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Abstract

Packets on a LAN can be viewed as a series of references to and from the
objects they address.  The amount of locality in this reference stream may be
critical to the efficiency of network implementations, if the locality can be
exploited through caching or scheduling mechanisms.  Most previous studies
have treated network locality with an addressing granularity of networks or
individual hosts.  This paper describes some experiments tracing locality at a
finer grain, looking at references to individual processes, and with fine-
grained time resolution.  Observations of typical LANs show high per-
process locality; that is, packets to a host usually arrive for the process that
most recently sent a packet, and often with little intervening delay.

This Research Report is an expanded version of a paper that appeared in the Proceedings of the
SIGCOMM ’91 Conference on Communications Architectures and Protocols.
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1. Introduction

Packets on a LAN can be viewed as a series of references to and from the objects whose
addresses appear in the packet headers.  Just as with a CPU reference stream, one can consider
the ‘‘locality of reference’’ in this packet stream.  The locality can be both spatial (a sequence of
accesses to a small set of objects) and temporal (repeated access to an object during a brief
period). The amount of locality may be critical to the efficiency of network implementations, if
it can be exploited through caching or scheduling mechanisms.

Network localities of reference form a hierarchy. Highest is the ‘‘subnetwork’’ level, often
identifiable with specific LANs. Routers, for example, make decisions based on network IDs,
and the use of a routing lookup cache has been shown to be profitable [10]. At the next level is
the individual host; per-host locality properties have implications for such algorithms as ‘‘fair
queuing’’ [23] and ‘‘reservation switching’’ [14]. One can also look for locality in the source-
destination host pairs; this may be helpful in determining how to partition a network [18].

There is one more level in the hierarchy of network addresses:  the individual process.  With
few exceptions, processes (or threads) are the entities actually doing communication.  Host ad-
dresses are simply a consequence of sharing hardware resources between several processes (and
of the traditional but arbitrary address layering used in most protocol families).  Often, the
locality properties visible at the host-address level actually arise because of per-process network
locality. Similarly, host-pair locality is often a consequence of locality in the communication
between pairs of processes.

Per-process network locality is important for several reasons.  Security and quality-of-service
policies of network infrastructure (such as routers) might better be expressed in terms of com-
municating processes rather than communicating hosts [19]. Once a packet reaches its destina-
tion host, the speed of delivery to the ultimate process is strongly determined by decisions such
as scheduling choices that might benefit from consideration of locality.  For example, if the
response time for an RPC packet is less than the cost of two context switches, it would pay to let
the requesting process busy-wait for the arriving packet.

This paper presents a study of network locality on the per-process level, and speculates on the
implications these observations have for computer system design.  Observations of typical LANs
show per-process locality; that is, packets to a host usually arrive for the process that most
recently sent a packet, and often with little intervening delay.  The observations were made using
a passive monitor on broadcast LANs, so the normal timing relationships and communications
patterns were unperturbed by the act of measurement, and all systems on the network could be
watched without any hardware or software modifications.

It will be shown that observed per-process locality is quite high: three quarters of all packets
arriving at a host are for the same process that received the previous packet, and from one
quarter to two thirds of incoming packets are for the process that most recently sent a packet.  A
significant fraction of such packets arrive within a few milliseconds after a process has
previously used the network.
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NETWORK LOCALITY AT THE SCALE OF PROCESSES

1.1. Previous work

Most previous trace-based studies that have treated network locality used an addressing
granularity of networks or individual hosts.  Numerous studies have looked at the long-term per-
host locality or the long-term host-to-host connectivity matrix on LANs [1, 2, 9, 37] and the
packet interarrival time on a per-host basis [11]. Several have examined short-term per-host or
host-pair locality [10, 12, 14, 18], and at least one has looked at per-application locality [4].

Two studies on the V system did look at process-to-process characteristics. Cheriton and
Williamson [8] present a frequency distribution for request-response transaction durations.
Williamson [42] examined per-process locality, for the purpose of caching protocol state infor-
mation. In both of these studies, the time-resolution of the transaction duration measurement did
not allow inferences about possible scheduling effects.

Almost all previous studies have measured interarrival times with resolutions of milliseconds
or worse.  At least one previous study [17] was able to achieve a resolution of around 100
microseconds, as did the experiments reported in this paper.

Carter and Zwaenepoel designed their ‘‘optimistic blast’’ protocol assuming that per-process
locality is high, and then showed that, under certain conditions, an implementation embodying
this assumption was successful at improving performance [5].

2. Addressing Model

One impediment to extracting information about per-process network locality from traces of
packet headers is that header addresses do not always denote specific processes.  It may be
necessary to guess a process identity from the contents of a packet header, which can lead to
incorrect inferences about locality.  Even if a packet header address can be associated with a
single process, a process may be communicating under several guises at once. It may not be
possible to discover that several header addresses map onto the same process.

Different protocol families have followed a variety of approaches to encoding process ad-
dressing information.  Some mechanisms in use are:

No process information:
Certain simple protocols, such as ARP [29] are inherently host-to-host protocols and are
not addressed at a finer grain.

Explicit process identification:
Protocols designed specifically to support distributed operating systems might use explicit
process identifiers in their address structure.  One such protocol was the V system’s
original ‘‘interkernel protocol’’ [7].

Ubiquitous ‘‘port’’ identifiers:
Since the use of explicit process identifiers can create problems (e.g., when a process
wishes to hand one of its connections to another process), many protocols use an abstract
identifier variously known as a ‘‘socket’’ (e.g., in Pup [3]), ‘‘port’’ (e.g., in Accent [34]),
or ‘‘entity’’ (e.g., in VMTP [6]). Although ports are not permanently bound to a single
process, migration is not frequent enough to significantly affect locality.  However, one
process may communicate using several ports.
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The protocols mentioned above are consistent in that port identifiers appear in every mes-
sage, no matter what higher-level protocols are involved.  This makes it possible to
demultiplex packets to the appropriate process before further processing.

Haphazard ‘‘port’’ identifiers:
The IP packet header [31] does not include any process-oriented identification fields.  In-
stead, packets are demultiplexed by a protocol-type field, and it is up to the individual
protocol to define port fields.  Some (such as TCP [32] and UDP [30]) do so; others (e.g.,
ICMP [33]) do not.

