
F E B R U A R Y  1 9 9 7

WRL
Research Report 97/3

Fine-Grain
Software Distributed
Shared Memory
on SMP Clusters

Daniel J. Scales
Kourosh Gharachorloo
Anshu Aggarwal

d i g i t a l Western Research Laboratory   250 University Avenue   Palo Alto, California 94301 USA



The Western Research Laboratory (WRL) is a computer systems research group that
was founded by Digital Equipment Corporation in 1982. Our focus is computer science
research relevant to the design and application of high performance scientific computers.
We test our ideas by designing, building, and using real systems. The systems we build
are research prototypes; they are not intended to become products.

There are two other research laboratories located in Palo Alto, the Network Systems
Lab (NSL) and the Systems Research Center (SRC).  Another Digital research group is
located in Cambridge, Massachusetts (CRL).

Our research is directed towards mainstream high-performance computer systems. Our
prototypes are intended to foreshadow the future computing environments used by many
Digital customers. The long-term goal of WRL is to aid and accelerate the development
of high-performance uni- and multi-processors. The research projects within WRL will
address various aspects of high-performance computing.

We believe that significant advances in computer systems do not come from any single
technological advance. Technologies, both hardware and software, do not all advance at
the same pace. System design is the art of composing systems which use each level of
technology in an appropriate balance. A major advance in overall system performance
will require reexamination of all aspects of the system.

We do work in the design, fabrication and packaging of hardware; language processing
and scaling issues in system software design; and the exploration of new applications
areas that are opening up with the advent of higher performance systems. Researchers at
WRL cooperate closely and move freely among the various levels of system design. This
allows us to explore a wide range of tradeoffs to meet system goals.

We publish the results of our work in a variety of journals, conferences, research
reports, and technical notes.  This document is a research report. Research reports are
normally accounts of completed research and may include material from earlier technical
notes. We use technical notes for rapid distribution of technical material; usually this
represents research in progress.

Research reports and technical notes may be ordered from us.  You may mail your
order to:

Technical Report Distribution
DEC Western Research Laboratory, WRL-2
250 University Avenue
Palo Alto, California 94301 USA

Reports and technical notes may also be ordered by electronic mail. Use one of the fol-
lowing addresses:

Digital E-net: JOVE::WRL-TECHREPORTS

Internet: WRL-Techreports@decwrl.pa.dec.com

UUCP: decpa!wrl-techreports

To obtain more details on ordering by electronic mail, send a message to one of these
addresses with the word ‘‘help’’ in the Subject line; you will receive detailed instruc-
tions.

Reports and technical notes may also be accessed via the World Wide Web:
http://www.research.digital.com/wrl/home.html.



Fine-Grain Software Distributed Shared Memory
on SMP Clusters

Daniel J. Scales
Kourosh Gharachorloo

Anshu Aggarwal

February 1997

d i g i t a l Western Research Laboratory   250 University Avenue   Palo Alto, California 94301 USA



Abstract

Commercial SMP nodes are an attractive building block for software dis-
tributed shared memory systems.  The advantages of using SMP nodes in-
clude fast communication among processors within the same SMP node and
potential gains from clustering where remote data fetched by one processor
is used by other processors on the same node.  The widespread availability of
SMP servers with small numbers of processors has led several researchers to
consider their use as building blocks for Shared Virtual Memory (SVM) sys-
tems. These systems exploit the SMP cache-coherence hardware to support
fine-grain communication within a node, and use software to support com-
munication across nodes at a coarser page-size granularity.  Our goal is to
explore the use of SMP nodes in the context of the Shasta system.  A unique
aspect of Shasta compared to most other software distributed shared
memory systems is that shared data can be kept coherent at a fine
granularity. Shasta implements this coherence by inserting inline code that
checks the cache state of shared data before each load or store.  In addition,
Shasta allows the coherence granularity to be varied across different shared
data structures in a single application.  This approach alleviates potential in-
efficiences that arise from the fixed large granularity of communication typi-
cal in most software systems.

This paper describes a major extension to the Shasta system that supports
fine-grain shared memory across SMP nodes.  Allowing processors to ef-
ficiently share memory within the same SMP is complicated by race con-
ditions that arise because the inline state check is non-atomic with respect to
the actual load or store of shared data.  We present a novel and efficient
protocol that avoids such race conditions without the use of costly
synchronization in the inline checking code. The above protocol is fully func-
tional and runs on a prototype cluster of Alpha multiprocessors connected
through Digital’s Memory Channel network. To characterize the benefits of
using SMP nodes in the context of Shasta, we also present detailed perfor-
mance results for nine SPLASH-2 applications running on this cluster.

i



1 Introduction

Clusters of workstations or symmetric multiprocessors (SMPs) are potentially powerful platforms for executing parallel
applications. In order to simplify the programming of such clusters, researchers have developed a number of software
distributed shared memory (DSM) systems that support a shared address space across nodes through a layer of software.
The most common approach, called Shared Virtual Memory (SVM), uses the virtual memory hardware to detect access
to data that is not available locally [2, 9, 10]. These systems communicate data and maintain coherence at a fixed
granularity equal to the size of a virtual page. As an alternative, a few systems have explored the feasibility of
supporting fine-grain sharing of data entirely in software [12, 14]. Fine-grain access to shared data is important to
reduce false sharing and the transmission of unneeded data, both of which are potential problems in systems with
large coherence granularities. In addition, by supporting variable coherence granularities across different shared data
structures in the same application, systems such as Shasta [12] can selectively exploit any potential gains from larger
communication granularities for specific shared data. Fine-grain access to shared data is supported by inserting code
in an application executable before loads and stores that checks if the data being accessed is available locally in the
appropriate state. Recent work in the context of the Shasta system has shown that the cost of the inline checks can be
minimized by applying appropriate optimizations [12], making this approach a viable alternative to SVM systems.

Commercial SMP nodes are an attractive alternative to uniprocessors as a building block for software DSM
systems. At a minimum, the faster communication interconnect within an SMP can be used for all intra-node
messages. Furthermore, the hardware support for cache coherence can be used to allow processors within an SMP to
share application memory (and software cache state), thus eliminating software intervention for intra-node data sharing.
Sharing memory also provides a clustering effect, whereby remote data fetched by one processor may be readily used
by other processors on the same node. Sharing other protocol-dependent data structures among processors on the same
node may provide further gains. For example, in a directory-based protocol, sharing the directory state may eliminate
the need for an internal message when the requester and home are located on the same node. In addition, SMP nodes
provide the opportunity to handle incoming messages on any processor on a node for load-balancing purposes.

The widespread availability of commercial SMP servers with small numbers of processors has led several re-
searchers to consider their use as building blocks for Shared Virtual Memory (SVM) systems [1, 3, 4, 8, 18]. These
systems exploit the SMP cache coherence hardware to support fine-grain sharing within a node, and use a software
protocol to support sharing across nodes at a coarser page-size granularity. Most of the above work is based on
simulation studies. SoftFLASH is the only actual implementation based on commercial multiprocessor nodes [4].

The goal of this paper is to explore the benefits of SMP nodes, especially the sharing of application memory among
processors, in the context of systems such as Shasta that support fine-grain sharing of data across nodes. Exploiting
SMP nodes efficiently in this context is a non-trivial task. The primary difficulty arises from race conditions caused
by the fact that the inline state check used to support fine-grain access control is non-atomic with respect to the actual
load or store of shared data, since the two actions consist of multiple instructions. In contrast, the virtual memory
hardware provides an atomic state check and data access in SVM systems. An example of the race condition that can
arise is as follows. Assume processors P1 and P2 are on the same node, and that an exclusive copy of the data at
address A is cached on this node. Assume P1 detects the exclusive state at its inline check for address A and proceeds
to do a store to the address, while P2 is servicing a write request from another node. The undesirable race arises if
P2 downgrades the data to an invalid state and reads the value of A before P1’s store is complete and visible to P2.
One possible solution is to add sufficient synchronization to ensure that P2 cannot downgrade the state and read the
value of A in between the inline state check and store on P1. However, this solution results in a large increase in the
checking overhead at every load or store to shared data, and may lead to an overall performance loss compared to a
system that doesn’t exploit sharing within each SMP node. Therefore, a more efficient solution is required. In addition

1



to the above races, there are other types of race conditions caused by multiple processors invoking protocol actions for
the same address. Due to the lower frequency of protocol actions (as compared to inline checks), this latter category
of races can be handled reasonably efficiently through careful synchronization.

This paper describes a major extension to the Shasta system that efficiently supports fine-grain shared memory
across a cluster of SMP nodes. We present a novel and efficient solution that allows sharing of memory among
processors on the same node, and avoids the race conditions described above without the use of costly synchronization
in the inline checking code. Our overall solution involves the use of locking during protocol operations, and the use
of explicit messages between processors on the same node for protocol operations that can lead to the race conditions
involving the inline checks. Our protocol also maintains some per-processor state information in order to minimize
the number of such intra-node messages.

The above protocol has been implemented on our prototype cluster and is fully functional. The cluster consists
of four Alpha multiprocessors connected through the Memory Channel [6], with a total of sixteen processors. We
present detailed performance results for nine SPLASH-2 applications running on the above cluster. Our new protocol
is successful in reducing the parallel execution time of most of the SPLASH-2 applications. Although individual
protocol operations are more expensive (due mainly to locking in the protocol code), overall performance improves
significantly in most cases because of the reduced number of remote misses and protocol messages.

The following section describes the basic design of Shasta, including the inline state checks and the protocol that is
invoked in case of a miss. Section 3 describes the extensions to the base Shasta protocol required to efficiently support
shared memory across SMP nodes. We present detailed performance results in Section 4. Finally, we describe related
work and conclude.

2 Basic Design of Shasta

In this section, we present an overview of the base Shasta system, which is described more fully in previous papers [11,
12]. Shasta divides the virtual address space of each processor into private and shared regions. Data in the shared
region may be cached by multiple processors at the same time, with copies residing at the same virtual address on each
processor. The base Shasta system adopts the memory model of the original SPLASH applications [15]: data that is
dynamically allocated is shared, but all static and stack data is private.

2.1 Cache Coherence Protocol

As in hardware cache-coherent multiprocessors, shared data in the Shasta system has three basic states:

� invalid - the data is not valid on this processor.

� shared - the data is valid on this processor, and other processors have copies of the data as well.

� exclusive - the data is valid on this processor, and no other processors have copies of this data.

Communication is required if a processor attempts to read data that is in the invalid state, or attempts to write data
that is in the invalid or shared state. In this case, we say that there is a shared miss. Shasta inserts code which does a
shared miss check on the data being referenced at loads and stores in the application executable.

As in hardware shared-memory systems, Shasta divides up the shared address space into ranges of memory, called
blocks. All data within a block is in the same state and is always fetched and kept coherent as a unit. A unique aspect

2



of the Shasta system is that the block size can be different for different ranges of the shared address space (i.e., for
different program data). To simplify the inline code, Shasta divides up the address space further into fixed-size ranges
called lines and maintains state information for each line in a state table. The line size is configurable at compile time
and is typically set to 64 or 128 bytes. Each block consists of a single line or an integer number of lines.

