FEBRUARY 1997

WRL
Research Report 97/3

Fine-Gran

Software Distributed
Shared Memory

on SMP Clusters

Danid J. Scales
Kourosh Gharachorloo
Anshu Aggarwal

mn@nan Western Research Laboratory 250 University Avenue Palo Alto, California 94301 USA

The Western Research Laboratory (WRL) is a computer systems research group that
was founded by Digital Equipment Corporation in 1982. Our focus is computer science
research relevant to the design and application of high performance scientific computers.
We test our ideas by designing, building, and using rea systems. The systems we build
are research prototypes; they are not intended to become products.

There are two other research laboratories located in Palo Alto, the Network Systems
Lab (NSL) and the Systems Research Center (SRC). Another Digital research group is
located in Cambridge, Massachusetts (CRL).

Our research is directed towards mainstream high-performance computer systems. Our
prototypes are intended to foreshadow the future computing environments used by many
Digital customers. The long-term goal of WRL is to aid and accelerate the development
of high-performance uni- and multi-processors. The research projects within WRL will
address various aspects of high-performance computing.

We believe that significant advances in computer systems do not come from any single
technological advance. Technologies, both hardware and software, do not all advance at
the same pace. System design is the art of composing systems which use each level of
technology in an appropriate balance. A major advance in overall system performance
will require reexamination of all aspects of the system.

We do work in the design, fabrication and packaging of hardware; language processing
and scaling issues in system software design; and the exploration of new applications
areas that are opening up with the advent of higher performance systems. Researchers at
WRL cooperate closely and move freely among the various levels of system design. This
allows us to explore awide range of tradeoffs to meet system goals.

We publish the results of our work in a variety of journals, conferences, research
reports, and technical notes. This document is a research report. Research reports are
normally accounts of completed research and may include material from earlier technical
notes. We use technical notes for rapid distribution of technical material; usually this
represents research in progress.

Research reports and technical notes may be ordered from us. You may mail your
order to:

Technical Report Distribution

DEC Western Research Laboratory, WRL-2
250 University Avenue

Palo Alto, California94301 USA

Reports and technical notes may also be ordered by electronic mail. Use one of the fol-
lowing addresses:

Digital E-net: JOVE: : WRL- TECHREPORTS
Internet: WRL- Techreport s@ecw | . pa. dec. com
UUCP: decpa!wrl -techreports

To obtain more details on ordering by electronic mail, send a message to one of these
addresses with the word ‘*hel p’’ in the Subject line; you will receive detailed instruc-
tions.

Reports and technical notes may also be accessed via the World Wide Web:
http://ww.research.digital.comwl/hone. htm.

Fine-Grain Softwar e Distributed Shared Memory
on SMP Clusters

Daniel J. Scales
Kourosh Gharachorloo
Anshu Aggarwal

February 1997

ﬂﬂmnan Western Research Laboratory 250 University Avenue Palo Alto, California 94301 USA

Abstract

Commercial SMP nodes are an attractive building block for software dis-
tributed shared memory systems. The advantages of using SMP nodes in-
clude fast communication among processor s within the same SMP node and
potential gains from clustering where remote data fetched by one processor
isused by other processors on the same node. The widespread availability of
SMP serverswith small numbers of processors has led several researchersto
consider their use as building blocks for Shared Virtual Memory (SVM) sys-
tems. These systems exploit the SMP cache-coherence hardware to support
fine-grain communication within a node, and use software to support com-
munication across nodes at a coarser page-size granularity. Our goal isto
explore the use of SMP nodes in the context of the Shasta system. A unique
aspect of Shasta compared to most other software distributed shared
memory systems is that shared data can be kept coherent at a fine
granularity. Shasta implements this coherence by inserting inline code that
checks the cache state of shared data before each load or store. In addition,
Shasta allows the coherence granularity to be varied across different shared
data structuresin a single application. This approach alleviates potential in-
efficiences that arise from the fixed large granularity of communication typi-
cal in most softwar e systems.

This paper describes a major extension to the Shasta system that supports
fine-grain shared memory across SMP nodes. Allowing processors to ef-
ficiently share memory within the same SMP is complicated by race con-
ditions that arise because the inline state check is non-atomic with respect to
the actual load or store of shared data. We present a novel and efficient
protocol that avoids such race conditions without the use of costly
synchronization in the inline checking code. The above protocol isfully func-
tional and runs on a prototype cluster of Alpha multiprocessors connected
through Digital’s Memory Channel network. To characterize the benefits of
using SMP nodes in the context of Shasta, we also present detailed perfor-
mance resultsfor nine SPLASH-2 applicationsrunning on this cluster.

1 Introduction

Clustersof workstationsor symmetric multiprocessors(SM Ps) are potentially powerful platformsfor executing parallel
applications. In order to simplify the programming of such clusters, researchers have developed a number of software
distributed shared memory (DSM) systemsthat support ashared address space across nodesthroughalayer of software.
The most common approach, called Shared Virtual Memory (SVM), usesthevirtual memory hardware to detect access
to data that is not available locally [2, 9, 10]. These systems communicate data and maintain coherence at a fixed
granularity equal to the size of a virtual page. As an dternative, a few systems have explored the feasibility of
supporting fine-grain sharing of data entirely in software [12, 14]. Fine-grain access to shared data is important to
reduce false sharing and the transmission of unneeded data, both of which are potential problems in systems with
large coherence granularities. In addition, by supporting variable coherence granularities across different shared data
structuresin the same application, systems such as Shasta [12] can selectively exploit any potentia gains from larger
communication granularitiesfor specific shared data. Fine-grain access to shared data is supported by inserting code
in an application executable before loads and stores that checks if the data being accessed is available locally in the
appropriate state. Recent work in the context of the Shasta system has shown that the cost of the inline checks can be
minimized by applying appropriate optimizations[12], making this approach a viable dternativeto SVM systems.

Commerciad SMP nodes are an attractive alternative to uniprocessors as a building block for software DSM
systems. At a minimum, the faster communication interconnect within an SMP can be used for al intra-node
messages. Furthermore, the hardware support for cache coherence can be used to alow processors within an SMP to
share application memory (and software cache state), thus eliminating softwareinterventionfor intra-nodedatasharing.
Sharing memory also provides a clustering effect, whereby remote data fetched by one processor may be readily used
by other processors on the same hode. Sharing other protocol -dependent data structures among processors on the same
node may providefurther gains. For example, in adirectory-based protocol, sharing the directory state may eiminate
the need for an internal message when the requester and home are located on the same node. 1n addition, SMP nodes
provide the opportunity to handle incoming messages on any processor on a node for |oad-balancing purposes.

The widespread availability of commercial SMP servers with small numbers of processors has led severa re-
searchers to consider their use as building blocks for Shared Virtual Memory (SVM) systems [1, 3, 4, 8, 18]. These
systems exploit the SMP cache coherence hardware to support fine-grain sharing within a node, and use a software
protocol to support sharing across nodes at a coarser page-size granularity. Most of the above work is based on
simulation studies. SoftFLASH isthe only actual implementation based on commercial multiprocessor nodes[4].

The goal of this paper isto explorethe benefits of SMP nodes, especialy the sharing of application memory among
processors, in the context of systems such as Shasta that support fine-grain sharing of data across nodes. Exploiting
SMP nodes efficiently in this context is a non-trivial task. The primary difficulty arises from race conditions caused
by the fact that the inline state check used to support fine-grain access control is non-atomic with respect to the actual
load or store of shared data, since the two actions consist of multiple instructions. In contrast, the virtual memory
hardware provides an atomic state check and data access in SVM systems. An example of the race condition that can
ariseis as follows. Assume processors P1 and P2 are on the same node, and that an exclusive copy of the data at
address A is cached on thisnode. Assume P1 detects the exclusive state at itsinlinecheck for address A and proceeds
to do a store to the address, while P2 is servicing a write request from another node. The undesirable race arises if
P2 downgrades the data to an invalid state and reads the value of A before P1's store is complete and visibleto P2.
One possible solution is to add sufficient synchronization to ensure that P2 cannot downgrade the state and read the
value of A in between the inline state check and store on P1. However, this solution resultsin alarge increase in the
checking overhead at every load or store to shared data, and may lead to an overall performance loss compared to a
system that doesn’t exploit sharing within each SMP node. Therefore, amore efficient solutionisrequired. In addition

to the above races, there are other types of race conditions caused by multiple processors invoking protocol actionsfor
the same address. Due to the lower frequency of protocol actions (as compared to inline checks), thislatter category
of races can be handled reasonably efficiently through careful synchronization.

This paper describes a mgjor extension to the Shasta system that efficiently supports fine-grain shared memory
across a cluster of SMP nodes. We present a novel and efficient solution that alows sharing of memory among
processors on the same node, and avoidsthe race conditions described above without the use of costly synchronization
in the inline checking code. Our overal solution involvesthe use of locking during protocol operations, and the use
of explicit messages between processors on the same node for protocol operationsthat can lead to the race conditions
involving the inline checks. Our protocol aso maintains some per-processor state information in order to minimize
the number of such intra-node messages.

The above protocol has been implemented on our prototype cluster and is fully functional. The cluster consists
of four Alpha multiprocessors connected through the Memory Channel [6], with a total of sixteen processors. We
present detailed performance results for nine SPLASH-2 applications running on the above cluster. Our new protocol
is successful in reducing the parallel execution time of most of the SPLASH-2 applications. Although individual
protocol operations are more expensive (due mainly to locking in the protocol code), overall performance improves
significantly in most cases because of the reduced number of remote misses and protocol messages.

The following section describes the basi ¢ design of Shasta, including theinlinestate checks and the protocol that is
invoked in case of amiss. Section 3 describes the extensionsto the base Shasta protocol required to efficiently support
shared memory across SMP nodes. We present detailed performance resultsin Section 4. Finally, we describe rel ated
work and conclude.

2 Basic Design of Shasta

In thissection, we present an overview of the base Shasta system, which isdescribed more fully in previouspapers[11,
12]. Shasta divides the virtual address space of each processor into private and shared regions. Data in the shared
region may be cached by multiple processors at the same time, with copiesresiding at the same virtual address on each
processor. The base Shasta system adopts the memory model of the original SPLASH applications [15]: datathat is
dynamically alocated is shared, but al static and stack datais private.

2.1 Cache Coherence Protocol

Asin hardware cache-coherent multiprocessors, shared datain the Shasta system has three basic states:

¢ invalid- thedataisnot valid on this processor.
o shared - thedataisvalid on this processor, and other processors have copies of the data as well.

o exclusive - thedataisvalid on this processor, and no other processors have copies of this data.

Communication is required if a processor attempts to read data that isin the invalid state, or attempts to write data
that isin theinvalid or shared state. In this case, we say that thereis a shared miss. Shasta inserts code which does a
shared miss check on the data being referenced at loads and stores in the application executable.

