
F E B R U A R Y 1 9 9 7

WRL
Research Report 97/2

Performance of the
Shasta Distributed
Shared Memory Protocol

Daniel J. Scales
Kourosh Gharachorloo

d i g i t a l Western Research Laboratory 250 University Avenue Palo Alto, California 94301 USA

The Western Research Laboratory (WRL) is a computer systems research group that
was founded by Digital Equipment Corporation in 1982. Our focus is computer science
research relevant to the design and application of high performance scientific computers.
We test our ideas by designing, building, and using real systems. The systems we build
are research prototypes; they are not intended to become products.

There are two other research laboratories located in Palo Alto, the Network Systems
Lab (NSL) and the Systems Research Center (SRC). Another Digital research group is
located in Cambridge, Massachusetts (CRL).

Our research is directed towards mainstream high-performance computer systems. Our
prototypes are intended to foreshadow the future computing environments used by many
Digital customers. The long-term goal of WRL is to aid and accelerate the development
of high-performance uni- and multi-processors. The research projects within WRL will
address various aspects of high-performance computing.

We believe that significant advances in computer systems do not come from any single
technological advance. Technologies, both hardware and software, do not all advance at
the same pace. System design is the art of composing systems which use each level of
technology in an appropriate balance. A major advance in overall system performance
will require reexamination of all aspects of the system.

We do work in the design, fabrication and packaging of hardware; language processing
and scaling issues in system software design; and the exploration of new applications
areas that are opening up with the advent of higher performance systems. Researchers at
WRL cooperate closely and move freely among the various levels of system design. This
allows us to explore a wide range of tradeoffs to meet system goals.

We publish the results of our work in a variety of journals, conferences, research
reports, and technical notes. This document is a research report. Research reports are
normally accounts of completed research and may include material from earlier technical
notes. We use technical notes for rapid distribution of technical material; usually this
represents research in progress.

Research reports and technical notes may be ordered from us. You may mail your
order to:

Technical Report Distribution
DEC Western Research Laboratory, WRL-2
250 University Avenue
Palo Alto, California 94301 USA

Reports and technical notes may also be ordered by electronic mail. Use one of the fol-
lowing addresses:

Digital E-net: JOVE::WRL-TECHREPORTS

Internet: WRL-Techreports@decwrl.pa.dec.com

UUCP: decpa!wrl-techreports

To obtain more details on ordering by electronic mail, send a message to one of these
addresses with the word ‘‘help’’ in the Subject line; you will receive detailed instruc-
tions.

Reports and technical notes may also be accessed via the World Wide Web:
http://www.research.digital.com/wrl/home.html.

Performance of the Shasta Distributed
Shared Memory Protocol

Daniel J. Scales
Kourosh Gharachorloo

February 1997

d i g i t a l Western Research Laboratory 250 University Avenue Palo Alto, California 94301 USA

Abstract

Shasta supports a shared address space in software across a cluster of com-
puters with physically distributed memory. A unique aspect of Shasta compared
to most other software distributed shared memory systems is that shared data can
be kept coherent at a fine granularity. Shasta implements this coherence by insert-
ing inline code that checks the cache state of shared data before each load or
store. In addition, Shasta allows the coherence granularity to be varied across
different shared data structures in a single application. This approach alleviates
potential inefficiences that arise from the fixed large (page-size) granularity of
communication typical in most software shared memory systems.

This paper focuses on the design and performance of the cache coherence
protocol in Shasta. Since Shasta is implemented entirely in software, it provides
tremendous flexibility in the design of the cache coherence protocol. We have
implemented an efficient cache coherence protocol that incorporates a number of
optimizations, some of which are common in hardware shared memory systems.
The above protocol is fully functional and runs on a prototype cluster of Alpha
systems connected through Digital’s Memory Channel network. To characterize
the benefits of the various optimizations, we also present detailed performance
results for nine SPLASH-2 applications running on this cluster.

1 Introduction

There has been much interest in distributed shared memory (DSM) systems that support a shared address space in
software across a cluster of workstations. The most common approach, called Shared Virtual Memory (SVM), uses the
virtual memory hardware to detect access to data that is not available locally [4, 14, 16]. These systems communicate
data and maintain coherence at a fixed granularity equal to the size of a virtual page. As an alternative, a few software
systems have explored the feasibility of maintaining coherence at a finer granularity [19, 21]. Support for fine-grain
sharing is important for reducing false sharing and the transmission of unneeded data, both of which are potential
problems in systems with large coherence granularities. Fine-grain access to shared data is supported by inserting code
in an application executable before loads and stores that checks if the data being accessed is available locally in the
appropriate state. Recent work in the context of the Shasta system has shown that the cost of the inline checks can be
minimized by applying appropriate optimizations [19], making this approach a viable alternative to SVM systems.

The goal of this paper is to describe the design and performance of the cache coherence protocol in Shasta. Since
Shasta supports the shared address space entirely in software, it provides a flexible framework for experimenting with a
variety of cache coherence protocol optimizations to improve parallel performance. By supporting coherence at a fine
granularity, Shasta alleviates the need for complex mechanisms for dealing with false sharing that are typically present
in software page-based systems. Therefore, the basic cache coherence protocol in Shasta more closely resembles that
of a hardware distributed shared memory system.

The Shasta coherence protocol provides a number of mechanisms for dealing with the long communication latencies
in a workstation cluster. One of the unique aspects of the protocol (relative to other protocols that transparently support
a shared address space) is its ability to support variable coherence granularities across different shared data structures
within the same application. This feature enables Shasta to exploit any potential gains from larger communication
granularities for specific shared data.

Given the relatively high overheads associated with handling messages in software, we have also designed the
protocol to minimize extraneous coherence messages. Thus, our protocol typically requires fewer messages to satisfy
shared memory operations compared to protocols commonly used in hardware DSM systems (e.g., DASH [15]).
The protocol also includes optimizations, such as non-blocking stores, that aggressively exploit a relaxed memory
consistency model. Other optimizations include detection of migratory data sharing, issuing multiple load misses
simultaneously, merging of load and store misses to the same cache line, and support for prefetching and home
placement directives.

The Shasta protocol has been implemented on our prototype cluster and is fully functional. The cluster consists
of a total of sixteen 300 MHz Alpha processors connected through the Memory Channel [10]. We present detailed
performance results for nine SPLASH-2 applications running on the above cluster. The results characterize the various
overheads in parallel runs, including stalls for data, synchronization time, and time spent handling requests from other
processors. In addition, we analyze the effects of the various protocol optimizations. Support for variable granularity
is by far the most important optimization in Shasta, leading to performance improvements ranging from 10% to 95%.
Surprisingly, optimizations that attempt to hide memory latency, such as exploiting a relaxed memory consistency
model, lead to much more limited gains. A significant portion of the time while a processor is waiting for data or
synchronization is overlapped with the handling of incoming coherence messages from other processors, thus making
it difficult to improve performance by reducing the wait times. Finally, optimizations related to migratory data are not
useful in Shasta primarily because migratory sharing patterns are unstable or not present at block sizes of 64 bytes or
higher.

The following section describes the basic design of Shasta, including the inline state checks and the protocol that
is invoked in case of a miss. Section 3 discusses optimizations to the basic cache coherence protocol. We present
detailed performance results in Section 4. Finally, we describe related work and conclude.

2 Basic Design of Shasta

In this section, we present an overview of the base Shasta system, which is described more fully in a previous paper [19].
Shasta divides the virtual address space of each processor into private and shared regions. Data in the shared region

1

may be cached by multiple processors at the same time, with copies residing at the same virtual address on each
processor. The base Shasta system adopts the memory model of the original SPLASH applications [22]: data that is
dynamically allocated is shared, but all static and stack data is private.

2.1 Cache Coherence Protocol

As in hardware cache-coherent multiprocessors, shared data in the Shasta system has three basic states:

� invalid - the data is not valid on this processor.

� shared - the data is valid on this processor, and other processors have copies of the data as well.

� exclusive - the data is valid on this processor, and no other processors have copies of this data.

Communication is required if a processor attempts to read data that is in the invalid state, or attempts to write data that
is in the invalid or shared state. In this case, we say that there is a shared miss. The checks that Shasta inserts in the
application executables at each load and store are shared miss checks on the data being referenced.

As in hardware shared-memory systems, Shasta divides up the shared address space into ranges of memory, called
blocks. All data within a block is in the same state and is always fetched and kept coherent as a unit. A unique aspect
of the Shasta system is that the block size can be different for different ranges of the shared address space (i.e., for
different program data). To simplify the inline code, Shasta divides up the address space further into fixed-size ranges
called lines and maintains state information for each line in a state table. The line size is configurable at compile time
and is typically set to 64 or 128 bytes. The size of each block must be a multiple of the fixed line size.

Coherence is maintained using a directory-based invalidation protocol. The protocol supports three types of
requests: read, read-exclusive, and exclusive (or upgrade). Supporting exclusive requests is an important optimization
since it reduces message latency and overhead if the requesting processor already has the line in shared state. Shasta
also currently supports three types of synchronization primitives in the protocol: locks, barriers, and event flags. These
primitives are sufficient for supporting the SPLASH-2 applications.

A home processor is associated with each virtual page of shared data, and each processor maintains directory
information for the shared data pages assigned to it. The protocol maintains the notion of an owner processor for each
line, which corresponds to the last processor that maintained an exclusive copy of the line. The directory information
consists of two components: (i) a pointer to the current owner processor, and (ii) a full bit vector of the processors
that are sharing the data. Our protocol supports dirty sharing, which allows the data to be shared without requiring the
home node to have an up-to-date copy. A request that arrives at the home is always forwarded to the current owner;
as an optimization, this forwarding is avoided if the home processor has a copy of the data.