Coherence is maintained using a directory-based invalidation protocol. The protocol supports three types of
requests: read, read-exclusive, and exclusive (or upgrade). A home processor is associated with each virtual page of
shared data, and each processor maintains directory information for all blocks on pages that are assigned to it. The
protocol maintains the notion of an owner processor for each block, which corresponds to the last processor that had
an exclusive copy of the block. The directory information consists of two components: (i) a pointer to the current
owner processor, and (ii) a full bit vector of the processors that are sharing the data. A read or read-exclusive request
that arrives at the home is always forwarded to the current owner; as an optimization, the home processor serves read
requests directly if it has a copy of the data.

Because of the high cost of handling messages via interrupts, messages from other processors are serviced through
a polling mechanism. The Shasta system polls for incoming messages whenever the protocol waits for a reply and
at every loop backedge. Polling is inexpensive (three instructions) on a Memory Channel cluster, because the Shasta
implementation arranges for a single cachable location that can be tested to determine if a message has arrived. The use
of polling also simplifies the inline miss checks, since the Shasta system ensures that there is no handling of messages
between a shared miss check and the load or store that is being checked.

The Shasta protocol aggressively exploits the release consistency model [5] by emulating the behavior of a processor
with non-blocking stores and a lockup-free cache. Information about a pending request for a line is maintained in
an entry in a miss table. The protocol supports non-blocking stores by simply issuing a read-exclusive or exclusive
request, recording where the store occurred in the miss entry, and continuing. This information allows the protocol to
appropriately merge the reply data with the newly written data that is already in memory. The protocol also supports
aggressive lockup-free behavior for lines that are in a pending state. Writes to a pending line are allowed to proceed
by storing the newly written data into memory and adding the location of the new stores to the appropriate miss entry
when the miss handling routine is invoked (due to the pending state).

2.2 Basic Shared Miss Check

Figure 1 shows Alpha assembly code that does a store miss check. This code first checks if the target address is in
the shared memory range and if not, skips the remainder of the check. Otherwise, the code calculates the address of
the state table entry corresponding to the target address and checks that the line containing the target address is in the
exclusive state.

This code has been optimized in a number of ways. For example, the code does not save or restore registers. The
Shasta system does live register analysis to find unused registers (labeled rx and ry in the figure) at the point where it
inserts the miss check. In addition, the code has been scheduled for efficient execution on a pipelined and superscalar
Alpha processor. Shasta does not need to check accesses to non-shared (i.e., private) data, which includes all stack and
static data in the current implementation. Therefore, a load or store whose base register uses the stack pointer (SP) or
global pointer (GP) register, or is calculated using the contents of the SP or GP, is not checked.

2.3 Optimizations to Reduce Check Overhead

Despite the simple optimizations applied to the basic checks, the overhead of the miss checks can be significant
for many applications, often approaching or exceeding 100% of the original sequential execution time. The Shasta

3



1. lda rx, offset(base)
2. srl rx, SHARED_HEAP_BITS, ry
3. srl rx, LINE_BITS, rx
4. beq ry, nomiss
5. ldq_u ry, 0(rx)
6. extbl ry, rx, ry
7. beq ry, nomiss

8. ...call function to handle store miss

9. nomiss:
10. ... store instruction

Figure 1: Store miss check code.

system applies a number of more advanced optimizations that dramatically reduce this overhead to an average of about
20% (including polling overhead) across the SPLASH-2 applications [12]. The two most important optimizations are
described below.

Whenever a line on a processor becomes invalid, the Shasta protocol stores a particular “invalid flag” value in each
longword (4 bytes) of the line. The miss check code for a load can then just compare the value loaded with the flag
value. If the loaded value is not equal to the flag value, the data must be valid and the application code can continue
immediately. If the loaded value is equal to the flag value, then a miss routine is called that first does the normal range
check and state table lookup. These checks distinguish an actual miss from a “false miss” (i.e., when the application
data actually contains the flag value), and simply return back to the application code in the case of a false miss. Since
false misses almost never occur in practice, the above technique can greatly reduce the load miss check overhead. In
addition, the flag technique essentially combines the load of the data and the check of its state into a single atomic
event, which is a useful property for our SMP implementation, as we discuss later.

Another important technique for reducing the overhead of miss checks is to batch together checks for multiple
loads and stores. Suppose there are a sequence of loads and stores that are all relative to the same (unmodified) base
register and the offsets (with respect to the base register) span a range whose length is less than or equal to the Shasta
line size. These loads and stores can collectively touch at most two consecutive lines in memory. Therefore, if inline
checks verify that these lines are in the correct state, then all the loads and stores can proceed without further checks.
The batching technique also applies to interleaved loads and stores via multiple base registers. For each set of loads
and stores that can be batched, the Shasta system generates code to check the state of the lines that may be referenced
via each base register. A batch miss handling routine is called if any of the lines are not in the correct state.

3 Protocol Extensions for SMP Clusters

This section describes modifications to the basic Shasta protocol to exploit SMP nodes. We begin by motivating the
use of SMP nodes in the context of Shasta. Section 3.2 describes the difficult race conditions that arise due to sharing
protocol state and data within each SMP. We present our general solution for efficiently dealing with these races in
Section 3.3. The last section presents further detail about the extended Shasta protocol.

4



3.1 Motivation for Exploiting SMP Nodes

In this section, we characterize the optimizations that are possible when using SMP nodes in the context of a Shasta-
like protocol. The goal for most of these optimizations is to contain a significant amount of communication within
each node in order to fully exploit the SMP hardware support for cache coherence and fast messaging. Some of the
optimizations require sharing additional protocol state and data among processors on the same node. This leads to a
potential trade-off, since the shared data structures typically require extra synchronization that may increase frequent
protocol path lengths and can also lead to a more complex design. The possible optimizations are as follows:

Faster Intra-Node Messaging. An obvious optimization is to implement a faster messaging layer for processors
on the same node by exploiting the lower-latency and higher-bandwidth interconnect in each SMP. This goal can be
achieved by transmitting messages through message queues allocated in the cache-coherent shared memory on each
node. This optimization leads to a distinction between intra-node (or local) and inter-node (or remote) messages.

Intra-Node Data Sharing without Software Protocol Intervention. Hardware support for cache coherence can
also be used to support efficient sharing of application data between processors on the same node. Therefore, software
intervention for misses along with explicit software messages can be limited to data sharing between processors on
different nodes. In addition to sharing application data, this optimization requires the state table for application data
to be shared among processors on the same node in order to allow software to detect cases where shared data is not
available locally.

Eliminating Remote Requests. The sharing of application data and the state table also enables gains from
clustering, whereby remote data fetched by one processor may be readily used by other processors on the same node
without use of explicit messages. Effectively, the node’s local memory is used as a shared cache for remote application
data. This optimization eliminates remote requests if the data is available locally in the appropriate state, or turns a
remote write request into the more efficient upgrade request if the local copy is in the shared state. Note that even
if the data requested by one processor is not yet back, it is possible to filter requests for the same data from other
processors on the same node. This latter optimization may require the sharing of protocol data structures that keep
track of pending remote requests.

Eliminating Intra-Node Messages/Hops. The use of a directory-based protocol provides the opportunity to
eliminate intra-node messages in two other cases. The first case is on an incoming remote read request to the home
processor when the owner processor is on the same node. The home can trivially satisfy the request if the node has a
clean copy, thus eliminating the need for an explicit message to the owner. The second case arises when the requester
and home processors are colocated. By sharing the directory state, the requester can directly look up and modify
directory information, thus avoiding an internal hop to the home processor. Note that the latter optimization occurs
only if the request cannot be serviced within the local node.

Load-Balancing Incoming Requests from Other Nodes. Even though we have been assuming that messages
are destined to specific processors on a node, sharing the incoming message queues from remote nodes provides the
opportunity to load-balance (or schedule) the handling of remote messages on any processor at the destination node.
Servicing a reply, or a request to the owner processor, at any processor on a node requires application data and the
state table to be shared.1 Servicing a request to the home by any processor on a node further requires sharing the
directory state. A degenerate form of the above optimization involves dedicating one or more processors on the SMP
for message or protocol processing only (as in Typhoon-0 [13]).

Our current implementation exploits all of the above optimizations except eliminating local messages when the
requester and home are colocated and load-balancing the service of incoming requests. These optimizations are not

1In some protocols, the owner processor must always be consulted on certain protocol transactions. For these cases, handling the incoming
request at a different processor may not provide any gain.

5



P1

Read State
if (state is exclusive) then

Write A = new value
elseprotocol miss code

P2

Write State = invalid
Read A

(a) exclusive-to-invalid downgrade due to incoming write

P1

Read State
if (state is exclusive) then

Write A = new value
elseprotocol miss code

P2

Write State = shared
Read A

(b) exclusive-to-shared downgrade due to incoming read

P1

Read State
if (state is shared) then

Read A
elseprotocol miss code

P2

Write State = invalid
Write A = invalid flag

(c) shared-to-invalid downgrade due to incoming write

P1

Read A
if (value != invalid flag) then

continue
elseprotocol miss code

P2

Write State = invalid
Write A = invalid flag

(d) shared-to-invalid downgrade with invalid flag optimization

Write A =  invalid flag

Figure 2: Examples of race conditions due to cache state downgrades.

used because we do not currently support the sharing of directory state or incoming remote message queues among
colocated processors.

3.2 Difficult Race Conditions

The sharing of application data and protocol data structures among processors on the same SMP leads to numerous
race conditions. Most of these race conditions can be handled reasonably efficiently by using sufficient locking in the
protocol code. However, races involving the inline checking code cannot be handled efficiently in this way due to the
high frequency of the required synchronization. Since the above sharing is required for exploiting the majority of the
optimizations described in the previous section, it is critical to find an efficient way to deal with the resulting races.
We describe this class of races in more detail below.

The difficult race conditions mentioned above are caused by the fact that the inline check of the state table entry is
non-atomic with respect to the corresponding load or store to application data. This problem is best illustrated through
the examples shown in Figure 2. For all the examples, assume that P1 and P2 are on the same node, P1 is doing an
inline check followed by a load or store to the block A, and P2 is running protocol code to service an incoming request
for the block from a remote node. All of the examples involve a downgrade of the state of the block due to the handling
of the remote request. Figure 2(a) shows the scenario where A is initially cached in exclusive mode at this node, P1 is
executing an application write to A, and P2 is handling an incoming write (or read-exclusive) request to A. As shown,
servicing the incoming write requires P2 to read the latest contents of A to send back to the requester and to set the
state of A at this node to invalid. The undesirable race occurs if P1 detects the initial exclusive state and proceeds to do
the application store to A, yet P2 does its read before P1’s write to A is complete. The coherence protocol has failed,
since the application write on P1 will not be reflected at the new owner’s copy. This race can occur even if P2 reads A
before updating the state. Note that the problem would disappear if the state check and application store are somehow
made to appear atomic with respect to operations on P2. Figure 2(b) shows a similar example where P2 services an

6



incoming read. Again, if P1 detects the initial exclusive state, it is possible for P2 to read the old value of A, and an
incorrect copy will be sent to the new sharer.

