failing syndrome is latched in the
FILL_SYND register.  This is fatal to the user or system as determined by
the operating system.  Note that this error was caused by a B-cache
double-bit error which was sourced from another CPU node. The other
CPU will be attempting to parse this error via its 660 error handler. 

Recovery procedure:  None.

Restart condition:  Terminate the user or session.

Error logging:  For this error, the basic machine check entry with an LSB
subpacket will be required.  Set software flag bit 23 and 96,the LSB
subpacket present bit. 

D-Stream Read LSB Double-Bit ECC Error

Description:  During a D-stream reference the DECchip 21064 detected an
uncorrectable ECC error.  The failing syndrome is latched in the
FILL_SYND register. This is fatal to the user or system as determined by
the operating system.  Note that this error was caused by the LSB. 
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Recovery procedure:  None.

Restart condition:  Terminate the user or session.

Error logging:  For this error, the basic machine check entry with an LSB
subpacket will be required.  Set software flag bit 24 and 96, the LSB
subpacket present bit. 

Additional parsing:  Memory address correlation.

D-Stream Read EDAL Double-Bit ECC Error

Description:  During a D-stream reference the DECchip 21064 detected an
uncorrectable ECC error.  The failing syndrome is latched in the
FILL_SYND register.  This is fatal to the user or system as determined by
the operating system.  Note that this error was caused by the EDAL data
path. The source of the data was the LSB but the UCE bit was not set, so
the data came off the LSB with no error. 

Recovery procedure:  None.

Restart condition:  Terminate the user or session.

Error logging:  For this error, the basic machine check entry is fine.  Set
software flag bit 25.

Read Arbitration Drop

Description:  During a CPU readblock command, the LEVI arbitrated for
the bus, assumed someone else won based on the requesting nodes, and
then saw that the bus did not have a command address cycle asserted. 
This is a fatal error condition.

Recovery procedure:  None.

Restart condition:  None. 

Error logging:  For this error, a basic machine check along with an LSB
subpacket will be sufficient.  Set software flag bits 96 (LSB subpacket), 40
(NSES), and 41 (arbdrop).

Read Arbitration Collision

Description:  An LSB arbitration collision was detected by the LEVI while
the LEVI was attempting to go get read data to do a B-cache fill in an at-
tempt to satisfy a read request from the CPU.  Arbitration collision is con-
sidered fatal. 

Recovery procedure:   None.

Restart condition:  None.

Error logging:  For this error, a basic machine check along with an LSB
subpacket will be sufficient.  Set software flag bits 96 (LSB subpacket), 40
(NSES), and 42 (arbcol).

Inconsistent Error—NSES

Description:  During a DECchip 21064 readblock command, the Node-
Specific Error bit in the LBER register was set.   However, no supporting
error bits were set to further isolate the cause of the error.  This is an in-
consistent state that is considered fatal. 
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Recovery procedure:  None.

Restart condition:  None.

Error logging:  For this error, a basic machine check along with an LSB
subpacket will be sufficient.  Set software flag bits 96 (LSB subpacket), 40
(NSES), and 45 (inconsistent).

LSB Cache Protocol Error

Description:  During an outstanding  CPU readblock request, the LEVI de-
tected an ilbranchal assertion of either Shared or Dirty by another CPU
node. This is considered fatal to the system.  Cache state is probably cor-
rupt. 

Recovery procedure:  None.

Restart condition:  None.

Error logging:  For this error, a basic machine check along with an LSB
subpacket will be sufficient.  Set software flag bits 96 (LSB subpacket), 48
(LSB ERR Read), 31 (DECchip 21064 readblock), and 51/52 (Shared/Dirty)
if appropriate.

LSB Synchronization Failure

Description:  During an outstanding CPU readblock request, the LEVI de-
tected either a stall error, confirmation error, or command/address error.
These errors imply that LSB synchronization was lost.  These errors prob-
ably signify that some other internal node errors have occurred elsewhere
in the system.  These are considered fatal errors.

Recovery procedure:  None.

Restart condition:  None.

Error logging:  For this error, a basic machine check with an LSB snapshot
will be fine.  Set software flag bits 96 (LSB subpacket), 31 (readblock), 48
(LSB ERR read), and 53/54/55 (stall, confirmation,  command/address) if
appropriate. 

NXM to LSB I/O Space

Description:  During an outstanding DECchip 21064 readblock command,
the LEVI detected that the LSB request did not get a confirmation.  This
results in an NXM.  The command on the LSB was a CSR read so this read
was actually going to an LSB I/O address.  Use the latched address in the
LBECSR register to determine which I/O address the request was sent to.

Recovery procedure:  Clear error bits.

Restart condition:  Restart the read if the address was to an existent piece
of hardware.

Error logging:  For this error, a basic machine check with an LSB
subpacket will do.  If the I/O address was to the IOP, then provide a log
adapter subpacket also.  Set software flag bits 96 (LSB), 31 (DECchip
21064 readblock), 47 (LSB ERR Read CSR), 56 (NXM CSR Read).  If the 
IOP is the target address, then set software flag bit 98 (log adapter pre-
sent) bit also. 

Additional parsing:  I/O address parse.
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NXM to LSB Memory

Description:  During an outstanding DECchip 21064 readblock command,
the LEVI detected that the LSB request did not get a confirmation.  This
results in an NXM.  The command on the LSB was a read, so this was go-
ing to an LSB MEM address.  Use the latched address in the LBECSR reg-
ister to determine if this is a valid address.  If the address is valid, it would
appear that a memory is at fault.  If the address is not valid, this would
lean toward either a software problem or a hardware address generation
problem.

Recovery procedure:  None

Restart condition:  If expected, continue, else crash the system. 

Error logging:  The basic machine check, LSB subpacket and LMA
subpacket will be provided.  Set software flag bits 96 (LSB subpacket), 97
(LMA subpacket), 31 (DECchip 21064 readblock), 48 (LSB ERR read), 57
(NXM-mem read).

Additional parsing:  Memory address correlation.

NXM to Self I/O Space

Description:  This CPU executed an I/O space read to its own I/O space. 
These transactions use the LSB.  In this case the read did not get confir-
mation on the LSB.  

Recovery procedure:   None.

Restart condition:  None.

Error logging:  For this error a basic machine check entry will do.  Set soft-
ware flag bits 31 (DECchip 21064 readblock), 46 (LSB ERR, private), 58
(NXM, private space). 

Multiple LSB Command Parity Errors

Description:  This branch of the parse tree is for information purposes only. 
It just shows that multiple command parity errors have occurred.

Recovery procedure:  None.

Restart condition:  None.

Error logging:  For this branch, just set software flag bit 59 which indi-
cates that this error has occurred.  

LSB Command Parity Errors

Description:  An LSB command parity error was detected on a bus cycle
during which this CPU was the commander.  This results in a cAck_h hard
error being sent to the DECchip 21064, which causes a machine check
through 670.

Recovery procedure:  None.

Restart condition:  None.

Error logging:  Log a basic machine check and an LSB subpacket.  Set soft-
ware flags 96 (LSB), 60 (CPE), 48 (LSB ERR, read), 31 (DECchip 21064
readblock).
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LSB Control Transmit Check Error

Description:  This module detected that an LSB control line(s) it was driv-
ing did not match with what it had seen on the LSB bus.  This is a fatal
condition.  Cache coherence could be lost. 

Recovery procedure:  None.

Restart condition:  None.

Error logging:  A basic machine check and an LSB snapshot is required. 
Set software flag bits 96 (LSB subpacket),  48 (LSB ERR, read), 31
(DECchip 21064 readblock), and 61 (CTCE).

Multiple Uncorrectable ECC Errors

Description:  Multiple double-bit ECC errors have been detected on the
LSB bus.  The error state for all errors occurring after the first is lost. 
This is fatal.

Recovery procedure:  None.

Restart condition:  None.

Error logging:   Set software bit 62.  Other branches of the parse tree will
describe what logging to do and also what other appropriate software bits
to set.

CSR Data Parity Error

Description:  During a read to an LSB-based I/O register, the data cycle
contained a parity error. This error could have occurred when referencing
another LSB node or to the node doing the read.  In the first case, the LSB
command would be a CSR read.  In the latter case, the LSB command
would be private.

Recovery procedure:  None.

Restart condition:  None.

Error logging:  For this error, log the basic machine check, an LSB snap-
shot and either an LMA subpacket or log adapter subpacket depending on
where the I/O address pointed to.  If it was to another CPU, the LSB snap-
shot will be sufficient.  Set software flags 96 (LSB), 63 (CDPE),  31
(DECchip 21064 read), and 47 (LSB Read CSR) or 46 (LSB private) de-
pending on the LSB cycle type.  If the I/O address was to the IOP (node 8)
set software flag 98 (log adapter subpacket).  If the I/O address is a mem-
ory, log an LMA subpacket and set software flag 97 (LMA subpacket). 

Additional parsing:  I/O address correlation.

Multiple Single-Bit ECC Errors

Description:  Multiple single-bit LSB ECC errors have been detected on the
LSB bus.  These could be caused by a variety of error conditions.  The error
state for all errors occurring after the first is lost.  For systems with a rev 2
DECchip 21064, this is fatal because the source and destination of the er-
ror cannot be determined for the subsequent errors.   For systems with rev
3 DECchip 21064s, CE2 is NOT fatal.  All recipients of the data perform
correction,  thus all data with single-bit errors will have been corrected. 
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The system still loses the information for error state determination but can
resume operation because all data is corrected by hardware.

Recovery procedure:  None.

Restart condition:  None.

Error logging:  Error logging will be done by another parse tree branch. 
Just set software flag bit 64 if this branch is true.

Inconsistent Error—LSB

Description:  Attempting to parse the possible error conditions for a ma-
chine check while the DECchip 21064 has an outstanding readblock.  It
was found that no error cases were present that should have caused the
system to machine check. 

Recovery procedure:  None.

Restart condition:  None.

Error logging:  Log a basic machine check.  Set software flag bit 70 (incon-
sistent error), 31 (readblock), and 48 (LSB ERR, read).

Previous System Error Latched

Description:  When parsing the reasons for a machine check, it was found
that the latched LSB bus state did not correspond to the CPU detecting the
machine check.  It is assumed that a previous LSB error has latched all
the bus registers.  Multiple errors must have occurred.

Recovery procedure:  None.

Restart condition:  None.

Error logging:  Log a basic machine check and an LSB snapshot.  Set soft-
ware flag bits 96 (LSB), 31 (DECchip 21064 readblock), and 69 (previous
system error). 

Read Arbitration Drop

Description:  An LSB arbitration drop was detected by the LEVI while the
LEVI was attempting to get read data to do a B-cache fill to satisfy a write
request from the CPU.  Arbitration drop is considered fatal.

Recovery procedure:  None.

Restart condition:  None.

Error logging:  A basic machine check along with an LSB snapshot will do. 
Set software flag bits 96 (LSB subpacket), 32 (DECchip 21064 writeblock),
48 (LSB ERR, read), 40 (NSES), and 41 (arbdrop).

Read Arbitration Collision

Description:  An LSB arbitration collision was detected by the LEVI while
the LEVI was attempting to get read data to do a B-cache fill to satisfy a
write request from the CPU.  Arbitration collision is considered fatal. 

Recovery procedure:  None.

Restart condition:  None.
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Error logging:  A basic machine check along with an LSB snapshot will do.
Set software flag bits 96 (LSB subpacket), 32 (DECchip 21064 writeblock),
48 (LSB ERR, read), 40 (NSES), and 42 (arbcol).

Inconsistent Error—NSES

Description:  During the LEVI sourcing data from the LSB to satisfy a
DECchip 21064 writeblock, the NSES bit was set indicating that an inter-
nal KN7AA error was detected.  However, no supporting error bits were
set to indicate this condition.  This is an inconsistent error condition and is
fatal.

Recovery procedure:  None.

Restart condition:  None.

Error logging:  A basic machine check along with an LSB snapshot will do.
Set software flag bits 96 (LSB subpacket), 32 (DECchip 21064 writeblock),
48 (LSB ERR, read), 40 (NSES), and 45 (inconsistent).

Write Arbitration Drop

Description:  An LSB arbitration drop was detected by the LEVI while the
LEVI was attempting to write data to the LSB to satisfy a write request
from the CPU.  Arbitration drop is considered fatal.  Note that this write
was going to the LSB because the B-cache contained shared data.

Recovery procedure:  None.

Restart condition:  None.

Error logging:  A basic machine check along with an LSB snapshot will do.
Set software flag bits 96 (LSB subpacket), 32 (DECchip 21064 writeblock),
49 (LSB ERR, write), 40 (NSES), and 41 (arbdrop).

Write Arbitration Collision

Description:  An LSB arbitration collision was detected by the LEVI while
the LEVI was attempting to write data to the LSB to satisfy a write re-
quest from the CPU.  Arbitration collision is considered fatal.   Note that
this write was going to the LSB because the B-cache contained shared
data.

Recovery procedure:  None.

Restart condition:  None.

Error logging:  A basic machine check along with an LSB snapshot will do.
Set software flag bits 96 (LSB subpacket), 32 (DECchip 21064 writeblock),
49 (LSB ERR, write), 40 (NSES), and 42 (arbcol).

Inconsistent Error—NSES

Description:  During the LEVI attempting to write data to the LSB to sat-
isfy a DECchip 21064 writeblock, the NSES bit was set indicating that an
internal KN7AA error was detected.  However, no supporting error bits
were set to indicate this condition.  This is an inconsistent error condition
and is fatal.  Note that this write was going onto the LSB because the B-
cache contained shared data.
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Recovery procedure:  None.

Restart condition:  None.

Error logging:  A basic machine check along with an LSB snapshot will do.
Set software flag bits 96 (LSB subpacket), 32 (DECchip 21064 writeblock),
49 (LSB ERR, write), 40 (NSES), and 45 (inconsistent).

LSB Cache Protocol Error

Description:  During an outstanding  CPU writeblock request, the LEVI,
when attempting to read LSB data, detected an assertion of either Shared
or Dirty by another node.  This is considered fatal to the system.  Cache
state is probably corrupt. 

Recovery procedure:  None.

Restart condition:  None.

Error logging:  For this error, a basic machine check along with an LSB
subpacket will be sufficient.  Set software flag bits 96 (LSB subpacket), 48
(LSB ERR, read), 32 (writeblock), and 51/52 (Shared/Dirty error) if appro-
priate. 

