BASIC-11
Laboratory Extensions
User's Guide

Order No. DEC-11-LBEPA-A-D

dlilgliltiall

BASIC-11
Laboratory Extensions
User’'s Guide
Order No. DEC-11-LBEPA-A-D

digital equipment corporation - maynard, massachusetts

First Printing, May 1976

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use or

reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright (:) 1976 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8

DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX

COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-10
DECCOMM DECsystem-20 TYPESET-11

2/77-26

PREFACE
CHAPTER

CHAPTER

APPENDIX

APPENDIX

1

2

NN DNNDNDDNDN
P .
B wWwWwwwN -
« o e
w N~

. . e e o o
« . « e
oW N

.
GO Ut S

. .
G W=

DN NDDNDNODN

.
N =

NN N
.

o Y OV
.

.
. .

O NNNN I,
. .
U1 W

h= NN NN NN N
. e e e .
. N
U W

s}

Owo weer w

CONTENTS

INTRODUCTION

LABORATORY PERIPHERAL SYSTEM SUPPORT
(LPS11, AR11l, and DR11-K)

GENERAL FEATURES
DESCRIPTION OF ROUTINES
MODULE LPS0 (REQUIRED MODULE)
Defining the Buffer (USE)
Allowing Access to a Buffer (ACC)
Returning Data from a Buffer (RDB)
MODULE LPS1 (A/D CONVERSION AND
NUMERIC READOUT)
Analog to Digital Conversion (ADC)
Real-Time Sampling (RTS)
Display on the Light Emitting Diodes (LED)
Returning A/D Data from Buffer (CVSG)
MODULE LPS2 (REAL~TIME CLOCK)
Setting the Clock Rate (SETR)
Setting the Clock to Rate and Time (SETC)
Histograms - Timed Schmitt Trigger (HIST)
Delaying Program Execution (WAIT)
Returning Current Software Clock Tick Value
(RTIM)
MODULE LPS3 (DIGITAL I/0)
Reading the Digital Input Register (DIR)
Writing to the Digital Output Register
(DOR)
Digital Readout Sampling (DRS)
Relay Control (REL)
Read/Write Data From/Into Register (IPK)
MODULE LPS4 (DISPLAY)
Defining the Display Buffer (CLRD)
Putting Data into Display Buffer (PUTD)
Background Display Routine (DIS)
Display Buffer (FSH)
Displaying X,Y Data (DXY)
Flashing X,Y Data (FXY)
HARDWARE REQUIRED FOR LPS COMMANDS

COMMAND SUMMARY
BUILDING LOAD MOLCULES

BASIC/RT-11
LPS Support

BASIC/CAPS-11
LPS Support

BASIC/PTS-11
LPS Support

iii

www ?im vy}
NN

CONTENTS (Cont.)

APPENDIX C ERROR MESSAGES C-1
GLOSSARY Glossary-1
INDEX Index~1
TABLES
TABLE 2-1 Mode Options in RTS Sampling 2-10
2=-2 Mode for Values of m 2-10
2-3 Selecting the Clock Rate 2-13
2-4 Selecting the Clock Mode 2-14

iv

PREFACE

This manual describes the extensions for wuse with the BASIC/RT-11,
BASIC/PTS-11, and BASIC/CAPS-11 systems. The extensions enable you to
utilize PDP~11 lab peripherals such as LPS11, ARll, and DR1l1-K.
Unless stated otherwise, the descriptions of all routines in this
manual apply to the systems mentioned above.

The routines for these peripherals are provided in library form that
can be linked with a user program. The user should have a programming
knowledge of BASIC and some understanding of the peripherals.

The following table describes the documentation conventions used in
this manual.

Convention Meaning
<LF> Line feed
<CR> Carriage return
or CTRL Used with special system control

characters. Depress CTRL key while
striking designated character.

® Altmode
Square Brackets [] Optional arguments are enclosed.
Lower case letter or Value to be supplied by user. May
lower case letter be any valid arithmetic expression.
followed by a digit
(a,b,x0,y1)
Lower case letter String to be supplied by user. May
followed by a dollar be string constant (enclosed in
sign (a$,x$) quotes) or variable (AS).
Upper case letter Numeric variable whose value will
(A,B,X,Y) be determined by call or an array

name.

Y axis The vertical axis.
X axis The horizontal axis.

The following manuals are necessary references for this manual:

RT-11 System Reference Manual
DEC-11-ORUGA-C-D

BASIC-11 Language Reference Manual
DEC-11-LIBBA-B-D

BASIC/RT-11 Language Reference Manual
DEC-11-LBACA~-D-D

BASIC/PTS User's Manual
DEC-11-LPTBA-A-D

BASIC/CAPS~11 User's Manual
DEC-11-LIBCA-A-D

LPS11 User's Guide
DEC~11-HLPGA-C-D

AR11l User's Guide
DEC-11-HARUG

DR11-K Interface User's Guide and Maintenance Manual
EK-DR11K-MM-001

vi

CHAPTER 1

INTRODUCTION

BASIC Extensions support the RT-11, CAPS-11, and PTS-11 systems, and
the following hardware:

LPS11 Laboratory Peripheral System
AR11l Analog Real-Time:- Interface
DR11-K Digital Input/Output Interface

The Laboratory Peripheral System (LPS) support can utilize LPS11, ARI1l
and DR11-K to sample and display data from analog tc digital
converters, digital input/output, or external events. LPS support
contains 23 routines to control LPS11, AR1l and DR11-K. These 23
routines are divided into five categories according to their function.
Each category is supplied as a module. The first module, LPS0O, is the
main module which contains all necessary support routines for using
the other four modules. This module is required but the other four
are optional.

The support for the peripherals consists of a library of routines that
can be controlled by a user program through a CALL statement. The
format of the CALL statement is:

CALL "name" (argument list)

Under BASIC/CAPS-~11, the routines can also be called by a statement of
the form:

name (argument list)

The function and limitation of each routine is described in detail 1in
the following chapter.

1-1

CHAPTER 2

LABORATORY PERIPHERAL SYSTEM SUPPORT
(LPS11l, AR1l, DR11-K)

2.1 GENERAL FEATURES

Laboratory Peripheral System support for BASIC-11 allows a user to
utilize the LPS hardware which includes LPS11, AR11l and up to 16
DR11-K. LPS support enables the sampling and displaying in a
real-time environment of a variety of data from analog to digital
converters, digital input/output, and external events. Sampling 1is
controlled by crystal clocks and/or Schmitt triggers; it is possible
to specify such parameters as sampling rate and response time thus
allowing maximum flexibility.

NOTE

In a multiple DR11-K system, there must
be a difference of 10(octal) between
each unit in the interrupt and vector
address. The status register address
decreases by 10(octal) while the wvector
address increases by 10(octal).

All LPS routines are issued by the BASIC CALL statement allowing
experienced PDP~11 assembly language programmers to easily include or
modify the routines to meet particular (or special) reguirements.

2.2 DESCRIPTION OF ROUTINES

The BASIC Extensions contain 23 routines to control the following
options on the LPS11 hardware:

LPSAD~12 12-bit ADC, sample and hold, 8-channel
multiplexer, and LED (light emitting diodes)
6-digit programmable decimal readout display.

LPSAD-NP Direct memory access (DMA) option for the LPSAD-12

ADC.

LPSAG Four differential preamplifiers with +or-1V input.
Maximum of 4 LPSAGs per LPS11-S system.

LPSAG-VG Four independently selectable multigain
differential preamplifiers.

LPSAM 8-channel expansion multiplexer.

LPSSH Second sample and hold for a dual sample and hold
configuration.

LPSKW Programmakble real-time <clock and two Schmitt
triggers.

LPSVC Display control includina two 12-bit DACS. This

2-1

LABORATORY PERIPHERAL SYSTEM SUPPORT

controller is capable of handling Digital's VR14

and VR20 scopes.

LPSDR lé6-bit buffered digital I/0 with
capabilities and two programmable normally open

(n.o.) relays. LPSDR cannot be used if DR11-K

used.

The 23 routines are divided 1into 5 categories according

function.

Each category is supplied as a separate module.

drive

is

to

The following 1list is a summary of the routines available
controlling LPS hardware and a brief description of each:

MODULE LPSO (This module is always required.)

USE Defines array(s) to be used for storage of
data.
ACC Allows access to an entire array.
RDB Returns the next data point from a specified
buffer.
MODULE LPS1 (ANALOG TO DIGITAL CONVERSION)
ADC Initiates an A/D conversion on a specified
channel and returns the result to the user.
RTS Performs real-time buffered/clocked sampling
of the A/D.
LED Displays a numeric value on the Light
Emitting Diodes.
CVSG Returns the next data value and gain in two
separate variables.
MODULE LPS2 (REAL~-TIME CLOCK)
SETR Sets clock running at a designated rate and
mode.
SETC Sets clock running at a designated rate and

initiates some action after a specified

number of seconds have elapsed.

HIST Performs histogram sampling using a timed
Schmitt trigger.
WAIT Waits for a specified event to occur.
RTIM Returns the value of the internal software
clock counter.
MODULE LPS3 (DIGITAL I/O)
DIR Reads Digital Input register.
DOR Writes Digital Output register.
DRS Performs sampling of the Digital Input
register.
REL Closes or opens one of two relays.
IPK Reads a value from a register or writes a
value into a register.
MODULE LPS4 (DISPLAY)
CLRD Defines display buffer and optionally clear
or scale the data in it.
PUTD Puts data into data buffer.

their

for

LABORATORY PERIPHERAL SYSTEM SUPPORT

DIS Displays data with incrementing X and
variable y whenever BASIC is waiting for I/0.

FSH Displays a single complete sweep of data with
incrementing x and variable vy.

DXY Displays data with variable x and y values
whenever BASIC is waiting for I/0.

FXY Displays a single complete sweep of data with

variable x and y values.

Module LPSO is the main module and contains not only the USE, ACC, and
RDB routines, but also all necessary support routines for the other

modules. Therefore, it must be included, although the other modules
are optional.

Data buffers used by the LPS routines differ from the normal arrays in
BASIC in that they wuse only one word of storage per data element
rather than two. This is because all LPS data 1is no larger than
2**16~1 and can be stored as unsigned 16-bit data. All data buffers
must be defined by a USE routine before they are accessed by any other
LPS routines. The USE routine allows the user to partition and make
equivalent arrays for ease in displaying and manipulating common data.
All data buffers defined in the USE routine are circular with internal
pointers keeping track of where data is to be placed next and/or
retrieved.

2.3 MODULE LPSO0 (REQUIRED MODULE)

2.3.1 Defining the Buffer (USE)

USE

The USE routine defines buffer areas for use with the ACC, RDB, RTS,
HIST, DRS, CLRD, PUTD, DIS, PSH, DXY and FXY routines. This routine
sets up internal pointers allowing circular buffering and data overrun
and/or nonexistent data checking. A maximum of five buffers may be
specified, all of which must be given in a single USE statement. All

areas defined in the USE statement must have been previously
dimensioned in a DIM statement.

The format of the USE call is:

CALL "USE" (A[(i)],[B[(3)1,....,CL(£)]])

where

A,B,C are the names of previously dimensioned array(s).
May be 5 different arrays or array names may be
repeated.

i,j,f represents a valid subscript for the array or O
which indicates the entire array.

The USE routine defines buffer areas required for storage of data.
These areas may be a partitioned array which can be made equivalent to
one large array. The following examples illustrate all aspects of the
USE routine. Note that the size of an area defined in a DIM statement
is one half that desired. This is because BASIC uses two words to
store data whereas the LPS data is stored in one word.

LABORATORY PERIPHERAL SYSTEM SUPPORT

Example:

Define areas A, B, and C to have 100, 200, and 300 data points
respectively.

1O DTM ACE0Y v BOLQGO) » CO1TQ)
20 Cail "USE"Cay By

Example:

Define area A to consist of three parts, the first having 10 data
points and the second and third having 20 each. Then define a final
area having access to all of the array A (including the zero subscript
element) .

NOTE

Read the USE statement from 1left to
right establishing the separate areas
based on previously defined members of
the same array. Only when the starting
address of the next array is 1less than
the previous one will entire access to
the array be allowed by the following
array.

The subscripts in the declaration are used to define pseudo partition
names which can be used in other LPS statements which require arrays.

Lo DM AC2E)
20 ALl "USE" A LYy AallL v ACEL)Y vA)

In this example, each declaration of the array A has a unique
description. A, which is equivalent to A(0), is different than A(1l),
A(1ll), and A(31). The following figure illustrates the partitioning
of the array A due to the preceding example.

A(1) {
{ A(0) OR A
A(11)
A(31) {
J

In the example, the partitioning occurs as follows: A(l) defines a
buffer array starting at position A(l) in the array A and ending at
the last position in the array. Since A(ll) is declared immediately
following 1it, the end of the array for A(l) is redefined to be one
less than the A(l1l) position. At this point, A(l) goes from the 1st
position in the array to the 10th, and A(ll) goes from the 1l1lth

LABORATORY PERIPHERAL SYSTEM SUPPORT

position in the array to the 50th. When A(3l) is declared immediately
following A(1ll), A(ll) 1is redefined to go from the 11lth position in
the array to the 30th and A(31l) goes from the 3lst position to the
50th. Now the partitioned array consists of three parts. The first
part is called A(l) and is 10 locations in size. The second part 1is
called A(1ll) and 1is 20 locations in size. The third part is called
A(31l) and is also 20 locations in size. The final declaration in the
example is A or A(0) (both are equivalent), which allows access to the
entire array A. This happens because the position in the array A of
A(0) is less than the last declaration in the USE statement, i.e.,
A(31l), and a new partitioning 1is started. This new partitioning
begins at A(0) and proceeds until the end of the array A. The rules
to continue from this point are the same as previously discussed and
further partitioning could be defined if necessary. Note that every
declaration in the USE statement must be unique, i.e., a statement of
the form USE(A,A(0)) results in the first array A having an area of
zero length. Since the second array 1is not unique in name, any
reference to it later by other LPS statements actually refers to the
array A and not A(0). Since A has zero length, the buffer declaration
is useless.

2.3.2 Allowing Access to a Buffer (ACC)

ACC

The ACC routine allows full access to the specified array by the RDB
routine. The form of the call is:

CALL "ACC"(A[(i)])

where

Al(1)] is a buffer previously declared in a call to the
USE routine.

A call to ACC resets all buffer pointers of the array A to allow full
access to it by the RDB and PUTD routines. The PUTD pointer is placed
at the end of the array and the RDB pointer 1is placed at the
beginning. Since the PUTD pointer is placed at the end of the array,
the buffer is considered full.

Example:
Allow full access to the array H and the buffer area of array A.

10 DIM A(25) ,H(Z20)

20 CALL "USE"(A(1l) ,A(1l1),A(31),A,H)
30 ...

40

.

100 CALL "ACC" (H)

110 CALL "ACC"(A(1l1l))
120

130

LABORATORY PERIPHERAL SYSTEM SUPPORT

2.3.3 Returning Data from a Buffer (RDB)

RDB

A call to the RDB routine returns the next data value from the
specified buffer in the target variable. The value returned from RDB
contains the data value with the gain in the most significant digits.
The returned data is formatted. The form of the call is:

CALL "RDB" (A[(i)],B)

where
Al(i)] is a buffer previously defined in a call to the
USE routine.
B is the target variable.

A call to the RDB routine returns values in B of 65535 to 0 for good
data. A -1 will be returned if the data is bad (defined as software
data overrun). A -2 will be returned if there is no data. A -3 will
be returned if a hardware data overrun occurs.

A ring buffer is the specified buffer used by the RDB, RTS, HIST,
PUTD, and DRS routines. Data is withdrawn from the ring buffer by the
RDB routine but inserted into the ring buffer by the RTS, HIST, PUTD,
or DRS routine. Two pointers which are invisible to the users point
to the last data added and the next to be withdrawn.

If either pointer passes beyond the buffer, it 1is reset to the
beginning of the buffer. If a RDB routine is executed when no data is
available, the pointer is not advanced.

If a software data overrun occurs (that is, when there is no room in
the ring buffer for data from the RTS, HIST, PUTD or DRS routine),
then all subsequent calls on the RDB routine will return a -1. This
will occur 1if the ring buffer is not large enough to contain all the
data or the data is not removed from the ring buffer as fast as it is
added.

When the referenced buffer contains analog sampling data (RTS
function), the values returned in B are in the range 0 to 4095 for the
LPS11 and 0 to 1023 for the AR1l1l, with the gain in the .most
significant bits.

When the referenced buffer contains a clocked histogram sampling (HIST
function), the wvalues returned in B are in the range 0 to 65535.
These values are either the number of ticks accumulated or the number
remaining depending on the clock mode.

When the referenced buffer refers to digital I/0 data (DRS function),
a value between 0 to 65535 is returned in B from the next position in
the specified buffer.

Example:

Assume that the array X has 100 data values previously entered by an
RTS routine. Print out the data making sure that data overrun did not
occur and that 100 data points were indeed taken.