Figure 2(c) shows the scenario where A is initially in a shared state, P1 performs an application read, and P2 serves
an incoming write (or invalidate) request. Even if the state check on P1 does not use the invalid flag optimization
(which may not be applicable to all loads), P2 must still write the invalid flag value in addition to setting the state to
invalid, since other application loads may use the optimization. The undesirable race occurs if P1 detects the initial
shared state and proceeds to do the load, yet P2 writes the invalid flag value before the load on P1 completes. This race
results in the wrong value (the flag value) being returned to the application code on P1. Again, changing the order of
operations on P2 does not alleviate the race. The above problem would not occur in protocols that do not exploit the
invalid flag optimization, since there would be no need for P2 to write the invalid flag to memory. Figure 2(d) shows
a similar example except that the invalid flag optimization is used for checking the load on P1. Interestingly, this case
does not lead to a race, since the invalid flag optimization makes the state check and load on P1 appear atomic with
respect to operations on P2.

Assuming that the inline state checks precede the actual load or store of application data (as in the above examples),
the difficult race conditions all arise when the local cache state of a block is downgraded because of servicing a request
from another node. The cases for a local state downgrade are as follows:

� exclusive-to-invalid state downgrade, caused by an incoming write request,

� exclusive-to-shared state downgrade, caused by an incoming read request, and

� shared-to-invalid state downgrade, caused by an incoming write or invalidate request.

These cases directly correspond to the examples shown in Figure 2. The only remote request that does not lead to a
downgrade is an incoming read request when the local state is shared.

There are several possible solutions for dealing with the above race conditions. One solution is to disallow the
sharing of application and protocol data among processors. However, this solution forgoes all of the optimization
enabled by SMP nodes (covered in Section 3.1) except for faster intra-node messaging. Another possible solution is
to use sufficient synchronization (e.g., lock or flag synchronization) to enforce atomicity of the inline check and load
or store sequence with respect to downgrade protocol actions on other processors. However, the overhead of such
synchronization is prohibitive due to the high frequency of the inline checks that must be protected. SMP nodes that
support a relaxed memory model further increase synchronization costs, due to the need for expensive fence instructions
(called memory barriers on the Alpha [16]) at synchronization points that enforce ordering of memory operations.
These fences take a minimum of ten processor cycles for the Alpha multiprocessors used in our experiments.

3.3 Our General Solution to Race Conditions

The prohibitive cost of synchronization and fence instructions heavily favors solutions that avoid the use of these
instructions in the frequent inline state checks. Our overall solution depends on the selective use of explicit messages
to deal with the state downgrade transitions described in the previous section, along with polling which is appropriately
inserted to avoid the handling of such messages between the inline check and the corresponding load or store. Explicit
locking is used to avoid race conditions between two protocol operations on the same block, as described in Section
3.4.2.

Consider the example in Figure 2(a) again. Our solution downgrades the state of A and sends explicit downgrade
messages to other local processors that may be accessing the same block. Other protocol actions (e.g., reading

7



or writing application data) required for servicing the incoming request are delayed until downgrade messages are
received and serviced by all recipient processors. Downgrade messages are handled using the basic message handling
layer in Shasta, which is based on polling. As described in Section 2.1, Shasta only polls whenever the protocol waits
for a reply and at every loop backedge, so messages are never handled between a successful inline state check and
the corresponding application load or store instruction. Therefore, any successful inline checks that occur before the
reception of the downgrade message are guaranteed to have completed their corresponding load or store to application
data. Similarly, inline checks that occur after the reception of the downgrade message are guaranteed to see the state
that reflects the downgrade. The above two properties eliminate the race conditions that were described in the previous
section. Downgrade messages effectively enforce an explicit synchronization across processors when necessary, thus
avoiding the need for synchronizing every inline check.

The main source of inefficiency in the above scheme arises from the fact that every incoming request that causes
a downgrade in the state of a block requires downgrade messages to be sent to all other processors on that node. The
number of downgrade messages can be greatly reduced by maintaining a private state table for each processor in
addition to the shared state table for the node. This private state table is used to keep track of whether a processor has
actually accessed the block and may therefore need to be downgraded. In addition to enabling selective downgrade
messages, the use of a private state table efficiently solves some subtle race conditions that arise with SMP nodes that
support a relaxed memory model. For example, if we reference the shared state table in the inline state check for a
load (as in Figure 2(c)), we would need to insert a fence instruction (memory barrier in Alpha) between the state check
and actual load to ensure that the load would get an up-to-date value if another local processor changes the state of
the block from invalid to shared or exclusive after fetching a copy of the block. The use of the private state table
eliminates the need for such a fence instruction in the inline code.

Inline checks now read the processor’s private state table (without synchronization or fence instruction) instead of
the shared state table. The private state table is updated by protocol miss handling code when it detects that a block
is available locally based on the shared state table. For example, consider the scenario when an exclusive copy of a
block is fetched by processor P1. Both the shared state table and P1’s private state table indicate an exclusive state.
However, the private state table for other processors on the node still indicate an invalid state. When another processor
attempts to read (write) the block, the inline check (based on that processor’s private state table) invokes protocol miss
code that upgrades the private state to shared (exclusive). Loads that use the invalid flag optimization do not have to
do a state check and therefore can succeed without upgrading the private state.

The private state table for a given processor may be examined by other processors on the node to determine
whether the processor has accessed a given block.2 Downgrade messages can therefore selectively be sent to only
those processors that have actually accessed the block. A downgrade initiated by an incoming read message requires
downgrade messages to be sent to every local processor that shows an exclusive private state, while a downgrade
initiated by an incoming write message requires downgrade messages to be sent to every local processor that shows a
shared or exclusive private state. As we will see in Section 4.4, this optimization allows a large number of incoming
requests to be serviced with zero or at most one downgrade message generated. Each processor downgrades its private
state appropriately when it receives a downgrade message. Section 5 describes the similarities and differences of the
above approach to related TLB shootdown techniques used in SVM systems such as SoftFLASH.

2Modifications of the private state table by its owner processor and reads of other processor’s private state table occur only within the protocol
code (i.e., not in the inline code) and are protected by the same synchronization used for the shared state table.

8



3.4 Implementation Details

In this section, we describe in detail the changes that have been made to Shasta to run efficiently on clusters of SMP
nodes. We refer to this version of Shasta as SMP-Shasta and refer to the original implementation (which uses message
passing between all processors) as Base-Shasta.

3.4.1 Changes to the Inline Checking Code

There are two main changes to the inline checking code. First, checks of floating-point loads via the invalid flag
technique must be made atomic. For a floating-point load, the miss check code actually does the compare in an
integer register (because this is faster than a floating-point compare). Because current Alpha processors do not have an
instruction for transferring a value from a floating-point to an integer register, the Base-Shasta system inserts an integer
load to the same target address as the floating-point load. However, the use of the two loads makes this technique
non-atomic. The SMP-Shasta system therefore inserts code to store the floating-point register value onto the stack and
then load the value into an integer register. This method adds several cycles to the cost of checking a floating-point
load (but the new cost is still cheaper than doing a check via the state table). The recently announced Alpha 21264
processor supports instructions fnor transferring values between integer and floating-point registers that will reduce
the cost of this method.

Second, the batch checks in SMP-Shasta must always use the private state table. In Base-Shasta, we use the invalid
flag technique in doing a check on a batch range which includes only loads. However, the batched loads are not
executed atomically with respect to the batch checks. Therefore, all batch checking code in SMP-Shasta must access
the private state table (as described in the previous section) instead of checking for the invalid flag. This change to
the inline code typically causes the largest increase in checking overhead relative to Base-Shasta, since most of the
commonly executed code in the SPLASH-2 applications makes heavy use of batching.

3.4.2 Changes to the Basic Protocol

One of the main changes to the Shasta protocol is the use of locking to eliminate race conditions between protocol
operations executed by processors on the same node. First, all protocol operations on a block hold a lock on that block
for the entire operation. For blocks that consist of multiple lines, only the lock for the first line of the block is acquired
(the block size for a data structure does not change during a run). We currently use a fixed set of line locks and associate
each line with a particular lock using a hashing function. Second, the protocol uses locks in accessing buckets of the
miss table, since miss table entries for pending requests are shared among all the processors. Modifications to miss
table entries are protected by the line locks, since the miss entries apply to specific lines. There are only a few other
locks used by the protocol, and all are used only in unusual cases. Therefore, processors that are accessing different
blocks should not encounter contention on locks (assuming that lock hashing function works well).

The basic Shasta protocol remains largely the same in SMP-Shasta. Requests that cannot be satisfied locally are
sent to the home processor for the requested block. The home processor maintains the identity of the current owner
processor and the processors that are sharing the block. The home is only aware of the sharing by the one processor
on a node that initially requested the data. This property is important to make sure that protocol requests for a block
are serialized at one processor on a node. A read or read-exclusive request that arrives at the home is forwarded to the
current owner; this forwarding is avoided if the home and owner are on the same node or the home node has a copy of
the data.

The SMP-Shasta protocol merges requests by multiple processors on a node for the same block. The first processor

9



to require the block sends a message to fetch the block and sets the shared state of the block to a pending state. Other
processors that require the block will enter the protocol, but will not send another request, since the block is already in
a pending state. If multiple processors stall on a block (e.g. due to loads), then the protocol ensures that all the stalled
processors resume execution when the data returns. If multiple processors attempt to store in a block, the locations of
all the stores are merged in the miss table entry for the block and the processors can proceed without stalling. When a
processor receives a block that it has requested, it updates the entry in the shared state table and its private table to the
appropriate state (either shared or exclusive). The entries in the private state tables of other processors on the node are
upgraded only if the processors attempt to access the data.

Shasta implements an eager release-consistent protocol in which a processor only stalls at a release until all its
previous requests have completed. In addition, the Shasta protocol allows a processor to use data returned by a read-
exclusive request before all the invalidation acknowledgements have arrived. However, this optimization causes some
complexity in SMP-Shasta, since other processors on the same node may also access the data while acknowledgements
are still outstanding. Another processor can access the valid data without even entering the protocol via a load that
uses the invalid flag optimizations. To avoid any problems with correctness, we use an epoch-based solution similar
to SoftFLASH [4] whereby each release starts a new epoch on the node, and a release is not performed until all stores
on the node that were issued during previous epochs have completed.

3.4.3 Downgrades

In SMP-Shasta, the protocol routines that handle incoming requests first determine if a downgrade will be necessary.
If so, the routines access the private state table entries of the other processors and send downgrade messages to the
appropriate processors. If any downgrade messages are sent, the handler sets the shared state of the block to a pending-
downgrade state, saves a count of the number of downgrades sent and terminates; otherwise, it executes its normal
action. As each processor receives the downgrade message, it downgrades its private state table entry and decrements
the downgrade count in the miss entry. The processor that handles the last downgrade message (i.e., the downgrade
count reaches zero) also executes the normal protocol action associated with the request, including updating the shared
state and sending the reply.