Asin hardware shared-memory systems, Shasta divides up the shared address space into ranges of memory, called
blocks. All datawithin ablock isin the same state and is aways fetched and kept coherent as a unit. A unique aspect

of the Shasta system is that the block size can be different for different ranges of the shared address space (i.e., for
different program data). To simplify the inline code, Shasta dividesup the address space further into fixed-size ranges
caled lines and maintains state information for each linein a statetable. Theline sizeis configurable at compiletime
and istypically set to 64 or 128 bytes. Each block consists of asingle line or an integer number of lines.

Coherence is maintained using a directory-based invalidation protocol. The protocol supports three types of
requests: read, read-exclusive, and exclusive (or upgrade). A home processor is associated with each virtua page of
shared data, and each processor maintains directory information for all blocks on pages that are assigned to it. The
protocol maintains the notion of an owner processor for each block, which corresponds to the last processor that had
an exclusive copy of the block. The directory information consists of two components: (i) a pointer to the current
owner processor, and (ii) afull bit vector of the processors that are sharing the data. A read or read-exclusive request
that arrives at the home is aways forwarded to the current owner; as an optimization, the home processor serves read
requests directly if it has acopy of the data.

Because of the high cost of handling messages viainterrupts, messages from other processors are serviced through
a polling mechanism. The Shasta system polls for incoming messages whenever the protocol waits for a reply and
at every loop backedge. Polling isinexpensive (three instructions) on a Memory Channel cluster, because the Shasta
implementation arranges for asingle cachabl e | ocation that can betested to determineif amessage has arrived. The use
of polling also simplifiesthe inline miss checks, since the Shasta system ensures that there is no handling of messages
between a shared miss check and the load or store that is being checked.

The Shastaprotocol aggressively exploitstherel ease consistency model [5] by emulating the behavior of aprocessor
with non-blocking stores and a lockup-free cache. Information about a pending request for a line is maintained in
an entry in amiss table. The protocol supports non-blocking stores by simply issuing a read-exclusive or exclusive
request, recording where the store occurred in the miss entry, and continuing. Thisinformation allows the protocol to
appropriately merge the reply data with the newly written data that is already in memory. The protocol also supports
aggressive lockup-free behavior for linesthat are in a pending state. Writes to a pending line are allowed to proceed
by storing the newly written datainto memory and adding the location of the new stores to the appropriate miss entry
when the miss handling routineis invoked (due to the pending state).

2.2 Badsc Shared Miss Check

Figure 1 shows Alpha assembly code that does a store miss check. This code first checks if the target addressisin
the shared memory range and if not, skips the remainder of the check. Otherwise, the code cal cul ates the address of
the state table entry corresponding to the target address and checks that the line containing the target addressisin the
exclusive state,

This code has been optimized in a number of ways. For example, the code does not save or restore registers. The
Shasta system does live register analysisto find unused registers (labeled r x and r y in thefigure) at the point where it
inserts the miss check. In addition, the code has been scheduled for efficient execution on a pipelined and superscalar
Alphaprocessor. Shasta does not need to check accesses to non-shared (i.e., private) data, which includesall stack and
static datain the current implementation. Therefore, aload or store whose base register uses the stack pointer (SP) or
global pointer (GP) register, or is cal culated using the contents of the SP or GP, is not checked.

2.3 Optimizationsto Reduce Check Overhead

Despite the simple optimizations applied to the basic checks, the overhead of the miss checks can be significant
for many applications, often approaching or exceeding 100% of the original sequential execution time. The Shasta

1. Ida rx, offset(base)

2. srl rx, SHARED_HEAP_BITS, ry
3. srl rx, LINE_BITS, rx

4, beq ry, nomiss

5. Idg_u ry, O(rx)

6. extbl ry, rx, ry

7. beq ry, nomiss

8. ...call function to handle store miss

9. nomiss:

10. ... Store instruction

Figure 1: Store miss check code.

system appliesa number of more advanced optimizationsthat dramatically reduce this overhead to an average of about
20% (including polling overhead) across the SPLASH-2 applications[12]. The two most important optimizationsare
described below.

Whenever alineon aprocessor becomes invalid, the Shasta protocol storesaparticular “invalid flag” valuein each
longword (4 bytes) of the line. The miss check code for aload can then just compare the value loaded with the flag
value. If theloaded vaueis not equa to the flag value, the data must be valid and the application code can continue
immediately. If theloaded valueisequal to the flag value, then amissroutineiscalled that first does the normal range
check and state table lookup. These checks distinguish an actual miss from a“false miss’ (i.e., when the application
data actually contains the flag value), and simply return back to the application code in the case of afalse miss. Since
false misses almost never occur in practice, the above technique can greatly reduce the load miss check overhead. In
addition, the flag technique essentially combines the load of the data and the check of its state into a single atomic
event, which is auseful property for our SMP implementation, as we discuss | ater.

Another important technique for reducing the overhead of miss checks is to batch together checks for multiple
loads and stores. Suppose there are a sequence of 1oads and stores that are all relative to the same (unmodified) base
register and the off sets (with respect to the base register) span arange whose length isless than or equal to the Shasta
linesize. These loads and stores can collectively touch at most two consecutive linesin memory. Therefore, if inline
checks verify that these lines are in the correct state, then all the loads and stores can proceed without further checks.
The batching technique also applies to interleaved loads and stores via multiple base registers. For each set of loads
and stores that can be batched, the Shasta system generates code to check the state of the lines that may be referenced
viaeach baseregister. A batch miss handling routineis called if any of the lines are not in the correct state.

3 Protocol Extensions for SMP Clusters

This section describes modifications to the basic Shasta protocol to exploit SMP nodes. We begin by motivating the
use of SMP nodes in the context of Shasta. Section 3.2 describes the difficult race conditionsthat arise dueto sharing
protocol state and data within each SMP. We present our general solution for efficiently dealing with these races in
Section 3.3. The last section presents further detail about the extended Shasta protocol.

3.1 Moaotivation for Exploiting SMP Nodes

In this section, we characterize the optimizations that are possible when using SMP nodes in the context of a Shasta-
like protocol. The goa for most of these optimizationsis to contain a significant amount of communication within
each node in order to fully exploit the SMP hardware support for cache coherence and fast messaging. Some of the
optimizations require sharing additional protocol state and data among processors on the same node. Thisleadsto a
potential trade-off, since the shared data structurestypically require extra synchronization that may increase frequent
protocol path lengths and can & so lead to amore complex design. The possible optimizationsare as follows:

Faster Intra-Node Messaging. An obvious optimizationis to implement a faster messaging layer for processors
on the same node by exploiting the lower-latency and higher-bandwidth interconnect in each SMP. This goa can be
achieved by transmitting messages through message queues allocated in the cache-coherent shared memory on each
node. This optimization leads to a distinction between intra-node (or local) and inter-node (or remote) messages.

Intra-Node Data Sharing without Software Protocol | ntervention. Hardware support for cache coherence can
also be used to support efficient sharing of application data between processors on the same node. Therefore, software
intervention for misses along with explicit software messages can be limited to data sharing between processors on
different nodes. In addition to sharing application data, this optimization requires the state table for application data
to be shared among processors on the same node in order to allow software to detect cases where shared datais not
availablelocaly.

Eliminating Remote Requests. The sharing of application data and the state table also enables gains from
clustering, whereby remote data fetched by one processor may be readily used by other processors on the same node
without use of explicit messages. Effectively, thenode'slocal memory isused as ashared cache for remote application
data. This optimization eliminates remote requests if the data is available locally in the appropriate state, or turns a
remote write request into the more efficient upgrade request if the local copy isin the shared state. Note that even
if the data requested by one processor is not yet back, it is possible to filter requests for the same data from other
processors on the same node. This latter optimization may require the sharing of protocol data structures that keep
track of pending remote requests.

Eliminating Intra-Node Messages/Hops. The use of a directory-based protocol provides the opportunity to
eliminate intra-node messages in two other cases. The first case is on an incoming remote read request to the home
processor when the owner processor is on the same node. The home can trivialy satisfy the request if the node has a
clean copy, thus eliminating the need for an explicit message to the owner. The second case arises when the requester
and home processors are colocated. By sharing the directory state, the requester can directly look up and modify
directory information, thus avoiding an internal hop to the home processor. Note that the latter optimization occurs
only if the request cannot be serviced within the loca node.

L oad-Balancing Incoming Requests from Other Nodes. Even though we have been assuming that messages
are destined to specific processors on a node, sharing the incoming message queues from remote nodes provides the
opportunity to load-balance (or schedule) the handling of remote messages on any processor at the destination node.
Servicing a reply, or a request to the owner processor, a any processor on a hode requires application data and the
state table to be shared.® Servicing a request to the home by any processor on a node further requires sharing the
directory state. A degenerate form of the above optimization involves dedicating one or more processors on the SMP
for message or protocol processing only (asin Typhoon-0[13]).

Our current implementation exploits all of the above optimizations except eliminating local messages when the
requester and home are colocated and |oad-baancing the service of incoming requests. These optimizations are not

1In some protocols, the owner processor must always be consulted on certain protocol transactions. For these cases, handling the incoming
request at a different processor may not provide any gain.

Pl P2 Pl P2

Read State Write State =invalid Read State Write State =shared
if (state is exclusivdhen Read A if (state is exclusiyghen Read A

Write A =new value Write A = invalid flag Write A =new value
elseprotocol miss code elseprotocol miss code

(a) exclusive-to-invalid downgrade due to incoming write (b) exclusive-to-shared downgrade due to incoming read

Pl P2 P1 P2
Read State Write State =invalid Read A Write State =invalid
if (state is sharexdthen Write A =invalid flag if (value !=invalid flag then Write A =invalid flag
Read A continue
elseprotocol miss code elseprotocol miss code

(c) shared-to-invalid downgrade due to incoming write (d) shared-to-invalid downgrade with invalid flag optimization

Figure 2: Examples of race conditions due to cache state downgrades.

used because we do not currently support the sharing of directory state or incoming remote message queues among
colocated processors.

3.2 Difficult Race Conditions

The sharing of application data and protocol data structures among processors on the same SMP |leads to numerous
race conditions. Most of these race conditions can be handled reasonably efficiently by using sufficient locking in the
protocol code. However, races involving the inline checking code cannot be handled efficiently in thisway due to the
high frequency of the required synchronization. Since the above sharing is required for exploiting the majority of the
optimizations described in the previous section, it is criticd to find an efficient way to deal with the resulting races.
We describe this class of races in more detail bel ow.

The difficult race conditions mentioned above are caused by the fact that the inline check of the state table entry is
non-atomic with respect to the corresponding load or storeto application data. This problemisbest illustrated through
the examples shown in Figure 2. For all the examples, assume that P1 and P2 are on the same node, P1 is doing an
inline check followed by aload or storeto theblock A, and P2 isrunning protocol code to service an incoming request
for theblock from aremote node. All of the examplesinvolveadowngrade of the state of the block due to the handling
of theremote request. Figure 2(a) showsthe scenario where A isinitially cached in exclusive mode at thisnode, P1is
executing an application writeto A, and P2 is handling an incoming write (or read-exclusive) request to A. As shown,
servicing the incoming write requires P2 to read the latest contents of A to send back to the requester and to set the
state of A at thisnodetoinvalid. The undesirablerace occursif P1 detectstheinitial exclusive state and proceedsto do
the application storeto A, yet P2 does itsread before P1'swriteto A is complete. The coherence protocol has failed,
since the application write on P1 will not be reflected at the new owner’s copy. Thisrace can occur even if P2 reads A
before updating the state. Note that the problem would disappear if the state check and application store are somehow
made to appear atomic with respect to operations on P2. Figure 2(b) shows a similar example where P2 services an

incoming read. Again, if P1 detects theinitial exclusive state, it is possible for P2 to read the old value of A, and an
incorrect copy will be sent to the new sharer.