Connection identifiers:
Rather than expose the internal process addressing structure in each packet, a packet
header may carry a ‘‘connection identifier’’.  During connection setup, explicit process
identification might be provided, at which time the host software allocates a unique iden-
tifier for the connection.  In subsequent packets, the connection identifier is used by the
destination host to select the receiving process.  The DECNET NSP [40] protocol works
this way.

The use of connection identifiers instead of port identifiers complicates, but does not
preclude, the determination of per-process network locality by passive monitoring.

Transaction identifiers:
In some instances, where communication is kernel-to-kernel on behalf of process-to-
process operations, packets carry no marks distinguishing the processes; NFS [35, 38] is
such a case.  NFS RPC packets do carry a transaction identifier, to allow matching of
responses to requests.  Locality may be inferred from these identifiers, but it will be un-
derestimated because it is impossible to tell if two transactions are issued by the same
process.

On the LANs used for the observations described in this paper, virtually all traffic is carried in
IP packets.  (There is some DECNET and LAT traffic, but the volume is low and the usage
patterns are probably not typical of networks where DECNET and LAT are primary protocols.)
Because IP follows the ‘‘haphazard’’ addressing model, the inference of process identities is
complex and prone to some inaccuracy.  For the purposes of this paper:

TCP:
1The tuple (host-address, TCP-src-port, TCP-dst-port) is assumed to identify a process .

UDP packets can be segregated into NFS and non-NFS packets by noting if the distinguish NFS
server port number appears in one of the addresses.  Since all NFS packets are RPC packets, and
there is otherwise no indication that a UDP packet is being used for RPC, all non-NFS packets
are assumed to be non-RPC packets.

UDP other than NFS:
The tuple (host-address, UDP-port) is assumed to identify a process.

NFS client processes:
It is hard to map NFS operations to specific processes, because of the way that typical
NFS client implementations are embedded in the kernel.  One could either assume that all

1This is an approximation; the tuple could map onto several processes, since TCP connections are distinguished
by the quadruple (src-host, src-port, dst-host, dst-port). This causes insignificant overestimation of locality; see
section 4.3.
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NFS requests made from a host are done for a single process, overestimating locality, or
one could assume that each request is made by a unique process, underestimating locality
(the approach taken for this study).  In either case, the transaction identifier is used to
match requests and responses.

NFS server processes:
NFS servers are usually multithreaded, but since an NFS server process retains no state
between transactions, the threads can be scheduled arbitrarily.  Because of this, and be-
cause the individual server processes on a host cannot be identified in the network pack-
ets, they are treated as a single process for the purpose of inferring locality.

Other IP protocols:
Other IP protocols are ignored; they are infrequent and do not adequately identify in-
dividual processes.

For the purposes of analyzing locality, two classes of objects are of interest.  ‘‘Host’’ objects
are simply those hosts whose IP addresses appear in a packet. ‘‘Port’’ objects, which in many
cases can be viewed as individual processes, are those communication endpoints whose com-
pound addresses (host addresses and port numbers) appear in a packet.  These abstractions are
useful, for example, in inferring if a packet arriving at a host is received by the same process that
most recently sent a packet from that host.  From a passive monitor, one can only say that the
packet arrived for the same abstract port object, and one must then make assumptions about the
mapping from port objects to processes in order to estimate actual per-process locality.

2.1. Defining locality

Computer science has long appreciated the existence of locality.  Two dimensions have been
identified for locality in memory hierarchies [13]:

• Temporal locality: if an item is referenced, it is likely to be referenced again soon.

• Spatial locality: if an item is referenced, nearby items are likely to be referenced
soon.

Williamson [42] points out that it is hard to find an analog of spatial locality in network ad-
dresses, since the concept of ‘‘nearby’’ is hard to define.  He suggests instead the use of the term
persistence to refer to the tendency for a single item, once it is referenced, to be preferentially
referenced in the future.

The notion of temporal locality in a network reference stream is slightly different from that in
a memory address reference stream.  Memory references occur at a more or less constant rate;
thus, if a memory address exhibits persistence, it will probably also exhibit temporal locality.
Network reference streams are bursty, and may include large gaps when nothing happens.  It is
possible, therefore, for the network activity of host to exhibit persistence (repeated references to
the same process) without exhibiting temporal locality (repeated references that are close in
time). For example, if one process receives two packets in a row, but with a 30-second delay
between the two receptions, we might not consider the second reference to be ‘‘soon’’ with
respect to the first.

One subtle difference between locality in a cache or virtual memory system, and that in net-
work references to processes, is that while there may be thousands of equally accessible cache
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lines or physical pages at once, in general only one process is active on a CPU.  When consider-
ing cache or virtual memory locality, it is sufficient that the current reference is to a line or page
that is one of many recently referenced items.  When considering per-process network locality, if
the current reference is to any but the currently-active process, there might not be any exploitable
advantage if one is trying to avoid the costs associated with context-switching.

3. Measurement Tools

In the past, it has generally been necessary to build a special-purpose system to do high-
resolution network tracing, using either special-purpose hardware [17] or off-the-shelf hardware
with special-purpose software [18]. We are now in an era, at least temporarily (with the advent
of high-performance workstations and before a widespread replacement of 10 Mbit/sec Ethernet
with faster LANs), in which a workstation running a general-purpose operating system can be a
reasonable network monitor [20].

All the experiments reported on in this paper were done using off-the-shelf workstation
hardware and software, unmodified except for some improvements in clock resolution.  (Similar
improvements should soon be widely available.)  Because standard systems are used, the experi-
ments may easily be replicated.

3.1. Kernel and hardware support

The measurements presented in this paper were done using either a DECstation 3100 or a
DECstation 5000/200, which have SPECmark ratings of 11.3 and 18.5, respectively [39]. The
operating system used was ULTRIX version 4.2.