Because of the high cost of handling messages via interrupts, messages from other processors are serviced through
a polling mechanism. The base Shasta implementation polls for incoming messages whenever the protocol waits for
a reply. To ensure reasonable response times, Shasta also insert polls at every loop backedge. Polling is inexpensive
(three instructions) in our Memory Channel cluster because the implementation arranges for a single cachable location
that can be tested to determine if a message has arrived. The use of polling also simplifies the inline miss checks, since
the Shasta compiler ensures that there is no handling of messages between a shared miss check and the load or store
that is being checked.

2.2 Basic Shared Miss Check

Figure 1 shows Alpha assembly code that does a store miss check. This code first checks if the target address is in
the shared memory range and if not, skips the remainder of the check. Otherwise, the code calculates the address of
the state table entry corresponding to the target address and checks that the line containing the target address is in the
exclusive state. This code has been optimized in a number of ways. For example, the code does not save or restore
registers. The Shasta compiler does live register analysis to find unused registers (labeled rx and ry in the figure)
at the point where it inserts the miss check. Shasta does not need to check accesses to non-shared (i.e., private) data,

2

1. lda rx, offset(base)
2. srl rx, SHARED_HEAP_BITS, ry
3. srl rx, LINE_BITS, rx
4. beq ry, nomiss
5. ldq_u ry, 0(rx)
6. extbl ry, rx, ry
7. beq ry, nomiss

8. ...call function to handle store miss

9. nomiss:
10. ... store instruction

Figure 1: Store miss check code.

which includes all stack and static data in the current implementation. Therefore, a load or store whose base register
uses the stack pointer (SP) or global pointer (GP) register, or is calculated using the contents of the SP or GP, is not
checked.

Despite the simple optimizations applied to the basic checks, the overhead of the miss checks can be significant
for many applications, often approaching or exceeding 100% of the original sequential execution time. The Shasta
system applies a number of more advanced optimizations that dramatically reduce this overhead to an average of about
20% (including polling overhead) across the SPLASH-2 applications [19].1 The two most important optimizations are
described below.

Invalid Flag Technique. Whenever a line on a processor becomes invalid, the Shasta protocol stores a particular
“flag” value in each longword (4 bytes) of the line. The miss check code for a load can then just compare the value
loaded with the flag value. If the loaded value is not equal to the flag value, the data must be valid and the application
code can continue immediately. If the loaded value is equal to the flag value, then a miss routine is called that first does
the normal range check and state table lookup. The state check distinguishes an actual miss from a “false miss” (i.e.,
when the application data actually contains the flag value), and simply returns back to the application code in case of
a false miss. Since false misses almost never occur in practice, the above technique can greatly reduce the load miss
check overhead. Another advantage of the invalid flag technique is that the load of the state table entry is eliminated.
Therefore, there are no additional data cache misses beyond what would occur in the application code.

Batching Miss Checks. A very important technique for reducing the overhead of miss checks is to batch together
checks for multiple loads and stores. Suppose there are a sequence of loads and stores that are all relative to the same
(unmodified) base register and the offsets (with respect to the base register) span a range whose length is less than or
equal to the Shasta line size. These loads and stores can collectively touch at most two consecutive lines in memory.
Therefore, if inline checks verify that these are in the correct state, then all the loads and stores can proceed without
further checks. One convenient way to check both lines is to do a normal shared miss check on the beginning address
and ending address of the range. Fortunately, the checking code for the two endpoints can be interleaved effectively to
eliminate pipeline stalls; therefore, the cycle count is less than double the cycle count of normal checks. The batching
technique also applies to loads and stores via multiple base registers. For each set of loads and stores that can be
batched, the Shasta compiler generates code to check the lines that may be referenced via each base register that is
used. A batch miss handling routine is called if any of the lines referenced via any of the base registers are not in the
correct state. Batching can also be useful for eliminating and hiding communication latency in a parallel execution,
since it allows load and store misses to the same line to be combined into a single store miss and misses on multiple
lines to be serviced at the same time.

1The relative effect of the checking overhead is typically less on the parallel execution time due to other overheads arising from communication
and synchronization. For example, consider an application run that achieves a parallel efficiency of 50% without any checking overhead. Given a
checking overhead of 20% on a uniprocessor run, the effective overhead on the parallel execution time is reduced to 10%.

3

3 Protocol Optimizations

This section describes a number of the optimizations in the Shasta coherence protocol that attempt to reduce the effect
of the long latencies and large message overheads that are typical in software DSM systems. The optimizations include
minimizing extraneous protocol messages, supporting prefetch and home placement directives, supporting coherence
and communication at multiple granularities, exploiting a relaxed memory model, batching together requests for
multiple misses, and optimizing accesses to migratory data.

3.1 Minimizing Protocol Messages

Given the relatively high overheads associated with handling messages in software DSM implementations, we have
designed our protocol to minimize extraneous coherence messages.

A key property of our protocol is that the current owner node specified by the directory guarantees to service a
request that is forwarded to it. We exploit the flexibility of our software protocol to guarantee this property. First,
the main memory at each node acts as a software-controlled cache of remote data and there are no forced writebacks
or replacements in our protocol, allowing the current owner to maintain a valid copy of the data. Second, there is no
need to retry requests (e.g., by sending a negative-acknowledgement reply) due to either transient states or deadlock
conditions. We can always allocate queue space at the target processor to delay servicing an incoming request in
transient cases, and there are no deadlock conditions that necessitate a retry mechanism (such as limited network buffer
space in hardware DSM systems).

The fact that the current owner guarantees to service a forwarded request allows the protocol to complete all
directory state changes when a request first reaches the home. This property eliminates the need for extra messages
that are sent back to the home to confirm that the forwarded request is satisfied (e.g., "ownership change" or "sharing
writeback" messages that are common in hardware DSM protocols such as DASH [15]). Therefore, our protocol can
handle three-hop transactions involving a remote owner more efficiently.

We use several other techniques to reduce the number or size of protocol messages. The fact that the protocol
supports dirty sharing eliminates the need for sending an up-to-date copy of the line back to the home for three-hop
read transactions (i.e., when the home node is remote and the data is dirty in yet another node).2 Supporting exclusive
(or upgrade) requests is also an important optimization since it reduces the need for fetching data on a store if the
requesting processor already has the line in shared state. Finally, the number of invalidation acknowledgements that
are expected for an exclusive request is piggybacked on one of the invalidation acknowledgements to the requestor
instead of being sent as a separate message.

3.2 Multiple Coherence Granularity

The most novel aspect of our protocol is its ability to support multiple granularities for communication and coherence,
even within a single application. The fact that the basic granularity for the inline state check is software configurable
already gives us the ability to use different granularities for different applications. Nevertheless, the ability to further
vary the communication and coherence granularity within a single application can provide a significant performance
boost in a software DSM system, since data with good spatial locality can be communicated at a coarse grain to
amortize large communication overheads, while data prone to false sharing can use a finer sharing granularity.

Our current implementation automatically chooses a block size based on the allocated size of a data structure. Our
basic heuristic is to choose a block size equal to the object size up to a certain threshold; the block size for objects
larger than a given threshold is simply set to the base Shasta line size (typically set to be 64 bytes). The rationale for
the heuristic is that small objects should be transferred as a single unit, while larger objects (e.g., large arrays) should
be communicated at a fine granularity to avoid false sharing. We also allow the programmer to override this heuristic
by providing a special version of malloc that takes a block size as an argument (the block size must be a multiple
of the base Shasta line size). Since the choice of the block size does not affect the correctness of the program, the
programmer can freely experiment with various block sizes (for the key data structures) to tune the performance of an

2Our protocol supports sharing writeback messages as an option, however.

4

application. Controlling the coherence granularity in this manner is significantly simpler than approaches adopted by
object- or region-based DSM systems [3, 12, 17, 20], since the latter approaches can affect correctness and typically
require a more substantial change to the application.

We currently associate different granularities to different virtual pages and place newly allocated data on the
appropriate page. The block size for each page is communicated to all the nodes at the time the pool of shared pages
are allocated. To determine the block size of data at a particular address, a requesting processor simply checks the
block size for the associated page. The above mechanism is simple yet effective for most applications. We are also
working on a more general and dynamic mechanism that maintains the block size information permanently only at the
home along with the directory information for each line [19].

Exploiting variable granularity may reduce the relative gains from other optimizations if a larger block size is
effective at eliminating many of the misses on shared data structures.

3.3 Prefetch and Home Placement Directives

The Shasta protocol allows the application to explicitly specify the home processor for individual pages instead of
relying on the default round-robin allocation. The protocol also supports non-binding prefetch and prefetch-exclusive
directives. The Shasta system can optionally supply information on source code lines that suffer the most number of
remote misses by keeping extra state within the protocol. The programmer can use this information to identify places
where prefetching may be helpful.

3.4 Exploiting Relaxed Memory Models

Our protocol aggressively exploits the release consistency model [9] by emulating the behavior of a processor with
non-blocking loads and stores and a lockup-free cache. Because of our non-blocking load and store operations, a line
may be in one of two pending states, pending-invalid and pending-shared. The pending-invalid state corresponds to
an outstanding read or read-exclusive request on that line; pending-shared signifies an outstanding exclusive request.
The protocol supports non-blocking stores by simply issuing a read-exclusive or exclusive request, recording where
the store occurred, and continuing. This information allows the protocol to appropriately merge the reply data with the
newly written data that is already in memory. Our protocol also exhibits a limited form of non-blocking load behavior
due to the batching optimization, since batching can lead to multiple outstanding loads (as described in Section 2.2).
Finally, we support non-blocking releases by delaying a release operation (e.g., unlock) on the side until all previous
operations are complete (analogous to placing the release in a write buffer in hardware implementations), and allowing
the processor to continue with operations following the release.