Figure 2(c) showsthe scenario where A isinitialy in a shared state, P1 performs an application read, and P2 serves
an incoming write (or invalidate) request. Even if the state check on P1 does not use the invalid flag optimization
(which may not be applicable to al loads), P2 must till write the invalid flag value in addition to setting the state to
invalid, since other application loads may use the optimization. The undesirable race occurs if P1 detects the initial
shared state and proceeds to do the load, yet P2 writestheinvalid flag val ue before theload on P1 completes. Thisrace
resultsin the wrong value (the flag value) being returned to the application code on P1. Again, changing the order of
operations on P2 does not alleviate the race. The above problem would not occur in protocols that do not exploit the
invalid flag optimization, since there would be no need for P2 to write the invalid flag to memory. Figure 2(d) shows
asimilar example except that theinvalid flag optimizationis used for checking the load on P1. Interestingly, this case
does not lead to arace, since the invalid flag optimization makes the state check and load on P1 appear atomic with
respect to operations on P2.

Assuming that theinline state checks precede the actual 1oad or store of application data (asin the above examples),
the difficult race conditionsall arise when thelocal cache state of ablock isdowngraded because of servicing arequest
from another node. The cases for alocal state downgrade are as follows:

¢ exclusive-to-invalid state downgrade, caused by an incoming write request,
¢ exclusive-to-shared state downgrade, caused by an incoming read request, and

o shared-to-invalid state downgrade, caused by an incoming write or invalidate request.

These cases directly correspond to the examples shown in Figure 2. The only remote request that does not lead to a
downgrade is an incoming read request when the local state is shared.

There are several possible solutions for dealing with the above race conditions. One solution is to disallow the
sharing of application and protocol data among processors. However, this solution forgoes al of the optimization
enabled by SMP nodes (covered in Section 3.1) except for faster intra-node messaging. Another possible solutionis
to use sufficient synchronization (e.g., lock or flag synchronization) to enforce atomicity of the inline check and load
or store segquence with respect to downgrade protocol actions on other processors. However, the overhead of such
synchronization is prohibitive due to the high frequency of the inline checks that must be protected. SMP nodes that
support arelaxed memory model further increase synchronization costs, dueto the need for expensivefenceinstructions
(called memory barriers on the Alpha [16]) a synchronization points that enforce ordering of memory operations.
These fences take a minimum of ten processor cycles for the Alphamultiprocessors used in our experiments.

3.3 Our General Solution to Race Conditions

The prohibitive cost of synchronization and fence instructions heavily favors solutions that avoid the use of these
instructionsin the frequent inline state checks. Our overal solution depends on the selective use of explicit messages
to deal with the state downgrade transitionsdescribed in the previous section, a ong with pollingwhich isappropriately
inserted to avoid the handling of such messages between theinline check and the corresponding load or store. Explicit
locking is used to avoid race conditions between two protocol operations on the same block, as described in Section
3.4.2.

Consider the example in Figure 2(a) again. Our solution downgrades the state of A and sends explicit downgrade
messages to other local processors that may be accessing the same block. Other protocol actions (e.g., reading

or writing application data) required for servicing the incoming request are delayed until downgrade messages are
received and serviced by all recipient processors. Downgrade messages are handled using the basic message handling
layer in Shasta, which isbased on polling. Asdescribed in Section 2.1, Shasta only pollswhenever the protocol waits
for areply and at every loop backedge, so messages are never handled between a successful inline state check and
the corresponding application load or store instruction. Therefore, any successful inline checks that occur before the
reception of the downgrade message are guaranteed to have completed their corresponding load or storeto application
data. Similarly, inline checks that occur after the reception of the downgrade message are guaranteed to see the state
that reflects the downgrade. The above two properties eliminatethe race conditionsthat were described in the previous
section. Downgrade messages effectively enforce an explicit synchronization across processors when necessary, thus
avoiding the need for synchronizing every inline check.

The main source of inefficiency in the above scheme arises from the fact that every incoming request that causes
adowngradein the state of a block requires downgrade messages to be sent to all other processors on that node. The
number of downgrade messages can be greatly reduced by maintaining a private state table for each processor in
addition to the shared state tablefor the node. This private state table is used to keep track of whether a processor has
actually accessed the block and may therefore need to be downgraded. In addition to enabling selective downgrade
messages, the use of a private state tabl e efficiently solves some subtle race conditionsthat arise with SMP nodes that
support a relaxed memory model. For example, if we reference the shared state table in the inline state check for a
load (asin Figure 2(c)), we would need to insert afence instruction (memory barrier in Alpha) between the state check
and actua load to ensure that the load would get an up-to-date value if another local processor changes the state of
the block from invalid to shared or exclusive after fetching a copy of the block. The use of the private state table
eliminates the need for such afence instruction in theinline code.

Inline checks now read the processor’s private state table (without synchronization or fence instruction) instead of
the shared state table. The private state table is updated by protocol miss handling code when it detects that a block
is available locally based on the shared state table. For example, consider the scenario when an exclusive copy of a
block is fetched by processor P1. Both the shared state table and P1's private state table indicate an exclusive state.
However, the private state table for other processors on the node still indicate an invalid state. When another processor
attemptsto read (write) the block, theinlinecheck (based on that processor’s private state table) invokes protocol miss
code that upgrades the private state to shared (exclusive). Loads that use theinvalid flag optimization do not have to
do a state check and therefore can succeed without upgrading the private state.

The private state table for a given processor may be examined by other processors on the node to determine
whether the processor has accessed a given block.? Downgrade messages can therefore sdlectively be sent to only
those processors that have actually accessed the block. A downgradeinitiated by an incoming read message requires
downgrade messages to be sent to every local processor that shows an exclusive private state, while a downgrade
initiated by an incoming write message requires downgrade messages to be sent to every local processor that shows a
shared or exclusive private state. Aswe will see in Section 4.4, this optimization allows a large number of incoming
requeststo be serviced with zero or at most one downgrade message generated. Each processor downgradesits private
state appropriately when it receives a downgrade message. Section 5 describes the similaritiesand differences of the
above approach to related TLB shootdown techniques used in SVM systems such as SoftFLASH.

2Modifications of the private state table by its owner processor and reads of other processor’s private state table occur only within the protocol
code (i.e., not in the inline code) and are protected by the same synchronization used for the shared state table.

34 Implementation Details

In this section, we describe in detail the changes that have been made to Shasta to run efficiently on clusters of SMP
nodes. We refer to thisversion of Shasta as SMP-Shastaand refer to the original implementation (which uses message
passing between all processors) as Base-Shasta.

34.1 Changestothelnline Checking Code

There are two main changes to the inline checking code. First, checks of floating-point loads via the invalid flag
technique must be made atomic. For a floating-point load, the miss check code actually does the compare in an
integer register (because thisisfaster than afloating-point compare). Because current Alphaprocessors do not have an
instructionfor transferring avalue from afloating-point to an integer register, the Base-Shasta system insertsan integer
load to the same target address as the floating-point load. However, the use of the two loads makes this technique
non-atomic. The SMP-Shasta system thereforeinserts code to store the floating-point register value onto the stack and
then load the value into an integer register. This method adds several cycles to the cost of checking a floating-point
load (but the new cost is still cheaper than doing a check via the state table). The recently announced Alpha 21264
processor supports instructions fnor transferring values between integer and floating-point registers that will reduce
the cost of this method.

Second, the batch checksin SMP-Shastamust dways usethe private statetable. 1n Base-Shasta, weusetheinvalid
flag technique in doing a check on a batch range which includes only loads. However, the batched 1oads are not
executed atomically with respect to the batch checks. Therefore, all batch checking code in SMP-Shasta must access
the private state table (as described in the previous section) instead of checking for the invalid flag. This change to
the inline code typically causes the largest increase in checking overhead relative to Base-Shasta, since most of the
commonly executed code in the SPLASH-2 applications makes heavy use of batching.

3.4.2 Changestothe Basic Protocol

One of the main changes to the Shasta protocol is the use of locking to eliminate race conditions between protocol
operations executed by processors on the same node. First, al protocol operationson a block hold alock on that block
for the entire operation. For blocksthat consist of multiplelines, only thelock for thefirst line of the block isacquired
(theblock size for adatastructure does not change duringarun). We currently use a fixed set of linelocks and associate
each line with a particular lock using a hashing function. Second, the protocol uses locks in accessing buckets of the
miss table, since miss table entries for pending requests are shared among al the processors. Modificationsto miss
table entries are protected by the line locks, since the miss entries apply to specific lines. There are only a few other
locks used by the protocol, and all are used only in unusual cases. Therefore, processors that are accessing different
blocks should not encounter contention on locks (assuming that lock hashing function workswell).

The basic Shasta protocol remains largely the same in SMP-Shasta. Requests that cannot be satisfied locally are
sent to the home processor for the requested block. The home processor maintains the identity of the current owner
processor and the processors that are sharing the block. The home is only aware of the sharing by the one processor
on anode that initially requested the data. This property isimportant to make sure that protocol requests for a block
are serialized at one processor on anode. A read or read-exclusive request that arrives at the homeis forwarded to the
current owner; thisforwarding isavoided if the home and owner are on the same node or the home node has a copy of
the data.

The SMP-Shasta protocol merges requests by multiple processors on anodefor the same block. The first processor

to require the block sends a message to fetch the block and sets the shared state of the block to a pending state. Other
processors that require the block will enter the protocol, but will not send another request, since the block isaready in
apending state. If multiple processors stall on ablock (e.g. dueto loads), then the protocol ensures that al the stalled
processors resume execution when the data returns. If multiple processors attempt to store in a block, the locations of
all the stores are merged in the miss table entry for the block and the processors can proceed without stalling. When a
processor receives a block that it has requested, it updates the entry in the shared state table and its privatetable to the
appropriate state (either shared or exclusive). The entriesin the private state tables of other processors on the node are
upgraded only if the processors attempt to access the data.

Shasta implements an eager release-consistent protocol in which a processor only stalls at a release until al its
previous requests have completed. In addition, the Shasta protocol allows a processor to use data returned by a read-
exclusiverequest before all the invalidation acknowledgements have arrived. However, this optimization causes some
complexity in SMP-Shasta, since other processors on the same node may also access the data while acknowledgements
are still outstanding. Another processor can access the valid data without even entering the protocol via a load that
uses the invalid flag optimizations. To avoid any problems with correctness, we use an epoch-based solution similar
to SoftFLASH [4] whereby each rel ease starts a new epoch on the node, and arelease is not performed until all stores
on the node that were issued during previous epochs have completed.