LSB Synchronization Failure

Description:  During an outstanding CPU writeblock request, the LEVI de-
tected either a stall error, confirmation error, or command/address error
while the LEVI was attempting to do an LSB read.  These errors imply loss
of LSB synchronization.  They probably signify that some other internal
node errors have occurred elsewhere in the system.  These are considered
fatal errors. 

Recovery procedure:  None.

Restart condition:  None.

Error logging:  For this error, a basic machine check with an LSB snapshot
will be fine.  Set software flag bits 96 (LSB subpacket), 32 (DECchip 21064
writeblock), 48 (LSB ERR, read), and 53/54/55 (stall, confirmation, com-
mand/address) if appropriate. 

Read LSB Nonexistent Memory

Description:  During an outstanding DECchip 21064 writeblock command,
the LEVI detected that the LSB read request did not get a confirmation. 
This results in an NXM.  The command on the LSB was a read so this read
was actually going to an LSB MEM address.  Use the latched address in
the LBECSR register to determine if this is a valid address.  If the address
is valid, it would appear that a memory is at fault.  If the address is not
valid, this would lean toward either a software problem or a hardware ad-
dress generation problem.  If the address is within memory range, include
the memory registers for the associated memory controller. 

Recovery procedure:  None.

Restart condition:  If expected, continue, else crash the system.

Error logging:  The basic machine check, LSB subpacket and LMA
subpacket will be provided.  Set software flag bits 96 (LSB subpacket), 97
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(LMA subpacket), 32 (DECchip 21064 writeblock), 48 (LSB ERR, read),
and 57 (NXM-mem read). 

Additional parsing:  Memory address correlation.

LSB Command Parity Errors

Description:  An LSB command parity error was detected on a bus cycle in
which this CPU was the commander.  This condition results in CACK
HERR being sent to the DECchip 21064, which causes a machine check
through 670.

Recovery procedure:  None.

Restart condition:  None.

Error logging:  Log a basic machine check and an LSB subpacket.  Set soft-
ware flags 96 (LSB), 60 (CPE), 48 (LSB ERR, read), and 32 (DECchip
21064 writeblock).

LSB Control Transmit Check Error

Description:  This module detected that an LSB control line(s) it was driv-
ing did not match with what it had seen on the LSB bus.  This is a fatal
condition.  Cache coherence could be lost. 

Recovery procedure:   None.

Restart condition:  None.

Error logging:  A basic machine check and an LSB snapshot is required. 
Set software flag bits 96 (LSB),  48 (LSB ERR, read), 32 (DECchip 21064
writeblock), and 61 (CTCE).

Inconsistent—LSB

Description:  Attempting to parse the possible error conditions for a ma-
chine check while the DECchip 21064 has an outstanding writeblock, it
was found that no error cases were present which would have caused the
system to machine check. 

Recovery procedure:  None.

Restart condition:  None.

Error logging:  Log a basic machine check.  Set software flag bit 32
(DECchip 21064 writeblock), 48 (LSB ERR, read), and 70 (inconsistent er-
ror).

LSB Cache Protocol Error

Description:  During an outstanding CPU writeblock request, the LEVI
when attempting to write LSB data detected an assertion of either Shared
or Dirty by another node.  This is considered fatal to the system.   Cache
state is probably corrupt. 

Recovery procedure:   None.

Restart condition:  None.

Error logging:  For this error, a basic machine check along with an LSB
subpacket will be sufficient.  Set software flag bits 96 (LSB subpacket), 49
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(LSB ERR, write), 32 (writeblock), and 51/52 (Shared/Dirty error) based on
the bit(s) set.  

LSB Synchronization Failure

Description:  During an outstanding CPU writeblock request, the LEVI de-
tected either a stall error, confirmation error, or command/address error
while the LEVI was attempting to do an LSB write.  These errors imply
loss of LSB synchronization.  They probably signify that some other inter-
nal node errors have occurred elsewhere in the system.  These are consid-
ered fatal errors. 

Recovery procedure:  None.

Restart condition:  None.

Error logging:  For this error, a basic machine check with an LSB snapshot
will be fine.  Set software flag bits 96 (LSB subpacket), 32 (writeblock), 49
(LSB ERR, write), and 53/54/55 (stall, confirmation, command/address) if
appropriate. 

Write LSB Nonexistent Memory

Description:  During an outstanding DECchip 21064 writeblock command,
the LEVI detected that the LSB write request did not get a confirmation. 
This condition results in an NXM.  The command on the LSB was a write, 
so this was actually going to an LSB MEM address.  Use the latched ad-
dress in the LBECSR register to determine if this is a valid address.   If
the address is valid, it would appear that a memory is at fault.  If the ad-
dress is not valid, this would lean toward either a software problem or a
hardware problem.  If the address is within memory range, include the
memory registers for the associated memory controller.

Recovery procedure:   None.

Restart condition:  None.

Error logging:  The basic machine check, LSB subpacket and LMA
subpacket will be provided.  Set software flag bits 96 (LSB subpacket), 97
(LMA subpacket), 32 (DECchip 21064 writeblock), 49 (LSB ERR, write),
and 66 (NXM-mem write). 

Additional Parsing:  Memory address correlation.

LSB Command Parity Errors

Description:  An LSB command parity error was detected on an LSB bus
write cycle in which this CPU was the commander.  This results in CACK
HERR being sent to the DECchip 21064, which causes a machine check
through 670. 

Recovery procedure:  None.

Restart condition:  None.

Error logging:  Log a basic machine check and an LSB subpacket.  Set soft-
ware flags 96 (LSB), 60 (CPE), 49 (LSB ERR, write), and 32 (DECchip
21064 writeblock).
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LSB Control Transmit Check Error

Description:  This module detected that an LSB control line(s) it was driv-
ing did not match with what it had seen on the LSB bus.  This is a fatal
condition.  Cache coherence could be lost. 

Recovery procedure:  None.

Restart condition:  None.

Error logging:  A basic machine check and an LSB snapshot is required. 
Set software flag bits 96 (LSB),  49 (LSB ERR, write), 32 (DECchip 21064
writeblock), and 61 (CTCE).

Inconsistent—LSB

Description:  Attempting to parse the possible error conditions for a ma-
chine check while the DECchip 21064 has an outstanding writeblock, it
was found that no error cases were present which would have caused the
system to machine check. 

Recovery procedure:  None.

Restart condition:  None.

Error logging:  Log a basic machine check.  Set software flag bits 32
(DECchip 21064 writeblock), 49 (LSB ERR, write), and 70 (inconsistent er-
ror).

LSB Cache Protocol Error

Description:  During an outstanding CPU writeblock request, the LEVI,
when attempting to do a write CSR, detected an ilbranchal assertion of
either Shared or Dirty by another node. This is considered fatal to the sys-
tem.  Cache state is probably corrupt. 

Recovery procedure:  None.

Restart condition:  None.

Error logging:  For this error, a basic machine check along with an LSB
subpacket will be sufficient.  Set software flag bits 96 (LSB subpacket), 50
(LSB ERR, write CSR), 32 (writeblock), and 51/52 (Shared/Dirty error)
based on the bit(s) set. 

LSB Synchronization Failure

Description:  During an outstanding CPU writeblock request, the LEVI de-
tected either a stall error, confirmation error, or command/address error
while the LEVI was attempting to do an LSB write CSR.  These errors im-
ply loss of LSB synchronization.  They probably signify that some other in-
ternal node errors have occurred elsewhere in the system.  These are con-
sidered fatal errors. 

Recovery procedure:  None.

Restart condition:  None.

Error logging:  For this error, a basic machine check with an LSB snapshot
will be fine.  Set software flag bits 96 (LSB subpacket), 32 (writeblock), 50
(LSB ERR, write CSR), and 53/54/55 (stall, confirmation, command/
address) if appropriate. 
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LSB Command Parity Errors

Description:  An LSB command parity error was detected on an LSB bus
write CSR cycle in which this CPU was the commander.  This results in a
CACK HERR being sent to the DECchip 21064, which causes a machine
check through 670.

Recovery procedure:  None.

Restart condition:  None.

Error logging:  Log a basic machine check and an LSB subpacket.  Set soft-
ware flags 96 (LSB), 60 (CPE), 50 (LSB ERR, write CSR), and 32 (DECchip
21064 writeblock).

Write CSR Data Parity Error

Description:  During a CSR write to an LSB based I/O register, the data
cycle contained a parity error. This error can only occur when writing CSR
data to another LSB node.   If the CPU was writing CSR data to itself, it
would have used a backdoor method which would not use the LSB bus.

Recovery procedure:  None.

Restart condition:  None.

Error logging:  For this error, log the basic machine check, an LSB snap-
shot and either an LMA subpacket or log adapter subpacket depending on
where the I/O address pointed to.  If it was to another CPU, the LSB snap-
shot will be sufficient.  Set software flags 96 (LSB), 63 (CDPE),  32
(DECchip 21064 writeblock), and 50 (LSB write CSR).

CSR Write LSB Nonexistent Address

Description:  During an outstanding DECchip 21064 writeblock command,
the LEVI detected that the LSB CSR write request did not get a confirma-
tion.  This condition results in an NXM.  The command on the LSB was a
CSR write so this was actually going to an LSB I/O address.  Use the
latched address in the LBECSR register to determine if this is a valid I/O
address.  If the address is valid, it would appear that the associated node
at that I/O address failed to respond.  If the address is not valid, this would
lean toward either a software problem or a hardware address generation
problem.  If the address belongs to a known node, log the appropriate addi-
tional error log subpacket (that is,  if a memory, log an LMA, if IOP, log a
log adapter, for a CPU, the LSB subpacket will do just fine).

Recovery procedure:  None.

Restart condition:  None.

Error logging:  The basic machine check, LSB subpacket and either a log
adapter or an LMA subpacket will be provided based on what type of node
the latched I/O address pointed to.  Set software flag bits 96 (LSB
subpacket), 32 (DECchip 21064 writeblock), 50 (LSB ERR, write CSR), and
97 (LMA subpacket) or 98 (log adapter) based on type of node. 

Inconsistent—LSB

Description:  In an attempt to parse the possible error conditions for a ma-
chine check while the DECchip 21064 has an outstanding writeblock to an
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LSB I/O address, it was found that no error cases were present which
would have caused the system to machine check. 

Recovery procedure:  None.

Restart condition:  None.

Error logging:  Log a basic machine check.  Set software flag bit 32
(DECchip 21064 writeblock), 50 (LSB ERR, write CSR), and 70 (inconsis-
tent error).

Previous System Error Latched

Description:  When parsing the reasons for a machine check while the CPU
had an outstanding writeblock request, it was found that the latched LSB
bus state did not correspond to the CPU detecting the machine check.  It is
assumed that a previous LSB error has latched all the bus registers.  Mul-
tiple errors must have occurred. 

Recovery procedure:  None.

Restart condition:  None.

Error logging:  Log a basic machine check and an LSB snapshot.  Set soft-
ware flag bits 96 (LSB), 32 (DECchip 21064 writeblock), and 69 (previous
system error). 

Read Arbitration Drop

Description:  An LSB arbitration drop was detected by the LEVI while the
LEVI was attempting to get read data to do a B-cache fill to satisfy a
loadlock request from the CPU.  Arbitration drop is considered fatal.

Recovery procedure:  None.

Restart condition:  None.

Error logging:  A basic machine check along with an LSB snapshot will do.
Set software flag bits 96 (LSB subpacket), 33 (DECchip 21064 loadlock), 40
(NSES), and 41 (arbdrop).

Read Arbitration Collision

Description:  An LSB arbitration collision was detected by the LEVI while
the LEVI was attempting to get read data to do a B-cache fill to satisfy a
loadlock request from the CPU.  Arbitration collision is considered fatal. 

Recovery procedure:  None.

Restart condition:  None.

Error logging:  A basic machine check along with an LSB snapshot will do. 
Set software flag bits 96 (LSB subpacket), 33 (DECchip 21064 loadlock), 40
(NSES) and 42 (arbcol).

LEVI B-Cache Tag Parity Error on Lookup

Description:  During a CPU-requested loadlock command, the LEVI at-
tempted to do a B-cache lookup to determine if the requested data resided
in the B-cache.  The LEVI detected a parity error while checking the TAG
address information in the RAMs.  This is fatal.  B-cache state could be
corrupt.
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Recovery procedure:  None.

Restart condition:  None.

Error logging:  A basic machine check will do.  All error information re-
quired to do diagnosis resides on this CPU.  Set software flag bits 33
(DECchip 21064 loadlock) and 43 (BTAGPE).

LEVI B-Cache Status Parity Error on Lookup

Description:  During a CPU-requested loadlock command, the LEVI at-
tempted to do a B-cache lookup to determine if the requested data resided
in the B-cache.  The LEVI detected a parity error while checking the status
information in the RAMs.  This error is fatal.   B-cache state could be cor-
rupt.

Recovery procedure:  None.

Restart condition:  None.

Error logging:  A basic machine check will do.  All error information re-
quired to do diagnosis resides on this CPU.  Set software flag bits 33
(DECchip 21064 loadlock) and 44 (BSTATPE).

Inconsistent Error—NSES

Description:  During the LEVI sourcing data from the LSB to satisfy a
DECchip 21064 loadlock command, the NSES bit was set indicating detec-
tion of an internal KN7AA error.  However, there were no supporting error
bits set to indicate this condition.  This is an inconsistent error condition.

Recovery procedure:  None.

Restart condition:  None.

Error logging:  A basic machine check along with an LSB snapshot will do. 
Set software flag bits 96 (LSB subpacket), 32 (DECchip 21064 loadlock), 40
(NSES), and 45 (inconsistent).

LSB Cache Protocol Error

Description:  During an outstanding  CPU loadlock request, the LEVI,
when attempting to read LSB data, detected an assertion of either Shared
or Dirty by another node.  This is considered fatal to the system. Cache
state is probably corrupt. 

Recovery procedure:  None.

Restart condition:  None.

Error logging:   For this error, a basic machine check along with an LSB
subpacket will be sufficient.  Set software flag bits 96 (LSB subpacket), 48
(LSB ERR, read), 33 (loadlock), and 51/52 (Shared/Dirty error) if appropri-
ate. 