We also support aggressive lockup-free behavior for lines that are in a pending state. Writes to a pending line
are allowed to proceed by storing the newly written data into memory and recording the location of the stores in the
miss handler (invoked due to the pending state). Loads from a line in pending-shared state are allowed to proceed
immediately, since the node already has a copy of the data. Loads from a line in pending-invalid state are also allowed
to proceed as long as the load is from a valid section of the line. The above two cases are well-suited to the “flag” check
for loads since this technique can efficiently detect a “hit” in both cases without actually checking the state for the line.
Finally, we support eager exclusive replies in the case of a read-exclusive request by sending the reply data back to
the requesting processor as soon as possible and allowing it to use the data immediately (by setting the local state to
exclusive), even though requests from other processors are delayed until all pending invalidations are acknowledged.

3.5 Batching

The batching technique described in Section 2.2 can reduce communication overhead by merging load and store misses
to the same line and by issuing requests for multiple lines at the same time. Our protocol handles a miss associated
with the batching of loads and stores as follows. The batch checking code jumps to the inline batch miss code if there is
a miss on any line within a batch. The inline code calls a batch miss handler that issues all the necessary miss requests.
We implement non-stalling stores by requiring the handler to wait only for outstanding read and read-exclusive replies

5

and not for invalidation acknowledgements.
Although the batch miss handler brings in all the necessary lines, it cannot guarantee that all the lines will be in the

appropriate state once all the replies have come back. The reason is that while the handler is waiting for the replies,
requests from other processes must be served to avoid deadlock; these requests can in turn change the state of the lines
within the batch. Even though a line may not be in the right state, loads to the line will still get the correct value (under
release consistency) as long as the original contents of the line remain in memory. We therefore delay storing the flag
value into memory for invalidated lines until after the end of the batch. After the batch code has been executed, we
complete the invalidation of any such lines at the time of the next entry into the protocol code (due to polls, misses, or
synchronization). We may also have to reissue stores to lines which are no longer in exclusive or pending-shared state
before we start the batch code. A relaxed memory model simplifies handling the above corner cases in an efficient
manner.

3.6 Detecting Migratory Sharing Patterns

The Shasta protocol provides a sophisticated mechanism for detecting data that is shared in a migratory fashion and
optimizing accesses to such data [6, 23]. Migratory sharing occurs when data is read and modified by different
processors, leading to the migration of the data from one processor to another. By keeping extra information at each
directory entry, the protocol detects whether the data in each line exhibits migratory behavior. A line is designated for
migratory conversion after the migratory sharing pattern is successfully observed for a threshold number of times. A
read request to a line that is designated for migratory conversion is automatically converted to a read-exclusive request
at the directory. This conversion avoids the load miss followed by a store miss to the same line that is typical for
migratory shared data. The protocol provides a mechanism to revert a line from migratory conversion. The reply data
for a converted read request is cached with a special caching state (called exclusive-migratory). Operations by the
owner processor treat the line as exclusive, and a subsequent store by that processor changes the line to the ordinary
exclusive state. The protocol detects a break in the migratory behavior if an incoming request from another processor
arrives before the owner processor writes to the line (i.e., while line is still in exclusive-migratory state). In this
case, a message is sent to the home directory to nullify or revert the migratory conversion for that line. The line may
subsequently be designated for migratory conversion if migratory behavior is observed again. The protocol provides
hysteresis to avoid continuous switching to and from the migratory conversion state, and can optionally stop switching
to migratory conversion for a given line if the line reverts a threshold number of times.

4 Performance Results

This section presents performance results for the Shasta implementation. We first describe our prototype cluster and
the applications used in our study. We then present detailed performance results that show the performance of Shasta
and the effectiveness of the various protocol optimizations described in the previous section.

4.1 Prototype Cluster

Our cluster consists of four AlphaServer 4100s connected by a Memory Channel network. Each AlphaServer 4100 has
four 300 MHz 21164 processors, which each have 16 Kbyte on-chip instruction and data caches, a 96 Kbyte on-chip
combined second-level cache, and a 2 Mbyte board-level cache. The individual processors are rated at 8.11 SpecInt95
and 12.7 SpecFP95, and the system bus has a bandwidth of 1 Gbyte/s. The Memory Channel is a memory-mapped
network that allows a process to transmit data to a remote process without any operating system overhead via a simple
store to a mapped page [10]. The one-way latency from user process to user process over Memory Channel is about 4
microseconds, and each network link can support a bandwidth of 60 MBytes/sec.

We have implemented a message-passing layer that runs efficiently on top of the Memory Channel. By using
separate message buffers between each pair of processors, we avoid the need for any locking when adding or removing
messages from the buffers. In Shasta, the minimum latency to fetch a 64-byte block from a remote processor (two
hops) via the Memory Channel is 20 microseconds, and the effective bandwidth for large blocks is about 35 Mbytes/s.

6

problem size sequential with Shasta miss check
time miss checks overhead

Barnes 16K particles 9.05s 9.92s 9.6%
FMM 32K particles 13.55s 15.36s 13.4%
LU 1024x1024 matrix 27.32s 29.59s 8.3%
LU-Contig 1024x1024 matrix 17.51s 21.99s 25.6%
Ocean 514x514 ocean 11.04s 13.29s 20.5%
Raytrace balls4 71.53s 79.59s 11.3%
Volrend head 1.62s 1.76s 8.6%
Water-Nsq 1000 molecules 7.87s 9.21s 17.0%
Water-Sp 1728 molecules 6.68s 7.64s 14.4%

Table 1: Sequential times and checking overheads for the SPLASH-2 applications.

We exploit message passing through shared memory segments when the communicating processors are on the same
node; the minimum latency for a 64-byte block fetch within a node is 11 microseconds, and the bandwidth is about 45
Mbytes/s. Parallel runs of up to 4 processors use a single processor per node; the 8 and 16 processor runs use 2 and 4
processors per node, respectively. 3

4.2 Applications

We report results for nine of the SPLASH-2 applications [24]. Table 1 shows the input sizes used in our experiments
along with the sequential running times. We have increased the standard input sizes in order to make sure that the
applications run for at least a few seconds on our cluster. Table 1 also shows the single processor execution times for
each application after the Shasta miss checks are added (includes poll instructions), along with the percentage increase
in the time over the original sequential time. The checking overheads range from 10% to 25%; the relative effect
of this overhead is typically less on parallel execution times due to other overheads arising from communication and
synchronization.

4.3 Parallel Performance

This section presents the parallel performance of the applications in Shasta, and analyzes the effectiveness of supporting
variable coherence granularities within the protocol.

The following specifies the parameters used for the base set of experiments. We use a fixed Shasta line size of
64 bytes. Unless specified otherwise, the block size of objects less than 1024 bytes is automatically set to the size of
the object, while larger objects use a 64-byte block size. Except for Water-Sp which ends up mainly using 1024-byte
blocks, the remaining applications are virtually unaffected by this heuristic and use 64-byte blocks. In addition, for
LU-Contiguous and Ocean, we use the home placement optimization as is done in most studies of the SPLASH-2
applications. We use all the optimizations related to exploiting release consistency (described in Section 3.4) except
for non-blocking releases. We do not use the sharing writeback option (i.e., home is not updated on a 3-hop read
operation). Finally, the migratory optimizations are turned off and we do not use any prefetch directives.4

Figure 2 shows the speedups for the applications running on our prototype cluster. The speedups shown are based
on the execution time of the application running via Shasta on 1 to 16 processors relative to the execution of the original
sequential application (with no miss checks). The speedup curves on the left side of the figure represent runs with the
default 64-byte block size, except for Water-Sp which automatically uses 1024-byte blocks for most data structures.

3Results for 2, 4 and 8 processors are not directly comparable with those presented in in another Shasta paper [18] because of different assignment
of processors to nodes.

4We do not yet have a comprehensive set of results with prefetching. Automatic algorithms for generating prefetches that are used for hardware
DSM systems do not work well in Shasta because of the extremely large latencies and the higher overhead of issuing a prefetch (involves software
protocol action). Our preliminary attempts at adding prefetches to LU and Volrend by hand have led to small improvements in performance (5%).
We hope to have more results with prefetching soon.

7

� Raytrace
� Water-Sp
� Water-Nsq

 LU
� Volrend
� LU-Contig
� FMM

 Barnes
� Ocean

|

0
|

2
|

4
|

6
|

8
|

10
|

12
|

14
|

16

|0

|1

|2

|3

|4

|5

|6

|7

|8

|9

 Number of Processors

 S
pe

ed
up

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� Raytrace
� Water-Sp
� Water-Nsq

 LU
� Volrend
� LU-Contig
� FMM

 Barnes
� Ocean

|

0
|

2
|

4
|

6
|

8
|

10
|

12
|

14
|

16

|0

|1

|2
|3

|4

|5

|6

|7

|8

|9

 Number of Processors
 S

pe
ed

up

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 2: Speedups of SPLASH-2 applications running with 64-byte (left) and variable (right) block sizes.

All applications, except Ocean, achieve higher speedups as we use more processors. The performance drop in Ocean
is primarily due to the fact that the Memory Channel bandwidth per processor drops as we go from 8 to 16 processors
in our experimental setup. Raytrace achieves the highest speedup of 7.1 on 16 processors. The speedups are quite
promising given the fast Alpha processors, the large communication latencies, and the relatively small application
problem sizes.