3.4.3 Downgrades

In SMP-Shasta, the protocol routines that handle incoming requests first determine if a downgrade will be necessary.
If so, the routines access the private state table entries of the other processors and send downgrade messages to the
appropriate processors. If any downgrade messages are sent, the handler setsthe shared state of the block to a pending-
downgrade state, saves a count of the number of downgrades sent and terminates; otherwise, it executes its normal
action. Aseach processor receives the downgrade message, it downgradesits private state table entry and decrements
the downgrade count in the miss entry. The processor that handles the last downgrade message (i.e., the downgrade
count reaches zero) also executes thenormal protocol action associated with the request, including updating the shared
state and sending the reply.

Processors are not stalled during a downgrade and continue to access the block being downgraded. If a processor
has not yet recei ved the downgrade message, then it may till load and store to that block without entering the protocol.
There is no race condition, since the downgrade cannot complete until after the processor receives and handles the
downgrade message. Processorsthat have aready handled the downgrade message will invokea protocol miss handler
if their downgraded private state is not sufficient for a particular access. However, if the block is still in pending-
downgrade state, the miss handler can immediately service theload or store aslong as the state prior to the downgrade
was sufficient for handling the request. Thereisno race conditionin thiscase either, because the miss handler services
theload or store while holding alock on the block.

Because downgrades are not instantaneous, the SMP-Shasta protocol must also handle requests that arrive for a
block that isin the pending-downgrade state. This case can only happen during a downgrade from exclusive to shared
gtate. In thiscase, theincoming request is queued and served when the downgrade compl etes.

3.4.4 Batching

Although the batch miss handler sends out requests for any missing blocks, it cannot guarantee that all the blocks
required by the batched code will be in the appropriate state once all replies come back. While the handler iswaiting
for the replies, requests from other processes may invalidate some of the blocksin the batch. To ensure that batched

10

loadsto the block will still get the correct value, the batch misshandler delays storingtheinvalid flag to any invalidated
blocks. To handle this rare protocol case, the batch miss handler marks the state table entry for each block that is
accessed by a batch and removes the marker at the end of the batch. If ablock isinvalidated in the middle of abatch,
the storing of theinvalid flag into the block is delayed until the batch ends and the marker is removed.®

4 Performance Results

This section presents performance results for our SMP-Shasta implementation. We first describe our prototype SMP
cluster and the applicationsused in our study. We then present detailed performance resultsthat show the effectiveness
of our SMP protocol in improving overall performance along with reducing the number of misses and protocol

messages.

4.1 Prototype SMP Cluster

Our SMP cluster consists of four AlphaServer 4100s connected by a Memory Channel network. Each AlphaServer
4100 has four 300 MHz 21164 processors, which each have 8 Kbyte on-chip instruction and data caches, a 96 Kbyte
on-chip combined second-level cache, and a 2 Mbyte board-level cache. The individua processors are rated at 8.1
SpecInt95 and 12.7 SpecFP95, and the system bus has a bandwidth of 1 Gbyte/s.

The Memory Channel is a memory-mapped network that alows a process to transmit data to a remote process
without any operating system overhead viaasimple storeto amapped page[6]. The one-way latency from user process
to user process over Memory Channel is about 4 microseconds, and each network link can support a bandwidth of 60
MBytes/sec.

Shasta uses a message-passing layer that runs efficiently on top of the Memory Channel, and exploits shared
memory segments within an SMP when the communicating processors are on the same node. By using separate
message buffers between each pair of processors, the message-passing system avoid the need for any locking when
adding or removing messages from the buffers. In Base-Shasta, the minimum latency to fetch a 64-byte block from
a remote processor (two hops) via the Memory Channel is 20 microseconds, and the effective bandwidth for large
blocksisabout 35 Mbytes/s. Thelatency to fetch a 64-byte block from another processor on the same SMP nodeis 11
microseconds, and the bandwidth is about 45 Mbytes/s.

4.2 Applications

We report results for nine of the SPLASH-2 applications[17]. Table 1 shows theinput sizes used in our experiments
along with the sequentia running times. We have increased some of the standard input sizes in order to make sure
that the applicationsrun for at least a few seconds on our cluster. Table 1 aso shows the single processor execution
times for each application after the Base-Shasta and SMP-Shasta miss checks are added, along with the percentage
increase in the time over the original sequential time. The average overhead of the SMP-Shasta miss checks is higher
than for the Base-Shasta miss checks (24.0% vs. 14.7%) because of the changes described in Section 3.4.1. The three
applicationsthat are most affected by this are Raytrace and the two versions of Water, with the overheads increasing
by as much as three times for Raytrace.

3In order to avoid accessing stale data, a processor stalls at an acquireif any blocks on the same SMP are in this intermediate state.

11

problem size sequential | with Base-Shasta | with SMP-Shasta
time miss checks miss checks
Barnes 16K particles 9.08s 9.83s(8.3%) 10.20s (12.3%)
FMM 32K particles 13.76s 15.39s (11.8%) 16.30s (18.4%)
LU 1024x1024 matrix 27.06s 32.84s(21.3%) 32.65s (20.6%)
LU-Contig || 1024x1024 matrix 17.52s 21.41s(22.2%) 22.575(28.8%)
Ocean 514x514 ocean 11.07s 13.15s (18.7%) 13.82s (24.8%)
Raytrace balls4 71.94s 78.31s(8.8%) 90.32s (25.5%)
Volrend head 1.63s 1.76s (7.9%) 1.77s (8.5%)
Water-Nsq 1000 molecules 7.87s 9.155(16.2%) 10.40s (32.1%)
Water-Sp 1728 molecules 6.70s 7.86s (17.3%) 8.74s (30.4%)

Table 1: Sequential times and checking overheads for the SPL A SH-2 applications.

4.3 Parallel Performance

This section presents the parallel performance of the applicationsfor both the Base-Shasta and SM P-Shasta protocols.
To ensure a fair comparison, we use the same placement of processes on each SMP for both Base-Shasta and SMP-
Shasta. Two- and four-processor runs always execute entirely on a single node, and 8-processor and 16-processor runs
use two nodes and four nodes, respectively. 4 Processors on the same node share the Memory Channel bandwidth
when sending messages to destinations on other nodes. The network bandwidth available per processor is therefore
identical for corresponding Base-Shastaand SMP-Shastaruns. K eeping the network bandwidth per processor constant
for both protocols alows us to better isolate the benefits of sharing provided by SMP-Shasta. Applications using
Base-Shasta could aso be run on individua workstations, each with their own link to the Memory Channel, thus
providing more bandwidth per processor. Since SMP nodes typically provide a larger number of 1/0 buses than
individua workstations, the bandwidth per processor may aso be increased on an SMP node by using more network
links. To ensure that we are not limiting the performance of Base-Shastain our experiments, we compared results for
8-processor runs on Base-Shasta using 2 processors per node with resultsusing 4 processors per node. The runswith 4
processors per node had better performance for al applications (partly because Base-Shasta exploitsfaster messaging
withinan SMP), except for Ocean and Raytrace, where the difference in performance was | ess than 10%.

We report SM P-Shasta results for SMP clustering of 1, 2, and 4 processors. For SMP clustering of 1, each process
acts asif it ison anode by itself, and therefore sends messages to all other processes. Processes that are on the same
physical hode communicate viamessage passing through a shared-memory segment. Similarly, for an SMP clustering
of 2, each process shares memory with only one other process on the node and communicates only via messages with
the other two processes on the node. We use afixed Shastaline size of 64 bytes. Unless specified otherwise, the block
size of objects less than 1024 bytes is automatically set to the size of the object, while larger objects use a 64 byte
block size. In addition, for FMM, LU-Contiguous and Ocean, we use the standard home placement optimization, as
isdonein most studies of the SPLASH-2 applications.

We should note that the Base-Shasta implementation has been tuned for good performance, whilethe SMP-Shasta
implementation has not yet been tuned. We expect that the performance of applications on SMP-Shasta will improve
with changes such as reducing the locking overhead in the protocol, eliminating false sharing among protocol data
structures, and improving the implementation of the lock and barrier primitives used by the application.

4Resultsfor 2, 4, and 8 processorsare not directly comparablewith those presentedin in another Shastapaper [11] becauseof different assignment
of processesto nodes.

12

% 9} ++ Raytrace % 9} ++ Raytrace
8 —< Water-Sp 8 —< Water-Sp
5} sl - Water-Nsq 5} sl - Water-Nsq
(% —+ FMM (% —+ FMM
7 - LU 7 - LU
- Volrend - Volrend
6 -~ LU-Contig 6 -~ LU-Contig
— —K~ Barnes
5 = 5 =
4 4
3 3
2 2
1 1
o | | | | | | | | o | | | | | | | |
0O 2 4 6 8 10 12 14 16 0O 2 4 6 8 10 12 14 16
Number of Processors Number of Processors

Figure 3: Speedups of SPLASH-2 applications running with Base-Shasta (left) and SMP-Shasta (right).

To gauge the efficiency of SMP-Shasta, we did a comparison with the applicationsrunning on a single 4-processor
AlphaServer 4100 using an efficient implementation of ANL macrosthat directly usesthe hardware coherence protocol.
All of our applications get a speedup of 3.8 or better on 4 processors using the ANL macros, except for LU and Ocean
which got speedups of 3.4 and 3.0, respectively. We ran the same applicationsusing SM P-Shasta on 4 processors using
a clustering of 4 processors, so that communication is mainly via hardware shared memory and protocol actions are
only invoked for synchronization and for initial upgrades of the private state table entries. The absolute running times
on 4 processors using SMP-Shasta are slower than the ANL runs by an average of 12.7%. In generd, the differencein
running times reflects the extra overhead due to theinline checking code, with afew applications also getting affected
by the non-optimized synchronization primitivesin SMP-Shasta.

Figure 3 shows the speedups for the applications running on our prototype cluster for both Base-Shasta and SMP-
Shasta. For SMP-Shastawe use a clustering of 2 at 2 processors and a clustering of 4 at 4, 8, and 16 processors. The
speedups shown are based on the execution time of the application running via Shasta on 1 to 16 processors relative
to the execution of the origina sequentia application (with no miss checks).

Figure 4 presents the change in the execution time of 8- and 16-processor runs when the applications are run
using SMP-Shasta. For each application, the height of thefirst bar (labeled “B”) represents the execution time for the
run on Base-Shasta, and bars representing other times are normalized to this bar. The height of the second bar for
each application shows the normalized execution time when the SMP-Shasta protocol is used with a clustering of 1
processor. Thisexecutiontimeisawayslarger with respect to Base-Shasta, because of the extrachecking overhead and
extraprotocol overhead incurred by SMP-Shasta. The second and third bars show the normalized times for clustering
of 2 and 4 processors. The execution time always goes down as the clustering increases because of areduction in the

13

< 130 Other < 130 Other
qé 120 Msg qé 120 Msg
$ 110 s | 8 110 S
100 ook 100 ook
90 90
80 80
70 70
60 60
50 50
40 40
30 30
20 20
10 10
"B124 B124 B124 B124 B124 B124 B124 B124 B124 0 "B124 B124 B124 B124 B124 B124 B124 B124 B124
Barnes FMM LU LUcont Ocean RayTr VolRend WaterN WaterSp Barnes FMM LU LUcont Ocean RayTr VolRend WaterN WaterSp

Figure 4: Execution time breakdowns for 8-processor (left) and 16-processor (right) runs on Base-Shasta and SMP-
Shasta

number of misses and messages. For most applications, there is a significant performance benefit from clustering of 4
at both 8 and 16 total processors.