WA

FOR T=1 T0O A@6
CHRET, RS O,

o

=t

1

. 5l

= gy

LABORATORY PERIPHERAL SYSTEM SUPPORT

gl IF Z=~3% THEM 146

O OPRINT "RIMG RUFFER OYERRUM, SAMPLIMNG TOO FRAST": 1
CORBR GOTO 1SR

ag FRINT “MO ATA AT EYENT YET": 1

188 GO TO 1408

11468 FRIMT "HARDWARE DATA OVERRUM, SAMPLING TOO FARST"; 1

126 GO TO 1956

126 FRIMY Z

14@ MNFXT 1

158 CONTTMUE

1668 FHN[

RERMY

2.4 MODULE LPS1 (A/D CONVERSION AND NUMERIC READOQUTS)

2.4.1 Analog to Digital Conversion (ADC)

ADC

The ADC routine initiates an A/D conversion from the specified
channel, waits for it to complete, and returns the conversion as a
floating point result in A (in the range 0 to 4095 for the LPS11 and
1023 for the AR1ll). The A/D cannot be currently involved in a
real-time sampling (RTS) operation.

The form of the call is:

CALL "ADC" (b,A[,i])
where
b specifies the channel and must be in the range
from 0 to 63 for LPSI11 and 0 to 15 for ARI1I.

A is the target wvariable and will contain the
floating point conversion from the analog input.

The value returned is as follows:

A=data/gain (where gain=1,4,16,64) For LPS1ll
with gain.

A=data When the AR1l1l is in
bipolar mode. A is
always positive.

A=-data When the AR1ll is 1in
unipolar mode. A is
always negative.

i specifies the gain setting for the requested A/D
conversion on an LPS11l, or the range (bipolar or
unipolar) on an ARI1l.

when

i=0 software auto-gain ranging

=1 gain of 1 for LPS1ll1 (-5V to +5V); bipolar
range for AR1ll (-2.5V to +2.5V),

=2 gain of 4 for LPS11 (-1.25V to +1.24V);

unipolar range for AR1l (0 to +5V).

2-7

LABORATORY PERIPHERAL SYSTEM SUPPORT

=3 gain of 16 for LPS11 (-0.3V to +0.3V);
illegal for ARI11l.
=4 gain of 64 for LPS11 (-0.078V to +0.078V);

illegal for AR11l.

The default value is 1.

NOTE

On an LPS11, the LPSAG option must
be present when i is not equal to
1, otherwise the value returned in

the target variable

unspecified (i.e., dependent

hardware) .

and

be
on

save the

Example:
Sample the A/D from channels 4 and 5, use a gain of 1,
results in arrays A4 and A5 respectively. Assume 100 samples are to
be taken.
10 NIM AadCL00) vAECLOO)
20 FOR I=1 TO 100
X0 Call. "anc"4,0401))
A0 Calll. "AnC " Syabiol))
GO ONEXT X

2.4.2

Real-Time Sampling (RTS)

RTS

The RTS routine performs real time buffered/clocked sampling of the

A/D.

The form of the call is:

where

CALL "RTS"(A[(i)],cl,c2,n,m[,1i])

Al (1)]

is a buffer previously defined in a call to the
USE routine. The sampling will be stored in this
buffer. The data pointers in the ring buffer
will be reset before sampling is begun.

cl determines the first channel to be sampled. Must
have a value between 0 and 15 for ARll or LPS11
with gain other than 1 specified; or 0 to 63 for
LPS11 with no gain or gain equal to 1. This
value must be between 0 and 7 when dual sample
and hold is required.

c2 determines the number (or number of pairs) of

sequential channels which will be sampled. The
maximum is 16 for AR1l or LPS11 with gain other

LABORATORY PLRIPHERAL SYSTEM SUPPORT

than 1 specified; and 64 for LPS1l with no gain
or gain equal to 1.

NOTE
The sum of Cl and C2 cannot be greater
the 64.
n determines the total number of samplings.
m determines the mode of sampling.
i specifies the gain setting for the requested A/D

conversion.

when

i=0 software auto-gain ranging

=1 gain of 1 for LPS11 (-5V to +5V); bipolar
range for AR1l (-2.5V to +2.5V).

=2 gain of 4 for LPS11 (-1.25V to +1.25V);
unipolar range for AR1ll (0 to +5V).

=3 gain of 16 for LPS11 (-0.3V to +0.3V);
illegal for ARI1l.

=4 gain of 64 for LPS11 (-0.078V to +0.078V);

illegal for AR1ll.

The default value is 1. When (cl + c¢2) is greater
than 16, it is illegal for i to be equal to zero
or greater than 1.

NOTE

On an LPS11, the LPSAG option must be
present when i 1is not equal to 1,
otherwise the value returned in the target
variable will be unspecified (i.e.,
dependent on hardware).

The A/D can be enabled in a variety of modes depending on the options
specified. The normal mode of operation (m=0) causes the A/D to
sample whenever Schmitt trigger 1 fires for the LPS11 or external
start for the ARll. To enable other options, merely add their code
number to the mode. The following table describes options available
(all options are normally disabled):

LABORATORY PERIPHERAL SYSTEM SUPPORT

Table 2-1
Mode Options in RTS Sampling
Code Option
0 Normal operation, reads on Schmitt trigger 1 for

LPS11 or external start for AR11l.

+1 Enable burst mode (used only with DMA)

+2 Enable clock, disable Schmitt trigger 1 (used with
LPSAD12, LPSKW or AR1l)

+4 Enable dual sample and hold for LPS11 only (used with
LPSSH)

+8 Enable DMA for LPS11 only (used with LPSAD-NP)

The burst mode can be used with Direct Memory Access only and the dual
sample and hold mode can be used with the Direct Memory Access. The
dual sample and hold, and DMA options can only be used on the LPS11.
The following table 1lists all possible values for m and the modes
enabled.

Table 2-2
Mode for Values of m
m Mode
LPS11 AR11l
0 0 Schmitt trigger 1 or external start
2 2 Clock
4 Dual Sample and Schmitt trigger 1
6 Dual Sample and Clock
8 DMA and Schmitt trigger 1
9 DMA and Burst
10 DMA and Clock
11 DMA and Burst
12 DMA, Dual Sample, and Schmitt trigger 1
13 DMA, Dual Sample, and Burst
14 DMA, Dual Sample, and Clock
15 DMA, Dual Sample, and Burst

The A/D is started by a clock overflow or the firing of Schmitt
trigger 1 (external start for AR1l). Pointers are used to determine
if data exists in the buffer arrays or 1if data wrap-around occurs.
Since data 1is stored in circular buffers (excluding DMA operations),
pointers are used to ensure that the incoming data rate does not
exceed the removal rate. Data returned as -1 indicates ring buffer
overrun; data returned as -2 indicates no data exist; data returned
as =3 indicates hardware overrrun (interrupt service too slow). The

buffer pointers are reset initially before the sampling operation
begins.

A/D channels are sampled on every clock overflow or firing of Schmitt
trigger 1 (external start for AR11l) with the result stored in
consecutive data cells. Data is stored in a format identical to that
read from the A/D (bits 0-11 for data and bits 11-12 for gain). When
a clock overflow or Schmitt trigger firing occurs, the A/D samples the
first channel specified by c¢1 and then samples the next c2 minus 1
consecutive channels. Sampling then continues until n clock overflows
or Schmitt triggers have been received. 1If n is specified as zero,
any previous RTS sampling will be disabled.

In dual sample and hold mode, parameter c2 is the number of pairs of

channels to read per sampling. Parameter n defines the number of
samplings. There are 2*C2 elements per sampling.

2-10

LABORATORY PERIPHERAL SYSTEM SUPPORT

DMA operations may use dual sample and hold. DMA allows direct
hardware storage of A/D results from only one channel into a specified
buffer array. A maximum of 4096 data may be taken at any one time

with removal of data allowed only when the buffer is completely
filled.

NOTE

When DMA is used with dual sample and
hold, the parameter C2 must be 1, BASIC
automatically assigns the value of 1 to
C2 and any other number that is assigned
to C2 will be ignored.

RTS operations do not interfere with sampling operations other than
ADC (i.e., DRS and HIST routines) and all can be 1in progress
simultaneously. You must set up the clock by making a call to the
SETR routine before calling the RTS routine.

Example:

Set up the A/D to read data from channels 0 through 3 and store the
results in the array A. Schmitt triggers are to be used to fire the
A/D. Note that a dimension of 100 allows 200 data points. Since 4
channels are to be sampled, 50 Schmitt triggers will be required to
complete the request.

Lo wdM ALo0
20 Al "USE" Ci
A0 Call. "RTH" (A DAy LOOR2/ A 00

2.4.3 Display on the Light Emitting Diodes (LED)

LED

A call to the LED routine displays the floating point value of the
specified expression on the LEDs (Light Emitting Diodes) of the LPS11.
Up to six positive or five negative digits can be displayed 1in the
LEDs. An optional decimal point can also be included. Numbers which
cannot be accurately displayed (i.e., E numbers or 6-digit negative
numbers) are shown as all minus signs.

This routine acts as a NOP (no-operation) when S$AR11l is defined in
PERPAR.MAC for an AR1ll system.

The form of the call is:
CALL "LED" (a)
where

a the expression or the value to be displayed.

Example:

LABORATORY PERIPHERAL SYSTEM SUPPORT

Display the value 5.632 on the LEDs.

A
LOED

Ldo MLEXE Oy d

Lo @
=0

or

Lo Gl "LEDY (S H320

2.4.4 Returning A/D Data from Buffer (CVSG)

CVSG

The CVSG routine returns the unformatted data value sampled by the RTS
routine in one variable and the gain in a separate variable. A -1
will be returned if the data is bad (defined as overrun).
-3 will be returned when a

be returned if there 1s no data. A

hardware data overrun occurs.
The form of the call is:
CALL "CVsSG"(V,I)

where

\Y is the target variable and contains
point conversion from

the analog

I returns the gain setting of the

conversion.

when

=] gain of 1 for LPS11 (+or-5V);
range for ARll (+or-2.5V).

=2 gain of 4 for LPS11 (+or-1.25V);
range for AR11l (0 to +5V).

=3 gain of 16 for LPS11 (+o0r-.3V);
for AR11.

=4 gain of 64 for LPS11l (+or-.078V);
for AR11.

2.5 MODULE LPS2 (REAL-TIME CLOCK)

2.5.1 Setting the Clock Rate (SETR)

SETR

A call to the SETR routine sets the clock

running

in

the

A

-2 will

floating

input in the
range 0 to 4095 for LPS11 and 0 to 1023 for ARI1l.

the

requested A/D

bipolar

unipolar

illegal

illegal

specified

LABORATORY PERIPHERAL SYSTEM SUPPORT
mode and at the designated rate. The interrupt enable is always set
(except mode 8 and above).
The form of the call is:
CALL "SETR" (r,m,p)

where
r determines the rate of the clock.

m determines the mode of the clock.

o]

is the preset value of the clock counter. The
preset value must be less than 65535 (decimal) for
the LPSKW and 255 (decimal) for the ARI1l.

The following preset values are illegal for the 1indicated rates in
interrupt mode.

Rate Illegal preset values

1 <150
<180 (for systems with memory management option)

2 <15
<18 (for system with memory management option)

3 =1

NOTE

All values of rate and preset are legal in
interrupt mode.

The following tables describe the rates and modes determined by the
values of r and m.

Table 2-3
Selecting the Clock Rate

Values of r Rate

0 No rate selected

1 1l MHz

2 100 kHz

3 10 kHz

4 1 kHz

5 100 Hz ‘

6 Schmitt trigger 1 (external event for AR11l)

7 Line frequency (50 Hz or 60 Hz)

LABORATORY PERIPHERAL SYSTEM SUPPORT

Table 2-4
Selecting the Clock Mode
Values of m Mode
0 Single interval mode. Counter counts from preset value to

overflow and stops.

1 Repeated interval mode. Counter counts from preset value to
overflow, transfers buffer/preset register to the counter,
and begins again.

2 External event timing mode. The counter is free running,
and a pulse from Schmitt trigger 2 transfers contents from
the counter to the buffer/preset register and then continues
counting. Not valid for ARIll.

3 Event timing from zero base mode 1is the same as mode 2
except when the transfer of the counter to the buffer/preset
register is done, the «counter is cleared and the count
begins from zero. Not valid for ARI11l.

4,5,6,7 Start clock only after Schmitt trigger 1 fires. Mode 1is
then determined by the value of m-4. ©Not valid for AR1l.

8 to 15 Indicates the operation of the clock in a non-interrupt mode
has been added for faster A/D data acquisition. To get the
value of m, just add 8 to the value of the interrupt mode.
For example:

m=0+8 indicates single interval non-interrupt mode clock
operation.

m=1+8 indicates repeated interval non-interrupt mode
clock operation.

Example:

Set the clock running to interrupt once every second. A 100 Hz
frequency is used and the clock mode is 1.

CALL "SETR"(5,1,100)

Each programmable clock interrupt causes a 16-bit software clock
(counter) to be incremented by one. When the maximum count of 65535

is reached, the next interrupt causes a reset to zero. This clock may
be retrieved by the RTIM and DRS routines.

2.5.2 Setting the Clock to Rate and Time (SETC)

SETC

A call to the SETC routine sets clock to specified rate and time.
The form of the call is:

CALL "SETC"(r,t)

LABORATORY PERIPHERAL SYSTEM SUPPORT
where

r determines the <c¢lock rate as described in
Table 2-3, and may be 4,5, or 7.

t is the time in seconds that the clock runs before
issuing an interrupt.

The clock status register is set to rate determined by r and runs for
t seconds. A clock interrupt then occurs which can be used to
initiate any of the clock controlled functions. The time argument is
evaluated as ticks equal time in seconds multiplied by the clock rate
specified, e.g., if the clock rate was 10kHz, then ticks equal time in
seconds multiplied by 10kHz. The ticks are entered into the clock
preset/buffer register. The clock always runs in mode 0.

Example:
Set the clock to interrupt in 10 seconds using a 100 Hz frequency.

CALL "SETC" (5,10)

2.5.3 Histograms - Timed Schmitt Trigger (HIST)

HIST

The HIST routine inputs values from the clock preset/buffer register
and stores them into the specified buffer whenever Schmitt trigger 2
fires. The clock must be in mode 2 or 3 for the data to be
meaningful.

The form of the call is:
CALL "HIST"(T[(i)],n)
where

T{(i)] is a buffer previously defined in a call to the
USE routine.

n determines the total number of data points stored.

The RDB function is used to retrieve the data. The data pointers in
the ring buffer are reset before the sampling operation begins.

If n is given as zero, the HIST sampling will be disabled.

HIST operations do not interfere with other sampling operations (i.e.,
RTS and DRS) and all can be in progress simultaneously.

HIST routine acts as a NOP (no-operation) when $ARl1l is defined in
PERPAR.MAC for an AR1l1l system.

Example:

Collect a timed histogram between external events (Schmitt trigger 2)
and store the results in array T. The clock runs at 1 kHz and 100
intervals are required.

1O kM THE0)
20 Cald. U
A0 Call "HI
A0 Call. "5

(1)
POT 1000
R T S A

LABORATORY PERIPHERAL SYSTEM SUPPORT

2.5.4 Delaying Program Execution (WAIT)

WAIT

A call to WAIT disables further program execution until the specified
event occurs.

The form of the call is:

CALL "WAIT" (n)

where
n specifies the event that must occur for program
execution to continue.
Values of n are:
n=0 Wait for clock to overflow only.
n=1 Wait for Schmitt trigger 1 (external event
for AR11l) to fire (for clock rate = 6 only).
n=2 Wait for clock to overflow or Schmitt trigger
1 to fire.
n>2 Returns immediately.
n<o0 Wait for Schmitt trigger 1 (external event
for AR11l) to fire (a call to the SETR or SETC
routine must be made prior to this).
Example:

Wait for clock to overflow.

10 CALL "WAIT" (0)

2.5.5 Returning Current Software Clock Tick Value (RTIM)

RTIM

A call to the RTIM routine returns the 16-bit integer value of the
internal software clock counter maintained by the programmable clock.

The form of the call is:
CALL "RTIM" (s,t)
where
s specifies whether the internal clock counter is to
be cleared or not. The counter is cleared when s

is equal to 0; otherwise it is unaltered.

t is the l6-bit integer value of the internal clock
counter.

LABORATORY PERIPHERAL SYSTEM SUPPORT

2.6 MODULE LPS3 (DIGITAL I/0)

The user should read the LPS11 Laboratory Peripheral System User's
Guide in order to fully understand the hardware latching mechanism
before using these modules.

The interrupt control logic permits the LPSDR-A or the DRI11-K to
perform an interrupt operation. The switches and jumpers on this
logic can be arranged so that vector address can be assigned other
than those configured as standard on the module for alignment.

One method of causing interrupts to the Unibus uses the two control
lines between the DR11-K and the external device. If the input
interrupt enable (bit 6 of the status register) 1is set, a negative
transition (+3 v to ground) of the EXTERNAL DATA READY pulse will
generate an interrupt to the Unibus, with a vector address of 300. A
bus request is made on the BR level that corresponds with the level of
the priority plug in the logic (the standard level for the DRI11-K
interface 1is BR4; this may be changed on the priority plug if
desired). The control line method of interrupting is logically ORed
into the DR11-K interrupt control, and 1is disabled by internal
clamping circuitry if not desired. The device will continue
interrupting as long as the line is held low.