The ULTRIX kernel includes a facility called the packet filter [21], which can provide user
processes access to all the packets on the LAN, using the ‘‘promiscuous’’ mode of the Ethernet
interface. The packet filter may be instructed to move only the headers of packets into user
address space, thereby avoiding the cost of copying the entire packet.  The packet filter attaches
a timestamp to each packet during the interrupt handler, so timestamping is not subject to the
vagaries of process scheduling.

The only changes made to the standard system were to improve timestamp resolution.  The
normal ULTRIX kernel maintains a time variable incremented once per clock interrupt. Since the
interrupt rate is normally 256 hz, the normal resolution is about 4 msec, too coarse for accurate
measurement of interarrival times on an Ethernet.

Two different approaches were used to improve resolution:
1. The Motorola MC146818 clock chip used to generate the periodic interrupt can be

reprogrammed to run at a variety of clock rates, up to 8192 hz.  High interrupt rates
reduce the amount of CPU power available for processing packet events; 4096 hz
appears to be a reasonable compromise between timestamp resolution and CPU
loading.

2. A small number of special-purpose boards have been built to provide a free-
running 10 Mhz clock register for the DECstation 3100 [41]. Through modest
changes to the ULTRIX kernel, the register value can be combined with the
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interrupt-clock facility to generate timestamps with sub-microsecond accuracy.
One such board was available for use in these experiments.

The latter approach was available only at one site.  The first approach, since it requires no extra
hardware, could be used at other sites.  Both methods provide reasonable results; section 4.2
discusses how closely the results correspond.

3.2. The monitoring program

The heart of the experimental system is the netlocal program. The program, which runs as a
user-level process, examines the headers of all the packets on the LAN, extracts the addressing
information, and tracks the reference locality for each addressable object.  At the end of a trace
trial, the program records its results and terminates.

The program has several components:

Main program
The main program does some initialization, and then enters a loop that reads packet
headers and passes them to the IP parser.

IP parser
This module parses the IP header to extract source and destination host addresses, then
parses TCP and UDP headers to find port numbers.  If a UDP packet is to or from the
well-known NFS server port, it is parsed as an RPC packet to extract the transaction ID.

Fragment handler
IP implementations must fragment IP datagrams that are too large to transmit in one
packet (a frequent case for NFS datagrams).  Only the initial fragment of a datagram con-
tains the port numbers.  To properly analyze fragmented packets, the program records port
information for initial fragments and then uses this information when subsequent frag-
ments are received.  Although this mechanism fails when fragments are received out of
order or lost, in general fewer than 0.1% of the fragments cannot be matched.

Object database
As new addressable objects (hosts objects and port objects) are recognized in packet
headers, database records are created, entered into hash tables, and assigned compact
unique identifiers (host codes and port codes). For previously-known objects, the
database records are updated as appropriate.  The host and port codes allow efficient cross
references from host records to port records.  The records contain these fields:

Port record
• Last send timestamp
• Last receive timestamp
• Last send transaction ID (for NFS RPCs)
• Last receive transaction ID (for NFS RPCs)

Host record
• Last send timestamp
• Last receive timestamp
• Last send port-code
• Last receive port-code
• Last operation type (send or receive)

6
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Locality analysis
Once the appropriate database records have been found and the host and port codes for the
packet determined, several different kinds of locality analysis can be done.  For example,
if the port code extracted from the packet matches the ‘‘last send port-code’’ in the host
record, then one can infer that the packet arrived for the process that most recently sent a
packet from that host.  Delays are calculated from the timestamps.  The full set of
analyses are described in section 3.3.

Report generator
When the operator requests termination, the program generates a report containing all the
counter values and a set of interarrival time histograms.  The report is an ASCII file,
suitable for examination or for further processing by report-graphing programs (see sec-
tion 3.4).

3.3. Locality analysis

Three different classes of locality analysis are done.  These classes are further subdivided into
RPC (i.e., NFS) and non-RPC packets, and the RPC packets are subdivided according to whether
they are to or from an NFS server.  Each analysis maintains a counter of the number of events.

Events are classified according to the destination host and port of a packet:

SameDestPort
Packet went to same port as the last packet to that same host.

subset: SameDestToNFSServer
The destination port is the well-known NFS server port.

ReplyToPort
Packet went to the port that last sent a packet from the host.  In other words, this packet
could be a reply to the most recently transmitted packet from the host. It might also be a
subsequent request following the receipt of a reply, or it might be less synchronized (such
as a TCP acknowledgement).

subset: RPCReply
The packet is an RPC reply.

This does not include packets to the well-known NFS server port, since that process never
receives ‘‘replies.’’

RequestToNFSServer
Like ReplyToPort, except that the destination port is the well-known NFS server port.
All such packets are actually RPC requests.

TrainToPort
Packet went to same port as the last packet to that same host, and the host sent no packets
in the interim.  This concept is similar to the notion of a ‘‘packet train’’ [14], except that it
occurs at the per-process level rather than the per-host level, and is unidirectional rather
than bidirectional.
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subset: RPCTrain
The packet is an RPC packet.

subset: TrainToNFSServer
The destination port is the well-known NFS server port.

A single packet could give rise to more than one class of event.  For example, TrainToPort
events are a proper subset of SameDestPort events. Some, but not all, ReplyToPort events are
also SameDestPort events.

It is worth noting that because large NFS transfers almost always involve fragmentation, they
generate many RPCTrain and TrainToNFSServer events.

In addition to the event counters, the netlocal program also maintains a set of histograms, all
of which show event frequency as a function of some time period:

InterArrivalHist
Overall packet interarrival time.

SameDestPortHist
For SameDestPort events, time since last packet to this port.

ReplyToPortHist
For ReplyToPort events, time since last packet sent from this port.

RequestToNFSServerHist
For RequestToNFSServer events, time since last packet sent from an NFS server process
on this host.

TrainToPortHist
For TrainToPort events, time since last packet to this port.

ReplyTimeHist
Time delay between last packet sent from this port and the current packet to this port,
whether or not intervening packets have arrived for other ports on the same host.  (Does
not include packets to the NFS server port.)

NFSRequestTimeHist
Like ReplyTimeHist, but for packets destined to the NFS server port.