Processors are not stalled during a downgrade and continue to access the block being downgraded. If a processor
has not yet received the downgrade message, then it may still load and store to that block without entering the protocol.
There is no race condition, since the downgrade cannot complete until after the processor receives and handles the
downgrade message. Processors that have already handled the downgrade message will invoke a protocol miss handler
if their downgraded private state is not sufficient for a particular access. However, if the block is still in pending-
downgrade state, the miss handler can immediately service the load or store as long as the state prior to the downgrade
was sufficient for handling the request. There is no race condition in this case either, because the miss handler services
the load or store while holding a lock on the block.

Because downgrades are not instantaneous, the SMP-Shasta protocol must also handle requests that arrive for a
block that is in the pending-downgrade state. This case can only happen during a downgrade from exclusive to shared
state. In this case, the incoming request is queued and served when the downgrade completes.

3.4.4 Batching

Although the batch miss handler sends out requests for any missing blocks, it cannot guarantee that all the blocks
required by the batched code will be in the appropriate state once all replies come back. While the handler is waiting
for the replies, requests from other processes may invalidate some of the blocks in the batch. To ensure that batched

10



loads to the block will still get the correct value, the batch miss handler delays storing the invalid flag to any invalidated
blocks. To handle this rare protocol case, the batch miss handler marks the state table entry for each block that is
accessed by a batch and removes the marker at the end of the batch. If a block is invalidated in the middle of a batch,
the storing of the invalid flag into the block is delayed until the batch ends and the marker is removed.3

4 Performance Results

This section presents performance results for our SMP-Shasta implementation. We first describe our prototype SMP
cluster and the applications used in our study. We then present detailed performance results that show the effectiveness
of our SMP protocol in improving overall performance along with reducing the number of misses and protocol
messages.

4.1 Prototype SMP Cluster

Our SMP cluster consists of four AlphaServer 4100s connected by a Memory Channel network. Each AlphaServer
4100 has four 300 MHz 21164 processors, which each have 8 Kbyte on-chip instruction and data caches, a 96 Kbyte
on-chip combined second-level cache, and a 2 Mbyte board-level cache. The individual processors are rated at 8.1
SpecInt95 and 12.7 SpecFP95, and the system bus has a bandwidth of 1 Gbyte/s.

The Memory Channel is a memory-mapped network that allows a process to transmit data to a remote process
without any operating system overhead via a simple store to a mapped page [6]. The one-way latency from user process
to user process over Memory Channel is about 4 microseconds, and each network link can support a bandwidth of 60
MBytes/sec.

Shasta uses a message-passing layer that runs efficiently on top of the Memory Channel, and exploits shared
memory segments within an SMP when the communicating processors are on the same node. By using separate
message buffers between each pair of processors, the message-passing system avoid the need for any locking when
adding or removing messages from the buffers. In Base-Shasta, the minimum latency to fetch a 64-byte block from
a remote processor (two hops) via the Memory Channel is 20 microseconds, and the effective bandwidth for large
blocks is about 35 Mbytes/s. The latency to fetch a 64-byte block from another processor on the same SMP node is 11
microseconds, and the bandwidth is about 45 Mbytes/s.

4.2 Applications

We report results for nine of the SPLASH-2 applications [17]. Table 1 shows the input sizes used in our experiments
along with the sequential running times. We have increased some of the standard input sizes in order to make sure
that the applications run for at least a few seconds on our cluster. Table 1 also shows the single processor execution
times for each application after the Base-Shasta and SMP-Shasta miss checks are added, along with the percentage
increase in the time over the original sequential time. The average overhead of the SMP-Shasta miss checks is higher
than for the Base-Shasta miss checks (24.0% vs. 14.7%) because of the changes described in Section 3.4.1. The three
applications that are most affected by this are Raytrace and the two versions of Water, with the overheads increasing
by as much as three times for Raytrace.

3In order to avoid accessing stale data, a processor stalls at an acquire if any blocks on the same SMP are in this intermediate state.

11



problem size sequential with Base-Shasta with SMP-Shasta
time miss checks miss checks

Barnes 16K particles 9.08s 9.83s (8.3%) 10.20s (12.3%)
FMM 32K particles 13.76s 15.39s (11.8%) 16.30s (18.4%)
LU 1024x1024 matrix 27.06s 32.84s (21.3%) 32.65s (20.6%)
LU-Contig 1024x1024 matrix 17.52s 21.41s (22.2%) 22.57s (28.8%)
Ocean 514x514 ocean 11.07s 13.15s (18.7%) 13.82s (24.8%)
Raytrace balls4 71.94s 78.31s (8.8%) 90.32s (25.5%)
Volrend head 1.63s 1.76s (7.9%) 1.77s (8.5%)
Water-Nsq 1000 molecules 7.87s 9.15s (16.2%) 10.40s (32.1%)
Water-Sp 1728 molecules 6.70s 7.86s (17.3%) 8.74s (30.4%)

Table 1: Sequential times and checking overheads for the SPLASH-2 applications.

4.3 Parallel Performance

This section presents the parallel performance of the applications for both the Base-Shasta and SMP-Shasta protocols.
To ensure a fair comparison, we use the same placement of processes on each SMP for both Base-Shasta and SMP-
Shasta. Two- and four-processor runs always execute entirely on a single node, and 8-processor and 16-processor runs
use two nodes and four nodes, respectively. 4 Processors on the same node share the Memory Channel bandwidth
when sending messages to destinations on other nodes. The network bandwidth available per processor is therefore
identical for corresponding Base-Shasta and SMP-Shasta runs. Keeping the network bandwidth per processor constant
for both protocols allows us to better isolate the benefits of sharing provided by SMP-Shasta. Applications using
Base-Shasta could also be run on individual workstations, each with their own link to the Memory Channel, thus
providing more bandwidth per processor. Since SMP nodes typically provide a larger number of I/O buses than
individual workstations, the bandwidth per processor may also be increased on an SMP node by using more network
links. To ensure that we are not limiting the performance of Base-Shasta in our experiments, we compared results for
8-processor runs on Base-Shasta using 2 processors per node with results using 4 processors per node. The runs with 4
processors per node had better performance for all applications (partly because Base-Shasta exploits faster messaging
within an SMP), except for Ocean and Raytrace, where the difference in performance was less than 10%.

We report SMP-Shasta results for SMP clustering of 1, 2, and 4 processors. For SMP clustering of 1, each process
acts as if it is on a node by itself, and therefore sends messages to all other processes. Processes that are on the same
physical node communicate via message passing through a shared-memory segment. Similarly, for an SMP clustering
of 2, each process shares memory with only one other process on the node and communicates only via messages with
the other two processes on the node. We use a fixed Shasta line size of 64 bytes. Unless specified otherwise, the block
size of objects less than 1024 bytes is automatically set to the size of the object, while larger objects use a 64 byte
block size. In addition, for FMM, LU-Contiguous and Ocean, we use the standard home placement optimization, as
is done in most studies of the SPLASH-2 applications.

We should note that the Base-Shasta implementation has been tuned for good performance, while the SMP-Shasta
implementation has not yet been tuned. We expect that the performance of applications on SMP-Shasta will improve
with changes such as reducing the locking overhead in the protocol, eliminating false sharing among protocol data
structures, and improving the implementation of the lock and barrier primitives used by the application.

4Results for 2, 4, and 8 processorsare not directly comparable with those presented in in another Shasta paper [11] because of different assignment
of processes to nodes.

12



�  Raytrace
�  Water-Sp
�  Water-Nsq
�  FMM

  LU
�  Volrend
�  LU-Contig

  Barnes
�  Ocean

|

0
|

2
|

4
|

6
|

8
|

10
|

12
|

14
|

16

|0

|1

|2

|3

|4

|5

|6

|7

|8

|9

 Number of Processors

 S
pe

ed
up

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
















�

�

�

�

�

�

�

�

�

�
















�

�
�

� �

�  Raytrace
�  Water-Sp
�  Water-Nsq
�  FMM

  LU
�  Volrend
�  LU-Contig

  Barnes
�  Ocean

|

0
|

2
|

4
|

6
|

8
|

10
|

12
|

14
|

16

|0

|1

|2

|3

|4
|5

|6

|7

|8

|9

 Number of Processors

 S
pe

ed
up

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
















�

�

�

�

�

�

�

�

�

�
















�

�

�

�

�

Figure 3: Speedups of SPLASH-2 applications running with Base-Shasta (left) and SMP-Shasta (right).

To gauge the efficiency of SMP-Shasta, we did a comparison with the applications running on a single 4-processor
AlphaServer 4100 using an efficient implementation of ANL macros that directly uses the hardware coherence protocol.
All of our applications get a speedup of 3.8 or better on 4 processors using the ANL macros, except for LU and Ocean
which got speedups of 3.4 and 3.0, respectively. We ran the same applications using SMP-Shasta on 4 processors using
a clustering of 4 processors, so that communication is mainly via hardware shared memory and protocol actions are
only invoked for synchronization and for initial upgrades of the private state table entries. The absolute running times
on 4 processors using SMP-Shasta are slower than the ANL runs by an average of 12.7%. In general, the difference in
running times reflects the extra overhead due to the inline checking code, with a few applications also getting affected
by the non-optimized synchronization primitives in SMP-Shasta.

Figure 3 shows the speedups for the applications running on our prototype cluster for both Base-Shasta and SMP-
Shasta. For SMP-Shasta we use a clustering of 2 at 2 processors and a clustering of 4 at 4, 8, and 16 processors. The
speedups shown are based on the execution time of the application running via Shasta on 1 to 16 processors relative
to the execution of the original sequential application (with no miss checks).

Figure 4 presents the change in the execution time of 8- and 16-processor runs when the applications are run
using SMP-Shasta. For each application, the height of the first bar (labeled “B”) represents the execution time for the
run on Base-Shasta, and bars representing other times are normalized to this bar. The height of the second bar for
each application shows the normalized execution time when the SMP-Shasta protocol is used with a clustering of 1
processor. This execution time is always larger with respect to Base-Shasta, because of the extra checking overhead and
extra protocol overhead incurred by SMP-Shasta. The second and third bars show the normalized times for clustering
of 2 and 4 processors. The execution time always goes down as the clustering increases because of a reduction in the

13



||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

|120

|130

 P
er

ce
nt Other

Msg
Sync
Write
Read
Task

B 1 2 4
Barnes

B 1 2 4
FMM

B 1 2 4
LU

B 1 2 4
LUcont

B 1 2 4
Ocean

B 1 2 4
RayTr

B 1 2 4
VolRend

B 1 2 4
WaterN

B 1 2 4
WaterSp

||0

|10

|20
|30

|40

|50

|60

|70

|80

|90

|100

|110

|120

|130

 P
er

ce
nt Other

Msg
Sync
Write
Read
Task

B 1 2 4
Barnes

B 1 2 4
FMM

B 1 2 4
LU

B 1 2 4
LUcont

B 1 2 4
Ocean

B 1 2 4
RayTr

B 1 2 4
VolRend

B 1 2 4
WaterN

B 1 2 4
WaterSp

Figure 4: Execution time breakdowns for 8-processor (left) and 16-processor (right) runs on Base-Shasta and SMP-
Shasta.

number of misses and messages. For most applications, there is a significant performance benefit from clustering of 4
at both 8 and 16 total processors.