The second and most preferred method of interrupting is to use the
individual input lines. Each input (IN15:IN00) is buffered by a
flip-flop that will set on a negative transition (+3 v to ground).
Switches for the buffered bits on the hardware option make it possible
to wire—-OR each bit onto a common interrupt line. When the input
interrupt enable (bit 6 of the status register) is set and a switch is
on, the transition of the associated bit causes an interrupt to the
Unibus. The bits are read under program control by reading the input
register, and are cleared by moving data ls to the bits to be cleared.
The input interrupt enable is cleared when an input interrupt is
accepted by the Unibus; when reset, it will retrigger the interrupt
circuit if any other input bits were set during the program service
subroutine, so that new interrupting bits will not be lost.

2.6.1 Reading the Digital Input Register (DIR)

DIR

A call to DIR reads the Digital Input Register and converts it to a
floating point number. The form of the call is:

CALL "DIR"(i,V,S[,m[.,3]])
where
i determines the type of floating point conversion.

\Y is the target variable. It is the wvalue 1in the
input register ANDed with m.

S contains the returned digital Control Status
Register (CSR) setting.

LABORATORY PERIPHERAL SYSTEM SUPPORT

m indicates the 16-bit mask. The default value is
-1.
i indicates the number of the DR11-K unit on a

multiple DR11-K system. The default value is 0.
The maximum legal value 1is determined by the
parameter $NUMBER in PERPAR.MAC at the assembly
time of PERVEC.MAC module.

If i=0, input is four Binary Coded Decimal (BCD) digits converted to a
floating point number and the result is in the range 0 to 9999. If
i<>0, then the binary result read from the register 1is directly
converted to a floating point number and the result is in the range 0
to 65535. The Digital Input Register is read via an internal 1load
request and does not respond to interrupts. The input word is
immediately written back into the input register to clear those bits
which were obtained from the register. The result is returned in V.

The new CSR register setting is returned in S.

Example:

1OREM THIS PROGRAM TESTS THE "Ry "LORY AND "DRE" MOOULES ALONG WITH
2OREM SETRyWALT AND RINE. THE TNFUT AN THE QUTFUT DIGITAL CABLES MUST
BOREM CONNECTED TO EACH OTHER,

4 DIM X300

GoQed

G Call, "THOR" CLy SEH3EYN)

ZoUalls "USBE "X

Lo FOR L=L TO 16

20 Call, "DOR*COyOsND

20 OAakLl, "HIIRYCLeYyNLD

A0 FPRINT N3Y

TRV EINE 984

G0 NEXT I

160 CALL "DOR" Ly $U5E3
Lot Call, "DRE" Ky Ly30yOviND
170 Call, "SETR" (S5 11002
L7285 M=0

180 D=0

18% FOR Is=L TO 30

190 Call, "DOR" CLy &BEH3G N
195 Cald., "DOR" (Me0sNY

200 O=044096+206+ 14641

2O CALL "WATT(O)

210 NEXT T

HO60SUR 300

STOF

Fore J=1 70 30

05 Call, "RIB" YD

FRINT JeY

F1% NEXT

J20 RETURN

HOO0 END

RE

LABORATORY PERIPHERAL SYSTEM SUPPORT

2.6.2 Writing to the Digital Output Register (DOR)

DOR

A call to DOR can either set or clear selected bits in the Digital
Output Register. The form of the call is

CALL "DOR" (m,n,R[,j])

where
m determines whether bits are to be set (when m=0)
or cleared (when m is not equal to 0).
n determines which bits are to be set or cleared.
R contains the floating point equivalent to the new

value in the Digital Output Register.
j indicates the number of the DR11-K wunit on a
multiple DR11-K system. The default value is 0.
The maximum legal value 1s determined by the
parameter $NUMBER in PERPAR.MAC at the assembly
time of PERVEC.MAC module.
If a bit in the binary representation of n is 1, the corresponding bit
of the Digital Output Register will be cleared or set (depending on
the value of m). If a bit in the binary representation of n is 0, the
corresponding bit of the Digital Output Register will not be changed.
The BASIC-11 BIN and OCT functions are very useful in setting or
clearing the registers.
Example:
Turn on (set) bits 1 and 2 of the Digital Output Register.
40 CALL "DOR" (0,BIN'110',N) Clear Digital Output Register.
40 CALL "DOR"(1,0CT'177777"',N)
or

40 CALL "DOR"(1,-1,N)

2.6.3 Digital Readout Sampling (DRS)

DRS

A call to the DRS routine samples the Digital Input Register in a
similar fashion as the RTS function.

The form of the call is:
CALL "DRS"(A[(i)],ml,n,m2,R[,T{,m[,j1]])

where

LABORATORY PERIPHERAL SYSTEM SUPPORT

A[(i)] is a buffer previously defined in a call to the
USE routine.

ml determines the mode by which the Digital Input
Register is to be read.

n determines the total number of samplings.

m2 determines whether the sampling is clock driven.

R contains the returned setting of the digital

Control Status Register (CSR).

T describes the address of the buffer to store the
current clock TICK value on every data interrupt
when m2 is not equal to zero.

m indicates the 16-bit mask. The default value is
-1.
j indicates the number of the DR11-K unit on a

multiple DR11-K system. The default value is 0.
The maximum legal value 1is determined by the
parameter SNUMBER 1in PERPAR.MAC at the assembly
time of PERVEC.MAC module.

When m2 is equal to 0, each time the clock fires (Schmitt trigger, or
external event for AR11l), the Digital Input Register is read.

If ml is equal to zero the Digital Input Register will be treated as
Binary Coded Decimal and will be converted to binary. If ml is not
equal to zero the Digital Input Register will be input directly as a
binary number. This number is stored in the circular buffer specified
by A[(i)]. When DRS is first called, it resets the pointers of the
buffer to the beginning.

If n is given as zero, the DRS sampling will be disabled. The DRS
call is driven by digital clock when m2 1is not equal to zero.
Whenever a new value is received in the input register, the value is
immediately read in and stored in the buffer. The value of the 16-bit
software clock is stored in the buffer specified by T. The input data
word is immediately written back into the input register, and the
active bit which have been sampled are cleared.

The new setting of the digital Control Status Register is returned in
R.

Example:

Read the Digital Input Register once every one tenth of a second for
100 readings and store the results in array A.

1O DIM ACE)

20 Akl "USE" (6D

Z0 Coll, "TRS" (A Oy 100y 0N
AC CALL "SETR® Sy 1y 100

2-20

LABORATORY PERIPHERAL SYSTEM SUPPORT

2.6.4 Relay Control (REL)

REL

A call to the REL routine opens or closes the specified relay.

The REL routine acts as a NOP (no-operation) when S$AR11 is defined in
PERPAR.MAC for an AR1ll system.

The form of the call is:

CALL "REL" (a,b)

where
a specifies the relay and may be equal to 1 or 2.
b determines the operation. Relay is opened 1if
equal to 0, otherwise it is closed.
Example:

Open relay 1 and close relay 2.

1OO Cald., "REL"CL.02
LLO Call, "REL" (210

2.6.5 Reading/Writing Data From/Into Memory (IPK)

IPK

The IPK routine can be called to read a value from a specified address
or place a value into a specified address. The form of the call is:

CALL "IPK"(s,a,V)
where

S indicates whether the value is a word or a byte.
If s is even, the word value supplied in V will be
read from or written into the even address
register. If s is odd, the byte value supplied in
V will be read from or written into the odd
address register.

A call such as CALL "IPK" (0,64,V) reads 1into
variable V the value at location 64 in memory.

a specifies the address where the value V is read
from or written into. This address must be even
when the value of s is even. This address can be
specified as an octal string, integer constant or
integer variable.

A call such as CALL "IPK" (2,73,100) is illegal
because the address is odd; the error message
?ARG will result.

LABORATORY PERIPHERAL SYSTEM SUPPORT

\" is the value to be read from or written into the
address register.

NOTE

This routine should not be used except to
read from or write into the I/0 page or to
read from memory. Writing into memory can
cause serious consequences (program being
wiped out, etc.).

2.7 MODULE LPS4 (DISPLAY)

The routines in this module require the LPSVC or ARl1l1l with the VRI14
interfaced through it. The VTll cannot be used with these routines.

2.7.1 Defining the Display Buffer (CLRD)

CLRD

A call to the CLRD routine defines the display buffer having fixed
delta x values.

The form of the call is:

CALL "CLRD"(A[(i)],a,b)

where
Al(1)] is a buffer previously defined by a call to the
USE routine.
a specifies the size of the buffer to be displayed.
b specifies the scale.

The buffer to be displayed should contain single word values. Values
in the range 4095>=value>=0 are displayed while values outside this
are not. The size of the buffer, a, is the number of Y points to
display and must be less than or equal to the number of points defined
in the DIM statement and the call to the USE routine. The delta x 1is
calculated as 4096/a and can be fractional.

If b, the scale, equals 0, CLRD will set all buffer values to -1
(non-displayable values). If scale does not equal 0, CLRD bypasses
the clearing of the array and the original data is multiplied by b.
In either case, the PUTD pointers are reset to point to the beginning
of the array. Data is entered into the array through the PUTD
function; however, a CLRD must be issued before data is initially
transferred to the array.

A CLRD routine must be issued at least once before 1issuing the DIS,
FSH, or DXY functions which can display the buffer defined by CLRD.

Example:

LABORATORY PERIPHERAL SYSTEM SUPPORT

Set up the array C to be used as a display buffer having 256 points.

1O M G2
20 Calb. "USE"(O)
A0 CaLll "CLRD"(Cy 386000

2.7.2 Putting Data into Display Buffer (PUTD)

PUTD

A call to the PUTD routine puts a data value into the specified
buffer. Repeated calls to PUTD will cause the buffer to be filled
sequentially.

The form of the call is:
CALL "PUTD" (A[(1)],b)

where

Al(1)] is a buffer previously defined by the USE routine.

b is the value to be inserted. Must be in range
0<=b<=65535.

This function does not initiate a display, but rather just enters data
into the specified array.

Example:

Remove 100 data points from the specified digital sampling buffer D,
and transfer them to the buffer 2.

8O DIM NS0 o X U0
SO CALL "USE" (T X
1OG FOR I=1 TO 100
110 Calll, "R Dy X0
120 Call. "PUTH" (Zy XD
130 NEXT I

2.7.3 Background Display Routine (DIS)

DIS

A call to the DIS routine displays data from the buffer whenever BASIC
is idle. Data is not displayed by DIS or DXY routines under RT-11 FB
system because BASIC is never idle. Data is displayed under RT-11 SJ
system (version 2 or later) only when I/0 is taking place.

The form of the call is:
CALL "DIS"(A[(i)],a,b[,n]) where

Al (1)] is a display buffer previously defined by the USE
and CLRD routines.

LABORATORY PERIPHERAL SYSTEM SUPPORT

a determines the starting point of the display.

b determines the frequency of points in the buffer
that are to be displayed.

n specifies the number of data point to display.
The default value is all remaining elements of the
array.

The points displayed start with the point a in the buffer and proceed
in increments of b. If b is equal to 1, consecutive points starting
with the a one are displayed. 1If b is equal to 2, every other point
is displayed, etc.

Example:

Display data from buffer E beginning at the 12th data point and
displaying every 3rd point of the remaining array elements.

20 0IM OECLOO)

40 Call. "LSE" ()

&0 Call "CLRD"(Ey20050)

B0 REM BUFFER MaY RBE FILLED HERE
LO0 Call. "OIS" (123D

120 REM OR MaY BE FILLEXD HERE

Example:

5 OREM THIS
10 REM SETRyANI WALT

15 PRINT "FROGRAM TO TEST CLRIVFUTIDGIS AND FSH. "
50 CALL "SETR" (5r1s10)

100 DIM ACLO0)

200 CALL "USE" (&)

F00 CALL "CLRIM Ay 1005 0)

AGO FOR I=1 TO 100

500 CALL "FUTI (Ay 1)

S00 NEXT I

700 DALL THISE" Ay Ly L)

710 INFUT DI

FEO CALL "IIS" (Aydy Ly 75D

740 TNFUT D

7RO CALL "IIS" (Av Ly 150D

H00 INFUT D

F00 0=0B0 TO 2000

$EO Guld TO 99

975 TO 50

PHO 1wl TO 100

1000 "EGHY (Ay Sy T oI

1010 "WALT" (0D

LORE NEXT 0

1030 I

1050 NEXT 8
1100 GO TO 800
OGO STOR

WITH

LABORATORY PERIPHERAL SYSTEM SUPPORT

2.7.4 Display Buffer (FSH)

FSH

The FSH routine is identical to the DIS routine except that the data
points in the buffer are completely displayed only once when this call
is executed. The next BASIC statement is then executed.

The form of the call is:

CALL "FSH" (A[(i)],a,b[,n])

where

A[(i)] have the

a same

b meaning

n as in DIS.
Example:

Using the previous example, display 100 cycles of the array E.
100 FOR T=1 TO 100

110 Call "FSH"(Ey 123D
120 NEXT I

2.7.5 Displaying X,Y Data (DXY)

DXY

A call to the DXY routine displays points from two buffers as x and vy
values. These buffers are displayed whenever BASIC is idle. Data is
displayed under RT-11 SJ system (version 2 or later) only when I/O is
taking place.

The form of the call is:

CALL "DXY" (X[(i)],Y[(]j)],a,b[,n])

where

X[{(1i)] is a buffer previously defined by . a call to the
USE routine and contains the x values.

Y[(3)] is a buffer previously defined by calls to the USE
and CLRD routines and contains the y values.

a determines the starting point in both buffers

b ‘ determines the frequency of the points in each
buffer to be displayed.

n specifies the number of data points to display.
The default value is all remaining elements of the
array.

2-25

LABORATORY PERIPHERAL SYSTEM SUPPORT

The buffer containing the x wvalues, X[(i)] does not have to be
initialized by a call to CLRD, but it may be convenient to do so to
initialize all values so that they are non-displayable. The buffer
containing the y values must be initialized by a call to CLRD although
the value of delta x is not used.

As in the other display routines the a determines the location of the
first point to be displayed in each buffer and b determines the
frequency of points to be displayed. If b equals one, consecutive
values are taken from the two buffers. If b equals two, every other
value in each buffer will be used to create the display.

Example:

Generate fiducial marks on the display screen of a 256-point display
every 16 points. Marks will be 10 points in height. Data will be
generated into the arrays X and Y.

S REM THIS FROGRAM TFSTS —MEY AND FEY- ROUTIMES
18 FRIMT "TFST PROGEAM FOR XY AND FEY ROUTINESY
A DIM ROlz8a, Y1z

EROCALL "USFUON, Y

4@ CAILL "CLER"OX, 2596, @)

S8 CRLL "CLRMMOY, 2568, @2

8 FOR I=16 TO 25/ STFF 16

FROFOR J=1 TO 1@

R CALL "PUTHYEM, 1)

Q@ CAREL “PUTR"CY, T

1aga MNEMT J

11 MEET T

L2E CARLL "HEY"Os Y. 1, 140

1Z8 STOR

L4 EME

READY

2.7.6 Flashing X-Y Data (FXY)

FXY

The FXY routine is the same as DXY routine except that the X and Y
values are displayed only once when this call is made.

The form of the call is:
CALL "FXY"(X[(i)1,Y[(j)]1,a,b[,n])

)1 Have the

)] same
meaning
as in
DXY.

[(i
[(]

S U9 X

Example:

S REM THIS FPROGRAM TFSTS —DEY AMD FHY- ROUTINES
18 PRIMT "TEST FROGRAM FOR DEY AMD FxY ROUTINES"
SEODTM O WOLEBEDN, YOLEED

HEOCHLL MHSE" M YD
A8 TR "CLRD" Y, 256, 82
S0OCALL "CLREROY, 258, @)

2.8

The following

E
[
C
C

]

T E

e

ey

186
11a
126
1I6
1460
156
1e@
178
186
1968
zZan
216@
e o)
e
~40
s]s
2EQ

oy

READ

HARD

LABORATORY PERIPHERAL SYSTEM SUPPORT

Or I=16€ TO 256 STER 16
R J=1 TO 16

AL "RUTRYCH, T2

FLL "PUTOMCY, Jo

MERT J

MEWT 1

CRLL "Dyt ok, ¥4, 40
THEUT I

CARLL "Dy, ved, 1, 250
INFLIT [

CHRLL "DEYYOM, Y, 1. 4, 568D
ITHFUT D

IF D=6G0 TO 268

FOR <=1 TO 99

FOR I=1 TO 58

FOR D=1 TO 180

CRIEL "FRYYOM, Y S, T, Dol
MFET I

MEWT 1

HFET <

STOR

EMTs

i‘,l

WARE REQUIRED FOR LPS COMMANDS

summary describes the

utilize the LPS system.

Comm

USE
ACC
RDB
ADC
RTS

LED
CVSG
SETR
SETC
HIST
WAIT
RTIM
DIR
DOR
DRS
REL
IPK
CLRD
PUTD
DIS
FSH
DXY
FXY

and

hardware necessary to fully

Hardware Required

None
None
None

LPSAD-12, LPSAM (for additional 8 channels)
LPSAD~12, LPSAD-NP (for DMA operations)
LPSAM (for additional 8 channels)

LPSSH (for dual sample and hold)

LPSKW (for real-time clocking and Schmitt

triggers)

LPSAG-VG (for multi-

LPSAD-12
None
LPSKW
LPSKW
LPSKW
LPSKW
LPSKW
LPSDR
LPSDR
LPSDR
LPSDR
None
None
None
LPSVC
LPSVC
LPSVC
LPSVC

gain)

The routines that require the AR11 are ADC, RTS, SETR, SETC, WAIT, and

RTIM.