3.4. Report-graphing programs

The output of the netlocal program can be parsed into a set of histograms, at a resolution
depending on the clock employed. These may then be plotted as a cumulative distribution.  For
example, figure 1 shows the distribution of packet interarrival times derived from a set of high-
resolution data.  The time axis is logarithmic.
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Figure 1: Distribution of interarrival times

4. Experiments

4.1. Environments

Traces of several durations were made in a variety of locations, listed in table 1.  The column
labeled ‘‘ID’’ shows the short name used to identify the traces in subsequent figures.

The most detailed information came from traces made at two of Digital Equipment
Corporation’s research laboratories.  Digital’s Western Research Laboratory (WRL) has a single
Ethernet with about 80 hosts.  Digital’s Systems Research Center (SRC) has several LANs con-
nected via bridges; the Ethernet segment where the monitor was connected has about 45 hosts.
In both cases, almost all of the traffic is IP packets, and a large fraction of those are NFS packets.
SRC differs from WRL in that it uses a non-IP file access protocol for the bulk of its file service;
these packets do not appear on the Ethernet that was monitored.  SRC has about three times as
many users as WRL. Both monitored networks carry some non-IP traffic, which is not measured
by netlocal but may have perturbed some of the timings.

At most sites, trials were done both for full 24-hour days (during the normal business week)
and for 1-hour periods during prime working hours.  The high-resolution clock was used only at
WRL.
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Location ID LAN Description

Western Research Laboratory WRL Workstations and servers
Digital Equipment Corporation

Systems Research Center SRC Workstations and servers
Digital Equipment Corporation

Japan Research and Development Center usagi Workstations and servers;
Digital Equipment Corporation, Japan lots of non-IP traffic

Academic Computing polcli1 Workstations, servers, PCs
University of California --- Irvine

Academic Computing trial1 Timesharing machines, Campus computing
University of California --- Irvine

CS Department ghidrah German EUnet-Backbone
University of Dortmund (Germany)

Worcester Polytechnic Institute aieio Workstations, PCs, and servers

Racal-Datacom cypress Workstations, PCs, and servers

University College --- London bayfair Not reported

University College --- London walnut Not reported

Computer Lab, Cambridge University oxley Workstations and servers

Table 1: Trace locations

4.2. Effects of different clock-resolution mechanisms

Since it was not possible to perform all the experiments using the high-resolution clock
hardware, the question arises as to whether the results are skewed by the use of the sped-up
interrupt clock.  To check this, the two experimental setups (a DECstation 5000/200 using the
interrupt clock, and a DECstation 3100 using the high-resolution clock) were simultaneously
used to monitor the same LAN.  Figure 2 shows that the resulting distribution of interarrival
times is nearly the same.  Only for the shortest measurable interarrival times do the distributions
differ.

The results obtained from the low-resolution setup appear comparable in time-resolution
quality to those obtained with the high-resolution clock hardware.  Also, the distribution of event
classifications is quite similar.  The differences that do exist might be attributable to the dif-
ference in CPU speeds, which causes a difference in the probability of dropping packets during
bursts. The packet filter provides exact counts of dropped packets; on this test, the faster CPU
dropped about 1.3% of the packets, and the slower CPU dropped about 3.9%.

Very few packets were dropped in the trials at SRC. At WRL, the use of the high-resolution
clock required use of the slower workstation, which in some cases resulted in a drop rate of up to
about 10%.  This tends to cause underestimation of locality, since drops are most likely to occur
during bursts, which tend to be more localized than the overall traffic.
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Figure 2: Low- and high-resolution measurements of same data

4.3. Effects of TCP port-to-process mapping algorithm

In section 2, it was noted that while TCP connections are properly identified by the quadruple
(src-host, src-port, dst-host, dst-port), the tracing software for these experiments used the triple
(src-port, dst-host, dst-port) to identify end-point processes.  This leads to some overestimation
of locality.  For example, if on two different hosts, Telnet clients of a single server host hap-
pened to use the same client-port number (an unlikely event), their packets would be seen as
going to a single process on that server host.  In fact, the BSD Telnet daemon creates a separate
process for each connection.  This means that netlocal might, in rare cases, treat several Telnet
daemons as if they were a single process.

On the other hand, using the TCP quadruple to identify a process leads to underestimation of
locality, because in some cases a single server process may multi-thread connections from
several clients.  The X Window server is one such server. In these cases, the proper identifica-
tion of a process is the pair (dst-host, dst-port).

To quantify the effect of this issue on observed locality, a modified version of the tracing
program was used to compare the results of the TCP quadruple and TCP triple methods.  A
single same one-hour trace (stored in a disk file) was analyzed, to avoid any effects from varia-
tion between trials.  The results for both methods are identical to at least three decimal places;
the effect is negligible.
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5. Results: persistence

Recall that persistence is defined as the tendency for a single process, once it interacts with the
network, to be the next recipient of an arriving packet.

The locality statistics measured in the experiments (table 2 shows several representative trials)
show that per-process locality (as inferred from per-port locality) is quite high.  Almost three
quarters of the packets arriving at a host arrive for the same port as their predecessors
(SameDestPort). Nearly half arrive for the port that last sent a packet from that host
(ReplyToPort).

WRL: 1 hour WRL: 24 hours SRC: 1 hour SRC: 24 hours

Packets examined 831512 27049045 2074406 27392236

Packets dropped 22303 2464773 475 209079
(2.7%) (9.1%) (<0.1%) (0.8%)

RPC packets 468865 19319655 1000867 17904448
(56%) (71%) (48%) (65%)

Packets to NFS Server 209838 5135500 439406 8208860
(25%) (19%) (21%) (30%)

Hosts known 274 660 186 502

Ports known 9269 131324 2279 27444

SameDestPort 63% 70% 76% 65%

SameDestToNFSServer 23% 17% 20% 28%

ReplyToPort 39% 22% 39% 42%

RPCReply 19% 10% 16% 22%

RequestToNFSServer 13% 10% 15% 20%

TrainToPort 34% 49% 38% 28%

RPCTrain 9% 33% 8% 10%

TrainToNFSServer 10% 7% 5% 8%

Table 2: Summary of trials: persistence

NFS RPC packet persistence is higher when calculated as a fraction of RPC packets only,
instead of as a fraction of all packets; see Table 3.  NFS RPC persistence is still lower than
persistence for other kinds of packets, because of the pessimistic mapping of RPC packets to
processes. Table 4 shows that many of the packets sent to an NFS server exhibit persistence.
Note that packet trains are far more likely to be sent to an NFS server than for RPC participants
in general.  This may be because NFS clients often avoid large file-read transactions through
caching, but are not allowed to use caching to avoid file writes.