Figure 4 also shows the breakdown of the execution time for each of the runs. Task time represents the time spent
executing the application, including hardware cache misses. Task time a so includes the time for executing the inline
miss checks and the code necessary to enter the protocol (such as saving registers). Read time and writetime represent
the stall time for read and write misses that are satisfied by other processors through the software protocol. (Even
though Shasta supports non-blocking stores, there is still some stall time for stores because of protocol limitations
on the distribution and number of outstanding stores.) Synchronization time represents the stall time for application
locks and barriers. Message time represents the time spent handling messages when the processor is not already
stalled. Processors al so handle messages while stalled on data or synchronization, but thistime is hidden by the read,
write, and synchronization times. The “other” category includes the overhead of dealing with non-blocking stores to
pending blocks. In SMP-Shasta, this category also includes the time to upgrade a processor’s private state table and
any overheads for dealing with blocksin a pending-downgrade state.

Most of the time components increase when we go from Base-Shasta to SMP-Shasta with a clustering of 1. The
task time increases because of the extra checking costsin SMP-Shasta. Other timestypically increase because of extra
protocol overheads (mainly due to locking). As we increase the degree of clustering, however, the read and write
stall times (and other miss-related times) typically decrease because of a reduction in the number of misses handled
by the software protocol. The synchronization time does not change much however because it is more a function of
application behavior.

Ocean shows the highest gains from clustering a both 8 and 16 total processors. These gains are somewhat
expected due to the nearest-neighbor nature of the communication in Ocean. For several applications, the relative
reduction in the read latency due to clustering is larger at 8 processors as compared to 16 processors. However, the
overall gainin performanceislarger at 16 processors, since theread time constitutesa larger fraction of the execution
time. Another visible difference between the breakdowns for 8 and 16 processor runsisthat the task time constitutes
alarger portion of the execution time at 8 processors, since communication and synchronization overheads typically

14

selected data specified | 16-proc. speedup (Base-Shasta)
structure(s) block size | default block specified
(bytes) size (64 bytes) block size
Barnes cell, leaf arrays 512 4.3 5.2
FMM box array 256 53 5.8
LU matrix array 128 5.2 6.8
LU-Contig matrix block 2048 45 8.8
Volrend opacity, norma maps 1024 4.7 53
Water-Nsq molecule array 2048 5.6 6.1
Table 2: Effects of variable block size in Base-Shasta
+« 130 +« 130
S 120 orerl 8 120} e
3 10f smel © 1ot sine
100 ﬁ ook 100 ook
90 [90 |
80 n ﬂ J 80
70 70
60 60
50 50
40 40
30 30
20 20
10 10
0 B124 B124 B124 B124 B124 B124 0 B124 B124 B124 B124 B124 B124
Barnes FMM LU LUcont VolRend WaterN Barnes FMM LU LUcont VolRend WaterN

Figure5: Timebreakdownsin 8-processor (Ieft) and 16-processor (right) runsusing variablegranul arity on Base-Shasta
and SMP-Shasta.

increase as we go to more processors. Because of the above, theincreases in task time due to extra checking overheads
in SMP-Shasta have a more significant effect at 8 processors. The three applications most affected by the additional
checking overheads are Raytrace and thetwo versions of Water. Infact, Raytrace and Water-Nsquared are the only two
applicationsthat run slower under SM P-Shasta (relative to Base-Shasta) at 8 processors even for a clustering of 4. At
16 processors, SMP-Shasta with a clustering of 4 provides an improvement over Base-Shasta for al the applications
except Raytrace, with Ocean showing a 1.9 times improvement in performance. Finally, a clustering of 2 does not
provide sufficient benefits from data sharing (at 16 processors) to counteract the overheads introduced by the SMP
protocol for several other applications (e.g., LU or LU-Contig).

To study the effects of variable coherence granularity, we made single-linechangesto six of theapplicationsto make
the coherence granularity of one or afew of the main data structures greater than 64 bytes. (The coherence granularity
is a hint that can be specified at alocation time as a parameter to a modified mal | oc routine.) Table 2 shows the
affected data structures along with the larger block size. We also show the change in speedups for 16-processor runs
under Base-Shastawhen the larger granularity isused. (All speedups are with respect to the execution time of origina
sequentia code with no miss checks.) The variable granularity improves performance by transferring data in larger
units and reducing the number of misses on the main data structures. Therefore, SM P-Shasta might providea smaller

15

problem size sequential | checking overhead | 16-proc speedup

time Base SMP Base SMP
Barnes 64K particles 41.25s 9.3% 15.9% 5.8 6.0
FMM 64K particles 28.28s 11.4% 20.2% 6.3 6.8
LU 2048x2048 matrix 220.34s | 20.5% 19.5% 74 8.0
LU-Contig || 2048x2048 matrix 141.05s | 22.7% 29.0% 5.8 6.3
Ocean 1026x1026 ocean 44.90s 20.0% 21.9% 4.2 7.2
Water-Nsq 4096 molecules 126.08s | 17.4% 33.2% 9.7 9.3
Water-Sp 4096 molecules 15.92s 17.9% 31.5% 8.6 9.7

Table 3: Execution timesfor larger problem sizes (64-byteline size).

% 100 % 100
e 90 Upgrade3 e 90 Upgrade3
() Upgrade2 O] Upgrade2
o 80 Write3 o 80 Write3
Writg% Writg%
Rea Rea
70 _|Read2 70 _|Read2
60 60
50 50
40 40
30 30
20 20
10 10
B24 B24 B24 B24 B24 B24 B24 B24 B24 B24 B24 B24 B24 B24 B24 B24 B24 B24
Barnes FMM LU LUcont Ocean RayTr VolRendWaterNWaterSp Barnes FMM LU LUcont Ocean RayTr VolRendWaterNWaterSp

Figure 6: Missesin 8-processor (left) and 16-processor (right) runs on Base-Shasta and SMP-Shasta.

performance benefit over Base-Shasta for applications whose performance has aready been improved viagranularity
changes. Figure 5 shows the breakdown for execution times of 8- and 16-processor runs on SMP-Shasta with the
indicated granularity changes. For the 16-processor results, while Barnes, and LU-Contig do not show much gain
from SMP-Shasta, FMM, LU, Volrend, and Water-Nsquared still get a large benefit at a clustering of 4. Findly, the
combination of variable granularity and SM P-Shasta aways provides the highest overall performance on our cluster.

To demonstrate that performance of both Base-Shasta and SMP-Shasta improve with increasing problem sizes,
Table 3 gives speedups for some larger inputs sets. For each application, we give the sequentia running time for the
specified input size, the miss check overheads for both Base-Shasta and SM P-Shasta, and the 16-processor speedups
for Base-Shasta and SMP-Shasta (for a clustering of 4). The Base-Shasta speedups are clearly improved over the
default speedupsin Table 2. In addition, the use of SMP-Shasta still provides significant improvementsin performance
over the use of Base-Shasta for the larger input sizes (except for Water-Nsquared). These results are for 64-byte lines
and do not use the larger granularities described above; speedups would be larger if the granularity changes above
were used.

16

100
90
80 |
70 {
60 {1
50 |1
40
30
20
10

100
90
80
70
60
50
40
30
20
10

Percent
Percent

Downgrade
Local

Downgrade
Local
Remote

Remote

B24 B24 B24 B24 B24 B24 B24 B24 B24 B24 B24 B24 B24 B24 B24 B24 B24 B24
Barnes FMM LU LUcont Ocean RayTr VolRendWaterNWaterSp Barnes FMM LU LUcont Ocean RayTr VolRendWaterNWaterSp

Figure 7: Messages in 8-processor (left) and 16-processor (right) runs on Base-Shasta and SMP-Shasta.

4.4 Statisticson Misses and M essages

Figure 6 shows the decrease in the number of misses as clustering increases. For each application there are three bars.
The leftmost represents the total misses in the application under Base-Shasta and is normalized to 100 percent. The
other two bars show the rel ative number of misses when SMP-Shastais used with clustering of 2 and 4 processors. The
bars are divided into six segments, which classify the misses based on the request type (read, write, and upgrade) and
the number of hops needed to satisfy the request (2 or 3). In SMP-Shasta, arequest is considered 3 hopsiif the reply
isfrom a processor other than the home processor, even if it isfrom the same SMP as the home. We see that the total
number of misses decreases dramatically with SM P-Shasta, especialy for aclustering of 4 processors. In addition, the
number of 3-hop requests always goes down with increasing clustering. The number of 2-hop requests can sometimes
go up with increasing clustering, but only because many 3-hop requests are converted into 2-hop requests. Ocean
shows the most dramatics decrease in total misses, which explainsits large performance improvement.

We have measured the average latency for read requestsin our parald runs. For most applications, the average
latency for SMP-Shasta is a few microseconds higher than for Base-Shasta, largely due to the extra locking in the
protocol. However, in some applications, the average latency goes down, probably because there are many fewer
protocol messages and therefore less contention in handling incoming messages.

Figure 7 shows the decrease in the number of messages as clustering increases. Again, the leftmost bar for each
application represents the total messages sent under Base-Shasta and is normalized to 100 percent. The other two
bars show the relative number of messages when SMP-Shasta is used with clustering of 2 and 4 processors. The
first segment (“remote”) represents the number of protocol messages sent between processors on different nodes. The
second segment of each bar (“local™) represents the number of protocol messages sent between processors on the same
SMP, excluding downgrade messages. The third segment represents the number of downgrade messages (which only
occur in SMP-Shasta) sent between processors on the same SMP. We note that around 40-60% of the messages sent in
8-processor Base-Shasta runs and 20-40% of the message sent in 16-processor runs are local, so these runs are taking
advantage of the fast communication within a single node for a significant fraction of the messages. Clearly, thetota
number of protocol messages (including downgrade messages) goes down as the clustering increases. At a clustering
of 4 processors, the number of local messages is aways a small fraction of the total messages sent. Similarly, the

17

100

80 R] N
70 11 |H
60 H
50 N =
40 H a

Percent
[{e}
o
1
mm- |
jwjw)
SS
o 0

20
10 H

816 816 816 816 816 816 816 816 816
Barnes FMM LU LUcont Ocean RayTr VolRend WaterN WaterSp

Figure 8: Distribution of number of downgrade messages sent during block downgradesin 8- and 16-processor runs
on SMP-Shasta

number of downgrade messages is typically a small fraction of the total messages sent for 16 processor runs with a
clustering of 4. Water-Spatial and Water-Nsguared are notabl e exceptions to this observation.