To study the effects of variable coherence granularity, we made single-line changes to five of the applications
to make the coherence granularity of one or a few of the main data structures greater than 64 bytes; the coherence
granularity is a hint that can be specified at allocation time as a parameter to a modified malloc routine. The speedup
curves on the right side of Figure 2 represent runs with the above coherence granularity hints used for a subset of
the applications. Table 2 shows the affected data structures in each application along with the larger block size. We
also show the change in speedups for 16-processor runs under Shasta when the larger granularity is used. Variable
granularity improves performance by transferring data in larger units and reducing the number of misses on the main
data structures. The most significant change occurs in LU-Contiguous, with the speedup almost doubling due to the
larger block size (the number of read misses is reduced by over 25 times). Given the large potential gains from using
appropriate communication granularities and the ease with which a programmer can experiment with this, support for
variable granularity is an extremely effective mechanism for achieving higher performance.

Table 3 shows results for a subset of the applications running with slightly larger problem sizes. The table shows
the larger input sizes along with other information similar to Table 1. In addition, we show the speedups achieved
on 16 processors with the larger problem sizes. The miss check overheads are almost identical to the runs with
smaller problem sizes; these overheads are not fundamentally dependent on the problem size. The speedups improve
significantly, however. The speedup for Ocean, for example, improves by over two times with a doubling of the input
parameter.

8

selected data specified 16-proc. speedup
structure(s) block size default block specified

(bytes) size (64 bytes) block size
Barnes cell, leaf arrays 512 4.24 5.08
LU matrix array 128 5.40 7.21
LU-Contig matrix block 2048 4.38 8.52
Volrend opacity, normal maps 1024 4.43 5.06
Water-Nsq molecule array 2048 5.66 6.15
Water-Sp molecules, boxes varies NA 6.09

Table 2: Effects of variable block size in Shasta.
problem size sequential with Shasta miss check speedup

time miss checks overhead (16 proc)
Barnes 64K particles 41.76s 45.38s 8.7% 6.74
LU 2048x2048 matrix 219.61s 236.4s 7.6% 9.43
LU-Contig 2048x2048 matrix 140.9s 176.5s 25.3% 10.47
Ocean 1026x1026 ocean 44.90s 53.90s 20.0% 5.70
Water-Nsq 4096 molecules 125.9s 147.3s 17.0% 9.71
Water-Sp 4096 molecules 15.94s 18.12s 13.7% 8.39

Table 3: Execution times for larger problem sizes (variable block sizes used where applicable).

4.4 Effect of Exploiting Release Consistency

This section analyzes the effect of the optimizations related to release consistency (described in Section 3.4), along
with allowing multiple outstanding misses within a batch (described in Section 3.5).

Figure 3 presents the change in the execution time of 8- and 16-processor runs with a 64-byte block size for
different levels of optimizations. For each application, the middle bar (labeled “B”) represents the execution time
for the base runs reported in the previous section with the problem sizes specified in Table 1, and other times are
normalized to this time. As was mentioned in the previous section, the base set of runs exploit all of the optimizations
related to batching (multiple outstanding misses and merging of loads and stores to the same lines within a batch)
and release consistency except that release operations are blocking (i.e., non-blocking stores, eager exclusive replies,
and lockup-free optimizations are exploited). The height of the first bar for each application represents a conservative
implementation that supports sequential consistency (labeled “SC”). These runs do not exploit the optimizations related
to release consistency, and no overlap is allowed among misses within a batch (except for merging load and store
misses to the same line). Finally, the third bar for each application represents the addition of non-blocking releases
(labeled “NR”) to the set of optimizations used by the base set of runs. The figure shows that the optimizations used
by the base set of runs help performance by as much as 10% relative to SC, with the gains more noticeable with fewer
processors. However, the addition of the non-blocking release optimization does not visibly improve performance
beyond the base set of runs and in some cases leads to slightly lower performance (which is why we do not use this
optimization in our base set of runs).

Figure 3 also shows the breakdown of the execution time for each of the runs. Task time represents the time
spent executing the application, including hardware cache misses. Task time also includes the time for executing the
inline miss checks (and polls) and the code necessary to enter the protocol (such as saving registers). Read time and
write time represent the stall time for read and write misses that are satisfied by other processors through the software
protocol. Even though some of the runs exploit non-blocking stores, stores may still stall the processor if the number
of pending requests exceeds a maximum threshold (100 requests per processor for these runs). For simplicity, our
current implementation also stalls on a store if there are non-contiguous stores to a pending line. Synchronization
time represents the stall time for application locks and barriers (includes both acquire and release times). Message
time represents the time spent handling messages when the processor is not already stalled. Processors also handle
messages while stalled on data or synchronization, but this time is hidden by the read, write, and synchronization times.

9

||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

 P
er

ce
nt

Other
Msg
Sync
Write
Read
Task

SC B NR

Barnes

SC B NR

FMM

SC B NR

LU

SC B NR

LUcont

SC B NR

Ocean

SC B NR

RayTr

SC B NR

VolRend

SC B NR

WaterN

SC B NR

WaterSp

||0
|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

 P
er

ce
nt

Other
Msg
Sync
Write
Read
Task

SC B NR

Barnes

SC B NR

FMM

SC B NR

LU

SC B NR

LUcont

SC B NR

Ocean

SC B NR

RayTr

SC B NR

VolRend

SC B NR

WaterN

SC B NR

WaterSp

Figure 3: Effect of relaxed memory consistency for 8-processor (left) and 16-processor (right) runs with 64-byte block
size.

||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

 P
er

ce
nt

Other
Msg
Sync
Write
Read
Task

SC B NR

Barnes

SC B NR

LU

SC B NR

LUcont

SC B NR

VolRend

SC B NR

WaterN

SC B NR

WaterSp

||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110
 P

er
ce

nt

Other
Msg
Sync
Write
Read
Task

SC B NR

Barnes

SC B NR

LU

SC B NR

LUcont

SC B NR

VolRend

SC B NR

WaterN

SC B NR

WaterSp

Figure 4: Effect of relaxed memory consistency for 8-processor (left) and 16-processor (right) runs with variable block
size.

The “other” category includes miscellaneous overheads such as the overhead of dealing with non-blocking stores to
pending lines. As expected, the 16-processor runs spend a higher percentage of their execution time in overhead
categories compared to 8-processor runs.

The breakdowns in Figure 3 show that the optimizations used in the base set of runs are effective in significantly
reducing and sometimes eliminating (for LU, Volrend, and Water-Sp) the write stall time.5 Barnes and Ocean get a
performance improvement of about 10% relative to SC at both 8 and 16 processors. Volrend and FMM also get visible
improvements at 8 processors (5-10%), but the improvements are less at 16 processors.

The overall gains from the optimizations in the base set of runs relative to SC are much more limited than we
initially expected. In most cases, the reduction in write stall time is accompanied by an increase in other overhead
categories. Even though the processors do not directly stall for stores, the pending store requests still require servicing
and can increase the time for other protocol operations. This leads to increases in read, synchronization, message

5LU-Contiguous gets only a small reduction in write stall time. Virtually all the stores are upgrade requests that are satisfied immediately by the
local home but generate a single invalidation request which takes much longer to complete. This leads to stalls due to reaching the threshold of 100
pending requests outstanding per processor. While increasing this threshold leads to a reduction in the write stall time, there is no improvement in
performance since the time simply shifts to other components of the execution time.

10

handling, or other miscellaneous overhead times. For example, at 16 processors, the write stall times for LU and
Water-Sp are completely eliminated and the write times for FMM and Water-Nsq are approximately halved, yet there
is little or no improvement in performance due to increases in other categories.

To better explain the above, we gathered more detailed data on how much time is spent by the processors to handle
incoming protocol messages. As shown in Figure 3, the contribution of message handling time (Msg category) to the
total execution time is less than 10% across the applications. Nevertheless, a large portion of the messages are handled
while a processor is waiting for its own data and synchronization requests. Our more detailed data for 16-processor
runs shows that for Barnes, FMM, Ocean, and Water-Nsq, the processors are busy handling incoming messages for an
average of 30-35% of the time while they are waiting for data and synchronization (corresponds to the sum of read,
write, and synchronization categories); for Volrend, the processors are busy for about 25% of this time and for the
remaining applications, this percentage is around 17-20%. Therefore, the processors are heavily utilized while they
“wait” for their own requests to complete. This explains why hiding the stall time for some operations may easily lead
to higher stall times for other operations.

The addition of non-blocking releases to the base set of optimizations does not lead to any significant increase in
performance and in fact leads to slightly lower performance in a few of the runs. The percentage of execution time
spent on stalled releases for the base runs with 16 processors are as follows (based on our more detailed results): 3.8%
for Water-Nsq, 1.5% for Barnes and FMM, 0.5% for Raytrace and Volrend, and negligible for the other applications.
Barnes, FMM, and Raytrace show small gains from non-blocking releases. However, even though one would expect
Water-Nsq to get the largest gain from this optimization, the performance actually suffers slightly. While non-blocking
releases eliminate the release stalls in Water-Nsq, the time to acquire locks almost doubles6 and read latencies increase
slightly, leading to a higher overall execution time.

Figure 4 presents similar data to Figure 3 for runs with variable block sizes (specified in Table 2) for the subset of
applications that exploit this feature. As expected, the breakdowns indicate a higher efficiency (i.e., higher percentage
for Task time) compared to the runs with a 64-byte block size. Nevertheless, the trends are very similar to those
observed in Figure 3. Optimizations that exploit relaxed models are still effective in significantly reducing the write
stall times, with Barnes and Volrend showing a 5-10% performance improvements with the larger block sizes.