LSB Synchronization Failure

Description:  During an outstanding CPU loadlock request, the LEVI de-
tected either a stall error, confirmation error, or command/address error
while the LEVI was attempting to do an LSB read.  These errors imply loss
of LSB synchronization.  They probably signify that some other internal
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node errors have occurred elsewhere in the system.  These are considered
fatal errors. 

Recovery procedure:  None.

Restart condition:  None.

Error logging:  For this error, a basic machine check with an LSB snapshot
will be fine.  Set software flag bits 96 (LSB subpacket), 33 (DECchip 21064
loadlock), 48 (LSB ERR, read), and 53/54/55 (stall, confirmation, com-
mand/address) if appropriate. 

Read LSB Nonexistent Memory

Description:  During an outstanding DECchip 21064 loadlock command,
the LEVI detected that the LSB read request did not get a confirmation. 
This condition results in an NXM.  The command on the LSB was a read,
so this was going to an LSB MEM address.  Use the latched address in the
LBECSR register to determine if this is a valid address.  If the address is
valid, it would appear that a memory is at fault.  If the address is not
valid, this would lean toward either a software problem or a hardware ad-
dress generation problem.  If the address is within memory range, include
the memory registers for the associated memory controller. 

Recovery procedure:  None.

Restart condition:  If expected, continue, else crash the system.

Error logging:  The basic machine check, LSB subpacket and LMA
subpacket will be provided.  Set software flag bits 96 (LSB subpacket), 97
(LMA subpacket), 33 (DECchip 21064 loadlock), 48 (LSB ERR, read), and
57 (NXM-mem read). 

Additional parsing:  Memory address correlation.

LSB Command Parity Errors

Description:  An LSB command parity error was detected on a bus cycle in
which this CPU was the commander.  This results in CACK HERR being
sent to the DECchip 21064, which causes a machine check through 670.

Recovery procedure:  None.

Restart condition:  None.

Error logging:  Log a basic machine check and an LSB subpacket.  Set soft-
ware flags 96 (LSB), 60 (CPE), 48 (LSB ERR, read), and 33 (DECchip
21064 loadlock).

LSB Control Transmit Check Error

Description:  This module detected that an LSB control line(s) it was driv-
ing did not match with what it had seen on the LSB bus.  This is a fatal
condition.  Cache coherence could be lost. 

Recovery procedure:   None.

Restart condition:   None.

Error logging:  A basic machine check and an LSB snapshot is required. 
Set software flag bits 96 (LSB),  48 (LSB ERR, read), 33 (DECchip 21064
loadlock), and 61 (CTCE).
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Inconsistent—LSB

Description:   In an attempt to parse the possible error conditions for a ma-
chine check while the DECchip 21064 has an outstanding loadlock, it was
found that no error cases were present which would have caused the sys-
tem to machine check. 

Recovery procedure:  None.

Restart condition:  None.

Error logging:  Log a basic machine check.  Set software flag bits 33
(DECchip 21064 loadlock), 48 (LSB ERR, read), and 70 (inconsistent error).

Previous System Error Latched

Description:  When parsing the reasons for a machine check while the CPU
had an outstanding loadlock request, it was found that the latched LSB
bus state did not correspond to the CPU detecting the machine check.  It is
assumed that a previous LSB error has latched all the bus registers.  Mul-
tiple errors must have occurred. 

Recovery procedure:  None.

Restart condition:  None.

Error logging:  Log a basic machine check and an LSB snapshot.  Set soft-
ware flag bits 96 (LSB), 33 (DECchip 21064 loadlock), and 69 (previous
system error).

Read Arbitration Drop

Description:  An LSB arbitration drop was detected by the LEVI while the
LEVI was attempting to arbitrate for the LSB to do an LSB write to satisfy
a store conditional request from the CPU.  Arbitration drop is considered
fatal.  Note that this write was going to the LSB bus because the B-cache
state for the requested data was set at Shared.

Recovery procedure:  None.

Restart condition:  None.

Error logging:  A basic machine check along with an LSB snapshot will do. 
Set software flag bits 96 (LSB subpacket), 34 (DECchip 21064 StoreCond),
40 (NSES), and 41 (arbdrop).

Read Arbitration Collision

Description:  An LSB arbitration collision was detected by the LEVI while
the LEVI was attempting to satisfy a loadlock request from the CPU.  Arb-
itration collision is considered fatal.  Note that the LEVI was attempting to
do an LSB write because the B-cache state of the requested data was
Shared.

Recovery procedure:  None.

Restart condition:  None.

Error logging:  A basic machine check along with an LSB snapshot will do. 
Set software flag bits 96 (LSB subpacket), 34 (DECchip 21064 StoreCond),
40 (NSES), and 42 (arbcol). 
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LEVI B-Cache Tag Parity Error on Lookup

Description:  During a CPU-requested StoreCond command, the LEVI at-
tempted to do a B-cache lookup to determine if the requested data resided
in the B-cache and the cache state it was in.  The LEVI detected a parity
error while checking the tag address information in the RAMs.  This is fa-
tal.  B-cache state could be corrupt. 

Recovery procedure:   None.

Restart condition:  None.

Error logging:  A basic machine check will do.  All error information re-
quired to do diagnosis resides on this CPU.  Set software flag bits 34
(DECchip 21064 StoreCond), and 43 (BTAGPE).

LEVI B-Cache Status Parity Error on Lookup

Description:  During a CPU-requested StoreCond command, the LEVI at-
tempted to do a B-cache lookup to determine if the requested data resided
in the B-cache and also the cache state it was in.  The LEVI detected a par-
ity error while checking the status information in the RAMs.  This is fatal. 
B-cache state could be corrupt. 

Recovery procedure:  None.

Restart condition:  None.

Error logging:  A basic machine check will do.  All error information re-
quired to do diagnosis resides on this CPU.  Set software flag bits 34
(DECchip 21064 StoreCond) and 44 (BSTATPE).

Inconsistent Error—NSES

Description:  During the LEVI sourcing data to satisfy a DECchip 21064
StoreCond command, the NSES bit was set indicating that an internal
KN7AA error was detected.  However, there were no supporting error bits
set to indicate this condition.  This is an inconsistent error condition. 

Recovery procedure:  None.

Restart condition:  None.

Error logging:  A basic machine check along with an LSB snapshot will do. 
Set software flag bits 96 (LSB subpacket), 34 (DECchip 21064 StoreCond),
40 (NSES), and 45 (inconsistent).

LSB Cache Protocol Error

Description:  During an outstanding  CPU StoreCond request, the LEVI,
when attempting to write LSB data, detected an assertion of either Shared
or Dirty by another node.  This is considered fatal to the system.  Cache
state is probably corrupt. 

Recovery procedure:  None.

Restart condition:  None.

Error logging:   For this error, a basic machine check along with an LSB
subpacket will be sufficient.  Set software flag bits 96 (LSB subpacket), 49
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(LSB ERR write), 34 (StoreCond), and 51/52 (Shared/Dirty error) based on
the bit(s) set.

LSB Synchronization Failure

Description:  During an outstanding  DECchip 21064 CPU StoreCond re-
quest, the LEVI detected either a stall error, confirmation error, or com-
mand/address error while the LEVI was attempting to do an LSB write. 
These errors imply loss of LSB synchronization.  They probably signify 
that some other internal node errors have occurred elsewhere in the sys-
tem.  These are considered fatal errors. 

Recovery procedure:  None.

Restart condition:  None.

Error logging:  For this error, a basic machine check with an LSB snapshot
will be fine.  Set software flag bits 96 (LSB subpacket), 34 (StoreCond), 49
(LSB ERR, write), and 53/54/55 (stall, confirmation, command/address) if
appropriate. 

Write LSB Nonexistent Memory

Description:  During an outstanding DECchip 21064 StoreCond command,
the LEVI detected that the LSB write request did not get a confirmation. 
This results in an NXM.  The command on the LSB was a write, so this
was going to an LSB MEM address.  Use the latched address in the
LBECSR register to determine if this is a valid address.  If the address is
valid, it would appear that a memory is at fault.  If the address is not
valid, this would lean toward either a software problem or a hardware ad-
dress generation problem.  If the address is within memory range, include
the memory registers for the associated memory controller.  Note that this
DECchip 21064 store conditional request produced an LSB write because
the cache state was Shared. 

Recovery procedure:  None.

Restart condition:  None.

Error logging:  The basic machine check, LSB subpacket and LMA
subpacket will be provided.  Set software flag bits 96 (LSB subpacket), 97
(LMA subpacket), 34 (DECchip 21064 StoreCond), 49 (LSB ERR, write),
and 66 (NXM-mem write). 

Additional parsing:  Memory address correlation.

LSB Command Parity Errors

Description:  An LSB command parity error was detected on an LSB bus
write cycle in which this CPU was the commander.  This results in CACK
HERR being sent to the DECchip 21064, which causes a machine check
through 670. This LSB request resulted from a DECchip 21064 store condi-
tional command in which the LEVI determined the B-cache state was set
to Shared.  This is fatal.

Recovery procedure:  None.

Restart condition:  None.

Error logging:  Log a basic machine check and an LSB subpacket.  Set soft-
ware flags 96 (LSB), 60 (CPE), 49 (LSB ERR, write), and 34 (StoreCond).
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LSB Control Transmit Check Error

Description:  This module detected that an LSB control line(s) it was driv-
ing did not match with what it had seen on the LSB bus.  This is a fatal
condition.  Cache coherence could be lost. 

Recovery procedure:  None.

Restart condition:  None.

Error logging:  A basic machine check and an LSB snapshot is required. 
Set software flag bits 96 (LSB),  49 (LSB ERR, write), 34 (DECchip 21064
StoreCond), and 61 (CTCE).

Inconsistent—LSB

Description:  In an attempt to parse the possible error conditions for a ma-
chine check while the DECchip 21064 has an outstanding StoreCond, it
was found that no error cases were present which would have caused the
system to machine check. 

Recovery procedure:  None.

Restart condition:  None.

Error logging:  Log a basic machine check.  Set software flag bit 34
(DECchip 21064 StoreCond), 49 (LSB ERR, write), and 70 (inconsistent er-
ror).

Previous System Error Latched

Description:  When parsing the reasons for a machine check while the CPU
had an outstanding StoreCond request, it was found that the latched LSB
bus state did not correspond to the CPU detecting the machine check.  It is
assumed that a previous LSB error has latched all the bus registers.  Mul-
tiple errors must have occurred. 

Recovery procedure:  None.

Restart condition:  None.

Error logging:  Log a basic machine check and an LSB snapshot.  Set soft-
ware flag bits 96 (LSB), 34 (DECchip 21064 StoreCond), and 69 (previous
system error). 

Failure Not Understoud 

Description:  After parsing all possible known reasons for a machine check,
it was found that there were no matches.  This could be due to unexpected
system error behavior or error cases that were not understood when the
parse trees were developed.  In any case, this is considered inconsistent
and will be a fatal condition. 

Recovery procedure:  None.

Restart condition:  None.

Error logging:  Log a basic machine check and also an LSB subpacket.  Set
software flag 96 (LSB) and 70 (inconsistent).
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14.3.4  Events Reported Through 660 Machine Checks

The KN7AA module detects error conditions related to the operation of the
B-cache (LSB side), the Gbus, and the LSB.  These errors, when occurring
asynchronous to the operation of the DECchip 21064 processor, are re-
ported through the irq_4 signal line on the KN7AA module.  This, in turn, 
becomes an IPL31 interrupt and is vectored through offset 660.  Single-bit
ECC errors that are caused by either another CPU’s B-cache or the LSB
also cause a 660 to occur.  

The KN7AA also vectors through 660 if other nodes pull the LSB ERR 
line.  This is the case for the IOP.  Error handling in the 660 domain in-
cludes monitoring and error checking for IOP-detected LSB errors.  See the
I/O System Technical Manual for discussion IOP error parse trees. 

Figure 14-6 is the parse tree associated with the 660 machine check.   Fol-
lowing the parse tree is a description of each type of error and, when possi-
ble, a suggested recovery method. 
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Figure 14-6 System Machine Check 660 Parse Tree
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LBECR1.CA <37:35> = Victim Write (011) and 
LBECR1.CID <14:11> = This_node

LBECR1.CA <37:35> = Write (001) and 
LBECR1.CID <14:11> = This_node

Else

A

B

Select one...

I-stream ECC error

D-stream ECC error 

LEVI read of B-cache correctable
   error from LSB REQ (Dirty blk)  

LMERR.BDATASBE <7>

Select all...
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Figure 14-6  System Machine Check 660 Parse Tree (Continued)

1

LEVI read of B-cache 
   uncorrectable error

LEVI read of B-cache 
   uncorrectable error from LSB 
   REQ (dirty block)

LEVI LSB victim write 
   uncorrectable error (VIC block)

LEVI LSB write uncorrectable
   error

LMERR.BDATADBE <8>

Inconsistent

1

BXB-0400-92

MCHK 660 Continued2

LBECR1.CA <37:35> = Read (000) and 
LBECR1.CID = Not_this_node

LBECR1.CA <37:35> = Victim Write (011) 
and LBECR1.CID <14:11> = This_node

LBECR1.CA <37:35> = Write (001) and 
LBECR1.CID <14:11> = This_node

Else

LEVI B-cache tag parity error

LEVI lookup B-cache tag parity
   error

LEVI lookup B-cache tag parity
   error from LSB write request

LMERR.BTAGPE <4>

B-cache tag parity error on LSB
   write

LBECR1.CA <37:35> = Read (000) and 
LBECR1.CID = Not_this_node

LBECR1.CA <37:35> = Write (001) and 
LBECR1.CID = Not_this_node

Else

LEVI lookup B-cache STS parity
   error from LSB read request

LEVI lookup B-cache STS parity
   error from LSB write request

B-cache tag parity error on LSB
   write

LMERR.BSTATPE <5>

LBECR1.CA <37:35> = Read (000) and 
LBECR1.CID = Not_this_node

LBECR1.CA <37:35> = Write (001) and 
LBECR1.CID = Not_this_node

Else

LBER.E <0>
LBER.SHE <14> or
LBER.DIE <15>

Inconsistent error (crash)

LSB cache protocol error (crash)

None of above
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Figure 14-6  System Machine Check 660 Parse Tree (Continued)

1 2

LBER.E <0> and
LBECR1.CID = This_node Select all...

