XMI Adapters Handbook

Order Number EK-XMIAD-HB-PRE

This handbook is a quick reference guide to the various I/O adapters which interface XMI-based systems to devices that employ different bus structures and protocols. The handbook is for VAX system trained Digital customer service personnel who are familiar with the XMI bus architecture.

Revision/Update Information: This is a preliminary release

Digital Equipment Corporation

July, 1990

The information in this document is subject to change without notice and should not be construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U. S. Government is subject to restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227–7013.

Copyright © Digital Equipment Corporation 1990

All Rights Reserved. Printed in U.S.A.

The following are trademarks of Digital Equipment Corporation:

DEC	UNIBUS	VAX 9000
DECUS	VAX	VAXBI
PDP	VAX 6000	XMI

This document was prepared and published by Educational Services Development and Publishing, Digital Equipment Corporation.

Contents

About This Manual

xi

Part I XMI Bus Section

1 XMI BUS OVERVIEW

1.1	INTRODUCTION	1-1
1.2	IMPLEMENTATIONS	1–1
1.3	SPECIFICATIONS AND TERMINOLOGY	1-4
1.4	BUS INTEGRITY FEATURES	1-6

2 XMI BUS PHYSICAL DESCRIPTION

2.1	XMI CARD CAGE	2–1
2.1.1	Node ID Numbers	2-1
2.1.2	Clock/Arbiter Card	2–1
2.1.3	I/O Header Pins	2-4
2.2	XMI NODE	2–5
2.2.1	XMI Corner	2-5
2.2.2	Self-Test LED	2–5
2.3	CONFIGURATION RULES	2–5

3 XMI BUS FUNCTIONAL DESCRIPTION

3.1	ADDRESSING	3–1
3.2	BUS SIGNALS	3–5
3.3	BUS FUNCTION CODES	3–7
3.4	XMI DATA TRANSFER TRANSACTIONS	3-8
3.5	INTERRUPT TRANSACTIONS	3-15

iv Co	ntents
-------	--------

3.6	ARBITRATION	3-20
3.7	BUS INITIALIZATION	3-21
3.8	XMI NODE REQUIRED REGISTERS	3-22

4 DIAGNOSING XMI BUS RELATED ERRORS

4.1	NODE RBDs AND SELF-TESTS	4-1
4.2	ERROR CONDITIONS	4-1
4.3	ERROR HANDLING	4-3
4.4	ERROR RECOVERY	4-3
4.5	ERROR REPORTING	4-4

Part II CIXCD Section

5 CIXCD INTERFACE OVERVIEW

5.1	INTRODUCTION	5-1
5.2	FUNCTIONAL OVERVIEW	5-1
5.3	FEATURES	5-6
5.4	SPECIFICATIONS	5-7
5.5	RELATED DOCUMENTATION	5-10

6 CIXCD CONFIGURATIONS

6.1	INSTALLATION REQUIREMENTS	6-1
6.2	CONFIGURATION JUMPERS	6-1

7 CIXCD SELF-TEST (XCDST) AND ROM-BASED DIAGNOSTICS (RBDs)

7.1	CIXCD SELF-TEST (XCDST)	7–1
7.2	ROM-BASED DIAGNOSTICS (RBDs)	7–3
7.2.1	RBD User Interface	7–3
7.2.2	RBD Commands and Control Keys	7-4
7.2.3	RBD Error Report Formats	7-6
7.2.4	Sample RBD Run	7–7

Contents v

8 CIXCD MACRODIAGNOSTICS AND SUPPORT	
PROGRAMS	
8.1 INTRODUCTION	·1
8.2 DIAGNOSTIC PROGRAMS 8-	-2
8.3 RUNNING EVGAA AND EVGAB 8-	-4
8.3.1 Sample EVGAA Run 8-	.7
8.3.2 Sample EVGAB Run 8-	.9
8.4 RUNNING EVGAC 8–1	0
8.4.1 Sample EVGAC Run 8–1	0
8.4.2 EVGAC Program Parameter Register 8–1	1
8.4.3 EVGAC Program Parameters 8-1	4
8.4.4 EVGAC Support Files 8–1	6
8.5 RUNNING EVGEA 8–1	9
8.5.1 Sample EVGEA Run 8–1	9
8.5.2 Sample EVGEA Error Message 8–1	9
8.6 EEPROM UPDATE/VERIFICATION UTILITY 8-2	21
8.7 MAINTENANCE SUPPORT TOOLS 8–2	:3
9 CIXCD REGISTERS	

9.1	INTRODUCTION	9-1
9.2	CIXCD REGISTER TYPES	9-2
9.3	ADDRESSING XMI VISIBLE REGISTERS	9–3
9.4	INTERNAL BUS (IB) REGISTER ADDRESSING	9-6
9.5	REGISTER DESCRIPTION CONVENTIONS	9-10
9.6	HARDWARE REGISTERS — XMI ARCHITECTURE	9–11
9.6.1	XMI Device Register (XDEV, bb+00000)	9-12
9.6.2	XMI Bus Error Register (XBER, bb+00004)	9-15
9.6.3	XMI Failing Address Register (XFADR, bb+00008)	9–20
9.6.4	XMI Failing Address Extension Register (XFAER,	
	bb+0002C)	9-21
9.6.5	XMI Communications Register (XCOMM, bb+00010)	9-21
9.7	HARDWARE REGISTERS — CI ARCHITECTURE	9–23
9.7.1	Port Scan Control Register (PSCR, bb+00014)	9–24
9.7.2	Port Scan Data Register (PSDR, bb+00018)	9-26
9.7.3	Port Maintenance Control/Status Register (PMCSR,	
	bb+0001C)	9–27

vi Contents

9.7.4	Port Diagnostic Control/Status Register (PDCSR, bb+00020)	9–33
9.7.5	Port Status Register (PSR, bb+00024)	9-34
9.8	SOFTWARE REGISTERS	9-37
9.8.1	Port Queue Block Base Register (PQBBR, bb+01000)	9-37
9.8.2	Port Error Status Register (PESR, bb+01008)	9-38
9.8.3	Port Failing Address Register (PFAR, bb+0100C)	9-38
9.8.4	Port Parameter Register (PPR, bb+01010)	9-39
9.8.5	Port Serial Number Register (PSNR, bb+01014)	9-41
9.8.6	Port Interrupt Destination Register (PIDR, bb+01018)	9-41
9.8.7	Port Interrupt Vector Register (PIVR, bb+01020)	9-42
9.8.8	PCQ0CR to PMTECR (bb+01028 to bb+01054)	9-42
9.8.9	Port Parameter Extension Register (PPER, bb+01058)	9-44

Part III DEC LANcontroller 400 (DEMNA) Section

10 DEMNA OVERVIEW

10.1 INTRODUCTION	10-1
10.2 PORT OVERVIEW	10-1
10.3 FUNCTIONAL OVERVIEW	10-3
10.3.1 Microprocessor Subsystem	10-3
10.3.2 Memory Subsystem	10-5
10.3.3 XMI Interface Subsystem	10-6
10.3.4 Ethernet Interface Subsystem	10-6
10.4 PHYSICAL DESCRIPTION	10-7
10.5 ENVIRONMENTAL SPECIFICATIONS	10-7
10.6 REFERENCE DOCUMENTS	10-8

11 DEMNA CONFIGURATIONS

INTRODUCTION	11-1
DEMNA OPTION PACKAGE AND CABINET KITS	11-1
T2020 MODULE PLACEMENT	11–3
INTERNAL ETHERNET CABLE	11–3
INTERNAL CABLE FOR PHYSICAL CONSOLE	11–3
	DEMNA OPTION PACKAGE AND CABINET KITS T2020 MODULE PLACEMENT INTERNAL ETHERNET CABLE

Contents vii

12	DEMNA POWER-UP SELF-TESTS AND ROM-BASED DIAGNOSTICS (RBDs)
12.1	POWER-UP SELF-TESTS 12–1
12.2	ROM-BASED DIAGNOSTICS (RBDs) 12–3
12.2.1	RBD COMMANDS 12–5
12.2.2	RBD CONTROL KEYS 12-12
12.2.3	Running the DEMNA RBDs 12–13
12.2.4	RBD Error Report Formats 12–13
12.2.5	Diagnostic Error Log Reader 12-14
12.2.6	Isolating Faults With the RBDs 12–17

13 DEMNA MACRODIAGNOSTICS AND SUPPORT PROGRAMS

13.1 l	INTRODUCTION	13–1
13.2 l	DIAGNOSTICS AND SUPPORT PROGRAMS	13-1
13.3 I	RUNNING EVDWC AND EVDYE	13-2
13.4 I	EVGDB	13-3
13.4.1	Modifying EVGDB Flags	13-6
13.4.2	Updating the EEPROM Firmware (VAX 9000 System) \ldots	13-8
13.5 l	DIAGNOSTIC PATCH MECHANISM 1	13–10

14 DEMNA Console Monitor Program

14.1 OVERVIEW	14-1
14.2 CONNECTING TO THE CONSOLE MONITOR PROGRAM.	14-2
14.2.1 Using the Physical Console	14-2
14.2.2 Using the Network Control Program (NCP)	14-2
14.2.3 Using the Console Connection Program	14-4
14.3 INVOKING AND EXITING THE CONSOLE	14–5
14.4 CONSOLE COMMANDS	14-6
14.5 CONSOLE CONTROL KEYS	14-9
14.6 DEMNA STATUS SCREENS	14-11
14.7 DEMNA NETWORK SCREEN	14 - 25

15 DEMNA Adapter Registers

15.1	INTRODUCTION 15–1
15.2	REGISTER TYPES 15-2
15.3	REGISTER BIT DESCRIPTION CONVENTIONS 15-4
15.4	XMI ARCHITECTURE REGISTERS 15-4
15.4.1	XMI Device Register (XDEV, bb+0000) 15–5
15.4.2	8
15.4.3	XMI Failing Address Register (XFADR, bb+0008) 15–10
15.4.4	XMI Communication Register (XCOMM, bb+00010) 15-11
15.4.5	XMI Failing Address Extension Register (XFAER, bb+002C)
15.5	PORT SPECIFIC, XMI VISIBLE REGISTERS 15–15
15.5.1	Port Data Registers (XPD1, bb+00100; XPD2, bb+00104) . 15–16
15.5.2	Port Status Register (XPST, bb+00108) 15–19
15.5.3	Power-Up Diagnostic Register (XPUD, bb+010C) 15–22
15.5.4	Port Control Initialization Register (XPCI, bb+00110) 15-25
15.5.5	Port Control Poll Register (XPCP, bb+00114) 15–26
15.5.6	Port Control Shutdown Register (XPCS, bb+00118) 15-26
15.6	NODE-PRIVATE REGISTERS 15–26
15.6.1	Gate Array Control and Status Register (GACSR) 15-27
15.6.2	Gate Array Host Interrupt Register (GAHIR) 15–32
15.6.3	Gate Array IDENT Vector Register (GAIVR) 15-32
15.6.4	Gate Array Timer Register (GATMR)
15.6.5	Datamove Port Address Registers (DMPORn) 15–33
15.6.6	Datamove Control and Status Registers (DMCSRn) 15-33
15.6.7	Datamove XMI Address Register (DMXMIn) 15-33
15.6.8	Datamove Next Page Address Register
15.6.9	Peek XMI Low Address Register (PKXMILn)15-34
15.6.1	\mathbf{U}
15.6.1	1 Peek Data A and Peek Data B Registers (PKDATAn, PKDATBn)

Contents ix

16 DEMNA Sequencing Flows

16.1	POWER-UP/RESET SEQUENCE	16-1
16.2	NODE HALT/RESTART SEQUENCE	16-1
16.3	PORT SHUTDOWN	16-2

17 DEMNA Error Handling

17.1	Introduction	17–1
17.2	Error Types	17–1
17.3	Error Blocks	17–3
17.4	ERROR LOGGING	17–7
17.4.1	History Entry Header	17-8
17.4.2	History Data Entries	17–11
17.5	ERROR RESPONSE	17–16
17.6	Restarting the Port from a Fatal Error	17–22

Part IV DWMBA Adapter Section

18 DWMBA ADAPTER OVERVIEW

18.1	INTRODUCTION	18-1
18.2	PHYSICAL DESCRIPTION	18-1
18.3	FUNCTIONAL OVERVIEW	18-6
18.4	REFERENCE DOCUMENTS	18–7

19 DWMBA CONFIGURATIONS

19.1	INTRODUCTION	19–1
19.2	MODULE PLACEMENT	19–1
19.3	CABLING	19-3

x Contents

20 DWMBA DIAGNOSTICS

20.1 INTRODUCTION	20-1
20.2 POWER-UP SELF-TESTS	20-1
20.3 ROM-BASED DIAGNOSTICS (RBD)	20-4
20.3.1 RBD Monitor	20-4
20.3.2 Sample RBD Runs	20-6
20.4 LOOPBACK TESTS	20-7

21 DWMBA REGISTERS AND IBUS SIGNALS

21.1 II	NTRODUCTION	21-1
21.2 D	WMBA REGISTER TYPES	21-2
21.3 R	EGISTER DESCRIPTION CONVENTIONS	21-5
21.4 X	MI ARCHITECTURE REGISTERS	21–6
21.4.1	XMI Device Type Register (XDEV, bb+00000)	21-6
21.4.2	XMI Bus Error Register (XBE, bb+00004)	21-8
21.4.3	XMI Failing Address Register (XFADR, bb+00008)	21-12
21.5 D	WMBA/A RESIDENT NODE SPECIFIC REGISTERS	21-13
21.5.1	Responder Error Address Register (AREAR, bb+000C)	21-13
21.5.2	Error Summary Register (AESR, bb+0010)	21-14
21.5.3	Interrupt Mask Register (AIMR, bb+0014)	21-17
21.5.4	Implied Vector Interrupt Destination/Diagnostic Register (AIVINTR, bb+0018)	21–20
21.5.5	Diagnostic Control Register 1 (ADG1, bb+001C)	21-21
21.6 D	WMBA/B RESIDENT NODE SPECIFIC REGISTERS	21-23
21.6.1	Control and Status Register (BCSR, bb+0040)	21-23
21.6.2	Error Summary Register (BESR bb+0044)	21 - 25
21.6.3	Interrupt Destination Register (BIDR, bb+0048)	21–29
21.6.4	Timeout Address Register (BTIM, bb+004C)	21-30
21.6.5	Vector Offset Register (BVOR, bb+0050)	21-31
21.6.6	Vector Register (BVR, bb+0054)	21-32
21.6.7	Diagnostic Control Register 1 (BDCR1, bb+0058)	
21.7 V	AXBI REGISTERS	21-35
21.8 II	BUS SIGNALS	21-37

Contents xi

I

Examples

7–1	Invoking the RBD User Interface	7-4
7–2	Sample RBD Error Report	7-6
7–3	Sample RBD Run With Failure (VAX 6000 System)	7–7
7–4	Sample RBD Run With Failure (VAX 9000 System)	7–8
8-1	VAX/DS Attach and Select for CIXCD	8-6
8-2	Sample PARAMETER.PAR File	8-17
8-3	Sample PATTERN.PTN File	8-18
12-1	Running DEMNA Self-Tests from the System Console	12-3
12-2	Sample DEMNA RBD Error Report	12-14
12–3	DEMNA Error Log Reader	12-15
20-1	Power-up Self-Test Display (No Errors)	20-2
20-2	Power-up Self-Test Display (With Errors)	20-3
20-3	DWMBA RBD Run With No Errors	20-6
20-4	DWMBA RBD Run With Errors	20-6

Figures

1–1	Typical System — XMI Bus as the Primary System Bus	1–2
1–2	Typical System — XMI Bus as an I/O Bus	1–3
2–1	XMI Card Cage Rear View, Showing Node ID Numbers andDaughter Card	2–2
2-2	XMI Card Cage, VAX 9000 System	2-3
2–3	I/O Header Pins	2-4
2-4	XMI Corner Functional Layout	2-6
3–1	XMI Address Space	3–1
3-2	I/O Space	3-2
3–3	Data Transfer Command/Address Cycle — XMI Signals	3–9
3-4	Octaword Write Bus Cycles	3-10
3–5	Octaword Read Command/Address Cycle	3–11
3-6	Octaword Read, Read Response Data Cycles	3-12
3–7	Interlock Read Transaction	3-13
3-8	Unlock Write Transaction	3-14
3–9	INTR Transaction	3-16
3–10	IDENT Transaction	3–17
3–11	IDENT Response	3-18
3-12	IVINTR Transaction	3-19

xii Contents

1

3–13	Arbitration Block Diagram	3-20
3-14	Initialization Flowchart	3–21
5-1	CIXCD Interface in a VAXcluster	5 - 2
5 - 2	CIXCD Functional Block Diagram	5 - 3
6-1	XMI Cardcage — VAX 9000 System Implementation	6-3
6-2	CIXCD-AA Bulkhead Cable	6-4
6-3	CIXCD Header Assembly	6-5
6-4	CIXCD Configuration Jumpers	6-6
8-1	Diagnostic Loopback Cable Connections	8-5
8-2	EVGAC Program Parameter Register	8-12
8-3	EEPROM Memory Map	8-22
9-1	XMI Node Space Addressing	9–3
10-1	DEMNA Option in an XMI System	10-2
10-2	DEMNA Logic Subsystems	10-4
11–1	Internal Ethernet Cable Connections	11-4
11-2	Internal Ethernet Cable, P1 Connector Pinouts	11-6
11-3	VAX 6000 Model 400 System Interconnect Panel	11–7
11-4	Internal Ethernet Cable, P2 Connector Pinouts	11-8
11–5	Internal Cable for Physical Console, Connections	11–9
11-6	Internal Cable for Physical Console, P1 Connector Pinouts	11–10
11–7	Internal Cable for Physical Console, P2 Connector Pinouts	11–11
12-1	DEMNA LED Locations	12-2
12-2	DEMNA RBD Troubleshooting Flowchart	12–19
14-1	DEMNA Status Screens	14–11
14-2	DEMNA Network Screen	14–25
16-1	DEMNA Power-Up and Node Reset	16-3
16-2	DEMNA Node Halt/Restart	16-5
16-3	DEMNA Shutdown	16-6
17–1	Fatal Error Block Formats	17–4
17–2	Nonfatal Error Block Formats	17–5
17–3	EEPROM History Data Area	17–7
17–4	History Entry Header	17–9
17–5	EEPROM Flags	17–10
17-6	History Entry Format For Diagnostic Errors	17–12
17–7	History Entry Format for All Other Errors	17–14
18-1	DWMBA Adapters in a Typical System	18-2

L

Contents xiii

Γ

18-2	DWMBA/A (XBIA) Module (T2012)	18-3
18–3	DWMBA/B (XBIB) Module (T1043)	18-4
18-4	DWMBA Functional Logic Elements	18-5
19–1	XMI and VAXBI Cardcages	19–2
19–2	DWMBA Cabling	19-4
20-1	VAXBI Loopback Data Path	20-7
20-2	CPU Write Loopback Data Path	20-8
20-3	CPU Read Loopback Data Path	20-8

Tables

1–1	XMI Bus Specifications	1-4
1–2	XMI Bandwidth	1–5
1–3	XMI Architecture Terms	1–5
3–1	XMI I/O Space Regions	3–3
3-2	XMI Nodespace and I/O Space Allocations	3-4
3–3	XMI Bus Signals	3–5
3-4	XMI Function Codes	3–7
3–5	Data Transfer Transactions	3-8
3-6	Interrupt Transactions	3-15
3–7	Required and Recommended Registers	3-22
4-1	XMI Bus Transaction Timeouts	4-2
5-1	CIXCD Logic Element Descriptions	5-5
5-2	CIXCD Specifications	5-7
5-3	CI Bus Specifications	5-9
6-1	CI Node Address Jumpers	6-7
6-2	Boot Time Jumpers	6-8
6–3	Disable Arbitration, Extend Header, and Extend ACK Timeout Jumpers	6–9
6-4	Alter Delta (Quiet Slot) Time Jumpers	6-9
6–5	Cluster Size Jumpers	6-10
7–1	XCDST Indications After Power Up or XMI Reset	7–1
7–2	XCDST Diagnostics	7–2
7–3	CIXCD RBD Sample Tests List	7–3
7–4	RBD Commands	7–4
7–5	RBD START Command Qualifiers	7–5
7–6	RBD Control Keys	7–5

7–7	RBD Error Report Levels	7-6
8-1	CIXCD Macrodiagnostics	8-2
8-2	EVGAA Event Flags	8-8
8-3	EVGAB Event Flags	8-9
8-4	EVGAC Event Flags	8-11
8-5	EVGAC Program Parameter Register Bit Descriptions	8-13
8-6	EVGAC Program Parameters	8-14
8–7	EVGAC Support Files	8-16
8-8	PARAMETER.PAR File Structure	8-17
8-9	EVGEA Program Sections	8-20
8-10	VAXcluster System Maintenance Tools	8-23
9-1	CIXCD Register Types	9-2
9–2	CIXCD XMI Visible Registers	9-4
9–3	IB Accessible Register Locations	9-6
9-4	Internal Registers	9–7
9–5	PCQ0CR (bb+01028) to PMTECR (bb+01054)	9-43
11-1	DEMNA-M Option Package Contents	11–1
11-2	Cabinet Kits	11-2
11-3	T2020 Module Placement in XMI Cardcage	11–3
11-4	Internal Ethernet Cable Connectors	11–5
11-5	Internal Ethernet Cable, P1 Connector Signals	11-6
11-6	Internal Ethernet Cable, P2 Connector Signals	11-8
11–7	Internal Cable for Physical Console, Connectors	11–9
11-8	Internal Cable for Physical Console, P1 Connector Signals	11-10
11-9	Internal Cable for Physical Console, P2 Connector Signals	11–11
12-1	DEMNA Self-test Indications After Power-up or XMI Reset $% \mathcal{A}_{\mathrm{A}}$.	12-1
12-2	DEMNA RBDs	12-4
12–3	DEMNA Self-Test (RBD 0)	12–5
12-4	DEMNA RBD Commands	12-6
12–5	DEMNA RBD START Command Qualifiers	12-8
12-6	DEMNA RBD START Command Parameters	12-10
12–7	DEMNA RBD Deposit/Examine Command Qualifiers	12–11
12-8	DEMNA RBD Deposit/Examine Commnad Special	
	Addressing Characters	
	DEMNA RBD Control Keys	
12-10	DEMNA RBD Error Report Levels	12 - 14

1

Contents xv

13–1	DEMNA Macrodiagnostics and Support Programs 13-1
13-2	EVGDB Distribution Media 13-3
13-3	EVGDB Sections 13-4
13-4	EVGDB Event Flags 13-4
13–5	DEMNA EEPROM User-Modifiable Flags and Parameters 13-5
14-1	DEMNA Console Commands 14-6
14-2	DEMNA Console SHOW Command Parameters 14-8
14-3	DEMNA Console Control Keys 14–10
14-4	DEMNA Status and Status/Interval Screens—Parameter
	Definitions
14–5	DEMNA Status/Error Screen—Parameter Definitions 14–19
	DEMNA Network Screen—Parameter Definitions 14–25
15-1	DEMNA XMI Visible Registers 15–2
15-2	DEMNA Node-Private Registers 15–3
17–1	EEPROM History Data Entries 17-8
17–2	History Entry Header Fields 17-9
17–3	EEPROM Flags 17–10
17–4	History Entry Fields for Diagnostic Errors
17–5	History Entry Fields for All Other Errors 17–15
17-6	Error Response Keys
17–7	Response To Ethernet Errors
17-8	Response To Internal Errors that Affect the LANCE 17–19
17–9	Response to Hardware Errors that Affect the CVAX $\ldots \ldots 1720$
17-10	Response to XMI Related Errors
18-1	DWMBA Transactions 18-6
19–1	XMI Node/VAXBI Card Cage Configurations 19-3
19–2	DWMBA Cables 19–5
20-1	DWMBA RBD Tests
21-1	
21-2	VAXBI Architecture Registers 21-4

About This Manual

Intended Audience

This handbook is for VAX system trained Digital customer service personnel who service XMI-based systems and subsystems. Users of this handbook should be familiar with the XMI bus architecture (either through the *XMI Bus Concepts* course or through practical experience) and have a minimum of level 1 hardware maintenance training on one or more VAX systems (for example, VAX 6000 or VAX 9000 systems).

Document Scope and Structure

This handbook provides a single, quick reference source to the type of information most frequently required to service XMI adapters. The handbook is divided into three parts.

Part 1 overviews the XMI bus architecture and describes the XMI physical and functional characteristics.

Part 2 covers the CIXCD interface and Part 3 covers the DWMBA adapter. The information in Parts 2 and 3 includes XMI adapter:

- Block diagrams
- Configurations
- Maintenance features
- Diagnostics
- Register bit maps and descriptions

xii DIGITAL INTERNAL USE ONLY

Conventions

addresses	All addresses are given in hexadecimal (hex).
bits	All bit numbers are given in decimal with the bit(s) enclosed in angle brackets; for example $<31>$.
	Multiple individual bits or bit fields are separated by commas with bit fields indicated by two numbers separated by a colon. For example <31:24,20,18,14:10> indicates bits 31 through 24 (inclusive), bit 20, bit 18, and bits 14 through 10 (inclusive).
CTRL/x	Specifies to press and hold the $Ctrl$ key while pressing the key; for example, $CTRL/C$.
[item]	Indicates the item is optional. The horizontal ellipsis indicates that additional optional items can be entered.
	In examples, tables, or figures, indicates that not all information is shown.
•	

Related Documents

This handbook was written in conjunction with XMI adapter specific user's guides and technical descriptions. Each adapter specific section (Parts 2 and 3) contains a list of documents which the user can reference for more detailed information.

Part I XMI Bus Section

This part of the handbook introduces the XMI bus and briefly describes the main features of the XMI architecture. Topics in this section include XMI bus:

- Specifications
- Terms

- Transactions
- Maintenance features

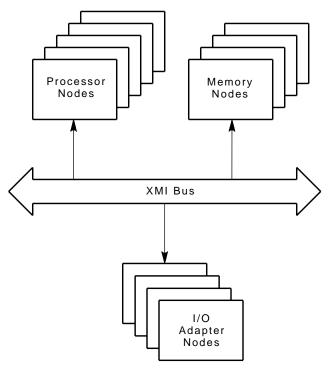
1 XMI BUS OVERVIEW

1.1 INTRODUCTION

The XMI bus is a limited length, synchronous, high-speed bus with centralized arbitration. The XMI bus is pended (XMI nodes do not hold the bus waiting for a response) with multiplexed address and data lines.

Multiple transactions can be in progress at any time on the XMI, with arbitration and data transfer transactions occurring simultaneously.

1.2 IMPLEMENTATIONS

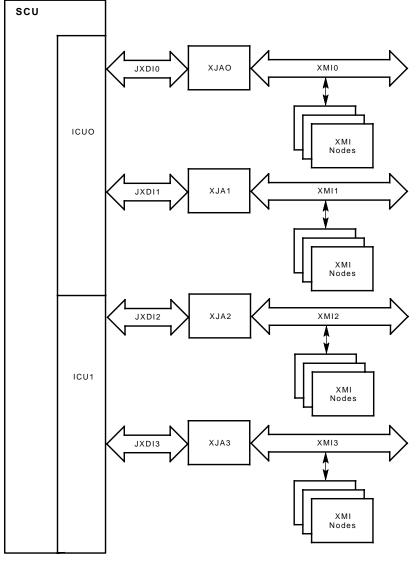

The XMI bus can be implemented as the primary system bus (for example, in most VAX 6000 systems) or as an I/O bus (for example, in VAX 9000 systems).

When used as the primary system bus, the XMI can support multiple processors, memory subsystems, and I/O adapters, in a variety of configurations, to a maximum of 14 nodes.

When used as an I/O bus, the XMI is interfaced to the system by way of an adapter. For example, in VAX 9000 systems, the XMI bus interfaces to the system by way of the XJA adapter, JXDI bus, and an I/O control unit.

Figures 1–1 and 1–2 show typical XMI bus implementations.

1-2 XMI BUS OVERVIEW



GSF_1733_89.DG

Figure 1–1 Typical System — XMI Bus as the Primary System Bus

XMI BUS OVERVIEW 1-3

Γ

GSF_4016_89.DG

Figure 1–2 Typical System — XMI Bus as an I/O Bus

1.3 SPECIFICATIONS AND TERMINOLOGY

Table 1–1 XMI Bus Specifications

Physical	
Backplane	14-slot card cage
Nodes ¹	Maximum of 14
Node ID	Hardwired to physical slot
Bus length	Fixed, nonexpandable
Technology	CMOS
Performance	
Bus type	Synchronous
Bus cycle	64 ns
Address/data lines ²	64
Address bits	40
Address space	1 terabyte (2 ⁴⁰ bytes)
Data transfer size	64 bits/cycle
Data transfer type ³	Pended
Bandwidth	See Table 1–2
Arbitration	
Type	Centralized
Algorithm	Modified round-robin
Cycles ⁴	Concurrent with data transfers
Queues	Two — commander, responder

 $^1\mathrm{The}$ XMI architecture allows for up to 16 nodes, but current physical constraints limit the bus to 14 nodes.

 $^2 {\rm Multiplexed}$ address/data lines.

 $^3{\rm Read}\text{-}$ and interrupt-type transactions are pended (node does not hold bus while waiting for a response).

 $^{4}\mathrm{No}$ dedicated arbitration cycles.

Data Size	Read ¹	Write ¹
Longword ²	31.25	31.25
Quadword	62.5	62.5
Octaword	83.3	83.3
Hexword	100.0	100.0

Table 1–2 XMI Bandwidth

 1Bandwidth values given in MBytes/s.

 $^2{\rm The}$ XMI architecture allows data transfers of all data sizes to both memory and I/O space. However, some implementations may not support transfers greater than a longword to I/O space.

Table 1–3 XMI Architecture Terms

Term	Definition
Node Hardware device that connects to the XMI backplane. can consist of one or more modules, but only one mod have an XMI corner.	
Transfer	Smallest unit of information exchange that occurs on the XMI bus. For example, the command and data cycles of a read transaction and the command and data cycles of a write transaction are transfers.
Transaction	One or more transfer cycles which comprise the XMI task being performed. For example, a read transaction consists of a command transfer followed some time later by a return data transfer.
Commander	Node that initiated the current transaction.
	In a write transaction, the commander node is the source of the data to be transferred. In a read transaction, the commander is the node that requested the data.
	A node which initiates a transaction is considered to be the commander for the duration of the transaction. For example, on a read transaction, the commander initiates the transaction and the responder returns the data. During the return data transfer, the requesting node is still considered the commander.
Responder	Node which is the target of a transaction request.

1-6 XMI BUS OVERVIEW

Table 1–3 (Cont.) XMI Architecture Terms

Term	Definition
Transmitter	Node that is the source of the data on the bus.
	For example, on a read transaction, the commander is the transmitter during the command transfer and the responder is the transmitter on the return data transfer.
Receiver	Node that is the target of the data on the bus.
Naturally aligned	Data quantity whose address is an offset, from the beginning of memory, of an integral number of data elements of the same size.
	The low order address bits of naturally aligned data items are always zero. All XMI bus read and write transfers occur on naturally aligned blocks of data.
Wraparound read	Octaword or hexaword read operation in which read data is returned so that the originally requested quadword is returned first, independent of alignment. The remaining data in the naturally aligned block of data which contains the addressed quadword is returned in subsequent transfers. XMI bus protocol requires that all octaword and hexaword reads, both normal and interlocked, be wraparound reads.

1.4 BUS INTEGRITY FEATURES

The XMI bus contains several features that enhance the integrity and reliability of the bus.

- Parity protection for all bus information transfer lines
- ECC protection on all bus confirmation signals
- Bus protocol permits detection and correction of single-bit errors
- Defined timeout conditions to detect and diagnose faults

2 XMI BUS PHYSICAL DESCRIPTION

2.1 XMI CARD CAGE

The XMI card cage consists of a 14-slot backplane, connectors, card guides, and structural members. Each slot has a ZIF connector which is opened and closed by a cam actuator mechanism. This mechanism is sometimes called the card cage handle.

2.1.1 Node ID Numbers

XMI node ID numbers are hardwired on the XMI backplane. The node numbers correspond to the backplane slot numbers as shown in Figure 2-1.

2.1.2 Clock/Arbiter Card

In VAX 6000 systems, the XMI system clock and bus arbiter are located on a daughter card (DCARD) which is attached to the XMI backplane. The location of the daughter card is indicated in Figure 2–1.

In VAX 9000 systems, the clock/arbiter module (CCARD) is mounted in slot 7 of the card cage (Figure 2–2).

2-2 XMI BUS PHYSICAL DESCRIPTION

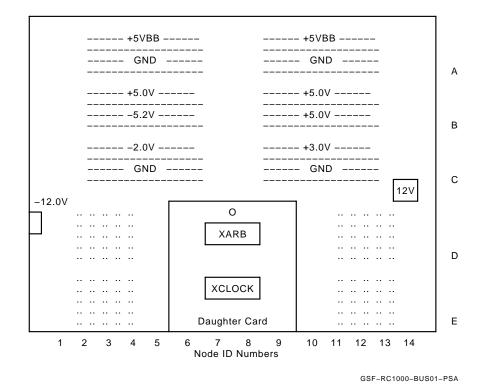


Figure 2–1 XMI Card Cage Rear View, Showing Node ID Numbers and Daughter Card

XMI BUS PHYSICAL DESCRIPTION 2-3

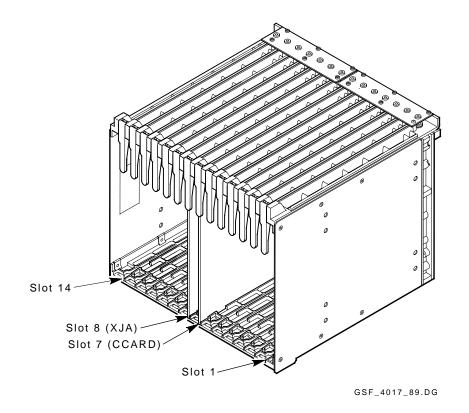
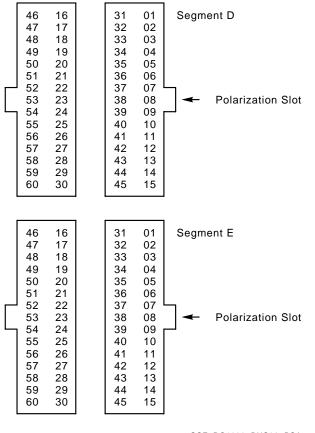



Figure 2–2 XMI Card Cage, VAX 9000 System

2-4 XMI BUS PHYSICAL DESCRIPTION

2.1.3 I/O Header Pins

Figure 2–3 shows the I/O header pins which are provided in segments D and E of each XMI backplane slot for attaching I/O cables.

GSF-RC1000-BUS02-PSA

Figure 2–3 I/O Header Pins

2.2 XMI NODE

An XMI node consists of one or more modules that are mounted in the XMI card cage and interface to the XMI bus via the XMI corner. If the node consists of more than one module, only one may have an XMI corner.

2.2.1 XMI Corner

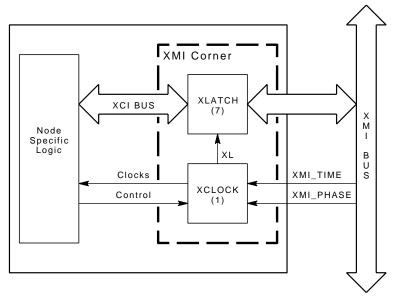
The XMI corner contains custom logic that:

- Assures a standard electrical interface to the XMI bus
- Buffers drive signals to the XMI bus
- · Buffers receive signals from the XMI bus

The XMI corner occupies an area of approximately 4.45 cm (1.75 in) \times 12.70 cm (5.00 in) on the module and consists of eight Digital custom CMOS I chips:

- Seven XLATCH chips
- One XCLOCK chip

Figure 2–4 is a functional block diagram of the XMI corner. Note that the XMI corner does not perform any node control functions. All node control functions are performed by the node-specific logic.


2.2.2 Self-Test LED

XMI nodes are required to have one yellow LED to indicate the result of the node's self-test. This LED lights when self-test passes. The LED is located on the front edge of the module (the edge opposite the connectors) and is the only yellow LED on the module.

2.3 CONFIGURATION RULES

The XMI backplane design places certain restrictions on the placement of modules in the XMI cardcage as described below.

2-6 XMI BUS PHYSICAL DESCRIPTION

GSF_1734_89.DG

Figure 2–4 XMI Corner Functional Layout

VAX 6000 Systems

- Slot 1 or E must contain a (non-memory) module
- No I/O adapter modules in slots 5 to A
- CPU modules are typically installed beginning with slot 1
- Memory modules are placed in slots A to 5, then in slots B and C
- DWMBA adapters are installed in the left side of the card cage, beginning with slot E

XMI BUS PHYSICAL DESCRIPTION 2-7

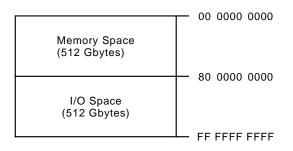
VAX 9000 Systems

- Slot 1 or E must contain a (non-memory) module
- CCARD module is installed in slot 7
- XJA module is installed in slot 8
- First I/O adapter is installed in slot 1 or E
- Additional I/O adapters may be located in any other slot

3 XMI BUS FUNCTIONAL DESCRIPTION

3.1 ADDRESSING

The XMI bus supports one terabyte (2^{40} bytes) of address space, which is divided into physical memory space and I/O space (Figure 3–1).


Address line <39> selects between memory and I/O space:

<39> = 0 selects memory space <39> = 1 selects I/O space

NOTE

Some implementations of the XMI only support 30-bit addressing. These systems use address bit <29> to distinguish memory space from I/O space.

XMI I/O space is further divided into private space, nodespace, and 15 I/O adapter address space regions. Figure 3–2 shows the I/O space divisions, and Tables 3–1 and 3–2 describe the regions.

GSF-RC1000-BUS03-PSA

Figure 3–1 XMI Address Space

3-2 XMI BUS FUNCTIONAL DESCRIPTION

[80 0000 0000
XMI Private Space (24 Mbytes)	00.0400.0000
XMI Nodespace (16 x 512 Kbytes)	80 0180 0000
I/O Adapter 1 Address Space (32 Mbytes)	80 0200 0000
I/O Adapter 2 Address Space (32 Mbytes)	80 0400 0000
I/O Adapter 3 Address Space (32 Mbytes)	80 0600 0000
I/O Adapter 4 Address Space (32 Mbytes)	80 0800 0000
	0000 00A0 08
I/O Adapter 11 Address Space (32 Mbytes)	80 1600 0000
	80 1600 0000 80 1800 0000
(32 Mbytes) I/O Adapter 12 Address Space	80 1600 0000
(32 Mbytes) I/O Adapter 12 Address Space (32 Mbytes) I/O Adapter 13 Address Space (32 Mbytes)	80 1600 0000 80 1800 0000
(32 Mbytes) I/O Adapter 12 Address Space (32 Mbytes) I/O Adapter 13 Address Space	80 1600 0000 80 1800 0000 80 1A00 0000 80 1C00 0000
(32 Mbytes) I/O Adapter 12 Address Space (32 Mbytes) I/O Adapter 13 Address Space (32 Mbytes) I/O Adapter 14 Address Space	80 1600 0000 80 1800 0000 80 1A00 0000

GSF-RC1000-BUS04-PSA

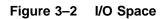


 Table 3–1
 XMI I/O Space Regions

 Region
 Description

Region	Description
Private space	24-Mbyte region reserved for operations local to the nodes. References to private space are serviced by resources local to a node, such as local device control and status registers (CSRs) and boot ROM. These references are not broadcast on the XMI bus.
Nodespace	16, 512-Kbyte regions for node control and status registers. Table 3–2 shows the address ranges.
I/O adapter address space	15, 32-Mbyte regions used for accessing XMI I/O adapters. Address ranges are shown in Table 3–2. Note that node 0 does not have an I/O adapter address region.