We did a number of additional experiments to further isolate the effect of various optimizations used in the base
set of runs. The first set of experiments allowed for the overlap of multiple misses in batches relative to the SC runs.
This led to virtually no improvement in performance, except for Volrend which achieved a 5% improvement relative
to SC when using 8 processors and a 64-byte block size. This is mainly because there is rarely more than a single
shared miss at a each batch. The second set of experiments added the eager exclusive reply optimization whereby the
reply data to a read exclusive request is used by the requesting processor before all invalidations are acknowledged; in
this case, the only missing optimization compared to the base set of runs is non-blocking stores. Again, this additional
optimization did not improve performance in most of the cases. Ocean achieved a 5% gain with a 64-byte block size
at both 8 and 16 processors, and Barnes achieved similar gain only at 16 processors. Therefore, as expected, much of
the performance difference between SC and the base runs can be attributed to the non-blocking store optimization.

4.5 Effect of Upgrades and Dirty Sharing

We analyze the effect of supporting exclusive (or upgrade) requests and supporting dirty sharing in this section.
Figure 5 presents a breakdown of the execution times for 8- and 16-processor runs with a 64-byte block size. Again,
the middle bar (labeled “B”) for each application represents the execution time for the base runs reported in Section 4.3,
and other times are normalized to this time. The base set of runs use upgrade requests (i.e., no data is fetched on a store
if the processor already has a shared copy), and do not use sharing writeback messages (i.e., home is not updated on
3-hop read operations). The first bar for each application represents an implementation that does not support upgrade
messages (labeled “NU”). Therefore, a processor generates a read-exclusive request whether or not there is a local
shared copy of the line. The third bar for each application represents the addition of sharing writeback messages to the
base set of experiments (labeled “WB”). Figure 6 presents similar data except for runs with variable block sizes.

6This is because some of the releases are on the critical path, and while a non-blockingrelease removes the stall time from the releasing processor,
it does not lead to a faster time for releasing a waiting processor.

11

||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

 P
er

ce
nt

Other
Msg
Sync
Write
Read
Task

NU B WB

Barnes

NU B WB

FMM

NU B WB

LU

NU B WB

LUcont

NU B WB

Ocean

NU B WB

RayTr

NU B WB

VolRend

NU B WB

WaterN

NU B WB

WaterSp

||0
|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

 P
er

ce
nt

Other
Msg
Sync
Write
Read
Task

NU B WB

Barnes

NU B WB

FMM

NU B WB

LU

NU B WB

LUcont

NU B WB

Ocean

NU B WB

RayTr

NU B WB

VolRend

NU B WB

WaterN

NU B WB

WaterSp

Figure 5: Effect of upgrades and sharing writebacks for 8-processor (left) and 16-processor (right) runs with 64-byte
block size.

||0
|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

 P
er

ce
nt

Other
Msg
Sync
Write
Read
Task

NU B WB

Barnes

NU B WB

LU

NU B WB

LUcont

NU B WB

VolRend

NU B WB

WaterN

NU B WB

WaterSp

||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110
 P

er
ce

nt

Other
Msg
Sync
Write
Read
Task

NU B WB

Barnes

NU B WB

LU

NU B WB

LUcont

NU B WB

VolRend

NU B WB

WaterN

NU B WB

WaterSp

Figure 6: Effect of upgrades and sharing writebacks for 8-processor (left) and 16-processor (right) runs with variable
block size.

The results show that support for upgrade messages is important for a number of the applications. For example,
Volrend achieves above a 10% improvement in performance due to upgrade messages at 16 processors for both 64-byte
and variable block sizes. On the other hand, sharing writeback messages typically hurt performance (which is why we
do not use it in the base set of runs). The only application that achieves visible gains from sharing writebacks is LU at
16 processors (for both the 64-byte and the larger block size runs). This is due to the fact that several processors read the
data produced by another processor. On the other hand, applications such as Ocean that have single-producer/single-
consumer sharing patterns are hurt by the additional messages generated by the writebacks. Larger block sizes can
sometimes exacerbate the cost of the writebacks, as is shown for Water-Nsq where the performance degrades by over
15%. Therefore, supporting a dirty-sharing protocol is important for achieving higher performance in Shasta.

4.6 Effect of Migratory Optimizations

Figure 7 shows the effect of migratory optimizations described in Section 3.6 for 8- and 16-processor runs with a
64-byte block size. Again, the first bar (labeled “B”) for each application represents the execution time for the base

12

||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

 P
er

ce
nt

Other
Msg
Sync
Write
Read
Task

B MG

Barnes

B MG

FMM

B MG

LU

B MG

LUcont

B MG

Ocean

B MG

RayTr

B MG

VolRend

B MG

WaterN

B MG

WaterSp

||0
|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

 P
er

ce
nt

Other
Msg
Sync
Write
Read
Task

B MG

Barnes

B MG

FMM

B MG

LU

B MG

LUcont

B MG

Ocean

B MG

RayTr

B MG

VolRend

B MG

WaterN

B MG

WaterSp

Figure 7: Effect of migratory optimizations for 8-processor (left) and 16-processor (right) runs with 64-byte block
size.

runs reported in Section 4.3, and other times are normalized to this time. The second bar for each application represents
runs with the migratory optimizations (labeled “MG”). Figure 8 presents similar data except for runs with variable
block sizes. We used a threshold of 2 times for observing the migratory pattern before switching a line to migratory
conversion, and used a threshold of 5 reversions after which we stop considering the line for conversion.

The results for migratory optimizations are quite disappointing. The optimization either does not provide an
improvement or reduces performance slightly in the majority of cases. In fact, the performance degradations would
be much worse without the sophisticated revert mechanism and hysteresis built into our protocol. The primary reason
for the poor performance is the fact that migratory patterns are either not present at the granularity of 64-byte or larger
block sizes or the pattern is unstable (i.e., reverts back to non-migratory behavior).

At 16 processors and 64-byte block sizes, LU, LU-Contiguous, Ocean, and Water-Sp detect virtually no migratory
sharing, Raytrace and Volrend detect a few stable patterns, and Barnes and FMM detect a few patterns that are unstable.
The only application that is successful in detecting a large number of stable patterns is Water-Nsq. In fact, the number
of upgrade misses is reduced by over 90% in this application. Hence, Water-Nsq is the only application that shows
visible gains from this optimization. At the larger block sizes, even Water-Nsq ends up having fewer and more unstable
patterns, therefore we actually see a slight loss in performance in Figure 8.

Aside from the lack of stable migratory patterns, there are several other factors that reduce the potential gains
from migratory optimizations in Shasta. First, the use of upgrade messages reduces the cost of store misses that may
be eliminated. Second, exploiting release consistency is effective in hiding the latency of the upgrades. Finally, the
batching optimization also leads to the merging of load and store misses to the same line within a single batch.

4.7 Summary of Results

Overall, support for variable granularity communication is by far the most important optimization in Shasta. Support for
upgrade messages and a dirty-sharing protocol are also important for achieving higher performance. Exploiting release
consistency provides smaller performance gains than we expected due to the fact that processors are busy handling
protocol messages while they are waiting for their own requests to complete. Finally, migratory optimizations turn out
not to be useful in the context of Shasta.

13

||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

 P
er

ce
nt

Other
Msg
Sync
Write
Read
Task

B MG

Barnes

B MG

LU

B MG

LUcont

B MG

VolRend

B MG

WaterN

B MG

WaterSp

||0
|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

 P
er

ce
nt

Other
Msg
Sync
Write
Read
Task

B MG

Barnes

B MG

LU

B MG

LUcont

B MG

VolRend

B MG

WaterN

B MG

WaterSp

Figure 8: Effect of migratory optimizations for 8-processor (left) and 16-processor (right) runs with variable block
size.

5 Discussion and Related Work

Shasta’s basic approach is derived from the Blizzard-S work [21]. However, we have substantially extended the
previous work in this area by developing several techniques for reducing the otherwise excessive access control
overheads. We have also developed an efficient protocol that provides support for maintaining coherence at variable
granularities within a single application. Finally, we have explored the use of relaxed memory models in the context
of software protocols that can support coherence at a fine granularity. In fact, this is the first paper to analyze the effect
of such protocol optimizations in the context of a fine-grain software DSM system. In a separate paper, we describe
a major extension to the Shasta protocol that exploits SMP nodes by allowing processors to efficiently share memory
within the same SMP [18].

Object- or region-based DSM systems [1, 3, 12, 17, 20] communicate data at the object level and therefore
support coherence at multiple granularities, but these systems require explicit programmer intervention to partition
the application data into objects and to identify when objects are accessed through annotations. Midway also allows
different regions of memory to have different granularities for detecting writes. Even though a finer granularity of write
detection can reduce the amount of communicated data, the access and coherence granularity is still at an object or
page level (depending on the consistency model). Similarly, some page-based systems (e.g., Treadmarks [14]) reduce
the required bandwidth by only communicating the differences between copies, but the coherence granularity is still a
page. Page-based DSM systems implemented on a cluster of shared-memory multiprocessors, such as MGS [25] and
SoftFLASH [7], naturally support two coherence granularities – the line size of the multiprocessor hardware and the
size of the virtual memory page. However, neither of these granularities can be changed.