Figure 4 also shows the breakdown of the execution time for each of the runs. Task time represents the time spent
executing the application, including hardware cache misses. Task time also includes the time for executing the inline
miss checks and the code necessary to enter the protocol (such as saving registers). Read time and write time represent
the stall time for read and write misses that are satisfied by other processors through the software protocol. (Even
though Shasta supports non-blocking stores, there is still some stall time for stores because of protocol limitations
on the distribution and number of outstanding stores.) Synchronization time represents the stall time for application
locks and barriers. Message time represents the time spent handling messages when the processor is not already
stalled. Processors also handle messages while stalled on data or synchronization, but this time is hidden by the read,
write, and synchronization times. The “other” category includes the overhead of dealing with non-blocking stores to
pending blocks. In SMP-Shasta, this category also includes the time to upgrade a processor’s private state table and
any overheads for dealing with blocks in a pending-downgrade state.

Most of the time components increase when we go from Base-Shasta to SMP-Shasta with a clustering of 1. The
task time increases because of the extra checking costs in SMP-Shasta. Other times typically increase because of extra
protocol overheads (mainly due to locking). As we increase the degree of clustering, however, the read and write
stall times (and other miss-related times) typically decrease because of a reduction in the number of misses handled
by the software protocol. The synchronization time does not change much however because it is more a function of
application behavior.

Ocean shows the highest gains from clustering at both 8 and 16 total processors. These gains are somewhat
expected due to the nearest-neighbor nature of the communication in Ocean. For several applications, the relative
reduction in the read latency due to clustering is larger at 8 processors as compared to 16 processors. However, the
overall gain in performance is larger at 16 processors, since the read time constitutes a larger fraction of the execution
time. Another visible difference between the breakdowns for 8 and 16 processor runs is that the task time constitutes
a larger portion of the execution time at 8 processors, since communication and synchronization overheads typically

14



selected data specified 16-proc. speedup (Base-Shasta)
structure(s) block size default block specified

(bytes) size (64 bytes) block size
Barnes cell, leaf arrays 512 4.3 5.2
FMM box array 256 5.3 5.8
LU matrix array 128 5.2 6.8
LU-Contig matrix block 2048 4.5 8.8
Volrend opacity, normal maps 1024 4.7 5.3
Water-Nsq molecule array 2048 5.6 6.1

Table 2: Effects of variable block size in Base-Shasta.

||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

|120

|130

 P
er

ce
nt Other

Msg
Sync
Write
Read
Task

B 1 2 4

Barnes
B 1 2 4

FMM
B 1 2 4

LU
B 1 2 4

LUcont
B 1 2 4

VolRend
B 1 2 4

WaterN

||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

|120

|130

 P
er

ce
nt Other

Msg
Sync
Write
Read
Task

B 1 2 4

Barnes
B 1 2 4

FMM
B 1 2 4

LU
B 1 2 4

LUcont
B 1 2 4

VolRend
B 1 2 4

WaterN

Figure 5: Time breakdowns in 8-processor (left) and 16-processor (right) runs using variable granularity on Base-Shasta
and SMP-Shasta.

increase as we go to more processors. Because of the above, the increases in task time due to extra checking overheads
in SMP-Shasta have a more significant effect at 8 processors. The three applications most affected by the additional
checking overheads are Raytrace and the two versions of Water. In fact, Raytrace and Water-Nsquared are the only two
applications that run slower under SMP-Shasta (relative to Base-Shasta) at 8 processors even for a clustering of 4. At
16 processors, SMP-Shasta with a clustering of 4 provides an improvement over Base-Shasta for all the applications
except Raytrace, with Ocean showing a 1.9 times improvement in performance. Finally, a clustering of 2 does not
provide sufficient benefits from data sharing (at 16 processors) to counteract the overheads introduced by the SMP
protocol for several other applications (e.g., LU or LU-Contig).

To study the effects of variable coherence granularity, we made single-line changes to six of the applications to make
the coherence granularity of one or a few of the main data structures greater than 64 bytes. (The coherence granularity
is a hint that can be specified at allocation time as a parameter to a modified malloc routine.) Table 2 shows the
affected data structures along with the larger block size. We also show the change in speedups for 16-processor runs
under Base-Shasta when the larger granularity is used. (All speedups are with respect to the execution time of original
sequential code with no miss checks.) The variable granularity improves performance by transferring data in larger
units and reducing the number of misses on the main data structures. Therefore, SMP-Shasta might provide a smaller

15



problem size sequential checking overhead 16-proc speedup
time Base SMP Base SMP

Barnes 64K particles 41.25s 9.3% 15.9% 5.8 6.0
FMM 64K particles 28.28s 11.4% 20.2% 6.3 6.8
LU 2048x2048 matrix 220.34s 20.5% 19.5% 7.4 8.0
LU-Contig 2048x2048 matrix 141.05s 22.7% 29.0% 5.8 6.3
Ocean 1026x1026 ocean 44.90s 20.0% 21.9% 4.2 7.2
Water-Nsq 4096 molecules 126.08s 17.4% 33.2% 9.7 9.3
Water-Sp 4096 molecules 15.92s 17.9% 31.5% 8.6 9.7

Table 3: Execution times for larger problem sizes (64-byte line size).

||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 P
er

ce
nt

Upgrade3
Upgrade2
Write3
Write2
Read3
Read2

B 2 4

Barnes

B 2 4

FMM

B 2 4

LU

B 2 4

LUcont

B 2 4

Ocean

B 2 4

RayTr

B 2 4

VolRend

B 2 4

WaterN

B 2 4

WaterSp

||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 P
er

ce
nt

Upgrade3
Upgrade2
Write3
Write2
Read3
Read2

B 2 4

Barnes

B 2 4

FMM

B 2 4

LU

B 2 4

LUcont

B 2 4

Ocean

B 2 4

RayTr

B 2 4

VolRend

B 2 4

WaterN

B 2 4

WaterSp

Figure 6: Misses in 8-processor (left) and 16-processor (right) runs on Base-Shasta and SMP-Shasta.

performance benefit over Base-Shasta for applications whose performance has already been improved via granularity
changes. Figure 5 shows the breakdown for execution times of 8- and 16-processor runs on SMP-Shasta with the
indicated granularity changes. For the 16-processor results, while Barnes, and LU-Contig do not show much gain
from SMP-Shasta, FMM, LU, Volrend, and Water-Nsquared still get a large benefit at a clustering of 4. Finally, the
combination of variable granularity and SMP-Shasta always provides the highest overall performance on our cluster.

To demonstrate that performance of both Base-Shasta and SMP-Shasta improve with increasing problem sizes,
Table 3 gives speedups for some larger inputs sets. For each application, we give the sequential running time for the
specified input size, the miss check overheads for both Base-Shasta and SMP-Shasta, and the 16-processor speedups
for Base-Shasta and SMP-Shasta (for a clustering of 4). The Base-Shasta speedups are clearly improved over the
default speedups in Table 2. In addition, the use of SMP-Shasta still provides significant improvements in performance
over the use of Base-Shasta for the larger input sizes (except for Water-Nsquared). These results are for 64-byte lines
and do not use the larger granularities described above; speedups would be larger if the granularity changes above
were used.

16



||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 P
er

ce
nt

Downgrade
Local
Remote

B 2 4

Barnes

B 2 4

FMM

B 2 4

LU

B 2 4

LUcont

B 2 4

Ocean

B 2 4

RayTr

B 2 4

VolRend

B 2 4

WaterN

B 2 4

WaterSp

||0

|10

|20
|30

|40

|50

|60

|70

|80

|90

|100

 P
er

ce
nt

Downgrade
Local
Remote

B 2 4

Barnes

B 2 4

FMM

B 2 4

LU

B 2 4

LUcont

B 2 4

Ocean

B 2 4

RayTr

B 2 4

VolRend

B 2 4

WaterN

B 2 4

WaterSp

Figure 7: Messages in 8-processor (left) and 16-processor (right) runs on Base-Shasta and SMP-Shasta.

4.4 Statistics on Misses and Messages

Figure 6 shows the decrease in the number of misses as clustering increases. For each application there are three bars.
The leftmost represents the total misses in the application under Base-Shasta and is normalized to 100 percent. The
other two bars show the relative number of misses when SMP-Shasta is used with clustering of 2 and 4 processors. The
bars are divided into six segments, which classify the misses based on the request type (read, write, and upgrade) and
the number of hops needed to satisfy the request (2 or 3). In SMP-Shasta, a request is considered 3 hops if the reply
is from a processor other than the home processor, even if it is from the same SMP as the home. We see that the total
number of misses decreases dramatically with SMP-Shasta, especially for a clustering of 4 processors. In addition, the
number of 3-hop requests always goes down with increasing clustering. The number of 2-hop requests can sometimes
go up with increasing clustering, but only because many 3-hop requests are converted into 2-hop requests. Ocean
shows the most dramatics decrease in total misses, which explains its large performance improvement.

We have measured the average latency for read requests in our parallel runs. For most applications, the average
latency for SMP-Shasta is a few microseconds higher than for Base-Shasta, largely due to the extra locking in the
protocol. However, in some applications, the average latency goes down, probably because there are many fewer
protocol messages and therefore less contention in handling incoming messages.

Figure 7 shows the decrease in the number of messages as clustering increases. Again, the leftmost bar for each
application represents the total messages sent under Base-Shasta and is normalized to 100 percent. The other two
bars show the relative number of messages when SMP-Shasta is used with clustering of 2 and 4 processors. The
first segment (“remote”) represents the number of protocol messages sent between processors on different nodes. The
second segment of each bar (“local”) represents the number of protocol messages sent between processors on the same
SMP, excluding downgrade messages. The third segment represents the number of downgrade messages (which only
occur in SMP-Shasta) sent between processors on the same SMP. We note that around 40-60% of the messages sent in
8-processor Base-Shasta runs and 20-40% of the message sent in 16-processor runs are local, so these runs are taking
advantage of the fast communication within a single node for a significant fraction of the messages. Clearly, the total
number of protocol messages (including downgrade messages) goes down as the clustering increases. At a clustering
of 4 processors, the number of local messages is always a small fraction of the total messages sent. Similarly, the

17



||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 P
er

ce
nt

Dg3
Dg2
Dg1
Dg0

8 16

Barnes

8 16

FMM

8 16

LU

8 16

LUcont

8 16

Ocean

8 16

RayTr

8 16

VolRend

8 16

WaterN

8 16

WaterSp

Figure 8: Distribution of number of downgrade messages sent during block downgrades in 8- and 16-processor runs
on SMP-Shasta.

number of downgrade messages is typically a small fraction of the total messages sent for 16 processor runs with a
clustering of 4. Water-Spatial and Water-Nsquared are notable exceptions to this observation.