	Nodespace		I/O Adapter Space		
Node	Begin	End	Begin	End	
0 ¹	80 0180 0000	80 0187 FFFF	_		
1	80 0188 0000	80 018F FFFF	80 0200 0000	80 03FF FFFF	
2	80 0190 0000	80 0197 FFFF	80 0400 0000	80 05FF FFFF	
3	80 0198 0000	80 019F FFFF	80 0600 0000	80 07FF FFFF	
4	80 01A0 0000	80 01A7 FFFF	80 0800 0000	80 09FF FFFF	
5	80 01A8 0000	80 01AF FFFF	80 0A00 0000	80 0BFF FFFF	
6	80 01B0 0000	80 01B7 FFFF	80 0C00 0000	80 0DFF FFFF	
7	80 01B8 0000	80 01BF FFFF	80 0E00 0000	80 0FFF FFFF	
8	80 01C0 0000	80 01C7 FFFF	80 1000 0000	80 11FF FFFF	
9	80 01C8 0000	80 01CF FFFF	80 1200 0000	80 13FF FFFF	
А	80 01D0 0000	80 01D7 FFFF	80 1400 0000	80 15FF FFFF	
В	80 01D8 0000	80 01DF FFFF	80 1600 0000	80 17FF FFFF	
С	80 01E0 0000	80 01E7 FFFF	80 1800 0000	80 19FF FFFF	
D	80 01E8 0000	80 01EF FFFF	80 1A00 0000	80 1BFF FFFF	
Е	80 01F0 0000	80 01F7 FFFF	80 1C00 0000	80 1DFF FFFF	
\mathbf{F}^2	80 01F8 0000	80 01FF FFFF	80 1E00 0000	80 1FFF FFFF	

Table 3–2 XMI Nodespace and I/O Space Allocations

 $^1\mathrm{The}$ nodespace for node 0 is reserved for future expansion. Also, node 0 does not have I/O adapter space; addresses in this range comprise XMI private space and XMI nodespace.

 $^{2}\mbox{Reserved}$ for future expansion.

3.2 BUS SIGNALS

Table 3	–3 XM	Bus	Signals
	• /	- Duo	orginalo

Signal	Description
Arbitration	
XMI CMD REQn	Commander bus request lines (n = node number)
XMI RES REQn	Responder bus request lines (n = node number)
XMI GRANTn	Bus grant lines (n = node number)
XMI HOLD	Bus hold (multicycle transfers)
XMI SUP	Suppress initiation of new XMI transactions
XMI LOCKOUT ¹	Prevent resource starvation (forces sequential access to shared resources)
Information Transfer	
XMI D <63:00>	Data cycles: read or write date Command cycles: command, address, mask
XMI F <03:00>	Bus function (see Table 3–4)
XMI ID <05:00>	Commander ID
XMI P <02:00>	Parity of XMI D, XMI F, and XMI ID lines
Response	
XMI CNF <02:00>	Data transfer status confirmation (from receiver)
Control	
XMI AC LO	Low ac line voltage

XMI AC LO	Low ac line voltage
XMI DC LO	Impending loss of dc power
XMI BAD	Node failure (asserted until all nodes pass self-test)

¹Commander nodes assert XMI LOCKOUT when repeated attempts to perform hardware locks are denied, or repeated attempts to perform IDENTs or I/O space references are NOACKed. The assertion of LOCKOUT ensures fair access to resources by preventing nodes which have completed a lock, IDENT, or I/O reference from initiating another request while LOCKOUT is asserted. XMI LOCKOUT need only be generated and monitored by commander nodes that perform interlock reads, IDENTs, or I/O space references.

Signal	Description
Control	
XMI DEF [A,B]	Defaults bus tristate lines during XMI idle cycles
XMI ERR DEF	Bus configuration defaulting check
XMI RESET	Initialize system to power-up state
XMI TRIGGER ²	Node detected significant event (specific to node)
XMI TIME n	XMI clock reference $(n = 1 \text{ to } 15)$
XMI PHASE n	XMI clock phase reference $(n = 1 \text{ to } 15)$
XMI UPDATE EN	Modification control for EEPROM or other writeable, non-volatile storage devices.
	UPDATE EN must be observed by all nodes that implement on-board, writeable, non-volatile storage.

Table 3–3 (Cont.) XMI Bus Signals

XMI CON XMIT	Transmit data to console
XMI CON RECV	Receive data from console
XMI CON SECURE	Console secure (if XMI is system bus, disables CTRL/P detection)
XMI BOOT EN	Auto-boot control (if XMI is system bus)
XMI RUN	Front panel RUN LED control
XMI TOY BBU PWR	Time of year clock BBU power
XMI TOY BBU OK	TOY clock BBU status

Miscellaneous

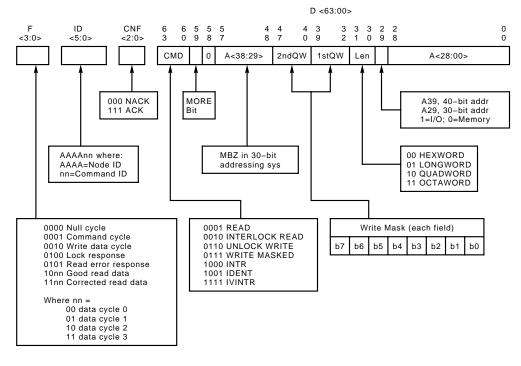
XMI NODE ID <03:00>	Backplane wired node ID (for example, slot 1 = node 1)
XMI SPARE0	Reserved

 $^2 {\rm This}$ signal may be labeled as XMI FAULT on some implementations of the XMI bus.

 $^{3}\text{Used}$ only by CPU nodes

3.3 BUS FUNCTION CODES

XMI F <3:0>					
3	2	1	0	Mnemonic	Function
0	0	0	0	NULL	Null cycle
0	0	0	1	CMD	Command cycle
0	0	1	0	WDAT	Write data cycle
0	0	1	1		Reserved (decoded as NULL)
0	1	0	0	LOC	Lock response
0	1	0	1	RER	Read error response
0	1	1	0		Reserved (decoded as NULL)
0	1	1	1		Reserved (decoded as NULL)
1	0	0	0	GRD0	Good read data, cycle 0
1	0	0	1	GRD1	Good read data, cycle 1
1	0	1	0	GRD2	Good read data, cycle 2
1	0	1	1	GRD3	Good read data, cycle 3
1	1	0	0	CRD0	Corrected read data, cycle 0
1	1	0	1	CRD1	Corrected read data, cycle 1
1	1	1	0	CRD2	Corrected read data, cycle 2
1	1	1	1	CRD3	Corrected read data, cycle 3


Table 3–4 XMI Function Codes

3.4 XMI DATA TRANSFER TRANSACTIONS

Table 3–5 Data Transfer Transactions

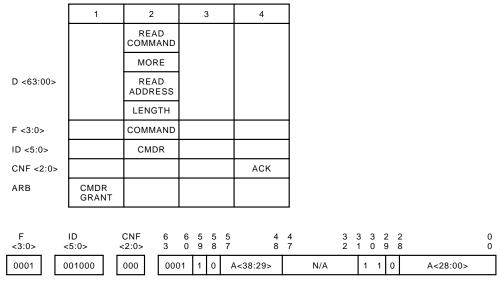
Type ¹	Description
Read	Moves a longword, quadword, octaword, or hexword of data from the responder to the commander. Data are naturally aligned and delivered in wraparound order. Multiple transfers may be necessary to transfer all of the quadwords in an octaword or hexword transaction.
Interlocked read	Similar to a read transaction except that a locked bit in memory determines if the data transfer should continue. If the bit is set, signifying that the memory structure is not available, the transaction is terminated and no data is transferred. If the bit is clear, the memory structure is locked from future interlocked transactions and the requested data is returned to the commander. The unlock write masked transaction must be issued to release the lock.
	Interlock granularity is implementation dependent. The minimum supported granularity in memory space is hexword.
Masked write	Moves specific bytes in a longword, quadword, octaword, or hexword data block from the commander to the responder. The data block is naturally aligned and the bytes to be transferred are identified by a byte mask field.
	Write transactions are performed with one, two, or four consecutive data transfer cycles with no NULL cycles in between.
Unlock write masked	Complement of interlocked read. Writes data to, and releases the lock on, a locked memory location.
	When a node issues an interlocked read, it must unlock the memory structure when it is finished by issuing an unlock write masked with the data to be written. When memory receives the unlock write masked, it unlocks the memory location and writes the data as requested. If an unlock write masked is directed to a currently unlocked location, memory performs a masked write operation.

 $^1{\rm The}$ XMI architecture allows data transfers of all data sizes to both memory and I/O space. However, some implementations may not support transfers greater than a longword to I/O space.

GSF-RC1000-BUS05-PSA

Figure 3–3 Data Transfer Command/Address Cycle — XMI Signals

	Bus Cycles					
	1	2	3	4	5	6
		WRITE MASKED COMMAND				
		MORE	WRITE DATA 0	WDITE		
D <63:00>		WRITE ADDRESS		WRITE DATA 1		
		WRITE MASK				
		LENGTH				
F <3:0>		COMMAND	WRITE DATA	WRITE DATA		
ID <5:0>		CMDR				
CNF <2:0>				ACK	ACK	ACK
ARB	CMDR GRANT	HOLD	HOLD			


3-10 XMI BUS FUNCTIONAL DESCRIPTION

GSF-RC1000-BUS06-PSA

			Command/Address Cycle	
F <3:0>	ID <5:0>	CNF <2:0>	6 6 5 5 4 4 3 3 2 2 3 0 9 8 7 8 7 2 1 0 9 8	0 0
0001	001000	000	0111 1 0 A<38:29> All 1s 1 1 0 A<28:0>	
			Write Data Cycles	
F <3:0>	ID <5:0>	CNF <2:0>	6 3	0 0
0010	001000	000	First Quadword	
F <3:0>	ID <5:0>	CNF <2:0>	6 3	0 0
0010	001000	111	Second Quadword	

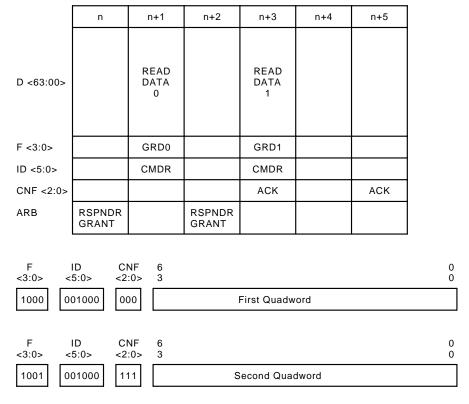

GSF-RC1000-BUS07-PSA

Figure 3–4 Octaword Write Bus Cycles

GSF-RC1000-BUS08-PSA

Figure 3–5 Octaword Read Command/Address Cycle

3-12 XMI BUS FUNCTIONAL DESCRIPTION

GSF-RC1000-BUS09-PSA

Figure 3–6 Octaword Read, Read Response Data Cycles

			—	Co	mr	na	nd/Ac	Idress	s Cy	ycle -						_
F <3:0>	ID <5:0>	CNF <2:0>	-	-	-	-	-	4 8	4 7			3 1				0
0001	001000	000	00	10	0	0	A<38	3:29>	•	N/A	-	1	1	0	A<28:00>	

				Read Data Cycles	
F <3:0>	ID <5:0>	CNF <2:0>	6 3		0 0
1000	001000	000		First Quadword	
F <3:0>	ID <5:0>	CNF <2:0>	6 3		0 0
1001	001000	111		Second Quadword	

GSF-RC1000-BUS10-PSA

Figure 3–7 Interlock Read Transaction

NOTE

Interlock reads are similar to normal reads except that the memory location is locked and MORE is not allowed. See Figures 3–5 and 3–6.

If the target address is currently locked, memory will respond with the lock response (F <3:0> = 0100) and the XMI data lines (D <63:00>) are ignored.

			_	Co	mr	na	nd	/Address	S Cycle	e —					
F <3:0>	ID <5:0>		6 3					4 8		3 2		3 0			0 0
0001	001000	000	01	10	0	0	A٩	<38:29>	Write	e Mask	1	0	0	A<28:00>	
				-	w	rit	e D	Data Cyc	le -						_
F <3:0>	ID <5:0>	CNF <2:0>	6 3				-								0 0
0010	001000	000							Qu	adword					

3-14 XMI BUS FUNCTIONAL DESCRIPTION

GSF-RC1000-BUS11-PSA

Figure 3–8 Unlock Write Transaction

3.5 INTERRUPT TRANSACTIONS

Name	Mnem	Description
Interrupt request	INTR	Issued by I/O nodes to interrupt instruction execution in a processor (or processors) at a specified IPL.
		Interrupt requests can be broadcast to multiple processor nodes. The first processor responding with IDENT receives the interrupt vector; all other processors clear the interrupt pending condition.
Interrupt acknowledge	IDENT	Issued by a processor in response to an INTR transaction to request an interrupt vector.
		If IDENTs are issued simultaneously by two or more processors, the first to gain the bus services the interrupt; the other processors force a passive release.
Implied vector interrupt	IVINTR	Issued by a node to implement a single-cycle interrupt transaction. The interrupt priority and the interrupt vector value are implied by bits encoded in the interrupt type field.
		The IVINTR is used for interprocessor interrupts and write error interrupts. Since the interrupt priority and vector are indicated in the transaction, an IVINTR does not require a corresponding interrupt acknowledge cycle.

Table 3–6 Interrupt Transactions

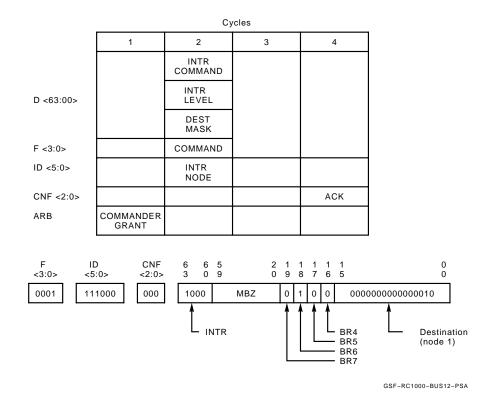


Figure 3–9 INTR Transaction

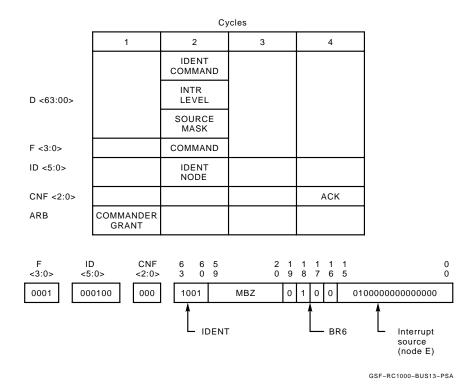


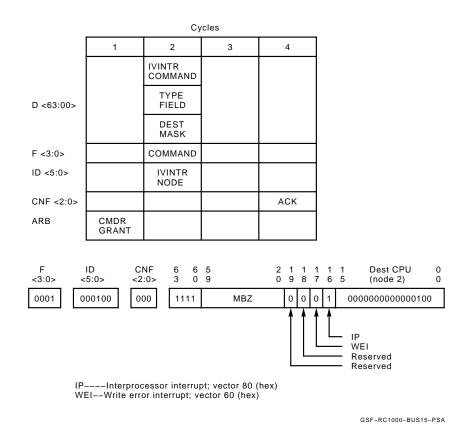
Figure 3–10 IDENT Transaction

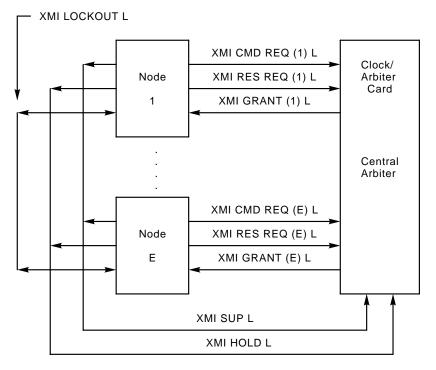
3-18 XMI BUS FUNCTIONAL DESCRIPTION

		Су	cles		_
	1	2	3	4	
D <63:00>		VECTOR			
F <3:0>		GRD0			
ID <5:0>		INTR NODE			
CNF <2:0>				ACK	
ARB	RESPONDER GRANT				
	0 CNF :0> <2:0> 1000 000	6 3	MBZ	1 1 6 5 VECTOR	0 0 0 2 1 0 2 0 0

GSF-RC1000-BUS14-PSA

Figure 3–11 IDENT Response



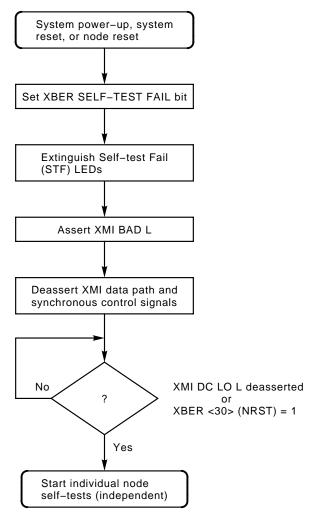

Figure 3–12 IVINTR Transaction

3-20 XMI BUS FUNCTIONAL DESCRIPTION

3.6 ARBITRATION

The XMI arbiter logic¹ has two independent arbitration queues: one for commanders, and one for responders. Arbitration for each queue is performed in a round-robin manner, with responder requests receiving higher priority than commander requests.

Figure 3–13 shows the XMI arbitration logic. Note that with a set of dedicated arbitration lines, XMI bus arbitration cycles occur in parallel with data transfer cycles.



GSF-RC1000-BUS16-PSA

Figure 3–13 Arbitration Block Diagram

¹ DCARD on VAX 6000 systems; CCARD on VAX 9000 systems.

3.7 BUS INITIALIZATION

GSF-RC1000-BUS17-PSA

Figure 3–14 Initialization Flowchart

3-22 XMI BUS FUNCTIONAL DESCRIPTION

3.8 XMI NODE REQUIRED REGISTERS

The XMI architecture requires that each node include certain registers in specific locations in the node's nodespace:

Register	Mnem	Addr ¹	Status
Device register	XDEV	bb+00	Required
Bus error register	XBE	bb+04	Required
Failing address register	XFADR	bb+08	Required for commanders
Communication register	XCOMM	bb+10	Recommended for RBD
Failing address extension register	XFAER	bb+2C	Required for commanders

Table 3–7 Required and Recommended Registers

¹Offset from base address. See Figure 3-2, and Tables 3-1 and 3-2.

Refer to the adapter sections of this handbook for descriptions of the XMI required and adapter specific registers.

4 DIAGNOSING XMI BUS RELATED ERRORS

4.1 NODE RBDs AND SELF-TESTS

XMI nodes include ROM-based diagnostics (RBDs) which are stored in non-volatile memory on the node module. The RBDs are run by calling the RBD user interface with the console "Z" command and then executing the appropriate RBD. The node self-tests are part of the RBD, and are run when the node is initialized or when invoked by the operator.

Refer to the adapter sections of this handbook for adapter specific RBD and self-test descriptions.

4.2 ERROR CONDITIONS

Parity Error

All nodes monitor parity on the bus to detect single-bit errors. XMI receivers that detect bad parity ignore the current cycle and return a NOACK confirmation code.

Inconsistent Parity Error

Under certain error conditions, some nodes may detect bad parity while others compute good parity. If the target of the transaction computes good parity, the cycle may be ACKed (and assumed good by the commander), even if other nodes ignore the cycle due to bad parity. For XMI memoryspace write transactions, this class of error may result in cache coherency problems due to cached processors failing to perform cache invalidates. For IVINTR transactions, some destinations of the IVINTR transaction may not receive the interrupt. All other XMI bus transactions are insensitive to this class of error.

4-2 DIAGNOSING XMI BUS RELATED ERRORS

Transaction Timeout

The XMI protocol specifies that a timeout of 16 milliseconds be used by commanders to detect transaction failures. Responders ensure that transactions do not exceed this timeout value.

Table 4–1 XMI Bus Transaction Timeouts

Туре	Description
Response	During an XMI read, interlock read, or IDENT transaction, if a commander does not receive all read responses within a certain number of cycles after the transaction is issued, the transaction is considered to have failed. However, this does not imply that a responder is not functioning. XMI receivers ignore cycles with bad parity and response timeouts can occur as a result of ignored cycles.
Retry	An XMI commander needs to reissue an XMI transaction if it receives a NOACK or a locked response. If the commander has not successfully completed the transaction within the timeout period, the transaction has failed.

Sequence Error

Many transactions require that XMI cycles occur in a certain sequence. When the cycles occur out of sequence, the transaction is in error.

Read, interlock read, and IDENT transactions use sequence IDs embedded in the read data responses (GRDn, CRDn, and RER — the sequence ID for RER is implicitly 0). The required order for read responses is 0, 0, 0...1, and 0...3 for longword (including IDENT), quadword, octaword, and hexword length transactions, respectively.

Correct sequencing of write transactions is determined by the location of the write data cycles relative to the write command cycle, rather than by using sequence IDs. The write command cycle and associated write data cycles must occur in contiguous time slots. If a responder detects missing data cycles in a write transaction, the incorrect cycle (and subsequent write data cycles) are NO ACKed.

4.3 ERROR HANDLING

XMI commanders and responders react to error conditions as follows:

- Receivers that detect bad parity ignore the cycle.
- Responders ignore any write transactions containing a sequence or parity error (data at the referenced location is not modified since the entire write transaction is ignored).
- Responders receiving a NOACK to a read response do not transmit further read responses associated with that transaction within 10 XMI cycles of the NOACK.
- Memory nodes do not set a lock bit unless all read responses associated with an interlock read transaction receive an ACK.
- Memory nodes do not clear a lock bit unless all write data cycles associated with the unlock write mask transaction are properly received.
- Cached processors detecting an inconsistent parity error either flush their caches or perform a machine check.

4.4 ERROR RECOVERY

Error recovery involves one or more repeat attempts of the failed transaction before reporting a hard error. A failed XMI transaction is retried under the following circumstances:

- All transactions receiving a NOACK for the command cycle are retried automatically by the hardware. The NOACK can result from either a reference to nonexistent memory locations (NXM) or from bus parity errors. A transaction failing the retry is assumed to be an NXM.
- Failing XMI write transactions are retried.
- XMI IDENT transactions receiving a response timeout are retried. Since this may result in a lost interrupt vector, the consequences are implemented by software.
- Failing XMI I/O space write mask or unlock write mask transactions are retried.
- Failing DWMBA I/O space read or interlock read transactions receiving a response timeout are not returned since some I/O devices may have read side effects.

4-4 DIAGNOSING XMI BUS RELATED ERRORS

4.5 ERROR REPORTING

The XMI bus protocol supports two mechanisms that signal error conditions to processors if normal transaction-level error reporting cannot be used.

Normal transaction-level error reporting mechanisms include NOACK, read error response (RER), and timeout. The mechanisms that signal error conditions to processors if normal transaction-level error reporting cannot be used are:

Mechanism	Description
Write error interrupt	This transaction is directed to one or more CPU nodes, resulting in each targeted CPU taking an IPL 1D (hex) error interrupt. The CPU then identifies the source of the write error interrupt.
XMI TRIGGER ¹	When XMI TRIGGER is asserted, all XMI CPUs take an IPI 1D (hex) error interrupt.

¹This signal may be labeled XMI FAULT in some implementations.

Part II CIXCD Section

This section of the handbook covers the CIXCD interface. The chapters in this section include CIXCD:

• Overview

- Configurations
- Self-test and ROM-based diagnostics
- Macrodiagnostics and support programs
- Registers

5 CIXCD INTERFACE OVERVIEW

5.1 INTRODUCTION

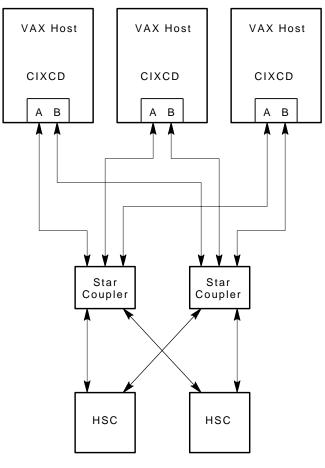
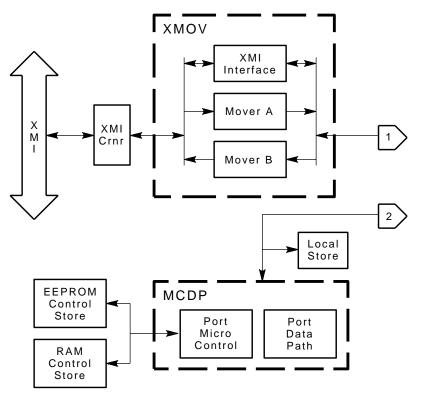

The CIXCD is a high-performance I/O interface which connects the XMI to the serial computer interconnect (CI) bus. The CIXCD implements the VAX-11 CI port architecture and incorporates resequencing dual path (RDP) protocol which supports simultaneous dual path operation of the CI. RDP protocol allows for independent operation of each CI path, enabling the CIXCD to transmit separate message packets over both CI paths simultaneously.

Figure 5–1 illustrates the dual pathing capability of the CIXCD in a VAX cluster.

5.2 FUNCTIONAL OVERVIEW

The CIXCD logic is partitioned into five major functional sections, implemented primarily by high-density gate arrays. Figure 5–2 shows the logic sections with gate array mnemonics given in the dashed boxes. Table 5–1 briefly describes each logic section.


5-2 CIXCD INTERFACE OVERVIEW

GSF_1735_89.DG

Figure 5–1 CIXCD Interface in a VAXcluster

CIXCD INTERFACE OVERVIEW 5-3

GSF_1821_89.DG

Figure 5–2 (Continued, next page) CIXCD Functional Block Diagram

5-4 CIXCD INTERFACE OVERVIEW

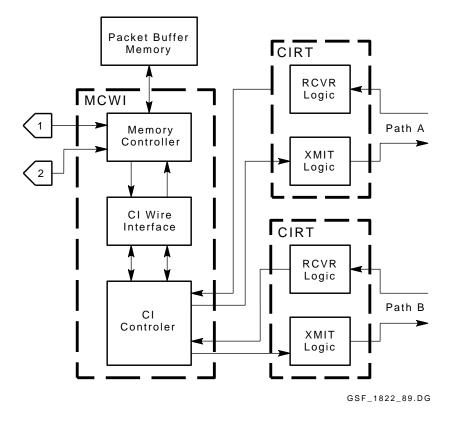


Figure 5–2 CIXCD Functional Block Diagram

Table 5–1 CIXCD Logic Element Descriptions

Element	Description
XMI corner	Provides the interface path to the XMI. Consists of the required XMI XLATCH chips (7) and the XCLOCK chip.
XMOV	XMI interface and data mover gate array.
	Performs the XMI read (mover A) and write (mover B) transactions. Includes the CIXCD interrupt logic.
	The data movers are each 32 bits wide and operate at a maximum bandwidth of 20 Mbytes/s. The movers are free running once started by the port microprocessor.
MCDP	Microcontrol and data path gate array.
	Houses the port microprocessor (port processor) which controls all CIXCD functions.
	The port processor is a bit-sliced microprocessor with a microsequencer and an $8K \times 86$ bit control store. ALU operations are executed every 64 ns with next-address calculations every 128 ns. Data transfers occur over a 32-bit data path with parity.
	The port processor is supported by 32 GPRs, a 16 \times 33 bit microstack, an 8K \times 33 bit local store, and a 32K \times 86 bit electrically erasable programmable read-only memory (EEPROM). The EEPROM contains the CIXCD self-test microdiagnostics and the functional microcode.
MCWI	Memory controller/wire interface gate array.
	Implements the CI protocol and controls the CI receiver/transmitters.
	Requests for access to packet buffer memory (8K \times 32 RAM) from the CI wire, the data movers, and from the port processor are arbitrated and controlled by the memory control logic.
CIRT	CI receiver/transmitters gate array.
	Independent interfaces to the CI wires. Performs Manchester encoding and decoding, clock/data separation, and byte framing and synchronization.

5-6 CIXCD INTERFACE OVERVIEW

5.3 FEATURES

- Resequencing dual path protocol
- Parity on all internal buses and control stores
- Writable control store
- Internal and external diagnostic loopback capability
- Data integrity with cyclic redundancy checking (CRC)
- · Round-robin arbitration at heavy loading for each path
- Contention arbitration at light loading for each path
- Packet-orientated data transmission
- Immediate acknowledgment of packet reception

5.4 SPECIFICATIONS

Table 5–2 CIXCD Specifications

Components

CIXCD-AA — VAX 9000 VAXcluster Interface

T2080	Module
17-02894-01	Bulkhead cable assembly
12-14314-01	Backplane jumpers (30)
54-20225-01	Header card
EK-CIXCD-UG	CIXCD Users Guide

CIXCD-AB — VAX 6000 VAXcluster Interface

Module
Bulkhead cable assembly
Backplane jumpers (30)
Header card
CIXCD Users Guide

Recommended Spares

F6-T2080-00

T2080-00
37-01183-01
EK-CIXCD-01
TK50-K

CIXCD service spare Package assembly T2080 module insert document Blank TK50 tape

F5-20225-01

54-20225-01Header card spare37-00813-04Header card packingEK-CIXCD-02Header card insert document

5-8 CIXCD INTERFACE OVERVIEW

Environmental	
Temperature	
Operating	10° C to 40° C (50° F to 104° F) ambient temperature with a gradient of 10° C (18° F)/h
Storage/shipping	-40°C to 70°C (-40°F to 158°F) ambient temperature with a gradient of 20°C (36°F)/h
Relative humidity	
Operating	10% to 90% with a maximum wet bulb temperature of 28°C (82°F), a minimum dew point of 2°C (36°F), and no condensation
Storage/shipping	5% to 95% with no condensation
Altitude	
Operating	Sea level to 2.4 km (8000 ft)
	Maximum operating temperatures decrease by a factor of $1^{\circ}C/1000$ ft ($1.8^{\circ}F/1000$ ft) for operation above sea level
Shipping/storage	Up to 9.1 km (30,000 ft) above sea level (actual or effective by means of cabin pressurization)
Shock	5 Gs peak at 7 to 13 ms duration in three axes mutually perpendicular (maximum)

Table 5–2 (Cont.) CIXCD Specifications

Voltage/Current (nominal)	Maximum ripple
+5.0 Vdc at 5.9 A	300 mV
-5.2 Vdc at 1.8 A	150 mV
-2.0 Vdc at 0.5 A	150 mV

Data Transfer		
Data format	Manchester encoded serial packet	
Data integrity	Cyclic redundancy check	
Arbitration	Light loading — contention Heavy loading — round-robin	

Table 5–2 (Cont.) CIXCD Specifications

Table 5–3 CI Bus Specifications

Bus width	Serial
External length	45 m (147.64 ft) maximum
Transfer rate	140 Mbits/s (maximum)
Bus loading	32 nodes (maximum)
Cable type	Double shielded coaxial, BNCIA-XX
Cable impedance	50 ohms

5-10 CIXCD INTERFACE OVERVIEW

EK-VSCIT-RM

EK-VCSFP-RM

3.5 RELATED DOCOMENTATION		
Order Number	Title	
EK-CIXCD-UG	CIXCD User's Guide	
EK-CIXCD-TM	CIXCD Technical Manual	
EK-VXDSU-UG	VAX Diagnostic User's Guide	
EK-VXDSU-U1	VAX Diagnostic User's Guide Update	
EK-VX11D-UG	VAX Diagnostic System User's Guide	
AA-F152A-TE	VAX Diagnostic Software Handbook	
EK-SC008-UG	SC008 Star Coupler User's Guide	
EK-CISCE-UG	CISCE-AA Installation Guide	
EK-VCSRM-PK	VAXcluster Service Reference Manual	

Introduction to VAXcluster Troubleshooting

VAXcluster System Troubleshooting Flow Procedures

5.5 RELATED DOCUMENTATION

6 CIXCD CONFIGURATIONS

6.1 INSTALLATION REQUIREMENTS

The CIXCD option requires one XMI I/O slot¹ for the T2080 module, and one I/O connector panel opening for the CI bulkhead cable connector panel (Figures 6-1 and 6-2).

The CIXCD also includes a header assembly which is a circuit board that converts received CI signals to ECL logic levels. The CI bulkhead cables connect to the header assembly which plugs into the CI backplane (Figure 6–3).

6.2 CONFIGURATION JUMPERS

The CIXCD configuration jumpers are installed in zones D2 and E2 of the XMI backplane slot. The jumpers are denoted as W1 through W30, with W9 being reserved.

Figure 6–4 shows the CIXCD jumpers. Tables 6–1 to 6–5 list the jumper configurations.

¹ In VAX 9000 systems, all slots except slots 7 and 8 are I/O slots. In VAX 6000 systems, the CIXCD can be installed in slots 1 to 4 and B to E.

6-2 CIXCD CONFIGURATIONS

Note that a system with no jumpers is configured as follows:

- CI node address: 0
- Boot time: 1500 seconds
- Normal CI arbitration
- Normal header
- Delta time: 7 (see following note)
- Cluster size: 16
- Normal ACK timeout

NOTE

The CIXCD, and all devices in a cluster which contain a CIXCD, must be configured for a delta time of 10. If the delta time jumpers (Table 6-4) are configured to any other value, they must be changed to reflect a delta time of 10. The value of 7 in the preceding list is given only to indicate the delta time if no jumpers are installed.

CIXCD CONFIGURATIONS 6-3

l

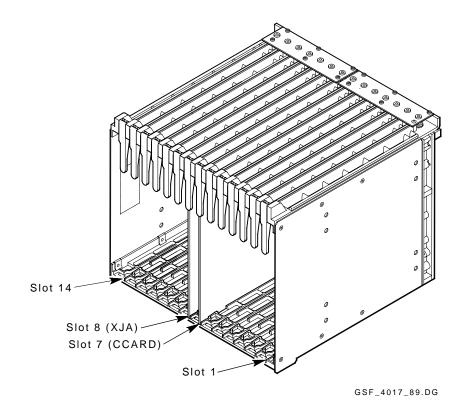


Figure 6–1 XMI Cardcage — VAX 9000 System Implementation

6-4 CIXCD CONFIGURATIONS

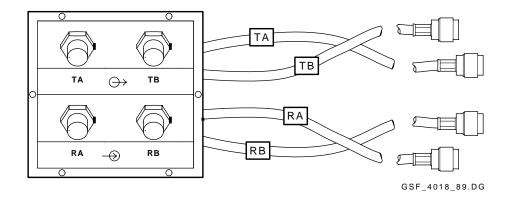
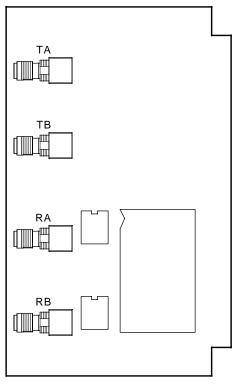



Figure 6–2 CIXCD-AA Bulkhead Cable

CIXCD CONFIGURATIONS 6-5

GSF_4019_89.DG

Figure 6–3 CIXCD Header Assembly

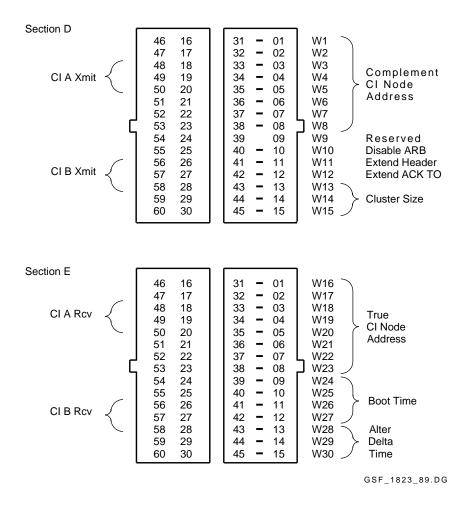


Figure 6–4 CIXCD Configuration Jumpers

CIXCD CONFIGURATIONS 6-7

CI Node	True Address ¹							
	W16 E1/31	W17 E2/32	W18 E3/33	W19 E4/34	W20 E5/35	W21 E6/36	W22 E7/37	W23 E8/38
0	out	out	out	out	out	out	out	out
1	out	out	out	out	out	out	out	in
2	out	out	out	out	out	out	in	out
•								
223	in	in	out	in	in	in	in	in

Table 6–1 CI Node Address Jumpers

	Complement Address ¹							
CI Node	W1 D1/31	W2 D2/32	W3 D3/33	W4 D4/34	W5 D5/35	W6 D6/36	W7 D7/37	W8 D8/38
0	out	out	out	out	out	out	out	out
1	out	out	out	out	out	out	out	in
2	out	out	out	out	out	out	in	out
•								
•								
223	in	in	out	in	in	in	in	in

 $^1{\rm The}$ true address and the complement address jumpers must be configured for the same CI node address. The node addresses are given in decimal. Addresses 224 through 255 are reserved for Digital.

6-8 CIXCD CONFIGURATIONS

Table 6–2	Boot Time Jumpers

[ime ¹	W24 E9/39	W25 E10/40	W26 E11/41	W27 E12/42
500	out	out	out	out
400	out	out	out	in
300	out	out	in	out
200	out	out	in	in
100	out	in	out	out
000	out	in	out	in
900	out	in	in	out
800	out	in	in	in
00	in	out	out	out
00	in	out	out	in
00	in	out	in	out
00	in	out	in	in
800	in	in	out	out
00	in	in	out	in
00	in	in	in	out
00	in	in	in	in

 1 On CI ports which support maintenance states, the time, in seconds, that a port waits to exit the uninitialized state following power up. The boot time delay does not apply to the CIXCD since the CIXCD does not implement this feature.

Jumper	In	Out
W10 D10/40	Disable normal CI arbitration ¹	Normal arbitration (default)
W11 D11/41	Extend header ²	Normal header (default)
W12 D12/42	Extend ACK timeout ³	Normal ACK timeout (default)

 Table 6–3
 Disable Arbitration, Extend Header, and Extend ACK Timeout

 Jumpers

¹Allows for initiating a transmit after waiting only one delta (quiet slot) time.

 $^{2}\mbox{Extends}$ the number of bit sync characters in the header.

 $^{3}\ensuremath{\text{Increases}}$ the timeout period for an ACK return.

Quiet Slot	W28	W29	W30
Count	E13/43	E14/44	E15/45
7	out	out	out
10 ¹	out	out	in
Reserved	out	in	out
Reserved	out	in	in
Reserved	in	out	out
Reserved	in	out	in
Reserved	in	in	out
Programmable	in	in	in

Table 6–4 Alter Delta (Quiet Slot) Time Jumpers

 $^1{\rm The}$ CIXCD requires a delta time of 10. If the jumpers are configured to any other value, they must be changed to reflect a delta time of 10.

6-10 CIXCD CONFIGURATIONS

Size ¹	W13 D13/43	W14 D14/44	W15 D15/45	
16	out	out	out	
32	out	out	in	
64	out	in	out	
128	out	in	in	
224	in	out	out	
Reserved	in	out	in	
Reserved	in	in	out	
Reserved	in	in	in	

Table 6–5 Cluster Size Jumpers

 $^1\mbox{Cluster}$ size is given in decimal. Value indicates the maximum number of nodes supported by a port. The default is 16.

7 CIXCD SELF-TEST (XCDST) AND ROM-BASED DIAGNOSTICS (RBDs)

7.1 CIXCD SELF-TEST (XCDST)

The CIXCD self-test automatically runs on system power up or on an XMI reset. The XCDST can also be run as RBD 0 from the RBD user interface. The XCDST program is stored in the EEPROM and requires that the port microprocessor be operational.

Table 7–1 XCDST Indications After Power Up or XMI Reset

Result	Indication(s)		
Pass	Yellow self-test passed (STP), LED illuminated.		
Fail	LED extinguished. Self-test failed bit (STF, bit 10) in XMI bus error register (XBER) set. Error code (failing test number) written to port diagnostic control/status register (PDCSR).		

NOTE See Examples 7–3 and 7–4 for sample outputs of an XCDST run from the RBD interface.