In Figure 8, we show the distribution in the number of downgrade messages that must be sent each time a block
isdowngraded in SMP-Shasta. For each application, there are two bars, which give these results for 8-processor and
16-processor runs, each with a clustering of 4 processors. The individua bars show the percentage of time that O, 1,
2, and 3 downgrade messages must be sent when downgrading a block. In most applications, the large majority of
downgrades require zero or one downgrade messages to be sent, and only a very small fraction of the downgrades
requirethree downgrade messages. Inaddition, the average number of downgrade messages that must be sent typically
goes down significantly in going from 8 to 16 processor runs. Water-Nsquared (and Water-Spatial at 8 processors)
are somewhat unusual in that a lot of downgrades require three downgrade messages. This effect may be caused by
migratory datathat tends to move among the nodes of an SMP before migrating to another node. When the data finally
moves to a processor on another node, al of the local processors must be downgraded, since they have all accessed
the data.

Using a small microbenchmark code, we have measured the latency for a read request when zero, one, two, and
three downgradesarerequired. Thelatency increases by about ten microsecondsin going from zero to onedowngrades,
and by five microseconds for each additional downgrade.

45 Summary of Results

Our results show that despitethe extra checking and protocol costs, SM P-Shasta provides performance benefits at both
8 and 16 processors with a clustering of four processors. For 16-processor runs, one application improves by nearly a
factor of two, six applications speed up by factorsof 1.1 to 1.4, one application improves dlightly, and one application
gets dlightly worse. The sharing of application data by processors on the same node grestly reduces the number
of misses, and the use of SMP-Shasta greatly reduces the total number of messages, as compared to Base-Shasta.
Although it has a smaller effect for some applications, SMP-Shasta can improve performance even for applications

18

whose performance has been tuned by changing the coherence granularity of key data structures. Our best results are
always achieved when using SMP-Shasta in conjunction with variable granularity optimizations. Finally, the use of
private state tables is successful in minimizing the number of local downgrade messages that must be sent out during
adowngrade.

5 Discussion and Related Work

Our work builds on previous research on Blizzard-S [14] and Shasta [12] that study software support for fine-grain
distributed shared memory. We have extended the Shasta protocol to exploit data sharing and clustering benefits within
SMP nodes. This protocol isfully functional and runs on our prototype SMP cluster.

Several researchers have considered using SMP nodes as building blocks for software Shared Virtual Memory
(SVM) systems [1, 3, 4, 8, 18]. Among these, SoftFLASH [4] and MGS [18] are the only real implementations, with
SoftFLASH being the only implementation based on commercial multiprocessor nodes. The primary difference with
our study is that these systems support coherence across nodes at a fixed coarse granularity equal to the size of a
virtual memory page, while we support both fine and variable coherence granularity. Furthermore, the above systems
depend on the virtual memory hardware to provide atomic state lookup and data access at the granularity of a page.
The following provides a more detailed discussion of these systems.

SoftFLASH [4] uses a modified version of the Stanford FLASH protocol to support coherence in software at the
granularity of 16 KByte pages across a cluster of SGI Power Challenge machines (each with 16-18 90MHz MIPS
R8000 processors) connected by 100 MByte/sec HIPPI links. In contrast to most recent SVM systems, SoftFLASH
supports only a single-writer protocol with no “diffing”. The paper presents results for four SPLASH-2 applications
(Barnes, FFT, LU, Ocean) using large problem sizes. The study shows that while clustering is effective in reducing
internode communication, it is often accompanied by an increase in thelatency of such communication; approximately
250 ps of the best-case read latency of 1419 usis dueto TLB shootdowns that are used to reduce the privilege of a
page within anode. The best performance is achieved when the number of processors per nodeis maximized. Ocean
(2050x2050 grid) obtains the best speedups among the applications, with a speedup of around 13 with 16 processors
(across 2 nodes) used for application code. However, it isimportant to qualify these speedups to account for the extra
5 processors per node dedicated to interrupt handling (which improve performance by 20%), the large problem sizes,
and the larger number of processors on each node (which provide more potentia gain from clustering).

There are some similarities between the TLB shootdown mechanism in SoftFLASH and the downgrade of private
statein SMP-Shasta. The TLB entry can be thought of asaloca copy of the state table entry for apage; it is upgraded
through a TLB fault and downgraded through explicit TLB shootdown interrupts. However, the TLB hardware
provides atomic state lookup and data access, alowing downgradesto be handled through interrupts; in contrast, our
downgrade mechanism uses polling (which is likely more efficient anyway) to avoid downgrades between the inline
state check and data access. Inaddition, the private state tablein SM P-Shastais used to selectively send downgradesto
only the processorsthat have already accessed aline; in contrast, SoftFL ASH sends TLB shootdownsto al processors
on a node on every downgrade transition. Furthermore, SoftFLASH requires that the processor receiving a request
wait for al shootdowns to complete before handling the request. The SMP-Shasta protocol alows all processors to
continue executing during a downgrade; the incoming request is actually handled at the processor that downgrades
last. The above differences result in a much lower frequency and cost for explicit downgradesin SMP-Shasta

MGS implements a Munin-like protocol on top of the MIT Alewife machine [18]. The processors are slow (20
MH2z) relative to the network. Because Alewife lacks TLB trandation hardware, MGS uses inline code that has a
high overhead (18-24 processor cycles per trand ation) to emulate the TLB for pointer and array references, effectively

19

making the processors appear even slower. The above effects make a comparison with our results quite difficult.

Cox et a. [3] provide the earliest study (that we are aware of) of using SMP nodes in software DSM systems.
They simulate the TreadMarks protocol [9] on both single processor and eight processor nodes. Their results show
that clustering is beneficial for the three applications they consider. Karlsson et a. [8] provide a simulation study of
the TreadMarks protocol running on an ATM cluster. They find that, given the parameters in their study (e.g., high
latency of ATM interface), dedicating a processor in the SMP to protocol processing does not pay off since there
is a high likelihood of finding spare cycles on the compute processors on a hode. Finally, Bilas et d. [1] provide
simulation studies of both a TreadMark-like protocol and the AURC protocol [7] running on an SMP cluster. Their
results for the TreadMarks-like protocol are optimistic, since they do not model the cost of TLB shootdowns. The
results of the AURC protocol show a slowdown from exploiting SMP nodes for 4 out of 5 applications compared to
using uniprocessor nodes; the slowdown is due to the fact that AURC uses more bandwidth than a TreadMarks-like
protocol and that the bandwidth per processor is decreased in their study when they go to SMP nodes.

Many software DSM systems (including Treadmarks and AURC) depend on properly-labeled programs [5] for
correct execution. Whilerestricting asystem to properly-labeled programs potentially all ows additional optimizations,
this approach sacrifices the ability to transparently execute all legal programs for a given architecture. On the other
hand, Shastawill correctly execute any Alphaprogram, whether or not the program exhibitsraces. In addition, Shasta
does not require exact labeling of acquires and releases, as required by protocolsthat exploit lazy release consistency.
Such information is not available in the executables of any commercial processors, even those that support a relaxed
memory mode! (e.g. Alpha, PowerPC, and Sparc). Again, the need for exact labeling sacrifices transparency.

A few software or hybrid hardware/software DSM systems have explored dedicating the second processor on a
dual-processor SMP node for protocol and message handling (e.g., Typhoon-0[13], Home-Based LRC [19]). These
systems do not exploit any of the intra-node data sharing and clustering benefits of SMP nodes. Furthermore, any
speedup numbersreported for P processors must be qualified by thefact that the system actually uses 2P general -purpose
processors to achieve that performance.

We plan to extend our work on SMP-Shasta in severa areas. There are numerous protocol actions that can be
further tuned. We also plan to exploit benefits that may arise from sharing more data structures among local processors
(such asthedirectory state or incoming message queues, as discussed in Section 3.1), and to implement more efficient
lock and barrier synchronization primitivesby exploiting the SMP hardware.

6 Conclusion

Shastais a software distributed shared memory system that supports fine-grain access to shared memory by inserting
code before loads and stores in an application that checks the state of the shared data being accessed. We have
explored opportunitiesfor improving performance when Shastais used to execute parallel applicationson acluster that
consists of SMP nodes. We have devel oped modificationsto the base Shasta protocol that allow application datato be
shared among processors on a single SMP via the hardware cache-coherent shared memory. The protocol eliminates
potential races between theinline checking code and other protocol operationswithout introducing any synchronization
operationsin theinline code. Our method isto send “downgrade’ message to local processors for operations that can
lead to race conditionsinvolving inline checks and to maintain private state information to minimize the number of
downgrade messages that must be sent.

We haveimplemented thisprotocol in Shastafor our cluster of four AlphaSM Ps connected by the Memory Channel.
Despite the extra checking and protocol costs, the performance of eight of the nine SPLASH-2 applicationsimproves
when this protocol isused for 16-processor runs. One application improves by nearly afactor of two, six applications

20

speed up by factors of 1.1 to 1.4, and one application only dlightly improves. The SMP-Shasta protocol is effective
in improving performance even for applications that make use of the variable granularity mechanism in Shasta. The
best performance is aways achieved by using SMP-Shasta along with the variable granularity optimizations. The
SMP-Shasta protocol appears to be successful in effectively exploiting the fast communication provided by SMP
nodes, and we expect its performance benefit to improve as we tune the current implementation.

Acknowledgments

We would liketo thank Marc Viredaz, Drew Kramer, and Luiz Barroso for their help in setting up and maintaining our
cluster of AlphaServers.

References

(1]

(2]

(3]

[4]

(5]

(6]
(7]

(8]

(9]
[10]
[11]

[12]

A. Bilas, L. Iftode, D. Martin, and J. P. Singh. Shared Virtual Memory Across SMP NodesUsing Automatic Update: Protocols
and Performance. Technical Report TR-517-96, Department of Computer Science, Princeton University, 1996.

J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Implementation and Performance of Munin. In Proceedingsof the 13th ACM
Symposium on Oper ating Systems Principles, pages 152-164, Oct. 1991.

A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rgjamony, and W. Zwaenepoel. Software Versus Hardware Shared-Memory
Implementation: A Case Study. In Proceedingsof the 21st Annual Inter national Symposiumon Computer Architecture, pages
106-117, April 1994.

A. Erlichson, N. Nuckolls, G. Chesson, and J. Hennessy. SoftFL ASH: Analyzing the Performance of Clustered Distributed
Virtual Shared Memory. In Proceedingsof the Seventh International Conference on Architectural Support for Programming
Languagesand Operating Systems, pages 210-220, Oct. 1996.

K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy. Memory Consistency and Event Ordering
in Scalable Shared-Memory Multiprocessors. In Proceedings of the 17th Annual International Symposium on Computer
Architecture, pages 15-26, May 1990.

R. B. Gillett. Memory Channel Network for PCI. |EEE Micro, 16(1):12-18, Feb. 1996.

L. Iftode, C. Dubnicki, E. Felten, and K. Li. Improving Release-Consistent Shared Virtual Memory Using Automatic Update.
In Proceedings of the 2nd Symposium on High-Performance Computer Architecture, Feb. 1996.