In Figure 8, we show the distribution in the number of downgrade messages that must be sent each time a block
is downgraded in SMP-Shasta. For each application, there are two bars, which give these results for 8-processor and
16-processor runs, each with a clustering of 4 processors. The individual bars show the percentage of time that 0, 1,
2, and 3 downgrade messages must be sent when downgrading a block. In most applications, the large majority of
downgrades require zero or one downgrade messages to be sent, and only a very small fraction of the downgrades
require three downgrade messages. In addition, the average number of downgrade messages that must be sent typically
goes down significantly in going from 8 to 16 processor runs. Water-Nsquared (and Water-Spatial at 8 processors)
are somewhat unusual in that a lot of downgrades require three downgrade messages. This effect may be caused by
migratory data that tends to move among the nodes of an SMP before migrating to another node. When the data finally
moves to a processor on another node, all of the local processors must be downgraded, since they have all accessed
the data.

Using a small microbenchmark code, we have measured the latency for a read request when zero, one, two, and
three downgrades are required. The latency increases by about ten microseconds in going from zero to one downgrades,
and by five microseconds for each additional downgrade.

4.5 Summary of Results

Our results show that despite the extra checking and protocol costs, SMP-Shasta provides performance benefits at both
8 and 16 processors with a clustering of four processors. For 16-processor runs, one application improves by nearly a
factor of two, six applications speed up by factors of 1.1 to 1.4, one application improves slightly, and one application
gets slightly worse. The sharing of application data by processors on the same node greatly reduces the number
of misses, and the use of SMP-Shasta greatly reduces the total number of messages, as compared to Base-Shasta.
Although it has a smaller effect for some applications, SMP-Shasta can improve performance even for applications

18



whose performance has been tuned by changing the coherence granularity of key data structures. Our best results are
always achieved when using SMP-Shasta in conjunction with variable granularity optimizations. Finally, the use of
private state tables is successful in minimizing the number of local downgrade messages that must be sent out during
a downgrade.

5 Discussion and Related Work

Our work builds on previous research on Blizzard-S [14] and Shasta [12] that study software support for fine-grain
distributed shared memory. We have extended the Shasta protocol to exploit data sharing and clustering benefits within
SMP nodes. This protocol is fully functional and runs on our prototype SMP cluster.

Several researchers have considered using SMP nodes as building blocks for software Shared Virtual Memory
(SVM) systems [1, 3, 4, 8, 18]. Among these, SoftFLASH [4] and MGS [18] are the only real implementations, with
SoftFLASH being the only implementation based on commercial multiprocessor nodes. The primary difference with
our study is that these systems support coherence across nodes at a fixed coarse granularity equal to the size of a
virtual memory page, while we support both fine and variable coherence granularity. Furthermore, the above systems
depend on the virtual memory hardware to provide atomic state lookup and data access at the granularity of a page.
The following provides a more detailed discussion of these systems.

SoftFLASH [4] uses a modified version of the Stanford FLASH protocol to support coherence in software at the
granularity of 16 KByte pages across a cluster of SGI Power Challenge machines (each with 16-18 90MHz MIPS
R8000 processors) connected by 100 MByte/sec HIPPI links. In contrast to most recent SVM systems, SoftFLASH
supports only a single-writer protocol with no “diffing”. The paper presents results for four SPLASH-2 applications
(Barnes, FFT, LU, Ocean) using large problem sizes. The study shows that while clustering is effective in reducing
internode communication, it is often accompanied by an increase in the latency of such communication; approximately
250 �s of the best-case read latency of 1419 �s is due to TLB shootdowns that are used to reduce the privilege of a
page within a node. The best performance is achieved when the number of processors per node is maximized. Ocean
(2050x2050 grid) obtains the best speedups among the applications, with a speedup of around 13 with 16 processors
(across 2 nodes) used for application code. However, it is important to qualify these speedups to account for the extra
5 processors per node dedicated to interrupt handling (which improve performance by 20%), the large problem sizes,
and the larger number of processors on each node (which provide more potential gain from clustering).

There are some similarities between the TLB shootdown mechanism in SoftFLASH and the downgrade of private
state in SMP-Shasta. The TLB entry can be thought of as a local copy of the state table entry for a page; it is upgraded
through a TLB fault and downgraded through explicit TLB shootdown interrupts. However, the TLB hardware
provides atomic state lookup and data access, allowing downgrades to be handled through interrupts; in contrast, our
downgrade mechanism uses polling (which is likely more efficient anyway) to avoid downgrades between the inline
state check and data access. In addition, the private state table in SMP-Shasta is used to selectively send downgrades to
only the processors that have already accessed a line; in contrast, SoftFLASH sends TLB shootdowns to all processors
on a node on every downgrade transition. Furthermore, SoftFLASH requires that the processor receiving a request
wait for all shootdowns to complete before handling the request. The SMP-Shasta protocol allows all processors to
continue executing during a downgrade; the incoming request is actually handled at the processor that downgrades
last. The above differences result in a much lower frequency and cost for explicit downgrades in SMP-Shasta.

MGS implements a Munin-like protocol on top of the MIT Alewife machine [18]. The processors are slow (20
MHz) relative to the network. Because Alewife lacks TLB translation hardware, MGS uses inline code that has a
high overhead (18-24 processor cycles per translation) to emulate the TLB for pointer and array references, effectively

19



making the processors appear even slower. The above effects make a comparison with our results quite difficult.
Cox et al. [3] provide the earliest study (that we are aware of) of using SMP nodes in software DSM systems.

They simulate the TreadMarks protocol [9] on both single processor and eight processor nodes. Their results show
that clustering is beneficial for the three applications they consider. Karlsson et al. [8] provide a simulation study of
the TreadMarks protocol running on an ATM cluster. They find that, given the parameters in their study (e.g., high
latency of ATM interface), dedicating a processor in the SMP to protocol processing does not pay off since there
is a high likelihood of finding spare cycles on the compute processors on a node. Finally, Bilas et al. [1] provide
simulation studies of both a TreadMark-like protocol and the AURC protocol [7] running on an SMP cluster. Their
results for the TreadMarks-like protocol are optimistic, since they do not model the cost of TLB shootdowns. The
results of the AURC protocol show a slowdown from exploiting SMP nodes for 4 out of 5 applications compared to
using uniprocessor nodes; the slowdown is due to the fact that AURC uses more bandwidth than a TreadMarks-like
protocol and that the bandwidth per processor is decreased in their study when they go to SMP nodes.

Many software DSM systems (including Treadmarks and AURC) depend on properly-labeled programs [5] for
correct execution. While restricting a system to properly-labeled programs potentially allows additional optimizations,
this approach sacrifices the ability to transparently execute all legal programs for a given architecture. On the other
hand, Shasta will correctly execute any Alpha program, whether or not the program exhibits races. In addition, Shasta
does not require exact labeling of acquires and releases, as required by protocols that exploit lazy release consistency.
Such information is not available in the executables of any commercial processors, even those that support a relaxed
memory model (e.g. Alpha, PowerPC, and Sparc). Again, the need for exact labeling sacrifices transparency.

A few software or hybrid hardware/software DSM systems have explored dedicating the second processor on a
dual-processor SMP node for protocol and message handling (e.g., Typhoon-0 [13], Home-Based LRC [19]). These
systems do not exploit any of the intra-node data sharing and clustering benefits of SMP nodes. Furthermore, any
speedup numbers reported for P processors must be qualified by the fact that the system actually uses 2P general-purpose
processors to achieve that performance.

We plan to extend our work on SMP-Shasta in several areas. There are numerous protocol actions that can be
further tuned. We also plan to exploit benefits that may arise from sharing more data structures among local processors
(such as the directory state or incoming message queues, as discussed in Section 3.1), and to implement more efficient
lock and barrier synchronization primitives by exploiting the SMP hardware.

6 Conclusion

Shasta is a software distributed shared memory system that supports fine-grain access to shared memory by inserting
code before loads and stores in an application that checks the state of the shared data being accessed. We have
explored opportunities for improving performance when Shasta is used to execute parallel applications on a cluster that
consists of SMP nodes. We have developed modifications to the base Shasta protocol that allow application data to be
shared among processors on a single SMP via the hardware cache-coherent shared memory. The protocol eliminates
potential races between the inline checking code and other protocol operations without introducing any synchronization
operations in the inline code. Our method is to send “downgrade” message to local processors for operations that can
lead to race conditions involving inline checks and to maintain private state information to minimize the number of
downgrade messages that must be sent.

We have implemented this protocol in Shasta for our cluster of four Alpha SMPs connected by the Memory Channel.
Despite the extra checking and protocol costs, the performance of eight of the nine SPLASH-2 applications improves
when this protocol is used for 16-processor runs. One application improves by nearly a factor of two, six applications

20



speed up by factors of 1.1 to 1.4, and one application only slightly improves. The SMP-Shasta protocol is effective
in improving performance even for applications that make use of the variable granularity mechanism in Shasta. The
best performance is always achieved by using SMP-Shasta along with the variable granularity optimizations. The
SMP-Shasta protocol appears to be successful in effectively exploiting the fast communication provided by SMP
nodes, and we expect its performance benefit to improve as we tune the current implementation.

Acknowledgments

We would like to thank Marc Viredaz, Drew Kramer, and Luiz Barroso for their help in setting up and maintaining our
cluster of AlphaServers.

References

[1] A. Bilas, L. Iftode, D. Martin, and J. P. Singh. Shared Virtual Memory Across SMP Nodes Using Automatic Update: Protocols
and Performance. Technical Report TR-517-96, Department of Computer Science, Princeton University, 1996.

[2] J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Implementation and Performance of Munin. In Proceedings of the 13th ACM
Symposium on Operating Systems Principles, pages 152–164, Oct. 1991.

[3] A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, and W. Zwaenepoel. Software Versus Hardware Shared-Memory
Implementation: A Case Study. In Proceedingsof the 21st Annual International Symposium on Computer Architecture, pages
106–117, April 1994.

[4] A. Erlichson, N. Nuckolls, G. Chesson, and J. Hennessy. SoftFLASH: Analyzing the Performance of Clustered Distributed
Virtual Shared Memory. In Proceedings of the Seventh International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 210–220, Oct. 1996.

[5] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy. Memory Consistency and Event Ordering
in Scalable Shared-Memory Multiprocessors. In Proceedings of the 17th Annual International Symposium on Computer
Architecture, pages 15–26, May 1990.

[6] R. B. Gillett. Memory Channel Network for PCI. IEEE Micro, 16(1):12–18, Feb. 1996.

[7] L. Iftode, C. Dubnicki, E. Felten, and K. Li. Improving Release-Consistent Shared Virtual Memory Using Automatic Update.
In Proceedings of the 2nd Symposium on High-Performance Computer Architecture, Feb. 1996.

[8] M. Karlsson and P. Stenstrom. Performance Evaluation of a Cluster-Based Multiprocessor Built from ATM Switches and
Bus-Based Multiprocessor Servers. In Proceedings of the 2nd International Symposium on High-Performance Computer
Architecture, pages 4–13, February 1996.

[9] P. Keleher, A. L. Cox, S. Dwarkadas, and W. Zwaenepoel. TreadMarks: Distributed Shared Memory on Standard Workstations
and Operating Systems. In Proceedings of the 1994 Winter Usenix Conference, pages 115–132, January 1994.

[10] K. Li and P. Hudak. Memory Coherence in Shared Virtual Memory Systems. ACM Transactions on Computer Systems,
7(4):321–359, Nov. 1989.