12
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WRL WRL SRC SRC
1 hour 24 hours 1 hour 24 hours

RPCReply 33% 13% 33% 34%

RPCTrain 16% 47% 17% 16%

Table 3: Persistence for RPC packets only

WRL WRL SRC SRC
1 hour 24 hours 1 hour 24 hours

SameDestToNFSServer 91% 91% 94% 93%

RequestToNFSServer 52% 39% 23% 26%

TrainToNFSServer 41% 53% 72% 67%

Table 4: Persistence for packets to NFS server only

5.1. Variation between trials

There is some variation between different trials at a given site; an additional experiment was
conducted to measure this variation. These traces were made during various prime-time hours
over a two-day period.  Table 5 shows the results for 16 1-hour trials at WRL; entries in the table
give the fraction of packets in each category. Although SameDestPort and ReplyToPort statis-
tics vary somewhat from trial to trail, in general these locality measures remain fairly high.

The NFS-related measures show more variation, especially in the ratio of standard deviation to
mean. This indicates that there are significant short-term variations not only in the amount of
NFS traffic, but in its locality statistics.  (The high variation in NFS locality persists even when
each count is normalized to the amount of NFS traffic in its respective trace.)

min. max. mean std. dev

SameDestPort 53% 70% 64% 4.5%

SameDestToNFSServer 5% 16% 9% 3.5%

ReplyToPort 39% 71% 55% 8.9%

RPCReply 3.5% 15% 7.1% 3.6%

RequestToNFSServer 2.9% 11% 5.9% 2.7%

TrainToPort 12% 36% 25% 5.9%

RPCTrain 2.0% 23% 9.7% 8.1%

TrainToNFSServer 2.0% 5% 3.3% 1.0%

Table 5: Variation between 1-hour trials (n = 16) at WRL
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5.2. Distribution of packets among processes

It is also interesting to look at the distribution of packets among processes.  Figure 3 shows,
for a 1-hour trace at WRL, how many processes were found to receive a particular number of
packets. By far the most frequent case was one packet (or a few packets) received per process.
This probably reflects the use of UDP packets to do Domain Name System (DNS) hostname-to-
address translations, because each such transaction (in the implementation used at WRL) uses a
different UDP port on the client side.  Since some programs do several name translations, this
results in underestimation of locality.  Even so, the mean number of packets received per
‘‘process’’ is about 37, partly because 91 processes received more than 1000 packets apiece.

Note that in this plot, all the NFS packets to and from a given client host are assumed to
reflect a single process, since all NFS client RPCs are done using a fixed UDP port number; the
numbers would be tremendously skewed to the left side of the graph if each NFS transaction
were treated as a distinct process.  Since actual NFS client implementations use a small number
(typically under 10) of processes, the approximation used here is a more reasonable reflection of
reality than the other extreme.

The processes that receive the most packets are primarily NFS and DNS servers, although
some NFS clients also receive lots of packets.
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Figure 3: Distribution of packet arrivals among processes

5.3. Results from other locations

Traces from other sites were analyzed in order to discover if the high persistence measured at
WRL and SRC arose from some peculiar aspect of the environment.  The results are summarized
in tables 6 and 7.  The mean values are all close to those in table 5, although the frequency of
ReplyToPort events at WRL seems to vary more widely than at some other sites.  Note that
some sites are represented by more trials than others (see table 8), which may skew the averages
slightly. The standard deviations shown are between trials rather than between sites.
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min. max. mean std. dev

SameDestPort 49% 98% 69% 9.9%

ReplyToPort 24% 67% 46% 10%

TrainToPort 12% 51% 27% 8.4%

Table 6: Variation between trials at 10 sites (51 trials; 1-hour traces)

min. max. mean std. dev

SameDestPort 52% 86% 71% 8.8%

ReplyToPort 31% 60% 45% 7.4%

TrainToPort 21% 43% 30% 5.5%

Table 7: Variation between trials at 5 sites (37 trials; 24-hour traces)

Site identifier n, n,
1-hr trials 24-hr trials

aieio 1

bayfair 1

cypress 3 3

ghidrah 5 6

oxley 2

polcli1 15 12

wrl 6 3

trial1 13 13

usagi 4

walnut 1

Table 8: Number of trials at each site, tables 6 and 7 and figure 4

Figure 4 shows the variation in the persistence between sites.  For each class of locality event,
the point plotted represents the mean value across all trials for the specified site.  Values are
plotted for both 1-hour and 24-hour trials; at some sites, only 1-hour trials were available.

5.4. Summary and related work

The high persistence observed in these experiments is encouraging, because it suggests that
taking advantage of per-process persistence should improve performance.  Indeed, several ex-
perimental implementations have shown that it does.

Carter and Zwaenepoel’s ‘‘optimistic blast protocol’’ [5] is predicated on the kind of locality
detected in the SameDestPort analysis. The protocol does bulk data transfers in blasts of
several successive packets.  When the receiving kernel sees the first packet of a blast, it assumes
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Figure 4: Site-to-site variation in mean persistence

that the subsequent packets will be the rest of the same blast, and directs them into the address
space of the receiving process.  After the packets have been received, the kernel then checks that
they were indeed the correct packets and in the correct order, and patches things up if this is not
so. Clearly, this approach is worthwhile only if persistence is high, and their measurements
showed that indeed few blasts were interrupted by extraneous packets.

When an operating system multiplexes incoming packets to a variety of recipients, one of the
more expensive operations is to look up the recipient based on the packet header.  In the
‘‘4.3BSD-Reno’’ operating system, a one-behind cache is used to record the most recent destina-
tion port for arriving UDP packets; this averts many lookup operations through SameDestPort
locality. Partridge and Pink [28] have shown that an additional one-behind cache, tracking the
most recent UDP source port and therefore taking advantage of ReplyToPort locality, can also
improve UDP performance.  Their results show that this increases the effective cache hit rate by
about 50%, since it averts lookups in about 70% of the cases not caught by the cache of the most
recent destination port.