There has been a lot of research on exploiting and evaluating the benefits of relaxed memory consistency models
in the context of both hardware and software DSM systems. The studies involving software DSM systems have
all focused on page-based systems [2, 4, 5, 11, 13, 26]. The use of relaxed models is critical for alleviating false
sharing problems that arise due to the large coherence granularity in such systems. Therefore, performance gains from
models such as release consistency relative to sequential consistency are quite large in this context. In contrast, Shasta
alleviates false sharing by supporting coherence at a fine granularity, and therefore does not depend on relaxed models
for this purpose. Because of this, the coherence protocol used in Shasta more closely resembles that of hardware DSM
systems. However, the performance gains from exploiting a relaxed model are much more limited in Shasta compared
to hardware systems [8], even though communication latencies are much larger. The primary reason for this is that
the processors are utilized for handling protocol messages while they wait for data and synchronization, thus making
it more difficult to improve performance through latency hiding.

Cox and Fowler [6], and Stenstrom et al. [23], independently proposed the idea of optimizing the transfer

14

of migratory data and evaluated the performance of this optimization (through simulation) for a small number of
applications in the context of hardware DSM systems. Both studies focus on a small block size of 16 bytes. They
both observe stable migratory behavior at this granularity. Stenstrom et al. also describe a mechanism for reverting
from migratory conversion, but show that this mechanism is not required for good performance. Cox and Fowler
provide some simulation results for larger block sizes and notice a degradation of migratory patterns at larger sizes.
Our experience with Shasta shows that migratory patterns are indeed unstable or not present in systems with block
sizes of 64 bytes or larger, thus limiting the gains from this optimization. Similarly, sophisticated mechanisms are
required for reverting from migratory conversion in order to limit performance degradations when the sharing pattern
is unstable.

6 Conclusion

Shasta is a software distributed shared memory system that supports fine-grain access to shared memory by inserting
code before loads and stores in an application that checks the state of the shared data being accessed. We have
implemented an efficient cache coherence protocol that incorporates a number of optimizations, some of which are
common in hardware shared memory systems. This protocol is fully functional and runs on a prototype cluster of
Alpha processors connected through Digital’s Memory Channel network.

Since Shasta supports shared memory entirely in software, it provides considerable flexibility in managing coher-
ence granularity and applying protocol optimizations. Our detailed parallel performance results illustrate the benefits
of this flexibility by isolating the effects of various protocol optimizations. The ability to support multiple coherence
granularities within a single application is by far the most unique and important feature of Shasta, leading to perfor-
mance improvements of as high as two times. Other protocol features, such as support for dirty sharing and exclusive
(or upgrade) messages, are also shown to be important for achieving high performance. Techniques for hiding latency,
such as exploiting relaxed memory consistency models, lead to more limited performance gains. This is primarily
because processors are often utilized for handling protocol messages while they wait for their requests to complete,
making gains from latency hiding less likely. Finally, optimizations based on detecting migratory sharing patterns turn
out not to be promising in the context of Shasta.

References

[1] H. E. Bal, M. F. Kaashoek, and A. S. Tanenbaum. Orca: A Language for Parallel Programming of Distributed Systems. IEEE
Transactions on Software Engineering, 18(3):190–205, Mar. 1992.

[2] J. Bennett, J. B. Carter, and W. Zwaenepoel. Munin: Distributed Shared Memory Based on Type-specific Memory Coherence.
In Proceedings of the Second ACM/SIGPLAN Symposium on Principles and Practice of Parallel Programming,pages 168–176,
Mar. 1990.

[3] B. N. Bershad, M. J. Zekauskas, and W. A. Sawdon. The Midway Distributed Shared Memory System. In COMPCON 1993,
pages 528–537, Mar. 1993.

[4] J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Implementation and Performance of Munin. In Proceedings of the 13th ACM
Symposium on Operating Systems Principles, pages 152–164, Oct. 1991.

[5] A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, and W. Zwaenepoel. Software Versus Hardware Shared-Memory
Implementation: A Case Study. In Proceedingsof the 21st Annual International Symposium on Computer Architecture, pages
106–117, April 1994.

[6] A. L. Cox and R. J. Fowler. Adaptive Cache Coherency for Detecting Migratory Shared Data. In Proceedings of the 20th
Annual International Symposium on Computer Architecture, pages 98–108, May 1993.

[7] A. Erlichson, N. Nuckolls, G. Chesson, and J. Hennessy. SoftFLASH: Analyzing the Performance of Clustered Distributed
Virtual Shared Memory. In Proceedings of the Seventh International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 210–220, Oct. 1996.

[8] K. Gharachorloo, A. Gupta, and J. Hennessy. Performance Evaluation of Memory Consistency Models for Shared-Memory
Multiprocessors. In Fourth International Conference on Architectural Support for Programming Languages and Operating
Systems, pages 245–257, April 1991.

15

[9] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy. Memory Consistency and Event Ordering
in Scalable Shared-Memory Multiprocessors. In Proceedings of the 17th Annual International Symposium on Computer
Architecture, pages 15–26, May 1990.

[10] R. B. Gillett. Memory Channel Network for PCI. IEEE Micro, pages 12–18, Feb. 1996.

[11] L. Iftode, C. Dubnicki, E. Felten, and K. Li. Improving Release-Consistent Shared Virtual Memory Using Automatic Update.
In Proceedings of the 2nd Symposium on High-Performance Computer Architecture, Feb. 1996.

[12] K. L. Johnson, M. F. Kaashoek, and D. A. Wallach. CRL: High-Performance All-Software Distributed Shared Memory. In
Proceedings of the Fifteenth Symposium on Operating System Principles, pages 213–228, Dec. 1995.

[13] P. Keleher, A. Cox, and W. Zwaenepoel. Lazy Release Consistency for Software Distributed Shared Memory. In Proceedings
of the Nineteenth International Symposium on Computer Architecture, pages 13–21, May 1992.

[14] P. Keleher, A. L. Cox, S. Dwarkadas, and W. Zwaenepoel. TreadMarks: Distributed Shared Memory on Standard Workstations
and Operating Systems. In Proceedings of the 1994 Winter Usenix Conference, pages 115–132, January 1994.

[15] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. L. Hennessy. The Directory-Based Cache Coherence Protocol for
the DASH Multiprocessor. In Proceedings of the 17th Annual International Symposium on Computer Architecture, pages
94–105, May 1990.

[16] K. Li and P. Hudak. Memory Coherence in Shared Virtual Memory Systems. ACM Transactions on Computer Systems,
7(4):321–359, Nov. 1989.

[17] R. S. Nikhil. Cid: a Parallel, "Shared-memory" C for Distributed-memory Machines. In Seventh Workshop on Languages and
Compilers for Parallel Computing, pages 376–390, Aug. 1994.

[18] D. J. Scales, K. Gharachorloo, and A. Aggarwal. Fine-Grain Software Distributed Shared Memory on SMP Clusters. Technical
Report 97/3, Western Research Laboratory, Digital Equipment Corporation, Feb. 1997.

[19] D. J. Scales, K. Gharachorloo, and C. A. Thekkath. Shasta: A Low-Overhead Software-Only Approach to Fine-Grain Shared
Memory. In Proceedings of the Seventh International Conference on Architectural Support for Programming Languages and
Operating Systems, pages 174–185, Oct. 1996.

[20] D. J. Scales and M. S. Lam. The Design and Evaluation of a Shared Object System for Distributed Memory Machines. In
Proceedings of the First Symposium on Operating System Design and Implementation, pages 101–114, Nov. 1994.

[21] I. Schoinas, B. Falsafi, A. R. Lebeck, S. K. Reinhardt, J. R. Larus, and D. A. Wood. Fine-grain Access Control for Distributed
Shared Memory. In Proceedings of the Sixth International Conference on Architectural Support for Programming Languages
and Operating Systems, pages 297–306, Oct. 1994.

[22] J. P. Singh, W. D. Weber, and A. Gupta. SPLASH: Stanford Parallel Applications for Shared Memory. Computer Architecture
News, 20(1):5–44, Mar. 1992.

[23] P. Stenstrom, M. Brorsson, and L. Sandberg. An Adaptive Cache Coherence Protocol Optimized for Migratory Sharing. In
Proceedings of the 20th Annual International Symposium on Computer Architecture, pages 109–118, May 1993.

[24] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-2 Programs: Characterization and Methodological
Considerations. In Proceedings of the 22nd International Symposium on Computer Architecture, pages 24–36, June 1995.

[25] D. Yeung, J. Kubiatowicz, and A. Agarwal. MGS: A Multigrain Shared Memory System. In Proceedings of the 23rd Annual
International Symposium on Computer Architecture, pages 44–56, May 1996.

[26] Y. Zhou, L. Iftode, and K. Li. Performance Evaluation of Two Home-Based Lazy Release Consistency Protocols for Shared
Virtual Memory Systems. In Proceedings of the 2nd Symposium on Operating Systems Design and Implementation, Oct.
1996.

16

WRL Research Reports

‘‘Titan System Manual.’’ Michael J. K. Nielsen. ‘‘Compacting Garbage Collection with Ambiguous

WRL Research Report 86/1, September 1986. Roots.’’ Joel F. Bartlett. WRL Research Report

88/2, February 1988.
‘‘Global Register Allocation at Link Time.’’ David

W. Wall. WRL Research Report 86/3, October ‘‘The Experimental Literature of The Internet: An

1986. Annotated Bibliography.’’ Jeffrey C. Mogul.
WRL Research Report 88/3, August 1988.

‘‘Optimal Finned Heat Sinks.’’ William
R. Hamburgen. WRL Research Report 86/4, ‘‘Measured Capacity of an Ethernet: Myths and

October 1986. Reality.’’ David R. Boggs, Jeffrey C. Mogul,
Christopher A. Kent. WRL Research Report

‘‘The Mahler Experience: Using an Intermediate
88/4, September 1988.