M. Karlsson and P. Stenstrom. Performance Evaluation of a Cluster-Based Multiprocessor Built from ATM Switches and
Bus-Based Multiprocessor Servers. In Proceedings of the 2nd International Symposium on High-Performance Computer
Architecture, pages 4-13, February 1996.

P.Keleher, A. L. Cox, S. Dwarkadas, and W. Zwaenepoel. TreadMarks: Distributed Shared Memory on Standard Workstations
and Operating Systems. In Proceedingsof the 1994 Winter Usenix Conference, pages 115-132, January 1994.

K. Li and P. Hudak. Memory Coherence in Shared Virtual Memory Systems. ACM Transactions on Computer Systems,
7(4):321-359, Nov. 1989.

D. J. Scales and K. Gharachorloo. Performance of the Shasta Distributed Shared Memory Protocol. Technical Report 97/2,
Western Research Laboratory, Digital Equipment Corporation, Feb. 1997.

D. J. Scales, K. Gharachorloo, and C. A. Thekkath. Shasta: A Low-Overhead Software-Only Approach to Fine-Grain Shared
Memory. In Proceedingsof the Seventh International Conferenceon Architectural Support for Programming Languagesand
Operating Systems, pages 174-185, Oct. 1996.

21

[13]

[14]

[19]

[16]
[17]

(18]

[19]

I. Schoinas, B. Falsafi, M. D. Hill, J. R. Larus, C. E. Lukas, S. S. Mukherjee, S. K. Reinhardt, E. Schnarr, and D. A. Wood.
Implementing Fine-Grain Distributed Shared Memory on Commodity SMP Workstations. Technical Report 1307, University
of Wisconsin Computer Sciences, Mar. 1996.

I. Schoinas, B. Falsafi, A. R. Lebeck, S. K. Reinhardt, J. R. Larus, and D. A. Wood. Fine-grain Access Control for Distributed
Shared Memory. In Proceedingsof the Sixth International Conferenceon Architectural Support for Programming Languages
and Operating Systems, pages 297—-306, Oct. 1994.

J. P. Singh, W. D. Weber, and A. Gupta. SPLASH: Stanford Parallel Applicationsfor Shared Memory. Computer Architecture
News, 20(1):5-44, Mar. 1992.

R. L. Sitesand R. T. Witek, editors. Alpha AXP Architecture Reference Manual. Digital Press, 1995. Second Edition.

S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-2 Programs: Characterization and Methodological
Considerations. In Proceedingsof the 22nd Inter national Symposium on Computer Architecture, pages 24—36, June 1995.

D. Yeung, J. Kubiatowicz, and A. Agarwal. MGS: A Multigrain Shared Memory System. In Proceedingsof the 23rd Annual
International Symposiumon Computer Architecture, pages 44-56, May 1996.

Y. Zhou, L. Iftode, and K. Li. Performance Evaluation of Two Home-Based Lazy Release Consistency Protocols for Shared
Virtual Memory Systems. In Proceedings of the 2nd Symposium on Operating Systems Design and Implementation, Oct.
1996.

22

WRL Research Reports

“‘Titan System Manua.”” Michael J. K. Nielsen.
WRL Research Report 86/1, September 1986.

‘“‘Global Register Allocation at Link Time.”” David
W. Wall. WRL Research Report 86/3, October
1986.

“Optimal Finned Heat Sinks.”’ William
R. Hamburgen. WRL Research Report 86/4,
October 1986.

““The Mahler Experience: Using an Intermediate
Language as the Machine Description.”” David
W. Wall and Michae L. Powell. WRL
Research Report 87/1, August 1987.

““The Packet Filter: An Efficient Mechanism for
User-level Network Code.”” Jeffrey C. Mogul,
Richard F. Rashid, Michael J. Accetta. WRL
Research Report 87/2, November 1987.

“* Fragmentation Considered Harmful.”” Christopher
A. Kent, Jeffrey C. Mogul. WRL Research
Report 87/3, December 1987.

““Cache Coherence in
Christopher A. Kent.
87/4, December 1987.

Distributed Systems.”’
WRL Research Report

“*Register Windows vs. Register Allocation.”” David
W. Wall. WRL Research Report 87/5, December
1987.

“‘Editing Graphical Objects Using Procedural
Representations.”” Paul J. Asente. WRL
Research Report 87/6, November 1987.

““The USENET Cookbook: an Experiment in
Electronic Publication.”” Brian K. Reid. WRL
Research Report 87/7, December 1987.

““MultiTitan: Four Architecture Papers.’” Norman
P. Jouppi, Jeremy Dion, David Boggs, Michael
J. K. Nielsen. WRL Research Report 87/8, April
1988.

““Fast Printed Circuit Board Routing.”” Jeremy
Dion. WRL Research Report 88/1, March 1988.

23

‘“*Compacting Garbage Collection with Ambiguous
Roots.”’” Joel F. Bartlett. WRL Research Report
88/2, February 1988.

““The Experimental Literature of The Internet: An
Annotated Bibliography.” Jeffrey C. Mogul.
WRL Research Report 88/3, August 1988.

““Measured Capacity of an Ethernet: Myths and
Redlity.”” David R. Boggs, Jeffrey C. Mogul,
Christopher A. Kent. WRL Research Report
88/4, September 1988.

““Visa Protocols for Controlling Inter-Organizational
Datagram Flow: Extended Description.”’
Deborah Estrin, Jeffrey C. Mogul, Gene
Tsudik, Kamaljit Anand. @ WRL Research
Report 88/5, December 1988.

“*SCHEME->C A Portable Scheme-to-C Compiler.”
Joel F. Bartlett. WRL Research Report 89/1,
January 1989.

““Optimal Group Distribution in Carry-Skip Ad-
ders’’ Silvio Turrini. WRL Research Report
89/2, February 1989.

“*Precise Robotic Paste Dot Dispensing.”” William
R. Hamburgen. WRL Research Report 89/3,
February 1989.

“*Simple and Flexible Datagram Access Controls for
Unix-based Gateways.’’ Jeffrey C. Mogul.
WRL Research Report 89/4, March 1989.

“* Spritely NFS: Implementation and Performance of
Cache-Consistency Protocols”” V. Srinivasan
and Jeffrey C. Mogul. WRL Research Report
89/5, May 1989.

‘“*Available Instruction-Level Parallelism for Super-
scalar and Superpipelined Machines.”” Norman
P. Jouppi and David W. Wall. WRL Research
Report 89/7, July 1989.

““A Unified Vector/Scalar Floating-Point Architec-
ture’”” Norman P. Jouppi, Jonathan Bertoni,
and David W. Wall. WRL Research Report
89/8, July 1989.

“* Architectural and Organizational Tradeoffs in the
Design of the MultiTitan CPU.”” Norman
P. Jouppi. WRL Research Report 89/9, July
1989.

“‘Integration and Packaging Plateaus of Processor
Performance.”” Norman P. Jouppi. WRL
Research Report 89/10, July 1989.

““A 20-MIPS Sustained 32-bit CMOS Microproces-
sor with High Ratio of Sustained to Peak Perfor-
mance.”” Norman P. Jouppi and Jeffrey
Y. F. Tang. WRL Research Report 89/11, July
1989.

““The Distribution of Instruction-Level and Machine
Paradlelism and Its Effect on Performance.”
Norman P. Jouppi. WRL Research Report
89/13, July 1989.

““Long Address Traces from RISC Machines:
Generation and Anaysis.” Anita Borg,
R.E.Kesder, Georgia Lazana, and David
W. Wall. WRL Research Report 89/14, Septem-
ber 1989.

““Link-Time Code Modification.”” David W. Wall.
WRL Research Report 89/17, September 1989.

‘““Noise Issues in the ECL Circuit Family.”” Jeffrey
Y.F. Tang and J. Leon Yang. WRL Research
Report 90/1, January 1990.

‘“‘Efficient Generation of Test Patterns Using
Boolean Satisfiablilty.”” Tracy Larrabee. WRL
Research Report 90/2, February 1990.

““Two Papers on Test Pattern Generation.”” Tracy
Larrabee. WRL Research Report 90/3, March
1990.

“Virtua Memory vs. The File System.”” Michael
N. Nelson. WRL Research Report 90/4, March
1990.

‘“*Efficient Use of Workstations for Passive Monitor-
ing of Local AreaNetworks.”” Jeffrey C. Mogul.
WRL Research Report 90/5, July 1990.

““*A One-Dimensional Thermal Model for the VAX
9000 Multi Chip Units.”’ John S. Fitch. WRL
Research Report 90/6, July 1990.

24

‘1990 DECWRL/Livermore Magic Release.”
Robert N. Mayo, Michael H. Arnold, Walter
S. Scott, Don Stark, Gordon T. Hamachi.
WRL Research Report 90/7, September 1990.

“*Pool Boiling Enhancement Techniques for Water at
Low Pressure’”” Wade R. McGillis, John
S. Fitch, William R. Hamburgen, Van
P. Carey. WRL Research Report 90/9, December
1990.

““Writing Fast X Servers for Dumb Color Frame Buf-
fers”” Joel McCormack. WRL Research Report
91/1, February 1991.

““*A Simulation Based Study of TLB Performance.”’
J. Bradley Chen, Anita Borg, Norman
P. Jouppi. WRL Research Report 91/2, Novem-
ber 1991.

““Analysis of Power Supply Networks in VLSI Cir-
cuits”’ Don Stark. WRL Research Report 91/3,
April 1991.

““TurboChannel T1 Adapter.”” David Boggs. WRL
Research Report 91/4, April 1991.

““Procedure Merging with Instruction Caches.”
Scott McFarling. WRL Research Report 91/5,
March 1991.

‘“‘Don’'t Fidget with Widgets, Draw!.”” Joel Bartlett.
WRL Research Report 91/6, May 1991.

“*Pool Boiling on Small Heat Dissipating Elementsin
Water at Subatmospheric Pressure’’ Wade
R. McGillis, John S, Fitch, William
R. Hamburgen, Van P. Carey. WRL Research
Report 91/7, June 1991.

““Incremental, Generational Mostly-Copying Gar-
bage Collection in Uncooperative Environ-
ments.”” G. May Yip. WRL Research Report
91/8, June 1991.

“‘Interleaved Fin Therma Connectors for Multichip
Modules”” William R. Hamburgen. WRL
Research Report 91/9, August 1991.

‘*Experience with a Software-defined Machine Ar-
chitecture’”” David W. Wall. WRL Research
Report 91/10, August 1991.

““Network Locality at the Scale of Processes.”
Jeffrey C. Mogul. WRL Research Report 91/11,
November 1991.

““Cache Write Policies and Performance.’”” Norman
P. Jouppi. WRL Research Report 91/12, Decem-
ber 1991.

“*Packaging a 150 W Bipolar ECL Microprocessor.”’
William R. Hamburgen, John S. Fitch. WRL
Research Report 92/1, March 1992.

“‘Observing TCP Dynamics in Rea Networks.”
Jeffrey C. Mogul. WRL Research Report 92/2,
April 1992.

““Systems for Late Code Modification.”” David
W. Wall. WRL Research Report 92/3, May
1992.

““‘Piecewise Linear Models for Switch-Level Simula-
tion.”” Russell Kao. WRL Research Report 92/5,
September 1992.