7-2 CIXCD SELF-TEST (XCDST) AND ROM-BASED DIAGNOSTICS (RBDs)

Test	Title ¹
1	Port processor ALU status and branch
2	ALU arithmetic/logical functions
3	General purpose registers
4	Microsequencer stack
5	Internal bus loopback
6	Interval timer
7	Local store
8	Memory control and wire interface
9	Data mover A
10	Data mover B
11	XMI commander
12	XMI responder
13	Data mover loopback
14	XMI bus error register
15	XMI device register
16	XMI failing address registers
17	Port processor internal conditions
18	MCWI error detection logic
19	XMOV error detection logic
20	Interrupt control registers
21	CI internal maintenance loopback

Table 7–2 XCDST Diagnostics

 $^1{\rm The~XCDST}$ is subject to change with new releases of the CIXCD. Refer to the XCDST listings for test numbers and titles applicable to a given CIXCD revision.

CIXCD SELF-TEST (XCDST) AND ROM-BASED DIAGNOSTICS (RBDs) 7-3

7.2 ROM-BASED DIAGNOSTICS (RBDs)

The RBDs provide more extensive testing of selected CIXCD logic functions. The RBDs are stored in the EEPROM and are accessed by invoking the RBD user interface.

Table 7–3 CIXCD RBD Sample Tests List

RBD	Title ¹
0	Power up self-test (XCDST)
1	CI internal/external maintenance loopback
2	Port local store exerciser
3	Port packet buffer exerciser
4	XMI commander exerciser
5	XMI communications register (XCOMM) exerciser
6	CIXCD soft register exerciser

¹The RBDs are subject to change with new releases of the CIXCD. Refer to the RBD listings for test numbers and titles applicable to a given CIXCD revision.

7.2.1 RBD User Interface

The RBD user interface communicates with the host console through the XMI communications register (XCOMM). The interface is entered by issuing the console "Z" command, specifying the node to which the console is to be logically connected, followed by the TEST/RBD command (Example 7–1). 7-4 CIXCD SELF-TEST (XCDST) AND ROM-BASED DIAGNOSTICS (RBDs)

```
>>>
>>> ;Connect console to XMI node C
?43 Z connection successfully started
C>>TEST/RBD ;Call RBD user interface
RBDC> ;RBD prompt
```

a. VAX 6000 Systems

>>>
>>>
;Connect console to XJA 2, XMI node 4
[Use ^P to exit Z-MODE]
TEST/RBD ;Call RBD user interface
RBD4> ;RBD prompt

b. VAX 9000 Systems

Example 7–1 Invoking the RBD User Interface

7.2.2 RBD Commands and Control Keys

The RBD command parser supports the minimum subset of commands required by the XMI RBD specification. Commands may be entered in uppercase or lowercase. The bell character and a question mark are returned on incorrect syntax.

Table 7–4	RBD Co	mmands
-----------	--------	--------

Command ¹	Function			
ST art n	Starts the specified diagnostic (n). (See Table 7–5 for START command qualifiers.)			
QU it	Returns control to the CIXCD functional microcode. After QUIT is issued, the CIXCD is initialized. TEST/RBD must be issued to resume RBD execution.			
Examine x	Examines contents at address x (hex).			

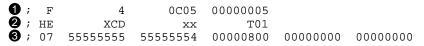
 $^1\ensuremath{\text{Uppercase}}$, bold-face characters indicate the minimum acceptable abbreviation for the command.

 Table 7–5
 RBD START Command Qualifiers

Qualifier	Diagnostic Action
/LE	Loop on test where the first error occurred. Continue error reporting, if enabled.
	Press CTRL/C, CTRL/Z, or CTRL/Y to terminate the loop and print the error summary on console terminal.
/HE	Halt on error, report error, and execute the clean-up code. The default is continue on error.
/IE	Inhibit error reporting to console terminal. The default is to enable error reporting.
	/IE is commonly used in combination with /LE.
/TR	Trace (display) test number at start of each test. Disabled by default.
/BE	Output bell character to terminal on error.
	/BE is commonly used with /IE and /LE to loop on intermittent errors.
/P=n	Run n (decimal) passes of each test selected. The default is one pass. Specify n=0 for infinite passes (CTRL/C, CTRL/Z, or CTRL/Y to halt).
/T=n[:m]	Run one $(/T=n)$ test or range of tests $(/T=n:m)$. Specify test number(s) in decimal. The default is all tests.

Table 7–6 RBD Control Keys

Key	Mode	Function
CTRL/C	Running Parser	Stop diagnostic execution, execute the clean-up code Disregard previous input
CTRL/U	Running Parser	Ignored Same as CTRL/C
CTRL/Y	Running Parser	Stop diagnostic, do NOT execute the clean-up code Same as CTRL/U
CTRL/Z	Running Parser	Same as CTRL/C Same as QUIT command


7-6 CIXCD SELF-TEST (XCDST) AND ROM-BASED DIAGNOSTICS (RBDs)

7.2.3 RBD Error Report Formats

The CIXCD follows the XMI standard for RBD error reports, supporting three levels of error reporting.

Level	Туре	Error Report Line Fields
1	Summary	Pass/fail indicator XMI node number CIXCD identifier Decimal pass count
2	Error class/device type	Error class — HE (hard error), FE (fatal error) Device under test Unit number (if applicable) Diagnostic test number
3	Error specific	Two-digit subtest number Expected data Actual data Failing address (if non-zero field) Unused (zero filled) Error PC

Table 7–7 RBD Error Report Levels

- Failed, XMI node 4, CIXCD (device type 0C05), 5th pass
- **2** Hard error, CIXCD, xx (not used), test 1
- Subtest 7, expected 55555555 (hex), actual 55555554 (hex), failing address 800 (hex), all zeros field, error PC 0

Example 7–2 Sample RBD Error Report

CIXCD SELF-TEST (XCDST) AND ROM-BASED DIAGNOSTICS (RBDs) 7-7

7.2.4 Sample RBD Run

Example 7–3

```
1 >>> Z C
2 ?43 Z connection successfully started
3 C>> TEST/RBD
4 RBDC>ST 0/TR/HE
5; XCD_ST 1.00
6; тол тол тоз
7 ; F
                 С
                        0C05 0000001
            XCD
8; HE
                        xx T03
        55555555 55545555 0000064C 0000000 0000000
9;23

    RBDC> QUIT

  >>>
  1 Connect console to XMI node C
  2 Z connection message
  3 Call RBD user interface (can abbreviate to T/R)
  4 Start RBD 0 (XCDST), set TRACE, HALT ON ERROR flags
  5 Test header line — test name, revision
  6
    Test tracing (test numbers displayed at start of test)
    Fail indicator, node C, CIXCD (device type 0C05), 1st pass
  0
    Hard error, device is CIXCD, xx (not used), test 03
  8
  9
     Subtest 23, expected 55555555, actual 55545555, failing address 64C,
     zeros field (not used), error PC 0
  • Exit RBD mode
```

Sample RBD Run With Failure (VAX 6000 System)

7-8 CIXCD SELF-TEST (XCDST) AND ROM-BASED DIAGNOSTICS (RBDs)

```
1 >>> Z 24
2 [ Use ^P to exit Z-MODE ]
3 TEST/RBD
4 RBD4>ST 0/TR/HE
5;xCD_ST 1.00
6; T01 T02 T03
7 ; F
                  4
                         0C05 00000001
8; HE
                XCD
                         xx
                                 т03
9; 23
         55555555 55545555 0000064C 0000000 0000000

    RBDC> QUIT

  >>>
  • Connect console to XJA2, XMI 4
  2 Z connection message
  3 Call RBD user interface (can abbreviate to T/R)
  4 Start RBD 0 (XCDST), set TRACE, HALT ON ERROR flags
  5 Test header line — test name, revision
  6 Test tracing (test numbers displayed at start of test)
  Fail indicator, node 4, CIXCD (device type 0C05), 1st pass
  8 Hard error, device is CIXCD, xx (not used), test 03
  9
     Subtest 23, expected 55555555, actual 55545555, failing address 64C,
     zeros field (not used), error PC 0
  D Exit RBD mode
```

```
Example 7–4 Sample RBD Run With Failure (VAX 9000 System)
```

8.1 INTRODUCTION

This chapter provides an overview of the macrodiagnostics and support programs available for the CIXCD. The chapter includes:

- Brief descriptions of the diagnostics
- Diagnostic set-up procedures
- Sample diagnostic runs
- Event flag descriptions

8.2 DIAGNOSTIC PROGRAMS

The CIXCD is supported by five macrodiagnostics and one utility program.

Table 8–1 CIXCD Macrodiagnostics

Name	Level	Description
EVGAA	3	CI functional diagnostics, parts 1 and 2.
EVGAB		Standard CI bus interface diagnostics upgraded to include the CIXCD. Diagnostics run with memory management on and provide isolation to the failing command.
		Both diagnostics require the CI loopback connectors and use the CIXCD functional microcode. Microcode is assumed to be loaded (from the EEPROM) unless event flag 1 is set (loads microcode from file CIXCD.BIN prior to diagnostic execution).
EVGAC	3	Cluster functional diagnostic
		Verifies local to remote node communication and data integrity. Must be run under VAX/DS on an inactive CI cluster. Functional microcode must be on the same medium as the diagnostic. Assumes successful runs of EVGAA and EVGAB.

Table 6-1 (Cont.)		Cintob inacioulagricolice
Name	Level	Description
EVGEA	3	CIXCD repair level
		Performs extensive testing of the CIXCD at the functional level and at the logic level. Tests include:
		• Scan chain and data path to EEPROM and RAM
		 Data integrity and addressability of EEPROM and RAM
		• Verifying ability to invoke XCDST and read results
		Computing checksum of EEPROM code
		Control store read/write capability
		Functional testing of RAM memory
		EVGEA also includes three sections of the EEPROM update/verification utility.
EVGEB	3	CIXCD microcode update utility
		Contains the code to initialize and update the functional and diagnostic microcode.
EVXCI	2R	CI cluster exercizer
		Provides for local CI interface functional testing and tests the ability of VAXcluster nodes to communicate over the CI bus.

Table 8–1 (Cont.) CIXCD Macrodiagnostics

8.3 RUNNING EVGAA AND EVGAB

Diagnostic Setup

1. Connect CI cables to loopback connectors (Figure 8–1):

Connect transmit A to receive A and transmit B to receive B on the CI bulkhead connector panel using one attenuator pad (P/N 12-19907-01) and two modularity cables (P/N 70-18530-00) for each connection.

- 2. Ensure that the VAX diagnostic supervisor (VAX/DS) and diagnostics are accessible through the default load path (may require changing media in the current load-path device).
- 3. Load and run VAX/DS

Refer to the applicable system installation guide for system specific VAX/DS load and run procedures.

- 4. Attach and select CIXCD:
 - Using the auto-sizer:

DS> RUN EVSBA DS> SHOW DEVICES DS> SELECT PAAx

- Using ATTACH and SELECT commands (Example 8–1)
- 5. Load the diagnostic program
- 6. Set the desired VAX/DS execution control flags (for example: TRACE, HALT) and any desired diagnostic event flags (note that the LOAD command clears event flags)
- 7. Start the diagnostic

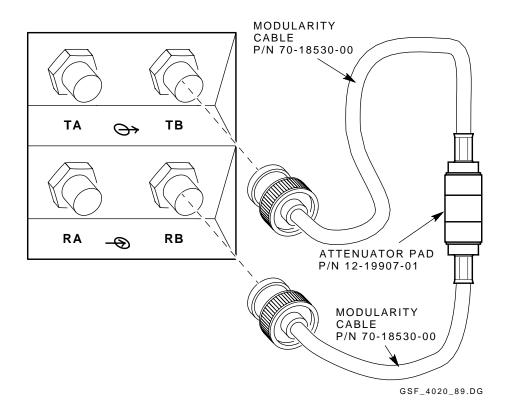


Figure 8–1 Diagnostic Loopback Cable Connections

DS>	ATTACH	CIXCD	HUB	PAAO	С	3			XMI node number, CI node number
DS>	SELECT	PAAO							
a. \	/AX 600	0 Syste	ems						
DS>	ATTACH	XJA HU	JB XJ	0 0AT	8			!0	= XMI number,
DS>	ATTACH	CIXCD	XJA() PAA(0 2	2 4	3		= XMI node number = XMI node number,
	-							!4	= BR level,
								!3	= CI node number

DS> SELECT PAA0,XJA0

b. VAX 9000 Systems

Example 8–1 VAX/DS Attach and Select for CIXCD

8.3.1 Sample EVGAA Run

DS> LOAD EVGAA

```
DS> SET HALT, TRACE
DS> SET EVENT 1,2,3
DS> START
.. Program: EVGAA - CI Functional Part I, Level 3, revision 5.3, 17 tests
  at 11:58:12.80.
Testing _PAA0
Event Flag 1 SET = Load CI Microcode
Event Flag 2 SET = Print Queue Entries
Event Flag 3 SET = REQID Loop Function in Test 1
Testing Device _PAA0
EEprom Revision = xxxx Functional Revision = yyyy
Test 1: Cluster Configuration
Contents of the PORT PARAMETER REGISTER is:
PPR:[abcdefgh (X)]:
       CLUSTER_SIZE=XX,
        IBUF_LEN=XXXX(X),
       \texttt{MBZ=0(X)} ,
       DISABLE_ARB=0(X),
EXTENDED_HEADER=0(X),
        SLOT_COUNT=7,
       PORT_NUMBER=06(X)
               Cluster Configuration for Path A
               You CANNOT Differentiate between a CI780, CI750, or a CIBCI remotely.
(PS = Path Select, TP = Transmit Path, RP = Receive Path)
 Node
        Device
                  Hard Soft Extended Port
                                                Path
                                                         ΡΤR
                  Rev. Rev. Functionality
Number
        Type
                                                         SPP
                                              Status
_____
                                               _____
                                                         - - -
  02
        HSC50
                     022B
                                0000000(X)
                                                 OK
                                                         AAA
  06
        CIXCD
                                                 OK
                                                         ΑΑΑ
                   XXXX ZZZZ
                                XXXXXXXX(X)
               Cluster Configuration for Path B
               ******
```

You CANNOT Differentiate between a CI780, CI750, or a CIBCI remotely. (PS = Path Select, TP = Transmit Path, RP = Receive Path)

Node	Device	Hard S	Soft	Extended Port	Path	P	Т	R
Number	Туре	Rev. R	lev.	Functionality	Status	S	Ρ	Ρ
						-	-	-
02	HSC50	022E	3	0000000(X)	OK	В	В	в
06	CIXCD	XXXX Z	zzz	xxxxxxx(X)	OK	В	В	В

Nodes NOT Listed do not exist on Cluster

Test 2: SETCKT with Various Masks and M_Values Test 3: SETCKT for Each Valid Port Test 4: SETCKT for Invalid Port
Test 5: REQID Basic
Test 6: REQID With 6 Packets on DGFQ
Test 7: Datagram Discard
Test 8: Response Queue Available Interrupt
Test 9: Send Datagram
Test 10: SNDMSG With No Virtual Circuit Open
Test 11: Send Message Crossing Page Boundary
Test 12: Message Length Test
Test 13: Packet Size Violation
Test 14: Send Loopback (SNDLB)
Test 15: SNDLB Full Buffer on Path A
Test 16: SNDLB Full Buffer on Path B
Test 17: SNDLB Automatic Path Selection
End of run, 0 errors detected, pass count is 1, time is 31-AUG-1989 11:58:36.40
DS>

Table 8–2 EVGAA Event Flags

Flag	Function If Flag Set
1	Load CI functional microcode (file CIXCD.BIN) prior to testing. (EVGAA assumes microcode to have been loaded from EEPROM unless event flag 1 is set.)
2	Display port queue entries prior to enabling the port and after execution of port commands.
3	Force test 1 to loop on only the specified node number and path. User prompted for node and path.

8.3.2 Sample EVGAB Run

```
DS> LOAD EVGAB
DS> SET HALT, TRACE
DS> SET EVENT 1,2
DS> START
.. Program: EVGAB - CI Functional Part II, Level 3, revision 5.3, 12 tests
   at 12:05:24.83
Testing _PAA0
Event Flag 1 SET = Load CI Microcode
Event Flag 2 SET = Print Queue Entries
Testing Device _PAA0
EEprom Revision = xxxx Functional Revision = zzzz
Test 1: Send Data with Offset Combinations
Test 2: Request Data with Offset Combinations
Test 3: Invalidate Translation Cache
Test 4: SNDMDAT in Enabled/Maintenance State
Test 5: SNDMDAT in Enabled State
Test 6: REQMDAT in Enabled/Maintenance State
Test 7: REQMDAT in Enabled State
Test 8: Send RESET in Enabled State
Test 9: Queue Protocol
Test 10: Buffer Read Access
Test 11: Buffer Write Access
Test 12: Write to Global Buffer
.. End of run, 0 errors detected, pass count is 1.
   time is 31-AUG-1989 12:05:47.34
DS>
```

Table 8–3 EVGAB Event Flags

Flag	Function
1	Load CI functional microcode (file CIXCD.BIN) prior to testing. (EVGAB assumes microcode to have been loaded from EEPROM unless event flag 1 is set.)
2	Display port queue entries prior to enabling port and after execution of port commands.

8.4 RUNNING EVGAC

Diagnostic Setup

Follow the same set-up procedures as for EVGAA and EVGAB, except connect the CI cables to the star coupler (refer to the *SC008 Star Coupler User's Guide*).

8.4.1 Sample EVGAC Run

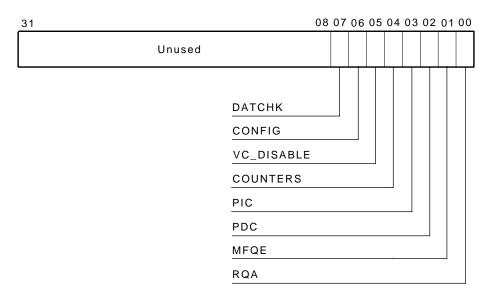
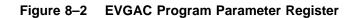

```
DS> LOAD EVGAC
DS> SET HALT, TRACE
DS> SET EVENT 1,2,3
DS> START
.. Program: EVGAC - CI Functional Exerciser, revision 1.0, 8 tests
   at 11:42:21.26.
Testing _PAA0
Event Flag 1 Microcode Loading
Event Flag 2 Miscellaneous Status Messages
Event Flag 3 Datrec and Cnfrec
-*- Datchk Config VC_Disable Counters -*- PIC PDC MFQE RQA -*-
Program Parameter Register. > [(00000000), 0000000-000000FF (X)]
Use the Pattern File? > [(No), Yes]
Use the Parameter File? > [(No), Yes]
Modify Parameters? > [(No], Yes]
Test 1: Local Configuration
Test 2: Local Adapter Test
Test 3: Datagram Test
        Virtual Circuits Test
Test 4:
Test 5: Message Test
Test 6: Multiple Message Test
Test 7: Write/Read Buffer Test
Test 8: Activity Test
******** EVGAC - CI FUNCTIONAL EXERCISER - 1.1 *******
Pass 1, test 8, subtest 0, error 6, 31-AUG-1989 11:46:59.31
Soft error while testing PAAO: Buffered Data Error.
                 00000006
Port Number:
Offset:
                 00000E00
Expected:
                 305A3159
Received:
                ААААААА
******* End of Soft error number 6 *******
.. Halt on error at PC 0000A36B (X)
DS> cont
..Continuing from 0000A36B
.. End of run, 0 errors detected, pass count is 1,
   time is 31-AUG-1989 11:47:17.98
DS>
```

Table 8–4 EVGAC Event Flags


Flag	Diagnostic Action If Flag Set				
1	Load CI functional microcode (file CIXCD.BIN) prior to testing. (EVGAC assumes microcode to have been loaded from EEPROM unless event flag 1 is set.)				
2	Display the following:				
	• CI configuration (test 1)				
	Total number of usable pages in memory				
	Changes in virtual circuit state				
	• Port to which traffic is being sent (tests 3:8)				
3	Display confirmation received (CNFREC) and data received (DATREC) packets.				

8.4.2 EVGAC Program Parameter Register

EVGAC includes a program parameter register which allows for tracing specific events and for enabling or disabling specific program routines. EVGAC prompts for input into the PPR, with the default being all bits clear. If the VAX/DS OPERATOR flag is cleared, EVGAC will not prompt for input, and will use the PPR with all bits clear. Note that if trace bits are set, interrupt-driven print routines may interfere with other common print routines.

GSF_1820_89.DG

Bit(s)	Name	Function
31:08	_	Unused
07	DATCHK	If set, disables data checking routines.
06	CONFIG	If set, disables running the configuration routine at the start of each test except test one (the configuration routine always runs in test one).
05	VC_ DISABLE	If clear, allows the program to re-establish virtual circuits between local and remote nodes when a virtual circuit is dropped.
		If set, inhibits re-establishing virtual circuits for that test pass.
04	COUNTERS	If set, reads and displays counters of the local adapter (specific to test 8).
03	PIC	If set, displays a message when the port initialization complete interrupt occurs.
02	PDC	If set, displays a message when the port disable complete interrupt occurs.
01	MFQE	If set, displays a message when the message free queue empty interrupt occurs.
00	RQA	If set, displays a message when the response queue available interrupt occurs.

 Table 8–5
 EVGAC Program Parameter Register Bit Descriptions

8.4.3 EVGAC Program Parameters

The user can control EVGAC by modifying program parameters in one of three ways:

- 1. Setting program default values
- 2. Entering values by way of the console
- 3. Specifying a parameter file

Table 8–6 describes the EVGAC parameters and indicates the default value for each paramter.

Parameter	Default ¹	Function
minport	CI port number of the CIXCD	Minimum port number to which the diagnostic will send test packets. The limit is the maximum cluster size found in port parameter register (PPR).
		Range: 0 to PPR
maxport	CI port number of the CIXCD	Maximum port number to which diagnostic will send test packets. The limit is the maximum cluster size found in the PPR.
		Range: minport to PPR
sanity	0	Sanity timer value. Range: 0:99.
maxcmd	47	Number of commands the program sends to each node per pass of activity test (test 8). Range: 0 to 100.
dgfq²	50	Number of datagram free queue entries. Range: 0:2048.

Table 8–6 EVGAC Program Parameters

 $^1\mbox{All}$ default values are in decimal.

 $^2 {\rm The}$ creation of a less than acceptable number of datagram free queues will, in effect, inhibit the port from receiving necessary packets from remote ports. Try increasing the number if tests are failing due to nonreceipt of datagram type packets.

Parameter	Default ¹	Function
msgfq	50	Initial number of message free queue entries. Range: 0:2048.
		This parameter can be considered dynamic; when the EVGAC receives an MFQE interrupt from the CIXCD, it tries to allocate five queue entries to the message free queue. EVGAC aborts if unsuccessful in allocating the buffers.
entrysize	Internal buffer length	Maximum datagram and message queue size. Used by EVGAC if less than internal buffer length in PPR. If greater than the internal buffer length, defaults to value in PPR.
nbuffmin ³	512	Minimum size of named buffers. Range: 1:819200. Value may be dynamically changed if insufficient host memory is available.
nbuffmax ³	13739	Maximum size of named buffers. Range: 1- 819200. Value may be dynamically changed if insufficient host memory is available.
pm	PPR value	Packet multiple. PM value used if less than or equal to value calculated from PPR. PPR value used if greater then PM value.

Table 8–6 (Cont.) EVGAC Program Parameters

¹All default values are in decimal.

 $^{3}\mbox{Any}$ dynamic changes will be displayed on the console.

8.4.4 EVGAC Support Files

EVGAC is supported by two ASCII files which the user can modify to pass parameters and patterns to the diagnostic. These files are created by the user and copied to the load media. Note that if the VAX/DS operator flag is clear, the parameter and pattern files are not used, no prompt is issued, and default values are used.

Table 8–7 EVGAC Support Files

File	Description
PARAMETER.PAR	Program parameters
	Allows for loading parameters from a file instead of using program default values, or requiring the user to input values from the console.
	Each file entry is eight characters long, representing one (hexadecimal) parameter (note that Table 8–6 listed defaults in decimal). Parameters must be placed in exact order (Table 8–8) and are used only if the value does not exceed the maximum value allowed for the parameter. Otherwise, default values are used (Table 8–6).
PATTERN.PTN	Program patterns
	Allows the user to specify text to be used in all message, datagram, and named buffer transfers. Must be created in specific format (Example 8–3).
	File entries are each eight characters long. The file may be any size greater than one 8-character line, up to 1024 bytes.
	File entries are read and stored in a data area. If an end- of-file condition is detected before the data area is full, EVGAC will close the pattern file and fill the rest of the data area with characters previously read. The pattern data area to be filled is 1024 bytes long.
	If the pattern file cannot be accessed, or the file is improperly formated, a message is generated and EVGAC uses a default pattern. The user is then prompted to either enter the parameters or use default values.
	If the parameter file contains an invalid parameter, the user is prompted to either use default values or abort the program.

Line	Parameter
1	minport
2	maxport
3	sanity
4	maxcmd
5	dgfq
6	msgfq
7	entrysize
8	nbuffmin
9	nbuffmax
10	pm

Table 8–8 PARAMETER.PAR File Structure

00000000
00000010
00000000
0000005D
00000064
00000064
000003F8
00000200
00007C1B
00000000

Example 8–2 Sample PARAMETER.PAR File

!1!1!1!1 2@2@2@2@ #3#3#3#3 4\$4\$4\$4\$ %5%5%5%5 6^6^6^6^ &7&7&7&7 8*8*8*8* (9(9(9(9 0)0)0)0) _-__-=+=+=+=+QqQqQqQq wWwWwWwW EeEeEeEe rRrRrRrR TtTtTtTt уҮуҮуҮуҮ UuUuUuUu iIiIiIiI 0000000 pPpPpPpP 1]]]]]]]]]]]] 1 } 1 } 1 } 1 } 1 } AaAaAaAa sSsSsSsS DdDdDdDd fFfFfFfF GgGgGgGg hHhHhHhH JjJjJjJj kKkKkKkK LILILILI ;:;:;:;: X | X | X | X><><><>< zZzZzZzZ XxXxXxXx cCcCcCcC VvVvVvVv bBbBbBbB NnNnNnNn mMmMmMmM

Example 8–3 Sample PATTERN.PTN File

CIXCD MACRODIAGNOSTICS AND SUPPORT PROGRAMS 8-19

8.5 RUNNING EVGEA

Diagnostic Setup

Follow the same set-up procedures as for EVGAA and EVGAB, except connect the CI cables to the star coupler (refer to the *SC008 Star Coupler User's Guide*).

8.5.1 Sample EVGEA Run

DS> START/PASS:1

```
.. Program: CIXCD Functional Diag - ZZ-EVGEA, revision 1.0, 10 tests,
   at 14:23:06.45
Testing at _PAA0
Test -- 1 Scan Data Path Verification
        Subtest 1: Port Scan Data Register Loopback
       Subtest 2: Port Scan Shift Register
       Subtest 3: PMCS EEPROM Data Path
       Subtest 4: PMCS RAM Data Path
       Subtest 5: Scan Visibility Bus Control Store Address
       Subtest 6: Scan Visibility Bus GPR[0] Data Field
       Subtest 7: Scan Visibility Bus Top of Stack and Stack
Subtest 8: Scan Visibility Bus Top of Stack and Stack
       Subtest 9: Scan Visibility Bus Control Store Parity
Subtest 10: Scan Visibility Bus X Register Parity Error
       Subtest 11: Scan Visibility Bus Y Register Parity Error
Subtest 12: Scan Visibility Bus Internal Bus Parity
       Subtest 13: Scan Visibility Bus XMOV or MCWI Error
Subtest 14: Scan Visibility Bus Micro Status Register
.. End of run, 0 errors detected, pass count is 1
   time is 18-SEP-1989 14:23:17.32
DS>
```

8.5.2 Sample EVGEA Error Message

****** CIXCD Functional Diag -- ZZ-EVGEA -- 1.0 ****** Pass 1, Test 1, Subtest 2, error 1, 18-SEP-1989 14:36:47.83 Hard error while testing PAAO: CIXCD Port Scan Shift Register Error!

Address	Expected	Received	XOR
00000000 (X)	FFFFFC00 (X)	FFFFFB00 (X)	00000100 (X)

****** End of Hard Error number 1 ******

8-20 CIXCD MACRODIAGNOSTICS AND SUPPORT PROGRAMS

Table 8–9 EVGEA Program Sections

Section	Function
ALL	Runs all tests in the DEFAULT section.
DEFAULT	Tests CIXCD with functional and self-test microcode loaded in EEPROM.
	This section contains all of the CIXCD tests. It is run if /SECTION is omitted from the command line, or if /SECTION=ALL or /SECTION=DEFAULT is specified.
ERRORLOG	Examines ERRORLOG header information stored in EEPROM.
EXAM	Examines diagnostic control block and ERRORLOG data entry stored in EEPROM.
INIT_DCB	Used by manufacturing to initialize the diagnostic control block (DCB) and, optionally, clear the error history buffer.
	NOTE The error history buffer may contain valuable information for future diagnosis of the CIXCD and should only be cleared if absolutely necessary.
RVERIFY	Verifies the contents of the primary EEPROM region against the backup EEPROM region. No load media file is used.
REPLACE	Replaces the contents of the backup EEPROM regions with copy from primary regions. No load media file is used.
RESTORE	Restores functional and diagnostic microcode in primary EEPROM regions with copy from backup regions. No load media file is used.
MFG	Tests CIXCD without microcode loaded in EEPROM.
	NOTE This section destroys the data in the EEPROM. The user must run INIT_DCB or BAR_DCB sections prior to executing the UPDATE section.
RBD	Enter RBD mode to test CIXCD.
LOCK	Enables software data protection of microcode in EEPROM. Data protection supported only on hardware revision "E" or later.

CIXCD MACRODIAGNOSTICS AND SUPPORT PROGRAMS 8-21

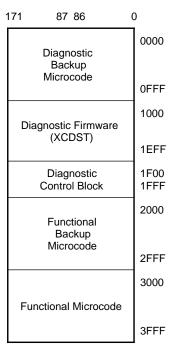
 Section
 Function

 UNLOCK
 Disables software data protection of microcode in EEPROM. Data protection supported only on hardware revision "E" or later.

 UPDATE
 Loads EEPROM from a microcode binary file on load media. Microcode is loaded to both primary and backup EEPROM regions.

 VERIFY
 Verifies the contents of EEPROM against a microcode binary file on load media.

Table 8–9 (Cont.) EVGEA Program Sections


8.6 EEPROM UPDATE/VERIFICATION UTILITY

The EEPROM update and verification utility consists of an update program resident in EVGEB and three sections of EVGEA (RESTORE, INIT_DCB, and ERRORLOG; see Table 8–9).

EVGEB provides a means for loading or updating the firmware in the EEPROM (see Figure 8–3). A CRC is generated for both the functional and the diagnostic microcode and is stored in the DCB. Microcode is loaded to both the primary regions and the backup regions of the EEPROM. After each region is loaded, it is re-read and verified. For each CIXCD, EVGEB saves the error history stored in the EEPROM, runs the diagnostic self-test, and compares the results to those saved.

To run EVGEB, follow the same procedure as for EVGEA.

8-22 CIXCD MACRODIAGNOSTICS AND SUPPORT PROGRAMS

EEPROM MAP

GSF_1824_89.DG

Figure 8–3 EEPROM Memory Map

CIXCD MACRODIAGNOSTICS AND SUPPORT PROGRAMS 8-23

8.7 MAINTENANCE SUPPORT TOOLS

Tool	Function
EVXCI	Level 2R multipurpose cluster exerciser
	Provides local CI interface functional testing and a means to determine the ability of VAXcluster nodes to communicate over the CI bus.
ERF^{1}	Errorlog report formatter
	Allows the user to create reports with system errors catalogued in various ways.
VAXsim ²	VAX system intergrity monitor
	Monitors and filters errors as they are logged by the VMS operating system. Provides the user with a means for quickly identifing an option that has either failed or has degraded operationally.
SHOW CLUSTER ³	Displays a wide variety of VAXcluster information related to system configuration and operation.
SET HOST/HSC ⁴	Allows a terminal on a host system to effectively become an HSC50/70 terminal. The user may then issue any HSC50/70 commands and examine or control the HSC50/70 as if it were a terminal connected directly to one of the HSC50/70 terminal ports.

Table 8–10 VAXcluster System Maintenance Tools

¹See the VAX/VMS Error Log Utility Reference Manual.

²See the VAX System Integrity Monitor Maunal.

³See the VAX/VMS Show Cluster Utility Manual.

⁴See the VAX/VMS DCL Dictionary under SET HOST/HSC.

9 CIXCD REGISTERS

9.1 INTRODUCTION

This chapter overviews the CIXCD register structure. Included in the chapter are:

- Lists of the CIXCD registers:
 - XMI and CI required
 - Port specific, XMI visible
 - Port specific, microcode visible only
- Register bit maps
- Descriptions of selected registers

The chapter is intended as a quick reference to register information. Refer to the *CIXCD User's Guide* and the *CIXCD Technical Manual* for detailed descriptions of all CIXCD registers. 9-2 CIXCD REGISTERS

9.2 CIXCD REGISTER TYPES

Table 9–1 CIXCD Register Types

Туре	Description
Hardware	XMI and CI registers which must be present in the node. These registers reside in the XMOV gate array and are always available to the console and to the CIXCD port driver, regardless of the state of the CIXCD microcode. The hardware registers are also available to the CIXCD microprocessor over the port internal bus (IB).
Software	CIXCD specific registers which are visible over the XMI. The functional microcode must be operating to access these registers. (The XMI logic validates the register's XMI address; microcode performs the register read or write operation.)
Internal	Microcode support registers which the microcode uses to manage data transfers and to control communications between gate arrays. These registers are accessed over the IB and are available only to the functional microcode and to the self-test diagnostics.
	The hardware and software registers are also part of the internal register structure. However, the internal representation of these registers is not always the same as the external representation.

9.3 ADDRESSING XMI VISIBLE REGISTERS

Each XMI node is allocated a 512 Kbyte region in I/O space for node control and status registers. The address of a register in XMI node space is based on the XMI node ID and an assigned offset value.

39 3	8 29	28 23	22 19	18 00
1	Zero	000011	Node ID	Offset

GSF_1826_89.DG

Figure 9–1 XMI Node Space Addressing

Bit(s)	Value	Description
39	1	Identifies the address as being in I/O space
38:29	0	These bits must be zero
28:23	03	XMI nodespace
22:19	n	XMI node ID (determined by the position of the node in the backplane)
18:00	aaaaa	Offset from base address

NOTE

The register addressing scheme shown in Figure 9–1 is as viewed from any other XMI node. The addresses may be different for processors which remap the XMI registers into their own physical I/O space to support multiple XMIs.

The CIXCD hardware and software registers each have a unique address on the XMI in the node space allocated to the CIXCD. The CIXCD XMI registers are listed in Table 9–2 with address offsets given in hexadecimal.

9-4 CIXCD REGISTERS

Table 9–2 CIXCD XMI	Visible Registers
---------------------	-------------------

ter ster
ster
status register
atus register
ision register
jister
ter
er
ı register
ster
ontrol register
ontrol register
ontrol register
ntrol register

 $^1\mbox{Address}$ offset (in hex) from the node's base address

 $^2 \rm The term "XMI"$ in a hardware register name denotes an XMI architecture register. The term "Port" denotes a CI architecture register.

Mnemonic	Offset ¹	Name	
Software Registers			
PSRCR	01038	Port status release control register	
PECR	0103C	Port enable control register	
PDCR	01040	Port disable control register	
PICR	01044	Port initialize control register	
PDFQCR	01048	Port datagram free queue control register	
PMFQCR	0104C	Port message free queue control register	
PMTCR	01050	Port maintenance/sanity timer control register	
PMTECR	01054	Port maintenance/sanity timer expiration control register	
PPER	01058	Port parameter extension register	

Table 9–2 (Cont.) CIXCD XMI Visible Registers

 $^1\mbox{Address}$ offset (in hex) from the node's base address

9-6 CIXCD REGISTERS

9.4 INTERNAL BUS (IB) REGISTER ADDRESSING

The port processor accesses registers on the port internal bus through the use of the six-bit literal field of the microword. Bits <05:04> of this field indicate the gate array and bits <03:00> indicate the register in the gate array.

NOTE

The internal registers are not covered in this document. Refer to the *CIXCD Technical Manual* for bit maps and descriptions of the internal registers.

Table 9–3 IB Accessible Register Locations

Addresses	Gate Array
00—1F	XMOV
20—2F	MCWI (CMEM)
30—3F	MCWI (CIC)
40—60	MCDP

CIXCD REGISTERS 9-7

Mnemonic	Addr	Register	
XMOV Gate Array			
MVACSR	[00]	Mover A control and status register	
MVABCR	[01]	Mover A byte count register	
MVAADR	[02]	Mover A XMI address register	
MVANPR	[03]	Mover A XMI next page register	
MVBCSR	[04]	Mover B control and status register	
MVBBCR	[05]	Mover B byte count register	
MVBADR	[06]	Mover B XMI address register	
MVBNPR	[07]	Mover B XMI next page register	
JUMPENR	[08]	Port jumper register	
PSR	[09]	Port status register	
CMDRAAR	[0A]	Commander XMI address A register	
CMDRABR	[0B]	Commander XMI address B register	
CDAT1LR	[0C]	Commander XMI data 1 low register	
CDAT1HR	[0D]	Commander XMI data 1 high register	
CDAT2LR	[0E]	Commander XMI data 2 low register	
CDAT2HR	[0F]	Commander XMI data 2 high register	
RESPCSR	[10]	Responder control/status register	
PSCR	[11]	Port scan control register	
RESPDTR	[12]	Responder data register	
XDEV	[13]	XMI device register	
XBER	[14]	XMI bus error register	
XFADR	[15]	XMI failing address register LW0	
XFAER	[16]	XMI failing address register LW1	
PDCSR	[17]	Port diagnostic control/status register	
CMDRCSR	[18]	Commander control/status register	

Table 9–4 Internal Registers

9-8 CIXCD REGISTERS

Table 9–4 (Cont.) Internal Registers

Mnemonic	Addr	Register	
XMOV Gate A	Array		
PSCR	[19]	XMI communications register	
PMCSR	[1A]	Port maintenance control/status register	
IVIR	[1D]	Interrupt vector and IPL register	
INTDMR	[1E]	Interrupt destination mask register	
INTCR	[1F]	Interrupt control register	
MCWI Gate A	Array		
MVAPBAR	[20]	Mover A packet buffer address register	
MVBPBAR	[21]	Mover B packet buffer address register	
PRTPBAR	[22]	Port packet buffer address register	
MCERSR	[23]	MCWI error status register	
ENLKCR	[30]	Enable link control register	
DSLKCR	[31]	Disable link control register	
LDCIR	[32]	Load configuration information register	
XMABOR	[33]	Transmission abort register	
STIMR	[34]	Slot time register	
Z0HP	[35]	Zone zero head pointer	
Z1HP	[36]	Zone one head pointer	
Z0TP	[37]	Zone zero tail pointer	
Z1TP	[38]	Zone one tail pointer	
LDNDADR	[39]	Load true node address register	
	[39]	Load complement node address register	
XMITA	[3A]	Transmit register A	

Table 9–4 (Cont.) Internal Registers

Mnemonic	Addr	Register			
MCWI Gate A	MCWI Gate Array				
XMITB	[3B]	Transmit register B			
XMITSR	[3C]	Transmit status register			
RCVSR	[3D]	Receive status register			
MCWIDR	[3F]	MCWI diagnostic register			
MCDP Gate	Array				
MCDBR	[40]	MCDP diagnostic bit register			
MSTATR	[41]	Micro status register			
INTTR	[42]	Interval timer register			
CLRICR	[43]	Clear internal conditions register			
IER	[44]	Interrupt enable register			
RDICR	[60]	Read internal conditions register			

9-10 CIXCD REGISTERS

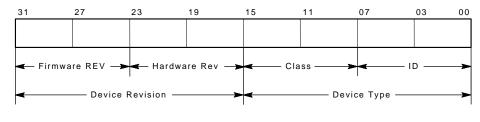
9.5 REGISTER DESCRIPTION CONVENTIONS

In the register description tables that follow, the access type of the bit(s) being described is denoted by the mnemonic enclosed in parentheses after the bit field name. The mnemonic indicates access to the bit by the port driver (software) and the CIXCD (hardware or microcode). The code for the port driver precedes the ":" character, and the code for the CIXCD follows. For example:

```
(RO:R/W)
  |  |
   +--- CIXCD has read/write capability
  +---- Port driver has read only capability
```

The register bit access codes are as follows:

Code	Indication
DCLOC	Bit cleared following deassertion of DC LOW
DCLOS	Bit set following deassertion of DC LOW
MINC	Bit cleared when PMCSR MIN bit written with a "1"
MINS	Bit set when PMCSR MIN bit written with a "1"
OSL	Operating system must setup register or bit
R/W	Normal read/write
R/W1C	Read/write-1-to-clear. User interface cannot set bit.
RO	Read-only
ROZ	Read-only as Zero
SC	Special case, operation defined in detailed description
STC	Cleared following successful self-test, initiated on deassertion of DC LOW
STS	Set following successful self-test, initiated on deassertion of DC LOW
WO	Write-only


Bits designated as "zero" or as "0s" in register bit maps are read-only (RO) bits that always return "0". If the ":" character is absent, the code for the driver and the CIXCD are identical.