[11] D. J. Scales and K. Gharachorloo. Performance of the Shasta Distributed Shared Memory Protocol. Technical Report 97/2,
Western Research Laboratory, Digital Equipment Corporation, Feb. 1997.

[12] D. J. Scales, K. Gharachorloo, and C. A. Thekkath. Shasta: A Low-Overhead Software-Only Approach to Fine-Grain Shared
Memory. In Proceedings of the Seventh International Conference on Architectural Support for Programming Languages and
Operating Systems, pages 174–185, Oct. 1996.

21



[13] I. Schoinas, B. Falsafi, M. D. Hill, J. R. Larus, C. E. Lukas, S. S. Mukherjee, S. K. Reinhardt, E. Schnarr, and D. A. Wood.
Implementing Fine-Grain Distributed Shared Memory on Commodity SMP Workstations. Technical Report 1307, University
of Wisconsin Computer Sciences, Mar. 1996.

[14] I. Schoinas, B. Falsafi, A. R. Lebeck, S. K. Reinhardt, J. R. Larus, and D. A. Wood. Fine-grain Access Control for Distributed
Shared Memory. In Proceedings of the Sixth International Conference on Architectural Support for Programming Languages
and Operating Systems, pages 297–306, Oct. 1994.

[15] J. P. Singh, W. D. Weber, and A. Gupta. SPLASH: Stanford Parallel Applications for Shared Memory. Computer Architecture
News, 20(1):5–44, Mar. 1992.

[16] R. L. Sites and R. T. Witek, editors. Alpha AXP Architecture Reference Manual. Digital Press, 1995. Second Edition.

[17] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-2 Programs: Characterization and Methodological
Considerations. In Proceedings of the 22nd International Symposium on Computer Architecture, pages 24–36, June 1995.

[18] D. Yeung, J. Kubiatowicz, and A. Agarwal. MGS: A Multigrain Shared Memory System. In Proceedings of the 23rd Annual
International Symposium on Computer Architecture, pages 44–56, May 1996.

[19] Y. Zhou, L. Iftode, and K. Li. Performance Evaluation of Two Home-Based Lazy Release Consistency Protocols for Shared
Virtual Memory Systems. In Proceedings of the 2nd Symposium on Operating Systems Design and Implementation, Oct.
1996.

22



WRL Research Reports

‘‘Titan System Manual.’’ Michael J. K. Nielsen. ‘‘Compacting Garbage Collection with Ambiguous

WRL Research Report 86/1, September 1986. Roots.’’ Joel F. Bartlett. WRL Research Report

88/2, February 1988.
‘‘Global Register Allocation at Link Time.’’ David

W. Wall. WRL Research Report 86/3, October ‘‘The Experimental Literature of The Internet: An

1986. Annotated Bibliography.’’ Jeffrey C. Mogul.
WRL Research Report 88/3, August 1988.

‘‘Optimal Finned Heat Sinks.’’ William
R. Hamburgen. WRL Research Report 86/4, ‘‘Measured Capacity of an Ethernet:  Myths and

October 1986. Reality.’’ David R. Boggs, Jeffrey C. Mogul,
Christopher A. Kent. WRL Research Report

‘‘The Mahler Experience: Using an Intermediate
88/4, September 1988.

Language as the Machine Description.’’ David
W. Wall and Michael L. Powell. WRL ‘‘Visa Protocols for Controlling Inter-Organizational

Research Report 87/1, August 1987. Datagram Flow:  Extended Description.’’

Deborah Estrin, Jeffrey C. Mogul, Gene
‘‘The Packet Filter: An Efficient Mechanism for

Tsudik, Kamaljit Anand. WRL Research
User-level Network Code.’’ Jeffrey C. Mogul,

Report 88/5, December 1988.
Richard F. Rashid, Michael J. Accetta. WRL

Research Report 87/2, November 1987. ‘‘SCHEME->C A Portable Scheme-to-C Compiler.’’

Joel F. Bartlett. WRL Research Report 89/1,
‘‘Fragmentation Considered Harmful.’’ Christopher

January 1989.
A. Kent, Jeffrey C. Mogul. WRL Research

Report 87/3, December 1987. ‘‘Optimal Group Distribution in Carry-Skip Ad-

ders.’’ Silvio Turrini. WRL Research Report
‘‘Cache Coherence in Distributed Systems.’’

89/2, February 1989.
Christopher A. Kent. WRL Research Report

87/4, December 1987. ‘‘Precise Robotic Paste Dot Dispensing.’’ William
R. Hamburgen. WRL Research Report 89/3,

‘‘Register Windows vs. Register Allocation.’’ David
February 1989.

W. Wall. WRL Research Report 87/5, December

1987. ‘‘Simple and Flexible Datagram Access Controls for

Unix-based Gateways.’’ Jeffrey C. Mogul.
‘‘Editing Graphical Objects Using Procedural

WRL Research Report 89/4, March 1989.
Representations.’’ Paul J. Asente. WRL

Research Report 87/6, November 1987. ‘‘Spritely NFS: Implementation and Performance of

Cache-Consistency Protocols.’’ V. Srinivasan
‘‘The USENET Cookbook: an Experiment in

and Jeffrey C. Mogul. WRL Research Report
Electronic Publication.’’ Brian K. Reid. WRL

89/5, May 1989.
Research Report 87/7, December 1987.

‘‘Available Instruction-Level Parallelism for Super-
‘‘MultiTitan: Four Architecture Papers.’’ Norman

scalar and Superpipelined Machines.’’ Norman
P. Jouppi, Jeremy Dion, David Boggs, Michael

P. Jouppi and David W. Wall. WRL Research
J. K. Nielsen. WRL Research Report 87/8, April

Report 89/7, July 1989.
1988.

‘‘A Unified Vector/Scalar Floating-Point Architec-
‘‘Fast Printed Circuit Board Routing.’’ Jeremy

ture.’’ Norman P. Jouppi, Jonathan Bertoni,
Dion. WRL Research Report 88/1, March 1988.

and David W. Wall. WRL Research Report
89/8, July 1989.

23



‘‘Architectural and Organizational Tradeoffs in the ‘‘1990 DECWRL/Livermore Magic Release.’’

Design of the MultiTitan CPU.’’ Norman Robert N. Mayo, Michael H. Arnold, Walter
P. Jouppi. WRL Research Report 89/9, July S. Scott, Don Stark, Gordon T. Hamachi.
1989. WRL Research Report 90/7, September 1990.

‘‘Integration and Packaging Plateaus of Processor ‘‘Pool Boiling Enhancement Techniques for Water at

Performance.’’ Norman P. Jouppi. WRL Low Pressure.’’ Wade R. McGillis, John
Research Report 89/10, July 1989. S. Fitch, William R. Hamburgen, Van

P. Carey. WRL Research Report 90/9, December
‘‘A 20-MIPS Sustained 32-bit CMOS Microproces-

1990.
sor with High Ratio of Sustained to Peak Perfor-

mance.’’ Norman P. Jouppi and Jeffrey ‘‘Writing Fast X Servers for Dumb Color Frame Buf-

Y. F. Tang. WRL Research Report 89/11, July fers.’’ Joel McCormack. WRL Research Report

1989. 91/1, February 1991.

‘‘The Distribution of Instruction-Level and Machine ‘‘A Simulation Based Study of TLB Performance.’’

Parallelism and Its Effect on Performance.’’ J. Bradley Chen, Anita Borg, Norman
Norman P. Jouppi. WRL Research Report P. Jouppi. WRL Research Report 91/2, Novem-

89/13, July 1989. ber 1991.

‘‘Long Address Traces from RISC Machines: ‘‘Analysis of Power Supply Networks in VLSI Cir-

Generation and Analysis.’’ Anita Borg, cuits.’’ Don Stark. WRL Research Report 91/3,

R.E.Kessler, Georgia Lazana, and David April 1991.

W. Wall. WRL Research Report 89/14, Septem-
‘‘TurboChannel T1 Adapter.’’ David Boggs. WRL

ber 1989.
Research Report 91/4, April 1991.

‘‘Link-Time Code Modification.’’ David W. Wall.
‘‘Procedure Merging with Instruction Caches.’’

WRL Research Report 89/17, September 1989.
Scott McFarling. WRL Research Report 91/5,

‘‘Noise Issues in the ECL Circuit Family.’’ Jeffrey March 1991.

Y.F. Tang and J. Leon Yang. WRL Research
‘‘Don’t Fidget with Widgets, Draw!.’’ Joel Bartlett.

Report 90/1, January 1990.
WRL Research Report 91/6, May 1991.

‘‘Efficient Generation of Test Patterns Using
‘‘Pool Boiling on Small Heat Dissipating Elements in

Boolean Satisfiablilty.’’ Tracy Larrabee. WRL
Water at Subatmospheric Pressure.’’ Wade

Research Report 90/2, February 1990.
R. McGillis, John S. Fitch, William

‘‘Two Papers on Test Pattern Generation.’’ Tracy R. Hamburgen, Van P. Carey. WRL Research

Larrabee. WRL Research Report 90/3, March Report 91/7, June 1991.
1990.

‘‘Incremental, Generational Mostly-Copying Gar-

‘‘Virtual Memory vs. The File System.’’ Michael bage Collection in Uncooperative Environ-

N. Nelson. WRL Research Report 90/4, March ments.’’ G. May Yip. WRL Research Report

1990. 91/8, June 1991.

‘‘Efficient Use of Workstations for Passive Monitor- ‘‘Interleaved Fin Thermal Connectors for Multichip
ing of Local Area Networks.’’ Jeffrey C. Mogul. Modules.’’ William R. Hamburgen. WRL

WRL Research Report 90/5, July 1990. Research Report 91/9, August 1991.

‘‘A One-Dimensional Thermal Model for the VAX ‘‘Experience with a Software-defined Machine Ar-
9000 Multi Chip Units.’’ John S. Fitch. WRL chitecture.’’ David W. Wall. WRL Research

Research Report 90/6, July 1990. Report 91/10, August 1991.

24



‘‘Network Locality at the Scale of Processes.’’ ‘‘Fluoroelastomer Pressure Pad Design for

Jeffrey C. Mogul. WRL Research Report 91/11, Microelectronic Applications.’’ Alberto
November 1991. Makino, William R. Hamburgen, John

S. Fitch. WRL Research Report 93/7, November
‘‘Cache Write Policies and Performance.’’ Norman

1993.
P. Jouppi. WRL Research Report 91/12, Decem-

ber 1991. ‘‘A 300MHz 115W 32b Bipolar ECL Microproces-

sor.’’ Norman P. Jouppi, Patrick Boyle,
‘‘Packaging a 150 W Bipolar ECL Microprocessor.’’

Jeremy Dion, Mary Jo Doherty, Alan Eustace,
William R. Hamburgen, John S. Fitch. WRL

Ramsey Haddad, Robert Mayo, Suresh Menon,
Research Report 92/1, March 1992.

Louis Monier, Don Stark, Silvio Turrini, Leon
‘‘Observing TCP Dynamics in Real Networks.’’ Yang, John Fitch, William Hamburgen, Rus-

Jeffrey C. Mogul. WRL Research Report 92/2, sell Kao, and Richard Swan. WRL Research
April 1992. Report 93/8, December 1993.