2-27

The routines that require the VR14 in addition to the

FSH,

LABORATORY PERIPHERAL SYSTEM SUPPORT

DXY, and FXY.

ARll are DIS,

The routines that require the DR11-K are DIR, DOR, and DRS.

EXAMPLE PROGRAMS

AM O TESTS THE "Alc" MODULE
TRES 2 INPUTSS CHANNEL # AND

A CHANNEL 8 EQUAL TO ~1 TERMINATES

&

3
10
20
30
[0
50
&Q)
70

INFUT C
INFUT G
TE Cael THEN 100
Call "Alct (V)
FRINT VARG (V)
CALL "ADC " (CyVlvl)
PRINT YlyaRS VL)
80 CAl.L "ADC" (CyV2yG)
PO FRINT VR2yARB VD)
P GO TO 10

10O END

* %

LOREM THIS FROGRAM TESTS THE DRSS MODULE
3 0IM 2030

4 NIM X(30)

S0l
& ol
2 Cal.l

TRORY Ly STBE3E N
TUSE" (X 2D

T L&

HOR" (OO ND

FOR Tl
CAlL

"RORT (L b iy ND

"IRG Xy Lo 30y L oNsyZy7)
ckolorekokok e Ny M okeiskookoiokokokok
THETR" 4yl e 1)

L&0 Calll
165 Cal.l.
L&4 PRINT
170 Ual.l.
L7G M=
180 0=0
FOR Tl
190 Call.

T0O 30
TRORTCLy EG3G N
L "DOR" (M Oy ND
+2U6+1 64

T I

U 300

O

o =l TO 30
TRIBYOXY)
TRIBYCZyYL)
Sy Y Y

SO0
*

168
oy s |
E4s]
NS
15

EFM
RFEM
FFM
RFM
[xIM

THIS FPROGRAM TESTS THE
TT FEQUIRFS I INFUTS:
AMD TGATIM FROM CONSOLE
A STRRTING
ACZE

"RTSY MORILE

TIME

STHRTINMG CHANMEL #.

IGAIN FROM CONSOLE
FROGERAM

MNUMEBER OF CHAMNELS

CHAEMWMFL # FOUAL TO -1 TERMINATES PROGREAM

LABORATORY PERIPHERAL SYSTEM SUPPORT

B OCARLL "DSEYCRAD

@ IMFUT S

B8 IF S=-1 THEM 15&

Qe INFUT N

188 THFUT G

146 CRILL Y"SETR"CH, 4, 168D
128 CRILLL "RTS"CA, S M, 28, 2, G
1I8 GOSUR 266

148 GO TO 5@

158 STOF

166 RFMEEAEAEAPEMEEEAEGRAGARREAMEGAAGEAGREAGAEAREARECRERRERAREEEER
178 CALL "RDE"CA,

188 TF Z498 THEM 478

198 RETURN

fR0 FOR I=1 TO 4

248 GOSUR 176

2EB AL=Z

2B GOSUR AVE

4B AR=F

E5e GoEUR 17e

MEBR AZ=E

are GOSUR 178

e A4=Z

298 GOSUR 176

B e P
P

FRINT A4, B2, AZ, A4, AS
MERT 1

EFTURMN

EMs

3

it Bt 5

RERDY

1 REM THIS PROGRAM TESTS THE "RTSE" & "CVUSGE" ROUTINES

2 REM IT REQUIRES 3 INFUTSE STARTING CHANNEL 4y NUMRBER OF CHANNELS
3 OREM ANDI TGATN FROM CONGOLE
4 REM A STARTING CHANNEL &
10 DIM AC20)

20 Call. "USE" (A)

I0 INFUT 8

40 IF S=-1 THEN 100

G0 INFUT N

A0 INFUT G

70 CallLl RSy Ly 100D

B0 CALL "RTS* (AyBeNy20y250)
20 GOSUR 220

25 GO TO 10

100 $T0OF

101 REMRERRERERRREZRCEFRRERERARRERRRREARERERRRRRRRRERRRERARRRER
200 CaALL "CUSBGE" CLyV)

210 IF Zwm-2 THEN 200

RETL
220 FOR I=1 TO 4

:QUAL TO ~1 TERMINATES PROGRAM

200

200

200

LABORATORY PERIPHERAL SYSTEM SUPPORT

295 V=Y
300 GOSUR 200
210 &

X%
320 FRINT alyA2vA3vAdyAl
325 PRINT V1,V2yVUZyV4,V0
350 NEXT I

400 RETURN

1000 END

*

L REM THIS PROGRAM TESTS
2 REM THE LAST 10 VALUES
10 INFUT 8

20 IF $=-1 THEN 1000

30 Call. "RTIM" (0D

40 FRINT V

50 CAlL "SETR"(Gy12100)
S0 FOR T=1 TO 10

70 CAlL "RTIM"Cl,V)

B0 FRINT V

S0 CALL "WATIT® CO)

LOO NEXT 1

110 GO TO 10

1000 STOF

*

THE “RTIM® MODULE ALONG WITH
FRINTED WILL BE O THROQ 9.

SETR

AN

WALT

The following 1list 1is a

APPENDIX A

COMMAND SUMMARY

summary

of the routines available for

controlling LPS hardware and a brief description of each:

CALL

USE

ACC

RDB

ADC

RTS

LED

CvsG

SETR

SETC

HIST

WAIT

RTIM

DIR

DOR

ARGUMENT LIST

(A[(i)]1[BI(3)]...CI(£)]])

(A[(1)])
(A[(1)], B]

(b,A[,1])

(A[(1)1, cl,e2,n,m[,i])

(a)

(v,I)

(r,m,p)

(r,t:)

(T[(1)]n)

(n)

(s,t)

(i,v,slym[,31])

(m,n,R[,]])

EFFECT
Defines array(s) to be used for
storage of data.
Allows access to an entire array.

Returns the next data point from a
specified buffer.

Initiates an A/D conversion on a
specified channel and return the
result to the user.

Performs real-time buffered/clocked
sampling of the A/D.

Displays a numeric value on the
Light Emitting Diodes.

Returns the next data value and
gain in two separate variables.

Sets clock running at a designated
rate and mode.
Sets clock running at a designated

rate and initiates some action
after a specified number of seconds
have elapsed.

Performs histogram sampling using a
timed Schmitt trigger.

Waits for a
occur.

specified event to

Returns the value of the internal

software clock counter.
Reads Digital Input register.

Writes Digital Output register.

CALL

DRS

REL

IPK

CLRD

PUTD

DIS

FSH

DXY

FXY

COMMAND SUMMARY

ARGUMENT LIST

EFFECT

(A[(i)],ml,n2,m2, R[,T[,m[,j1]))

(a,b)

(s,a,V)

(A[(i)],a,b)

(A[(i)],b)
(A[(i)], a,b[,n])

(A[(i)],a,b[,n])

(X[(i)1,Y[(j)1,a,bl,n])

(X[(1)) ,Y((3)],a,b[,n))

Performs sampling of the Digital
Input register.

Closes or opens one of two relays.

Reads a value from a register or
writes a value into a register.

Defines display buffer and
optionally clears or scales the
data in it.

Puts data into data buffer.
Displays data with constant x = and

variable y whenever BASIC 1is
waiting for I/O.

Displays a complete sweep of data
with constant x and variable y.

Displays data with variable x and y
values whenever BASIC 1is waiting
for I/0.

Displays data with variable X and Y
values respectively only once.

APPENDIX B

BUILDING LOAD MODULES

B.1 BASIC/RT-11

B.l.1 LPS Support

The software supplied supports the standard hardware configuration
only. The standard hardware configuration is determined by the
address of the device hardware register and vectors. The standard
LPS11 or ARll register is at 170400 (octal) and the vector is at 340
(octal). The standard DR11-K register is at 167770 (octal) and vector
is at 300 (octal).

The supplied software has to be reassembled and relinked if the
hardware configuration does not correspond to the above. To redefine
the hardware register and vector address, just edit the source file
PERPAR.MAC.

The LPS Support for BASIC/RT-11 is supplied in ten binary relocatable
files (on DECpack disk, DECtape, floppy disk, or 9-track magtape).
These files are:

LPS0.0OBJ Required LPS kernel module for LPS11l or
AR11 and DR1l1l-K
LPS1.0BJ Optional Analog to digital conversion
for LPS11
ARD1.0OBJ Optional Analog to digital conversion
for AR1l and DR11-K
LPS2.0BJ Real-time clock (60 Hz 1line
frequency) for LPS11
ARD2.0BJ Real-time clock for AR1l1l (60
One is required Hz line frequency) and DR11-K
LPS2C.OBJ Real-time clock (50 Hz line
frequency) for LPS11
ARD2C.OBJ Real-time clock (50 Hz 1line
frequency) for AR1l1l and DR11l-K
LPS3.0BJ Optional Digital input/output for LPS1l1
ARD3.0BJ Optional Digital input/output for AR1ll1l
and DR11-K
LPS4.0BJ Optional Display for LPS11 or AR1ll and
DR11-K
The following files are also provided in source form in all kits:
FTBL.MAC Function Table Module
PERVEC.MAC Vector Definition Module
RTINT.MAC Interface Module
PERPAR.MAC Parameter

To build a load module BASLPS.SAV (BASIC with LPS11 support) or

B-1

BUILDING LOAD MODULES

BASARD.SAV (BASIC with AR1ll and DR11l-K support), first transfer all
BASIC Extensions binaries (including sources) and BASIC files to the
system device with PIP. The parameter file PERPAR.MAC is then edited
and assembled with FTBL.MAC, PERVEC.MAC, and RTINT.MAC. The three
object modules produced are then linked with the LPS and BASIC object
modules to produce a load module.

NOTE

All of the procedures in this section
assume that an unaltered PERPAR.MAC is
being edited. It is recommended that a
copy of the original PERPAR.MAC be made
and saved for future use.

If the display module is not included in the LPS support to be linked,
another background routine may be linked with BASIC, but- it must be
defined in this module. See Section 8.8.1 of the BASIC/RT-11 Language
Reference Manual for instructions to define the background routine.

For the LPS routines to be accessible from the BASIC CALL statement,
the routine must be defined in a System Function Table as described in
Section 8.2 of the BASIC/RT-11 Language Reference Manual. FTBL.MAC is
a function table 1in source form. If any user-written assembly
language routines are also linked with BASIC and LPS software, the
routines must be defined in this function table. See Section 8.2.1 of
the BASIC/RT-11 Language Reference Manual for instructions to add the
assembly language routine definitions to the Function Table.

NOTE

Since only one .DEVICE programmed
request can be active, a special routine
SDEVHD has been added to BASIC (in the
FTBL.MAC module) to maintain a dynamic
device list. This routine is required
so that abnormal termination of BASIC
(e.g., typing CTRL/C) will return the
system to 1its normal state, usually by
disabling interrupts.

When writing new assembly language
routines for BASIC that would normally
use the RT-11 .DEVICE programmed
request, use the following code instead:

.GLOBL SDEVHD
MOV #LIST,RO
JSR PC,SDEVHD

If the .DEVICE list exceeds a block of
30 octal words, the error message "?DSP"
will result. The size of the block can
be changed by defining "DSPSIZ=X" in the
PERPAR.MAC file.

PERVEC.MAC is the vector definition module. It defines the hardware
addresses of the status registers and the interrupt vectors. The
standard hardware address for the LPS11 and the AR1l is 170400 (octal)

B-2

BUILDING LOAD MODULES

and interrupt vector is 340 (octal). The standard hardware address
for the LPS11 digital I/O is LPS register+l0 (octal) and interrupt
vector is at LPS vector+1l0 (octal); for the DR11-K they are at 167770
(octal) and 300 (octal) respectively.

There are some LPS1l hardware systems with the interrupt vector at
location 300 (octal). To assemble PERVEC with the interrupt vector at
300 (octal) it is necessary to delete the semicolon before the §V=0
definition in PERPAR.MAC. If the interrupt vectors are at other
locations then correct the interrupt addresses by using the system
editor to define $V in PERPAR equal to the interrupt address minus 300
(octal). For example, if the LPS1l interrupt vectors start at 320
(octal), define $V=20 (octal).

If the registers and interrupt vector of DR11-K are 1located at
non-standard address, then OFFST1 and OFFST2 in PERPAR.MAC must be
redefined. For example, if the register and interrupt vector
addresses are at 167750 (octal) and 360 (octal), define OFFST1=-20
(octal) and OFFST2=60 (octal).

In a multiple DR11-K system there must be a difference of 10 (octal)
between each unit in the interrupt and vector addresses. The status
register address decreases by 10 (octal) while the vector address
increases by 10 (octal). For example, in a 2 DR11-K system, when the
first DR11-K is at 167750 and 360 (octal), the second one must be at
167740 and 370 (octal).

PERPAR.MAC is a parameter file, a listing follows:

.TITLE PERPAR == PERIPHERAL SUPPORT PACKAGE PARAMETER MODULE.
DEC=11-LBPAA=C BASIC KERNEL V02=-01

COPYRIGHT (C) 1974,1975

DIGITAL EQUIPMENT CORPORATION
MAYNARD, MASSACHUSETTS 01754

THE INFORMATION IN THIS DOCUMENT IS SUBJECT TO

CHANGE WITHOUT NOTICE AND SHOULD NOT BE CONSTRUED

AS A COMMITMENT BY DIGITAL EQUIPMENT CORPORATIGN.
DIGITAL ASSUMES NO RESPCNSIBILITY FOR ANY ERRORS THAT
MAY APPEAR IN THIS DOCUMENT

THIS SOFTWARE IS FURNISHED TO PURCHASER UNDER A
LICENSE FOR USE ON A SINGLE COMPUTER SYSTEM AMND

CAN BE COPIED (WITH INCLUSION OF DIGITAL'S COPYRIGHT
NOTICE) ONLY FOR USE IN SUCH SYSTEM, EXCEPT AS MAY
OTHERWISE BE PROVIDED IN WRITING BY DIGITAL.

DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE
OR RELIABILITY OF ITS SOFTWARE ON EQUIPMENT
WHICH IS NOT SUPPLIED BY DIGITAL.

e Ws WE We W@ Ve NG Ve e e N e Ne We We W@ Ne e Vs e Ve Ws We ™

THE CONDITIONALS CONTAINED IN THIS MODULE AFFECT THE ASSEMBLY
OF THE FUNCTION TABLE MODULE "FTBL.MAC",

TO OBTAIN THE DESIRED CONDITIONAL DEFINITION(S),

REMOVE (USING AN EDITOR) THE

SEMI-COLON APPEARING BEFORE THE CONDITIONAL.,

e %o wa ve we

B-3

TO REQUIRED SIZE OF

H
$SLSI11=0
H
1 SCAPS=0
3 $DISK=0
«1FNDF sDISK
S$STRNG=0
+ENDC
«IFDF $sDISK
SRTV2=0
<ENDC
. IFDF SRTV?2
GVECT=354
CONFIG=300
;
sDSPS1Z=X
sDEFINE 'X'=
;
+ENDC
s SLPS=0
s $AR11=0
H
« IFDF SAR11
SLPS=0
«ENDC
H
s SDR11K=0
H
« IFDF $DR11K
OFFST1=0
OFFST2=0
<ENDC
sDEFINE "X" EQUAL
;s SNUMBR=X
;
«IFNDF S$NUMBR
SNUMBR = i
«ENDC
H
. IFDF SLPS
18V=0
h
H
H
H
SADC=0
$CLK=0
sDIO=0
$DIS=0
LENDC

BUILDING LOAD MODULES

sDEFINE FOR LSI-11
sDEFINE FOR CAPS=-11 SYSTEM
sDEFINE FOR RT=-11

:DO NQOT DEFINE FOR PTS BASIC WITHOUT
$STRINGS, = DEFINED FOR PTS V01 WITH STRINGS

;ASSUMES RT=11 VERSION 2 IS USED.
:DO NOT DEFINE FOR RT=11 V01=15,
7 SDISK

s THESE ARE DISPLACEMENTS USED FOR VERSION 2
sDISPL. TO VT11 VECTOR IN RMON
¢+DISPL. TO CONFIGURATION WORD IN RMON

.DEVICE LIST IN FTBL.MAC

7 SRTV2
sDEFINE FOR LPS11
sDEFINE FOR ARI11

sIMPLICIT DEFINITION
sAR11 SUBSET OF LPS11

sDEFINE FOR DRI1K

s THE STANDARD DR11=K REGISTER IS AT 167770
sDEFINE X, WHERE OFFST1=X, FOR NON=-STANDARD
sCONFIGURATION, E.G. FOR REGISTER ADDRESS AT
7167750 DEFINE X==20,

;THE STANDARD DR11=K VECTOR IS AT 300. DEFINE
X, WHERE OFFST2=X FOR NON=STANDARD CONFIGURATIOC
JE.G. FOR VECTOR AT 330, DEFINE X=30.

TO TOTAL NUMBER OF DR11=K'S IN SYSTEM

sDEFINE FOR MULTIPLE DR11=-K SYSTEM

DEFINE FOR LPS WITH VECTORS STARTING
AT 300. DEFAULT SETTING IS VECTORS AT
340, SET sV = ANY OTHER DISPLACEMENT IF
VECTORS START AT DISPLACEMENTS
OTHER THAN O OR 40 FROM
VECTOR 300

~e We Ne Vo ws “a

s INCLUDE A/D ROUTINES.