Language as the Machine Description.’’ David
W. Wall and Michael L. Powell. WRL ‘‘Visa Protocols for Controlling Inter-Organizational

Research Report 87/1, August 1987. Datagram Flow: Extended Description.’’

Deborah Estrin, Jeffrey C. Mogul, Gene
‘‘The Packet Filter: An Efficient Mechanism for

Tsudik, Kamaljit Anand. WRL Research
User-level Network Code.’’ Jeffrey C. Mogul,

Report 88/5, December 1988.
Richard F. Rashid, Michael J. Accetta. WRL

Research Report 87/2, November 1987. ‘‘SCHEME->C A Portable Scheme-to-C Compiler.’’

Joel F. Bartlett. WRL Research Report 89/1,
‘‘Fragmentation Considered Harmful.’’ Christopher

January 1989.
A. Kent, Jeffrey C. Mogul. WRL Research

Report 87/3, December 1987. ‘‘Optimal Group Distribution in Carry-Skip Ad-

ders.’’ Silvio Turrini. WRL Research Report
‘‘Cache Coherence in Distributed Systems.’’

89/2, February 1989.
Christopher A. Kent. WRL Research Report

87/4, December 1987. ‘‘Precise Robotic Paste Dot Dispensing.’’ William
R. Hamburgen. WRL Research Report 89/3,

‘‘Register Windows vs. Register Allocation.’’ David
February 1989.

W. Wall. WRL Research Report 87/5, December

1987. ‘‘Simple and Flexible Datagram Access Controls for

Unix-based Gateways.’’ Jeffrey C. Mogul.
‘‘Editing Graphical Objects Using Procedural

WRL Research Report 89/4, March 1989.
Representations.’’ Paul J. Asente. WRL

Research Report 87/6, November 1987. ‘‘Spritely NFS: Implementation and Performance of

Cache-Consistency Protocols.’’ V. Srinivasan
‘‘The USENET Cookbook: an Experiment in

and Jeffrey C. Mogul. WRL Research Report
Electronic Publication.’’ Brian K. Reid. WRL

89/5, May 1989.
Research Report 87/7, December 1987.

‘‘Available Instruction-Level Parallelism for Super-
‘‘MultiTitan: Four Architecture Papers.’’ Norman

scalar and Superpipelined Machines.’’ Norman
P. Jouppi, Jeremy Dion, David Boggs, Michael

P. Jouppi and David W. Wall. WRL Research
J. K. Nielsen. WRL Research Report 87/8, April

Report 89/7, July 1989.
1988.

‘‘A Unified Vector/Scalar Floating-Point Architec-
‘‘Fast Printed Circuit Board Routing.’’ Jeremy

ture.’’ Norman P. Jouppi, Jonathan Bertoni,
Dion. WRL Research Report 88/1, March 1988.

and David W. Wall. WRL Research Report
89/8, July 1989.

17

‘‘Architectural and Organizational Tradeoffs in the ‘‘1990 DECWRL/Livermore Magic Release.’’

Design of the MultiTitan CPU.’’ Norman Robert N. Mayo, Michael H. Arnold, Walter
P. Jouppi. WRL Research Report 89/9, July S. Scott, Don Stark, Gordon T. Hamachi.
1989. WRL Research Report 90/7, September 1990.

‘‘Integration and Packaging Plateaus of Processor ‘‘Pool Boiling Enhancement Techniques for Water at

Performance.’’ Norman P. Jouppi. WRL Low Pressure.’’ Wade R. McGillis, John
Research Report 89/10, July 1989. S. Fitch, William R. Hamburgen, Van

P. Carey. WRL Research Report 90/9, December
‘‘A 20-MIPS Sustained 32-bit CMOS Microproces-

1990.
sor with High Ratio of Sustained to Peak Perfor-

mance.’’ Norman P. Jouppi and Jeffrey ‘‘Writing Fast X Servers for Dumb Color Frame Buf-

Y. F. Tang. WRL Research Report 89/11, July fers.’’ Joel McCormack. WRL Research Report

1989. 91/1, February 1991.

‘‘The Distribution of Instruction-Level and Machine ‘‘A Simulation Based Study of TLB Performance.’’

Parallelism and Its Effect on Performance.’’ J. Bradley Chen, Anita Borg, Norman
Norman P. Jouppi. WRL Research Report P. Jouppi. WRL Research Report 91/2, Novem-

89/13, July 1989. ber 1991.

‘‘Long Address Traces from RISC Machines: ‘‘Analysis of Power Supply Networks in VLSI Cir-

Generation and Analysis.’’ Anita Borg, cuits.’’ Don Stark. WRL Research Report 91/3,

R.E.Kessler, Georgia Lazana, and David April 1991.

W. Wall. WRL Research Report 89/14, Septem-
‘‘TurboChannel T1 Adapter.’’ David Boggs. WRL

ber 1989.
Research Report 91/4, April 1991.

‘‘Link-Time Code Modification.’’ David W. Wall.
‘‘Procedure Merging with Instruction Caches.’’

WRL Research Report 89/17, September 1989.
Scott McFarling. WRL Research Report 91/5,

‘‘Noise Issues in the ECL Circuit Family.’’ Jeffrey March 1991.

Y.F. Tang and J. Leon Yang. WRL Research
‘‘Don’t Fidget with Widgets, Draw!.’’ Joel Bartlett.

Report 90/1, January 1990.
WRL Research Report 91/6, May 1991.

‘‘Efficient Generation of Test Patterns Using
‘‘Pool Boiling on Small Heat Dissipating Elements in

Boolean Satisfiablilty.’’ Tracy Larrabee. WRL
Water at Subatmospheric Pressure.’’ Wade

Research Report 90/2, February 1990.
R. McGillis, John S. Fitch, William

‘‘Two Papers on Test Pattern Generation.’’ Tracy R. Hamburgen, Van P. Carey. WRL Research

Larrabee. WRL Research Report 90/3, March Report 91/7, June 1991.
1990.

‘‘Incremental, Generational Mostly-Copying Gar-

‘‘Virtual Memory vs. The File System.’’ Michael bage Collection in Uncooperative Environ-

N. Nelson. WRL Research Report 90/4, March ments.’’ G. May Yip. WRL Research Report

1990. 91/8, June 1991.

‘‘Efficient Use of Workstations for Passive Monitor- ‘‘Interleaved Fin Thermal Connectors for Multichip
ing of Local Area Networks.’’ Jeffrey C. Mogul. Modules.’’ William R. Hamburgen. WRL

WRL Research Report 90/5, July 1990. Research Report 91/9, August 1991.

‘‘A One-Dimensional Thermal Model for the VAX ‘‘Experience with a Software-defined Machine Ar-
9000 Multi Chip Units.’’ John S. Fitch. WRL chitecture.’’ David W. Wall. WRL Research

Research Report 90/6, July 1990. Report 91/10, August 1991.

18

‘‘Network Locality at the Scale of Processes.’’ ‘‘Fluoroelastomer Pressure Pad Design for

Jeffrey C. Mogul. WRL Research Report 91/11, Microelectronic Applications.’’ Alberto
November 1991. Makino, William R. Hamburgen, John

S. Fitch. WRL Research Report 93/7, November
‘‘Cache Write Policies and Performance.’’ Norman

1993.
P. Jouppi. WRL Research Report 91/12, Decem-

ber 1991. ‘‘A 300MHz 115W 32b Bipolar ECL Microproces-

sor.’’ Norman P. Jouppi, Patrick Boyle,
‘‘Packaging a 150 W Bipolar ECL Microprocessor.’’

Jeremy Dion, Mary Jo Doherty, Alan Eustace,
William R. Hamburgen, John S. Fitch. WRL

Ramsey Haddad, Robert Mayo, Suresh Menon,
Research Report 92/1, March 1992.

Louis Monier, Don Stark, Silvio Turrini, Leon
‘‘Observing TCP Dynamics in Real Networks.’’ Yang, John Fitch, William Hamburgen, Rus-

Jeffrey C. Mogul. WRL Research Report 92/2, sell Kao, and Richard Swan. WRL Research
April 1992. Report 93/8, December 1993.

‘‘Systems for Late Code Modification.’’ David ‘‘Link-Time Optimization of Address Calculation on
W. Wall. WRL Research Report 92/3, May a 64-bit Architecture.’’ Amitabh Srivastava,
1992. David W. Wall. WRL Research Report 94/1,

February 1994.‘‘Piecewise Linear Models for Switch-Level Simula-

tion.’’ Russell Kao. WRL Research Report 92/5, ‘‘ATOM: A System for Building Customized
September 1992. Program Analysis Tools.’’ Amitabh Srivastava,

Alan Eustace. WRL Research Report 94/2,‘‘A Practical System for Intermodule Code Optimiza-
March 1994.tion at Link-Time.’’ Amitabh Srivastava and

David W. Wall. WRL Research Report 92/6, ‘‘Complexity/Performance Tradeoffs with Non-
December 1992. Blocking Loads.’’ Keith I. Farkas, Norman

P. Jouppi. WRL Research Report 94/3, March‘‘A Smart Frame Buffer.’’ Joel McCormack & Bob
1994.McNamara. WRL Research Report 93/1,

January 1993. ‘‘A Better Update Policy.’’ Jeffrey C. Mogul.
WRL Research Report 94/4, April 1994.‘‘Recovery in Spritely NFS.’’ Jeffrey C. Mogul.

WRL Research Report 93/2, June 1993. ‘‘Boolean Matching for Full-Custom ECL Gates.’’