CIXCD REGISTERS 9-11

9.6 HARDWARE REGISTERS — XMI ARCHITECTURE

The following registers are XMI architecture registers which must be present in the node. These registers are always available to the console and to the CIXCD port driver, reguardless of the state of the CIXCD microcode.

9.6.1 XMI Device Register (XDEV, bb+00000)

GSF_1736_89.DG

Bit(s)	Name/Description
31:16	Device revision (RO)
	Identifies hardware and firmware revision of CIXCD. Loaded by port microprocessor at end of a successful seft-test. A zero value indicates an uninitialized node.
31:24	Firmware revision (RO)
	Indicates firmware revision of CIXCD.
	Firmware Revision

Firmware Revision			
Major	Minor	Description	
000	00000	V0.0	
001	00000	V1.0	
001	00001	V1.1	
• • •	•••		

Bit(s) Name/Description 23:16

Hardware revision (RO)

Indicates hardware revision of CIXCD.

Alpha field		Numeric field	
<23:20>	Code	<19:16>	Code
0000	_	0000	_
0001	А	0001	1
0010	В	0010	2
0011	С	0011	3
0100	D	0100	4
0101	E	0101	5
0110	F	0110	6
0111	Н	0111	7
1000	J	1000	8
1001	К	1001	9
1010	L	1010	10
1011	М	1011	11
1100	Ν	1100	12
1101	Р	1101	13
1110	R	1110	14
1111	S	1111	15

A value of zero in either field is invalid. Note that the letters "G", "I", "O", and "Q" are not used.

9-14 CIXCD REGISTERS

Bit(s) Name/Description 15:00 Device type (RO) Identifies device type and XMI device ID of CIXCD. Loaded by port microprocessor at end of a successful self-test. A zero value indicates an uninitialized node.

The DTYPE field is divided into two subfields:

Field Bit Descriptions	
Class	Indicates category in which node falls:
	<15>—CPU device <14>—Memory device <13>—Bus window (I/O) <12>—Bus window (memory) <11>—I/O device <10>—XCOMM register present
ID	Uniquely identifies particular device within a specified class.

The CIXCD device type is 0C05.

31 30 29 28 27 26 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 06 05 04 03 02 01 00 0 0 Node ID 0 0 0 0 EMP DXTO EHWW CMDRID STF NSES тто CNAK RER CMDR Errors RSE NRR WDNAK RIDNAK WSE RSPDR Errors ΡE СС NHALT MISC Errors NRST ES

9.6.2 XMI Bus Error Register (XBER, bb+00004)

GSF_1738_89R.DG

9-16 CIXCD REGISTERS

Bit(s) **Name/Description Miscellaneous Errors** 31 Error summary (RO) Logical "OR" of bits: <27,23:20,18:15,13:12>. When ES is set, an XMI interrupt is generated, using IVIR and INTDMR for IPL, destination mask, and vector if PMCSR MIE is set. 30 Node reset (R/W:ROZ, DCLOC) Setting NRST initiates a power-up reset, similar in response to the assertion and deassertion of XMI DC LO L (see note below). On a NRST, the CIXCD executes the self-test, asserting XMI BAD until successful completion of the self-test. Other nodes are inhibited from accessing the CIXCD from the time NODE RESET is set until self-test completion (or the maximum self-test time is exceeded). In response to a power-up sequence caused by XMI DC LO L, NRST is reset. Following a NODE RESET sequence, NRST remains set. NOTE While responding to NODE RESET, the CIXCD will not access remote nodes on the XMI. In response to a power-up sequence caused by XMI DC LO L, NRST is reset. Following a NODE **RESET** sequence, NRST remains set, indicating to the XMI processor that it should not attempt to perform the normal boot process. 29 Node halt (R/W:ROZ, DCLOC) Setting NHALT forces the CIXCD into a "quiet state", retaining as much state as possible. When NHALT is set, CIXCD commander transactions are disabled; responder transactions complete normally. 28 Must be zero Corrected confirmation (R/W1C:RO, DCLOC) 27 Set by CIXCD when it detects a single-bit CNF error (single bit CNF errors are automatically corrected by the XCLOCK chip in the XMI corner). Also sets bit <31>. 26:24 Must be zero

Bit(s)	Name/Description		
Respond	ler Errors		
23	Parity error (R/W1C:RO, DCLOC)		
	When set, indicates that CIXCD has detected a parity error on an XMI cycle. The cycle need not have been directed to the CIXCD. Also sets bit $<31>$.		
22	Write sequence error (R/W1C:RO, DCLOC)		
	When set, indicates that CIXCD aborted a write transaction due to a missing data cycle. Also sets bit <31>.		
21	Read/ident data NOACK (R/W1C:RO, DCLOC)		
	When set, indicates that a READ data cycle transmitted by CIXCD has received a NOACK confirmation. Also sets bit $<31>$.		
Commai	nder Errors		
20	Write data NOACK (R/W1C:RO, DCLOC)		
	When set, indicates that a WRITE data cycle transmitted by CIXCD has received repeated NOACK confirmations for the duration of the timeout period. Upon receipt of a NOACK confirmation code on a write data cycle, CIXCD will retry entire transaction until it either completes successfully or a TTO (bit <13>) is encountered; in which case WDNAK is also set. Also sets bit <31>.		
19	Must be zero		
18	No read response (R/W1C:RO, DCLOC)		
	When set, indicates that a READ or IDENT transaction initiated by CIXCD failed to receive all of its requested data within the timeout period. Also sets bits $<31>$ and $<13>$.		
17	Read sequence error (R/W1C:RO, DCLOC)		
	When set, indicates that a READ transaction initiated by CIXCD received its read data out of sequence. The offending command/address is available in XFADR and XFAER. Also sets bit <31>.		
16	Read error response (R/W1C:RO, DCLOC)		
	When set, indicates that CIXCD has received a read error response.		

When set, indicates that CIXCD has received a read error response. The offending command/address is available in XFADR and XFAER. Also sets bit <31>.

9-18 CIXCD REGISTERS

Bit(s) Name/Description **Commander Errors** 15 Command NOACK (R/W1C:RO, DCLOC) When set, indicates that a command cycle transmitted by CIXCD has received repeated NOACK Confirmations for the duration of the timeout period. This can result from a reference to a non-existent memory location or a command cycle parity error. The CIXCD sets this bit when it repeatedly receives a NOACK confirmation for a given command/address which has been retried for the timeout period. Also sets bits <31> and <13>. 14 Must be zero 13 Transaction timeout (R/W1C:RO, DCLOC) When set, indicates that a transaction initiated by CIXCD has not completed within the timeout period. The offending command/address is available in XFADR and XFAER. TTO may be set along with bits <20>, <18>, or <15>. If none of these bits is set, the CIXCD either: 1. Failed to win bus arbitration within the timeout period Attempted to execute an IREAD command but XMI lockout 2. remained asserted for the timeout period Also sets bit <31>. **Node Specific Errors** 12 Node specific error summary (RO) Set when a node specific error condition has been detected. NSES is set when any of the error bits <30:21,18:04> is set in the PMCSR. The PMCSR error bit must be cleared to clear NSES. Also sets bit <31>. 11 Must be zero 10 Self-test fail (R/W1C:STS, WO) While set, STF indicates that CIXCD has not yet passed self-test. The port processor must clear STF when the CIXCD passes self-test.

CIXCD REGISTERS 9-19

Bit(s)	Name/Description
Node Sp	ecific Errors
09:06	Node ID [3:0] (RO)
	Represents the CIXCD's position in the XMI backplane and therefore its XMI node ID.
05:04	Commander ID [1:0] (RO:R/W, DCLOC)
	Logs the commander ID of a failing transaction.
	When a CMDR, MOVA, MOVB, or INTR XMI fatal error occurs, the microcode loads the code of the failing commander in this field:
	0—Port transmit mover (mover A) 1—Port receiver mover (mover B) 2—Microcode CMDR 3—INTR
03	Enable hexword writes (R/W:R/W, DCLOC)
	Written by the host during initialization to enable mover B. If cleared, the maximum write data length is octaword.
02	Disable XMI timeout (R/W:ROZ, DCLOC)
	Controls reporting of all XMI timeouts by CIXCD. Setting DXTO disables the internal timeout counter, preventing any TTO errors.
	If the CIXCD has a current outstanding XMI transaction when DXTO transitions from 0 to 1 (TTO counters counting), the given timeout is disabled and the CIXCD will retry the transaction indefinitely.
	If the CIXCD has a current outstanding XMI transaction when DXTO transitions from 1 to 0 (TTO counters not counting), the given timeouts are continued from where they were prior to DXTO being set.
01	Enable more protocol (R/W:R/W, DCLOC)
	When set, enables XMOV's data movers to generate READ MORE and WRITE MORE transactions. MORE is only used on hexword transfers.
00	Zero

9-20 CIXCD REGISTERS

9.6.3 XMI Failing Address Register (XFADR, bb+00008)

31 30 2	9 28		00
FLN		Failing Address [28:00]	
<u> </u>	Address [39]		

GSF_1739_89.DG

Bit(s)	Name/Description
31:30	Failing length
	Logs the value of XMI D[31:30] during command cycle of a failed transaction.
29	Failing address [39]
	Logs the value of XMI D[29].
28:00	Failing address [28:00]
	Logs the value of XMI D[28:00].

9.6.4 XMI Failing Address Extension Register (XFAER, bb+0002C)

3	1 28	27 26	25 16	15 00
	CMD	0	XMI Address[38:29]	MASK[15:00]

GSF_1740_89.DG

Bit(s)	Name/Description	
31:28	XMI failing command [03:00]	
	Logs the command code of a failed transaction.	
27:26	Zero	
25:16	XMI address[38:29]	
	Logs the value of XMI_D[57:48].	
15:00	MASK [15:00]	
	Logs the value of XMI_D[47:32].	

9.6.5 XMI Communications Register (XCOMM, bb+00010)

3	31	30 28	27 24	23 16	15	14 12	11 08	07	00
		0	NIDOUT	CHAROUT		0	NIDIN	CHARIN	
	BUSYOUT				BUSYIN				

GSF_1741_89.DG

9-22 CIXCD REGISTERS

1

Bit(s)	Name/Description
31	Busy out (R/W)
	When set, indicates that the CHAROUT field contains a character that has not yet been read by the host CPU. BUSYOUT must be cleared by the host CPU before the CHAROUT field is available for another character.
30:28	Zero
27:24	Node ID out (RO:WO)
	Contains the XMI node ID of the slot in which the CIXCD is plugged.
23:16	Character out (RO:WO)
	Contains the message being sent from the local XMI node (this node) to the host processor.
15	Busy in (R/W)
	When set, indicates that the CHARIN field contains a character that has not yet been read by the local XMI node (this node). BUSYIN must be cleared by this node before the CHARIN field is available for another character.
14:12	Zero
11:08	Node ID in (WO:RO)
	Contains the XMI node ID of the remote XMI node (host CPU) that put a character in the CHARIN field.
07:00	Character in (WO:RO)
	Contains the console command character or console message being sent from the remote XMI node (host CPU) to the local XMI node (this node).

CIXCD REGISTERS 9-23

9.7 HARDWARE REGISTERS — CI ARCHITECTURE

The following registers must be present in the node to meet CI Port architecture requirements. These registers are always available to the console and to the CIXCD port driver, regardless of the state of the CIXCD microcode.

9-24 CIXCD REGISTERS

9.7.1 Port Scan Control Register (PSCR, bb+00014)

31 30	05 0	4 0 3	02	01	00
	Zero				
SFTDN	EEPON				
	EUCLD				
	EEWRT				
	CTL				

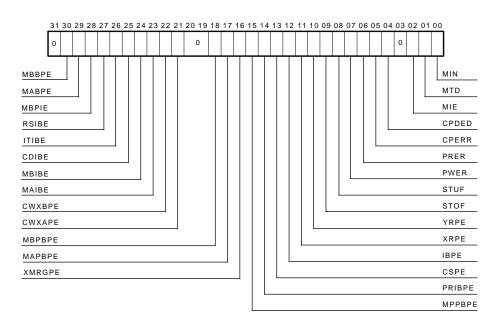
GSF_1742_89.DG

Bit(s)	Name/Description
31	Shift done (RO:DCLOS, ROZ)
	When set, indicates that scan shift has completed. Cleared by writing PSCR bits [4:0].
30:05	Zero
04	EE power on (WO:R/W, DCLOS)
	When set, activates chip enable to EEPROM. EEPON is set to enable loading and reading of EEPROMs, and cleared to disable EEPROMs when not in use.
	On power-up or node reset, EEPON is set allowing self-test microcode to be copied into RAM. After self-test, the functional microcode is loaded into RAM and EEPON is cleared.
	To load new microcode, the host must set EEPON to enable the EEPROMs before scanning in new data.
03	External microcode load (WO:DCLOC, ROZ)
	When set, enables designated external pins to be used as the scan path.

CIXCD REGISTERS 9-25

Bit(s)	Name/Description	
02	Write EEPROM (WO:DCLOC, ROZ)	
	Set to activate write pulse to EEPROM.	
01	Scan control [1:0] (WO:DCLOC, ROZ)	
	Control bits for scan logic:	

01	00	Diagnostic Shift Register	Diagnostic Control Register
0	0	Hold	Hold
0	1	Hold	Load
1	0	Shift	Hold
1	1	Load	Hold


9-26 CIXCD REGISTERS

9.7.2 Port Scan Data Register (PSDR, bb+00018)

31 00 Data

GSF_1743_89.DG

Bit(s)	Name/Description
31:00	Scan data (R/W)
	On a scan path read, contains data scanned out of the scan path. On a scan path write, loaded with data to be scanned onto the scan path.
	Port processor cannot access this register.

9.7.3 Port Maintenance Control/Status Register (PMCSR, bb+0001C)

GSF_1744_89.DG

9-28 CIXCD REGISTERS

_ |

Bit(s)	Name/Description
31	Zero
XMOV P	Parity Errors
30	Mover B byte parity error (R/W1C:R/W, DCLOC)
	May be set by microcode if repeated mover B aborts occur with indication that there is a mismatch between byte parity stored in the mover's register file and parity generated on quadword to be sent to XMI. Allows microcode option of retrying packet before reporting error to XMI. Also sets XBER $<12>$.
29	Mover A byte parity error (R/W1C:R/W, DCLOC)
	Same as MBBPE except for mover A.
28	MOVB detected PB_IB parity error on PB read (R/W1C:R/W, DCLOC)
	May be set by microcode if repeated mover B aborts occur due to parity errors on the PB_OR_IB bus while attempting to read the packet buffer. Allows the microcode option of retrying the packet before reporting the error to XMI. Also sets XBER <12>.
27	Responder PB_IB parity error on register write (R/W1C:R/W, DCLOC)
	When set, indicates a parity error on the PB_OR_IB bus on register write to responder. Also sets XBER $<12>$.
26	Interrupt PB_IB parity error on register write (R/W1C:R/W, DCLOC)
	When set, indicates a parity error on the PB_OR_IB bus on register write to interrupt controller. Also sets XBER <12>.
25	Commander PB_IB parity error on register write (R/W1C:R/W, DCLOC)
	When set, indicates a parity error on the PB_OR_IB bus on register write to commander. Also sets XBER <12>.

CIXCD REGISTERS 9-29

Bit(s)	Name/Description
24	MOVB PB_IB parity error on register write (R/W1C:R/W, DCLOC)
	When set, indicates a parity error on the PB_OR_IB bus on register write to mover B. Also sets XBER <12>.
23	MOVA PB_IB parity error on register write (R/W1C:R/W, DCLOC)
	When set, indicates a parity error on the PB_OR_IB bus on register write to mover A. Also sets XBER <12>.
MCWI Pa	arity Errors
22	CWIN transmit path B parity error (R/W1C:R/W, DCLOC)
	Set if CWIN logic, during transmit function on path B, detects bad parity from transmit data path between MCWI and CI CORNER logic or from conversion of longword packet buffer data to transmit data in MCWI. Also sets XBER <12>.
21	CWIN transmit path A parity error (R/W1C:R/W, DCLOC)
	Same as CWXBPE except for path A.
20:19	Zero
18	Mover B packet buffer read parity error (R/W1C:R/W, DCLOC)
	When set, indicates bad parity on mover B packet buffer read data sent from packet buffer RAMs over the MCWI_PB data bus (packet buffer memory bus) to the memory controller.
17	Mover A packet buffer write parity error (R/W1C:R/W, DCLOC)
	When set, indicates bad parity on mover A packet buffer write data sent by the XMOV gate arrays over the PB_OR_IB data bus to the memory controller.
16	XMOV register read parity error (R/W1C:R/W, DCLOC)
	When set, indicates bad parity on the XMOV register read data received by the memory controller from the XMOV gate array over the PB_OR_IB data bus. The destination of XMOV register read dat is MCDP gate array.

9-30 CIXCD REGISTERS

Bit(s)Name/DescriptionMCWI Parity Errors

	5
15	MCDP packet buffer read parity error (R/W1C:R/W, DCLOC)
	When set, indicates bad parity on the MCDP packet buffer read data received by the memory controller from the packet buffer RAMs over the MCWI_PB data bus (packet buffer memory bus).
14	PORT_IB receive parity error (R/W1C:R/W, DCLOC)
	When set, indicates bad parity on data received by the memory controller from the MCDP gate array over the port internal bus.
MCDP	Parity Errors
13	Control store parity error (R/W1C:R/W, DCLOC)
	Set if the port processor detects a control store parity error. CSPE can only be set if microcode can recover sufficently to write the bit. Bit must be written when error occurs. Also sets XBER $<12>$.
12	Internal bus parity error (R/W1C:R/W, DCLOC)
	Set if the port processor detects an internal bus parity error. Bit can only be set if microcode can recover sufficiently to write the bit. Bit must be written when error occurs. Also sets XBER <12>.
11	X register parity error (R/W1C:R/W, DCLOC)
	Set if a parity error is detected in the X register of port processor data path. Bit can only be set if microcode can recover sufficiently to write the bit. Bit must be written when error occurs. Also sets XBER $<12>$.
10	Y register parity error (R/W1C:R/W, DCLOC)
	Set if a parity error is detected in the Y register of port processor data path. Bit can only be set if microcode can recover sufficently to write the bit. Bit must be written when error occurs. Also sets XBER

<12>.

Bit(s)	Name/Description			
MCDP P	MCDP Parity Errors			
09	Micro stack overflow (R/W1C:R/W, DCLOC)			
	Set on attempted push to full microstack. Bit can only be set if microcode can recover sufficently to write the bit. Bit must be written when error occurs. Also sets XBER <12>.			
08	Micro stack underflow (R/W1C:R/W, DCLOC)			
	Set on attempted pop from empty microstack. Bit can only be set if microcode can recover sufficiently to write bit. Bit must be written when error occurs. Also sets XBER <12>.			
Port Eri	rors			
07	Port write error response (R/W1C:R/W, DCLOC)			
	Set if microcode set INTCTR_SWEI (send write error interrupt).			

Microcode may set INTCTR_SWEI to force an IVINTR type interrupt if a register write is attempted to a non-existant register in CIXCD nodespace. The WEI causes a machine check; no additional interrupt is generated.

06 Port read error response (R/W1C:R/W, DCLOC)

Set if microcode set RESPCSR_SNDRER (send read error response).

Microcode may set RESPCSR_SNDRER if a register read is attempted from a non-existant register in CIXCD nodespace. The RER causes a machine check; no interrupt is generated.

9-32 CIXCD REGISTERS

1

Bit(s)	Name/Description		
Port Eri	rors		
05	CP error status (R/W1C:RO, DCLOC)		
	Set if CP_ERROR_STATUS signal asserted for more than 32 cycles.		
	CP_ERROR_STATUS is set when any error bit in MCDP the internal conditions register (IB register address 60) is set.		
	Microcode traps and executes a port shutdown routine if any MCDP internal conditions error bit is set. The shutdown routine clears CP_ERROR_STATUS if the failure was intermittent. If CPERR is set, all other MCDP error bits in PMCSR are invalid (bits <13:08>), and CPERR is the only indication that the port processor has had an unrecoverable failure. Scan data may provide additional data.		
	Also sets XBER <12>.		
04	CPU no response error (R/W1C:RO, DCLOC)		
	Set if the port processor fails to respond to a responder interrupt within 512 cycles. The port processor is assumed to have failed. Also sets XBER $<12>$.		
03	Zero		
Control	Bits		
02	Maintenance interrupt enable (R/W:RO, DCLOC)		
	When set, enables XMI interrupts.		
01	Maintenance/sanity timer disable (R/W:RO, DCLOC)		
	If set, the maintenance/sanity timer is set to its initial value and suspended. If clear, the timer functions normally.		
00	Maintenance INIT (WO:RO, DCLOC)		
	When set, clears all hardware state, including errors, and puts the port in the uninitialized state. Does not cause microcode to be copied from EEPROM to RAM or self-tests to be executed.		

9.7.4 Port Diagnostic Control/Status Register (PDCSR, bb+00020)

31		08	07	00
	Zero		PDFLT	

GSF_1745_89.DG

Bit(s)	Name/Description
31:08	Zero
07:00	Port diagnostic failing test number (RO)
	Loaded with the self-test test number about to be executed. Makes the test number available to the host on XMI in case of self-test failure.

9-34 CIXCD REGISTERS

9.7.5 Port Status Register (PSR, bb+00024)

31 30	11 10 09 08 07 06 05 04 03 02 01 00
Zero	0
NRSPE	UNIN MIF MISC ME MSE DSE
	PIC PDC
	MFQE
	RQA

GSF_1746_89.DG

Bit(s)	Name/Description	
31	No response error	
	When set, indicates that one or more of the error bits $<10,07:01>$ in the PSR are set. An interrupt is posted using status interrupt vector if PMCSR $<02>$ is set.	
30:11	Zero	
10	Uninitialized (MINS)	
	When set, forces the port into an uninitialized state. Port will not respond to CI traffic. Uninitialized state is exited by writing PICR or by a boot timeout. Bit is cleared on entering disabled state.	
	Also sets bit <31>.	

CIXCD REGISTERS 9-35

Bit(s)	Name/Description		
09	Maintenance interrupt flag		
	Set by microcode to indicate that an interrupt causing condition has occurred in the port. Allows a diagnostic program to operate the port with interrupts disabled. MIF indicates to the program that PSR is valid. Bit is cleared by write to PSRCR.		
08	Zero		
07	Miscellaneous error detected		
	Set by microcode to indicate that port microcode has detected a miscellaneous error and has entered the disabled state. Actual error code is in PESR. Bit is reset on entering enabled state.		
	Also sets bit <31>.		
06	Maintenance/sanity timer expiration		
	Set by microcode to indicate that the maintenance/sanity timer or boot timer has expired and the port has entered the uninitialized state with loss of processing state. Bit is cleared by microcode initialization.		
	Also sets bit <31>.		
05	Memory system error		
	Set by microcode to indicate that the port has detected an XMI bus error (uncorrectable data or non-existant memory error) in referencing host memory. The port is in the disabled state. See PFAR for more information. Bit is cleared on entering enabled state.		
	Also sets bit <31>.		
04	Data structure error		
	Set by microcode to indicate that the port encountered an error in a port data structure (for example, queue entry, PQB, BDT, page table, values out of range, or MBZ bits that are not zero). Port is placed in disabled state. More information about the error is contained in PESR and PFAR. Bit cleared on entering enabled state.		

Also sets bit <31>.

9-36 CIXCD REGISTERS

1

Bit(s)	Name/Description
03	Port initialization complete
	Set by microcode to indicate that the port has completed internal initialization. The port is in disabled state. Local store, virtual circuit descriptor table, and the port's internal data structures are initialized. Bit cleared on entering enabled state.
	Also sets bit <31>.
02	Port disable complete
	Set by microcode to indicate that the port entered disabled state from enabled state. Processing of command queues disabled and port will not respond to incoming CI transmissions. Bit cleared on exiting disabled state.
	Also sets bit <31>.
01	Message free queue empty
	Set by microcode to indicate that the port attempted to remove an entry from the message free queue and found the queue empty. Port processing of commands continues so that the message free queue may not be empty by the time interrupt service routine gains control. Bit cleared by write to PSRCR.
	Also sets bit <31>.
00	Response queue available
	Set by microcode to indicate that the port has inserted an entry on the response queue and the queue was previously empty. Bit cleared by write to PSRCR.

9.8 SOFTWARE REGISTERS

The following registers are CIXCD specific registers which are visible on the XMI. Access to these registers requires the CIXCD microcode to be operating. Any attempted access to a software register (or to local store address space) when the port is transitioning from the uninitialized state to the disabled state may result in an XMOV responder timeout and XMI error interrupt. The port driver will ignore this error, clear PMCSR CPDED, and delay XMI read access until the port has completed the transition (indicated by an interrupt and the setting of PSR_PIC in the port status register).

NOTE

This document only includes bit maps, bit names, and bit mnemonics for the software registers. Refer to the *CIXCD Technical Manual* for detailed descriptions of these registers.

9.8.1 Port Queue Block Base Register (PQBBR, bb+01000)

31 30

0

Port Queue Block Base Address [39:09]

GSF_1747_89.DG

00

Bit(s)	Name
31	Zero
30:00	Port queue block base address

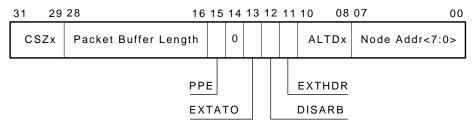
9-38 CIXCD REGISTERS

9.8.2 Port Error Status Register (PESR, bb+01008)

31		16 15	00
	Misc Error Code	DSI	E Error Code

GSF_1748_89.DG

Bit(s)	Name
31:16	Miscellaneous error code (RO)
15:00	Data structure error code (RO)


9.8.3 Port Failing Address Register (PFAR, bb+0100C)

31		00
	Failing Address	

GSF_1749_89.DG

Bit(s)	Name
31:00	Failing address (RO)

9.8.4 Port Parameter Register (PPR, bb+01010)

GSF_1750_89.DG

Bit(s)	Name
31:29	Cluster size <2:0> (RO)
	Indicates the maximum number of CI nodes supported by port:

CS	Z		Cluster Size	Range	
2	1	0	(decimal)	(decimal)	
0	0	0	16	0-15	
0	0	1	32	0-31	
0	1	0	64	0-63	
0	1	1	128	0-127	
1	0	0	224	0-223	
1	0	1	Reserved		
1	1	0	Reserved		
1	1	1	Reserved		

28:16	Packet buffer length (RO)
15	Port parameter extension (RO)
14	Zero
13	Extend ACK timeout (RO)

9-40 CIXCD REGISTERS

Bit(s)	Name
12	Disable arbitration (RO)
11	Extend header (RO)
10:08	Alter delta time <2:0> (RO)
	Indicates the specific quiet slot count the LINK hardware generates:

2	1	0	Quiet Slot Count (decimal)
0	0	0	7
0	0	1	10
0	1	0	Reserved
0	1	1	Reserved
1	0	0	Reserved
1	0	1	Reserved
1	1	0	Reserved
1	1	1	Programmable

07:00 Port CI node number (RO)

9.8.5 Port Serial Number Register (PSNR, bb+01014)

31 28	27 00
PMFGP	PMFGN

GSF_1751_89.DG

Bit(s)	Name
31:28	Port manufacturing plant
27:00	Port manufacturing number

9.8.6 Port Interrupt Destination Register (PIDR, bb+01018)

31	16	15	00
	Zero	INTDES	

GSF_1752_89.DG

Bit(s)	Name
31:16	Zero
15:00	Interrupt destination

9-42 CIXCD REGISTERS

9.8.7 Port Interrupt Vector Register (PIVR, bb+01020)

31	20 19	16 15	02 01 00
Zerc	D PIF	PL PI	VEC 0

GSF_1753_89.DG

Bit(s)	Name
31:20	Zero
19:16	Port interrupt priority level
15:02	Port interrupt vector
01:00	Zero

9.8.8 PCQ0CR to PMTECR (bb+01028 to bb+01054)

The registers listed in Table 9–5 are all write-only registers. When any of these registers is addressed for write access, the write transaction itself causes the operation to be performed; the write data are ignored. Reading any of these registers returns undefined data.

Refer to the CIXCD Technical Manual for descriptions of these registers.

Table 9–5 PCQ0CR (bb+01028) to PMTECR (bb+01054)

Mnem.	Offset	Name/Function When Written	
PCQ0CR	01028	Port command queue 0 control register Initiate processing of entry in command queue 0.	
PCQ1CR	0102C	Port command queue 1 control register Initiate processing of entry in command queue 1.	
PCQ2CR	01030	Port command queue 2 control register Initiate processing of entry in command queue 2.	
PCQ3CR	01034	Port command queue 3 control register Initiate processing of entry in command queue 3.	
PSRCR	01038	Port status release control register Release lock on PSR (bb+00024) after interrupt service.	
PECR	0103C	Port enable control register Place port in enabled state.	
PDCR	01040	Port disable control register Place port in disabled state and generate interrupt request with PDC bit of PSR.	
PICR	01044	Port initialize control register Initialize port and enter disabled state. Generate interrupt with PIC bit of PSR. If PICR written with port in enabled state, port will enter disabled state with loss of processing state.	
PDFQCR	01048	Port datagram free queue control register Written whenever datagram free queue is empty at the time of a datagram free queue insertion.	
PMFQCR	0104C	Port message free queue control register Written whenever message free queue is empty at the time of message free queue insertion.	
PMTCR	01050	Port maintenance/sanity timer control register Forces a maintenance/sanity timer expiration interrupt. PMTECR has no effect unless port is in enabled or disabled states, and only when the maintenance/sanity timer is enabled.	
PMTEC	01054	Port maintenance/sanity timer expiration control register Reset boot and maintenance/sanity timers to their initial values. Allows port driver to control expiration times of timers.	

9-44 CIXCD REGISTERS

9.8.9 Port Parameter Extension Register (PPER, bb+01058)

31	16 15	08 07	,	00
Reserved	SUB.	_NO[7:0]	RASB[7:0]	

GSF_1766_89.DG

Bit(s)	Name
31:16	Reserved for future use
15:08	Subnode number [7:0]
07:00	Requested adapter state block length [7:0]

Part III DEC LANcontroller 400 (DEMNA) Section

This section of the handbook covers the DEMNA interface. The chapters in this section include DEMNA:

- Overview
- Configurations
- Self-test and ROM-based diagnostics
- Macrodiagnostics and support programs
- Console monitor program
- Registers

10 DEMNA OVERVIEW

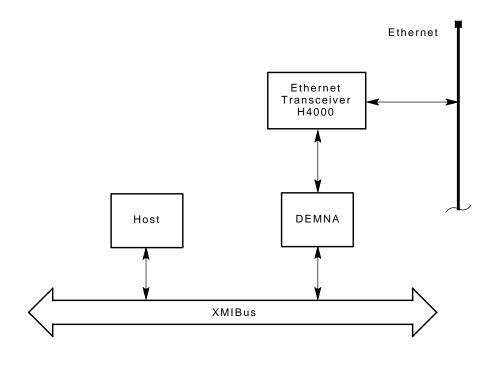
10.1 INTRODUCTION

The DEMNA is a high-performance I/O controller which provides a communications path between a host processor on the XMI and other nodes in an Ethernet/802 local area network. The DEMNA is compatible with both Ethernet and IEEE 802 specifications¹.

Multiple DEMNAs can be installed on the XMI, allowing a single XMI to communicate with multiple Ethernet/802 networks. The DEMNA connects to a network through a standard 15–pin Sub–D connector.

Figure 10–1 shows the DEMNA in an XMI system.

10.2 PORT OVERVIEW


The DEMNA supports one Ethernet/IEEE 802 port which provides the physical link layer and portions of the data link communication layer of the Ethernet and the 802 protocols.

The DEMNA has its own onboard CVAX processor which allows the DEMNA to control most operations independent of the host processor. Details of Ethernet transactions and XMI bus data transfer transactions are transparent to the host processor.

The DEMNA's onboard firmware is stored in an EEPROM which allows the firmware to be updated without the need for hardware modification. The EEPROM also stores various DEMNA operating parameters which can be modified in the field.

¹ IEEE 802 refers to the CSMA/CD local area network defined in the IEEE 802.2 and 802.3 specifications (physical and data link layers).

GSF_1956_89.DG

Figure 10–1 DEMNA Option in an XMI System

The DEMNA firmware includes a console monitor program which allows users at virtually any terminal on the network to monitor DEMNA operation and network traffic. The console monitor program can be accessed over the network or from a terminal attached directly to the DEMNA (the physical console).

The DEMNA has its own onboard diagnostics. On power-up or reset, the DEMNA executes self-tests and indicates the pass/fail status through LEDs on the module and through an onboard power-up diagnostic (XPUD) register. The self-tests and the onboard diagnostics can be invoked from the system console or from the DEMNA physical console.

The DEMNA may participate in network boot operations and can be specified as the boot device by its host system or enabled to involuntarily boot its host system on receiving a valid boot message over the network.

10.3 FUNCTIONAL OVERVIEW

The DEMNA logic is partitioned into four major subsystems as shown in Figure 10–2.

10.3.1 Microprocessor Subsystem

Functions:

- Stores and executes the DEMNA functional microcode, the diagnostic microcode, and the console monitor program
- Stores and supplies the module's default (MAC) Ethernet address

Components:

CVAX

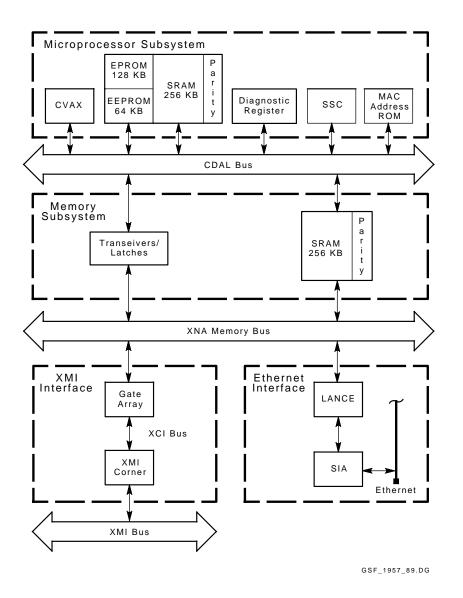
32-bit processor dedicated to executing the DEMNA firmware (cannot be used directly by host application programs or by a user at the system console).

• System Support Chip (SSC)

Provides control logic (for example: timers, internal registers, and address decoding) for the microprocessor and a UART for connection to the DEMNA physical console.

• EEPROM and CVAX RAM (SRAM)

The EEPROM stores the DEMNA's functional microcode and history data of DEMNA failures and errors. The functional microcode is loaded into the SRAM during the DEMNA's power-up and node reset sequences and is then executed from the SRAM.


• MAC Address (ENET) PROM

Stores the Medium Access Control (MAC) address, which is the DEMNA's default physical (Ethernet) address (DPA). Also stores a PROM test pattern.

The port driver, on request from an application which starts up a protocol (such as DECnet), may assign one or more alternative addresses to the DEMNA. This type of address is called an actual physical address (APA).

EPROM

10-4 DEMNA OVERVIEW

Contains a copy of the DEMNA's operational firmware (less the console monitor program), diagnostic firmware, self-test code, and the DEMNA's boot code. The boot code is executed at the start of the

power-up and node reset sequences to perform a minimal amount of module initialization. The self-test code, which is called by the boot code, tests the module components and loads the operational firmware from the EEPROM into the SRAM. Control is then transfered to the operational firmware in the SRAM on completion of the self-test.

If the SRAM fails self-test, control is passed to EPROM diagnostic firmware to provide a means for running the ROM-based diagnostics. If the SRAM passes, but the EEPROM contents are invalid, the EPROM copy of the firmware is loaded into the SRAM.

Diagnostic Register

Controls certain low-level diagnostic operations, such as disabling CVAX RAM parity

10.3.2 Memory Subsystem

Functions

- Buffers packets to and from the Ethernet interface
- Buffers transfers to and from the XMI bus
- Stores shared data structures that allow communications between the CVAX and the LANCE

Components

• SRAM

256 Kbytes, parity-protected memory. Buffers Ethernet and XMI transfers and stores data structures shared by the CVAX and LANCE.

• Bus control logic

Controls read/write timing and read/write signals.

• DMA logic

Controls access to the SRAM.

• XNA timeout logic

Detects when a DMA grant has been outstanding longer than the timeout period.

10-6 DEMNA OVERVIEW

10.3.3 XMI Interface Subsystem

Functions

- Provides an interface between the DEMNA's shared memory and the XMI bus.
- Transfers Ethernet read and write data between DEMNA shared memory and host memory
- Performs control operations for the DEMNA CVAX (high-priority quadword XMI reads and writes to memory and longword XMI I/O reads and writes)
- Implements the DEMNA port registers, XMI required registers, and the XMI interrupt logic

Components

• Gate array

Implements most of the XMI interface logic.

• XMI timeout logic

Detects timeouts for XMI operations.

10.3.4 Ethernet Interface Subsystem

Functions

- Provides an interface between the memory subsystem and the Ethernet wire.
- Performs reads from and writes to shared memory.

Components

• Local Area Network Controller for Ethernet (LANCE) chip

Implements the microprocessor interface, performs DMA to and from DEMNA shared memory, implements the CSMA/CD network access algorithm, performs packet handling on transmits and receives, and reports errors.

• Serial Interface Adapter (SIA) chip

Performs Manchester encoding (transmit) and decoding (receive) and TTL (LANCE) to differential (Ethernet wire) signal conversion.

• Bus interface

Generates byte parity on transfers to, and checks byte parity on transfers from, DEMNA shared memory.

10.4 PHYSICAL DESCRIPTION

The DEMNA option consists of a T2020 module, an internal Ethernet cable, an external Ethernet cable, and an optional internal cable for a physical console if a physical console is used.

The T2020 module is a standard XMI module which plugs into the XMI backplane.

The internal Ethernet cable connects the T2020 module to a bulkhead connector for the Ethernet transceiver cable. It also provides power to the H4000 transceiver.

The external Ethernet cable connects the Ethernet transceiver bulkhead connector to the Ethernet transceiver.

The optional internal physical console cable connects the T2020 module to a bulkhead connector for a terminal cable.

The optional physical console allows the user to perform maintenance and monitoring operations (for example, running ROM-based diagnostics and examining error history logs) without requiring a host connection or a working Ethernet.

10.5 ENVIRONMENTAL SPECIFICATIONS

Parameter	Range
Temperature	
Operating	5°C to 50°C (41°F to 122°F)
Storage	-40°C to 66°C (-40°F to 151°F)
Humidity	
Operating	10% to 95% with maximum wet bulb of 32°C (89.6°F) and minimum dew point of 2°C (36°F) noncondensing
Storage	To 95% noncondensing
Altitude	

10-8 DEMNA OVERVIEW

Parameter	Range	
Operating	To 2.4 km (8,000 ft)	
Storage	To 9.1 km (30,000 ft)	

10.6 REFERENCE DOCUMENTS

Order Number	Title
EK-DEMNA-TM	DEC LANcontroller 400 Technical Manual
EK-DEMNA-IN	DEC LANcontroller 400 Installation Guide
EK-DEMNA-UG	DEC LANcontroller 400 Console User's Guide
EK-DEMNA-PG	DEC LANcontroller 400 Programmers Guide
EK-ETHER-IN	Ethernet Installation Guide
AA-LA50A-TE	VMS Network Control Program Manual

11 DEMNA CONFIGURATIONS

11.1 INTRODUCTION

This chapter overviews the configuration requirements for installing the DEMNA. Refer to the *DEC LANcontroller 400 Installation Guide* for detailed installation instructions.