¢+ INCLUDE CLOCK ROUTINES,

s INCLUDE DIGITAL IO ROUTINES
s INCLUDE BPISPLAY ROUTINES.

;7 SLPS

BUILDING LOAD MODULES

H
$$SPLOT=0 s DEFINE FOR PLOT SUPPORT
’ : NO T E==$DISK MUST ALWAYS BE DEFINED FOR
; H LV11l SUPPORT,
;
« IFDF SPLOT
$LV11=0 7 INCLUDE LV11 SUPPORT
§VT11=0 7 INCLUDE VT11 SUPPORT
« ENDC 7 SPLOT
H
$SLV11=0 : DEFINE FOR LV11 SUPPURT
;
$SVT11=0 sFOR VT11
’
;
« IFDF SVT11
SCLOCK=0 ;FOR SYSTEM CLOCK (KW11L)
«ENDC $ SVT11
$VTS55=0 sDEFINE FOR VT55

e we “we

.EQT

To link the LPS module with BASIC it 1is necessary to delete the
semicolon (;) before $AR1l1l (for AR1ll only), $LPS (for LPS only) and
$DR11K (for DR11-K only) statements. If any of the four optional
modules are not to be included, a semicolon must be inserted before
the appropriate conditional.

Parameter Insert semicolon before parameter if:
SADC=0 module LPS1 or ARD1 is not to be included.
SCLK=0 module LPS2(LPS2C) or ARD2(ARD2C) 1is not to be
included.
$DIO0=0 module LPS3 or ARD3 is not to be included.
$DIS=0 module LPS4 is not to be included.
NOTE

If DR11-K is used on a system. LPSDR
must not be used. The total number of
DR11-K 1is defined 1in the PERPAR.MAC
parameter file by $NUMBR=X, where X can
have a maximum of 16.

Using the system assembler, the sources are assembled in the following
combinations to produce the needed object modules:
Object Files Source Files

FTBL PERPAR,FTBL
PERVEC PERPAR, PERVEC
RTINT PERPAR,RTINT

BUILDING LOAD MODULES

After these modules have been reassembled, the LPS support can be
linked with the BASIC object modules with only the desired optional
LPS modules included in the LINK command strings.

For long programs that do not use string variables, the LPS support
may be linked with the no string object modules BASNSR, BASNSX, and
BASNSE. This no string version of BASIC with LPS support has more
free core for program array storage.

After BASLPS or BASARD has been 1linked, it may be loaded by the
following monitor command:

.R BASLPS (or BASARD)

At this point the standard BASIC initial dialogue begins. See Chapter
1 of the BASIC/RT-11 Language Reference Manual for a description of
the initial dialogue.

When editing PERPAR.MAC, $DISK=0 should be enabled for BASIC/RT-11,
SLPS=0 should be enabled for BASIC with LPS1ll1l support, $AR11=0 should
be enabled for BASIC with ARll support, and $DR11K=0 for DR11-K
support. SADC=0, $CLK=0, $DIO=0, and $DIS=0 should be disabled
whenever the appropriate optional LPS module (or ARll) is not to be
included. For hardware address other than the standard, make changes
as described in paragraph about PERVEC.MAC.

The procedures for building the following load modules are described
in this section:

BASIC/RT-11 with complete LPS11 support

BASIC/RT-11 with complete LPS1l support and LPS interrupt
vectors at location 300 (octal).

BASIC/RT-11 for AR1ll and DR11-K (at hardware addresses 167750
and 360 (octal)) support, with the ADC, DIO, CLK,
and DIS optional modules.

Linking instructions for both overlaying and non-overlaying versions
are given for each. Since all editing instructions assume an original
PERPAR.BAK, the edit back-up file, is renamed PERPAR.MAC to allow any
future load modules to be built from an un-edited PERPAR.MAC.

To build a load module BASLPS.SAV with complete configuration under
RT-11 including LPS support and all four optional modules, enter the
following command strings:

CROFDIT

+*ERFERFAR. MACDRDD
#F: &0 SK=0DaAIED
*#F; €1 PS=0@0ArED
+EHDO

. ROMACRO
#*FTRL=FFREFARR, FTRL
ERRORS DFTFCTER: @

FRFE CORF: 17887 WORDRS

*#PFRVFO=FERFPAR, FERVFL
ERFEORS DFTECTENR: A
FREF CORF: 124%Z9 MORMNS

BUILDING LOAD MODULES

#RTINT=FFRFAR, ETINT
FRRORS DETFCTER: &
FRFE CORE: 12588 WORDS

T

R FIF
*PERFAR MAC=FPERFAR. RAKSE
0

The following instructions will create a BASLPS.SAV with overlaying
which has the maximum usable area.

JROLINE

#REASLFC, BARSLFES=RASICR, FFMFP, FTEBL. FERVEC, RTINTAE 486, T/C
TREANSFFR ADLDEFSS =

G0

S, | FCS1. PRS2, l.,F'SE:.- LF'S“’("C

*RRASICE A0 1.0

HEASTICKAD L/ 0

HRREICHAD: 2

b

To 1link a non-overlaying BASLPS.SAV which will have increased
execution speed the following commands should be given to link:

RO INK

#FRASLFS, RASLFS=RASICR, FFUF, BRASTCE, BRSICKAE 4A88-C
#FTRL, PERVEC, RTINTAC

*LFPSE, LPSY, L PSR, L PSE, LPSY, BRSICH

#:

Complete configuration for building a load module with interrupt
vector at 1location 300 (octal) - These instructions are the same as
the preceding instructions except that a $V=0 parameter definition in
PERPAR.MAC will be enabled.

R FDIT

*FRFFREPAR. MACDRDD
#F; NI SK=6@RATED
#F; £l FS=0@RaISD
#F; £4=0@aAr@H

*F B

. R OMACRD
#FTRL=FFRFPAR, FTRL
FERORS DETFCTFD: @

FREE CORF: 12858 WORDRS

#PERVFEC=FERFAR, PFRYED
ERRORS DETFCTEDR: &
FREF CORFE: 2439 MORDS

#RTINT=FFRFAR, RTINT
ERRORS DFETFCTFR: @

FREE CORF: 1254 WORDS

L S

BUILDING LOAD MODULES

R FIF
*PERFAR. MAC=FERFAR, BAK/R
L

The following procedure can create the overlaying version.

LROLTME

#BASIFS, RASLFS=RASICE, FPHMF, FTEL. FERVEC, RTINTAE: 48&/T/ 0

TRANSFFR ANMDRESS =

G0

k1 FERLLPSL, PSS, LPSZ. L PS4,
RRASICEAQ:1-°C

#EACSICHA0: 170

#RACSICHAD . 2

*»

To create the non-overlaying version the following
should be given:

R

#FASILFPS, RASLPS=RBASTILR, FFHF. BASICE, RASICHEAE 408/T
#FTRL, PERVEL. RTINTAC

#| PSE, LPSL. LFS2, | FSE, I PS4, BASICH

o+

link

commands

Partial Configquration - To build a load module BASARD.SAV under RT-11
AR11 and DRl11-K support (at hardware address 167750 and 360
(octal) which includes the ADC, DIO, CLK, and DIS routines, enter the
following command strings:

for

LREOEDIT

+FEFERFAR MALEDRED
*#F; 0] Sk =6@RANGD
#F; $ARLL=0@ATESD
#F; $LRELLE=6@FALED
#F HBD

JROFIIT

#FRFERVYFC. MALDRED
#FOFFSTL=6@-r-z26@9
#FOFFCT2=0@- @D
+EHID

B OMACRD
#FTEL=PERFRAR, FTFI
FERORS NFTECTFL: &

FRFE CORF: 126854 MORDS

*FPERVFC=FFRFAE, FFRVFL
FERORS DFTFCTFD: &
FREE CORF; 12472Z WORDE

#RTINT=FFRFAR, RTINT
FREORS LFTECTFR: @
FREF CORF: 12566 WORDS

7

BUILDING LOAD MODULES

L RORPIF

#FFRPAR. MAC=FERFAR. BAE AR
#FPERVEDC. MAC=FFRVEC. BAK/R
L

BOLINE

HEASARD, RASARD=RBASICR, FFHUP, FTEL, PERVEC, ETINTA/B: 486/ T/C
TRANSFFR ADDRESS =

G0

*I_FCH, ARDL. ARDZ, ARDE, LPS4/C

*EASICFAD:1-C

HERSTORA0: 1.0

HRASTCHAD: 2

b

This procedure will create an overlaying version of BASLPS.SAV. The
following command strings may be used to link a non-overlaid version
of BASIC with equivalent LPS support:

JREOLINK

HERSARD, RASARD=RASTICR, FRFMP, BRSICE, BASICKASE : 488./C
#FTRL, PERVYEC, RTINT A

#1 PSE, ARDL, ARDEZ, ARDE, LLPS4, BASICH

The Laboratory Peripheral System support may also be purchased in
source form. The following nine source files are provided in the
BASIC Extensions package.

LPS0.MAC
LPS1.MAC
LPS2.MAC
LPS3.MAC
LPS4.MAC
PTBL.MAC
PERVEC.MAC
RTINIT.MAC
PERPAR.MAC

The following table lists the assembly parameters for each module:

Source File Conditionals Define for Systems with:
LPS0.MAC None
LPS1.MAC SAR11 AR11 hardware
LPS2.MAC CYC50 50 Hz line frequency
(60 Hz is default)

SAR11 AR11 hardware
LPS3.MAC SAR11 AR11 hardware
LPS4.MAC None

BUILDING LOAD MODULES

Source File Conditionals Define for Systems with:

FTBL.MAC $ADC LPS1 (ARD1 for ARll)
SCLK LPS2 (ARD2 for AR1l1l)
$DIO LPS3 (ARD3 for AR1l)
$DIS LPS4
SLPS SLPSO0 (all systems with LPS support)
SAR11 AR1l1l support
SVT11 VT1ll support
$DISK RT-11
$VT55 VT55 support

PERVEC.MAC SLPS LPS11 hardware
SV LPS (or AR1ll) interrupts not at location

340 (octal)

$VT11 VT1l support
$AR11 AR11 hardware

SDR11K DR11-K hardware
SNUMBR=X Multiple (X) DR11-K hardware

OFFST1 First DR11-K interrupt address not at
167770 (octal)
OFFST2 First DR11-K vector address not at 300
(octal)
RTINT.MAC $DIS LPS4

The conditional $RTV2 is present in all modules to force subtitles in
assembly listings and enable RT-11 V02 system macro processing.

To assemble the LPS from the sources all the LPS files should be
transferred to the system device using PIP, and then the following
command should be given to the RT-11 MACRO assembler; if the 1line
current is 50 Hz, the following commands should be used before calling
MACRO:

LROFDIT
#EWFARAN HACSD
R ICY L=/

@®

*#F 4D

. R OMACRO

#l FESA=FERFAR, LFSR (for LPS11 only - define S$LPS 1in
FREORS DRETECTEDR: @ PERPAR.MAC -)

FREF CORF: 12144, WORDS

#LFSi=FERFAR, LFSL
FERORS RETFCTER: &
FREF CORE: 11986 WORDS

*LPSZ=FERFAR, ILFS2 (for 60 Hz clock)
FRRORS DETECTEDR: &
FREF CORF: 12152, WORDRS

RL_PERC=FERFAR, FARAM, |PCZ (for 50 Hz clock)
ERRORS DETECTED: @
FRFF CORE: 17148 WORDS

*#l PSE=PFRFAR, LFSZ
FERRORS DETFCTED: &
FREF CORF: 12872 WORDS

Following is a listing of PERVEC.MAC which contains

BUILDING LOAD MODULES

#l FE4=PFRPAR, LFS4
FREORS DETECTEDR: @
FREE CORE: 126864, WORDS

#ARM =FERFAR. | FS1 (for AR1ls& DR11-K

only-define

ERRORS DFTFCTER: A $AR11l& $DR11K in PERPAR.MAC)

FRFF CORF: 11986, WORDS

#ARDE=FERFAR, LFSZ (for 60 Hz clock)
FREORS DETECTFDR: &
FRFF CORFE: 12152, WORDPS

HARDEC=FERFAR. FARFAM, LFS2 (for 50 Hz clock)
FRRORS DFTFCTEDR: &
FRFF CORE: 12148 WORDS

*ARDI=FERFAR, LFSZ
ERRORS DETECTER: @
FREF CORF: 1z@7r, WORDS

£

vector location for the LPS and GT44 hardware:

«TITLE

w6 Ve e %8 We NE Wy Ne Ns We W WO Vs We s Ve WS Ve Ve We Ne we o

e N® w4 we “e Ve v» e wo

DEC=11-LBPVA=-B BASIC KERNEIL V02-01
COPYRIGHT (C) 1974,1975

DIGITAL EQUIPMENT CORPORATION
MAYNARD, MASSACHUSETTS 01754

THE INFORMATION IN TH1IS DOCUMENT IS SUBJECT TO
CHANGE WITHOUT NOT1CE AND SHQULD NOT BE CONSTRUED
AS A COMMITMENT 8Y DIGITAL EQUIPMENT CORPORATION.
DEC ASSUMES NO RESPONSIRILITY FOR ANY ERRORS THAT
MAY APPEAR IN THIS DOCUMENT.

THIS SOFTWARE 1S FURNISHED TO PURCHASER UNDER A
LICENSE FUOR USE ON A SINGLE COMPUTER SYSTEM AND
CAN BE COPLED (WITH INCLUSION OF DEC'S COPYRIGHT
NOTICE) ONLY FOR USE IN SUCH SYSTEM, EXCEPT AS MAY
OTHERWISE BE PRUVIDED IN WRITING RY DEC,

DEC ASSHUMES NGO RESPONSIBILITY FOR THE USE
OR RELIARILITY OF 1TS SOFTWARE ON EQUIPMENT
WHICH 1S NOT SUPPL1ED BY DEC.

THIS MODULE DEFINES THE HARDWARE ADRESSES USED BY
SUCH HARDWARE AS THE "LPS", "ARI1", "DR11=-K",

THE "VT11"(GT40) AND THE "LV1i“,.

1F THE VECTORS FOR THESE DEVICES SHOULD CHANGE
THIS MODULE MUST BE EDITED T0 REFLECT THE CHANGE.

DEFINE SLPS FOR LPS/AR11 SUPPORT IN PERPAR

SAR11 FOR AR11 MODS,

interrupt

PERVEC VECTOR DEFINITION MODULE ¥FOR BASIC SUFPORT PACKAGES,

;IF SYSTEM HAS DR11=K,
;OF DR11=K'S 1IN

Xk KKK

e “e We Ne s w2 we we

* X

BUILDING LOAD MODULES

SYSTEM,

SNUMBR MUST BE DEFINED EQUAL T0 TOTAL NUMBER

DEFINE SDR11K & $NUMBR FUR DR11=K

NOTE KKK KKK KK

«IFDF SLPS

« JFNDF
$V=40

«ENDC

+GLUBL
«GLORBL
. GLOUBL
«GLOBL
«GLOBL

EAY

IF DR11-K(S) IS (ARE) PRESENT IN SYSTKM ALONG WwlTH THE LPS11
THE LPSDR CANNQT RE USED.,
T I I 382222 2 222233 1111,

LPSAD,LPSADB,LPSDR,LPSDMA
LPSCKS, LPSPB,LPSDRS,LLPSD1B

LPSDOR,DRSTOF
LPL1SS,LPDISX,

LPDI1SY

CKL1VA,CKLIP,DRSIVA,DRSIP,LPSIVA,LPSIP

+ DEVICE EQUATES:

LPSAD
LPSADB
LPSCKS
LPSPB

LPSDR

LPSDRS
LPSDIB
LPSDOR
LPDISS
LPD1ISX
LPDISY

LPDLSS
LPDISX
LPDISY

LPSDMA

DEF INE
MUST B

~s wa we “e

OFFST1=0
LPSDR
LPSDRS
‘LPSDIB
LPSDOR

OFFST1=0
LPSDR
LPSDRS
LPSDIR
LPSDOR

nmenn

LFNDF

+ENDC

170400 ;LPS
170402 :LPS
170404 ;LPS
170406 ;LPS
SAR11

170410 :LPS
LPSDR

170412 :LPS
170414 ;LPS
170416 ;LPS
170420 :LPS
170422 ;LPS

SAR11

170410
170412
170414

170436 ;LPS

A/D STATUS REG.

A/D BUFFER LED REG.
CLOCK STATUS REG,

CLOCK BUFFER PRESET REG,

DIGITAL I/0 STATUS REG.

DIGITAL INPUT REG.
DIGITAL OUTPUT REG.
DISPLAY STATUS REG.
DISPLAY REG. X
DISPLAY REG. Y

DMA REGG.,

"OFFST1" IF DR11~K NOT AT STANMDARD LOCATICGN, ALI, DR11=K'S
E NEXT TO EACH OTHER(REGISTER ADDRESS DIFFERENCE==10 ONLY)

IFDF

[LI T LI]

«ENDC
«IFG

FENDC

$DR11K

167770+0FFSTI
LPSDR

167772+4+0FFST1
167774+0FFST1

SNUMBR=1

167770+0FFST1
LPSDR

167772+4+0FFST1
167774+0FFST1

B-12

BUILDING LOAD MODULES

¢ INTERRUPT VECTOR PAIRS:

CKLIVA = 304+$V ;ADR. OF CLOCK INTERRUPT VECTOR
CKLIP = 306+sV ;ADR. OF CLOCK INT. PRIORITY
H

«IFNDF $ARI1
DRSIVA = 310+8V ;ADR. OF DRS INPUT INT. VECTOR
DRSIP = 31248V ;ADR. OF DRS INPUT INT, PRIOCRITY.