“*A Practical System for Intermodule Code Optimiza-
tion at Link-Time.” Amitabh Srivastava and
David W. Wall. WRL Research Report 92/6,
December 1992.

““*A Smart Frame Buffer.”” Joel McCormack & Bob
McNamara. WRL Research Report 93/1,
January 1993.

“‘Recovery in Spritely NFS.” Jeffrey C. Mogul.
WRL Research Report 93/2, June 1993.

“Tradeoffs in Two-Level On-Chip Caching.”
Norman P. Jouppi & Steven J.E. Wilton. WRL
Research Report 93/3, October 1993.

““Unreachable Procedures in
Programing.’” Amitabh Srivastava.
Research Report 93/4, August 1993.

Object-oriented
WRL

““*An Enhanced Access and Cycle Time Model for
On-Chip Caches.”” Steven J.E. Wilton and Nor -
man P. Jouppi. WRL Research Report 93/5,
July 1994,

““Limits of Instruction-Level Parallelism.”” David
W. Wall. WRL Research Report 93/6, November
1993.

25

“‘Fluoroelastomer Pressure
Microelectronic ~ Applications.” Alberto
Makino, William R. Hamburgen, John
S. Fitch. WRL Research Report 93/7, November
1993.

Pad Design for

“*A 300MHz 115W 32b Bipolar ECL Microproces-
sor.’”” Norman P. Jouppi, Patrick Boyle,
Jeremy Dion, Mary Jo Doherty, Alan Eustace,
Ramsey Haddad, Robert Mayo, Suresh Menon,
Louis Monier, Don Stark, Silvio Turrini, Leon
Yang, John Fitch, William Hamburgen, Rus-
sell Kao, and Richard Swan. WRL Research
Report 93/8, December 1993.

“*Link-Time Optimization of Address Calculation on
a 64-bit Architecture’’ Amitabh Srivastava,
David W. Wall. WRL Research Report 94/1,
February 1994,

“ATOM: A System for Building Customized
Program Analysis Tools’” Amitabh Srivastava,
Alan Eustace. WRL Research Report 94/2,
March 1994.

“*Complexity/Performance Tradeoffs with Non-
Blocking Loads’” Keith |. Farkas, Norman
P. Jouppi. WRL Research Report 94/3, March
1994.

““A Better Update Policy.”” Jeffrey C. Mogul.
WRL Research Report 94/4, April 1994.

‘“Boolean Matching for Full-Custom ECL Gates.”
Robert N. Mayo, Herve Touati. WRL Research
Report 94/5, April 1994.

‘*Software Methods for System Address Tracing:
Implementation and Validation.”” J. Bradley
Chen, David W. Wall, and Anita Borg. WRL
Research Report 94/6, September 1994.

“‘Performance Implications of Multiple Pointer
Sizes”’ Jeffrey C. Mogul, Joel F. Bartlett,
Robert N. Mayo, and Amitabh Srivastava.
WRL Research Report 94/7, December 1994,

““How Useful Are Non-blocking Loads, Stream Buf-
fers, and Speculative Execution in Multiple Issue
Processors?.”’ Keith |. Farkas, Norman
P. Jouppi, and Paul Chow. WRL Research
Report 94/8, December 1994.

“‘Drip: A Schematic Drawing Interpreter.”’ Ramsey
W. Haddad. WRL Research Report 95/1, March
1995.

‘*Recursive Layout Generation.”” Louis M. Monier,
Jeremy Dion. WRL Research Report 95/2,
March 1995.

“‘Contour: A Tile-based Gridless Router.”” Jeremy
Dion, Louis M. Monier. WRL Research Report
95/3, March 1995.

““The Case for Persistent-Connection HTTP.”
Jeffrey C. Mogul. WRL Research Report 95/4,
May 1995.

““Network Behavior of a Busy Web Server and its
Clients”” Jeffrey C. Mogul. WRL Research
Report 95/5, October 1995.

“‘The Predictability of Branchesin Libraries.”” Brad
Calder, Dirk Grunwald, and Amitabh
Srivastava. WRL Research Report 95/6, October
1995.

‘*Shared Memory Consistency Models: A Tutorial.”’
Sarita V. Adve, Kourosh Gharachorloo. WRL
Research Report 95/7, September 1995.

“*Eliminating Receive Livelock in an Interrupt-driven
Kernel.” Jeffrey C. Mogul and
K. K. Ramakrishnan. WRL Research Report
95/8, December 1995.

““Memory Consistency Models for Shared-Memory
Multiprocessors.”’ Kourosh Gharachorloo.
WRL Research Report 95/9, December 1995.

‘*Register File Design Considerations in Dynamically
Scheduled Processors.”” Keith |. Farkas, Nor-
man P. Jouppi, Paul Chow. WRL Research
Report 95/10, November 1995.

“‘Optimization in Permutation Spaces.” Silvio
Turrini. WRL Research Report 96/1, November
1996.

‘*Shasta: A Low Overhead, Software-Only Approach
for Supporting Fine-Grain Shared Memory.”
Daniel J. Scales, Kourosh Gharachorloo, and
Chandramohan A. Thekkath. WRL Research
Report 96/2, November 1996.

26

‘‘Efficient Procedure Mapping using Cache Line
Coloring.”” Amir H. Hashemi, David R. Kadli,
and Brad Calder. WRL Research Report 96/3,
October 1996.

“‘Optimizations and Placement with the Genetic
Workbench.”” Silvio Turrini. WRL Research
Report 96/4, November 1996.

“‘Performance of the Shasta Distributed Shared
Memory Protocol.”” Daniel J. Scales and
Kourosh Gharachorloo. WRL Research Report
97/2, February 1997.

“‘Fine-Grain Software Distributed Shared Memory
on SMP Clusters’’ Daniel J. Scales, Kourosh
Gharachorloo, and Anshu Aggarwal. WRL
Research Report 97/3, February 1997.

WRL Technical Notes

““TCP/IP PrintServer: Print Server Protocol.”” Brian
K. Reid and Christopher A. Kent. WRL Tech-
nical Note TN-4, September 1988.

“TCP/IP PrintServer: Server Architecture and Im-
plementation.”” Christopher A. Kent. WRL
Technical Note TN-7, November 1988.

“*Smart Code, Stupid Memory: A Fast X Server for a
Dumb Color Frame Buffer.”” Joel McCormack.
WRL Technical Note TN-9, September 1989.

“Why Aren't Operating Systems Getting Faster As
Fast As Hardware?.”” John Ousterhout. WRL
Technical Note TN-11, October 1989.

““Mostly-Copying Garbage Collection Picks Up
Generations and C++."” Jodl F. Bartlett. WRL
Technical Note TN-12, October 1989.

“*Characterization of Organic Illumination Systems.””’
Bill Hamburgen, Jeff Mogul, Brian Reid, Alan
Eustace, Richard Swan, Mary Jo Doherty, and
Joel Bartlett. WRL Technical Note TN-13, April
1989.

“‘Improving Direct-Mapped Cache Performance by
the Addition of a Small Fully-Associative Cache
and Prefetch Buffers’”” Norman P. Jouppi.
WRL Technical Note TN-14, March 1990.

““Limits of Instruction-Level Paralelism.’”” David
W. Wall. WRL Technical Note TN-15, Decem-
ber 1990.

““The Effect of Context Switches on Cache Perfor-
mance.’” Jeffrey C. Mogul and Anita Borg.
WRL Technical Note TN-16, December 1990.

““MTOOL: A Method For Detecting Memory Bot-
tlenecks.”’ Aaron Goldberg and John
Hennessy. WRL Technical Note TN-17, Decem-
ber 1990.

“‘Predicting Program Behavior Using Rea or Es
timated Profiles.’” David W. Wall. WRL Tech-
nical Note TN-18, December 1990.

27

“*Cache Replacement with Dynamic Exclusion.”
Scott McFarling. WRL Technical Note TN-22,
November 1991.

‘‘Boiling Binary Mixtures at Subatmospheric Pres-
sures.” Wade R. McGillis, John S. Fitch, Wil-
liam R. Hamburgen, Van P. Carey. WRL
Technical Note TN-23, January 1992.

“*A Comparison of Acoustic and Infrared Inspection
Techniques for Die Attach.”” John S. Fitch.
WRL Technical Note TN-24, January 1992.

““TurboChannel Versatec Adapter.”” David Boggs.
WRL Technical Note TN-26, January 1992.

“*A Recovery Protocol For Spritely NFS.” Jeffrey
C. Mogul. WRL Technical Note TN-27, April
1992.

“‘Electrical Evaluation Of The BIPS-0 Package.”
Patrick D. Boyle. WRL Technical Note TN-29,
July 1992.

“Transparent Controls for Interactive Graphics.”
Joel F. Bartlett. WRL Technica Note TN-30,
July 1992,

‘“*Design Tools for BIPS-0.”” Jeremy Dion & Louis
Monier. WRL Technical Note TN-32, December
1992.

“*Link-Time Optimization of Address Calculation on
a 64-Bit Architecture’’ Amitabh Srivastava
and David W. Wall. WRL Technica Note
TN-35, June 1993.

‘*Combining Branch Predictors.”’” Scott McFarling.
WRL Technical Note TN-36, June 1993.

‘*Boolean Matching for Full-Custom ECL Gates.”
Robert N. Mayo and Herve Touati. WRL
Technical Note TN-37, June 1993.

“‘Piecewise Linear Models for Rsim.”” Russell Kao,
Mark Horowitz. WRL Technical Note TN-40,
December 1993.

‘* Speculative Execution and Instruction-Level Paral-
lelism.”” David W. Wall. WRL Technical Note
TN-42, March 1994.

‘*Ramonamap - An Example of Graphical Group-
ware.”" Joel F. Bartlett. WRL Technical Note
TN-43, December 1994.

““*ATOM: A Flexible Interface for Building High Per-
formance Program Analysis Tools”” Alan Eus
tace and Amitabh Srivastava. WRL Technical
Note TN-44, July 1994.

“*Circuit and Process Directions for Low-Voltage
Swing Submicron BiICMOS.” Norman
P. Jouppi, Suresh Menon, and Stefanos
Sidiropoulos. WRL Technical Note TN-45,
March 1994.

‘‘Experience with a Wireless World Wide Web
Client.”” Jod F. Bartlett. WRL Technical Note
TN-46, March 1995.

““1/0 Component Characterization for 1/O Cache
Designs’’ Kathy J. Richardson. WRL Tech-
nical Note TN-47, April 1995.

“*Attribute caches.”’ Kathy J. Richardson, Michael
J. Flynn. WRL Technical Note TN-48, April
1995.

“‘Operating Systems Support for Busy Internet Ser-
vers.” Jeffrey C. Mogul. WRL Technical Note
TN-49, May 1995.

““The Predictability of Libraries.”” Brad Calder,
Dirk Grunwald, Amitabh Srivastava. WRL
Technical Note TN-50, July 1995.

WRL Research Reports and Technical Notes are available on the World Wide Web, from
http://ww. research.digital.comw]l/techreports/index.htm.

28