Robert N. Mayo, Herve Touati. WRL Research‘‘Tradeoffs in Two-Level On-Chip Caching.’’
Report 94/5, April 1994.Norman P. Jouppi & Steven J.E. Wilton. WRL

Research Report 93/3, October 1993. ‘‘Software Methods for System Address Tracing:

Implementation and Validation.’’ J. Bradley‘‘Unreachable Procedures in Object-oriented
Chen, David W. Wall, and Anita Borg. WRLPrograming.’’ Amitabh Srivastava. WRL
Research Report 94/6, September 1994.Research Report 93/4, August 1993.

‘‘Performance Implications of Multiple Pointer‘‘An Enhanced Access and Cycle Time Model for
Sizes.’’ Jeffrey C. Mogul, Joel F. Bartlett,On-Chip Caches.’’ Steven J.E. Wilton and Nor-
Robert N. Mayo, and Amitabh Srivastava.man P. Jouppi. WRL Research Report 93/5,
WRL Research Report 94/7, December 1994.July 1994.

‘‘How Useful Are Non-blocking Loads, Stream Buf-‘‘Limits of Instruction-Level Parallelism.’’ David
fers, and Speculative Execution in Multiple IssueW. Wall. WRL Research Report 93/6, November
Processors?.’’ Keith I. Farkas, Norman1993.
P. Jouppi, and Paul Chow. WRL Research
Report 94/8, December 1994.

19

‘‘Drip: A Schematic Drawing Interpreter.’’ Ramsey ‘‘Efficient Procedure Mapping using Cache Line

W. Haddad. WRL Research Report 95/1, March Coloring.’’ Amir H. Hashemi, David R. Kaeli,
1995. and Brad Calder. WRL Research Report 96/3,

October 1996.
‘‘Recursive Layout Generation.’’ Louis M. Monier,

Jeremy Dion. WRL Research Report 95/2, ‘‘Optimizations and Placement with the Genetic

March 1995. Workbench.’’ Silvio Turrini. WRL Research

Report 96/4, November 1996.
‘‘Contour: A Tile-based Gridless Router.’’ Jeremy

Dion, Louis M. Monier. WRL Research Report ‘‘Performance of the Shasta Distributed Shared

95/3, March 1995. Memory Protocol.’’ Daniel J. Scales and
Kourosh Gharachorloo. WRL Research Report

‘‘The Case for Persistent-Connection HTTP.’’
97/2, February 1997.

Jeffrey C. Mogul. WRL Research Report 95/4,

May 1995. ‘‘Fine-Grain Software Distributed Shared Memory

on SMP Clusters.’’ Daniel J. Scales, Kourosh
‘‘Network Behavior of a Busy Web Server and its

Gharachorloo, and Anshu Aggarwal. WRL
Clients.’’ Jeffrey C. Mogul. WRL Research

Research Report 97/3, February 1997.
Report 95/5, October 1995.

‘‘The Predictability of Branches in Libraries.’’ Brad
Calder, Dirk Grunwald, and Amitabh
Srivastava. WRL Research Report 95/6, October

1995.

‘‘Shared Memory Consistency Models: A Tutorial.’’

Sarita V. Adve, Kourosh Gharachorloo. WRL

Research Report 95/7, September 1995.

‘‘Eliminating Receive Livelock in an Interrupt-driven

Kernel.’’ Jeffrey C. Mogul and
K. K. Ramakrishnan. WRL Research Report

95/8, December 1995.

‘‘Memory Consistency Models for Shared-Memory

Multiprocessors.’’ Kourosh Gharachorloo.
WRL Research Report 95/9, December 1995.

‘‘Register File Design Considerations in Dynamically

Scheduled Processors.’’ Keith I. Farkas, Nor-
man P. Jouppi, Paul Chow. WRL Research

Report 95/10, November 1995.

‘‘Optimization in Permutation Spaces.’’ Silvio
Turrini. WRL Research Report 96/1, November

1996.

‘‘Shasta: A Low Overhead, Software-Only Approach

for Supporting Fine-Grain Shared Memory.’’

Daniel J. Scales, Kourosh Gharachorloo, and
Chandramohan A. Thekkath. WRL Research

Report 96/2, November 1996.

20

WRL Technical Notes

‘‘TCP/IP PrintServer: Print Server Protocol.’’ Brian ‘‘Cache Replacement with Dynamic Exclusion.’’

K. Reid and Christopher A. Kent. WRL Tech- Scott McFarling. WRL Technical Note TN-22,

nical Note TN-4, September 1988. November 1991.

‘‘TCP/IP PrintServer: Server Architecture and Im- ‘‘Boiling Binary Mixtures at Subatmospheric Pres-

plementation.’’ Christopher A. Kent. WRL sures.’’ Wade R. McGillis, John S. Fitch, Wil-
Technical Note TN-7, November 1988. liam R. Hamburgen, Van P. Carey. WRL

Technical Note TN-23, January 1992.
‘‘Smart Code, Stupid Memory: A Fast X Server for a

Dumb Color Frame Buffer.’’ Joel McCormack. ‘‘A Comparison of Acoustic and Infrared Inspection

WRL Technical Note TN-9, September 1989. Techniques for Die Attach.’’ John S. Fitch.
WRL Technical Note TN-24, January 1992.

‘‘Why Aren’t Operating Systems Getting Faster As

Fast As Hardware?.’’ John Ousterhout. WRL ‘‘TurboChannel Versatec Adapter.’’ David Boggs.
Technical Note TN-11, October 1989. WRL Technical Note TN-26, January 1992.

‘‘Mostly-Copying Garbage Collection Picks Up ‘‘A Recovery Protocol For Spritely NFS.’’ Jeffrey
Generations and C++.’’ Joel F. Bartlett. WRL C. Mogul. WRL Technical Note TN-27, April

Technical Note TN-12, October 1989. 1992.

‘‘Characterization of Organic Illumination Systems.’’ ‘‘Electrical Evaluation Of The BIPS-0 Package.’’

Bill Hamburgen, Jeff Mogul, Brian Reid, Alan Patrick D. Boyle. WRL Technical Note TN-29,

Eustace, Richard Swan, Mary Jo Doherty, and July 1992.

Joel Bartlett. WRL Technical Note TN-13, April
‘‘Transparent Controls for Interactive Graphics.’’

1989.
Joel F. Bartlett. WRL Technical Note TN-30,

‘‘Improving Direct-Mapped Cache Performance by July 1992.

the Addition of a Small Fully-Associative Cache
‘‘Design Tools for BIPS-0.’’ Jeremy Dion & Louis

and Prefetch Buffers.’’ Norman P. Jouppi.
Monier. WRL Technical Note TN-32, December

WRL Technical Note TN-14, March 1990.
1992.

‘‘Limits of Instruction-Level Parallelism.’’ David
‘‘Link-Time Optimization of Address Calculation on

W. Wall. WRL Technical Note TN-15, Decem-
a 64-Bit Architecture.’’ Amitabh Srivastava

ber 1990.
and David W. Wall. WRL Technical Note

‘‘The Effect of Context Switches on Cache Perfor- TN-35, June 1993.

mance.’’ Jeffrey C. Mogul and Anita Borg.
‘‘Combining Branch Predictors.’’ Scott McFarling.

WRL Technical Note TN-16, December 1990.
WRL Technical Note TN-36, June 1993.

‘‘MTOOL: A Method For Detecting Memory Bot-
‘‘Boolean Matching for Full-Custom ECL Gates.’’

tlenecks.’’ Aaron Goldberg and John
Robert N. Mayo and Herve Touati. WRL

Hennessy. WRL Technical Note TN-17, Decem-
Technical Note TN-37, June 1993.

ber 1990.
‘‘Piecewise Linear Models for Rsim.’’ Russell Kao,

‘‘Predicting Program Behavior Using Real or Es-
Mark Horowitz. WRL Technical Note TN-40,

timated Profiles.’’ David W. Wall. WRL Tech-
December 1993.

nical Note TN-18, December 1990.

21

‘‘Speculative Execution and Instruction-Level Paral-

lelism.’’ David W. Wall. WRL Technical Note

TN-42, March 1994.

‘‘Ramonamap - An Example of Graphical Group-

ware.’’ Joel F. Bartlett. WRL Technical Note

TN-43, December 1994.

‘‘ATOM: A Flexible Interface for Building High Per-

formance Program Analysis Tools.’’ Alan Eus-
tace and Amitabh Srivastava. WRL Technical

Note TN-44, July 1994.

‘‘Circuit and Process Directions for Low-Voltage

Swing Submicron BiCMOS.’’ Norman
P. Jouppi, Suresh Menon, and Stefanos
Sidiropoulos. WRL Technical Note TN-45,

March 1994.

‘‘Experience with a Wireless World Wide Web

Client.’’ Joel F. Bartlett. WRL Technical Note

TN-46, March 1995.

‘‘I/O Component Characterization for I/O Cache

Designs.’’ Kathy J. Richardson. WRL Tech-

nical Note TN-47, April 1995.

‘‘Attribute caches.’’ Kathy J. Richardson, Michael
J. Flynn. WRL Technical Note TN-48, April

1995.

‘‘Operating Systems Support for Busy Internet Ser-

vers.’’ Jeffrey C. Mogul. WRL Technical Note

TN-49, May 1995.

‘‘The Predictability of Libraries.’’ Brad Calder,
Dirk Grunwald, Amitabh Srivastava. WRL

Technical Note TN-50, July 1995.

WRL Research Reports and Technical Notes are available on the World Wide Web, from
http://www.research.digital.com/wrl/techreports/index.html.

22