In order to implement certain security policies, it may be necessary for a router to perform
per-process-pair (rather than per-host-pair) functions on packets [19]. Connection-specific
locality (similar to SameDestPort locality) allows the use of per-process-pair caches to improve
performance. Such a router is in use at WRL, and measurements show that the cache hit rate
varies between 60% and 70%.  Exploiting per-process locality in this case appears to be quite
profitable.
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6. Results: temporal locality

Recall that temporal locality is defined as the tendency for a process, once it interacts with the
network, to receive a packet ‘‘soon.’’  This section presents results that provide insight into tem-
poral locality, and in particular that show how soon certain kinds of events occur after their
precursors.

The cumulative distributions generated by the netlocal program provide an overall picture of
the waiting time for various events.  Figure 5 shows the SameDestPortHist and
ReplyToPortHist for the 24-hour trace at WRL (second column in table 2).  The vertical axis
shows the cumulative fraction of all packet arrivals, not the cumulative fraction of the event
plotted, so the curves do not end at 100%.  The vertical spikes at the right ends of the curve
represent the counts for all delays of 100 msec or more (i.e., all the data is represented in the
curve, but the details of the distribution of longer delays are not shown).  Figure 6 shows the
analogous information for the 24-hour trial at SRC (fourth column in table 2).

100 1e+061000 10000 100000
Interarrival time in uSec

0

100

20

40

60

80

C
um

ul
at

iv
e 

%
 o

f 
al

l e
ve

nt
s

SameDestPort

ReplyToPort

TrainToPort

Figure 5: Temporal locality of reference at WRL

One can see from figures 5 and 6 that about 20% of the SameDestPort packets arrive within a
millisecond or two of the preceding packet; there is a steep step in the distribution at this point.
In fact, the graphs make clear that virtually all of the SameDestPort events at intervals below 2
msec are actually TrainToPort events. The step increment at about 1.2 msec is because this is
the transmission duration of a maximal Ethernet packet, and packet trains of several maximal-
length packets are often generated by NFS.  Few TrainToPort events occur at longer intervals.

In figure 5, half of the SameDestPort events arrive within 2 msec; the median for figure 6 is
4.5 msec.  In contrast, ReplyToPort events exhibit generally longer delays.  The median for
ReplyToPort is 8 msec in figure 5 and 5 msec in figure 6, and the average delays are also higher
than for SameDestPort.
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Figure 6: Temporal locality of reference at SRC

Figure 7 shows how temporal locality varies between the sites listed in table 1.  The graphs
show the mean arrival times, as well as the maximum and minimum values.  Again, since some
sites contributed more trials than others, the mean value may be somewhat skewed.  The ‘‘stair-
steps’’ in the minimal-value graph for ReplyToPort are due to quantization error; the traces with
the least locality were made using a clock resolution of 4 msec. The waves in the mean-value
curves are due to the use of different clock resolutions in different trials: some points on these
curves are averaged over a smaller set of trials than other points, and so the average of cumula-
tive values at one curve point may be less than the average at its predecessor.

The mean values in figure 7 are quite similar to those shown in figure 6.  The extreme values
vary considerably from the mean; some sites evidently experience much more or much less tem-
poral locality.

6.1. Dallying to exploit temporal locality

The possibilities for exploitation of per-process temporal locality are less clear-cut than those
for exploitation of persistence.  The hypothesis that inspired these experiments was that it would
pay to modify an operating system’s scheduling algorithm to ‘‘dally’’ (busy-wait) a process that
starts waiting for network input, rather than to switch immediately to another runnable process,
because the cost of context-switching might be greater than the time wasted dallying.  This
mechanism was first described by Ousterhout [26], who called it ‘‘pausing.’’  The results
presented in figures 5 and 6 are equivocal: while it is certainly true that some replies arrive
within a very short interval, most do not.

A more useful question might be: how much time should a process dally before giving up?
This could be chosen to optimize the tradeoff between wasting CPU cycles by waiting too long,
and wasting them by doing excess context switching.  Or, one may care more about minimizing
the best-case delay incurred by a process, especially when the host is lightly loaded.
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Figure 7: Variation between sites

19



NETWORK LOCALITY AT THE SCALE OF PROCESSES

If one is purely concerned with balancing context switch costs against dallying costs, the
evidence suggests that dallying does not pay off, because most arrivals are delayed by much
more than 1 msec, and modern systems can easily do several context switches in under 1 msec.
Context-switching performance is not improving as fast as many other aspects of CPU
performance [22, 27], so this tradeoff may change in favor of dallying with the advent of sub-
stantially faster networks and hosts.

If one is concerned with minimizing the best-case delay, however, dallying might pay off.
Since processes are commonly rescheduled at intervals on the order of 10 msec, and more than
half of the SameDestPort packets arrive within 10 msec of their predecessors, it seems perfectly
reasonable to allow a process to soak up CPU cycles for the remainder of its scheduling alloca-
tion while waiting for a packet.  The process could even arrange to do some useful work during
this interval, if the system provides a mechanism for efficient polling for packet arrivals.

In current systems, if a process tries to receive a packet that has not already arrived (the usual
case in a request-response interaction), and if another process is runnable, the receiving process
will not run again for many milliseconds, even if the packet arrives within a few microseconds.
This tends to limit network performance on multiprogrammed systems.

If the kernel could estimate which packet reception attempts are likely to succeed quickly,
either by some sort of static analysis or by keeping historical information, then it could dally
only when dallying had a high chance of paying off.  This would complicate the kernel, and
slightly increase the cost of a network-related context switch, but might eliminate a lot of context
switches without wasting many CPU cycles on busy-waiting.  In the best case, where both
parties to a network interaction were using dallying, communication delays could decrease
dramatically.