‘‘Systems for Late Code Modification.’’ David ‘‘Link-Time Optimization of Address Calculation on
W. Wall. WRL Research Report 92/3, May a 64-bit Architecture.’’ Amitabh Srivastava,
1992. David W. Wall. WRL Research Report 94/1,

February 1994.‘‘Piecewise Linear Models for Switch-Level Simula-

tion.’’ Russell Kao. WRL Research Report 92/5, ‘‘ATOM: A System for Building Customized
September 1992. Program Analysis Tools.’’ Amitabh Srivastava,

Alan Eustace. WRL Research Report 94/2,‘‘A Practical System for Intermodule Code Optimiza-
March 1994.tion at Link-Time.’’ Amitabh Srivastava and

David W. Wall. WRL Research Report 92/6, ‘‘Complexity/Performance Tradeoffs with Non-
December 1992. Blocking Loads.’’ Keith I. Farkas, Norman

P. Jouppi. WRL Research Report 94/3, March‘‘A Smart Frame Buffer.’’ Joel McCormack & Bob
1994.McNamara. WRL Research Report 93/1,

January 1993. ‘‘A Better Update Policy.’’ Jeffrey C. Mogul.
WRL Research Report 94/4, April 1994.‘‘Recovery in Spritely NFS.’’ Jeffrey C. Mogul.

WRL Research Report 93/2, June 1993. ‘‘Boolean Matching for Full-Custom ECL Gates.’’

Robert N. Mayo, Herve Touati. WRL Research‘‘Tradeoffs in Two-Level On-Chip Caching.’’
Report 94/5, April 1994.Norman P. Jouppi & Steven J.E. Wilton. WRL

Research Report 93/3, October 1993. ‘‘Software Methods for System Address Tracing:

Implementation and Validation.’’ J. Bradley‘‘Unreachable Procedures in Object-oriented
Chen, David W. Wall, and Anita Borg. WRLPrograming.’’ Amitabh Srivastava. WRL
Research Report 94/6, September 1994.Research Report 93/4, August 1993.

‘‘Performance Implications of Multiple Pointer‘‘An Enhanced Access and Cycle Time Model for
Sizes.’’ Jeffrey C. Mogul, Joel F. Bartlett,On-Chip Caches.’’ Steven J.E. Wilton and Nor-
Robert N. Mayo, and Amitabh Srivastava.man P. Jouppi. WRL Research Report 93/5,
WRL Research Report 94/7, December 1994.July 1994.

‘‘How Useful Are Non-blocking Loads, Stream Buf-‘‘Limits of Instruction-Level Parallelism.’’ David
fers, and Speculative Execution in Multiple IssueW. Wall. WRL Research Report 93/6, November
Processors?.’’ Keith I. Farkas, Norman1993.
P. Jouppi, and Paul Chow. WRL Research
Report 94/8, December 1994.

25



‘‘Drip: A Schematic Drawing Interpreter.’’ Ramsey ‘‘Efficient Procedure Mapping using Cache Line

W. Haddad. WRL Research Report 95/1, March Coloring.’’ Amir H. Hashemi, David R. Kaeli,
1995. and Brad Calder. WRL Research Report 96/3,

October 1996.
‘‘Recursive Layout Generation.’’ Louis M. Monier,

Jeremy Dion. WRL Research Report 95/2, ‘‘Optimizations and Placement with the Genetic

March 1995. Workbench.’’ Silvio Turrini. WRL Research

Report 96/4, November 1996.
‘‘Contour: A Tile-based Gridless Router.’’ Jeremy

Dion, Louis M. Monier. WRL Research Report ‘‘Performance of the Shasta Distributed Shared

95/3, March 1995. Memory Protocol.’’ Daniel J. Scales and
Kourosh Gharachorloo. WRL Research Report

‘‘The Case for Persistent-Connection HTTP.’’
97/2, February 1997.

Jeffrey C. Mogul. WRL Research Report 95/4,

May 1995. ‘‘Fine-Grain Software Distributed Shared Memory

on SMP Clusters.’’ Daniel J. Scales, Kourosh
‘‘Network Behavior of a Busy Web Server and its

Gharachorloo, and Anshu Aggarwal. WRL
Clients.’’ Jeffrey C. Mogul. WRL Research

Research Report 97/3, February 1997.
Report 95/5, October 1995.

‘‘The Predictability of Branches in Libraries.’’ Brad
Calder, Dirk Grunwald, and Amitabh
Srivastava. WRL Research Report 95/6, October

1995.

‘‘Shared Memory Consistency Models: A Tutorial.’’

Sarita V. Adve, Kourosh Gharachorloo. WRL

Research Report 95/7, September 1995.

‘‘Eliminating Receive Livelock in an Interrupt-driven

Kernel.’’ Jeffrey C. Mogul and
K. K. Ramakrishnan. WRL Research Report

95/8, December 1995.

‘‘Memory Consistency Models for Shared-Memory

Multiprocessors.’’ Kourosh Gharachorloo.
WRL Research Report 95/9, December 1995.

‘‘Register File Design Considerations in Dynamically

Scheduled Processors.’’ Keith I. Farkas, Nor-
man P. Jouppi, Paul Chow. WRL Research

Report 95/10, November 1995.

‘‘Optimization in Permutation Spaces.’’ Silvio
Turrini. WRL Research Report 96/1, November

1996.

‘‘Shasta: A Low Overhead, Software-Only Approach

for Supporting Fine-Grain Shared Memory.’’

Daniel J. Scales, Kourosh Gharachorloo, and
Chandramohan A. Thekkath. WRL Research

Report 96/2, November 1996.

26



WRL Technical Notes

‘‘TCP/IP PrintServer: Print Server Protocol.’’ Brian ‘‘Cache Replacement with Dynamic Exclusion.’’

K. Reid and Christopher A. Kent. WRL Tech- Scott McFarling. WRL Technical Note TN-22,

nical Note TN-4, September 1988. November 1991.

‘‘TCP/IP PrintServer: Server Architecture and Im- ‘‘Boiling Binary Mixtures at Subatmospheric Pres-

plementation.’’ Christopher A. Kent. WRL sures.’’ Wade R. McGillis, John S. Fitch, Wil-
Technical Note TN-7, November 1988. liam R. Hamburgen, Van P. Carey. WRL

Technical Note TN-23, January 1992.
‘‘Smart Code, Stupid Memory: A Fast X Server for a

Dumb Color Frame Buffer.’’ Joel McCormack. ‘‘A Comparison of Acoustic and Infrared Inspection

WRL Technical Note TN-9, September 1989. Techniques for Die Attach.’’ John S. Fitch.
WRL Technical Note TN-24, January 1992.

‘‘Why Aren’t Operating Systems Getting Faster As

Fast As Hardware?.’’ John Ousterhout. WRL ‘‘TurboChannel Versatec Adapter.’’ David Boggs.
Technical Note TN-11, October 1989. WRL Technical Note TN-26, January 1992.

‘‘Mostly-Copying Garbage Collection Picks Up ‘‘A Recovery Protocol For Spritely NFS.’’ Jeffrey
Generations and C++.’’ Joel F. Bartlett. WRL C. Mogul. WRL Technical Note TN-27, April

Technical Note TN-12, October 1989. 1992.

‘‘Characterization of Organic Illumination Systems.’’ ‘‘Electrical Evaluation Of The BIPS-0 Package.’’

Bill Hamburgen, Jeff Mogul, Brian Reid, Alan Patrick D. Boyle. WRL Technical Note TN-29,

Eustace, Richard Swan, Mary Jo Doherty, and July 1992.

Joel Bartlett. WRL Technical Note TN-13, April
‘‘Transparent Controls for Interactive Graphics.’’

1989.
Joel F. Bartlett. WRL Technical Note TN-30,

‘‘Improving Direct-Mapped Cache Performance by July 1992.

the Addition of a Small Fully-Associative Cache
‘‘Design Tools for BIPS-0.’’ Jeremy Dion & Louis

and Prefetch Buffers.’’ Norman P. Jouppi.
Monier. WRL Technical Note TN-32, December

WRL Technical Note TN-14, March 1990.
1992.

‘‘Limits of Instruction-Level Parallelism.’’ David
‘‘Link-Time Optimization of Address Calculation on

W. Wall. WRL Technical Note TN-15, Decem-
a 64-Bit Architecture.’’ Amitabh Srivastava

ber 1990.
and David W. Wall. WRL Technical Note

‘‘The Effect of Context Switches on Cache Perfor- TN-35, June 1993.

mance.’’ Jeffrey C. Mogul and Anita Borg.
‘‘Combining Branch Predictors.’’ Scott McFarling.

WRL Technical Note TN-16, December 1990.
WRL Technical Note TN-36, June 1993.

‘‘MTOOL: A Method For Detecting Memory Bot-
‘‘Boolean Matching for Full-Custom ECL Gates.’’

tlenecks.’’ Aaron Goldberg and John
Robert N. Mayo and Herve Touati. WRL

Hennessy. WRL Technical Note TN-17, Decem-
Technical Note TN-37, June 1993.

ber 1990.
‘‘Piecewise Linear Models for Rsim.’’ Russell Kao,

‘‘Predicting Program Behavior Using Real or Es-
Mark Horowitz. WRL Technical Note TN-40,

timated Profiles.’’ David W. Wall. WRL Tech-
December 1993.

nical Note TN-18, December 1990.

27



‘‘Speculative Execution and Instruction-Level Paral-

lelism.’’ David W. Wall. WRL Technical Note

TN-42, March 1994.

‘‘Ramonamap - An Example of Graphical Group-

ware.’’ Joel F. Bartlett. WRL Technical Note

TN-43, December 1994.

‘‘ATOM: A Flexible Interface for Building High Per-

formance Program Analysis Tools.’’ Alan Eus-
tace and Amitabh Srivastava. WRL Technical

Note TN-44, July 1994.

‘‘Circuit and Process Directions for Low-Voltage

Swing Submicron BiCMOS.’’ Norman
P. Jouppi, Suresh Menon, and Stefanos
Sidiropoulos. WRL Technical Note TN-45,

March 1994.

‘‘Experience with a Wireless World Wide Web

Client.’’ Joel F. Bartlett. WRL Technical Note

TN-46, March 1995.

‘‘I/O Component Characterization for I/O Cache

Designs.’’ Kathy J. Richardson. WRL Tech-

nical Note TN-47, April 1995.

‘‘Attribute caches.’’ Kathy J. Richardson, Michael
J. Flynn. WRL Technical Note TN-48, April

1995.

‘‘Operating Systems Support for Busy Internet Ser-

vers.’’ Jeffrey C. Mogul. WRL Technical Note

TN-49, May 1995.

‘‘The Predictability of Libraries.’’ Brad Calder,
Dirk Grunwald, Amitabh Srivastava. WRL

Technical Note TN-50, July 1995.

WRL Research Reports and Technical Notes are available on the World Wide Web, from
http://www.research.digital.com/wrl/techreports/index.html.

28