LSB synchronization failure (crash)

LSB NXM (crash)LBER.NXAE <12>

Else

NXM to LSB memory victim write 
  

NXM to LSB memory Write

Inconsistent

1

BXB-0401-92

MCHK 660 Continued

LBECR1.CA <37:35> = Victim write  (011) and 
LBECR1.CA <14:11> = This_CPU

LBECR1.CA <37:35> = Write(001) and 
LBECR1.CA <14:11> = This_CPU

LBER.STE <10> or LBER.CNFE <11> or
LBER.CAE <13>

LBER.TDE <9>

LBER.CE <3>

LBER.UCE <1>

LBER.CDPE <7>

Else

LSB write control transmitter
   check parity error (crash)
LSB write correctable data 
   transmitter check error
LSB write uncorrectable data 
   transmitter check error 

LBER.CPE <5> and
LBECR1.CA <37:35> = Write or victim
                                      write

LSB write CSR data parity error

Inconsistent

Read CSR data parity error 
LBER.CDPE <7> and
Not LBER.TDE <9>

LSB correctable ECC error

LBECR1.SHARED <16>
Correctable ECC on B-cache word
   2 or 3 fill
Correctable ECC on B-cache 
   update

LBECR1.CA <37:35> = Read and 
LBECR1.CID <14:11> = This_CPU

LBER.CE <3> and
Not LBER.TDE <9>

Select one...
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Figure 14-6  System Machine Check 660 Parse Tree (Continued)

1 2

Multiple uncorrectable ECC errors

Multiple single ECC errors

Multiple LSB command parity 
   errors
Multiple LSB CSR data parity errors 
   

LBER.UCE2 <2>

LBER.CE2 <4>

LBER.CPE2 <6>

LBER.CDPE2 <8>

Else

Else

IOP_LBER.NXAE <12>

IOP_LBER.CPE <5>

IOP_LBER.CE <3>

IOP_LBER.UCE <1>

Inconsistent

1

BXB-0402-92

MCHK 660 Continued2

LBER.UCE <1> and
Not LBER.TDE <9> Uncorrectable ECC error

LBECR.SHARED <16>
Uncorrectable ECC on B-cache 
   word 2 or 3 fill
Uncorrectable ECC on B-cache
   update

LBECR1.CA <37:35> = Read and 
LBECR1.CID <14:11> = This_CPU

Inconsistent
LBER.E <0> and
LBECR1.CID = IOP_node (IOP cmdr) Select all...

IOP_LBER.STE <10>

IOP_LBER.CAE <13>

IOP_LBER.CNFE <11>

IOP_LBECR1.CA <37:35> = Write (001)

Else

IOP_LBER.NXAE <12>

IOP_LBER.CPE <5>

IOP_LBER.CE <3>

IOP_LBER.UCE <1>

Inconsistent

IOP_LBECR1.CA <37:35> = Read  (000) 
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Figure 14-6  System Machine Check 660 Parse Tree (Continued)

IOP_LBER.CPE2 <6>

IOP_LBER.CDPE2 <8>

IOP_LBER.CE2 <4>

IOP_LBER.UCE2 <2>

Else

1 MCHK 660 Continued2

Else

IOP_LBER.NXAE <12>

IOP_LBER.CPE <5>

IOP_LBER.CDPE <7>

Inconsistent

IOP_LBECR1.CA <37:35> = Write CSR (101)

IOP_LBER.NSES <18>

Inconsistent

LBER.E and LBECR1.CID = Not_this_CPU 
and LBER.CE <3>

Bystander correctable ECC error
   on LSBLBER.E and LBECR1.CID = Not_this_CPU 

and LBER.UCE <1>
Bystander uncorrectable ECC 
   error on LSB

Else
Inconsistent

BXB-0403-92
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Figure 14-6  System Machine Check 660 Parse Tree (Continued)

LSB reference I-stream
BIU_STAT.FILL CRD <9>

Select one...

I-stream LSB Read single bit
   ECC error, memory reference

I-stream other CPU B-cache
   referenc e
I-stream Read EDAL single bit
   error (should be 630)

LBER.CE <3>

Not LBECR1.DIRTY <17>

LBECR1.DIRTY <17>

Inconsistent

BXB-0404-92

A

Else

Else

LSB reference D-stream
BIU_STAT.FILL_CRD <9>

D-stream memory Read ECC
   error

D-stream other CPU B-cache
   reference

D-stream Read EDAL single bit
   error (should be 630)

LBER.CE <3>

Not LBECR1.DIRTY <17>

LBECR1.DIRTY <17>

Inconsistent

B

Else

Else

Select one...
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I-Stream Inconsistent Error

Description:  During an I-stream reference the error bit  FILL_CRD was
not set, indicating that this error was not a single-bit error. This is an in-
consistent state for the 660 parse flow.  

Recovery procedure:   None.

Restart condition:  Terminate the user or session.

Error logging:  For this error, the basic machine check entry will do.  All
error state associated with this error resides on this CPU module.  Set soft-
ware flag bit 67.

LSB Single-Bit ECC Error, Memory Reference

Description:  During an I-stream reference the DECchip 21064 detected a
correctable ECC error.  The failing syndrome is latched in the FILL_SYND
register.  From parsing the error, it was found that the bus cycle associated
with this error had a CE error.  Also, the dirty bit in LBECR1 was clear,
which implies that a memory supplied the data.  Operating system soft-
ware should determine which memory controller is associated with the
latched LSB address and append a memory controller subpacket from the
associated memory. 

Recovery procedure:   Hardware and PALcode do recovery.

Restart condition:  Restart if corrected by PALcode or hardware. 

Error logging:  For this error, the basic machine check entry with an LSB
subpacket and an LMA subpacket will be required.  Set software flag bits
68, 96 (LSB subpacket), and 97 (LMA subpacket).  

Additional parsing:  Memory address correlation.

I-Stream Read Other CPU B-Cache Single-Bit ECC Error

Description:  During an I-stream reference the DECchip 21064 detected a
correctable ECC error.  The failing syndrome is latched in the FILL_SYND
register.  From parsing the error, it was found that it was caused by a B-
cache single-bit error which was sourced from another CPU node. The
other CPU(s) will also be attempting to parse this error through its 660 er-
ror handler. 

Recovery procedure:  Hardware and PALcode do recovery.

Restart condition:  Restart if corrected by PALcode or hardware.

Error logging:  For this error the basic machine check entry with an LSB
subpacket will be required.  Set software flag bits 69 and 96 (LSB
subpacket).

Additional parsing:  BDATASBE parse.

I-Stream Read EDAL Single-Bit ECC Error

Description:  During an I-stream reference the DECchip 21064 detected a
correctable ECC error.  The failing syndrome is latched in the FILL_SYND
register.   This error was caused by the EDAL data path.  Note that there
were no LSB errors on this data transfer.  This error should be a 630!

Recovery procedure:  Hardware and PALcode do recovery.
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Restart condition:  Restart if corrected by PALcode or hardware.

Error logging:  None.  Should be a 630.

D-Stream Inconsistent Error

Description:  During a D-stream reference the error bit FILL_CRD was not
set, indicating that this was not a single-bit error. This is an inconsistent
state for the 660 parse flow.  

Recovery procedure:  None.

Restart condition:  Terminate the user or session.

Error logging:  For this error, the basic machine check entry will do.  All
error state associated with this error resides on this CPU module.  Set soft-
ware flag bit 77.

D-Stream LSB Read Single-Bit ECC Error, Memory Reference

Description:  During a D-stream reference the DECchip 21064 detected a
correctable ECC error.  The failing syndrome is latched in the FILL_SYND
register.   From parsing the error, it was found that the bus cycle associ-
ated with this error had a CE error.  Also, the dirty bit in LBECR1 was
clear, which implies that a memory supplied the data.  Operating system
software should figure out which memory controller is associated with the
latched LSB address and append a memory controller subpacket from the
associated memory.  This error was caused by an LSB single-bit error in
which a memory was the source. 

Recovery procedure:   Hardware and PALcode do recovery.

Restart condition:  Restart if corrected by PALcode or hardware.  

Error logging:  For this error, the basic machine check entry with an LMA
subpacket (the one associated with the error) will be required.  Set soft-
ware flag bits 78 and 97 (LMA subpacket).  

Additional parsing:  Memory address correlation.

D-Stream Read Other CPU B-Cache Single-Bit ECC Error

Description:  During a D-stream reference the DECchip 21064 detected a
correctable ECC error.  The failing syndrome is latched in the FILL_SYND
register.   Note that this error was caused by another CPU’s B-cache.  The
other CPU will also be attempting to parse this error through its 660 error
handler. 

Recovery procedure:  Hardware and PALcode do recovery.

Restart condition:  Restart if corrected by PALcode or hardware.  

Error logging:  For this error, the basic machine check entry with an LSB
subpacket will be required.  Set software flag bits 79 and 96 (LSB
subpacket). 

Additional parsing: BDATASBE parse.
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D-Stream Read EDAL Single-Bit Error

Description:  During a D-stream reference the DECchip 21064 detected a
correctable ECC error.  The failing syndrome is latched in the FILL_SYND
register.   Note that this error was caused by the EDAL data path.   Note
that this should be a 630!

Recovery procedure:  Hardware and PALcode do recovery.

Restart condition:  Restart if corrected by PALcode or hardware.  

Error logging:  None.

Arbitration Drop or Arbitration Collision

Description:  A serious LSB failure has occurred in which one or several
nodes have asserted acknowledgment of status signals out of sequence. 
This implies a possible loss of cache coherence.

Recovery procedure:  No specific recovery action is called for.

Restart condition:  This error cannot be recovered from.  Cache status is
potentially corrupt.  The current operating system session should be termi-
nated.

Error logging:  Log the basic 660 error log and an LSB subpacket.  Set soft-
ware flag 96 (LSB subpacket) and 1 (arbdrop) or 2 (arbcol), depending on
the error type.

B-Map Parity Error

Description:  The LEVI detected a parity error when accessing the B-map
RAMs.  This is considered fatal.  Cache state could be corrupt.

Recovery procedure:  None.

Restart condition:  None.

Error logging:  Log a basic 660 error log.  All error data required is resi-
dent on the CPU reporting the error.  Set software flag 3.

P-Map Parity Error

Description:  The LEVI detected a P-map parity error when looking up the
CPU cache status.  This is considered fatal.  Because the lookup was not
successful, a required invalidate might not have occurred, making the CPU
P-cache retain stale data.  Cache coherence is at risk.

Recovery procedure:  None.

Restart condition:  None.

Error logging:  Log a basic 660 error log.  All error data required is resi-
dent on the CPU reporting the error.  Set software flag 4.

LEVI Read of B-Cache Correctable Error

Description:  During an LSB transaction, it was determined by this LEVI
that this B-cache contained the latest copy of the data (dirty).  This CPU’s
LEVI read the cache and supplied the data to the LSB.  This data con-
tained a single-bit error.
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Recovery procedure:  For this error, log the fact that this board detected
that its cache supplied correctable data.  Clear the error state.

Restart condition:  After recording the error and clearing error state, re-
turn to the calling routine.  This error is corrected by the consumer of the
data.  It is not fatal and is recoverable.

Error logging:  Log a basic 660.  Set software flag bit 5.  Note that if the
consumer of the data was another CPU, that CPU will be going through its
machine check code thread.  In that case, don’t log the additional 660.  Just
flag the error in the software flag bits so EEPROM logging will eventually
take place.  If the consumer of the data was the IOP, log the 660 and an
LSB snapshot with a log adapter subpacket. In the latter case, make sure
software flag bits 96 (LSB subpacket), 98 (log adapter), and 5
(BDATASBE) are set.

LEVI Read of B-Cache Uncorrectable Error

Description:  During an LSB transaction, it was determined by this LEVI
that this B-cache contained the latest copy of the data (dirty).  This CPU’s
LEVI read the cache and supplied the data to the LSB.  This data con-
tained a double-bit error.  Note that there are three system states associ-
ated with this error condition.  This text applies to all of those.

Recovery procedure:  None.

Restart condition:  None.

Error logging:  Log a basic 660.  Set software flag bit 6.  Note that this is
fatal to the system.  The consumer of the data, if it was a CPU, will have
gone through the machine check code flow.  In that case, don’t log this 660,
because machine check will have already logged the error state.  Just set
the software flag bit so EEPROM logging can take place.  If the consumer
was the IOP, log the 660 and an LSB snapshot with a log adapter
subpacket. In the latter case, make sure software flag bits 96 (LSB
subpacket), 98 (log adapter), and 6 (BDATADBE) are set.

LEVI B-Cache Tag Parity Error

Description:   When attempting to do a B-cache lookup, the LEVI detected
a parity error in the B-cache tag RAMs.  Because the lookup failed, the
cache state could potentially be corrupt.  

Recovery procedure:  None.

Restart condition:  None.

Error logging:  Log a basic 660.  All required error state is on this CPU. 
Set software flag bit 7 (BTAGPE).

LEVI B-Cache Status Parity Error

Description:   When attempting to do a B-cache lookup, the LEVI detected
a parity error in the B-cache status RAMs.  Because the lookup failed, the
cache state could be corrupt.

Recovery procedure:  None.

Restart condition:  None.
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Error logging:  Log a basic 660.  All required error state is on this CPU. 
Set software flag bit 8 (BSTATPE).

Inconsistent Error

Description:  During analysis of the error, the NSES bit was set but no
supporting error state could be found.  This is inconsistent.

Recovery procedure:  None.

Restart condition:  None.

Error logging:  Log a basic 660 and an LSB snapshot.  Set software flag
bits 96 (LSB) and  9 (inconsistent NSES).

LSB Cache Protocol Error

Description:  The LEVI on this CPU detected that the cache state line(s) on
the LSB were NOT set on the appropriate cycle on the LSB.  This error im-
plies that cache state is corrupt. 

Recovery procedure:  None.

Restart condition:  None.

Error logging:  Log a 660 error log with an LSB snapshot.  Set software
flag bits 96 (LSB), 16 (LSB ERR), and 17 (SHE) or 18 (DIE), depending on
the error detected. 

LSB Synchronization Failure

Description:  The LEVI detected the assertion of STALL, or CNF during
the wrong cycle type.  Also, the KN7AA could have detected a com-
mand/address error.  All these errors are considered fatal.

Recovery procedure:  None.