+ENDC

DEFINE "OFFST2" 1F DR11-K NOT AT STANDARD VECTOR LOCATION,

-3 wo we

« IFDF $DR11K

OFFS8T2=0
DRSIVA = 300+0FFST2
DRSIP = 302+0FFST2
«ENDC
H
LPSIVA = 300+s$V ;ADR., OF THE A/D INT. VECTUR.
LPS1P = 302+sV ;ADR. OF THE 1NT,PRIORITY,
« ENDC ! SLPS
« 1IFDF STABLT ;PROTOTYPE WRITING TABLET
+GLOBL TSR,TINT,TVEC, XLOC,YLOC
TSR = 164040 sWRITING TABLET CSR
XLOC = TSR+2 X LOCATION OF TURTLE
YLOC = XLOC+2 ;Y LOCATION OF TURTLE
TVEC = 270 s INTERRUPT VECTOR
+«ENDC
« IFDF SVT11 1 GT40
«GLOBL DPC,DSR,DISX,DISY,GTVECT
DPC = 172000 ;VT11 DISPLAY PC
DSR = DPC+2 }VT11 DISPLAY STATUS REG
DIsSX = DSR+2 $VT11 X STATUS REG
DISY = DISX+2 ;VT11 Y STATUS REG
GTVECT = 320 #ADR, OF VT11 [GT40 (GT44)] INTERRUPT
sVECTOR LIST, REDEFINING GTVECT
sREDEFINES THE ENTIRE SET
1OF DISPLAY PROCESSOR INT., VECTORS,
$GITVECT: sDISPLAY STOP VECTOR
JGTVECT+4: sLIGHT PEN HIT VECTOR
JGTVECT+10¢ ;DISPLAY TIME OUT VECTOR
«ENDC ; SVT11
« IFDF SLV11 : LVi1 SUPPORT
«GLOBL LVCS,LVDB
LVCS = 177514 ; LV11l STATUS REGISTER
LVDB = LVCS8+2 ; LV11 DATA BUFFER

THE FOLLOWING ARE GLOBAL CONSTANTS WHICH ARE REDEFINED BASED ON
THE SYSTEM CONFIGURATION(LIKE LPS/AR11 ETC.).

~e ©5 WS “e “a “s

«GLOBL sLPS11,8LPS12,8LPS513 JFOR LPS! MODULE

B-13

SLPS11:

SLPS13=

SLPS13=

’
SLPS12:

.
’

SLPS21:

.
r

SLPS31:

H
SLPS32:

»
4

SLPS41:
SLP542:
SLPS43:
SLPS44:

SLPS41:
SLPS42:
SLPS43:
SLPS44:

- we

DRSON:

« IFNDF
« WORD
6000
~ENDC
« IFDF
« WORD
1000
«ENDC

« IFNDF
« WORD
« WORD
«ENDC
«1FDF
«WORD
« WORD
«ENDC

. GlJnBll

« IFNDF
« WORD
+ENDC
« IFDF
« WORD
o ENDC

+GLOBL

« WORD
« WORD
o« WURD

«GLOBL
17771717
1777711

«GLOBL
« IFNDF
« WORD
« WORD
« WORD
« WORD
«ENDC
« IFDF
«WORD
«WORD
«WORD
« WORD
<ENDC

«GLOBL

« WORD
«WORD
«WORD
« WORD
« WORD
 WOIRD

BUILDING LOAD MODULES

SAR11
77,4

$AR11
17,2

$AR11
77,100
177777,17,4

$AR11
17,20
177777,2,2
S$LPS21

$AR11
7,17,177777

$AR11
7,111,377

1 LPS
$377=63.=CHAN, 4=1GAIN
JFOR AUTO=GAIN RANGE CHECKING

1LPS
177=63.=CHAN, 100=64,=NSC
3177777=65535,=NPTS, 17=15,=MODE, 4=IGAIN

sAR11
117=15,=CHAN, 20=16,.,=NSC
7177777=65535.=NPTS, 2=MODE, 2=IGAIN
sFOR LPS2 MODULE

:LPS
:7=RATE, 17=15.=MODE, 177777=65535,=PRESET

7ARLL
i 7=RATE, 11=9.=MOUDE, 377=255,=PRESET

SLPS31 ;FOR LPS3 MODULE

177777 $177777=65535,=N
177777 #177777=65535,=MASK
SNUMBR=1 sNUMBER OF DR11-K'S IN SYSTEM, DEFAULT=1
SLPS32
$177777=65535,=5W
$177777=65535.=VAR(WRITE)
SLP841,5LP542,5LP543,8LP544 tFOR LPS4 MODULE
$SAR11 1LPS
10000 $10000=4096.=XMAX/YMAX
7777 $7777=4095.=N
77177 $7777=4095,=1
177777 $177777=65535,=NP
SAR11 7 AR11
2000 72000=1024.=XMAX/YMAX
1777 $1777=1023.=N
1777 ?1777=1023,=1
177777 t177777=65535,=NP

DRSON, DRSTOF

SCcos TcC

sDIGITAL I/0 STORAGE VARIES WITH
s TOTAL NUMBER OF DR11=K'S IN SYSTEM

sDRSON: O DRS OPERATION 1M PROGRESS
:BCDON:2: BCD/BINARY SWITCH
tDRSBUF:4: DRS BUFFER DESCRIPTOR ADD,
sDRSNPT:6: DRS NUMBER OF POINTS
!MASK:10: DRS MASK FOR IKPUT

sDRTRUF 12 PeS TIME BUFFER DESC,

B-14

DRSTOF=,=DRSON

’
« IFG
«WORD
« WORD
«WORD
+«WORD
+WORD
+« WORD
«ENDC
« IFG
+«WORD
«WORD
«WORD
«WORD
« WORD
«WORD
« IFG
« WORD
+ WORD
« WORD
« WORD
« WORD
«WORD
<ENDC
«IFG
« WORD
+«WORD
« WORD
«WORD
«WORD
«WORD
+ENDC
. IFG
«WORD
«WORD
«WORD
+WORD
+ WORD
+WORD
+ENDC
« IFG
«WORD
« WORD
+WORD
«WORD
+« WORD
«WORD
<ENDC
«IFG
«WORD
«WORD
«WORD
+WORD
«WORD
«WORD
+ENDC
+IFG
+WORD
+WORD
«WORD
« WURD

BUILDING LOAD MODULES

$NUMBR=-1

SCCcCCOoOCo

SNUMBR=2

OO OoCOC

SNUMBR-3

COOOCOCO

$NUMBR~4

DO COOO

S$NUMBR=5

SOOC CO

SNUMBR=6

[eNoNoRoRe Nl

SNUMBR=T

COoOTCOO

SNUMBR=10

COOC

sDRSON: 0
sBCDON:2:
tDRSBUF :4:
sDRSNPT:6:
sMASK:103
sDRTBUF:12:

sDRSON:O
sBCDONS2:
+DRSBUF :4:
sDRSNPT:6:
+MASK:10:
tDRTBUF3:12:

sDRSON:O:
sBCDON: 23
sDRSBUF 4
sDRSNPT:6:
sMASK:10:
sDRTRUF:12:

7DRSON: O
+BCDON:2:
+DRSBUF 1 4:
sDRSNPT:6:
sMASK:10:
sDRTBUF:12:

sDRSON: O
sBCDONe2:
sDRSRUF:4:
sDRSNPT 262
s MASK:10:
sDRTBUF:12:

sDRSON: O
sBCDON:2:
sDRSBUF:4:
sDRSNPT:6:
s MASK:10:
sDRTBUF:12¢

sDRSON:O:
sBCDONs 22
:DRSBUF:4:
sDRSNPT:6:
IsMASK:10:
sDRTBUF$12:

sDRSON:O:
sBCDON:2:
sDRSBUF 14
sDRSNPT:6:

B-15

DRS OPERATIUN IN PROGRESS
BCD/BINARY SWITCH

DRS BUFFER DESCRIPTOR ADD.
DRSS NUMBFR OF POINTS

DRS MASK FOR INPUT

DRS TIME BUFFEK DESC,

DRS OPERATION TN PRUOGRESS
BCD/BINARY SWITCH

DRS BUFFER DESCRIPTOR ADD.
DRS NUMBER OF POINTS

DRS MASK FOR INPUT

DRS TIME BUFFER DESC.

DRS OPERATION IN PROGRESS
BCD/BINARY SWITCH

DRS BUFFER DESCRIPTOR ADD.
DRS NUMBER OF POINTS

DRS MASK FOR INPUT

DRS TIME BUFFER DESC.

DRS OPERATION IN PROGRESS
BCD/BINARY SWITCH

DRS BUFFER DESCRIPTORK ADRD.
DRS NUMBER OF POQINTS

DRS MASK FOR INPUT

DRSS TIME BUFFER DESC.

DRS QPERATION IN PROGRESS
BCD/BINARY SWITCH

DRS BUFFER DESCRIPTOR ADD.
DRS NUMBER OF POINTS

DRS MASK FOR INPUT

DRS TIME BUFFER DESC.

DRS OPERATION 1N PROGRESS
BCD/BINARY SWITCH

DRS BUFFER DESCRIPTOR ADD,
DRS NUMBER OF POINTS

DRS MASK FOR INPUT

DES TIME BUFFER DESC.

DRS OPERATION IN PROGRESS
BCD/BINARY SWITCH

DRS BUFFER DESCRIPTOR ADD.
DKS NUMRBRER OF POINTS

DP& MASK FOR INPUT

DRS TIME BUFFER DESC,

DRS OPEKATION IN PROGRESS
RCD/BINARY SWITCH

LRS BUFFER DESCRIPTOR ADD.
DRS NUMBER OF POINTS

« WORD
« WORD
«ENDC
. 1FG

« WORD
«WORD
«WORD
« WORD
«WORD
«WURD
+ENDC
«IFG

« WORD
«WORD
« WORD
« WORD
+WORD
«WORD
»ENDC
«IFG

«WORD
« WORD
«WORD
« WORD
«WORD
«WORD
<ENDC
«IFG

«WORD
« WORD
« WORD
« WORD
«WORD
« WORD
«ENDC
» IFG

« WORD
« WORD
« WORD
« WORD
«WORD
« WORD
LENDC

«END

BUILDING LOAD MODULES

SNUMBR=11

leNeReNoNoNel

NUMBR=12

$
0
0
0
0
0
0

SNUMBR=13

COC OO

$NUMBR=14

S OoOCCo

[

SNUMBR=15

ococCcoc oo

B.2 BASIC/CAPS-11

B.2.1 LPS Support

}MASK:10:
fDRTRUF:12:

:DRSON:O:
sBCDON:2:
sDRSBUF:4:
!DRSNPT 6
sMASK:10:
sDRTBUF:12:

JDRSON: O
'BCDON:2:
sDRSBUF:14:
sDRSNPT:6:
sMASK:10:
sDRTRUF:12:

$DRSON:O:
IBCDON:22:
+DRSBUF 43
JDRSNPT:6¢
JMASK:10:
sDRTBUF 212

sDRSON:OQ:
yBCDON:2:
sDRSBUF 243
tDRSNPT:6:
sMASK:10:
sDRTBUF:12:

sDRSON:0:
sBCDON:2:
sDRSBUF 4
sDRSNPT:6:
sMASK:10:
sDRTRUF:12:

DRS MASK FOR INPUT
DRS TIME BUFFER DESC.

DRS OPERATION IN PROGRESS
BCD/BINARY SWITCH

DRS BUFFER DESCRIPTUR ADD.
DRS NUMBER OF POINTS

DRS MASk FOR INPUT

DRS TIME BUFFER DESC.

DRS OPERATION IN PROGRESS
BCD/BINARY SWITCH

DRS BUFFER DESCRIPTOR ADD,
DRS NUMBER OF POINTS

DRS MASK FOR [INPUT

DRS TIME BUFFER DESC.

DRS OPERATION IN PROGRESS
BCD/BINARY SWITCH

DRS BUFFER DESCRIPTOR ADD.
DRS MUMBER OF POINTS

DRS MASK FOR INPUT

DES TIME BUFFER DESC.

DRS OPERATION 1IN PROGRESS
BCD/BINARY SWITCH

DRS BUFFER DESCRIPTUR ADD,
DRS NUMBER OF POINTS

DRS MASK FOR INPUT

DRS TIME BUFFFER DESC,

DRS OPERATION IN PROUGRESS
BCD/BINARY SWITCH

DRS BUFFER DESCRIPTOR ADD.
DRS NUMBER OF POLNTS

DRS MASK FOR INPUT

DRS TIME BUFFER DESC.

The Laboratory Peripheral System (LPS) support for BASIC 1is supplied
in ten binary files.

LPS0.0BJ
LPS1.0BJ

ARD1.0OBJ

Required
Optional

Optional

LPS kernel module for LPS11 or
AR1l1 and DR11-K.

Analog to digital <conversion
for LPS11.

Analog to digital conversion
for AR1l1 and DR11-K.

B-16

BUILDING LOAD MODULES

LPS2.0BJ) Real-time clock (60 Hz 1line
frequency) for LPS1l.

ARD2.0BJ Real-time <clock (60 Hz line

One is required frequency) for AR11 and

DR11-K.

LPS2C.OBJ Real-time clock (50 Hz 1line
frequency) for LPS11.

ARD2C.OBJ) Real-time clock (50 Hz 1line
frequency) for AR11 and
DR11-K.

LPS3.0BJ Optional Digital input/output for
LPS11.

ARD3.0BJ Optional Digital input/output for AR1ll
and DR11-K.

LPS4.0BJ Optional Display for LPS11 or AR1ll and
DR11-K.

The standard BASIC/CAPS binary kit contains all the object modules
required to 1link a version of BASIC/CAPS that contains LPS support
(with all four optional LPS modules).

There are also the following files which are provided in source form
in all kits:

FTBL.PAL Function Table Module
PERVEC.PAL Vector Definition Module
BASINT.PAL Interface Module
PERPAR.PAL Parameter file

NOTE

BASIC with LPS support requires a PDP-11
with 16K or more of memory. The
procedures in this section assume the
user has at least 16K of memory and has
reconfigured his CAPS-11 system, along
with PAL and LINK, for 16K.

To create a version of BASIC/CAPS with complete LPS support, no GT
support, and a standard hardware configuration, it is only necessary
to link the supplied object modules.

To create a customized version of BASIC/CAPS with LPS support, the
parameter file PERPAR.PAL is edited and assembled with FTBL.PAL,
PERVEC.PAL and BASINT. The three object modules produced are then
linked with the LPS and BASIC object modules to produce a load module.

NOTE

All of the procedures in this section
assume that an unaltered PERPAR.PAL is
being edited. It is recommended that a
copy of the original PERPAR.PAL be made
and saved for future use.

B-17

BUILDING LOAD MODULES

The BASINT.PAL interface module should be used with all versions of
BASIC/CAPS. If the display module is not included in the LPS support
to be linked, another background routine may be linked with BASIC but
it must be defined in this module.

For the LPS routines to be accessible from the BASIC CALL statement,
the routine must be defined in a System Function Table. FTBL.PAL is a
function table in source form. If any user-written assembly language
routines are also 1linked with BASIC the routines must be defined in
this function table.

PERVEC.PAL is the vector definition module. It defines the hardware
addresses of the status registers and the interrupt vectors. The
standard hardware address for the LPS (or ARl1l) interrupt vector |is
340 (octal). In PDP-11E10 machines with LPS (or AR1ll) support,
however, the interrupt vector is location 300 (octal). To assemble
PERVEC with the interrupt vector at 300 (octal) it is necessary to
delete the semicolon before the $V=0 definition in PERPAR.PAL. If the
interrupt 1locations are at another location in memory, correct the
interrupt addresses by using the system editor to define $V in PERPAR
equal to the interrupt address minus 300 (octal). For example, if the
LPS (or ARll) interrupt vectors start at 320 (octal) define $V=20
(octal). A listing of PERVEC.PAL is printed at the end of section
B.1.2. To link the LPS (or AR11l) module with BASIC it is necessary to
delete the semicolon (;) before the $SLPS=0 (or S$SAR11=0) statement in
PERPAR.PAL. If any of the four optional modules are not to be
included, a semicolon (;) must be inserted before the appropriate
conditional.

Parameter Insert ; before parameter if
$ADC=0 module LPS1 or ARD1l is not to be included.
SCLK=0 module LPS2 (LPS2C) or ARD2 (ARD2C) is not to be
included.
$DIO=0 module LPS3 or ARD3 is not to be included.
$DIS=0 module LPS4 is not to be included.

Using the system assembler PAL, the sources are assembled in the
following combinations to produce the needed LPS object modules:

Object File Source Files
FTBL PERPAR, FTBL
PERVEC PERPAR, PERVEC
BASINT PERPAR, BASINT

After these modules have been assembled, the LPS support may be linked
with the BASIC object modules with only the desired optional LPS
modules included in the LINK command strings.

After BASLPS has been linked it may be loaded by the following monitor
command :

.R BASLPS

At this point the standard BASIC initial dialogue occurs.