11.2 DEMNA OPTION PACKAGE AND CABINET KITS

The DEMNA option consists of a T2020 module, an I/O connector panel and internal cable for connecting to the Ethernet transceiver, and an I/O connector panel and internal cable for connecting to a physical console (if used).

The T2020 module is obtained from the DEMNA-M option package. The I/O connector panels and cables are obtained from cabinet kits applicable to the system. See Tables 11–1 and 11–2.

The DEMNA also requires an external Ethernet transceiver cable and an external terminal cable for the physical console (if used). These cables are not included in the DEMNA option package or in the cabinet kits, but must be ordered separately. Refer to the *Systems and Options Catalog*.

Table 11–1	DEMNA-M	Option	Package	Contents
------------	---------	--------	---------	----------

Component	Description
T2020	DEMNA module
EK-DEMNA-IN	DEC LANcontroller 400 Installation Guide
EK-DEMNA-UG	DEC LANcontroller 400 Console User's Guide
EK-DEMNA-RN	DEC LANcontroller 400 Release Notes

11-2 DEMNA CONFIGURATIONS

Table 11–2 Cabinet Kits

Kit ¹	Contents		
VAX 6000 System	S		
CK-DEMNA-KD	74-26407-41	Ethernet I/O connector panel	
	17-01496-02	Internal Ethernet cable (8-foot)	
	74-26407-01	Blank panel	
	12-22196-02	Ethernet loopback connector	
VAX 9000 Model 2	2xx Systems		
CK-DEMNA-KE	70-27894-01	Ethernet I/O connector panel	
	17-01496-01	Internal Ethernet cable (3-foot)	
	12-22196-02	Ethernet loopback connector	
VAX 9000 Model	4xx Systems		
CK-DEMNA-KM	70-27894-01	Ethernet I/O connector panel	
	17-01496-02	Internal Ethernet cable (8-foot)	
	12-22196-02	Ethernet loopback connector	
Internal Cable fo	or Physical Console		
CK-DEMNA-AM	74-26407-32	I/O connector panel, VAX 6000 cabinets	
	70-28010-01	I/O connector panel, VAX 9000 cabinets	
	74-26407-01	Blank panel	
	17-02168-01	Physical console internal cable	
	EK-DEMNA-IN	DEC LANcontroller 400 Installation Guide	
	EK-DEMNA-UG	DEC LANcontroller 400 Console User's Guide	

 $^1 \text{Cabinet}$ kits must be ordered separately from the DEMNA-M option package. For systems not included in this table, refer to the Systems and Options Catalog.

11.3 T2020 MODULE PLACEMENT

The DEMNA requires one slot in the XMI backplane for the T2020 module. Table 11–3 indicates the XMI slots into which the module can be installed and the maximum number of DEMNAs allowed in each XMI cardcage.

Table 11–3 T2020 Module Placement in XMI Cardcage

System Type	XMI Slots	Maximum ¹	
VAX 6000 Models 200/300/400	1 to 4; B to E^2	Six	
VAX 6000 Model 500	1 to 5; A to E^2	Six	
VAX 9000	Any slot except 7 or 8	Four	

¹Maximum number of DEMNAs supported by VMS Operating System.

²In VAX 6000 systems, DEMNAs are usually placed in the higher numbered slots available within the indicated ranges (CPUs are usually placed in lower numbered slots).

11.4 INTERNAL ETHERNET CABLE

This cable connects the DEMNA to the bulkhead connector for the external Ethernet transceiver cable. See Figures 11–1 to 11–4 and Tables 11–4 to 11–6.

11.5 INTERNAL CABLE FOR PHYSICAL CONSOLE

This cable connects the DEMNA to the bulkhead connector for a terminal to be used as the physical console (optional). See Figures 11-5 to 11-7 and Tables 11-7 to 11-9.

11-4 DEMNA CONFIGURATIONS

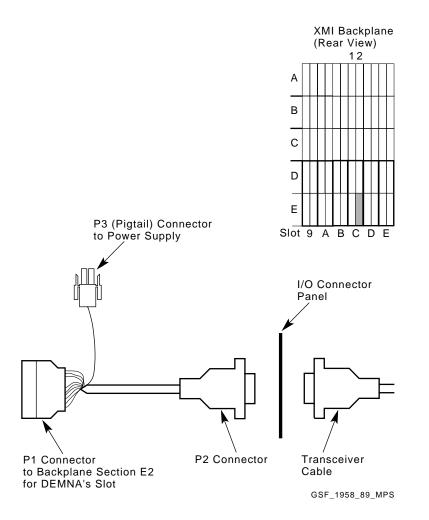


Figure 11–1 Internal Ethernet Cable Connections

Table 11–4 Internal Ethernet Cable Connectors

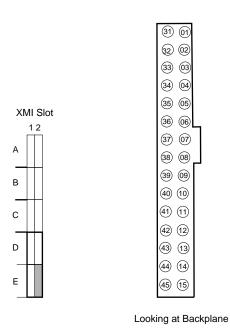
P1 References: Figure 11–2 and Table 11–5

P1 plugs into segment E2 of the XMI slot and is properly installed when the key is on the right as viewed from the backplane. The connector is not specifically keyed for backplane segment E2 (it is possible to install the connector in the wrong segment).

P2 References: Figure 11–3, Figure 11–4 and Table 11–6

P2 plugs into the I/O connector on the bulkhead for the external Ethernet cable.

On VAX 6000 systems, connector P2 of the first DEMNA plugs into the Ethernet port on the system interconnect panel. Figure 11–3 shows the location of the Ethernet port.


P3 P3 is a two-prong connector which plugs into a +15 Vdc connector on a system power supply (H7214 on VAX 6000 systems; power distribution adapter on VAX 9000 systems).

P3 supplies power for an Ethernet device which does not have its own power supply, such as an H4000, DESTA, or DECOM. If all +15 Vdc connectors are in use, the external Ethernet transceiver cable can not be connected directly to one of these transceiver types, but may be connected to one of the following:

- DELNI
- DEMPR
- DEBET

Each of these devices has its own power supply and can be cabled to an H4000. Connector P3 shold be installed regardless of the transceiver type. See the *DEC LANcontroller 400 Installation Guide* for more information.

11-6 DEMNA CONFIGURATIONS

GSF_1959_89_MPS

Figure 11–2 Internal Ethernet Cable, P1 Connector Pinouts

Table 11–5	Internal	Ethernet	Cable, P1	Connector	Signals
------------	----------	----------	-----------	-----------	---------

Pin	Signal
E05 to E09	Logic Ground
E10	Ethernet Collision L
E11	Ethernet Collision H
E12	Ethernet Receive L
E13	Ethernet Receive H
E14	Ethernet Transmit L
E15	Ethernet Transmit H

DEMNA CONFIGURATIONS 11-7

Γ

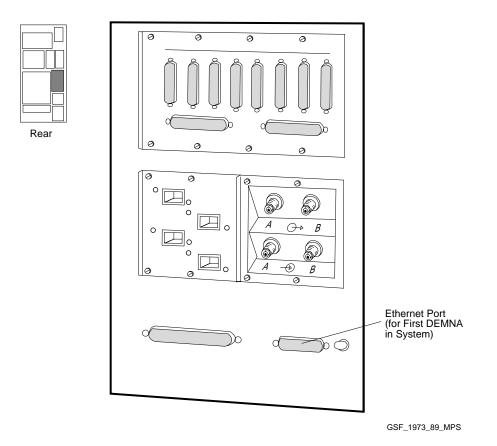
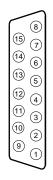



Figure 11–3 VAX 6000 Model 400 System Interconnect Panel

11-8 DEMNA CONFIGURATIONS

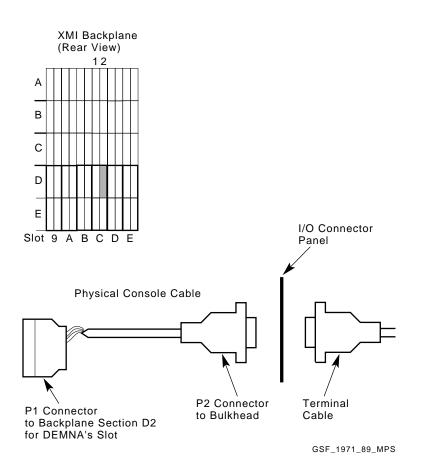

GSF_1960_89_MPS

Figure 11–4 Internal Ethernet Cable, P2 Connector Pinouts

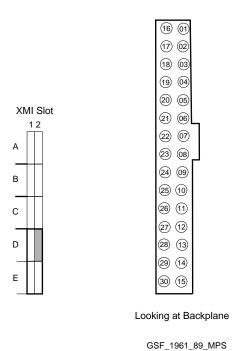
Table 11–6	Internal Ethernet Cable, P2 Connector Signals
------------	---

Pin	Signal
1	Shield
2 9	Collision Presence H Collision Presence L
3 10	Transmit H Transmit L
5 12	Receive H Receive L
6	Power Return
13	Power

DEMNA CONFIGURATIONS 11-9

Figure 11–5 Internal Cable for Physical Console, Connections

Table 11–7 Internal Cable for Physical Console, Connectors


P1 References: Figure 11–6 and Table 11–8

P1 plugs into segment D2 of the XMI slot and is properly installed when the key is on the right as viewed from the backplane. The connector is not specifically keyed for backplane segment D2 (it is possible to install the connector in the wrong segment).

P2 References: Figure 11–7 and Table 11–9

P2 plugs into an I/O connector on the bulkhead for a terminal cable.

11–10 DEMNA CONFIGURATIONS

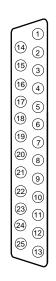


Figure 11–6 Internal Cable for Physical Console, P1 Connector Pinouts

 Table 11–8
 Internal Cable for Physical Console, P1 Connector Signals

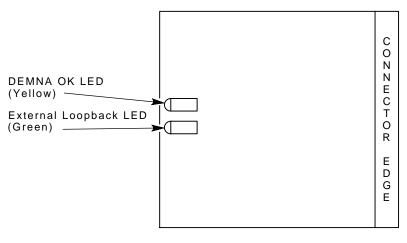
Pin	Signals
D01	Transmit
D02	Receive
D03	Logic Ground

DEMNA CONFIGURATIONS 11-11

GSF_1966_89_MPS

Figure 11–7 Internal Cable for Physical Console, P2 Connector Pinouts

 Table 11–9
 Internal Cable for Physical Console, P2 Connector Signals


Pin	Signal
2	Transmit
3	Receive
7	Logic Ground

12.1 POWER-UP SELF-TESTS

The power-up self-tests are ROM-resident diagnostics that verify the DEMNA's basic operation and ability to transmit and receive loopback packets over the network. The self-tests are automatically run on system power-up or XMI reset (see Table 12–1 and Figure 12–1) and can be run as an RBD from the system console or DEMNA physical console (Example 12–1).

Table 12–1 DEMNA Self-test Indications After Power-up or XMI Reset

Result	Indication(s)
Pass	Both DEMNA LEDs illuminated (Figure 12–1)
	Value of FFFFC007 or FFFFC027 recorded in XPUD register. (The XPUD records the status of each test. Bit $<05>$ is set if the EEPROM contains error history entries.)
Fail	One or both LEDs extinguished
	Pass/fail status of each self-test recorded in XPUD register. Self-test complete bit (bit $<31>$) in register cleared.
	Self-test fail bit (bit <10>) in XBER register set.

GSF_1962_89.DG

Figure 12–1 DEMNA LED Locations

Notes:

- 1. If the External Loopback LED is off, the fault is not necessarily due to a failed DEMNA logic component, but could be due to one or more of the following:
 - Defective or improperly seated cable
 - Defective Ethernet transceiver connector
 - DEMNA disconnected from transceiver
 - One of the other self-tests failed (the external loopback test is not executed in this case and the LED will stay off)
- 2. If the XPUD register indicates that all tests failed, the problem may be due to the CVAX, ROM, or bus transceivers.
- 3. A self-test failure can also be caused by a systemwide fault: for example, a faulty power supply or missing XMI bus terminator.
- 4. If the cause of a self-test fault is corrected, the LED(s) will light only if the self-test is rerun. If the self-test is not rerun, the DEMNA will still function properly with the LED(s) off.)

```
> CTRL/P
>>>Z 3
                    ! Connect console to XMI node 3
?33 Z connection successfully started
T/R
                    ! Enter RBD monitor
RBD3>ST 0
                    ! Run RBD 0 (DEMNA self-tests)
;Selftest
           1.00
      Ρ
             3
                  0C03
                           1
;
RBD3> CTRL/Z CTRL/P
?31 Z connection terminated by ^P
>>>
```

a. VAX 6000 Systems

```
> CTRL/P
>>> Z 2E
                     ! Connect console to XJA 2, XMI node E
?33 Z connection successfully started
T/R
                    ! Enter RBD monitor
RBDE>ST 0
                     ! Run RBD 0 (DEMNA self-tests)
           1.00
;Selftest
             Е
                  0C03
;
      Ρ
                            1
RBDE> CTRL/Z CTRL/P
?xx Z connection terminated by ^P
>>>
```

b. VAX 9000 Systems

Example 12–1 Running DEMNA Self-Tests from the System Console

12.2 ROM-BASED DIAGNOSTICS (RBDs)

The RBDs provide more extensive testing of selected DEMNA logic functions. The RBDs are resident in the EPROM and are accessed from the system console or physical console through the RBD user interface.

Self-test and RBD errors are reported to the system console and, if appropriate flags are set, are logged in the EEPROM. The first eight errors are logged, after which the error history must be cleared to allow logging of additional errors.

Table 12–2 DEMNA RBDs

RBD	D Title/Description			
0	Self-test RBD			
	Same as the power-up self-test except that test results are displayed on the console. When run as RBD 0, the self-test does not affect the state of the LEDs, the XBER register, or the XPUD register.			
	Table $12-3$ lists the self-tests. If no test number is given with the START command all tests are executed.			
1	NI RBD			
	Verifies the Ethernet link between the DEMNA's Ethernet interface logic and the Ethernet transceiver. Consists of three tests:			
	1. External Loopback on Live Ethernet Test			
	Requires the DEMNA to be connected to a live network.			
	2. MOP Loopback Test			
	Requires at least one node that implements a MOP (maintenance operations protocol) loop server to be present on the local network.			
	3. External Loopback on Closed Ethernet Test			
	Requires a loopback connector to be installed on the Ethernet connector at the system bulkhead or on the transceiver end of the transceiver cable.			
	If no test number is given with the START command, test 1 is executed.			
2	XMI RBD			
	Verifies the DEMNA's ability to transfer data to and from host memory. The /C qualifier must be specified when invoking the test since it performs writes to host memory.			
3	XNA RBD			
	Verifies the DEMNA's ability to simultaneously perform external loopbacks to the Ethernet and datamoves to and from host memory.			
	The XNA RBD is effectively a combination of NI RBD test 1 and the XMI RBD. The /C qualifier must be specified when invoking the test since it performs writes to host memory.			

Test **Unit or Function Tested** 1 Boot ROM (EPROM) 2 **CVAX IRQ Lines** 3 **Diagnostic Register** SSC Chip 4 5 **Console UART Driver** 6 CVAX RAM **CVAX Parity RAM** 7 8 CVAX Chip 9 ENET PROM 10 EEPROM 11 XNADAL Readback 12 XNADAL Timeout Logic 13 Shared RAM 14 Shared Parity RAM 15 LANCE Chip 16 Ethernet Subsystem Parity 17 LANCE External Loopback 18 **DEMNA Gate Array**

Table 12–3 DEMNA Self-Test (RBD 0)

12.2.1 RBD COMMANDS

Table 12–4 describes the RBD commands. Uppercase, bold-face characters indicate the minimum acceptable abbreviation for the command.

Commands may be entered in uppercase or lowercase. The bell character and a question mark are returned on incorrect syntax.

Table 12–4	DEMNA RBD	Commands
------------	-----------	----------

_ |

ST art	Syntax: ST[art] RBD_number [/qual/qual] [p1 [p2]]
	Starts a test, or group of tests, of a specified RBD.
	RBD_number:
	0 - Self-test RBD 1 - NI RBD 2 - XMI RBD 3 - XNA RBD
	/ qual Command qualifier: See Table 12–5
	p1, p2 Command parameters: See Table 12–6
Deposit	Syntax: D[eposit] [/qual/qual] [address] [data]
	Deposits data into XMI registers and memory locations resident on the DEMNA.
	/qual Command qualifiers: See Table 12–7
	address A one to eight digit hex value or a special addressing character (Table 12–8). When the RBD moitor is entered, the default address is 0 and the default address type is physical.
	data Byte, word, or longword of data to be deposited. When the RBD moitor is entered, the default data size is longword.
Examine	Syntax: E[xamine] [/qual/qual] [address]
	Displays contents of XMI registers and memory locations resident on the DEMNA.
	/ qual Command qualifiers: See Table 12–7
	address A one to eight digit hex value or a special addressing character (Table 12–8). When the RBD moitor is entered, the default address is 0 and the default address type is physical.

Sets the Node Reset bit in the XBER, initializing the DEMNA,

Table 12–4 (Cont.) DEMNA RBD Commands

Syntax: QU[it]

QUit

causing it to execute a power-up self-test. If the RBD monitor was accessed through the host's system console CTRL/P must be entered after the QUIT command to return to the console prompt: RBD3> QUIT CTRL/P ?xx Z connection terminated by ^P >>> [CTRL/Z] performs the same function as the QUIT command. **SU**mmary Syntax: SU[mmary] Displays a summary report of the last diagnostic executed. If no diagnostic was run since the RBD monitor was invoked, the "?" character is returned. XFC Syntax: XFC Forces a jump to the address loaded into register XPD1. XFC is used to invoke the diagnostic error log reader. See Example 12-3.

Table 12–5 DEMNA RBD START Command Qualifiers

/BE	Ouput bell character to console on error.
	Default: No bell
/C	Confirm execution of tests which perform writes to host memory (XMI and XNA RBDs).
	Default: No confirmation
/DS	Disable displaying of status reports.
	Default: Status reports
/HE	Halt on hard error, print error and summary reports, execute cleanup code, and return to RBD prompt.
	A hard error is a repeatable fault (for example, ROM checksum error) from which the diagnostic can recover. In contrast, a fatal error (for example, unexpected interrupt) causes the program to abort, regardless of the state of the /HE or /LE qualifiers.
	Default: Continue on hard error
/HS	Halt on soft error, print error and summary reports, execute cleanup code, and return to RBD prompt.
	A soft error is a non-repeatable fault (error not present on retry) from which the diagnostic can recover. The only soft error detected is a missing heartbeat.
	/HS is applicable only for NI RBD tests 1 and 2. If /HS and /LS are both specified, the monitor indicates an error.
	Default: Continue on soft error
/IE	Inhibit error reports during diagnostic execution. Error reports displayed on diagnostic completion.
	Default: Error reports
/IS	Inhibit display of summary report after completion of diagnostic.
	Default: Summary reports
/LE	Loop on hard error (even if error is intermittent).
	Press $CTRL/C$, $CTRL/Y$, or $CTRL/Z$ to terminate loop and return to RBD prompt.
	Error reports are displayed while looping unless /IE was specified. A summary report is displayed on loop termination unless /IS was specified.
	Default: Continue

Table 12–5 (Cont.) DEMNA RBD START Command Qualifiers

/LS	Loop on soft error (even if error is intermittent).
	Press $CTRL/C$, $CTRL/Y$, or $CTRL/Z$ to terminate loop and return to RBD prompt.
	Error reports are displayed while looping unless /IE was specified. A summary report is displayed on loop termination unless /IS was specified.
	/LS is applicable only for NI RBD tests 1 and 2. The only soft error detected is a missing heartbeat.
	Default: Continue
/P=n	Run <i>n</i> passes of each selected test.
	Specify n=0 for infinite passes (press $CTRL/C$, $CTRL/Y$, or $CTRL/Z$ to halt).
	Default: One pass
/T=n[:m]	Run single test (/T=n) or group of tests (/T=n:m).
	Specify test number(s) in decimal.
	Default: RBD dependant
/TR	Trace (display) test number at start of each test.
	Default: Disabled

Table 12–6 DEMNA RBD START Command Parameters

For the NI RBD

P1 8-digit decimal number specifing the number of packets to be transmitted and received for each test pass.

Default is 100. A value of zero specifies to transmit packets indefinitely until CTRL/C is pressed.

P1 is supported by all NI RBD tests.

P2 Decimal number in the range of 64 to 1518 which specifies the transmit packet size (in bytes). If p2 is not specified, the test varies the packet size.

P2 is supported by the MOP loopback test only. To use the parameter, p1 must also be specified.

For the XMI and XNA RBDs

P1 Integer value which represents the number of datamove and peek operations performed per test pass.

A value of *n* specifies n * 256 datamoves and n * 512 peeks. Default is 1 (256 datamoves, 512 peeks). A value of zero specifies to execute datamoves and peeks until CTRL/C is pressed.

P2 Specifies the starting address in host memory to be used by the test.

The starting address must be page aligned. If a nonpage-aligned address is specified, the diagnostic zeros the nine least significant bits. Default is 200 (hex).

To use the p2 parameter, p1 must also be specified.

Table 12–7 DEMNA RBD Deposit/Examine Command Qualifiers

/ B	Defines data size as byte.
/G	Defines address space as CVAX GPRs 0 to B. Valid only for EXAMINE command.
	When /G is specified the address field must be a hex digit in the range 0 to B.
/L	Defines data size as longword (default).
/N: <i>n</i>	Deposits data to, or examines data from, the specified address and the next \boldsymbol{n} addresses.
	If the starting address is specified with "-", the next n higher addresses are still used (the "-" character specifies the starting address, not the direction).
/ P	Defines the address space as physical memory (default).
/W	Defines data size as a word.

Table 12–8 DEMNA RBD Deposit/Examine Commnad Special Addressing Characters

- + Increment address last referenced by DEPOSIT or EXAMINE by current data size
- Decrement address last referenced by DEPOSIT or EXAMINE by current data size
- * Use address last referenced by DEPOSIT or EXAMINE

12.2.2 RBD CONTROL KEYS

Key	Mode ¹	Function
CTRL/C	Diag	Stop diagnostic execution, execute cleanup code, return to RBD prompt. Enabled messages for aborted test are displayed on console.
	Mntr	Echo "^C", reissue RBD prompt.
CTRL/P	Diag	Exit console mode, return to system prompt (>>>).
		If the RBD monitor is reentered on the same node, enabled test messages of the aborted test are displayed. [CTRL/P] is disabled when RBDs are run from the console monitor program.
	Mntr	Exit console mode, return to system prompt (>>>).
		CTRL/Z or QUIT must be used before CTRL/P to force DEMNA into a known state. CTRL/P is disabled when RBDs are run from the console monitor program.
CTRL/R	Diag	Ignored
	Mntr	Display current command line.
CTRL/U	Diag	Ignored
	Mntr	Echo "^U", abort command line, reissue RBD prompt.
CTRL/Y	Diag	Stop diagnostic, do not execute cleanup code, return to RBD prompt. Does not display test messages on console.
	Mntr	Echo "^Y", reissue RBD prompt.
CTRL/Z	Diag	Same as CTRL/C
	Mntr	Same as QUIT command.

Table 12–9 DEMNA RBD Control Keys

¹Diag = RBD diagnostic running; Mntr = RBD monitor running

12.2.3 Running the DEMNA RBDs

From the VAX 6000 System Console

From the VAX 9000 System Console

From the DEMNA Physical Console

```
XNA>T/R ! Enter RBD monitor
RBD3>ST2/P=3 2 1000 /C ! Run three passes of XMI RBD; 512
! datamoves and 1024 peeks per pass.
! Starting address is 1000.
.
RBD3> QUIT
XNA>
```

12.2.4 RBD Error Report Formats

The DEMNA follows the XMI standard for RBD error reports, supporting three levels of error reporting. Table 12–10 lists the fields in each error report level, and Example 12–2 shows a sample error report.

Level	Туре	Error Report Line Fields
1	Summary	Pass/Fail status XMI node number Device type (0C03 = DEMNA) Pass count
2	Error class	Error type—HE (hard), FE (fatal), SE (soft) Logic under test Unit under test (always 0) Test number (0 if test initialization failed)
3	Error specific	Subtest number Expected data Received data System control block (SCB) offset Failing memory or register address PC value in ROM at time of failure Specific error number

Table 12–10 DEMNA RBD Error Report Levels

		F	3	0C03	00000018			
2);	HE	CVAX_RAM	00	T0006			
8	; (00	00000000	00800000	00000000	20150004	20051D97	03

- **1** Failed, XMI node 3, DEMNA (device type 0C03), pass 18
- **2** Hard error, CVAX RAM under test, unit 0 (always), test 6

Subtest 0, expected 00000000 (hex), received 00800000 (hex), SCB 0, failing address 20150004 (hex), error PC 20051D97, error number 03

Example 12–2 Sample DEMNA RBD Error Report

12.2.5 Diagnostic Error Log Reader

The diagnostic error log reader is an EPROM-resident program that displays the contents of the diagnostic error log (part of the EEPROM error history).

The error log reader is run by depositing it's starting address into the XDP1 register and then issuing the XFC command. Example 12–3 shows a sample run of the program.

>>> Z 3
?33 Z connection successfully started
T/R
RBD3> D 20150100 2004C010 !Starting address in XDP1
RBD3> XFC !Jump to address in XPD1

Type <CR> to continue, <CTRL/C> to abort...

Er	ror frame number	1
Sequence number:	1	
Diagnostic number: Diagnostic revision: Operating mode:	1 3.00 RBD	
XMI node number: Test number: Error code: Error number: Expected data: Received data: SCB offset:	3 3 65 00000003(X) 00000007(X) 00000000(X)	
Failing address: PC at failure:	201004A3(X) 0001A762(X)	
Number of times logged:	1	

Type <CR> to continue, <CTRL/C> to abort...

Example 12–3 (Continued, next page) DEMNA Error Log Reader

Er:	ror frame number 2	
Sequence number:	2	
Diagnostic number: Diagnostic revision: Operating mode:	0 3.00 Power-up	
XMI node number: Test number: Error code: Error number: Expected data: Received data: SCB offset: Failing address: PC at failure:	3 18 0 3 00000000(X) 00800000(X) 00000000(X) 20150004(X) 20051D97(X)	
Number of times logged:	2	
Type <cr> to continue,</cr>	<ctrl c=""> to abort</ctrl>	

*** No more errors logged ***

Example 12–3 DEMNA Error Log Reader

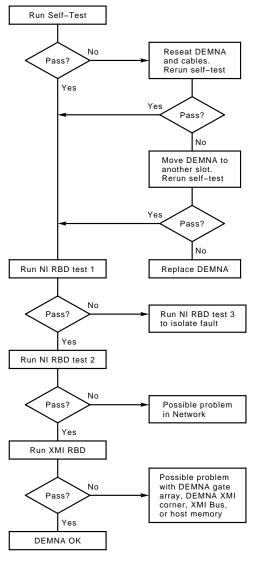
12.2.6 Isolating Faults With the RBDs

Figure 12–2 shows the suggested order in which to run the RBDs to isolate suspected DEMNA faults.

Notes on running NI RBD test 3

To run this test, perform the following:

- 1. Disconnect external Ethernet transceiver cable (BNE3) at transceiver end and install loopback connector on cable
- 2. Run test 3:
 - Pass Transceiver bad: Replace transceiver, reconnect cable and rerun test to verify operation. No further action required.
 - Fail Suspect transceiver cable, internal Ethernet cable, backplane, or DEMNA module. Go to next step.
- 3. Disconnect external transceiver cable at system bulkhead and install loopback connector
- 4. Rerun test 3


Pass Transceiver cable bad: Replace cable and rerun test to verify operation. No further action required.

- Fail Suspect internal Ethernet cable, backplane, or DEMNA module. Go to next step.
- 5. Replace internal Ethernet cable and install loopback connector on new cable
- 6. Rerun test 3

Pass Internal Ethernet cable bad. Replace cable and rerun test to verify operation. No further action required.

Fail Suspect DEMNA module or XMI backplane. Go to next step.

- 7. Replace DEMNA
- 8. Rerun test 3
 - Pass DEMNA bad. Rerun test to verify operation. No further action required.
 - Fail XMI backplane bad. Install DEMNA in different slot. Rerun test to verify proper operation. Consider replacing XMI card cage.

GSF-RC1000-XNA01-PSA

Figure 12–2 DEMNA RBD Troubleshooting Flowchart

13 DEMNA MACRODIAGNOSTICS AND SUPPORT PROGRAMS

13.1 INTRODUCTION

This chapter provides an overview of the macrodiagnostics and support programs available for the DEMNA.

13.2 DIAGNOSTICS AND SUPPORT PROGRAMS

The DEMNA is supported by two macrodiagnostics and one utility program:

Name	Level	Description
EVDWC 2R NI Exerciser		NI Exerciser
		Verifies the installation of the host Ethernet node and connectivity to all other nodes on the local network that support maintenance operations protocol (MOP).
EVDYE	2R	DEMNA NI Functional Diagnostic
		Verifies the functional operation of the DEMNA Ethernet/802 port and that the DEMNA can perform all of the functions required by the VAX/VMS Ethernet port driver (EXDRIVER).
EVGDB	2 EEPROM Update Utility	
		Enables the user to update the firmware in the EEPROM, modify EEPROM flags and parameters, and patch the RBD code resident in the EPROM.

Table 13–1 DEMNA Macrodiagnostics and Support Programs

13-2 DEMNA MACRODIAGNOSTICS AND SUPPORT PROGRAMS

13.3 RUNNING EVDWC AND EVDYE

- 1. Log into the customer service account or SET DEFAULT to the SYS\$MAINTENANCE directory.
- 2. Run the VAX Diagnostic Supervisor (VAX/VDS):

ELSAA on VAX 6000 Model 2xx/3xx systems ERSAA on VAX 6000 Model 4xx systems EWSAA on VAX 9000 systems

3. Load the diagnostic:

DS>LOAD EVDWC !or EVDYE

4. Attach and select the DEMNA:

VAX 6000 Systems

DS>ATTACH DEMNA HUB EXm0 n DS>SELECT EXm0

Where:

- *m* Unit designator. The DEMNA with the lowest XMI node number is unit A; the one with the second lowest number is unit B, and so on.
- n DEMNA's XMI node ID

VAX 9000 System

```
DS>ATTACH XJA HUB XJAx x
DS>ATTACH DEMNA XJAx0 EXm0 n
DS>SELECT EXm0
```

Where:

- x XJA unit number (0 to 3)
- *m* Same as for VAX 6000 systems
- *n* Same as for VAX 6000 systems
- 5. Set the desired VAX/DS control flags (for example: TRACE, HALT) and any desired diagnostic event flags
- 6. Start the diagnostic

NOTE

Tests 2 through 10 of EVDYE can use either internal or external loopbacks during test execution. To use external loopbacks, perform the following:

- Install a loopback connector at the system bulkhead or on the Ethernet transceiver cable.
- Issue the following after the SELECT EXm0 command:

DS> SET EVENT FLAG 1

13.4 EVGDB

EVGDB is a level 2 diagnostic and can be run with the VAX/DS running in either stand-alone mode or on-line (interfaced with the VAX/VMS operating system). When run in stand-alone, EVGDB runs the DEMNA self-test to verify the module operation. If self-test fails, EVGDB displays an error message and continues.

EVGDB is distributed with the DEMNA firmware image (EVGDBQ.BIN) to the field as part of the system tape media kits:

Table 13–2 EVGDB Distribution Media

Part Number	Name
AQ-FJ77*-ME	VAX 6000-200 Console TK50
AQ-FK60*-ME	VAX 6000-300 Console TK50
AQ-FK87*-ME	VAX 6000-400 Console TK50
AQ-PAKJ*-ME	VAX 9000 CNSL UTIL + UCODE Tape

13-4 DEMNA MACRODIAGNOSTICS AND SUPPORT PROGRAMS

Table 13–3 EVGDB Sections

Section	Functions Available to User	
PARAM	Examine and modify user-settable EEPROM flags and parameters.	
UPDATE	Load a new firmware image into the EEPROM and examine and modify EEPROM flags and parameters.	
VERIFY	Load a new image into the system's main memory and compare it to the image in the EEPROM.	
MFG	Load a new image into the EEPROM and examine EEPROM flags and parameters. Also clears the error log in the EEPROM and initializes the EEPROM flags and parameters.	
DEFAULT	Identical to the UPDATE section. The DEFAULT section is run if no section is specified.	
INVAL	Invalidate and initialize the EEPROM contents, forcing the DEMNA to run from the EPROM. The section is used to enable EEPROM updates when the normal procedure (UPDATE or DEFAULT sections) does not work.	

Table 13–4 EVGDB Event Flags

Event Flag	EEPROM Flags or Parameter Made Accessible
1	Enable Local DEMNA Console Flag Enable DEMNA Monitor Facility Flag Enable Diagnostic Logging Flag Enable Self-Test Logging Flag Enable NI RBD Logging Flag Enable XMI RBD Logging Flag Enable XNA RBD Logging Flag
3	DEMNA Console Password

If no event flags are specified, only the following EEPROM flags can be modified:

Enable Remote Boot Enable Remote DEMNA Console Enable Promiscuous Mode

DEMNA MACRODIAGNOSTICS AND SUPPORT PROGRAMS 13-5

Parameter Description **Console Password** An 8-character ASCII field that indicates the password that must be used to connect to the DEMNA console monitor program. The default password is XNABOARD. Flag **Operation if Flag Enabled Enable Remote Boot** DEMNA allowed to participatate in remote booting over the network. Enable Remote DEMNA DEMNA console monitor program made accessible from a remote network node. **Console Flag** Enable Local DEMNA DEMNA console monitor program made **Console Flag** accessible from the local network node and from the DEMNA physical console. Enable DEMNA Monitor Allows DEMNA to monitor network activity. Facility **Enable Promiscuous Mode** Allows DEMNA to receive all packets on the network, regardless of the destination. If the flag is disabled, an application can override the flag by starting up a promiscuous user. Enable Diagnostic Logging Allows logging of self-test and RBD errors to EEPROM. Enable Self-Test Logging Log self-test errors to EEPROM. Diagnostic error logging must also be enabled. Enable NI RBD Logging Log NI RBD errors to EEPROM. Diagnostic error logging must also be enabled. Enable XMI RBD Logging Log XMI RBD errors to EEPROM. Diagnostic error logging must also be enabled. Enable XNA RBD Logging Log XNA RBD errors to EEPROM. Diagnostic error logging must also be enabled.

Table 13–5 DEMNA EEPROM User-Modifiable Flags and Parameters

13-6 DEMNA MACRODIAGNOSTICS AND SUPPORT PROGRAMS

13.4.1 Modifying EVGDB Flags

```
DS>LOAD EVGDB
  DS>ATTACH DEMNA HUB EXA0 3 !example shown for a VAX 6000 system
  DS>SELECT ALL
  DS>SET EVENT 1,3
  DS>START/SECTION=PARAM
  Program: EVGDB -
DEMNA EEPROM Update Utility, revision 1.1, 6 tests
1 Testing: _EXA0
2 Please insure that Front Panel Switch is in Update position.
  Ready [(Yes), No]
3 Do you wish to clear the EEPROM error log? [(No), Yes] No
  Reading parameters from EEPROM...
  EEPROM firmware rev:
                           0601 04-APR-1990
  DEMNA Serial Number:
                           *SG909T1488*
  Enable Remote Boot?
                                 (Default = No) N
  Enable Remote DEMNA console?
                                (Default = Yes) Y
  Enable Local DEMNA console?
                                (Default = Yes) Y
  Enable DEMNA monitor facility? (Default = No)
                                                  Ν
  Enable Promiscuous mode?
                                (Default = Yes) Y
  Enable Diagnostic Logging?
                                (Default = Yes)
                                                 Y
  Enable Self-test Logging?
                                 (Default = Yes)
                                                 Y
  Enable NI RBD Logging?
                                 (Default = Yes)
                                                  Υ
  Enable XMI RBD Logging?
                                 (Default = Yes)
                                                  Υ
  Enable XNA RBD Logging?
                                 (Default = Yes) Y
O you wish to modify any of these parameters? [(No), Yes] Yes
5 Enable Remote Boot?
                                 (Default = No)
                                                   [(No), Yes]
  Enable Remote DEMNA console?
                                 (Default = Yes)
                                                    [(Yes), No]
  Enable Local DEMNA console?
                                 (Default = Yes)
                                                    [(Yes), No]
  Enable DEMNA monitor facility? (Default = No)
                                                    [(No), Yes]
  Enable Promiscuous Mode?
                                 (Default = Yes)
                                                   [(Yes), No]
  Enable Diagnostic Logging?
                                (Default = Yes)
                                                   [(Yes), No]
  Enable Self-test Logging?
                                (Default = Yes)
                                                   [(Yes), No]
  Enable NI RBD Logging?
                                 (Default = Yes)
                                                   [(Yes), No]
  Enable XMI RBD Logging?
                                (Default = Yes)
                                                   [(Yes), No]
  Enable XNA RBD Logging?
                                (Default = Yes)
                                                  [(Yes), No]
6 Enter remote DEMNA console password (up to 8 alpha-
numeric characters):
  OK to modify EEPROM parameters? [(No), Yes] Yes
```

Are you sure? [(No), Yes] Yes

DEMNA MACRODIAGNOSTICS AND SUPPORT PROGRAMS 13-7

```
Writing new parameters to EEPROM...
.. End of run, 0 errors detected, pass count is 1,
    time is 20-FEB-1990 11:14:17.08
DS>EXIT
```

- If run in stand-alone mode, EVGDB will execute the DEMNA selftest. If the self-test fails, EVGDB will display an error message and continue.
- **2** On VAX 6000 systems, ensure that the key switch is in the update position before responding "Yes".

On VAX 9000 systems, ensure that the SPU access switch is set to LOCAL/SPU or REMOTE/SPU and then issue the following command to enable EEPROM updating:

SET XMI_UPDATE/XMI:n ON !Where n = XMI card cage number

- **3** Answer "No" in most cases
- If the reply is "No", EVGDB will display the following and then exit to VAX/DS:

```
No parameter changes made.
.. End of run, 0 errors detected, pass count is 1,
   time is 20-FEB-1990 11:14:58.77
DS>
```

- **6** Current flag settings are enclosed in parentheses.
- **()** If more than eight characters are entered, the console password prompt is redisplayed. If fewer than eight characters are specified, the password is null filled. If a password is not specified, (RETURN) pressed), the default password *XNABOARD* is used.
- On VAX 6000 systems, return the key switch to its former position (Halt or Auto Start). On VAX 9000 systems, issue the following console command to disable EEPROM updating and then set the SPU access switch to the appropriate position:

SET XMI_UPDATE/XMI:n OFF !Where n = XMI card cage number

13-8 DEMNA MACRODIAGNOSTICS AND SUPPORT PROGRAMS

13.4.2 Updating the EEPROM Firmware (VAX 9000 System)

```
DS>LOAD EVGDB
DS>ATTACH XJA HUB XJA0 0
DS>ATTACH DEMNA XJAO EXAO 3
DS>SELECT ALL
DS>START/SECTION=UPDATE
Program: EVGDB -
DEMNA EEPROM Update Utility, revision 1.1, 6 tests
Testing: _EXA0
Please insure that Front Panel Switch is in Update position.
Ready [(Yes), No]
Data Image file to be loaded? < EVGDBQ.BIN>
Searching...
Load complete.
Data Image firmware rev: 0601 04-APR-1990
Do you wish to clear the EEPROM error log? [(No), Yes] No
Reading parameters from EEPROM...
EEPROM firmware rev:
                         0601 04-APR-1990
                        *SG909T1488*
DEMNA Serial Number:
Enable Remote Boot?
                               (Default = No) N
Enable Remote DEMNA console? (Default = Yes)
                                               Y
Enable Promiscuous Mode?
                              (Default = Yes)
                                               Y
Do you wish to modify any of these parameters? [(No), Yes] No
No parameter changes made.
Reading parameters from EEPROM...
Writing new image to RAM...
Reading image from RAM...
Writing RAM image to EEPROM ...
Reading parameters from EEPROM...
Data Image firmware rev: 0601 04-APR-1990
EEPROM firmware rev:
                         0601 04-APR-1990
DEMNA Serial Number:
                         *SG909T1488*
Enable Remote Boot?
                              (Default = No) Y
Enable Remote DEMNA console?
                             (Default = Yes) Y
Enable Promiscuous Mode?
                             (Default = Yes) Y
Reading EEPROM image...
Verification complete.
```

DEMNA MACRODIAGNOSTICS AND SUPPORT PROGRAMS 13-9

.. End of run, 0 errors detected, pass count is 1, time is 9-APR-1990 13:30:18.50 DS>EXIT 13–10 DEMNA MACRODIAGNOSTICS AND SUPPORT PROGRAMS

13.5 DIAGNOSTIC PATCH MECHANISM

The DEMNA EEPROM contains a 2-Kbyte region for holding patches made to the diagnostic code in the EPROM. When diagnostic code is executed from the EPROM, checks are made at strategic points to determine if the EEPROM contains patch code. If the patch code is present, the code is executed from the EEPROM instead of the corresponding segment in the EPROM.