Restart condition:  None.

Error logging:  Log a basic 660 with an LSB subpacket.  Set software flag
bits 96 (LSB), 16 (LSB ERR), and one of 19 (STE), 20 (CNFE), or 21 (CAE),
depending on the error type.

Additional parsing:  Memory address correlation.

LSB Nonexistent Memory

Description:  The LEVI, upon writing data out to memory, detected that
the command/address cycle did not get a confirmation.  This is an NXM er-
ror and sets NXAE.  The write data is lost. This is fatal.

Recovery procedure:  None.

Restart condition:  None.

Error logging:  Log a 660 and an LSB subpacket.  Also, if any memory er-
rors exist, log the appropriate LMA subpacket.  Set software flag bits 96
(LSB), 22 (NXAE), and 97 (LMA), if required.
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Control Parity Error

Description:  The LEVI, when outputting onto the LSB, detected that what
it sent out for command information had a parity error.  Command parity
error bit was set indicating this error.  If CTCE is also set, this implies
that the data driven from the module to the bus changed.  Something di-
rectly on the bus broke the data.  If CTCE is not set, it can be assumed
that this module has caused the failure.  

Recovery procedure:  None.

Restart condition:  None.

Error logging:  Log a 660 and an LSB subpacket.  Set software flag bits 96
(LSB), 16 (LSB ERR), and 23 (CPE).

LSB Correctable Error

Description:  The LEVI chips detected a single-bit error in the data that
this node was transmitting on the bus.  The consumer of the data does cor-
rect this data error.  Also, if DTCE is set, this implies that something on
the bus broke the data.  If DTCE is not set, this implies that this module
drove the bad data onto the bus. 

Recovery procedure:  Log the event and clear the error bits.

Restart condition:  Restart.   The error is recoverable from this node’s point
of view.

Error logging:  Log the 660 and the LSB subpacket.  If another CPU was
the consumer, it will have taken a machine check.  If this is the case, do
not log this 660, just record the error into the software flags.  If a CPU was
not the consumer, make sure you log this and set software flags 96 (LSB),
16 (LSB ERR), and 24 (CE).  Also, if the IOP was the consumer, a log
adapter packet should be provided.  Set software flag bit 98 (log adapter).

Additional parsing:  Memory address correlation.

LSB Uncorrectable Error

Description:  The LEVI chips detected that when this node was transmit-
ting on the bus the data had a double-bit error.  The consumer of the data
cannot correct this error.  Also, if DTCE is set, this implies that something
on the bus broke the data.  If DTCE is not set, this implies that this mod-
ule drove the bad data onto the bus. 

Recovery procedure:  None.

Restart condition:  None.

Error logging:  Log the 660 and an LSB subpacket.  If another CPU was
the consumer, it will have taken a machine check.  If this is the case, do
not log this 660, just record the error into the software flags.  If a CPU was
not the consumer, make sure you log this and set software flags 96 (LSB),
16 (LSB ERR), and 25 (UCE).  Also, if the IOP was the consumer, a log
adapter packet should be provided within this 660 error log.

Additional parsing:  Memory address correlation.
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Write CSR Data Parity Error

Description:  During a write to an LSB I/O space address, a CSR data par-
ity error was detected.  This is considered fatal.  Also, if DTCE is set, this
implies that something on the bus broke the data.  If DTCE is not set, this
implies that this module drove the bad data onto the bus. 

Recovery procedure:  None.

Restart condition:  None.

Error logging:  Log the 660 and also an LSB subpacket.  Set software flag
bits 96 (LSB), 16 (LSB ERR), and 26 (CDPE).

Additional parsing:  Memory address correlation.

Read CSR Data Parity Error

Description:  During a read from an LSB I/O space address, a CSR data
parity error was detected.  This is considered fatal.  Note that if TDE is
also set, the read was probably to our own CSR I/O address space.  

Recovery procedure:  None.

Restart condition:  None.

Error logging:  Log the 660 and also an LSB subpacket.  Set software flag
bits 96 (LSB), 16 (LSB ERR), and 26 (CDPE).

Additional parsing:  I/O address correlation.

B-Cache Fill 2/3 Correctable Error

Description:  During a CPU read command, the first two (target) octawords
were received without error and proceeded into the B-cache and CPU as
fill data.  The remaining two octawords off the bus had a single-bit ECC
error.  This error is triggered as a 660 because the first words were re-
ceived by the CPU correctly without error.  The LEVI signals this error via
the IRQ4 line.  In this case the B-cache has a single-bit error resident.

Recovery procedure:  You can choose to do nothing and then expect to see a
machine check if the CPU references this single-bit location (not the pref-
erable course) or the B-cache block can be invalidated or flushed back to
memory if it has become dirty.  In either case, clear the error bits.

Restart condition:  Continue, this error is recoverable.

Error logging:  Log a basic 660 with an LSB snapshot.  Set software flag
bits 96 (LSB), 16 (LSB ERR), and 27 (B-cache fill 2-3 CE).

Additional parsing:  Memory address correlation.

Bystander Correctable ECC

Description:  For this error, this LEVI has detected the correctable ECC er-
ror on the LSB.  This node was not a participant in this transaction; it was
a bystander.  

Recovery procedure:  Dismiss this error; clear the error bits.

Restart condition:  Return.  This node was not involved.

Error logging:  No error logging is required.  An error log entry occurs from
either a CPU that took a machine check or from the IOP flows within this
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660 parse tree.  Just set software flag 28 (bystander CE) for EEPROM log-
ging information.

B-Cache Fill 2/3 Uncorrectable Error

Description:  During a CPU read command, the first two (target) octawords
were received without error and proceeded into the B-cache and CPU as
fill data.  The remaining two octawords off the bus had a double-bit ECC
error.   This error is triggered as a 660 because the first words were re-
ceived by the CPU correctly without error.  The LEVI signals this error via
the IRQ4 line.  In this case our B-cache has a double-bit error now resi-
dent.

Recovery procedure:  None.

Restart condition:  None.

Error logging:  Log a 660 and an LSB subpacket.  If the data source was
memory, log an LMA subpacket from the associated memory controller. 
Set software flags 96 (LSB), 97 (LMA), 16 (LSB ERR), and 29 (B-cache fill
2-3 UCE).

Additional parsing:  Memory address correlation.

Bystander Uncorrectable ECC

Description:  For this error, this LEVI has detected the uncorrectable ECC
error on the LSB.  This node was not a participant in this transaction; it
was a bystander.  

Recovery procedure:  None.  But dismiss this, because this node was not in-
volved.  Clear the error bits.

Restart condition:  None.

Error logging:  No logging needed.  The hardware that initiated this trans-
action will log the error.  If it was a CPU, we’ll get a machine check.  If it
was the IOP, then the error will be found by another branch farther down
the 660 parse tree.  Just set software flag 30 (bystander UCE) for
EEPROM logging reasons.

LSB Second Errors

Description:  Second error occurrences indicate serious system errors.  Ex-
cept for CE2, all are considered fatal.  For CE2, if the system has a rev 2
DECchip 21064, this is fatal.  If the system has rev 3 DECchip 21064, all
occurrences of CE are recovered by hardware.  Note that when these occur,
the error state from the subsequent occurrence(s) are lost.  The source and
destination of the CE errors cannot be determined.

Recovery procedure:  For CE2, rev 2 DECchip 21064, none; rev 3 DECchip
21064, continue;  all others, none.

Restart condition:  For CE2, rev 2 DECchip 21064, none;  rev 3 DECchip
21064, continue; all others, none.

Error logging:  There is no specific error logging required.  The parse tree
branch associated with the first occurrence of the error will indicate the
proper error logging for the type of error encountered.  Just set software
flag 32 (UCE2), 33 (CE2), 34 (CPE2), or 35 (CDPE2), as appropriate, to in-
dicate the occurrence of the second error. 
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Inconsistent State

Description:  When parsing for a 660 reason, no LSB reason was found. 
This is an inconsistent state. 

Recovery procedure:  None.

Restart condition:   None.

Error logging:  Log a 660 with an LSB snapshot. Set software flag bits 96
(LSB), 16 (LSB ERR), and 31 (LBER_Inconsistent).

IOP Commander

Description:  The LSB error indicates that the commander node is the IOP. 
The rest of the errors parsed after this point deal with the error state from
the IOP’s viewpoint.  Up to this point in the parse tree, any branch that
was true should have been associated with a CPU being a responder or a
bystander to the error detected by the IOP.  In the case of a CPU by-
stander, the IOP error should have had the memory as the responder.  The
IOP flows will look for memory errors and report accordingly. 

Recovery procedure:  None. 

Restart condition:  None.

Error logging:  None.  Error logging associated with the IOP LSB detected
errors will be specified farther down the parse tree.  Just set software flag
bit 36 (IOP CMDR) to highlight the IOP as the commander.

IOP-Detected LSB Synchronization Errors

Description:  During an LSB command in which the IOP was the com-
mander, one of the LSB synchronization errors occurred.  Just as with the
CPU, these errors are considered fatal.  Stall error, command/address er-
ror, and confirmation error are the candidates for this class of error.

Recovery procedure:  None.

Restart condition:  None.

Error logging:  For this error log a basic 660 with an LSB subpacket and a
log adapter subpacket.  Set software flag bits 96 (LSB subpacket), 98 (log
adapter), 36 (IOP CMDR), and one of 40 (IOP Stall Err), 41 (IOP CAE), or
42 (IOP CNFE), depending on the type of LSB synchronization error.

IOP LSB Nonexistent Memory

Description:  During an LSB command in which the IOP was the com-
mander, the command/address cycle sent out did not get a confirmation. 
This results in an LSB NXM.   When this occurs, one of following three cy-
cles could be present on the LSB bus.  First, a write cycle.  For this the IOP
was attempting to write to LSB memory.  The latched LBECR0 will iden-
tify what address the write was trying to access.  Second, the IOP could be
reading from memory.  In this case the latched LBECR0 identifies which
address was being read from.  Remember that the memory is the node that
always does the confirmation to the command/address cycle, even if the
data will be returned by some dirty B-cache.  Third, the cycle could be a
CSR write.  This would be true if the IOP is writing to the Interrupt regis-
ter.  All cases are considered fatal.  Finally, if the error shows up with
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some other command type, this error state is considered inconsistent. Note
that this error could also be caused by some I/O bus adapter supplying an
out of range memory address. If this is the case, suspect the XMI controller
first, the DWLMA second.  If the address is within memory space, then
suspect the IOP and/or corresponding LSB memory.  Also, if the bus type is
an LSB read, the XMI I/O controller that initiated this transaction will be
returned an RER error from the DWLMA.  The operating system must do
an XMI snapshot so the controller that initiated this transfer can be identi-
fied.  For LSB writes, the information regarding the initiating adapter is
lost.  No XMI subpacket is required if the LSB bus transaction is a write. 
For systems with multiple hoses (XMIs), software will need to find the
node on which the bus has the XBER<RER> bit set and supply an XMI
snapshot from that XMI bus.  

Recovery procedure:  None.

Restart condition:  None.

Error logging:  Log a 660 error log with an LSB subpacket.  Set software
flag bits 96 (LSB), 36 (IOP CMDR), 48 (IOP NXAE), and one of 45 (IOP
LSB Write), 46 (IOP LSB Read), or 47 (IOP LSB Write CSR), depending on
the type of command.  If the cycle type is inconsistent, set software flag 49
(IOP NXAE Inconsistent).  If the LSB cycle type is a read, log an XMI
subpacket and set software flag 112 (XMI subpacket).

Additional parsing:  Memory address correlation;  XMI RER parsing to
find the XMI RER only when cycle type is a read.

IOP LSB Command Parity Error

Description:  During an LSB command in which the IOP was the com-
mander, the command/address cycle that was sent out was determined to
have bad parity.  This results in LSB CPE being set. When this occurs,
with the IOP being the commander, one of following three cycles could be
present on the LSB bus.  First, a write cycle.  For this the IOP was at-
tempting to write to LSB memory.  Second, the IOP could be reading from
memory.  And third, the cycle could be a CSR write.  This would be true if
the IOP is writing to the Interrupt register.  All cases are considered fatal. 
Finally, if the error shows up with some other command type, this error
state is considered inconsistent. 

Recovery procedure:  None.

Restart condition:  None.

Error logging:  Log a 660 error log with an LSB subpacket.  Set software
flag bits 96 (LSB), 36 (IOP CMDR), 50 (IOP CPE), and one of 45 (IOP LSB
Write), 46 (IOP LSB Read), or 47 (IOP LSB Write CSR), depending on the
type of command.  If the LSB command is not one of those three, set 51
(IOP CPE inconsistent).

IOP LSB CSR Data Parity Error

Description:  During a CSR write to the Interrupt register, the IOP de-
tected that the data it placed on the data lines had a parity error. This is a
fatal condition.

Recovery procedure:   None.

Restart condition:  None.
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Error logging:  Log a 660 and an LSB snapshot.  Set software flag bits 96
(LSB), 36 (IOP CMDR), 47 (IOP LSB Write CSR) and 52 (IOP CDPE).

IOP LSB Corrected ECC Error

Description:  During an LSB transaction in which the IOP was the com-
mander, the data cycle that was sent out was determined to have a single-
bit ECC error.  This results in LSB CE being set. When this occurs with
the IOP being the commander, one of the following two cycles could be pre-
sent on the LSB bus: a write cycle if the IOP was attempting to write to
LSB memory; or a read cycle if the IOP was attempting a read from mem-
ory.  In all cases, the error has been recovered by the hardware.  In the
write case, the memory corrects the error when converting the data from
32-bit LSB  ECC to 64-bit memory ECC.  In the read case, the IOP corrects
the data before it continues onto the Vortex bus (see the I/O System Tech-
nical Manual) and down the hose.  In the read case, a CPU B-cache could
have been the supplier of the data.  Note that there could be many, if not
all CPUs trying to parse this error.  One will have BDATASBE set in its
LMERR register if this was B-cache supplied data.

Recovery procedure:  No specific software recovery.  The hardware corrects
these errors.

Restart condition:  Log the error and continue.

Error logging:  Log a basic 660 with an LSB subpacket.  Set software flag
bits 96 (LSB), 36 (IOP CMDR), 53 (IOP CE), and 45 (IOP LSB Write) or 46
(IOP LSB Read), depending on the type of command.