BUILDING LOAD MODULES

As part of the initial dialogue, BASIC prints:
USER FNS LOADED
This message occurs whenever BASIC has been linked with LPS support.

When editing PERPAR.PAL, $LPS=0 should be enabled for BASIC with any
LPS support (or $AR1ll for AR1ll support), and S$ADC=0, $CLK=0, $DIO=0,
and $DIS=0 should be disabled whenever the appropriate optional LPS
module is not to be included. In addition, $V=0 should be enabled for
any PDP-11 with LPS (or AR1l) hardware interrupt 1located at 300
(octal) instead of 340 (octal). Most PDP-11E10 with LPS (or AR1l1)
require the defining of the $V=0 assembly parameter. For hardware
addresses other than 300 or 340, define $V as described in paragraph
about PERVEC.PAL. Linking BASIC/CAPS with LPS Support

The procedures for building the following load modules are described
below:

BASIC/CAPS with complete LPS support.

BASIC/CAPS with complete LPS support and LPS interrupt
vectors at location 300 (octal).

BASIC/CAPS with only the ADC and DIS optional display
modules.

Since all editing instructions assume an original PERPAR.PAL, a copy
of the original file should be preserved to allow any future load
modules to be built from an unedited PERPAR.PAL.

In all the following examples the user can substitute the module LPS2C
for the module LPS2 if the line frequency is 50 Hz instead of 60 Hz.

Complete Configuration

To build a load module BASLPS.SLO under CAPS-11 including LPS support
and all four optional modules, enter the following command strings:

(MOUNT A SCRATCH CASSETTE ON DRIVE 1)

AR
(TYPE <CR>)

(MOUNT A SECCOND SCRATCH CASSETTE ON DRIVE 1)

+Z 13

fROEDET

XEWL tFERFAR . LF9B®
(WHEN CASSETTE ON DRIVE 0 REWINDS, MOUNT
CASSETEE CONTAINING PERPAR.PAL ON DRIVE 0)

XERO I FERFAR . FALGRDD

XF 3 $CAFS=0POAIGBD

XF § $LFS=0@0AIGE

KE X4

+ROFALLS

XOFTRL ORJ/F=LIFERFARLFS/FyFTRL . PAL AP

FASS 2
07
17
17

000000 ERRORS

BUILDING LOAD MODULES

*¥OFERVEC .ORJ=1 IFERFAR . LFS/F s FERVEC . FAL/F

17

i#
FASS 2
17

e
000000 ERRORS
17

i?
FASS 2
17

17

000000 ERRORS

¥7C

+ROLINK

(Mount CAPS-11 system cassette on unit 0)
(Mount scratch cassette on unit 1)

(Mount BASIC object module cassette containing
BASICR.OBJ
on unit 1)

(When unit 0 has rewound, mount zeroed scratch
cassette
on unit 0)

X1LIBASLFS . SLOYLP =0t RASTCR FFMPy RASICE s BASTICX s RASICES/RI400/C
yFTRL/Fy FERVECs BASINT s LFSO/FyLFE1y LFE2yLPESIyLFS4y RASICH/P

07

or

o7

FASE 2

07

(Mount cassette with FTBL.OBJ on unit 0)
(Mount cassette with LPS0.0BJ on unit 0)

(LOAD MAP PRINTED)

(Mount cassette with FTBL.OBJ on unit 0)

BUILDING LOAD MODULES

OF (Mcunt cassette with LPS0.0BJ on unit 0)

0P (Mount cassette with BASICH.OBJ on unit 0)

b (Done. Cassette on unit 0 contains a new
BASLPS.SLO
which is BASIC/CAPC plus all LPS support-interrupt
vectors

at 340 (octal)).

Complete Configuration
Interrupt vectors at location 300 (octal)

These instructions are the same as the preceding instructions
except that a $V=0 parameter definition in PERPAR.PAL is
enabled.

To change the interrupt vector location, the file PERPAR.PAL
must be edited to enable the $V=0 parameter definition. The
new PERPAR is then used to reassemble PERVEC.PAL to

redefine the vector locations.

® represents the ALTMODE key
(Mount CAPS-11 system cassette on unit 0)
(Mount scratch cassette on unit 1)

VAR ¢

(Mount a second scratch cassette on unit 1)
213
+ROEDLT

XEWL I FERFAR . LS
(Mount BASIC object cassette containing PERPAR.PAL
on unit 0)

0B0ALG
*F § V=00 YEH
XEXE$

(Mount CAPS-11 system cassette on unit 0)
ROFALLS

KFTRL/Fal $FERFAR LEFS/Fy FTRL . FAL/F

e (Type any keyboard character)

17 (Mount cassette with FTBL.PAL on unit 1)

FASS 2

[eX3 (Mount second scratch cassette on unit 0)

17 (Mount cassette with new PERPAR.PAL on unit 1)
1P (Mount cassette with FTBL.PAL on unit 1)
GOO000 ERRORS

XFERVEC=1 2FERFAR PSPy PERVED . AL ZF

L (Mount cassette with PERPAR.LPS on unit 1)

17 (Mount cassette with PERVEC.PAL on unit 1)

B-21

BUILDING LOAD MODULES

FASS 2
1 (Mount cassette with PERPAR.LPS on unit 1)
17? (Mount cassette with PERVEC.PAL on unit 1)

(Now the cassette on unit 0 has a new PERVEC.OBJ)
000000 ERRORS

¥BAGINT =1L SPERFARLFS/ZF s BOGINT AL /P

i (Mount cassette with PERPAR.LPS on unit 1)

17 (Mount cassette with BASINT.PAL on unit 1)
(Cassette on unit 0 now contains a new BASINT.ORJ)

FASS 2

17 (Mount cassette with PERPAR.LPS on unit 1)

17 (Cassette on unit 0 now contains a new BASINT.OBJ)

000000 ERRORS

*°0
(Mount CAPS-11 system cassette on unit 0)
(Mount cassette containing BASICR.OBJ on unit 1)

HOLENK
(When unit 0 has rewound, mount cassette with new
PERPAR.PAL on unit 1)

(Mount cassette with BASICR.OBJ on unit 0)

1L BASLEFS SLOSLF I=RASTCRy FPMPy RAGTICE » RASTCX s BASICE/REA400/C
sFTRL/ZPy PERVECy BASINT s LFSO/Fy LFSL v LFS2y LFSEy LS4y RASTCH/F

o (Mount cassette with new FTBL.OBJ on unit 0)

o7 (Mount cassette with LPS0.0BJ on unit 0)

O (Mount cassette with BASICH.OBJ on unit 0)

faSS o (LOAD MAP PRINTED)

‘NHG &

O (Mount cassette with new FTBL.OBJ on unit 0)

O (Mount cassette with LPS0.0BJ on unit 0)

o7 (Mount cassette with BASICH.OBJ on unit 0)

*x"C (Done. New version of BASLPS.SLO with LPS

interrupt vectors at 300 is on cassette 1)

Partial Configuration

To build a load module BASLPS.SLO of BASIC/CAPS which includes only
the ADC and display routines, enter the following command strings:

(Mount CAPS-11 system cassette on unit 0)
(Mount scratch cassette on unit 1)

BUILDING LOAD MODULES

AN
(Mcunt second scratch cassette on unit 1)
P A
FOEDIT
KEWL 2 FAR LSO

KERO $ FERFAR . FOLGRED
XERO S Ak OLOHSD
XF 540 OBONIGD

*F 5 41 E=0@0A LSO
KFSCI. AT
¥FHDL0=0POAT GO

XE XD

(Mcunt CAPS-11 system cassette on unit 0)

For ARl1 support, enter the following command strings after mounting
second scratch cassette on unit 1:

ROFALLS

KFTRL /F=1 S PERFAR . LPS/Fy FTRL FAL /P

Le (Type any keyboard character)

17 (Mount cassette with FTBL.PAL on unit 1)

Pasg 2

o (Mount second scratch cassette on unit 0)
17 (Mount cassette with new PERPAR.PAL on unit 1)
1% (Mount cassette with FTBL.PAL on unit 1)

000000 ERRORS
(Cassette on unit 0 now contains a new FTBLL.CBJ)

¥FERVEC=L tPERFAR, LFS/Fy FERVEC . FAL /P
L (Mount cassette with PERPAR.LPS on unit 1)
17 (Mount cassette with PERVEC.PAL on unit 1)
Fass 2
1w (Mount cassette with PERPAR.LPS on unit 1)
17 (Mount casset with PERVEC.PAL on unit 1)
(Now the cassette on unit 0 has a new PERVEC.OBJ)
000000 ERRORS
AKBAGINT =1 IFERFARLPS/F s BASINT PAL /P
i (Mount cassette with PERPAR.LPS on unit 1)

17 (Mount cassette with BASINT.PAL on unit 1)
(Cassette on unit 0 now contains a new BASINT.OBJ)

FAgSs 2

B-23

BUILDING LOAD MODULES

000000 ERRORS

*C
(Mount CAPS-11 system cassette on unit 0) (Mount
cassette containing BASICR.OBJ on unit 1)

S LINK
(When unit 0 has rewound, mount cassette
containing new PERPAR.PAL on unit 0)

KL IRASLFG SLOZ L =RASTCR s FFMF oy BASTCE » BASTOX » BASICHE/B1400/0
s FTRLZFy FERVEC y BAGENT v LFGO/F v LFS Ly LS4y BASKTCH/ P

O (Mount cassette with new FTBL.OBJ on unit 0)

QO {Mount cassette with LPS0.0BJ on unit 0)

o7 (Mount cassette with BASICH.OBJ on unit 0)

BAGS (LOAD MAP PRINTED)

ALY W

0P (Mount cassette with new FTBL.OBJ on unit 0)

07 (Mount cassette with LPS0.0BJ on unit 0)

ok (Mount cassette with BASICH.OBJ on unit 0)

xmC (Done. New version of BASLPS.SLO with only ADC
and display routines, interrupt vectors at 340, is

. on cassette 1)

Assembling LPS, ARl1l Support from the Sources

The Laboratory Peripheral System support may also be purchased in
source form. The following nine source files are provided. (The
source files for FTBL, BASINT, PERPAR, and PERVEC are provided with
the binary kit.)

LPSO.PAL
LPS1.PAL
LPS2.PAL
LPS3.PAL
LPS4.PAL
FTBL.PAL
PERVEC.PAL
BASINT.PAL
PERPAR. PAL
The following table lists the assembly parameters for each module:

Source File Conditionals Define for Systems with:

LPSOQ.PAL None
LPS1.PAL $AK11 ARl1 hardware

SCAPS PTS hardware
LPS2.PAL CYC50 50 Hz line frequency

(60 Hz is default)

SAR11 AR11 hardware

SCAPS PTS hardware
LPS3.PAL $SARI11 AR11 hardware
LPS4.PAL None

BUILDING LOAD MODULES

source File Conditionals Define for Systems with:
FTBL.PAL SADC LPS1 (ARD1 for AR1l1)
SCLK LPS2 (ARD2 for AR11l)
$DIO LPS3 (ARD3 for AR1ll)
SDIS LPS4
SLPS SLPS0 (all systems with LPS support)
SAR11 AR1]l support
$VT11 VT1l1l support
SDISK RT-11
SVT55 VT55 support
PERVEC.PAL SLPS LPS11 hardware
sV LPS interrupts not at location 340
(octal)
SVT11 VT11l support
SAR11 AR11 hardware
SDR11K DR11-K hardware
SNUMBR=X Multiple (X) DR11l-K hardware
OFFST1 First DR11-K interrupt address not at
167770 (octal)
OFFST2 First DR11-K vector address not at 300
(octal)
BASINT.PAL $DIS LPS4

To assemble the LPS object modules from the sources, use the following
command strings:

SFOOBETEY

KEWL L Fakam. Falo®
ROV

@D

I ADP

JROPALLE

G (Mount cassette with
PERPAR.PAL on unit 0)

O (Mount cassette with LPS0.PAL
on unit 0)

FABE 2

O (Mount cassette with
PERPAR.PAL on unit 0)

OF (Mount cassette with LPSO.PAL

on unit 0)
QOOOOC ERPRQMS
KL ELPSL . OBI=0IPERPFAR . LFS/Fy LFSL . PAL AP

oXs (Mount cassette with
PERPAR.PAL on unit 0)

OF (Mount cassette with LPS1.PAL
on unit 0)

B-25

BUILDING LOAD MODULES

o7 (Mount cassette with
PERPAR.PAL on unit 0)

o (Mount cassette with LPS1.PAL
on unit 0)

000000 ERRORS

*1ILFSR20RS=0FERFARLFS/F LIPS FAL /P

6Xs (Mount cassette with
PERPAR.PAL on unit 0)

o (Mount cassette with LPS2.PAL

on unit 0)
Fass 2

QO (Mount cassette with
PERPAR.PAL on unit 0)

Ny (Mount cassette with LPS2.PAL
on unit 0)

GOO000 ERRORS
For line frequency of 50 Hz, use LPS2C instead of LPS2.

¥LLPSR0, OBRJ=0 3 FERFAR . LFSAFy PORAM FAL/F s LPS2 P al /P

O (Mount cassette with
PERPAR.PAL and PARAM.PAL on
unit 0)

O (Mount cassette with LPS2.PAL

on unit 0)

FASE 2

424 (Mount cassette with
PERPAR.PAL and PARAM.PAL on
unit 0)

0O (Mount cassette with LPS2.PAL

on unit 0)
QOCO00 ERRORES
K¥LLPFSE ORI=0IFERFARLFS/FP o LPS3 . PAL /P

O (Mount cassette with
PERPAR.PAL on unit 0)

O (Mount cassette with LPS3.PAL
on unit 0)

Fags 2

0 (Mount cassette with
PERPAR.PAL on unit 0)

BUILDING LOAD MODULES

O (Mount cassette with LPS3.PAL
on unit 0)

000000 ERRORS

HLILPGA OBJ=0IFERFAR LFS/Fy LIPS AL/

OF (Mount cassette with
PERPAR.PAL on unit 0)

O (Mount cassette with LPS4.PAL

on unit 0)

O (Mount cassette with
PERPAR.PAL on unit 0)

O (Mount cassette with LPS4.PAL
on unit 0)

00000 ERRORS
For AR11l support, assemble the ARD files instead of LPS files:
¥LEARDL . ORJI=PERFAR cARD/F LPSL PALAF

07 (Mount cassette with
PERPAR.ARD on unit 0)

o (Mount cassette with LPS1.PAL
on unit 0)

Fass 2

QO (Mount cassette with
PERPAR.ARD on unit 0)

ey (Mount cassette with LPS1.PAL
on unit 0)

Q00000 ERRORS
KL AR OB J=PERFAR ARDPy LPG2 al /e

or (Mount cassette with
PERPAR.ARD on unit 0)

QP (Mount cassette with LPS2.PAL
on unit 0)

Fasg 2

o (Mount cassette with
PERPAR.ARD on unit 0)

o7 (Mount cassette with LPS2.PAL
on unit 0)

QOGO00 ERRORS

B-27

BUILDING LOAD MODULES

KL IARDZC OB SO FERFAR ARIV/F v FARAM « FAL AF o LFS2 AL AP

o7 (Mount cassette with
PERPAR.ARD and PARAM.PAL on
unit 0)

P (Mount cassette with LPS2.PAL
on unit 0)

FASE 2

0P (Mount cassette with
PERPAR.ARD and PARAM.PAL on
unit 0)

07 (Mount cassette with LPS2.PAL

on unit 0)
GO0000 ERRORS

FF AR AR LFS3 Al

KL AR . O s

OF (Mount cassette with
PERPAR.ARD on unit 0)

o7 (Mount cassette with LPS3.PAL
on unit 0)

FASE 2

0O (Mount cassette with
PERPAR.ARD on unit 0)

0 (Mount cassette with LPS3.PAL

on unit 0)
QOOO00 ERRORS

Building a load module may now be accomplished by following the
instructions in the preceding paragraphs.

B.3 BASIC/PTS-11

B.3.1 LPS Support

The LPS support for paper tape is supplied in twelve binary tapes:

LPS0.0BJ Required LPS kernel module for LPS1l1 or
AR11 and DR11-K

LPS1.0BJ Optional Analog to digital conversion
for LPS11

ARD1.0BJ Optional Analog to digital <conversion

for AR11 and DRI11l-K

BUILDING LOAD MODULES

LPS2.0BJ Real-time clock (60 Hz 1line
frequency) for LPS1l1

ARD2.0BJ Real-time clock (60 Hz line

One is required frequency) for AR11l and DR11l-K

LPS2C.OBJ Real-time clock (50 Hz 1line
frequency) for LPS11

ARD2C.OBJ Real-time clock (50 Hz line
frequency) for AR1l and DR11-K

LPS3.0BJ Optional Digital input/output for LPS11

ARD3.0BJ Optional Digital input/output for AR1ll
and DR11-K

LPS4.0BJ Optional Display for LPS11 or AR1l1l and
DR11-K

PTSSTR One is Patch for BASIC with strings

PTSNST required Patch for BASIC without
strings

The following files are provided in source form:

FTBL.MAC Function Table Module
PERVEC.MAC Vector Definition Module
PTSINT.MAC Interface Module
PERPAR.MAC Parameter

To build a load module BASLPS (BASIC with LPS support), the parameter
file PERPAR.MAC is edited and then assembled with FTBL, PERVEC and the
appropriate interface module. The six object modules produced are
then linked with the LPS and BASIC object modules to produce a load
module. The specific instructions that are given to the system
programs (editor, assembler, and 1linker) are given in the examples
that follow the general description of load module building.