When the DEMNA self-test or any RBD is run, a checksum is calculated for the diagnostic patch area in EEPROM and compared with a valid checksum. If the checksum test fails, the diagnostic patch area is declared invalid. In this case, no diagnostic patches are executed. If the checksum failure occurs during self-test, the self-test fails, and the Bad Diagnostic Patch Table bit in the XPUD register is set. If the checksum failure occurs when an RBD is invoked, the following message is displayed on the console before the RBD is executed:

BAD_PATCH

14 DEMNA Console Monitor Program

14.1 OVERVIEW

The console monitor program is a EEPROM resident program which allows users on the network to monitor DEMNA operations and network traffic.

The console monitor program consists primarily of 12 interactively invoked screens (displays) that indicate current operating parameters and errors. The console monitors over 100 parameters. These parameters are updated every 3 seconds on-screen while being displayed.

In addition to displaying and updating key operational and diagnostic parameters, the console monitor program allows a user to examine the contents of DEMNA memory locations and registers.

The console monitor includes an online help facility.

Security Features

- Password protected
- Access allowed by only one user at a time
- System manager can disable program entirely, or deny access from a remote network node

Parameters that control access to the monitor can be changed with the EEPROM Update Utility, EVGDB.

14-2 DEMNA Console Monitor Program

14.2 CONNECTING TO THE CONSOLE MONITOR PROGRAM

A user can access the DEMNA console monitor program from a terminal:

- Attached directly to the DEMNA (physical console)
- On the local node (DEMNA's node)
- On a remote node

Accessing the monitor program from a terminal other than physical console requires that one of the following be used to make the connection:

- Network Control Program (NCP)
- A console connection program

14.2.1 Using the Physical Console

The only setup required to access the console monitor program from the physical console is to connect the terminal cable to the DEMNA's XMI slot and set the terminal baud rate to 19.2K baud. The console monitor prompt (XNA>) is displayed when the terminal is powered on.

14.2.2 Using the Network Control Program (NCP)

The following examples show how to setup NCP parameters to allow access to the console monitor program from a terminal connected to the local node and from a terminal connected to a remote node.

Note that DECnet must be running for NCP fields to be valid.

Terminal on the Local Node (DEMNA's node)

\$MCR NCP 1 NCP> SHOW NODE node_name 2 Node Volatile Summary as of 12-SEP-1990 13:02:52 %NCP-W-UNRCMP, Unrecognized component, Node 3 NCP> SHOW NODE DECnet_address 4 Node Volatile Summary as of 13-JUL-1990 Node Active Delay Circuit State Next Link Node SET NODE DECnet_address NAME node_name NCP> DEF NODE DECnet_address NAME node_name NCP> SET NODE node_name HARD ADDR address NCP> DEF NODE node_name HARD ADDR address NCP> SET NODE node_name SERVICE PASSWORD 584E41424F415244 ! Default NCP> DEF NODE node_name SERVICE PASSWORD 584E41424F415244 NCP> SET NODE node_name SERVICE CIRCUIT circuit_name NCP> DEF NODE node_name SERVICE CIRCUIT circuit_name • Verify that the node name to be created is unique

- Message displayed if the node name is unique 0
- Verify that the DECnet address to be assigned is unique 8
- 4 Message displayed if the DECnet address is unique
- Commands to create or modify parameters in the volatile (SET) 6 database or the permanent (DEFINE) database:

Parameter	Description
DECnet_address	assigned DECnet address
node_name	Ethernet node name of DEMNA
address	DEMNA default physical address (DPA) on the Ethernet
circuit_name	service circuit for the system

14-4 DEMNA Console Monitor Program

Terminal on a Remote Node

\$MCR NCP NCP> SET NODE node_name HARD ADDR address NCP> DEF NODE node_name HARD ADDR address NCP> SET NODE node_name SERVICE PASSWORD password NCP> DEF NODE node_name SERVICE PASSWORD password NCP> SET NODE node_name CIRCUIT NAME circuit_name NCP> DEF NODE node_name CIRCUIT NAME circuit_name

Parameter	Description
node_name	Ethernet node name of DEMNA
address	DEMNA default physical address (DPA) on the Ethernet
circuit_name	service circuit for the system
password	password for the DEMNA console monitor program.
	Default: 584E41424F415244

14.2.3 Using the Console Connection Program

The console connection program is only used if NCP is not available.

\$ MACRO CONSOLE	compile and link the program!
\$ LINK CONSOLE	
\$ ASSIGN Ethernet_device	e CONSOLE\$DEVICE
\$ RUN CONSOLE	
XNA>	!DEMNA console prompt displayed
	!if the connection is successful

Refer to the *DEC LANcontroller 400 Technical Manual* for a listing of CONSOLE.MAR, an assembly language program which can be used to access the console monitor program if NCP is not available.

Parameter	Description
Ethernet_device	device number for the user's Ethernet node

14.3 INVOKING AND EXITING THE CONSOLE

Using NCP

Refer to Section 14.2 for information on connecting to the Console Monitor Program, then invoke the console as follows:

\$MCR NCP
NCP> CONNECT NODE node_name !Ethernet node_name of DEMNA
Console connected (press CTRL/D when finished)
XNA>

Note that if the service password was not supplied when the console was set up (Section 14.2), the user must supply the service password:

NCP> CONNECT NODE node_name SERVICE PASSWORD password

If NCP cannot connect to the console, it will return an error message. For more information refer to the *VMS Network Control Program Manual*.

Using the Console Connection Program

Before using the console connection program, the user must compile and link the program as follows:

\$ MACRO CONSOLE
\$ LINK CONSOLE

Refer to the *DEC LANcontroller 400 Technical Manual* for a listing of CONSOLE.MAR.

Issue the following commands to invoke the console:

Exiting the Console

To exit the console, enter CTRL/D

14–6 DEMNA Console Monitor Program

14.4 CONSOLE COMMANDS

Table 14–1 DEMNA Console Commands

BLANK	Syntax: BLANK			
	Clears the screen and displays the console prompt (XNA>).			
EXAMINE	Syntax: EXAMINE [/qual] [parameter]			
	Displays the contents of the specified location in DEMNA I/O or memory space.			
	/qual Command Qualifiers:			
	/NUMBER=n	Displays the next <i>n</i> longwords.		
	/REGISTER	Displays the gate array registers.		
	parameters Command Parameters:			
	. (period)	Displays the contents of the current location.		
	address	Displays the contents of a longword location.		
HELP	Syntax: HELP [parameter]			
	Displays information on the EXAMINE and SHOW console commands, as well as the console command language control characters.			
	parameters Command Parameters:			
	command	Displays help information for the EXAMINE command or the SHOW command.		
	controlchar	Displays help information for the console command language control characters.		
SHOW	Syntax: SHOW parameter			
	parameters Command Parameters: See Table 14–2			

Table 14–1 (Cont.) DEMNA Console Commands

T/R Syntax: T/R

Invokes the DEMNA diagnostic monitor from which the DEMNA Rom-based diagnostics (RBDs) are run.

Restriction: The T/R command is valid only when entered from the physical console attached directly to the DEMNA module or when the DEMNA is in the uninitialized state.

14-8 DEMNA Console Monitor Program

_|

Table 14–2	DEMNA Console	SHOW Command	Parameters
------------	----------------------	--------------	------------

BUS	Displays the configuration of the XMI system containing the DEMNA.
ERROR Hn	Displays the fatal error block specified by n (integer from 1 to 5).
ERROR Sn	Displays the nonfatal error block specified by n (integer from 1 to 5).
HISTORY [n]	Displays the error summary stored in the DEMNA EEPROM. (integer from 1 to 31)
	If a value for n is supplied, the data for only that error is displayed.
	If a value is not supplied, a summary of all errors recorded in the EEPROM is displayed.
IMAGE	Displays the firmware revision number and date for the EEPROM image and the EPROM image.
NETWORK	Displays a continuously updated summary of network activity for the six most active Ethernet users and the seven most active Ethernet nodes.

Table 14–2 (Cont	.) DEMNA Cons	ole SHOW Command Parameters
STATUS	Displays a continu following:	uously updated screen that includes the
	Statistical inf network	ormation on the DEMNA's use of the
	Data link cour	nters
	Percentage of	DEMNA CPU time used
	Error summar	ry counters
	• Number of DI	EMNA-internal buffers in use
	Percentage of	XMI traffic generated
	Statistical inf	ormation on the use of the entire network
	Qualifiers:	
	/ERROR	Displays a continuously updated screen that includes the following:
		• Transmit error counters
		Receive error counters
		LANCE counters
		• Date and time of errors
	/INTERVAL	Displays the same screen as the SHOW STATUS command. The only difference between the two screens is the time interval for which the NI counters and the Error Summary counters record events.
USER	Displays the setup DEMNA port.	p parameters for users defined to the
XPUD	Displays the DEM	INA Power-up Diagnostic (XPUD) Register.

14.5 CONSOLE CONTROL KEYS

14–10 DEMNA Console Monitor Program

Table 14–3 DEMNA Console Control Keys

Key	Function
CTRL/A	Alternates between the Status screen and the Status/Error screen or between the Network screen and the Accumulated Network screen.
CTRL/D	Disconnects the console and exits to the system prompt. Has no effect on the DEMNA's physical console.
CTRL/E	Alternates between the Status screen and the Status/Interval screen or between the Interval Status/Error screen and the Accumulated Status/Error screen.
	If none of these screens are displayed, entering the control character invokes the Status screen.
CTRL/L	Retrieves the last console command line entered.
CTRL/U	Clears the current command line.
CTRL/W	Refreshes the screen when the Status, Status/Error, Status/Interval, or Network screen is displayed.
	If none of these screen are displayed, entering the control character clears the screen and invokes the Status screen.

14.6 DEMNA STATUS SCREENS

Status and Status/Interval Screens

08-00-2B-00-00-01 st	atus 01-AUG-1989 19:01:	19 Uptime:	01:	43:35
NI Statistics	NI Counters	Process		XMI
Bytes/Pk 64	BytesSnt 6327255447	Null 88.0%	0	0.0%
Bytes/Xmt 64	BytesRcv 6327084034	Port 0.7%	1	0.0%
Bytes/Rcv 64	MbytesSnt 20470	Xmt-Ln 2.8%	2	0.0%
Pk/Sec 510	MbytesRcv 0	Xmt-Hs 2.0%	3	0.0%
Xmt/Sec 255	PkSnt 17464886	Rcv-Ln 1.6%	4	0.0%
Rcv/Sec 255	PkRcv 17462507	Rcv-Hs 3.0%	5	0.0%
MBaudRate 0.274471	MPkSnt 230	Com-Hs 0.0%	6	0.0%
Interrupts 104599634	MPkRcv 0	Mon 1.0%	7	0.0%
Interrupts/Sec 255		Cons 0.4%	8	0.0%
			9	0.0%
Total NI Traffic	Error Summary	Buffers	А	0.0%
Bytes/Pk 237	Xmt/Wire 0	Rcv 0	в	0.0%
Pk/Sec 1418	Rcv/Wire 0	Xmt 1	C	11.7%
ThisNI + Other = TotBaud	Rcv/Validation 1		D	0.0%
3.5% + 26.0% = 29.5%	Rcv/NoBuffers 0	XNA Bus	E	89.3%
		LANCE 9.3%	F	0.0%
		XNAGA 0.0%		
	Status/Error Screen			

-- 08-00-2B-00-00-01 -- Status -- 01-AUG-1989 19:40:45 -- Uptime: 2:23:01

Rcv Counters	Xmt Counters	Lance Counters
BytesRcv 6327084034	BytesSnt 6327280698	Lan/Restart 0
PkRcv 17462507	PkSnt 17465275	Lan/UOflo 0
Rcv/MCAUrfd 0	Xmt/Def 769	Lan/TRxoff 0
Rcv/SizeFilter 0	Xmt/One 123	Lan/Merr 0
Rcv/SrcMCA 0	Xmt/Mul 132	Lan Tx/Rx 0
Misc/Cnt1 0	Xmt/Rtry 0	Rcv/Buffer 0
Rcv/Invalid 0	Xmt/LCar 0	Rcv/NoSTP 0
Rcv/Short802 0	Xmt/LCol 0	Misc Counters
Rcv/Long802 0	Xmt/MLen 0	Err/HostXfer 0
Rcv/Missed 0	Xmt/CTest 0	RX/NoRxBuf 0
Rcv/Dor 0	Xmt/Timeout 0	RX/XmtRngFull 0
Rcv/NoRcvBuf 0	Saved Er	ror Data
Rcv/Stale 0	Rtry at None	LCol at None
Rcv/Ubua 0	LCar at None	CTst at None
Rcv/Sbua 0	Sbua at None	
Rcv/Crc+Frame 0	Crc at None	
Rcv/Mlen 0	Mlen at None	
Rcv/Urfd 1	01-AUG-1989 08:02:05 60-	02 MopRC 11.111

GSF_1963_89_MPS

Figure 14–1 DEMNA Status Screens

14–12 DEMNA Console Monitor Program

Definitions	
Parameter	Description
Ethernet address	DEMNA's actual physical address (APA)
Date and time	current date and time
Uptime	time since the DEMNA was last reset
NI Statistics	
Bytes/Pk	average number of bytes per packet (transmit or receive) during the last 3 seconds
Bytes/Xmt	average number of bytes per transmit packet during the last 3 seconds
Bytes/Rcv	average number of bytes per receive packet during the last 3 seconds
Pk/Sec	number of packets transmitted and received per second during the last 3 seconds
Xmt/Sec	number of packets transmitted per second during the last 3 seconds
Rcv/Sec	number of packets received per second during the last 3 seconds
MBaudRate	megabaud rate for the DEMNA (transmit plus receive) during the last 3 seconds
Interrupts	number of DEMNA-generated interrupts (both error and port interrupts)
Interrupts/sec	number of DEMNA-generated interrupt that occurred during the last 3 seconds

 Table 14–4
 DEMNA Status and Status/Interval Screens—Parameter

 Definitions

Parameter	Description
Total NI Traffic	
Bytes/Pk	average number of bytes per packet on the network during the last 3 seconds
Pk/Sec	average number of packets per second on the network during the last 3 seconds
ThisNI	percentage of network bandwidth consumed by DEMNA-related traffic during the last 3 seconds
Other	percentage of network bandwidth consumed by traffic related to other nodes during the last 3 seconds
TotBaud	percentage of network bandwidth consumed by all nodes during the last 3 seconds (sum of ThisNI and Other)

 Table 14–4 (Cont.)
 DEMNA Status and Status/Interval Screens—

 Parameter Definitions

14–14 DEMNA Console Monitor Program

Parameter Description		
NI Counters		
BytesRcv	number of user data bytes received without error	
	Does not include header or CRC bytes.	
BytesSnt	number of user data bytes transmitted without error	
	Does not include header or CRC bytes.	
MBytesRcv	number of user data bytes in multicast packets received without error	
	Does not include header or CRC bytes.	
MBytesSnt	number of user data bytes in multicast packets transmitted without error	
	Does not include header or CRC bytes.	

 Table 14–4 (Cont.)
 DEMNA Status and Status/Interval Screens—

 Parameter Definitions

Parameter	Description	
NI Counters		
PkSnt	number of packets transmitted without error	
	This number includes:	
	 Xmt/Def—packets successfully sent after transmission was deferred because of Ethernet traffic 	
	 Xmt/One—packets transmitted without error after a single collision-and-backoff sequence 	
	 Xmt/Mul—packets transmitted on the third or subsequent attempt 	
PkRcv	number of packets received without error	
MPkSnt	number of multicast packets transmitted without error	
	This number includes:	
	 Xmt/Def—packets successfully sent after transmission was deferred because of Ethernet traffic 	
	 Xmt/One—packets transmitted without error after a single collision-and-backoff sequence 	
	 Xmt/Mul—packets transmitted on the third or subsequent attempt 	
MPkRcv	number of multicast packets received without error	

Table 14–4 (Cont.) DEMNA Status and Status/Interval Screens— Parameter Definitions

14–16 DEMNA Console Monitor Program

Parameter Definitions		
Parameter	Description	
Error Summary		
Xmt/Wire	sum of the following transmit errors:	
	• Maximum number of retries exceeded (Rtry)	
	• Lost carrier (LCar)	
	Late collision (LCol)	
	Maximum length exceeded (MLen)	
	Collision check test (CTest)	
	Transmit timeout (Timeout)	
Rcv/Wire	sum of the following receive errors:	
	• CRC error (Crc)	
	Framing error (Frame)	
	• Maximum length exceeded (MLen)	
	Invalid (Invalid)	
Rcv/Validation	number of receive packets that had one or more filtering/validation errors	
Rcv/NoBuffers	number of receive packets discarded due to one or more resource errors	

 Table 14–4 (Cont.)
 DEMNA Status and Status/Interval Screens—

 Parameter Definitions

Parameter	Description	
Process Statistics		
Null	percentage of CVAX time used by the kernel or scheduler, or both in the last 3 seconds	
Port	percentage of CVAX time used by the Port firmware process in the last 3 seconds	
Xmt-Ln	percentage of CVAX time used by the LanceXmt firmware process in the last 3 seconds	
Xmt-Hs	percentage of CVAX time used by the HostXmt firmware process in the last 3 seconds	
Rcv-Ln	percentage of CVAX time used by the LanceRcv firmware process in the last 3 seconds	
Rcv-Hs	percentage of CVAX time used by the HostRcv firmware process in the last 3 seconds	
Cmd-Hs	percentage of CVAX time used by the Command firmware process in the last 3 seconds	
Mon	percentage of CVAX time used by the Monitor firmware process in the last 3 seconds	
Cons	percentage of CVAX time used the Console firmware process in the last 3 seconds	
Buffers in Use		
Rcv	number of DEMNA-internal receive buffers in use during the last 3 seconds	
Xmt	number of DEMNA-internal transmit buffers in use during the last 3 seconds	

Table 14–4 (Cont.) DEMNA Status and Status/Interval Screens— Parameter Definitions

14–18 DEMNA Console Monitor Program

Parameter	Description		
XNA Bus			
LANCE	percentage of total XNA memory bus traffic generated by the LANCE in the last 3 seconds		
XNAGA	percentage of total XNA memory bus traffic generated by the DEMNA gate array in the last 3 seconds		
XMI			
0F	percentage of existing XMI bus traffic generated by th XMI node (0–F) in the last 3 seconds		

 Table 14–4 (Cont.)
 DEMNA Status and Status/Interval Screens—

 Parameter Definitions

Table 14–5 DEMNA Status/Error Screen—Parameter Definitions

Parameter	Description
Ethernet Address	DEMNA's actual physical address (APA)
Date and Time	current date and time
Uptime	time since the DEMNA was last reset

14–20 DEMNA Console Monitor Program

Parameter Description **Rcv Counters** number of user data bytes received without error BytesRcv Does not include header or CRC bytes. PkRcv number of packets received without error Rcv/MCAUrfd number of multicast packets discarded because the packet's user designator was not enabled for any of the users defined to the port SizeFilter number of receive packets longer than the maximum size requested by the destination user Rcv/SrcMCA number of packets received with multicast source addresses Misc/Cnt1 Miscellaneous counter 1 (reserved for future use) Rcv/Invalid number of 802 receive packets that were too short to determine anything from Rcv/Short802 number of 802 packets whose length was shorter than what was stated in the Length field Rcv/Long802 number of 802 packets whose length was longer than what was stated in the Length field Rcv/Missed number of times the LANCE reported a missed error Rcv/Dor number of receive packets discarded by the firmware because the DEMNA was unable to keep up with the data rate NoRcvBuf number of times the port looked for, but did not obtain, a system buffer number of receive packets discarded because a system Rcv/Stale buffer was unavailable Rcv/Ubua number of receive packets discarded because a user buffer was unavailable

Table 14–5 (Cont.) DEMNA Status/Error Screen—Parameter Definitions

 Table 14–5 (Cont.)
 DEMNA Status/Error Screen—Parameter Definitions

Parameter	Description
Rcv Counters	
Rcv/Sbua	number of receive packets discarded by the firmware because a system buffer was unavailable
Rcv/Crc+Frame	number of receive packets that had either a CRC error or a framing error
Rcv/MLen	number of Ethernet receive packets whose length is longer than 1518 bytes
Rcv/Urfd	number of nonmulticast receive packets discarded because the user designator was not recognized by the port

14–22 DEMNA Console Monitor Program

Parameter	Description
Xmt Counters	
BytesSnt	number of user data bytes transmitted without error
	Does not include header of CRC bytes.
PkSnt	number of packets transmitted without error
	This number includes:
	• Xmt/Def
	• Xmt/One
	• Xmt/Mul
Xmt/Def	number of packets transmitted without error after transmission is delayed once
Xmt/One	number of packets transmitted without error after a single collision-and-backoff sequence
Xmt/Mul	number of packets transmitted without error after more than one collision-and-backoff sequence
Xmt/Rtry	number of packets not transmitted because the maximum (16) transmission retries was exceeded
Xmt/LCar	number of packets that failed transmission because the LANCE did not detect the carrier during transmission
Xmt/LCol	number of packets that failed transmission because of a late collision
Xmt/MLen	number of packets that failed transmission because the total packet length was long than the maximum allowable size
Xmt/CTest	number of times the Collision Detect signal was not detected by the LANCE
Xmt/Timeout	number of times the LANCE failed to complete transmission of a packet with 800 milliseconds

Table 14–5 (Cont.) DEMNA Status/Error Screen—Parameter Definitions

Parameter	Description		
LANCE Counters			
Lan/Restart	number of times the DEMNA firmware restarted the LANCE		
LAN/UOflo	number of transmit underflow error pule the number of receive overflow error detected by the LANCE		
Lan/TRxoff	number of times the firmware noticed the LANCE transceiver or receiver was turned off when it should have been turned on		
Lan/Merr	number of memory errors detected by the LANCE		
Lan/TxRx	number of nonloopback receive packets whose source address is the same as the DEMNA's actual physical address (APA)		
Rcv/Buffer	number of times the LANCE reports a buffer error in a receive buffer descriptor		
Lan/NoSTP	number of buffer descriptors that did not have a start-of-packet indicator		
Miscellaneous Cou	nters		
Err/HostXfer number of transfer errors that occurred during transfer to or a transfer from host memory			
RX/NoRxBuf	number of packets not transmitted in response to a MOP or loopback message because no LANCE transmit buffers were available		
RX/XmtRngFull	number of packets not transmitted in response to a MOP or loopback message because no LANCE transmit ring entries were available		

 Table 14–5 (Cont.)
 DEMNA Status/Error Screen—Parameter Definitions

14-24 DEMNA Console Monitor Program

Parameter	Description
Saved Error Data	
Rtry at	date and time at which the last Xmt/Rtry error occurred
LCar at	date and time at which the last Xmt/LCar error occurred
Sbua at	date and time at which the last Rcv/Sbua error occurred
Crc at	date and time at which the last Rcv/Crc error occurred
	The "Crc at" field records all bad-CRC packets even those not addressed to the DEMNA.
	The Rcv/Crc+Frame counter records only packets addressed to the DEMNA.
Mlen at	date and time at which the last Rcv/Mlen error occurred
Urfd at	date and time at which the last Rcv/Urfd error occurred
LCol at	date and time at which the last Xmt/LCol error occurred
CTst at	date and time at which the last Xmt/CTst error occurred

Table 14–5 (Cont.) DEMNA Status/Error Screen—Parameter Definitions

14.7 DEMNA NETWORK SCREEN

Network Screen

-- 08-00-2B-00-00-01 -- Network -- 01-AUG-1989 10:50:45 --

	- 2	999996 us	ecs	7.4% NI	00:00:0	6 1.	5% NI
#	User	Pks/Sec	Byt/Pk	%NI-Cur	Packets	Bytes(k)	%NI-Tot
-							
1	60-07 NISca	328	211	6.5%	1959	49	1.1%
2	60-03 Decnet	70	155	1.0%	424	9	0.2%
3	60-04 Lat	20	106	0.2%	109	2	0.0%
4	60-02 MopRC	14	94	0.1%	95	1	0.0%
5	80-3F LTM	0	1490	0.0%	2	0	0.0%
6	08-00 IP	1	98	0.0%	3	0	0.0%
#	Nodes	Pks/Sec	Byt/Pk	%NI-Cur	Packets	Bytes(k)	%NI-Tot
-							
1	11.111	122	412	4.3%	796	10	0.5%
2	11.112	119	413	4.3%	754	10	0.5%
3	AB-00-03-00-00-01	28	238	0.6%	171	0	0.0%
4	11.113	37	143	0.5%	216	0	0.1%
5	11.114	43	94	0.4%	254	0	0.1%
6	11.115	39	98	0.4%	246	0	0.1%
7	11.116	13	161	0.2%	41	0	0.0%

GSF_1964_89_MPS

Figure 14–2 DEMNA Network Screen

Parameter	Description	
Ethernet address	DEMNA's actual physical address (APA)	
Date and time	current date and time	
usecs	length of the last interval for which the following network parameter were recorded:	
	Pks/Sec	
	• Byt/Pk	
	• %NI-Cur	
% NI	percentage of maximum Ethernet bandwidth consumed by all nodes on the network during the last interval	

Table 14–6 DEMNA Network Screen—Parameter Definitions

14–26 DEMNA Console Monitor Program

Parameter Description Time cumulative time (in seconds) for which the following network parameters were recorded Packets Bytes (k) %NI-Tot # User column: six network users that generated the most network traffic during the last recorded interval Nodes column: seven nodes that generated the most network traffic during the last recorded interval User user designator for the six most active network users Nodes DECnet address or Ethernet address for the seven most active network nodes Pks/Sec average number of packets transmitted or received per second (per user or per node) Byt/Pk average number of bytes transmitted or received per user or per node %NI-Cur percentage of maximum Ethernet bandwidth consumed by each user or by each node on the network (timing interval determined by the usecs field) Packets cumulative number of packets transmitted or received per user or per node Bytes (k) cumulative number of kilobytes transmitted or received per user or per node %NI-Tot percentage of maximum Ethernet bandwidth consumed by each user or each node (timing interval indicated by the Time field)

 Table 14–6 (Cont.)
 DEMNA Network Screen—Parameter Definitions

15 DEMNA Adapter Registers

15.1 INTRODUCTION

This chapter overviews the DEMNA register structure. Included in the chapter are:

- Lists of the DEMNA registers:
 - XMI architecture
 - Port specific, XMI visible
 - Port specific, node-private
- Register bit maps
- Descriptions of selected registers

This chapter is a quick reference to DEMNA register information. Refer to the *DEC LANcontroller 400 Technical Manual* for detailed descriptions of all registers.

15.2 REGISTER TYPES

Table 15–1 DEMNA XMI Visible Registers

Mnemonic	Offset ¹	Name		
XMI Architecture				
XDEV	00000	XMI device type register		
XBER	00004	XMI bus error register		
XFADR	00008	XMI failing address register		
XCOMM	00010	XMI communications register		
XFAER	0002C	XMI failing address extension register		
DEMNA Port	t Specific			
XDP1	00100	Port data register 1		
XDP2	00104	Port data register 2		
XDPST	00108	Port status register		
XPUD	0010C	Port power-up diagnostic register		
XPCI	00110	Port control initialization register		
ХРСР	00114	Port control poll register		
XPCS	00118	Port control shutdown register		

¹Address offset (in hex) from the node's XMI base address

Mnemonic	Name			
Gate Array Registers				
GACSR	Gate array control and status register			
GAHIR	Gate array host interrupt register			
GAIVR	Gate array IDENT vector register			
GATMR	Gate array timer register			
Datamove Re	egisters			
DMPORn	Datamove port address register (n=0 to 3)			
DMCSRn	Datamove control and status register (n=0 to 3)			
DMXMIn	Datamove XMI address register (n=0 to 3)			
DMNPAn	Datamove next page address register (n=0 to 3)			
Peek Registe	ers			
PKXMILn	Peek XMI low address register (n=0 or 1)			
PKXMIHn	Peek XMI high address register (n=0 or 1)			
PKDATAn	Peek data A register (n=0 or 1)			
PKDATBn	Peek data B register (n=0 or 1)			

Table 15–2 DEMNA Node-Private Registers

NOTE

Table 15–2 only lists the node-private registers which are included in the DEMNA non-fatal error blocks. Refer to the *DEC LANcontroller 400 Technical Manual* for information on error reporting and the non-fatal error blocks.

15-4 DEMNA Adapter Registers

15.3 REGISTER BIT DESCRIPTION CONVENTIONS

In the register description tables that follow, the access type of the bit(s) being described is denoted by a mnemonic enclosed in parentheses after the bit field name. The bit access codes are as follows:

Code	Indication
0	Bit(s) initialized to logic 0
1	Bit(s) initialized to logic 1
RO	Read-only
R/W	Read/write
R/W1C	Read/Write-1-to-clear
U	Undefined

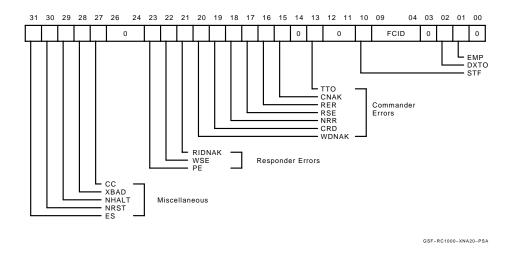
15.4 XMI ARCHITECTURE REGISTERS

The following registers must be present in the node to support the XMI bus architecture. These registers all reside in the DEMNA gate array.

15.4.1 XMI Device Register (XDEV, bb+0000)

31	16	15 0	0
	Device Revision	Device Type	

GSF-RC1000-XNA02-PSA


Bit(s) Name/Description 31:16 Device revision (RO, 0) Identifies the DEMNA hardware and EEPROM firmware revision levels. A zero value indicates an uninitialized node. The high-order byte of the field is the hardware revision. The low-order byte is the EEPROM firmware revision. 31:23 Hardware revision (RO, 0) Exceeded with a value which summers the letter order of the

Encoded with a value which represents the letter code of the hardware revision level. The encoding for the first ten revisions are as follows. Note that letter codes "G", "I", and "O" are not used:

Value	Revision
01	A
02	В
03	С
04	D
05	E
06	F
08	Н
0A	J
0B	K
0C	L

15-6 DEMNA Adapter Registers

Bit(s)	Name/Description				
24:16	EEPROM	A firmware revision level (RO, 0)			
	Value	Revision			
	01	01			
	02	02			
	03	03			
	08	08			
	09	09			
	0A	10			
15:00	Device type (RO, 0)				
	The DEMNA device type is 0C03. A zero value indicates an uninitialized node.				

15.4.2 XMI Bus Error Register (XBER, bb+0004)

Bit(s)	Name/Description
31	Error summary (RO, 0)
	Logical "OR" of the error bits in the register.
30	Node reset (R/W, 0)
	When set by the host, initiates a power-up reset which is similar to a power-up caused by XMI DC LO.
	When NRST is set, the DEMNA executes its self-tests and asserts

When NRS1 is set, the DEMNA executes its self-tests and asserts XMI BAD until the self-tests pass. Other nodes cannot access the DEMNA, and the DEMNA will not access other nodes, until self-tests pass or the maximum self-test time is exceeded.

NRST is cleared on a power-up caused by XMI DC LO, but remains set if the host issued a node reset. The bit remains set in this case to indicate to the DEMNA CVAX that the host issued a node reset. DEMNA firmware clears the bit once the node reset has completed.

15-8 DEMNA Adapter Registers

Bit(s)	Name/Description
29	Node halt (R/W, 0)
	Set by the host to force the DEMNA to execute its halt sequence and enter a quiet state. When the host clears NHALT, the DEMNA executes its restart sequence, which is similar to a power-up except that self-tests are not performed.
28	XMI bad (R/W, 1)
	Reflects the state of self-test fail (bit <10>) and drives the XMI BAD line. When STF is set, indicating that the DEMNA has not passed self-test, the DEMNA sets XBAD and asserts XMI BAD. When STF is cleared, the DEMNA clears XBAD and deasserts XMI BAD.
27	Corrected confirmation (R/W1C, 0)
	Set if the DEMNA detected a single-bit CNF error. Single-bit CNF errors are automatically corrected by the XCLOCK chip.
26:24	Not implemented, reads of these bits return a zero.
23	Parity error (R/W1C, 0)
	Set if the DEMNA detected a parity error on an XMI cycle. The cycle need not have been directed to the DEMNA.
22	Write sequence error (R/W1C, 0)
	Set if the DEMNA detected missing data cycles on a write transaction to the DEMNA.
21	Read/IDENT data NoAcK (R/W1C, 0)
	Set if a DEMNA initiated Read or IDENT data cycle received a NoAck confirmation.
20	Write data NoAck (R/W1C, 0)
	Set if a DEMNA initiated Write data cycle received a NoAck confirmation.
19	Corrected read data (R/W1C, 0)
	Set if the DEMNA received a CRDn read response.
18	No read response (R/W1C, 0)
	Set if a DEMNA initiated transaction failed due to a read response timeout.

DEMNA Adapter Registers 15-9

Bit(s)	Name/Description
17	Read sequence error (R/W1C, 0)
	Set if a DEMNA initiated transaction failed due to a read sequence error.
16	Read error response (R/W1C, 0)
	Set if the DEMNA received a read error response.
15	Command NoAck (R/W1C, 0)
	Set if a DEMNA initiated C/A cycle received repeated NoAck confirmations for the duration of the timeout period. CNAK can result from a reference to nonexistent memory or a C/A cycle parity error and is set only if repeated attempts fail.
14	Reserved, must be zero.
13	Transaction timeout (R/W1C, 0)
	Set if a DEMNA initiated transaction did not complete within the timeout period.
12:11	Not implemented. Reads of these bits return a zero.
10	Seft-test fail (R/W1C, 1)
	Set during a power-up or node rest until the DEMNA passes self-test. Cleared when the DEMNA passes self-test.
9:4	Failing commander ID (RO, 0)
	Logs the commander ID of a failed transaction. FCID is logged if any of the bits <20,18:13> is set.
3	Not implemented. Reads of this bit return a zero.
2	Disable XMI timeout (RW, 0)
	When set, disables the DEMNA's reporting of NRR or TTO if retries are disabled.
1	Enable MORE protocol (RW, 0)
	When set, allows the DEMNA to set the MORE bit (XMI D <59>) during the C/A cycle of a data transfer transaction. When clear, inhibits the DEMNA from setting MORE.
0	Reserved, must be zero.

I

15–10 DEMNA Adapter Registers

15.4.3 XMI Failing Address Register (XFADR, bb+0008)

31 30	29 28		00
FLN		Failing Address [28:00]	
	Address [39]		

GSF_1739_89.DG

Bit(s)	Name/Descript	tion			
31:30	Failing length (RO, 0)				
	Logs the value of a failed trans	of XMI D $<31:30>$ (length field) during the C/A cycle action.			
	FLN is loaded on every C/A cycle issued by the DEMNA and is locked if all retries of the transaction fail. The field is unlocked when the error that caused the lock is cleared.				
29:0	Failing address	(RO, 0)			
	Logs the value of XMI D <29:00> (address field) during the C/A cycle of a failing transaction.				
	The failing address is loaded on every C/A cycle issued by the DEMNA and is locked if all retries of the transaction fail. The field is unlocked when the error that caused the lock is cleared.				
		h 30-bit addressing, XMI D $<29:00>$ are equal to 00>. On systems with 40-bit addressing, the XMI D as follows:			
	XMI D Bit(s)	Address Bits			
	57:48	38:29			
		20			
	29	39			

15.4.4 XMI Communication Register (XCOMM, bb+00010)

31		30 28	27 24	23	16	15	14 12	11 08	07	00
		0	NIDOUT	CHAROUT			0	NIDIN	CHARIN	
	Busy Out					Busy I	n			

GSF-RC1000-XNA03-PSA

Bit(s)	Name/Description
31	Busy out (R/W)
	When set, indicates that the CHAROUT field contains a character that has not yet been read by the host. The host clears the bit after reading the CHAROUT field.
30:28	Reserved, bits must be zeros.
27:24	Node ID out (R/W)
	Written with the XMI node ID of the slot in which the DEMNA is plugged. Indicates the CHAROUT field is from the DEMNA.
23:16	Character out (R/W)
	Contains the character sent by the DEMNA to the host.
15	Busy in (R/W)
	When set, indicates that the CHARIN field contains a character that has not yet been read by the DEMNA. The DEMNA clears this bit after reading the CHARIN field.
14:12	Reserved, bits must be zeros.
11:08	Node ID in (R/W)
	Contains the XMI node ID of the node that wrote the data in the CHARIN field.
07:00	Character in (R/W)
	Contains the character sent by the host to the DEMNA.

15–12 DEMNA Adapter Registers

Using XCOMM to Read the DEMNA Default Physical Address

- 1. Deposit FFFFFFF into XCOMM. Examine register to obtain bytes 0 to 3 of the DPA.
- 2. Deposit FFFFFFE into XCOMM. Examine register to obtain bytes 4 and 5 of the DPA.

	31 24	23 16	15 08	07 00
1st Register Read	Byte 3	Byte 2	Byte 1	Byte 0
2nd Register Read	0	0	Byte 5	Byte 4

Default Physical Address

GSF-RC1000-XNA21-PSA

Using XCOMM to Read the DEMNA Module Serial Number

- 1. Deposit FFFFFFD into XCOMM. Examine register to obtain serial number bytes 0 to 3.
- 2. Deposit FFFFFFC into XCOMM. Examine register to obtain serial number bytes 4 to 7.
- 3. Deposit FFFFFFB into XCOMM. Examine register to obtain serial number bytes 8 to 11.

	31 24	23 16	15 08	07 00
1st Register Read	Byte 3	Byte 2	Byte 1	Byte 0
2nd Register Read	Byte 7	Byte 6	Byte 5	Byte 4
3rd Register Read	Byte 11	Byte 10	Byte 9	Byte 8

Module Serial Number Bytes

GSF-RC1000-XNA22-PSA

Using XCOMM to Invalidate the EEPROM

- 1. Deposit FFFFFFA into XCOMM, then read register.
- 2. If XCOMM contains all zeros, EEPROM is invalidated.

Using XCOMM to Clear the EEPROM History Data

- 1. Deposit FFFFFF9 into XCOMM, then read register.
- 2. If XCOMM contains all zeros, error history is erased.

Using XCOMM to Read EEPROM History Data

History data (256 longwords) can be read from the EEPROM, one longword at a time. The offsets of history data longwords 0 through 255 are encoded with hexidecimal numbers -8 through -107 (FFFFFF8 to FFFFFEF9), respectively. To read a longword of history data:

- 1. Deposit encoded offset value into XCOMM
- 2. Examine XCOMM

For example, to read history data longword 0, deposit FFFFFF8 (-8 in hex) into the XCOMM; to read longword 255, deposit FFFFFEF9 (-107 in hex).