An analogous situation arises in the choice of multiprocessor locking algorithms.  Blocking
locks may cause excess context switching, and spin locks may waste useful CPU cycles.  Karlin
et al. have shown that adaptive algorithms, which use previous history to estimate the lock-wait
duration and perform spin-locks when this estimate is small, can perform better than the always-
block and always-spin algorithms [15].

6.2. Simulation of infinite-speed networks

One possible explanation for the relatively long delays observed in figures 5 and 6 is that the
LAN is too slow.  Since it takes over a millisecond to send a maximal-length Ethernet packet,
and a well-designed bulk-data protocol will try to use maximal-length packets, it is not surprising
that many interactions take longer than a millisecond.  Perhaps on a faster LAN, such as FDDI at
100 Mbit/sec, or at future LANs with gigabit rates, the total latency will be sufficiently reduced
to make dallying profitable.

Because the transmission latency on an Ethernet is nearly a linear function of packet length
(assuming that load is moderate and therefore collisions do not consume much bandwidth), it is
possible to estimate the transmission latency for each traced packet.  The packet timestamps can
thus be adjusted to deduct the accumulated LAN latency since the start of the trace, resulting in a
derived trace that simulates an infinite-speed (zero-latency) LAN. The simulation is not exact,
since network queueing delays are not detected by this technique; it works best on traces from a
lightly-loaded Ethernet.
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Figure 8 shows the results of this simulation, for a 1-hour trace made at WRL.  The solid
curves show the simulated latencies on a infinite-speed LAN; the dotted curves show the actual
latencies on an Ethernet.  All curves were derived from the same trace data. The average Ether-
net load during the trace was 7.5%, although it was probably a lot higher for brief intervals
during the trace.
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Figure 8: Latencies for simulated infinite-speed LAN

Figure 8 shows that improving LAN latency would have almost no effect on ReplyToPort
latency. One can assume that Ethernet queueing delays, not corrected for by the simulation, are
not to blame for the lack of ReplyToPort improvement, since there is observed improvement in
the SameDestPort curve. In fact, eliminating LAN latency means that 30% of the
SameDestPort events follow the preceding packet by less than 250 usec.  Nearly all of these
short-delay events are actually TrainToPort events; that is, packet trains are causing packets to
arrive back-to-back.

While it would be prudent to verify the results of this experiment with actual traces from a
high-speed LAN, their implication is that increasing LAN speed will not by itself be sufficient to
make dallying for ReplyToPort events profitable.  Faster CPUs or better network software im-
plementations appear to be necessary.  One promising development is the use of non-volatile
RAM on NFS servers to reduce write-operation latency; such hardware was not in use on the
networks where the high-resolution traces were done.
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6.3. Simulation of latency-sensitive scheduling

Exploitation of temporal locality through dallying has two prerequisites.  Not only must a sig-
nificant fraction of packets arrive within a short waiting period, but it must be possible for the
scheduler to predict when a wait will indeed be short.  The necessary prediction accuracy in-
creases as the fraction of short-wait packets decreases, if one does not want to waste cycles wait-
ing for packets that will not arrive quickly.

Wait-prediction could be implemented as part of the scheduling function of the operating sys-
tem. A good wait-prediction algorithm must be accurate: if it underestimates waiting time, then
excess busy-waiting will occur, but if it overestimates waiting time, then too few context
switches will be avoided.  The wait-prediction algorithm must also be inexpensive.

Although it was impractical to modify a kernel to schedule processes based on an estimate of
rapid network response, it was easy to modify the tracing tool to measure the success rate of
several modified wait-prediction algorithms.  The per-port records were augmented with these
fields:

• Last packet arrived ‘‘quickly’’ after preceding event
• Number of ‘‘quick’’ arrivals
• Number of ‘‘slow’’ arrivals
• Time interval between last two preceding events
• Adaptive threshold value (used in RandomWalk algorithm, described below)

The definitions of ‘‘quick’’ and ‘‘slow’’ are parameters chosen to provide the best possible es-
timates of future performance.

Several wait-prediction algorithms were tested, varying in how they decide whether to
‘‘dally’’ when waiting for an input packet.

Always
Dallying is always done.

LastQuick
Dally if the preceding packet (for this port) arrived quickly.

MoreQuick
Dally if more than 50% of prior packets (for this port) arrived quickly.

LastOrMore
Dally if the last packet was quick, or more than 50% have been quick.

LastAndMore
Dally if the last packet was quick, and more than 50% have been quick.

RandomWalk
Like LastQuick, but adjust per-port threshold down by 25% on failures and up by 25%
on successes (‘‘success’’ means that the packet delay was less than the threshold).  The
idea is to be more willing to dally if dallying has paid off in the past. This is based on a
similar algorithm in [15].

Note that all of these algorithms depend solely on the previous history of the receiving process;
they do not consider any semantic information.
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In order to avoid confusion from variations between traces, a trace was stored in a disk file
2and then processed off-line . The trace was simulated using each of the five wait-prediction

algorithms, and each of five values for the ‘‘quickness’ parameter Q: 500 usec, 1 msec, 2.5 msec,
5 msec, and 10 msec.  Figures 9 and 10 show the results for SameDestPort and ReplyToPort
packets, respectively.  The marks on the vertical lines show the 10th, 20th, 30th, 40th, and 50th
percentile interarrival times for each combination of algorithm and Q. (For certain combina-
tions, some percentile points lie off scale.  If a vertical line is missing, less than 10% of the
packets for that combination arrived within 20 msec.)
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Figure 9:  SameDestPort results for wait-prediction

For example, in figure 9 there is a group of five vertical lines for Q = 1000 usec (1 msec).  The
left-most of these lines, marked with triangles, shows the results for the LastQuick algorithm.
The lowest triangle indicates that in the cases where this algorithm suggests dallying, 10 per cent
of these packets will arrive within 256 usec.  The highest triangle says that 50 percent of these
packets will arrive within 2.4 msec.

Figures 9 and 10 imply that based on the interarrival times for those packet-reception events
where the simulated scheduler decided to dally, the best results come with Q = 500 usec and the
LastQuick or LastOrMore algorithm if the process has just received a packet (SameDestPort),
or the MoreQuick or LastAndMore algorithm if the process has just sent a packet
(ReplyToPort). These combinations of algorithm and Q lead to a high percentage of quick
arrivals when they choose to dally.