The two patch tapes, PTSSTR and PTSNST, alter one location 1in BASICL
to permit the LPS scope to be refreshed by a background routine, a
routine that is active while BASIC waits for input. A patch tape
should only be used with BASIC/PTS V0l. The Patch tape used should be
linked after the last LPS tape. PTSNST should be linked when BASICL
without strings is linked and PTSSTR should be linked when BASICL with
strings is linked.

NOTE

All of the procedures in this section
assume that an unaltered PERPAR is being
edited. It is recommended that a copy
of the original PERPAR be made and saved
for future use.

The BASINT interface module should be used with all versions of BASIC

except BASIC/PTS V01l which should have PTSINT used in the place of
BASINT.

For the LPS routines to be accessible from the BASIC CALL statement,
the routine must be defined in a System Function Table. FTBL.MAC is a
function table in source form. If any user-written assembly language
routines are also 1linked with BASIC the routines must be defined in
this function table.

PERVEC is the vector definition module. It defines the hardware

addresses of the status registers and the interrupt vectors. The
standard hardware address for the LPS interrupt vector is 340 (octal).

B-29

BUILDING LOAD MODULES

In PDP-11E10 machines with LPS support, however, the interrrupt vector
is location 300 (octal). To assemble PERVEC with the interrupt vector
at 300 (octal) it is necessary to delete the semicolon before the $V=0
definition in PERPAR.MAC. 1If the interrupt locations are at another
location in memory then correct the interrupt addresses by using the
system editor to define $V in PERPAR equal to the interrupt address
minus 300 (octal). For example, if the LPS interrupt vectors start at
320 (octal) define $V=20 (octal).

To link the LPS module with BASIC, it 1is necessary to delete the
semicolons (;) before the SLPS=0 statement. If any of the four
optional modules are not to be included, a semicolon (;) must be
inserted before the appropriate conditional.

Parameter Insert ; before parameter if

$ADC=0 module LPS1 or ARl1l is not to be included.

SCLK=0 module LPS2 (LPS2C) or AR1ll is not to be included.
$DIO=0 module LPS3 or ARll is not to be included.

$DIS=0 module LPS4 or ARll is not to be included.
SSTRNG=0 no string version of BASICL is to be linked.

Using the system assembler, the sources are assembled in the following
combinations to produce the needed LPS object modules:

Object File Source Files
FTBL PERPAR,FTBL
PERVEC PERPAR, PERVEC
BASINT or PERPAR, BASINT
PTSINT PERPAR, PTSINT

After these modules have been assembled, the LPS support may be linked
with the BASIC object modules with only the desired optional LPS
modules included in the LINK command strings.

Example Load Buildings

Examples are given for building a load module for the following three
systems:

1. BASIC with strings, with complete LPS (or ARl1l) support, and
with the LPS (or ARl1l) interrupt vectors located at 340
(octal).

2. BASIC without strings with complete LPS (or ARll) support and
with the LPS (or ARll) interrupt vectors located at 300
(octal).

3. BASIC with strings, with a partial LPS (or AR11)
configuration (one that includes the ADC, DIS, and CLK but
does not include the DIO), and with the LPS (or AR1ll)
interrupt vectors located at 340 (octal).

BUILDING LOAD MODULES

To build a load module called BASLPS.LDA, the following instructions
should be followed:

Load ED-11 (the PDP-~11 Paper Tape Software Text Editor) which is wused
to edit a source paper tape, PERPAR, which describes the required
options. Place the supplied PERPAR.MAC in the high speed paper tape
reader then follow one of these three procedures:

1. For a load module of BASIC including strings with support for
a complete configuration of the LPS (all four optional
modules) and with the LPS interrupt vectors at 1location 340
(octal), the following instructions should be given to the
editor:

#1 H

*#0 H

*R

#H

; $CAPS=H
i $CAPS=H
*EH

w[

#H

i $LPS=08

; $LPCS=6

*+BA

[

*EB

* S F

#4T

»

At this point, the punch has the edited PERPAR.

2. Or for a load module of BASIC with no strings, with support
for a complete configuration of the LPS and with the LPS
vectors located at 300 (octal), the following instructions
should be given to the editor:

*1 H

*0 H

£ =

#H

P $CAPGS=@
; $CAPS=6
#EA

[

*H
FETRMG=A
FSTRMEG=8
+@A

*]

*H
; $LPS=8
i ¥LPS=8
*EA

[

#H

P FY =
; #V=0
+EA

*: [:l

+*B

*1 H
*#0 H
#R

HH
i ¥CAFS=QR
i $CAFS=H
+@A

* [

#H
i $LPS=0
i ¥LPS=6
*HA

[
*H

$0I0O=6
€LI0=0

the

BUILDING LOAD MODULES

Or to build a load module
configuration of the LPS,
CLK but excludes the DIO
(octal),
editor:

following

At this point the punch has the edited PERPAR.

of BASIC with strings for a partial
one that includes the ADC, DIS, and
with the LPS interrupts at 340
instructions should be given the

B-32

BUILDIWNG LOAD MODULES

A A

1

#E
AP
#4T
¥

At this point, the punch has the edited PERPAR.

Load PAL-11S. It is used to generate FTBL, PERVEC, and PTSINT

object

tapes. When PAL-11 has been loaded, put the edited PERPAR tape in the

high-speed reader and answer the following questions.

PAL-11S
*S H
*B H
*L P
*T P

The PERPAR tape is now read.

EQF? When EOF? 1is printed, remove the PERPAR tape and put
the FTBL source tape in the high-speed reader. Then
type carriage return.

END? When END? 1is printed, remove the FTBL source tape and
insert the PERPAR tape in the high-speed reader. When
ready, type a carriage return.

EOF? When EOF? is printed, remove the PERPAR tape and

replace it with the FTBL source tape. (Note that both

tapes are loaded twice in the assembly process.)

000000 ERRORS

PAL-11S

*S When *S is printed, the new FTBL object tape is in the
high-speed punch and may be removed. It is this tape
(called FTBL) that will be used in the linking process
to generate a new load module.

PAL-11S

These steps are then repeated using the PERPAR and PERVEC

tapes to

produce a PERVEC object tape and then repeated again using the PERPAR

and PTSINT tapes to produce a PTSINT object tape.

Building the load module 1is accomplished by wusing LINK-11S.

bottom address specified should be 400.
Link the object tapes in the following order.

BASICL.OBJ

The

BUILDING LOAD MODULES

FPMP.OBJ

PTSINT.OBJ

PERVEC.OBJ

FTBL.OBJ

LPS0.0OBJ

LPS1.0BJ or ARD1.0OBJ

LPS2.0BJ or ARD2.0BJ (for 60 Hz line frequency)
LPS2C.OBJ or ARD2C.OBJ (for 50 Hz line frequency)
LPS3,.0BJ or ARD3.0BJ

LPS4.0BJ

PTSNST

BASICH.OBJ

If $STRNG was left unchanged when editing PERPAR, BASICL with strings
must be used. If a semicolon was inserted before $STRNG, BASICL for
no string must be used.

Exclude the optional files for which a semicolon was inserted before
the appropriate conditional 1in PERPAR. 1In the example given for a
configuration not including the DIO, do not include LPS3.0BJ in the
linking process.

To assemble the LPS from the sources the following procedure should be
followed:

Load PAL-11S. It is used to generate LPSO, LPS1, LPS2, LPS3, and LPS4
binary tapes. Put the LPSO source tape in the high speed reader.
Enter the following commands

PAL-118

*S H

*8 H

*L P

*T P The tape is now read.

END? Re-insert the tape in the reader, press <CR>
0oooo0

PAL-11S

*S

Repeat this procedure for the LPS1, LPS2(LPS2C), LPS3, and LPS4 source
tapes or 1if the line frequency is 50 Hz, LPS2 should be assembled by
the following procedure (LPS0, LPS1,LPS3, and LPS4 are still assembled
as described above). Load ED-11 (the PDP-11 Paper Tape Software
Editor) with the absolute loader, then create a parameter tape as
follows:

*I H
*O H
*1
CYC50=0
.EOT
*B
* /P

*4T

BUILDING LOAD MODULES

Load the PAL-11S assembler and insert the tape created by the above
commands., Follow this procedure:

PAL-11S

*S H

*B H

*L, P

*T P

EOF? Insert the LPS2 source tape and press <CR>.

END? Insert the tape created by the editor and press
<CR>.

EOF? Insert the LPS2 source tape and press <CR>.

000000

PAL-11S

*S At this point the LPS2 binary tape is in the

high-speed punch.

The following table lists the assembly parameters for each module:

Source File Conditionals Define for Systems with:
LPS0.MAC None
LPS1.MAC $AR11 AR11 hardware
SCAPS PTS hardware
LPS2.MAC CYC50 50Hz line frequency (60
Hz is default)
S$AR11 ARl1l hardware
SCAPS PTS hardware
LPS3.MAC SAR11 ARl11l hardware
LPS4.MAC None
VT55.MAC VT55 VT55 terminal
Source File Conditionals Define for Systems with:
FTBL.MAC SADC LPS1
SCLK LPS2
$DIO LPS3
$DIS LPS4
SLPS SLPS0 (all systems with
LPS support)
$VT11 VT1ll support
$DISK RT-11
S$VT55 VT55 support
PERVEC.MAC SLPS LPS11 hardware
sV LPS interrupts not at
location 340 (octal)
SVT11 VT11l support
SAR11 AR11 hardware
$DR11K DR11-K hardware
SNUMBR=X Multiple (X) DR11-K
hardware
OFFST1 First DR11-K interrupt
address not at 167770
(octal)
OFFST2 First DR11-K vector

B-35

BUILDING LOAD MODULES
address not at 300
(octal)
PTSINT.MAC SDIS LPS4

To include AR1l1l, simply define $AR11l in addition to $CAPS symbols in
PERPAR source tape.

This appendix summarizes the error messages that may occur when
Extensions

call

routines.

APPENDIX C

ERROR MESSAGES

using
See Appendix P of the RT-11 System

Reference Manual for all error messages that may occur under the RT-11

BASIC
system.
?ADC ERROR
BASIC
?ARG ERROR
BASIC
?BUF ERROR
BASIC
?DEV ERR-C
BASIC
?DSP ERROR
BASIC
?DV0 ERROR
BASIC
?NOR ERROR
BASIC
?2SYN ERROR
BASIC
?UNF ERROR
BASIC

AT LINE XXXXX
Ext Fatal

AT LINE XXXXX
Fatal

AT LINE XXXXX
Ext Fatal

Ext Non-fatal

AT LINE XXXXX
Ext Fatal

AT LINE XXXXX
Fatal

AT LINE XXXXX
Ext Fatal

AT LINE XXXXX
Fatal

Cannot issue ADC command while RTS

operation is underway.

an

not match
the argument defined

Arguments in a function call do
(in number or in type)
for the function.

Buffer name given in LPS command has not
been previously defined in a USE statement.

The device specified is illegal.

.DEVICE 1list space overflow. Redefine
DSPSIZ in PERPAR.MAC and reassemble
FTBL.MAC.

Program attempted to divide some quantity
by 0.

Number out of range.

The program has encountered an
unrecognizable statement. Common syntax
errors are mispelled commands and unmatched
parentheses, and other typographical

errors.

FUNCTION AT LINE XXXXX

Fatal

The function called was not defined by the

program or was not loaded with BASIC.

Term

Analog

Auto-gain

Bipolar

Buffer

Clock

DMA

Gain

Global

Initialize

Library
Routine

Mass Storage

Overflow

Parameter

GLOSSARY

Definition

Numbers represented by directly measurable
(as voltages, resistances, or rotations).

guantities

Software determination of the best switch gain value to
use sampling analog data using the LPSAM~SG option.

Refers to a signal that is either positive or negative
with respect to system ground.
A temporary storage area which may be a special

register or an area of storage.

A time-keeping or frequency-measuring device within the
computer system.

Direct Memory Access. The DMA 1is attached to any
PDP-11 allowing memory data storage or retrieval at
memory cycle speeds without processor intervention.

ratio of

An increase in signal power. Gain in the

output power to input power.

A value defined in one program module and used in
others. Globals are often referred to as "entry
points" in the module in which they are defined and
"externals" in the other modules which use them.

To set counters, switches, addresses and variables to
zero or other starting values.

A collection of standard routines
incorporated into larger programs.

which can Dbe

Pertaining to a device such as a disk or DECtape which
stores large amounts of data readily accessible to the
central processing unit.

A condition that occurs when a mathematical
yields a result whose magnitude
program is capable of handling.

operation
is larger than the

A variable or an arbitrary constant appearing in a
mathematical expression, each value of which restricts
or determines the specific form of the expression.

Glossary-1

GLOSSARY

Preamplifier An electronic «circuit or device that detects and
sufficiently amplifies weak signals.

Source file A file to be used as input to a translating program
such as MACRO or BASIC.

Glossary=-2

INDEX

A/D Conversion, 2-7 DRS, 2-~2, 2-19
ACC, 2-2, 2-5 DXY, 2-3, 2-25
ADC, 2-1, 2-2, 2-7

Array, 2-3

Auto-gain, 2-7
Flashing data, 2-26
FsH, 2-3, 2-25
FXYy, 2-3, 2-26
Background Display Routine, 2-23

Buffer,
defining the display, 2-22
display, 2-25 Hardware, 2-27
putting data into display, HIST, 2-2, 2-16
2-23 Histograms, 2-15

ring, 2~6, 2-8, 2-15
Burst Mode, 2-10

Internal clock, 2-16
Interrupt Mode, 2-13

Channel, 2-8 IPK, 2-2, 2=21
Clock, 2-1, 2-10
Clock,
internal, 2-16
Clock Mode, 2-14 LED, 2-1, 2-2, 2-11
CLRD, 2-2, 2-22 Light Emitting Diodes, 2-11
Control, LPSO, 2-3
relay, 2-21 LpPs1l, 2-7
Conversion, LPs2, 2-12
A/D, 2-7 ILPS3, 2-17
CvVsG, 2-2, 2-12 ILPS4, 2-22
LPSAD~12, 2-1
LPSAD-NP, 2~1
LPSAG, 2-1, 2-8
DACS, 2-2 LPSAG-VG, 2-1
Data, LPSAM, 2-1
flashing, 2-26 LPSDR, 2-2
returning, 2-6 LPSKW, 2-2, 2~13
Data from memory, LPSSH, 2-1
reading, 2-21 LPSVC, 2-2

Data into display buffer,
putting, 2-23
Data into memory,

writing, 2-21 Memory,
Data overrun, 2-6 reading data from, 2-21
Defining the display buffer, 2-22 writing data into, 2-21
Digital readout, 2-19 Mode,
DIM, 2-3 Burst, 2~10
DIR, 2-2, 2-17 Clock, 2-14
DIS, 2-3, 2-23 Interrupt, 2-13

Display buffer, 2-25
defining the, 2-22
putting data into, 2-23

Display routine, Numeric readouts, 2-7
background, 2-23

DMA, 2-1, 2~11

DOR, 2-=2, 2-19

Index~1

INDEX (Cont.)

Overflow, 2-16
Overrun,
data, 2-6

PUTD, 2-2, 2-23
Putting data into display
buffer, 2-23

RDB, 2-2, 2-6
Reading data from memory, 2-21
Readout,

digital, 2-19
Readouts,

numeric, 2-7
Real-time sampling, 2~7, 2-8
REL, 2-2, 2-21
Relay control, 2-21
Retrigger, 2-17
Returning data, 2-6
Ring buffer, 2-6, 2-8, 2-15
Routine,

background display, 2-23
RTIM, 2-2, 2-16
RTS, 2-2

Sampling,

real-time, 2-7, 2-8
Schmitt Trigger, 2-1, 2-10
Schmitt Trigger,

timed, 2-15
SETC, 2-2, 2-14
SETR, 2-2, 2-12, 2-13
Subscript, 2-3
SVsG, 2-12

Target variable, 2-6, 2-7, 2-17
Timed Schmitt Trigger, 2-15

USE, 2-2, 2-3

Variable,
target, 2-6, 2-7, 2-17

WAIT, 2-2, 2-16
Writing data into memory, 2-21

Index~2

BASIC-11

Laboratory Extensions
User's Guide
EC-11-LBEPA-A-D

READER'S COMMENTS

NOTE: This form is for document comments only. Problems
with software should be reported on a Software
Problem Repcrt (SPR) form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer
Higher-level 1anguage programmer
Occasiocnal programmer (experienced)
User with little programming experience
Student programmer

000000

Non-programmer interested in computer concepts and capabilities

Name Date
Organization
Street
City State Zip Code
or
Country

If you require a written reply, please check here. []

Fold Here

Do Not Tear - Fold Here and Staple

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Software Communications
P. O. Box F
Maynard, Massachusetts 01754

dlilglitall

digital equipment corporation

	000
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	A-01
	A-02
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	B-24
	B-25
	B-26
	B-27
	B-28
	B-29
	B-30
	B-31
	B-32
	B-33
	B-34
	B-35
	B-36
	C-01
	C-02
	Glossary-01
	Glossary-02
	Index-01
	Index-02
	replyA
	replyB
	xBack