15.4.5 XMI Failing Address Extension Register (XFAER, bb+002C)

31 28 27 26 25		25 16	15 00
CMD	0	XMI Address[38:29]	MASK[15:00]

GSF_1740_89.DG

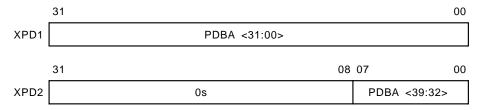
Bit(s)	Name/Descriptio	n
31:28	Failing command (RO, 0)	
	Logs XMI D<63:60> (command field) during the C/A cycle of a failed transaction.	
	The field is loaded on every C/A cycle issued by the DEMNA and is locked if all retries of the transaction fail. The field is unlocked when the error that caused the lock is cleared.	
27:26	Reserved, bits must be zero.	
25:16	Failing address extension (RO, 0)	
	Logs XMI D $<57:48>$ (extended address field) during the C/A cycle of a failed XMI transaction or bits $<38:29>$ of the address specified in a DMA read or write transaction.	
	The failing address extension is loaded on every C/A cycle issued by the DEMNA and is locked if all retries of the transaction fail. The field is unlocked when the error that caused the lock is cleared.	
	On systems with 40-bit addressing, XMI D $<57:48>$ are the extended XMI address bits. On these systems, the XMI D bits are encoded as follows:	
	XMI D <57:00>	Address Bits
	57:48	38:29
	29	39
	28:00	28:00

DEMNA Adapter Registers 15–15

Bit(s)	Name/Description
15:0	Failing mask (RO, 0)
	Logs XMI D <47:32> (mask field) during the C/A cycle of a failed transaction or the write mask for DMA writes. The field is undefined for other transactions.
	Failing Mask is loaded on every C/A cycle issued by the DEMNA and is locked if all retries of the transaction fail. The field is unlocked when the error that caused the lock is cleared.

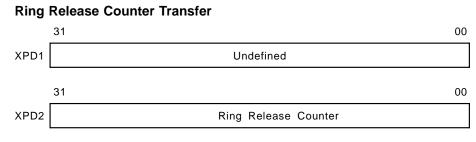
15.5 PORT SPECIFIC, XMI VISIBLE REGISTERS

The following registers are required to communicate with the port driver. These registers all reside in the DEMNA gate array.


15–16 DEMNA Adapter Registers

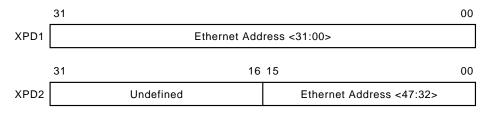
15.5.1 Port Data Registers (XPD1, bb+00100; XPD2, bb+00104)

XPD1 and XPD2 are accessed by the port and the port driver during the following information transfers:


- Port Data Block (PDB) Base Address
- Ring Release Counter
- Default Ethernet Address
- Port Error Data

Port Data Block Base Address Transfer

GSF-RC1000-XNA04-PSA


Register	Contents	
XPD1	Port data block physical base address bits <31:00>	
XPD2	Port data block physical base address bits <39:32>	

GSF-RC1000-XNA05-PSA

Register	Contents
XPD1	Undefined
XPD2	Value which indicates the total number of commands and receive ring entries processed by the port driver since the port was last initialized. (The ring release count is always one less than the actual number of ring entries processed.)

Default Ethernet Address Transfer

GSF-RC1000-XNA06-PSA

Register	Contents
XPD1	Bits <31:00> of the DEMNA's default (MAC) Ethernet address. Written by the port after power-up, node reset, or node halt/restart.
XPD2	Bits <47:32> of the DEMNA's default (MAC) Ethernet address. Writen by the port after power-up, node reset, or node halt/restart.

15–18 DEMNA Adapter Registers

31 00 XPD1 Error Data 31 00 Undefined 00 XPD2 OR 31 00 Ring Release Counter 00

Port Error Data Transfer

GSF-RC1000-XNA07-PSA

Register	Contents
XPD1	Written with one of three values depending on the error type when a fatal port error is detected:
	Invalid Port Data Block field address
	• Firmware PC
	Current ring offset
	For some errors (XPST state qualifier field equal to 2, 3, 5, 6, or 7), XPD1 may contain information from a previous write.
XPD2	Value which indicates the total number of command and receive ring entries the port driver processed since the port was last initialized.
	When XPD1 contains an invalid PDB field address, XPD2 is undefined. When XPD1 contains the firmware PC or the current ring offset, XPD2 contains the ring release counter.

15.5.2 Port Status Register (XPST, bb+00108)

31	08 07 00
State Qualifier	State

GSF-RC1000-XNA08-PSA

Bit(s)	Name/	Description
31:08	State Qu	ualifier
	Indicate	s the reason the port is in its current state.
	See the	entries following this table.
07:00	State	
	Indicate	s the current port state.
	Code	State
	0	Resetting
		DEMNA is executing its power-up or node halt/restart sequence.
	1	Uninitialized
		DEMNA has completed its reset, power-up, node halt/restart, or shutdown sequence.
	2	Initialized
	~	

The following tables list the state qualifier codes and the contents of the XPD1 and XPD2 registers corresponding to each code.

15–20 DEMNA Adapter Registers

After Power-up or Node Reset

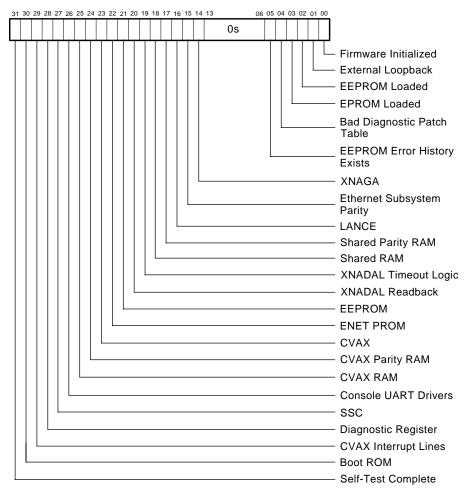
Code	Meaning	Port State	XPST	XPD1/XPD2
0	No error	Uninitialized	00000001	MAC address
1	Self-test failed	Uninitialized	00000101	MAC address

After Node Halt

Code	Meaning	Port State	XPST	XPD1/XPD2
0	Halt/Restart complete	Uninitialized	00000001	MAC address
13	Halt/Restart in progress	Resetting	00000D00	Unchanged

After Port Node Initialization

Code	Meaning	Port State	XPST	XPD1/XPD2
0	Initialization succeeded	Initialized	0000002	Unchanged
2	Initialization failed: failed self-test	Uninitialized	00000201	Unchanged
3	Initialization failed: invalid base address of Port Data Block (PDB) in XPD1 and XPD2	Uninitialized	00000301	Invalid base address of PDB
4	Initialization failed: contents of a PDB field not valid	Uninitialized	00000401	Address of invalid PDB field
5	Initialization succeeded but EEPROM contents invalid.	Uninitialized	00000502	Unchanged


DEMNA Adapter Registers 15-21

Code	Meaning	Port State	XPST	XPD1/XPD2
7	Initialization attempted when port not in uninitialized state.	Uninitialized	00000701	Unchanged
8	Invalid command ring	Uninitialized	00000801	Current ring offset (in bytes) in XPD1
9	Invalid receive ring	Uninitialized	00000901	Current ring offset (in bytes) in XPD1
10	Power failure	Uninitialized	00000A01	Firmware PC in XPD1
11	Unexpected firmware exception	Uninitialized	00000B01	Firmware PC in XPD1
12	Unrecoverable XMI failure, including memory error	Uninitialized	00000C01	Firmware PC in XPD1
14	Fatal firmware internal error occurred	Uninitialized	00000E01	Firmware PC in XPD1
15	Fatal firmware internal error - keep-alive counter error (firmware was in an infinite loop)	Uninitialized	00000F01	Firmware PC in XPD1
16	Firmware update completed	Uninitialized	00001001	Unchanged

After Port Shutdown

15–22 DEMNA Adapter Registers

15.5.3 Power-Up Diagnostic Register (XPUD, bb+010C)

GSF_1977_89.DG

DEMNA Adapter Registers 15-23

Bit(s)	Name/Description
31	Self-test complete (RO, 0)
	When set, indicates that the DEMNA self-tests completed and the contents of the XPUD are valid. The register contents are invalid when STC is cleared.
30	Boot ROM (RO, 0)
	When set, indicates that the contents of the Boot ROM (also called the EPROM) are valid.
29	CVAX interrupt lines (RO, 0)
	When set, indicates that the CVAX interrupt lines are not stuck (always asserted) or being driven by onboard logic.
28	Diagnostic register (RO, 0)
	When set, indicates that all bits in the Diagnostic Register powered- up to the correct state and can be read and written.
27	SSC (RO, 0)
	When set, indicates that the SSC chip is operational.
26	Console UART drivers (RO, 0)
	When set, indicates that the console UART drivers are operational.
25	CVAX RAM (RO, 0)
	When set, indicates that the CVAX RAM is operational (passed the CVAX RAM march test).
24	CVAX parity RAM (RO, 0)
	When set, indicates that the CVAX parity RAM is operational.
23	CVAX (RO, 0)
	When set, indicates that the CVAX chip is operational.
22	ENET PROM (RO, 0)
	When set, indicates that the contents of the ENET PROM are valid.
21	EEPROM (RO, 0)
	When set, indicates that the contents of the EEPROM are valid.
20	XNADAL readback (RO, 0)
	When set, indicates that the address latches and bus transceivers for the gate array/XNA memory bus interface are operational.

Bit(s)	Name/Description				
19	XNADAL timeout logic (RO, 0)				
	When set, indicates that the timeout logic for the gate array/XNA memory bus interface is operational.				
18	Shared RAM (RO, 0)				
	When set, indicates that the shared RAM is operational (passed the RAM march test).				
17	Shared parity RAM (RO, 0)				
	When set, indicates that the shared parity RAM is operational.				
16	LANCE (RO, 0)				
	When set, indicates that the LANCE chip is operational.				
15	Ethernet subsystem parity (RO, 0)				
	When set, indicates that the parity circuit in the Ethernet subsystem is operational.				
14	XNAGA (RO, 0)				
	When set, indicates that the gate array is operational.				
13:06	Reserved, bits must be zeros.				
5	EEPROM error history exists (RO, 0)				
	When set, indicates that the EEPROM error history has one or more entries.				
4	Bad diagnostic patch table (RO, 0)				
	When set, indicates that the diagnostic patch table in EEPROM is invalid.				
3	EPROM loaded (RO, 0)				
	When set, indicates that the contents of the EPROM have been loaded into the CVAX RAM.				
	The EPROM contains a subset of the EEPROM code. If the EEPROM fails self-test, the contents of the EPROM are loaded into the CVAX RAM. The EPROM code provides enough functionality for the CVAX to run diagnostics, update the EEPROM, and perform transmit and receive operations.				

DEMNA Adapter Registers 15–25

Bit(s)	Name/Description
2	EEPROM loaded (RO, 0)
	When set, indicates that the contents of the EEPROM have been loaded into CVAX RAM.
	The EEPROM contains the DEMNA operational firmware.
1	External loopback (RO, 0)
	When set, indicates that the DEMNA is connected to a live Ethernet or to a loopback connector and that the external loopback test passed.
0	Firmware initialized (RO, 0)
	When set, indicates that the DEMNA firmware is initialized.

15.5.4 Port Control Initialization Register (XPCI, bb+00110)

31		00
	Write Bits	

GSF-RC1000-XNA09-PSA

Bit(s)	Name/Description
31:0	Write bits (WO to port driver, U to port)
	The port driver writes this register to initialize the port. The write transaction itself causes the operation to be performed; the write data are ignored.

15-26 DEMNA Adapter Registers

15.5.5 Port Control Poll Register (XPCP, bb+00114)

31 00

Write Bits

GSF-RC1000-XNA09-PSA

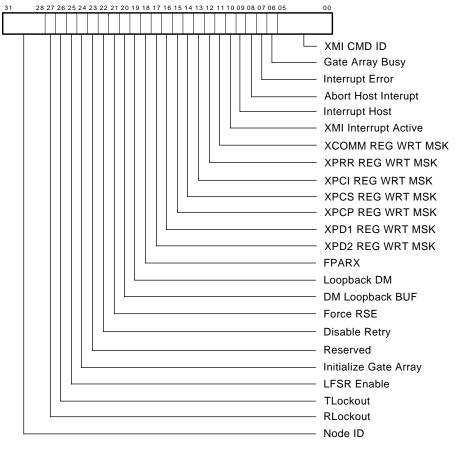
Bit(s)	Name/Description
31:00	Write bits (WO to port driver, U to port)
	The port driver writes this register to command the port to poll the command ring for a new entry. The write transaction itself causes the operation to be performed; the write data are ignored.

15.5.6 Port Control Shutdown Register (XPCS, bb+00118)

31

00

Write Bits


GSF-RC1000-XNA09-PSA

Bit(s)	Name/Description
31:00	Write bits (WO to port driver, U to port)
	The port driver writes this register to shut down the port. The write transaction itself causes the operation to be performed; the write data are ignored.

15.6 NODE-PRIVATE REGISTERS

The following registers are not visible on the XMI, but are included in the DEMNA non-fatal error blocks (see the *DEC LANcontroller 400 Technical Manual*). Only the GACSR is described.

DEMNA Adapter Registers 15-27

15.6.1 Gate Array Control and Status Register (GACSR)

GSF_1981_89.DG

15–28 DEMNA Adapter Registers

Bit(s)	Name/Description
31:28	Node ID (RO)
	Physical node ID (XMI Node ID<3:0>) of the DEMNA.
27	RLockout (RO)
	Indicates the status of the XCI Receive Lockout line $(1 = line asserted)$.
26	TLockout (RO)
	Indicates the status of the XCI Transmit Lockout line (1 = line asserted).
25	Not implemented, reads of this bit return a zero.
24	Initialize gate array (RW, 0 after reset, unaffected by INIT)
	Provides a means for resetting the DEMNA gate array without losing error information. When this bit is set, the gate array:
	Clears its control logic
	Transfers the ownership bits in the Peek and Datamove registers back to firmware ownership
	Clears its internal registers except for XMI and port registers
	The bit is cleared when initialization is finished.
23	Reserved, must be zero
22	Disable retry on NoAcks (RW, 0 after reset, unaffected by INIT)
	When set, causes the gate array to record an error on the first NOACK received from the XMI.
21	Force read sequence error (RW, 0 after reset, unaffected by INIT)
	When set, forces GRD1 onto the XCI function lines when the gate array is the responder and returning read data. This function can be used in Loopback Peek or Datamove Read operations.

Bit(s)	Name/Description			
20	Datamov	e loopback buffer (RW, 0 after reset, unaffected by INIT)		
	Used in conjunction with bit $<19>$ (Loopback Datamove) to control the action of the gate array on loopback datamove operations:			
	Loopback datamove transmits			
	Bit clear	Gate array uses the first or second quadword in the internal memory buffer depending on the byte offset of the datamove loopback address.		
	Bit set	Gate array uses the third or fourth quadword in the internal memory buffer depending on the byte offset of the datamove loopback address.		
	Loopback datamove receives			
	Bit clear	Gate array uses the first two quadword locations in the internal memory buffer.		
	Bit set	Gate array uses the last two quadword locations in the buffer.		
9	Loopback	د datamove (RW, 0 after reset, unaffected by INIT)		
	When set, enables XMI loopback datamove transactions. When cleared, disables these transactions.			
8	Force bad XMI receive parity (RW, 0 after reset, unaffected by INIT)			
	When set, disables XMI parity checking and forces bad receive parity on XMI P <2>. The parity error bit in XBER is set one cycle after FPARX is set.			
7	XPD2 reş INIT)	gister written mask (R/W1C, 0 after reset, unaffected by		
	Set when	n Port Data Register 2 (XPD2) is written by the host.		
6	XPD1 reş INIT)	gister written mask (R/W1C, 0 after reset, unaffected by		
	Set when	n Port Data Register 1 (XPD1) is written by the host.		

15–30 DEMNA Adapter Registers

_ |

Bit(s)	Name/Description		
15	XPCP register written mask (R/W1C, 0 after reset, unaffected by INIT)		
	Set when the Port Control Poll Register (XPCP) is written by the host.		
14	XPCS register written mask (R/W1C, 0 after reset, unaffected by INIT)		
	Set when the Port Control Shutdown Register (XPCS) is written by the host.		
13	XPCI register written mask (R/W1C, 0 after reset, unaffected by INIT)		
	Set when the Port Control Initialize (XPCI) Register is written by the host.		
12	XPRR register written mask (R/W1C, 0 after reset, unaffected by INIT)		
	Set when the Port Ring Release (XPRR) Register is written by the host.		
11	XCOMM register written mask (R/W1C, 0 after reset, unaffected by INIT)		
	Set when the XMI Communications (XCOMM) Register is written by the host.		
10	XMI interrupt active (R0, 0 after reset and INIT)		
	Set when the DEMNA receives an ACK for an interrupt sent to the host. Bit is cleared when the DEMNA receives an IDENT.		
9	Interrupt host (R/W, 0 after reset and INIT)		
	Set by the firmware to initiate a host interrupt. The firmware clears the bit when interrupt processing completes by resetting the gate array.		
8	Abort host interrupt (R0, 0 after reset and INIT)		
	Set by the firmware to abort a host interrupt in progress. The gate array will not issue another host interrupt until the abort is completed. The firmware clear the bit after the interrupt is successfully aborted by resetting the gate array.		

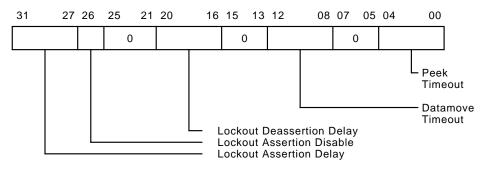
DEMNA Adapter Registers 15-31

Bit(s)	Name/Description		
7	Interrupt error (R/W1C, 0 after reset, unaffected by INIT)		
	Set if a DEMNA issued interrupt resulted in an error condition. An interrupt error can be caused by one of the following:		
	Transaction timeout		
	INTERRUPT command NOACKed		
	IDENT returned with wrong IPL		
	IDENT response NOACKed		
6	Gate array busy (R0, 0 after reset, unaffected by INIT)		
	Set when the gate array is busy processing a datamove or a peek operation. This bit is an OR of all the Ownership bits in the Datamove and Peek registers.		
5:0	XMI command ID (R0)		
	Logs the XMI command ID last on the XMI bus.		

15–32 DEMNA Adapter Registers

15.6.2 Gate Array Host Interrupt Register (GAHIR)

31	20	19 16	15 00
	0	Level	XMI Node Mask ID

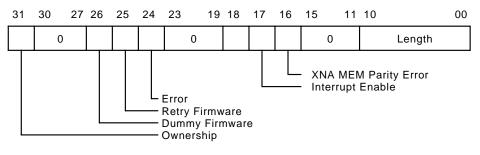

GSF-RC1000-XNA10-PSA

15.6.3 Gate Array IDENT Vector Register (GAIVR)

31		16 15	02 01 00
	0	Vector	0

GSF-RC1000-XNA11-PSA

15.6.4 Gate Array Timer Register (GATMR)


GSF-RC1000-XNA12-PSA

15.6.5 Datamove Port Address Registers (DMPORn)

31 23	3 22 18	17 00
DMXMIL <8:0>	0	Port Address <17:00>

GSF-RC1000-XNA13-PSA

15.6.6 Datamove Control and Status Registers (DMCSRn)

GSF-RC1000-XNA14-PSA

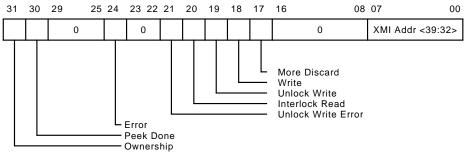
15.6.7 Datamove XMI Address Register (DMXMIn)

31	30	00
0	XMI Address <39:09>	

GSF-RC1000-XNA15-PSA

15.6.8 Datamove Next Page Address Register

GSF-RC1000-XNA16-PSA


15–34 DEMNA Adapter Registers

15.6.9 Peek XMI Low Address Register (PKXMILn)

31	30	00
0	XMI Address <31:00>	

GSF-RC1000-XNA17-PSA

15.6.10 Peek XMI High Address Register (PKXMIHn)

GSF-RC1000-XNA18-PSA

15.6.11 Peek Data A and Peek Data B Registers (PKDATAn, PKDATBn)

31		00
	Data	

GSF-RC1000-XNA19-PSA

16 DEMNA Sequencing Flows

16.1 POWER-UP/RESET SEQUENCE

The DEMNA executes its power-up/reset sequence in response to any of three events:

- System power-up
- System reset
- Node reset

The system wide events are signified by the transitioning of the XMI DC LO and XMI AC LO signals. Node reset is initiated when the host sets the NRST bit in the XBE register. Port state information is not saved across a power-up/reset.

Figure 16–1 shows the power-up/reset sequence.

16.2 NODE HALT/RESTART SEQUENCE

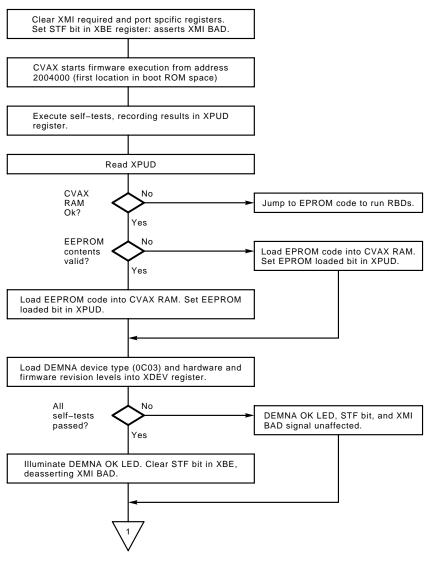
The port driver initiates a node halt/restart by setting then clearing the NHALT bit in the XBE register. Setting the bit halts the DEMNA; clearing the bit restarts the port.

The following port state information is saved across a node halt/restart:

- Node halt fatal error block. Written to the PDB if the port was in the initialized state when NHALT was set.
- Port-internal error data. Visible by the console monitor program or with the READ\$ERROR port driver command.

16–2 DEMNA Sequencing Flows

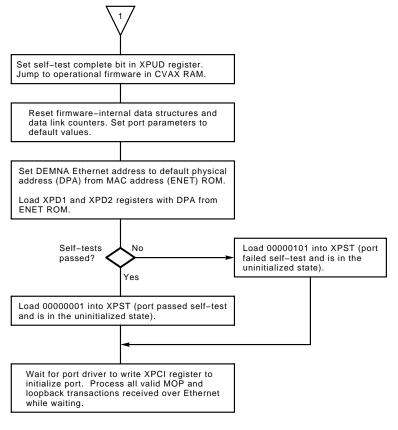

• Port-internal counters, including the data link counters. Visible by the console monitor program or with the port driver commands: RCCNTR/RDCNTR, READ\$ERROR, READ\$SNAPSHOT, and READ\$STATUS.


Figure 16–2 shows the node halt/restart sequence. Note that the DEMNA self-tests are not executed as in the power-up/reset sequence.

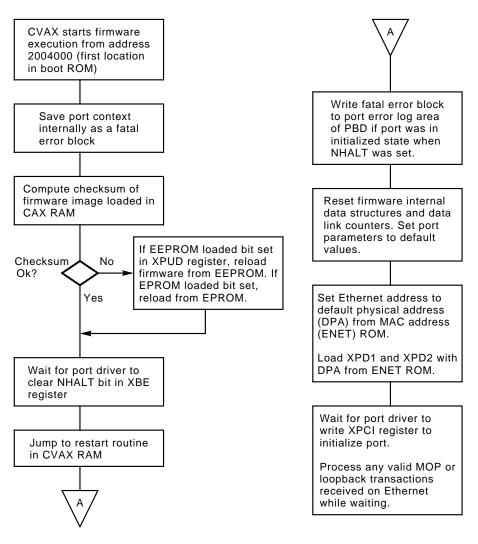
16.3 PORT SHUTDOWN

The port initiates a shutdown if it is in the initialized state and either a fatal error occurs or the port driver issues a shutdown command by writing the XPCS register. The shutdown sequence is also invoked in response to a power fail, indicated by the assertion of the XMI AC LO signal. When this signal is asserted, a power-fail trap occurs in the CVAX, causing the port to execute the shutdown sequence.

Figure 16–3 shows the shutdown sequence.

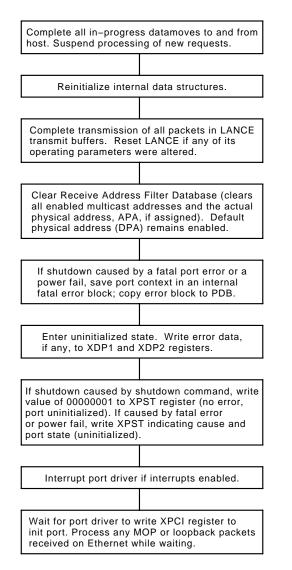


GSF-RC1000-XNA30-PSA


Figure 16–1 (Continued, next page) DEMNA Power-Up and Node Reset

16-4 DEMNA Sequencing Flows

GSF-RC1000-XNA31-PSA


Figure 16–1 DEMNA Power-Up and Node Reset

GSF-RC1000-XNA32-PSA

Figure 16–2 DEMNA Node Halt/Restart

16–6 DEMNA Sequencing Flows

GSF-RC1000-XNA33-PSA

Figure 16–3 DEMNA Shutdown

17 DEMNA Error Handling

17.1 Introduction

This chapter overviews the error handling features of the DEMNA. It describes the types of errors reported by the port, the error blocks maintained by the port, error logging, and the port's response to errors.

17.2 Error Types

Fatal Errors

Fatal errors result in a port shutdown. For several fatal error types, the port writes a fatal error block to the port error log area of the port data block (PDB). Fatal errors include the following:

- DEMNA CVAX machine check and exceptions
- Node halt/restart while port is in the initialized state
- Port initialization failures
- Port driver protocol errors and port command failures
- Specifying more than one buffer for a port command
- · Specifying an invalid number of transmit buffers
- Other firmware-related errors (such as keep-alive timeouts)
- Unrecoverable failed access to the command ring or receive ring
- Firmware updates

17-2 DEMNA Error Handling

Nonfatal Errors

These errors do not result in a port shutdown. The error is retried once. If the retry fails, a fatal error occurs. On a nonfatal error the port writes a nonfatal error block in the PDB. Nonfatal errors include the following:

- Datamove and peek errors which are recovered on the first retry or that did not directly access the command ring or receive ring
- Buffer transfer failures
- Address translation errors
- Port command errors (for example, a command length error)

Ethernet Errors

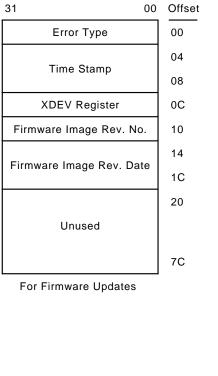
These errors are nonfatal errors which occur in the normal course of Ethernet activity. Ethernet errors include the following:

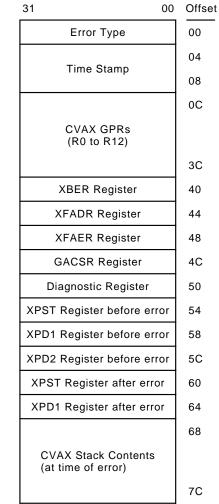
• Transmit and receive errors caused by activity on the Ethernet wire

These errors are recorded in the port's internal data link counters. A user can read the counters by issuing the Network Control Program (NCP) command SHOW KNOWN LINE COUNTERS. Software can read the counters by issuing a RCCNTR/RDCNTR or READ\$STATUS command. The counters are displayed in the Status and Status/Error screens of the console monitor program.

• Receive errors caused by insufficient allocation of system buffers by the host

These errors are recorded in the port's SBUA counter which is displayed in the Status/Error screen of the console monitor program. Software can read the counter by requesting that the port driver issue a RCCNTR/RDCNTR, READ\$STATUS, or READ\$SNAP\$HOT command. A copy of the SBUA is located in the PDB. The PDB copy is updated as often as once per second.


• Receive errors caused by insufficient allocation of user buffers by the host


These errors are recorded in the port's UBUA counter which is located in host memory and is displayed in the Status/Error screen of the console monitor program. Software can read the counter by issuing a RCCNTR/RDCNTR, READ\$STATUS, or READ\$SNAPSHOT command.

17.3 Error Blocks

The DEMNA maintains two types of internal error blocks: one for fatal errors and one for nonfatal errors. A user can examine the error blocks by issuing the console monitor commands SHOW ERROR Hn and SHOW ERROR Sn. Software can read the error blocks by issuing the READ\$ERROR command. The port writes the fatal error block to the port error log area of the port data block (PDB) when a fatal error occurs or when a node halt/restart is issued while the port is in the initialized state.

Figures 17–1 and 17–2 show the error block formats.

For Other Fatal Errors

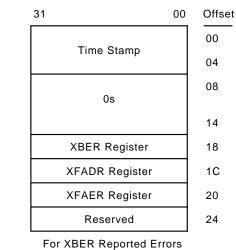

GSF-RC1000-XNA23-PSA

Figure 17–1 Fatal Error Block Formats

17-4 DEMNA Error Handling

31 00	Offset
Time Stemp	00
Time Stamp	04
DataMove or Peek Transaction Registers (03)	08
(03)	14
XBER Register	18
XFADR Register	1C
XFAER Register	20
Base Address of Transaction	24

DEMNA	Error	Handling	17–5
-------	-------	----------	------

For DataMove and Peek Errors

31	00	Offset
Time Stomp		00
Time Stamp		04
GACSR Register		08
GAHIR Register		0C
GAIVR Register		10
GATMR Register		14
XBE Register		18
XFADR Register		1C
XFAER Register		20
GACSR Adress		24

For Interrupt Errors

GSF-RC1000-XNA24-PSA

17-6 DEMNA Error Handling

Notes for Figure 17–1

- Error type:
 - 0 No error
 - 1 DEMNA machine check or exception
 - 2 Node halt/restart issued while the port was in the initialized state. (When the port receives a node halt/restart in the initialized state, it assumes that it is being restarted from an error.)
 - 3 Fatal error other than machine check or exception (for example, port initialization failure or a keep-alive timeout)
 - 4 Firmware updates
 - 6 Driver error. The port driver attempted to initialize the port but the port was already in the initialized state.
- Time Stamp:

Date and time of error expressed in binary absolute format. A value of zero indicates that no error occured. The entry is the sum of the base time specified by the host in the PARAM command, and the DEMNA uptime until the error occured. If the system base time was not specified in the PARAM command, the base time defaults to 01-Jan-88.

• Firmware image revision number and date refer to the EEPROM firmware image. The fields are in ASCII. The revision number is the ASCII code of the low-order byte of the XDEV register. The revision date is of the form *dd-mmm-yyyy*. For example, 12-JUL-1989.

Notes for Figure 17–2

• Datamove/Peek transaction registers:

For datamove transaction errors, these are the four datamove registers: DMPOR*n*, DMCSR*n*, DMXMI*n*, and DMNPA*n*.

For peek transaction errors, these are the four peek registers: PKXMIL*n*, PCKMIH*n*, PKDATA*n*, and PKDATB*n*.

• Base address of transaction is the starting address of the failed datamove or peek operation.

17.4 ERROR LOGGING

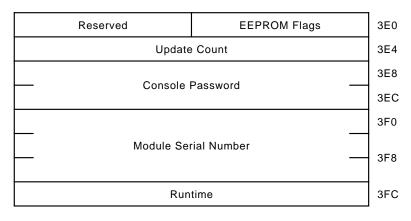
A 1-KByte area in the EEPROM is reserved for the logging of error history data. This area contains 31 error history entries of 32 bytes each and a history entry header which is also 32 bytes long. The user can read the history data with the console monitor command SHOW HISTORY or by depositing and examining the XCOMM register. Software can read the history entries by issuing a READSHISTORY command.

The history data area is partitioned into five segments: four for the logging of error history events and one for the header.

31 16 15	00	Offset
Fatal Error		000
Entries (1-8)		
		0FC
NonFatal Error		100
Entries		
(9–16)		1FC
		200
Diagnostic Error		
Entries (17–24)		
		2FC
Firmware Update		300
Entries (25–31)		
		3DC
History Entry Header		3E0
		3FC

GSF-RC1000-XNA25-PSA

Figure 17–3 EEPROM History Data Area


17-8 DEMNA Error Handling

Entries	Error Type	Logging Information
1 to 8	Fatal	Logged immediately after error occurs. Entries overwritten if more errors occur than can be recorded. Logging stops after 32 fatal errors have been recorded.
9 to 16	Nonfatal	For datamove, peek, or host interrupt errors: logged immediately after error occurs. For XBER-reported errors: logged after firmware polls XBER register and discovers error. Logging stops after 16 nonfatal errors have been recorded.
17 to 24	Diagnostic	Logged immediately after each self-test or RBD error provided that error logging is enabled by the corresponding EEPROM flag (Figure 17–5). Entries not overwritten if more errors occur than can be recorded. Logging stops after eight diagnostic errors have been recorded.
25 to 31	Firmware updates	Logged after each firmware update. Entries overwritten if more firmware updates occur than can be recorded. No limit on number of firmware updates logged.
Header	n/a	Provides module-specific information, including: number of history entries written to EEPROM since the last DEMNA power-up or reset, the console password, the module serial number, and the module runtime.

Table 17–1 EEPROM History Data Entries

17.4.1 History Entry Header

The history entry header contains the DEMNA's current operational parameters which can be modified with the EEPROM Update Program (EVGDB), firmware update data, and history data pointers. Figure 17–4 shows the header format. Table 17–2 describes the header fields. Figure 17–5 shows the EEPROM flags which can be modified by running EVGBD. Table 17–3 describes the EEPROM flags.

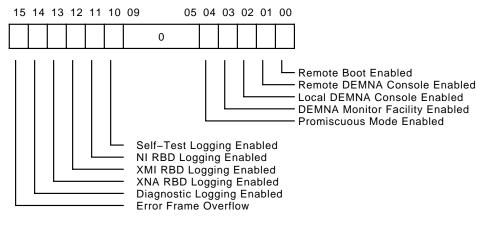

GSF-RC1000-XNA26-PSA

Figure 17–4 History Entry Header

Table 17–2 History Entry Header Fields

Field	Description		
EEPROM Flags	Flags that control various aspects of DEMNA operation See Figure 17–5 and Table 17–3.		
Update Count	Indicates the number of times history entries have been written to the EEPROM since the last DEMNA power-up or reset. If no unused history entries are available, used history entries may be overwritten (the update count can be greater than the total number of history entries in the EEPROM).		
Console Password	Eight ASCII characters that indicate the password required to connect to the DEMNA console monitor program.		
Module Serial Number	Twelve ASCII characters that identify the module.		
Runtime	Total time, in 524,288 second (6.068 day) increments since the DEMNA EEPROM was initialized.		

17–10 DEMNA Error Handling

GSF-RC1000-XNA27-PSA

Figure 17–5 EEPROM Flags

Table 1	7–3 EE	Epron	A Flags
---------	--------	-------	---------

Bit	Name/Function When Set				
15	Error Frame Overflow				
	Indicates that no more diagnostic errors could be written to the EEPROM because all history entries allocated to diagnostic errors have been written.				
14	Diagnostic Logging Enabled				
	Enables the logging of self-test and RBD errors to the EEPROM.				
13	XNA RBD Logging Enabled				
	Enables logging XNA RBD errors to the EEPROM if bit <14> is also set.				
12	XMI RBD Logging Enabled				
	Enables logging XMI RBD errors to the EEPROM if bit $<14>$ is also set.				
11	NI RBD Logging Enabled				
	Enables logging NI RBD errors to the EEPROM if bit <14> is also set.				

Table 17–3 (Cont.) EEPROM Flags

Bit	Name/Function When Set
10	Self-Test Logging Enabled
	Enables logging self-test errors to the EEPROM if bit <14> is also set.
9:5	Reserved, must be zeros.
4	Promiscuous Mode Enabled
	Allows the DEMNA to operate in promiscuous mode by default. If the flag is cleared, an application can override the flag setting by starting up a promiscuous user.
	In promiscuous mode, the DEMNA receives all packets on the network, regardless of a packet's destination. The DEMNA console monitor program uses this information to determine characteristics of the network traffic. If no users defined to the DEMNA are enabled for promiscuous mode, the DEMNA discards the packets not addressed to a DEMNA user. Otherwise, the DEMNA delivers all received packets to each DEMNA user for whom promiscuous mode is enabled.
3	DEMNA Monitor Facility Enabled
	Enables operation of the DEMNA monitor facility, which monitors network operation.
2	Local DEMNA Console Enabled
	Enables DEMNA console monitor program to be accessed from the local network node and from the DEMNA physical console.
1	Remote DEMNA Console Enabled
	Enables DEMNA console monitor program to be accessed from a remote network node.
0	Remote Boot Enabled

Enables DEMNA to participate in remote booting over the network.

17.4.2 History Data Entries

There are two basic formats for history entries: one for diagnostic errors, and one for all other errors. Each history entry is 32 bytes (8 longwords) in length. Figures 17–6 and 17–7 show the entry formats.

31	24 23 16 15 08		07				
	Sequence Number			Count		Туре	
	Diagnostic Revision		MBZ	Diag. No.	Error Count		
Error	Number	SubTest Number	Test N	lumber	Test Type	Node ID	
	Expected Data						
	Received Data						
	System Control Block (SCB) offset						
	Memory Address						
	Program Counter (PC) at failure						

17–12 DEMNA Error Handling

GSF-RC1000-XNA28-PSA

Figure 17–6 History Entry Format For Diagnostic Errors

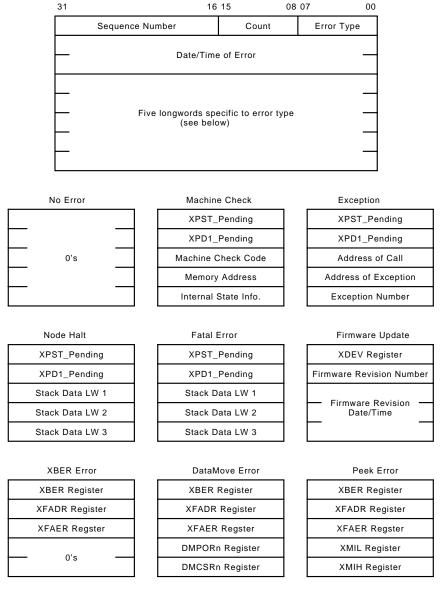

Field	Description
Error type	Error type for diagnostic errors is 5.
Count	Number of times this type of diagnostic error has been recorded.
Sequence Number	Integer from one through 255 which indicates the order in which the entry was logged with respect to other history entries. Lower-numbered entries were logged before higher-numbered entries.
Diagnostic Revision	Two ASCII characters that indicate the revision number of the diagnostic. For example, 39 33 (ASCII) = revision 3.9.
Diagnostic Number	Binary code for the test which reported the error:
	0 = Self-test $1 = NI RBD$ $2 = XMI RBD$ $3 = XNA RBD$
Error Count	Binary count of the number of times this type of diagnostic error has occurred.