One way to interpret these results is that when predicting short-wait SameDestPort events,
information about the last waiting time is most important.  When predicting short-wait
ReplyToPort events, information about the relative distribution of past waiting times is impor-
tant.

2Several trials were run; the results were substantially the same from trial to trial.
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Figure 10:  ReplyToPort results for wait-prediction

Because figures 9 and 10 do not show how frequently dallying is done, they do not show
whether it is useful. Unless dallying can be done relatively often, it is not worth the extra com-
plexity. Figures 11 and 12 show how many packet events correspond to each point plotted in
figures 9 and 10, respectively.  (The trace contained a total of about 500,000 events.)
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Figure 11: Packet counts corresponding to figure 9

For example, in figure 11 there is a group of five vertical lines for Q = 1000 usec (1 msec).
The left-most of these lines, marked with triangles, shows the results for the LastQuick algo-
rithm. The lowest triangle indicates that in the cases where this algorithm suggests dallying, the
10th percentile (those packets that figure 9 says will arrive within 256 usec) includes about 9900
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Figure 12: Packet counts corresponding to figure 10

3packets . The highest triangle, the 50th percentile (which figure 9 says will arrive within 2.4
msec), includes about 35000 packets.

From 10 one sees that the apparent good performance for Q = 500 usec and the MoreQuick
algorithm is nearly useless, because almost no packets meet these criteria.  To include a reason-
able fraction of packets, Q must be on the order of 2.5 msec.  With that Q, the LastAndMore
algorithm seems to be best.  Even in this case, it is not clear that a sufficient fraction of dallied-
for packets would arrive within a sufficiently small interval to make dallying worthwhile.  Note,
however, that the ascription of each NFS transaction to a unique process skews these results,
because most of these ‘‘processes’’ receive only one packet.  Therefore, none of the simulated
wait-prediction algorithms dally for these transactions, even though many of them are quite
rapid.

6.4. Other approaches to wait-prediction

A reviewer of this paper pointed out that a wait-prediction algorithm based on round-trip time
(RTT) estimation might perform better than the ones considered in these experiments.  RTT es-
timators are commonly used in transport protocols in order to decide how long to wait before
retransmitting unacknowledged data.  Because RTT requires more computation it may be more
expensive than the simpler algorithms considered here. More important, accurate estimation of
RTT, even for protocols where the receiver generates replies more or less instantaneously, is not
easy [16]. Nowicki [25] has shown that in order to obtain accurate RTT values for NFS, it is
necessary to maintain separate estimates for read, write, and other operations. (NFS RPCs are

3This point would be about 6900, or 10 per cent of the total number of SameDestPort events in this trace, but
quantization error in the time resolution of the underlying histogram affects the counts for events with short waiting
times.
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entirely synchronous, so responses to write RPCs are normally delayed for several disk-
accesses.)

RTT estimators used for wait-prediction will have to be tuned differently from those used for
retransmissions, since the consequences of a mistaken prediction are different.  When deciding
whether or not to retransmit, one must avoid underestimating the RTT, since doing so would
cause unnecessary retransmissions.  When deciding whether or not to busy-wait, one should
avoid overestimating the RTT, since doing so would cause unnecessary context switches.

A more promising approach would be to incorporate protocol semantics into the wait-
prediction algorithm.  A simple heuristic would be to calculate the minimum round-trip delay
based on the length of the outgoing packet, and perhaps the anticipated length of the incoming
packet. If either packet were long, then it would be impossible for the response to arrive within a
short interval.

It might also be possible to provide a mechanism for user processes (which may know much
more about their communications patterns than can be inferred by the kernel) to indicate when
waiting for a packet whether to dally or not.  For example, an RPC call to release a file lock
should return promptly, and would be a candidate for dallying; an RPC call to write data to the
server disk would not be. Semantic hints from user processes might also enable the scheduler to
maintain a set of useful RTT estimates, which in turn could be used to predict waiting times.

7. Future Work

Many additional experiments could be performed to investigate per-process network locality.
First, it would be useful to run the same kind of experiments at a wider variety of sites.  Different
sites have different traffic patterns, and it is quite possible that the sites listed in table 1 are
atypical.

It should not be difficult to extend the netlocal program to analyze protocol families other than
IP. It would be interesting to observe the traffic patterns on LANs where DECNET or PC-
oriented protocols are dominant, or those of a modern distributed system, such as V or
Sprite [24].

Because the pessimistic method used to ascribe NFS transactions to processes deflates the
temporal-locality results, an experiment should be done to correct for this.  It should be possible
to extract additional identifying information from the NFS headers (such as file handles).  One
could obtain a best-case bound on NFS temporal locality by assuming that only one process on
each host participated in NFS transactions; for workstation-style hosts, this might be close to the
actual situation.

The temporal-locality measurements are clearly dependent on the technologies used.  One
would expect latencies to drop considerably for a faster network than Ethernet, especially for
networks such as Autonet [36] where the aggregate bandwidth is greater than the link
bandwidths. Alas, such networks do not present a single point to attach a passive monitor that
can see all the network traffic.  It might be necessary to use a set of carefully coordinated passive
monitors, or to accept the difficulties imposed by installing monitoring support in each end host.
(Per-process locality, unlike per-host locality, can be monitored at the end hosts themselves.)

26



NETWORK LOCALITY AT THE SCALE OF PROCESSES

8. Summary

The experiments described in this paper show that it is feasible to obtain measurements of
per-process network locality on a local area network, using commonly available workstations.
The methodology can and should be applied to a wider variety of network protocols and environ-
ments.

These experiments show that per-process network locality is an important characteristic of
LAN packet traffic.

• Persistence is quite high: a significant fraction of received packets go to the process
that most recently sent or received a packet.

• A lot of temporal locality is available on the scale of a few milliseconds.  Minor
changes to system software, or advances in LAN and host technology, may improve
the time scale enough to justify changes in the way processes are scheduled.

Exploitation of these forms of locality may be helpful, or even necessary, in providing high-
performance, low-latency network implementations.
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