IOP LSB Corrected ECC Error (Dirty)

Description:  During an LSB transaction in which the IOP was the com-
mander, the data cycle sent out was determined to have a single-bit ECC
error.  This results in LSB CE being set. When this occurs with the IOP
being the commander, one of the following two cycles could be present on
the LSB bus: a write cycle if the IOP was attempting to write to LSB mem-
ory; or a read cycle if the IOP was attempting a read from memory.  In all
cases, the error has been recovered by the hardware.  In the write case, the
memory corrects the error when converting the data from 32-bit LSB  ECC
to 64-bit memory ECC.  In the read case, the IOP corrects the data before
it continues onto the Vortex bus and down the hose.  In the read case, a
CPU B-cache could have been the supplier of the data.  Note that there
could be many, if not all CPUs trying to parse this error.  One will have
BDATASBE set in its LMERR register if this was B-cache supplied data.

Recovery procedure:  No specific software recovery.  The hardware corrects
these errors.

Restart condition:  Log the error and and continue.

Error logging:  Log a basic 660 with an LSB subpacket.  Set software flag
bits 96 (LSB), 36 (IOP CMDR), 53 (IOP CE), and 45 (IOP LSB Write) or 46
(IOP LSB Read), depending on the type of command.

Additional parsing:  BDATASBE.
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IOP LSB Uncorrectable ECC Error

Description:  During an LSB transaction in which the IOP was the com-
mander, the data cycle sent out was determined to have a double-bit ECC
error.  This results in LSB UCE being set. When this occurs with the IOP
being the commander, one of following two cycles could be present on the
LSB bus.  First, a write cycle.  For this, the IOP was attempting to write to
LSB memory.  Second, the IOP could be reading from memory.  In all
cases, the error cannot be recovered from.  In the write case, the memory
inverts ECC when converting the data from 32-bit LSB  ECC to 64-bit
memory ECC.  It will show up bad on a later read of that location.  In the
read case, the IOP detects the error and sets the UCE bit.  The data does
not go down the hose.  In the read case, a CPU B-cache could have been
the supplier of the data.  Note that there could be many, if not all CPUs
trying to parse this error.  One will have BDATADBE set in its LMERR
register if this was B-cache supplied data. 

Recovery procedure:  None.

Restart condition:  None.

Error logging:  Log a basic 660 with an LSB subpacket.  Set software flag
bits 96 (LSB subpacket), 36 (IOP CMDR), 54 (IOP UCE), and 45 (IOP LSB
Write) or 46 (IOP LSB Read), depending on the type of command.

Additional parsing:  Memory address correlation.

LSB Uncorrectable ECC Error (Dirty)

Description:  During an LSB transaction in which the IOP was the com-
mander, the data cycle sent out was determined to have a double-bit ECC
error.  This results in LSB UCE being set. When this occurs with the IOP
being the commander, one of following two cycles could be present on the
LSB bus.  First, a write cycle.  For this, the IOP was attempting to write to
LSB memory.  Second, the IOP could be reading from memory.  In all
cases, the error cannot be recovered from.  In the write case, the memory
inverts ECC when converting the data from 32-bit LSB  ECC to 64-bit
memory ECC.  It will show up bad on a later read of that location.  In the
read case, the IOP detects the error and sets the UCE bit.  The data does
not go down the hose. In the read case, a CPU B-cache could have been the
supplier of the data.  Note that there could be many, if not all CPUs trying
to parse this error.  One will have BDATADBE set in its LMERR register
if this was B-cache supplied data. 

Recovery procedure:  None.

Restart condition:  None.

Error logging:  Log a basic 660 with an LSB subpacket.  Set software flag
bits 96 (LSB subpacket), 36 (IOP CMDR), 54 (IOP UCE), and 45 (IOP LSB
Write) or 46 (IOP LSB Read), depending on the type of command.

Additional parsing:  BDATADBE.

IOP LSB Inconsistent Error

Description:  During parsing the IOP LSB errors, it was determined that
no supporting error bits were set to indicate why this error occurred.  This
is determined to be an inconsistent state.

Recovery procedure:  None.
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Restart condition:  None.

Error logging:  Log a basic 660 with an LSB subpacket.  Set software flag
bits 96 (LSB subpacket), 98 (log adapter), 36 (IOP CMDR), 55 (IOP LSB
inconsistent state), and 45 (IOP LSB Write) or 46 (IOP LSB Read), depend-
ing on the type of command. 

IOP Multiple Data Errors

Description:  When parsing the LSB errors, note the occurrence of these
LSB multiple error bits.  Except for CE2, in all cases, if these are set, the
error conditions are not recoverable.  Error state of the subsequent occur-
rence(s) has been lost.  For CE2 errors, if the system has a rev 2 DECchip
21064, it is NOT recoverable.  If the system has a rev 3 DECchip 21064, it
is recoverable.

Recovery procedure:  For CE2, rev 2 DECchip 21064, none;  rev 3 DECchip
21064, continue;  all others, none.

Restart condition:  For CE2, rev 2 DECchip 21064, none;  rev 3 DECchip
21064, continue;  all others, none.

Error logging:  No specific error logging required.  Log per the parse tree
branch that was true above.  However, set  software flag 56 (IOP CPE2),
57 (IOP CDPE2), 58 (IOP CE2), or 59 (IOP UCE2) as appropriate, to show
the occurrence of this error. 

IOP Node-Specific Error Summary

Description:  If this condition is met, the implication is that there is an in-
ternal IOP error that needs to be serviced.  If this is the case, there will be
an interrupt IPL 17 pending.  It is suggested that this error case be flagged
in the error log but be handled by the interrupt IPL17 IOP service routine.

Recovery procedure:  Clean up the LSB errors, but let the NSES errors be
parsed by the IPL 17 routine when that is called.

Restart condition:  None.

Error logging:  Log a 660 and an LSB subpacket along with a log adapter
subpacket.  Set software flags 96 (LSB subpacket), 98 (log adapter), 36
(IOP CMDR), and 60 (IOP NSES).

Additional parsing:  Eventually parse the subpackets.

Interrupt 660 Inconsistent Error

Description:  This is a catchall for the case when all the error parsing fails
to find a failure.  Should never get here.

Recovery procedure:  None.

Restart condition:  None.

Error logging:  Log a basic 660 with an LSB subpacket.  Set software flag
bits 96 (LSB subpacket) and 61 (660 Inconsistent).
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14.3.5  Events Reported Through Entry 630 

The KN7AA module detects error conditions related to the operation of the
B-cache (LSB side), the Gbus, and the LSB.  These errors, when occurring
asynchronous to the operation of the DECchip 21064 processor, are re-
ported through the irq_4 signal line on the KN7AA module.  This, in turn, 
becomes an IPL31 interrupt and is vectored through offset 660.  Single-bit
ECC errors that are caused by either another CPU’s B-cache or the LSB
also cause a 660 to occur.  

The KN7AA also vectors through 660 if other nodes assert the LSB ERR 
signal.  This is the case for the IOP.  Error handling in the 660 domain in-
cludes monitoring and error checking for IOP-detected LSB errors.  See the
I/O System Technical Manual for discussion IOP error parse trees. 

Figure 14-6 is the parse tree associated with the 660 machine check.   Fol-
lowing the parse tree is a description of each type of error and, when possi-
ble, a suggested recovery method. 

The KN7AA PALcode entry 630 pertains to all DECchip 21064 processor
detected single-bit ECC errors that occur when a P-cache fill is in progress
and the error occurs on this module.  Two situations cause this to occur:
first, when the B-cache is the source;  second, when the EDAL causes the
error.  Upon detection of this error, the system jumps to PALcode, which
has the routines required to coordinate recovery of this error based on the
two DECchip 21064 revisions, 2.1 or 3.0.  Note that if the source of the er-
rors is an LSB request (that is,  LBER<E> is set), then the single-bit error
is handled in the 660 parse trees.  The LSB error causes the 660 error in-
terrupt and it takes precedence over the 630.  For these cases, a 660 error
log will be provided. The 630 will be dismissed and will not produce a 630
error log.

14.3.5.1 DECchip 21064 Revision 2.1

If the DECchip 21064 processor is at revision 2.1, the recovery is tried at
the PALcode level.  For rev 2.1 DECchip 21064 processors, recovery will
only occur for single-bit ECC errors detected during I-stream reads.  All
other single-bit ECC errors detected by the CPU will result in no correc-
tion being performed.  These uncorrected errors will produce a 670 ma-
chine check.  Those errors must be parsed with the 670 parse tree.

14.3.5.2 DECchip 21064-C Revision 3.0

For revision 3.0 DECchip 21064s, single-bit ECC recovery is performed by
the hardware.  For single-bit errors on I-cache fills which corrupt more
than a single quadword of the cache fill, the DECchip 21064 traps to
PALcode and attempts to recover by flushing the I-cache.  All errors that
are not recoverable will produce a 670 machine check.  

Figure 14-7 shows the PALcode entry 630 parse tree.
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Figure 14-7 PALcode 630 Parse Tree

I-Stream Read B-Cache Single-Bit ECC Error

Description:  During an I-stream reference with a B-cache hit, the
DECchip 21064 detected a correctable ECC error.  The failing syndrome is
latched in the FILL_SYND register.  

Recovery procedure:   Hardware and PALcode do recovery.

Restart condition:  Restart if corrected by PALcode or hardware. 

Error logging:  For this error, the basic machine check entry will do.  All
error state associated with this error resides on this CPU module.  Set soft-
ware flag bit 6.  Also, log the 630 machine check stack frame to the
EEPROM logging area.  

I-Stream Read EDAL Single-Bit ECC Error

Description:  During an I-stream reference the DECchip 21064 detected a
correctable ECC error.  The failing syndrome is latched in the FILL_SYND
register.   Note that this error was caused by the EDAL data path and  no
LSB errors occurred on this data transfer.

Recovery procedure:  hardware and PALcode do recovery.

Restart condition:  Restart if corrected by PALcode or hardware.

Error logging:  For this error, the basic machine check entry is fine.  Set
software flag bit 11.  Log the 630 stack to the EEPROM area.

D-Stream Read B-Cache Single-Bit ECC Error

Description:  During a D-stream reference with a B-cache hit, the DECchip
21064 detected a correctable ECC error.  The failing syndrome is latched in
the FILL_SYND register.  

Recovery procedure:  Hardware and PALcode do recovery.

Restart condition:  Restart if corrected by PALcode or hardware.  

BIU_STAT.FILL_CRD <9>

Select one...

Select one...

I-stream ECC error

I-stream read B-cache single-bit
   ECC error 
I-stream read EDAL single-bit
   error 

BIU_STAT.FILL_IRD <11>
BC_TAG.HIT <0>

Not BC_TAG.HIT<0>

D-stream ECC error

I-stream read B-cache single-bit
   ECC error
I-stream read EDAL single-bit
   error
Inconsistent (no soft error)

BXB-0423-92

MCHK
630

BC_TAG.HIT <0>

Not BC_TAG.HIT <0> 

Not BIU_STAT.FILL_IRD <11>

Else
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Error logging:  For this error, the basic machine check entry will do.  All
error state associated with this error resides on this CPU module.  Set soft-
ware flag bit 16.  Log the 630 stack frame to the EEPROM area.

D-Stream Read EDAL Single-Bit Error

Description:  During a D-stream reference the DECchip 21064 detected a
correctable ECC error.  The failing syndrome is latched in the FILL_SYND
register.   Note that this error was caused by the EDAL data path.  

Recovery procedure:  Hardware and PALcode do recovery.

Restart condition:  Restart if corrected by PALcode or hardware.  

Error logging:  For this error, the basic machine check entry is fine.  Set
software flag bit 21.  Log the 630 stack to the EEPROM area.
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Index-3

Console Communication Data 1 bits, 9-33
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DEC OSF/1 AXP system support, 12-1
Delay, example, 10-11, 10-12
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DI, 4-32
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DIE, 9-7
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DREV, 9-5
DTBASM IPR, 4-28
DTBIS IPR, 4-28
DTBZAP IPR, 4-28
DTB clearing, example, 10-10
DTB_PTE IPR, 4-55
DTB_PTE_TEMP IPR, 4-56
DTCE, 9-7
DTYPE, 9-5
Dual Issue bit, 4-32
Dual-issue table, 4-18
Dual-ported access synchronization, 6-6
DUART0 Interrupt bit, 7-13
DUART0_INT, 7-13
DUART1 Interrupt bit, 7-13
DUART1_INT, 7-13
DZE, 4-42
D-Cache Enable bit, 4-64
D-Cache Force Hit bit, 4-64
D-Cache Hit bit, 4-62
D-Cache Status Register, 4-62
D-stream inconsistent error, 14-54
D-stream LSB read single-bit ECC error,

memory reference, 14-54
D-stream LSB single-bit ECC error, memory

reference, 14-26
D-stream parity error, BIU error handling,

14-5
D-stream read B-cache double-bit ECC error,

14-26
D-stream read B-cache single-bit ECC error,

14-25, 14-67
D-stream read EDAL double-bit ECC error,

14-28
D-stream read EDAL single-bit ECC error,

14-27, 14-55, 14-68
D-stream read LSB double-bit ECC error,

14-27
D-stream read memory double-bit ECC error,

14-27
D-stream read other CPU B-cache double-bit

ECC error, 14-26, 14-27
D-stream read other CPU B-cache single-bit

ECC error, 14-54

E
E, 9-8

Ebox, 4-6
ECC, 4-71
EEPROM, 7-3
EMD_EN, 4-64
EN, 9-11
Enable bit, 9-11
Endian Mode Enable bit, 4-64
Entry points, PALcode, 10-4
ERE, OpenVMS AXP, 11-4
Error bit, 9-8
Error Checking and Correction bit, 4-71
Error entry points, 14-1
Error handling, 14-1
Error log packets, 14-6
Error log packet format, 630 correctable error,

14-9
Error log packet format, 670/660 machine

check, 14-7
Error syndromes, 4-73
Event Count 0 bits, 9-42
Event Count 1 bits, 9-42
EV_COUNT0, 9-42
EV_COUNT1, 9-42
EWE, OpenVMS AXP, 11-4
Exceptions and interrupts, 4-21
Exception Address Register, 4-37
Exception Summary Register, 4-41
EXC_ADDR IPR, 4-37
EXC_ADDR IPR usage, 4-37
EXC_SUM, 4-11
EXC_SUM IPR, 4-41
Executive Read Enable bit, OpenVMS AXP,

11-4
Executive Write Enable bit, OpenVMS AXP,

11-4
Expander Select bits, 7-18
EXPSEL, 7-18

F
Failure not understood, 14-45
Fatal 1 bit, 4-60
Fatal 2 bit, 4-60
FATAL1, 4-60
FATAL2, 4-60
Fault on Execute bit, DEC OSF/1 AXP, 12-5
Fault on Execute bit, OpenVMS AXP, 11-5
Fault on Read bit, 4-57
Fault on Read bit, DEC OSF/1 AXP, 12-5
Fault on Read bit, OpenVMS AXP, 11-5
Fault on Write bit, 4-57
Fault on Write bit, DEC OSF/1 AXP, 12-5
Fault on Write bit, OpenVMS AXP, 11-5
FBCP, 9-28
FBDP, 9-28
Fbox, 4-9
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FDBE, 9-28
FDIRTY, 9-28
FEPROMs, 7-3
Fill Address Register, 4-63
Fill buffer, 6-3
Fill Correctable Read bit, 4-60
Fill Data Parity Error bit, 4-60
Fill ECC Error bit, 4-60
Fill I-Cache Read bit, 4-60
Fill Quadword bits, 4-60
Fill Syndrome Register, 4-72
FILL_ADDR IPR, 4-63
FILL_CRD, 4-60
FILL_DPERR, 4-60
FILL_ECC, 4-60
FILL_IRD, 4-60
FILL_QW, 4-60
FILL_SYND IPR, 4-72
Floating-Point Control Register, 4-9
Floating-Point Enable bit, 4-32
Floating-point operate pipeline, 4-12
Floating-Point Overflow bit, 4-42
Flush Instruction Cache ASM Register, 4-28
Flush Instruction Cache Register, 4-28
FLUSH_IC IPR, 4-28
FLUSH_IC_ASM IPR, 4-28
FOE, DEC OSF/1 AXP, 12-5
FOE, OpenVMS AXP, 11-5
FOR, 4-57
Force Bad Data Parity bit, 9-28
Force Dirty bit, 9-28
Force Double-Bit Error bit, 9-28
Force hit  mode, 5-7
Force LSB Ignore bit, 9-28
Force Share bit, 9-28
Force Single-Bit Error bit, 9-28
FOR, DEC OSF/1 AXP, 12-5
FOR, OpenVMS AXP, 11-5
FOV, 4-42
FOW, 4-57
FOW, DEC OSF/1 AXP, 12-5
FOW, OpenVMS AXP, 11-5
FPCR, 4-9, 4-11
FPE, 4-32
FRIGN, 9-28
FSBE, 9-28
FSHARE, 9-28
Functional units, 4-2

G
Gbus components, 7-2
GBus map, 2-3
Gbus$Halt, 7-14
Gbus$Intr, 7-12
Gbus$LEDs, 7-9

Gbus$LSBRST, 7-16
Gbus$LTagRW, 7-20
Gbus$Misc, 7-17
Gbus$PMask, 7-10
Gbus$RMode, 7-19
Gbus$WHAMI, 7-7
Get buffer, 6-3
GH, 4-54
GH, DEC OSF/1 AXP, 12-5
GH, OpenVMS AXP, 11-5
Granularity Hint bits, 4-54
Granularity Hint bits, DEC OSF/1 AXP, 12-5
Granularity Hint bits, OpenVMS AXP, 11-5

H
Halt Enable bit, 7-11
Halt protection, 7-4
HALT_EN, 7-11
Hardware bit, 4-45
Hardware Enable bit, 4-32
Hardware Interrupt Enable bits, 4-49
Hardware Interrupt Enable Register, 4-48
Hardware Interrupt Request bits, 4-45
Hardware Interrupt Request Register, 4-44
Hardware privileged process context,

OpenVMS AXP, 11-12
HIER IPR, 4-48
HIER<5:0>, 4-49
High <6:0> bits, 4-72
HIRR, 4-45
HIRR IPR, 4-44
HIT, 4-75
Hit bit, 4-75
HI<6:0>, 4-72
HWE, 4-32
HWR, 4-45
HW_LD and HW_ST instructions, 10-16
HW_MFPR and HW_MTPR instructions, 10-16
HW_MTPR cycle delay, 10-13
HW_MTPR DTBIS, 10-9
HW_MTPR restrictions, 10-9
HW_REI instructions, 10-17

I
IA, 9-11
Ibox, 4-2
IBX, 10-16
ICCSR IPR, 4-31
IC_SBUF_EN, 4-65
IEEE floating-point conformance, 4-10
Inconsistent error, 14-57
Inconsistent error-LSB, 14-32
Inconsistent error-NSES, 14-28, 14-32, 14-33,

14-40, 14-43
Inconsistent state, 14-61
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Inconsistent-LSB, 14-35, 14-37, 14-38, 14-42,
14-45

INE, 4-42
Inexact Error bit, 4-42
Initialization, 13-1

cache, 5-8
overview, 13-1

Instructions, 3-2
Instruction Cache Control/Status Register,

4-31
Instruction class definition, 4-14
Instruction formats, 3-2
Instruction format classes, 3-2
Instruction issue rules, 4-17
Instruction processing stages, 4-13
Instruction set characteristics, 3-3
Instruction translation buffers, 4-3
Instruction Translation Buffer ASM Register,

4-28
Instruction Translation Buffer IS Register,

4-28
Instruction Translation Buffer PTE Register,

4-30
Instruction Translation Buffer ZAP Register,

4-28
INT, 9-11
Integer operate pipeline, 4-12
Integer Overflow bit, 4-42
Interfacing rules, 6-6
Interleave Address bits, 9-11
Interleave bits, 9-11
Internal cache, 4-11
Internal processor registers, 4-23
Interprocessor bit, 7-12
Interprocessor interrupt, 9-19
Interprocessor Interrupt Mask bits, 9-18
Interprocessor Interrupt Register, 9-18
Interrupts and exceptions, 4-21
Interrupt conditions, 8-4
Interrupt handling, device, 8-3
Interrupt levels, 8-4
Interrupt logic, 4-4
Interrupt mapping, 9-16
Interrupt, interprocessor, 9-19
Interupt 660 inconsistent error, 14-65
Interval Timer bit, 7-12
INTIM, 7-12
INV, 4-42
Invalid bit, 4-42
Invoking PALcode, 10-2
IOP commander, 14-61
IOP LSB command parity error, 14-62
IOP LSB corrected ECC error, 14-63
IOP LSB corrected ECC error, Dirty, 14-63
IOP LSB CSR data parity error, 14-62
IOP LSB inconsistent error, 14-64

IOP LSB NXM, 14-61
IOP LSB uncorrectable ECC error, 14-64
IOP multiple data errors, 14-65
IOP node specific error summary, 14-65
IOP-detected LSB synchronization errors,

14-61
IOV, 4-42
IP, 7-12
IPL, 9-17
IPR

ABOX_CTL, 4-64
access, 4-23
ALT_MODE, 4-66
ASTER, 4-51
ASTRR, 4-47
BC_TAG, 4-74
BIU_ADDR, 4-58
BIU_CTL, 4-69
CC, 4-67
CC_CTL, 4-68
DC_STAT, 4-62
descriptions, 4-27
DTB_PTE, 4-55
DTB_PTE_TEMP, 4-56
EXC_ADDR, 4-37
EXC_SUM, 4-41
FILL_ADDR, 4-63
FILL_SYND, 4-72
HIER, 4-48
HIRR, 4-44
ICCSR, 4-31
ITB_PTE, 4-30
ITB_PTE_TEMP, 4-36
MMCSR, 4-57
PAL_BASE, 4-43
PS, 4-40
SIER, 4-50
SIRR, 4-46
SL_CLR, 4-52
SL_RCV, 4-39
SL_XMIT, 4-53
TB_CTL, 4-54
TB_TAG, 4-29

IPRs, 4-23
IPR access, 4-23
IPR descriptions, 4-27
ITBASM IPR, 4-28
ITBIS IPR, 4-28
ITBZAP IPR, 4-28
ITB and DTB clearing, example, 10-10
ITB clearing, example, 10-10
ITB_PTE IPR, 4-30
ITB_PTE_TEMP IPR, 4-36
ITB_PTE_TEMP Register, 4-36
I-Cache Stream Buffer Enable bit, 4-65
I-stream inconsistent error, 14-53
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I-stream parity error, BIU error handling, 14-4
I-stream read B-cache double-bit ECC error,

14-23
I-stream read B-cache single-bit ECC error,

14-22, 14-67
I-stream read EDAL double-bit ECC error,

14-25
I-stream read EDAL single-bit ECC error,

14-24, 14-53, 14-67
I-stream read LSB double-bit ECC error, 14-25
I-stream read memory double-bit ECC error,

14-24
I-stream read other CPU B-cache double-bit

ECC error, 14-24
I-stream read other CPU B-cache single-bit

ECC error, 14-24, 14-53
I/O Interrupt Register, 9-16
I/O operation registers, 8-4
I/O space map, 2-2

J
JSE, 4-32
Jump Subroutine Enable bit, 4-32

K
Kernel Read Enable bit, DEC OSF/1 AXP, 12-4
Kernel Read Enable bit, OpenVMS AXP, 11-4
Kernel Write Enable bit, DEC OSF/1 AXP,

12-4
Kernel Write Enable bit, OpenVMS AXP, 11-4
KN7AA block diagram, 1-2
KN7AA LSB node base addresses, 2-3
KRE, DEC OSF/1 AXP, 12-4
Kseg virtual address format, DEC OSF/1 AXP,

12-3
KWE, DEC OSF/1 AXP, 12-4
KWE, OpenVMS AXP, 11-4

L
LADR, 9-26
Last Miss Address Register, 9-43
LBECR, 9-14
LBER, 9-6
LBESR, 9-12
LCNR, 9-9
LCNTR, 9-42
LCNTR0 Halt bit, 9-36, 9-39
LCNTR0 Overflow bit, 9-37, 9-41
LCNTR0 Run bit, 9-36, 9-39
LCNTR0 Select bits, 9-36
LCNTR1 Halt bit, 9-35, 9-38
LCNTR1 Overflow bit, 9-37, 9-41
LCNTR1 Run bit, 9-35, 9-38
LCNTR1 Select bits, 9-35, 9-38, 9-40

LCON, 9-33
LC0_HLT, 9-36, 9-39
LC0_OVFL, 9-37, 9-41
LC0_RUN, 9-36, 9-39
LC0_SEL, 9-36, 9-40
LC1_HLT, 9-35, 9-38
LC1_OVFL, 9-37, 9-41
LC1_RUN, 9-35, 9-38
LC1_SEL, 9-35, 9-38
LDC Power Okay bit, 7-15
LDC_PWR_OK, 7-15
LDEV, 9-5
LDIAG, 9-27
LEDs Low bits, 7-9
LEDs_L, 7-9
LEVI, 6-4
LEVI address path, 6-2
LEVI block diagram, 6-2
LEVI B-cache status parity error, 14-56
LEVI B-cache status parity error on lookup,

14-40, 14-43
LEVI B-cache tag parity error, 14-56
LEVI B-cache tag parity error on lookup,

14-39, 14-43
LEVI controllers, 6-4
LEVI data controller, 6-4
LEVI data path, 6-3
LEVI processor controller, 6-4
LEVI read of B-cache correctable error, 14-55
LEVI read of B-cache uncorrectable error,

14-56
LEVI Revision bit, 9-21, 9-22
LEVI transactions, 6-7
LEVI_REV, 9-21, 9-22
LIOINTR, 9-16
LIPINTR, 9-18
LLOCK, 9-26
LMBOX, 8-5
LMBPR, 8-4
LMBPR Address bits, 8-3
LMBPR_ADDR, 8-3
LMERR, 9-24
LMISSADDR, 9-43
LMMR, 9-10
LMODE, 9-20
Load silos, 4-7
Load_Locked bits, 4-58
LOCK, 9-26
Lock Address bit, 9-26
Lock Address Register, 9-26
Lock bit, 9-26
Lock Mode bits, 9-21, 9-23
LOCK_MODE, 9-21, 9-23
Low <6:0> bits, 4-72
LO<6:0>, 4-72
LPERF, 9-34
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LSB, 6-5
LSB arbitration, 6-6
LSB Bad bit, 7-8
LSB cache protocol error, 14-29, 14-34, 14-35,

14-37, 14-40, 14-43, 14-57
LSB command field encodings, 6-7
LSB command parity errors, 14-30, 14-35,

14-36, 14-38, 14-41, 14-44
LSB controller, 6-5
LSB control transmit check error, 14-31, 14-35,

14-37, 14-41, 14-45
LSB CONWIN bit, 7-8
LSB correctable error, 14-58
LSB CSR map, 2-2
LSB interface, introduction, 1-3
LSB interrupt level, 9-17
LSB Mailbox Register, 8-5
LSB node space base addresses, 9-2
LSB nonexistent memory, 14-57
LSB second errors, 14-60
LSB Secure bit, 7-15
LSB single-bit ECC error, memory reference,

14-23, 14-53
LSB synchronization failure, 14-29, 14-34,

14-36, 14-37, 14-40, 14-44, 14-57
LSB uncorrectable ECC error, Dirty, 14-64
LSB uncorrectable error, 14-58
LSB 0 bit, 7-13
LSB 1 bit, 7-13
LSB 2 bit, 7-12
LSB-initiated transactions, 6-8
LSB1, 7-13
LSB2, 7-12
LSB_BAD, 7-8
LSB_CONWIN, 7-8
LSB_SEC, 7-15
LTAGA, 9-30
LTAGW, 9-31

M
Machine Check Enable bit, 4-65
Machine check overview, 14-2
Machine check stack frame, 670/660, 14-8
Machine check 660 events, 14-46
Machine check 660 parse tree, 14-47
Machine check 670 events, 14-11
Machine check 670 parse tree, 14-12
Mailbox

data structure, 8-1
operation, 8-2
pointer CSR, 8-4
pointer structure, 8-3

Mailbox Address bits, 8-3
Mailbox Register bits, 8-5
Manufacturing status bit, 7-8

MAP, 4-32
Mapping

address space, 6-7
interrupt, 9-16

MASK, 9-18
Mask bit, 4-42
MA_FREQ, 9-37, 9-41
MBXREG, 8-5
MB_ADDR, 8-3
MCHK_EN, 4-65
Memory emulation, B-cache, 9-29
Memory management

DEC OSF/1 AXP, 12-1
OpenVMS AXP, 11-1

Memory management control
DEC OSF/1 AXP, 12-4
OpenVMS AXP, 11-3

Memory Management CSR Register, 4-57
Memory management faults

DEC OSF/1 AXP, 12-9
OpenVMS AXP, 11-11

Memory management, DEC OSF/1 AXP, 12-1
Memory management, OpenVMS AXP, 11-1
Memory Mapping Register, 9-10
Memory protection

 OpenVMS AXP, 11-6
Memory protection, DEC OSF/1 AXP, 12-6
Memory reference pipeline, 4-12
Memory space map, 2-1
MFG, 7-8
Missed Address bits, 9-43
Miss Address Frequency bits, 9-37, 9-41
Miss, DTB, 10-14
Miss, ITB, 10-13
MISS_ADDR, 9-43
MMCSR IPR, 4-57
Mode Register, 9-20
Module Address bits, 9-10
Module Error Register, 9-24
Module hardware, 1-2
MODULE_ADDR, 9-10
MSK, 4-42
Multiple error response, 14-5
Multiple LSB command parity errors, 14-30
Multiple single-bit ECC errors, 14-31
Multiple uncorrectable ECC errors, 14-31

N
NBANKS, 9-11
NHALT, 7-15, 9-9
NID, 7-8
Node Bank bits, 9-35, 9-38
Node base addresses, 2-3
Node Halt bit, 7-15, 9-9
Node ID bit, 7-8
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Node Reset bit, 9-9
Node space base addresses, 9-2
Node-Specific Error Summary bit, 9-7
Nonexistent Address Error bit, 9-7
Nonissue conditions, 4-14
NRST, 9-9
NSES, 9-7
Number of Banks bits, 9-11
NXAE, 9-7
NXM to LSB I/O space, 14-29
NXM to LSB memory, 14-30
NXM to self I/O space, 14-30
N_MASK, 9-35, 9-38

O
OE, 4-71
OPCODE, 4-57, 10-16, 10-17, 10-18
Opcode bits, 4-57
Opcode summary, 4-19
OpenVMS AXP memory management, 11-1
OpenVMS AXP process structure, 11-12
OpenVMS AXP system support, 11-1
Operating system startup, 13-3
Output Enable bit, 4-71
Overview, CPU module, 1-1

P
P, 9-15
Page Frame Number bits, DEC OSF/1 AXP,

12-4
Page Frame Number bits, OpenVMS AXP,

11-4
Page table entries, OpenVMS AXP, 11-3
Page table entry, DEC OSF/1 AXP, 12-4
PAL, 4-37, 10-16
PALcode, 10-1
PALcode Base Address bits, 4-43
PALcode Base Address Register, 4-43
PALcode categories, 10-3
PALcode entry points, 10-4
PALcode entry 630 events, 14-66
PALcode entry 630 parse tree, 14-67
PALcode error entry points, 14-1
PALcode error handling, 14-6
PALcode instructions, 4-19
PALcode, categories of hardware initiated,

10-3
PALcode, invoking, 10-2
PALmode, 4-37
PALmode environment, 10-2
PALmode restrictions, 10-7
PAL_BASE, 4-43
PAL_BASE IPR, 4-43
PAL_TEMP IPRs, 4-28
Parity bit, 9-15

Parse trees, 14-10
PA-UNP, 4-63
PC, 4-37
PCB, DEC OSF/1 AXP, 12-11
PCMUX0, 4-34
PCMUX1, 4-33
PC0, 4-34, 4-45, 4-49
PC1, 4-34, 4-45, 4-49
Performance counters, 4-5, 4-35
Performance Counter Control Register, 9-34
Performance Counter Mux 0, 4-34
Performance Counter Mux 1 bits, 4-33
Performance Counter Register, 9-42
Performance Counter 0 bit, 4-34, 4-52
Performance Counter 0 Interrupt Enable bit,

4-49
Performance Counter 0 Interrupt Request bit,

4-45
Performance Counter 1 bit, 4-34, 4-52
Performance Counter 1 Interrupt Enable bit,

4-49
Performance Counter 1 Interrupt Request bit,

4-45
PFN, DEC OSF/1 AXP, 12-4
PFN, OpenVMS AXP, 11-4
PHALT_EN, 7-10
PHY, 10-17
Physical access for PTEs, OpenVMS AXP, 11-7
Physical address or unpredictable, 4-63
Physical address space, DEC OSF/1 AXP, 12-3
Physical address space, OpenVMS AXP, 11-3
Physical base addresses, 9-2
PIPE, 4-32
Pipeline bit, 4-32
Pipeline organization, 4-11
PMAPP, 9-31
PMAPPE, 9-25
PMAP_DIS, 9-28
PMODE, 9-21, 9-23
Power Module A Okay bit, 7-14
Power Module B Okay bit, 7-14
Power supply connection codes, 7-18
Power-up test, 13-2
Previous system error latched, 14-32, 14-39,

14-42, 14-45
Primary cache, 5-2
Privileged architecture library code, 10-1
Processor access modes, DEC OSF/1 AXP, 12-6
Processor access modes, OpenVMS AXP, 11-7
Processor mode, 4-66
Processor Status Register, 4-40
Processor-initiated transactions, 6-7
Process context switching, OpenVMS AXP,

11-14
Process context, hardware privileged,

OpenVMS AXP, 11-12
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Process control block, DEC OSF/1 AXP, 12-11
Process structure, DEC OSF/1 AXP, 12-10
Process structure, OpenVMS AXP, 11-12
Producer-Consumer classes, 4-15
Producer-Consumer latency, 4-15
Program counter, 4-37
Protection code, DEC OSF/1 AXP, 12-6
Protection code, OpenVMS AXP, 11-7
PS IPR, 4-40
PTE access, physical, OpenVMS AXP, 11-7
PTE access, virtual, 11-9
PTE access, virtual, OpenVMS AXP, 11-9
PTE changes, OpenVMS AXP, 11-5
PTE, DEC OSF/1 AXP, 12-4
PTE, OpenVMS AXP, 11-3
PWR_MODA_OK, 7-14
PWR_MODB_OK, 7-14
P-cache, 4-11, 5-2
P-Cache Mode bits, 9-21, 9-23
P-map, 5-6
P-Map Disable bit, 9-28
P-Map Parity bit, 9-31
P-Map parity error, 14-55
P-Map Parity Error bit, 9-25

Q
QW, 10-17

R
RA, 4-57
RA/RB, 10-17, 10-18
RB/LL, 4-58
RCV, 4-39
Reading EXC_ADDR, example, 10-8
Reading PAL_TEMP, example, 10-8
Read arbitration collision, 14-28, 14-32, 14-39,

14-42
Read arbitration drop, 14-28, 14-32, 14-39,

14-42
Read B-tag address parity error, 14-21
Read B-tag control parity error, 14-22
Read CSR data parity error, 14-59
Read LSB non-EX memory, 14-34, 14-41
Read_Block or Load_Locked bits, 4-58
Registers

console, 7-5
I/O operation, 8-4

Register addressing, UART, 7-4
Register A bits, 4-57
Register descriptions, 9-4
Register mapping, 9-2
Register, LSB Mailbox, 8-5
Request Mode bits, 7-7
REQ_MODE, 7-7
Reserved opcodes, implementation, 10-15

Reserved 0 bit,  DEC OSF/1 AXP, 12-4
Reserved 1bit,  DEC OSF/1 AXP, 12-4
Reserved 2 bit,  DEC OSF/1 AXP, 12-4
Reset Status bit, 9-9
RSTSTAT, 9-9
RSV0, DEC OSF/1 AXP, 12-4
RSV1, DEC OSF/1 AXP, 12-4
RSV2, DEC OSF/1 AXP, 12-4
RUN Low bit, 7-9
RUN_L, 7-9
RWC, 10-17

S
Scheduling and issuing rules, 4-14
Second Command Parity Error bit, 9-8
Second Correctable Data Error bit, 9-8
Second CSR Data Parity Error bit, 9-8
Second  Uncorrectable Data Error bit, 9-8
Segment virtual address format, DEC OSF/1

AXP, 12-2
Select control terminal bits, 7-11
Self-test description, 13-1
Self-Test Fail bit, 9-9
Self-Test Passed Low bit, 7-9
SEL_CONS_TERM, 7-11
Serial Interrupt Line Enable bit, 4-49
Serial Line Clear bit, 4-52
Serial Line Interrupt Request bit, 4-45
Serial Line Receive bit, 4-39
Serial Line Receive Register, 4-39
Serial Line Transmit Register, 4-53
Serial port, 7-2
Serial ROM, 7-2
SHARED, 9-15, 9-31
Shared bit, 9-15, 9-31
SHE, 9-7
SIER IPR, 4-50
SIER<15:1>, 4-49
Single-bit D-stream ECC error, 14-3
Single-bit error syndromes, 4-73, 9-13
Single-bit I-stream ECC error, 14-3
Single-error response, 14-3
SIRR, 4-45
SIRR IPR, 4-46
SLE, 4-49
SLR, 4-45
SL_CLR IPR, 4-52
SL_RCV IPR, 4-39
SL_XMIT IPR, 4-53
Software bit, 4-45
Software bits, DEC OSF/1 AXP, 12-4
Software Completion bit, 4-42
Software Interrupt Enable bits, 4-49
Software Interrupt Enable Register, 4-50
Software Interrupt Request bits, 4-45
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Software Interrupt Request Register, 4-46
Space map

I/O, 2-2
memory, 2-1

SPE_1, 4-65
SPE_2, 4-65
SRE, OpenVMS AXP, 11-4
SROM, 7-2
SROM operation, 13-2
Stack frame, 630, 14-9
Stall buffer, 6-3
Stall Error bit, 9-7
Static and dynamic stages, 4-13
STCOND_TO, 9-21, 9-22
STE, 9-7
STF, 9-9
Store Conditional Timeout bits, 9-21, 9-22
STP_L, 7-9
Structure, mailbox pointer, 8-3
Superpage Enable 1 bit, 4-65
Superpage Enable 2 bit, 4-65
Supervisor Read Enable bit, OpenVMS AXP,

11-4
Supervisor Write Enable bit, OpenVMS AXP,

11-4
SWC, 4-42
SWE, OpenVMS AXP, 11-4
SWR, 4-45
SW, DEC OSF/1 AXP, 12-4
Synchronization

dual-ported access, 6-6
failure, 14-29, 14-34, 14-36, 14-37, 14-40,

14-44, 14-57
Syndromes

single-bit errors, 4-73, 9-13
 values, 9-13

Syndrome 0 bit, 9-12
Syndrome 1 bit, 9-12
Syndrome 2 bit, 9-12
Syndrome 3 bit, 9-12
SYND_0, 9-12
SYND_1, 9-12
SYND_2, 9-12
SYND_3, 9-12
System block diagram, 1-1
System setup, boot processor, 13-3

T
TAGADR_P, 4-75
TAGCTL_D, 4-75
TAGCTL_P, 4-75
TAGCTL_S, 4-75
TAGCTL_V, 4-75
Tag Address bits, 9-30
Tag Address Parity bit, 4-75

Tag address parity error, BIU error handling,
14-4

Tag Address Register, 9-30
Tag Control Dirty bit, 4-75
Tag Control Parity bit, 4-75
Tag control parity error, BIU error handling,

14-4
Tag Control Shared bit, 4-75
Tag Control Valid bit, 4-75
Tag Data bits, 9-32
Tag read/write, 9-29
Tag Select bits, 9-27
Tag Write Data Register, 9-31
TAG<33:17>, 4-75
TAG_ADDR, 9-30
TAG_DATA, 9-32
TAG_SEL, 9-27
TB clearing, example, 10-10
TB miss flows, 10-13
TB_CTL IPR, 4-54
TB_TAG IPR, 4-29
TDE, 9-7
Transaction ordering, 6-9
Translation Buffer Control Register, 4-54
Translation Buffer Tag Register, 4-29
Translation buffer, DEC OSF/1 AXP, 12-8
Translation buffer, OpenVMS AXP, 11-10
Transmitter During Error bit, 9-7

U
UARTs, 7-3
UART register addressing, 7-4
UCE, 9-8
UCE2, 9-8
Uncorrectable Data Error bit, 9-8
Underflow bit, 4-42
UNF, 4-42
URE, DEC OSF/1 AXP, 12-4
URE, OpenVMS AXP, 11-4
User Read Enable bit, DEC OSF/1 AXP, 12-4
User Read Enable bit, OpenVMS AXP, 11-4
User Write Enable bit, DEC OSF/1 AXP, 12-4
User Write Enable bit, OpenVMS AXP, 11-4
UWE, DEC OSF/1 AXP, 12-4
UWE, OpenVMS AXP, 11-4

V
VA, 4-29
VALID, 9-31
Valid bit, 9-31
Valid bit, DEC OSF/1 AXP, 12-5
Valid bit, OpenVMS AXP, 11-5
VA IPR, 4-27
Victim buffer, 5-7
Virtual access to PTEs, OpenVMS AXP, 11-9
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Virtual Address bits, 4-29
Virtual address format, DEC OSF/1 AXP, 12-2
Virtual address options, DEC OSF/1 AXP, 12-3
Virtual Address Register, 4-27
Virtual address spaces, DEC OSF/1 AXP, 12-2
Virtual address space segments, DEC OSF/1

AXP, 12-2
Virtual address space, OpenVMS AXP, 11-2
V, DEC OSF/1 AXP, 12-5
V, OpenVMS AXP, 11-5

W
Watch chip, 7-4
WB_DIS, 4-65
WMODE, 9-21, 9-23
WR, 4-57
Write arbitration collision, 14-33
Write arbitration drop, 14-33
Write bit, 4-57
Write buffer, 4-8, 6-3
Write Buffer Unload Disable bit, 4-65
Write B-tag address parity error, 14-21
Write B-tag control parity error, 14-22
Write CSR data parity error, 14-38, 14-59
Write LSB non-EX memory, 14-36
Write Mode bits, 9-21, 9-23
Write policy, 5-6
Write to ITB following REI, example, 10-10