Table 17–4 History Entry Fields for Diagnostic Errors

Field	Description
Error Number	Binary code for the specific error reported by the diagnostic test. Refer to the diagnostic listings for error numbers.
Subtest Number	Number of the failing subtest.
Test Number	Number of the failing test.
Test Type	1 = Power-up mode 2 = RBD mode
Node ID	DEMNA's XMI node ID

Table 17–4 (Cont.) History Entry Fields for Diagnostic Errors

17–14 DEMNA Error Handling

GSF-RC1000-XNA29-PSA

Figure 17–7 History Entry Format for All Other Errors

Table 17–5 History Entry Fields for All Other Errors

Fields Common to An	Enter Types
Error type	0 - No error 1 - Machine check 2 - Node halt 3 - Fatal error 4 - Firmware update 6 - XBER-detected error 7 - Peek, datamove, or interrupt failed
Count	Number of times this specific error has been recorded.
Sequence Number	Integer from 1 to 31 which indicates the order in which the entry was logged with respect to other history entries. Lower-numbered entries were logged before higher-numbered entries.
Date/Time of Error	Date and time of error expressed in binary absolute format.
	The entry is the sum of the base time specified by the host in the PARAM command, and the DEMNA uptime until the error occured. If the system base time was not specified in the PARAM command, the base time defaults to 01-Jan-88.
Machine Checks	
XPST_Pending	Value that will be loaded into the XPST after the next state change (after error handling is completed).
XPD1_Pending	Value that will be loaded into the XPD1 after the next state change (after error handling is completed).
Machine Check Code	Value (usually 80 to 83 indicating an invalid address) which indicates the reason for a DEMNA CVAX machine check.
Memory Address	Most recent memory address.
Internal State Information	

Fields Common to All Error Types

17–16 DEMNA Error Handling

Table 17–5 (Cont.)	History E	Entry Fields	for All	Other	Errors
--------------------	-----------	--------------	---------	-------	--------

Exceptions	
XPST_Pending XPD1_Pending	Same as for machine checks
Address of Call	Address of call to shutdown request.
Address of exception	
Exception number	Offset into system control block (SCB).
Node Halt and Fatal Er	rors
XPST_Pending XPD1_Pending	Same as for machine checks
Stack Data LW 1-LW 3	Longwords 1 to 3 of the stack when the error occurred.
Firmware Updates	
Firmware Revision Number	Four ASCII characters that indicate the DEMNA firmware revision. For example, 30313233 (ASCII) = revision 01.23.
Firmware Revision Date/TIme	EEPROM firmware revision date and time expressed in binary absolute format.

17.5 ERROR RESPONSE

The port driver is notified of port-detected errors by one of four means:

- State qualifier field in the XPST register
- · Error codes written by the port to the command and receive rings
- Port-generated interrupt when any hard error bit in the XBER register is set (and error interrupts are enabled)
- Fatal error block and counters in the PDB

When an error is detected, the port driver can issue a RCCNTR/RDCNTR command to read the port's data link counters, a READ\$STATUS command to read status information, or a READ\$ERROR command to read the error blocks.

DEMNA Error Handling 17-17

Tables 17–7 to 17–10 describe the hardware and firmware response to errors. Table 17–6 describes the keys which indicate the port driver's response referenced in the tables.

Table 17–6 Error Response Keys

Key ¹	Description
Status	Driver returns transmit error status to user application and continues as normal.
	User application can view the error status in the I/O Status Block pointed to by the failing QIO operation (if applicable) or in the device counters which can be examined with the NCP command SHOW LINE COUNTERS or with the MOP command REQUEST COUNTERS.
Counters	Driver does not recognize error.
	User application can view error by issuing the NCP command SHOW LINE COUNTERS or the MOP command REQUEST COUNTERS.
Shutdown	Driver records a port shutdown error, returns outstanding transmits to users with a transmit error, and shuts down all users.
	User application can view error as a Circuit Down error in the device counters with the NCP command SHOW CIRCUIT COUNTERS. Subsequent and outstanding QIO requests are returned with transmit failure status.
Crash	Driver machine checks if it had initiated the transaction that experienced the error. This causes a system crash. If the driver did not initiate the transaction that experienced the error, the result cannot be characterized here. The system may crash.

 $^1{\rm The}$ keys defined in this table describe the port driver's response to errors and the indication the user's application receives following an error. The keys apply to Tables 17–7 to 17–10.

17–18 DEMNA Error Handling

Table 17–7 Response To Ethernet Errors

Error	Response	Key ¹
Loss of Carrier	LANCE completes transmission of packet and continues to transmit and receive packets.	Status
	Firmware returns Transmit Failed—Loss of Carrier error to host command ring entry, increments Send Failures—Loss of Carrier counter, and continues as normal.	
Late Collision	LANCE does not retry error; continues to transmit and receive packets.	Status
	Firmware returns Transmit Failed—Late Collision error to host command ring entry, increments Send Failures—Late Collision counter, and continues as normal.	
Retry Error (excessive	LANCE aborts transmission of packet; continues to transmit and receive subsequent packets.	Status
collisions)	Firmware Returns Transmit Failed—Retries Exhausted error to host command ring, increments Send Failures—Retries Exhausted counter, and continues as normal.	
Framing Error	LANCE continues to transmit and receive packets.	Counters
	Firmware returns Receive Failed—CRC Error to host receive ring, increments Receive Failures— Framing Error counter, discards packet ² , and continues as normal.	
CRC Error	LANCE continues to transmit and receive packets.	Counters
	Firmware returns Receive Failed—CRC Error to host receive ring, increments Receive Failures— CRC Error counter, discards packet ² , and continues as normal.	
Collision Error	LANCE continues to transmit and receive packets.	Counters
(heartbeat)	Firmware increments Send Failures—Collision Check Failure counter and continues as normal.	

¹See Table 17–6 for descriptions of the keys.

 2 If a user requested receipt of bad packets, the firmware delivers a packet with a framing or CRC error and writes appropriate error status to the host receive ring. The driver passes the received packet to the user with appropriate error status.

Error	Response	Key ¹
Miss Error	LANCE continues to transmit and receive packets.	Counters
	Firmware increments Receive Failures—Data Overrun counter and continues as normal.	
Overflow (exceeded 21-	Packet not received completely. LANCE continues to transmit and receive packets.	Counters
microsecond bus latency on receive DMA)	Firmware increments Receive Failures—Data Overrun counter and Overflow/Underflow counter and continues as normal.	
Underflow (exceeded 9 microseconds on transmit DMA)	Packet incompletely transmitted, resulting in transmission of a runt packet or packet with CRC error. LANCE transmitter shut off, but LANCE receiver continues to function.	Status
	Firmware increments Overflow/Underflow counter, restarts LANCE, increments LANCE Restarts counter, and continues as normal.	
Memory Error	LANCE transmitter and receiver shut off.	Shutdown
	Firmware saves internal status in a fatal error block, increments memory error counter, stops command and receive ring processing, and shuts down the port.	
Parity Error	Parity logic on DEMNA detects a parity error and causes LANCE to experience a memory error. (Parity error is detected by external logic while LANCE is bus master.)	Shutdown
	Firmware saves internal status in a fatal error block, increments Memory Error counter, stops command and receive ring processing, and shuts down the port.	
LANCE/Gate Array Grant Timeout	DEMNA logic detects a timeout and sets the Grant Timeout bit in the DEMNA Diagnostic register. ERR is asserted to the CVAX, which causes the CVAX to machine check.	Shutdown
	Firmware resets LANCE or gate array, saves status in a fatal error block, stops command and receive ring processing, and shuts down the port.	

 Table 17–8
 Response To Internal Errors that Affect the LANCE

 $^1 See$ Table 17–6 for descriptions of the keys.

17-20 DEMNA Error Handling

Table 17–8 (Cont.) Response To Internal Errors that Affect the LANCE

Error	Response	Key ¹
Powerfail	Nonmaskable powerfail interrupt sent to CVAX.	Shutdown
	Firmware saves internal status in a fatal error block, stops command and receive ring processing, and shuts down the port.	
¹ See Table 17–6	for descriptions of the keys.	

Table 17–9 Response to Hardware Errors that Affect the CVAX

Error	Response	Key ¹
Nonexistent Memory Error	CVAX machine checks.	Shutdown
	Firmware saves internal status in a fatal error block, stops command and receive ring processing, and shuts down port.	
Internal CVAX	Unexpected interrupt handler activated.	Shutdown
exception (unexpected exception)	Firmware saves internal status in a fatal error block, stops command and receive ring processing, and shuts down port.	
XMI Node Halt (bit 29 set in XBE)	Halt asserted to the CVAX. CVAX restarts with restart code of 02 and starts execution at 20040000 (Boot ROM).	Shutdown
	Firmware executes from EPROM (Boot ROM). Firmware determines that a node halt occurred and initiates node halt processing.	
Fatal Parity Error Detected by CVAX	CVAX machine checks.	Shutdown
	Firmware saves current status in a fatal error block, stops command and receive ring processing, and shuts down port.	
Unexpected Interrupt from LANCE or Gate Array	Either the LANCE or the gate array initiates an unexpected interrupt to the CVAX. The reason is unknown.	None
	Firmware ignores interrupt.	

 $^1 See$ Table 17–6 for descriptions of the keys.

DEMNA Error Handling 17-21

Table 17–10	Response to XM	Related Errors
	Response to Am	

Error	Response ¹	Key ²
Parity Error	Sets XBE <23>, NoAcks transaction, and continues.	Possible Crash
Write Sequence Error	Sets XBE <22>, NoAcks transaction, and continues.	Possible Crash
Read/IDENT Data NO ACK	Sets XBE <21> and continues.	Possible Crash
Write Data NO ACK	Sets XBE <20> and continues.	Shutdown ³
No Read Response	Sets XBE <18> and writes error status to the appropriate datamove or peek register.	Shutdown
	This error is always set in conjunction with another error.	
Read Sequence Error	Sets XBE <17> and continues.	Shutdown ³
Read Error Response	Sets XBE <16> and writes error status to the appropriate datamove or peek register.	Shutdown ³
Command NO ACK	Sets XBE <15> and writes error status to the appropriate datamove or peek register.	Shutdown ³
Transaction Timeout	Sets XBE <13> and writes error status to the appropriate datamove or peek register.	Shutdown

¹Only the hardware's response is listed. The firmware's response is the same for all XBE reported errors: Firmware periodically polls the XBE register to see if bit <31> (error summary) is set. If the bit is set, firmware saves the current status in a nonfatal error block, sends an error interrupt to the port driver (if error interrupts are enabled), and proceeds normally.

 $^2 See$ Table 17–6 for descriptions of the keys.

³Shutdown, if retry failed. None, if retry succeeded.

17-22 DEMNA Error Handling

17.6 Restarting the Port from a Fatal Error

There are three ways to attempt to restart the port after a fatal port error (listed by order of increasing overhead and impact):

- Initialize the port by writing the XPCI register (after setting up the PDB and the XPD1 and XPD2 registers)
- Initiate a node halt/restart by setting and clearing the node halt bit in the XBE register and then initialize the port
- Initiate a node reset by setting the node reset bit in the XBE register (causing the DEMNA to execute its power-up/reset sequence) and then initialize the port

Initializing the port involves the least overhead and is the least forceful method. A node reset has the greatest impact, but involves the most overhead. If initializing the port does not restart the DEMNA, try a node halt/restart, and if that fails, a node reset.

Part IV DWMBA Adapter Section

This section of the handbook covers the DWMBA adapter. The section includes the following chapters:

- Overview
- Configurations
- Diagnostics
- Registers

Note that the material in this section is based primarily on VAX 6000-400 system implementations.

18 DWMBA ADAPTER OVERVIEW

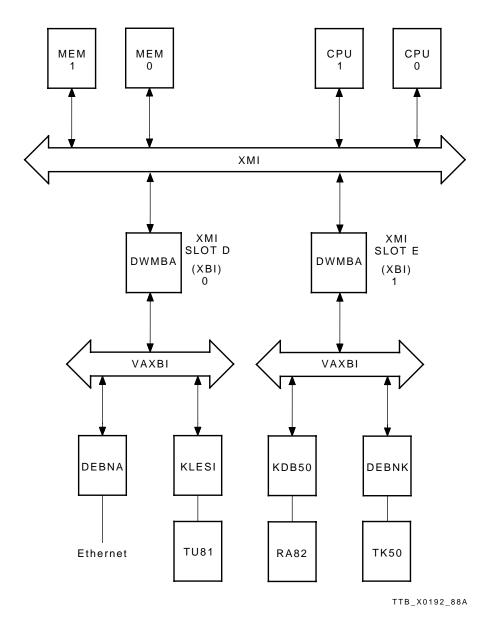
18.1 INTRODUCTION

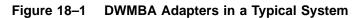
The DWMBA option interfaces the XMI bus to the VAXBI bus, providing a data path between host processors on the XMI and I/O devices on the VAXBI.

Figure 18–1 shows a typical system with DWMBA adapters.

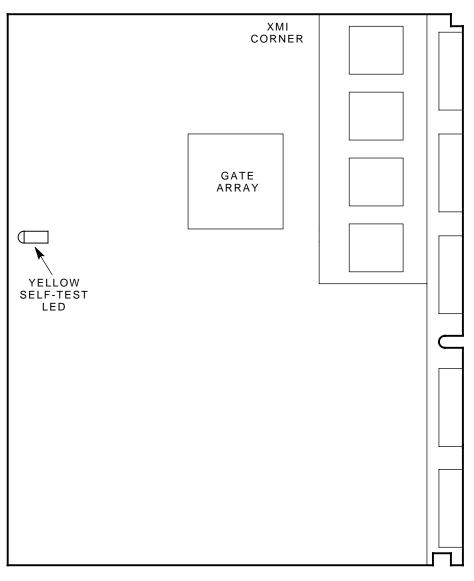
18.2 PHYSICAL DESCRIPTION

The DWMBA consists of a DWMBA/A module (also called the XBIA), a DWMBA/B module (XBIB), and four, 30-conductor cables which connect the modules.

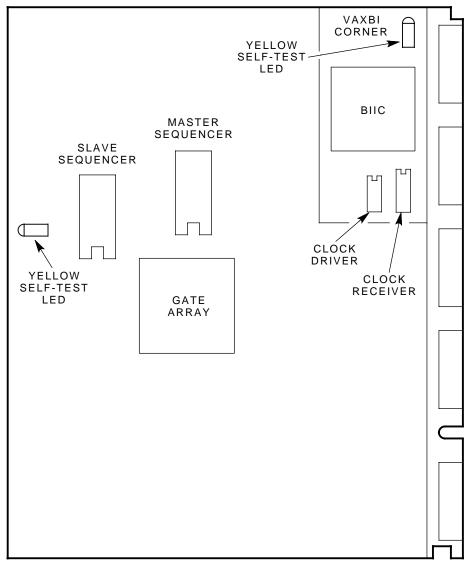

The XBIA module is a standard XMI module which plugs into the XMI backplane. This module contains the XMI corner, XMI required registers, XMI interface control sequencers, DWMBA register files, and DWMBA specific registers.


The XBIB module is a standard VAXBI module which plugs into the VAXBI backplane. This module contains the BIIC chip, interconnect drivers, data transfer control sequencers, BIIC and register file status bits, DWMBA specific registers, DMA decode logic, and the VAXBI clock generation circuitry.

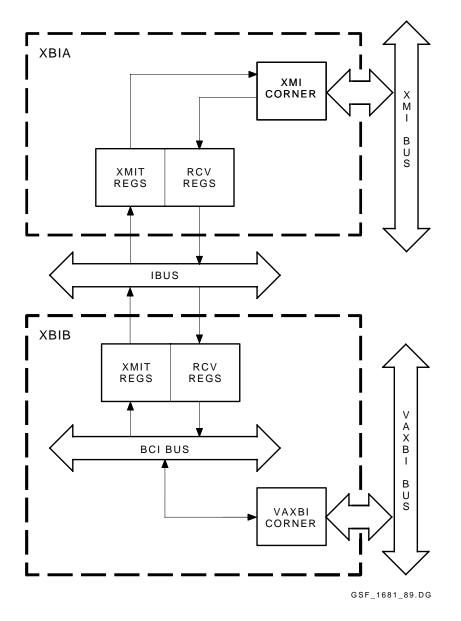
The four, 30-conductor cables are collectively known as the IBus. These cables interconnect the XBIA and XBIB modules by way of the I/O connector pin segments of the XMI and the VAXBI backplanes.


Figures 18–2 and 18–3 show the DWMBA modules. Figure 18–4 shows the major functional logic elements of each module.

18–2 DWMBA ADAPTER OVERVIEW


DWMBA ADAPTER OVERVIEW 18-3

GSF_1683_89.DG



18–4 DWMBA ADAPTER OVERVIEW

GSF_1684_89.DG

DWMBA ADAPTER OVERVIEW 18-5

Figure 18–4 DWMBA Functional Logic Elements

18-6 DWMBA ADAPTER OVERVIEW

18.3 FUNCTIONAL OVERVIEW

The DWMBA converts the 64-bit wide XMI bus transactions to the 32bit wide VAXBI bus transactions and controls the timing of operations between the two buses. The DWMBA can function as either bus master or bus slave on the VAXBI, and as either commander or responder on the XMI.

The DWMBA performs two basic types of transactions: central processing unit (CPU) and direct memory access (DMA). Table 18–1 describes the transactions.

Table 18–1 DWMBA Transactions

Туре	Description
CPU	Transaction originated by CPU and presented on XMI bus to DWMBA. Commands progress from the XBIA to the XBIB. The XBIA functions as XMI bus responder and the XBIB as the VAXBI bus master. Only longword transactions take place.
	The CPU can reference a portion of physical address space dedicated to I/O, a DWMBA specific register, or VAXBI address space, including BIIC internal registers.
	If the transaction does not reference a DWMBA specific register, the DWMBA initiates a VAXBI transaction to perform the required operation.
DMA	Transactions originated by a VAXBI node. Commands progress from the XBIB to the XBIA. The XBIA functions as the XMI bus commander and the XBIB as the VAXBI slave. Transactions can be longword, quadword, or octaword.
	When a VAXBI node selects the DWMBA for a transaction, the DWMBA translates the request into an XMI transaction which is serviced by a memory node. Data is read from or written to XMI memory.
	The DWMBA is considered selected when the address given in the VAXBI transaction falls between the starting and ending address registers internal to the BIIC.

DWMBA ADAPTER OVERVIEW 18-7

18.4 REFERENCE DOCUMENTS

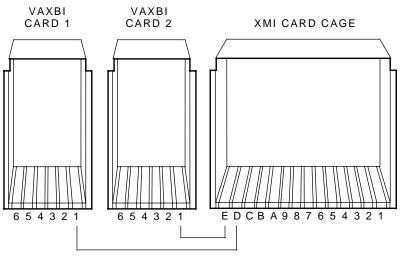
Order Number	Title
EK-VBISY-RM	VAXBI System Reference Manual
EK-DWMBA-MA	DWMBA XMI to VAXBI Adapter Maintenance Advisory
EK-640EA-TM	VAX 6000-400 System Technical Users Guide

19 DWMBA CONFIGURATIONS

19.1 INTRODUCTION

This chapter describes the configuration requirements for installing the DWMBA. The chapter includes the following topics:

- Module placement
- Cabling


The material in this chapter is based on the VAX 6000-400 systems implementation. Refer to the appropriate user's guide or installation guide for information on installing the DWMBA in other systems.

19.2 MODULE PLACEMENT

The DWMBA requires one slot in the XMI card cage for the XBIA module and one slot in the VAXBI card cage for the XBIB module. The following configuration rules apply when installing the DWMBA (see Figure 19–1):

- The XBIB module which corresponds to the XBIA module in XMI slot D must be placed in VAXBI card cage 1, slot 1.
- The XBIB module which corresponds to the XBIA module in XMI slot E must be placed in VAXBI card cage 2, slot 1.
- Additional XBIB modules are placed in slot 1 of each additional VAXBI card cage as indicated in Table 19–1.

19–2 DWMBA CONFIGURATIONS

GSF_1682_89.DG

Figure 19–1 XMI and VAXBI Cardcages

XMI Node	VAXBI Card Cage
D	1
E	2
С	3
В	4
1	5
2	6

Table 19–1 XMI Node/VAXBI Card Cage Configurations

19.3 CABLING

The four IBus signal cables which connect the XBIA module to the XBIB module plug into the I/O connector pin segments of the backplane slots into which the modules are installed (segments D and E of each backplane). On systems which implement more than one VAXBI backplane, an AC/DC OK cable is also installed between the VAXBI backplanes. Figure 19–2 shows the DWMBA cabling and Table 19–2 describes each cable.

19–4 DWMBA CONFIGURATIONS

17-00849-08

② 17-01897-02 (2 EACH)

③ 17-01897-03 (2 EACH)

TTB_X1538_88A

Figure 19–2 DWMBA Cabling

Part Number	Length	Description/Routing
17-00849-08	45.72 cm (18.00 in)	AC/DC OK cable From: VAXBI card cage 2, slot 1, segment C2 To: VAXBI card cage 1, slot 1, segment C1
17-01897-01	4.57 m (15.00 ft)	IBus signal cables (2) to VAXBI expander cabinets (not shown) From: XMI slot C, B, 1, or 2, segments D and E To: VAXBI card cage 3, 4, 5, or 6, slot 1, segments D and E
17-01897-02	17.78 cm (7.00 in)	IBus signal cables (2) From: XMI slot E, segments D and E To: VAXBI card cage 2, slot 1, segments D and E
17-01897-03	63.50 cm (25.00 in)	IBus signal cables (2) From: XMI slot D, segments D and E To: VAXBI card cage 1, slot 1, segments D and E

Table 19–2 DWMBA Cables

20 DWMBA DIAGNOSTICS

20.1 INTRODUCTION

This chapter describes the diagnostics available for the DWMBA. The chapter includes the following topics:

- Power-up tests
- ROM-based diagnostics
- Loop-back tests

The material in this chapter is based on the VAX 6000-400 system. Refer to the VAX 6000-400 documentation set for more information on running diagnostics.

20.2 POWER-UP SELF-TESTS

The DWMBA does not have on-board self-tests, but is tested by the boot processor during the system power-up sequence.

After the boot processor conducts its self-tests on system power-up, it automatically sizes the DWMBAs on the system and executes a subset of tests specifically designed for the DWMBA. If the DWMBA passes the tests, its self-test LED is illuminated. If the tests fail, the LED remains extinguished. In either case, power-up test results are displayed on the console. On systems with multiple DWMBAs, the DWMBAs are tested in sequence.

Example 20–1 and Example 20–2 show the console displays for power-up tests with and without errors.

Note that the DWMBA power-up tests are a subset of the boot processor's ROM-based diagnostics and may also be run from the RBD monitor.

20-2 DWMBA DIAGNOSTICS

0 F Е В Α 9 8 7 6 5 4 3 2 1 0 NODE# D С 0 Α М М Μ М Ρ Ρ Ρ Ρ TYPE Α . . . 6 STF 0 0 + + + + + + + + Е BPD Е Е В ETF + + + + • • ٠ . • Е Е Е В BPD XBI D + 4 + + + + . • • • XBI E + 6 + . + + A4 A3 A2 A1 ILV . . . • . . . 32 32 32 32 128Mb ROM = 2.3 EEPROM = 2.0/0.0 SN = NI154 >>>

1 XMI node numbers. Entries in columns 0 and F indicate self-test results for nodes on the VAXBI only (items **4** and **5**).

2 XMI node module type: A = I/O adapter; P = processor; M = memory.

3 Self-test result:

+ = pass - = fail . = empty slot o = VAXBI adapter node

4 XMI node D: VAXBI nodes 1, 3, 5, and 6 passed self-tests (XBI D +).

5 XMI node E: VAXBI nodes 1, 4, and 6 passed self-tests (XBI E +).

Example 20–1 Power-up Self-Test Display (No Errors)

DWMBA DIAGNOSTICS 20-3

0 F Е D С В Α 9 8 7 6 5 4 3 2 1 0 NODE# Ρ Α Α М М Μ М Ρ Ρ Ρ TYPE STF 0 0 + + + + + + + + . BPD Е D В Е ETF + _ + + . . • ٠ • • Е BPD Е В D . . 0 + + XBI D + + + • • 6 XBI E -. . . . - A2 A1 ILV В1 • . . 32 - 32 32 . 96Mb ROM = 2.3 EEPROM = 2.0/0.0 SN = NI154 >>> **1** XMI node numbers. Entries in column 0 and F indicate self-test

- XMI node numbers. Entries in column 0 and F indicate self-tes results for nodes on the VAXBI only.
- 2 XMI node D: All VAXBI nodes passed self-test (XBI D +)
- **③** XMI node E: One or more VAXBI nodes failed self-test (XBI E -)

Example 20–2 Power-up Self-Test Display (With Errors)

20-4 DWMBA DIAGNOSTICS

20.3 ROM-BASED DIAGNOSTICS (RBD)

The DWMBA ROM-based diagnostics are not resident on the DWMBA, but are a subset of the boot processor's RBDs. On VAX 6000-400 systems, RBD 2 is designated for the DWMBA.

Table 20–1 lists the RBD tests. The **Default** column indicates the tests which are run when the RBD is started and no test number is specified. To run all tests, specify /T=1:26 on the RBD command line.

20.3.1 RBD Monitor

The RBD monitor provides a means for controlling diagnostic execution (for example: test tracing, looping on error, halting on error), selecting specific tests to be run, and for depositing and examining addresses in node private space, XMI space, and VAXBI space.

The DWMBA tests are run by calling the RBD monitor with the T/R console command and issuing the RBD START command:

>>>							
>>> T/R	!	Enter	RBD	moi	nito	2	
RBD1> START 2 D	!	Start	RBD	2,	XMI	node	D

The prompt RBD1> indicates that the console is logically connected to the CPU installed in XMI node 1.

Refer to the system user's guide, maintenance guide, or installation guide for detailed information on the RBD monitor.

Table	20–1	DWMBA	RRD	Tests
Table	20-1		ששאו	reata

Test	Default	Test Title
T0001	Yes	DWMBA/A XMI module CSR test
T0002	No	XMI low longword parity error test
T0003	No	XMI high longword parity error test
T0004	No	XMI function and ID parity error test
T0005	Yes	DWMBA/B CSR test
T0006	Yes	BIIC VAXBI loopback transaction test
T0007	Yes	BIIC VAXBI transaction test
T0008	Yes	DMA test
T0009	Yes	DMA buffer test
T0010	No	XMI parity error interrupt test
T0011	No	Write sequence error interrupt test
T0012	Yes	CPU buffer C/A fetch parity error (interrupt) test
T0013	Yes	CPU buffer data fetch parity error (interrupt) test
T0014	Yes	DMA buffer data fetch parity error (interrupt) test
T0015	Yes	VAXBI interlock read error (interrupt) test
T0016	Yes	DMA-A buffer C/A load parity error (interrupt) test
T0017	Yes	DMA-A buffer data load parity error (IVINTR) test
T0018	Yes	DMA-B buffer C/A load parity error (interrupt) test
T0019	Yes	DMA-B buffer data load parity error (IVINTR) test
T0020	Yes	CPU buffer data load parity error (interrupt) test
T0021	Yes	BCI parity error test
T0022	Yes	Nonexistent memory (interrupt) test
T0023	Yes	CRD error (interrupt) test
T0024	Yes	VAXBI interrupt test
T0025	Yes	VAXBI IP interrupt test
T0026	Yes	No stall timeout test

20-6 DWMBA DIAGNOSTICS

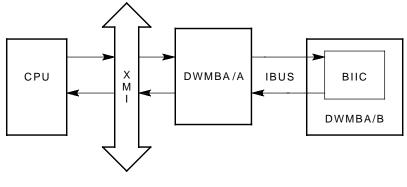
20.3.2 Sample RBD Runs

>>> ! Console prompt >>> T/R ! Enter RBD monitor RBD1> ! RBD prompt (1 = XMI node number of ! CPU currently receiving input) ! Run RBD 2 (DWMBA), trace tests, RBD1> ST 2/TR D ! XMI node D, default test set ;XBI_SLF 3.0 ;T0001 T0005 T0006 T0007 T0008 T0009 T0012 T0013 т0014 ;T0015 T0016 T0017 T0018 T0019 T0020 T0021 T0022 T0023 ;T0024 T0025 T0026 2001 00000001 Р D ; RBD1> Example 20–3 DWMBA RBD Run With No Errors >>> ! Console prompt >>> T/R ! Enter RBD monitor RBD1> ST 2/TR/HE/T=1:26 D ! RBD 2, trace, halt on error, all ! tests (/T=1:26), XMI node D. ;XBI_SLF 3.4 ;T0001 T0002 T0003 T0004 T0005 0 ; F D 2001 00000001 0 ; HE BCSR_REG 00 т05 ; 05 80000000 0000000 00000000 21E80058 200628F5 01 3 RBD1> • Failed, XMI node D, DWMBA (device type 2001), 1st pass

Hard error, BCSR_REG failing component, unit 00, test T05

 Error code 05, expected data 80000000, recieved data 00000000, implementation specific (00000000, 21E80058), PC 200628F5, error number 01

Example 20–4 DWMBA RBD Run With Errors

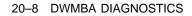

20.4 LOOPBACK TESTS

When the default set of RBD tests are run, two types of loopback tests are performed:

- VAXBI loopback
- DMA loopback

VAXBI Loopback Tests

The VAXBI loopback test verifies the data path from the CPU through the XMI, all modules of the DWMBA, and back through the XMI to the CPU. Figure 20–1 shows the VAXBI loopback data path.



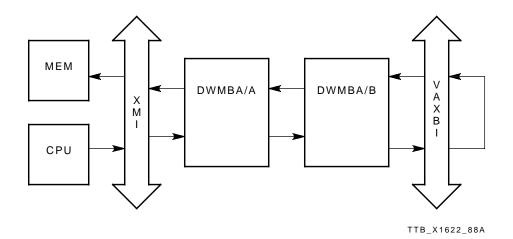
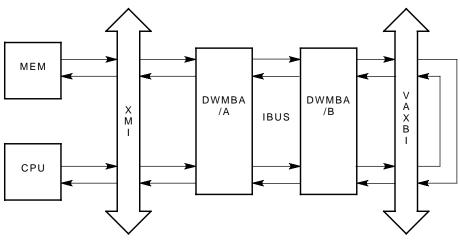

TTB_X1621_88A

Figure 20–1 VAXBI Loopback Data Path


CPU DMA Loopback Tests

The DMA loopback tests include tests of CPU write transactions and CPU read transactions. Figure 20–2 shows the data path for CPU write transactions and Figure 20–3 shows the data path for CPU read transactions. In both cases, the data path originates at the CPU.

TTB_X1623_88A

Ī

Figure 20–3 CPU Read Loopback Data Path

21 DWMBA REGISTERS AND IBUS SIGNALS

21.1 INTRODUCTION

This chapter overviews the DWMBA register structure. Included in the chapter are:

- Lists of the DWMBA registers:
 - XMI architecture
 - VAXBI architecture
 - DWMBA specific
- Register bit maps
- Descriptions of selected registers
- List of the IBus signals

The chapter is a quick reference to DWMBA register information. Refer to the *DWMBA XMI to VAXBI Adapter Maintenance Advisory* and the *VAXBI System Reference Manual* for detailed descriptions of the registers.

21-2 DWMBA REGISTERS AND IBUS SIGNALS

21.2 DWMBA REGISTER TYPES

The DWMBA includes three types of registers:

- XMI architecture
- VAXBI architecture
- DWMBA specific

The XMI architecture registers reside in the XBIA module. The VAXBI architecture registers reside in the BIIC chip of the XBIB module. The DWMBA specific registers reside in both modules. The XMI architecture and DWMBA specific registers are addressed in the DWMBA's XMI nodespace. The VAXBI architecture registers are addressed in the DWMBA's XMI I/O adapter space.

Table 21–1 lists the XMI architecture and DWMBA specific registers. Table 21–2 lists the VAXBI architecture registers.

1

Table 21–1 XMI Architecture and DWMBA Specific Registers		sture and DWMBA Specific Registers
Mnemonic	Address ¹	Register Name
XMI Archite	ecture	
XDEV	bb+0000	Device type register
XBE	bb+0004	Bus error register
XFADR	bb+0008	Failing address register
DWMBA Spo	ecific, XBIA M	Iodule Resident
AREAR	bb+000C	Responder error address register
AESR	bb+0010	Error summary register
AIMR	bb+0014	Interrupt mask register
AIVINTR	bb+0018	Implied vector interrupt destination/diagnostic register
ADG1	bb+001C	Diagnostic control register 1
DWMBA Spe	ecific, XBIB M	Iodule Resident
BCSR	bb+0040	Control and status register
BESR	bb+0044	Error summary register
BIDR	bb+0048	Interrupt destination register
BTIM	bb+004C	Timeout address register
BVOR	bb+0050	Vector offset register
BVR	bb+0054	Vector register
BDCR1	bb+0058	Diagnostic control register 1
_	bb+005C	Reserved
¹ Offset (in hex) from node's XN	II nodespace base address.

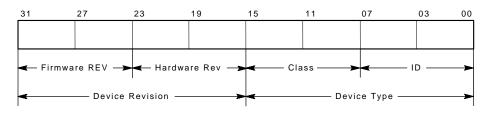
Table 21–1 XMI Architecture and DWMBA Specific Registers

Table 21-2 VAABI Architecture Registers				
Mnemonic	Address ¹	Name		
DTYPE	bb+00	Device register		
VAXBICSR	bb+04	VAXBI control and status register		
BER	bb+08	Bus error register		
EINTRSCR	bb+0C	Error interrupt control register		
INTRDES	bb+10	Interrupt destination register		
IPINTRMSK	bb+14	IPINTR mask register		
FIPSDES	bb+18	Force-bit IPINTR/STOP destination register		
IPINTRSRC	bb+1C	IPINTR source register		
SADR	bb+20	Starting address register		
EADR	bb+24	Ending address register		
BCICSR	bb+28	BCI control and status register		
WSTAT	bb+2C	Write status register		
FIPSCMD	bb+30	Force-bit IPINTR/STOP command register		
UINTRCSR	bb+40	User interface interrupt control register		
GPR0	bb+F0	General purpose register 0		
GPR1	bb+F4	General purpose register 1		
GPR2	bb+F8	General purpose register 2		
GPR3	bb+FC	General purpose register 3		
SOSR	bb+100	Slave-only status register		
RXCD	bb+200	Receive console data register		

Table 21–2 VAXBI Architecture Registers

 $^1 \text{Offset}$ (hex) from node's I/O adapter space base address.

21.3 REGISTER DESCRIPTION CONVENTIONS


In the register description tables that follow, the access type of the bit(s) being described is denoted by a mnemonic enclosed in parentheses after the bit field name. The bit access codes are as follows:

Code	Indication
0	Bit(s) initialized to logic 0
1	Bit(s) initialized to logic 1
RO	Read-only
R/W	Read/write
R/W1C	Read/write-1-to-clear

21.4 XMI ARCHITECTURE REGISTERS

The following registers are the minimum XMI architecture registers which must be present in the node. These registers all reside on the DWMBA/A module.

21.4.1 XMI Device Type Register (XDEV, bb+00000)

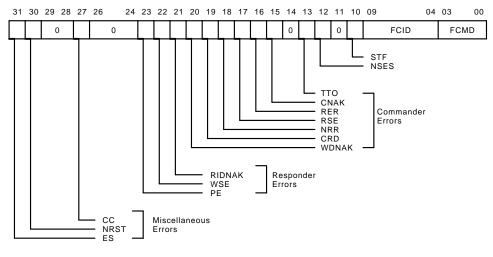
GSF_1736_89.DG

NOTE

001A

The XDEV register bit map shown is generic to XMI I/O devices. The DWMBA does not implement separate firmware and hardware revision fields.

Bit(s)	Name/D	Description
31:16	Device r	evision (RO, 0)
	Identifies the revision level (letter only) of the DWMBA/A module. A zero value indicates an uninitialized node:	
	Value	Revision
	0001	A0, A1, An
	0001	


Z0, Z1, ... Zn

Bit(s)	Name/Description	
15:00	Device type (RO, 0)	
	Identifies the device type and XMI device ID of the DWMBA. A zero value indicates an uninitialized node.	
	The DTYPE field is divided into two subfields:	

Field	Bit Descriptions
Class	Indicates category in which node falls:
	<15>—CPU device <14>—Memory device <13>—Bus window (I/O) <12>—Bus window (Memory) <11>—I/O device <10>—XCOMM register present
ID	Uniquely identifies particular device within specified class.

The DWMBA device type is 2001.

21.4.2 XMI Bus Error Register (XBE, bb+00004)

GSF-RC1000-DWA01-PSA

Bit(s)	Name/Description			
Miscella	Miscellaneous Errors			
31	Error summary (RO, 0)			

Error summary (RO, 0)

Logical "OR" of the error bits in this register: <27,23:20,18:15,13:12>.

Bit(s)	Name/Description		
Miscella	scellaneous Errors		
30	Node reset (R/W, 0)		
	When set, initiates a system power-up reset. Reads of this bit return a zero.		
	When NRST is set, the DWMBA:		
	• Resets the XBIA module to the initialized (power-up) state.		
	• Asserts RESET control to the XBIB module, sequencing the VAXBI power supply(s). The assertion of RESET to the XBIB causes the module to sequence BI AC LO, and BI DC LO. The assertion of BI DC LO resets the XBIB to the initialized (power-up) state.		
	NRST remains set for six to eight XMI cycles until cleared by the XBIA. During this time, the DWMBA does not affect the operation of the XMI bus.		
29:28	Not implemented. Reads of these bits return a zero.		
27	Corrected confirmation (R/W1C, 0)		
	Set by DWMBA on a single-bit CNF error (single bit CNF errors are automatically corrected by the XCLOCK chip). Also sets bit $<31>$.		
26:24	Not implemented. Reads of these bits return a zero.		
Respond	ler Errors		
23	Parity error (R/W1C, 0)		
	Set if the DWMBA detected bad parity on an XMI cycle. The cycle need not have been directed to the DWMBA. Also sets bit $<31>$.		
22	Write sequence error (R/W1C, 0)		
	Set if the DWMBA aborted a write transaction due to a missing data cycle. Also sets bit $<31>$.		
21	Read/IDENT data NOACK (R/W1C, 0)		
	Set if a DWMBA initiated READ or IDENT data cycle received a NOACK confirmation. Also sets bit <31>.		

21–10 DWMBA REGISTERS AND IBUS SIGNALS

Bit(s)	Name/Description	
Commander Errors		
20	Write data NOACK (R/W1C, 0)	
	Set if a DWMBA initiated WRITE data cycle received repeated NOACK confirmations for the duration of the timeout period. Also sets bit <31>.	
19	Corrected read data (R/W1C, 0)	
	Set if the DWMBA received a CRDn response.	
18	No read response (R/W1C, 0)	
	Set if a DWMBA initiated READ failed due a read response timeout. Also sets bits $<\!\!31\!\!>$ and $<\!\!13\!\!>$.	
17	Read sequence error (R/W1C, 0)	
	Set if a DWMBA initiated READ received read data out of sequence. The failing command/address is available in XFADR. Also sets bit $<31>$.	
16	Read error response (R/W1C, 0)	
	Set if the DWMBA received a read error response. The failing command/address is available in XFADR. Also sets bit $<31>$.	
15	Command NOACK (R/W1C, 0)	
	Set if a DWMBA initiated command cycle received repeated NOACK confirmations for the duration of the timeout period. Also sets bits $<31>$ and $<13>$.	
	CNAK can result from a reference to a non-existent memory location or a command cycle parity error. The bit is set only if repeated attempts fail.	
14	Not implemented. Reads of this bit return a zero.	

Bit(s) Name/Description

Commander Errors

13 Transaction timeout (R/W1C, 0)

Set if a DWMBA initiated transaction did not complete within the timeout period. The failing command/address is available in the XFADR. Also sets bit <31>.

TTO may be set along with bits <20>, <18>, or <15>. If none of these bits is set, the DWMBA either:

- 1. Failed to win bus arbitration within the timeout period
- 2. Attempted to execute an IREAD command but XMI lockout remained asserted for timeout period

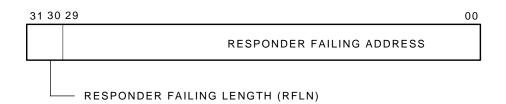
Node Specific Errors

12	Node specific error summary (RO, 0)
	Set if the DWMBA detects a node specific error condition. Error information is contained in DWMBA specific registers. Also sets bit $<31>$.
11	Not implemented. Reads of this bit return a zero.
10	Self-test fail (R/W1C, 1)
	Set during the power-up sequence until the DWMBA passes the power-up tests. Bit is cleared by the CPU node which initiated the tests.
09:04	Failing commander ID (RO)
	Logs the commander ID of a failed XMI transaction. FCID is set only if the transaction failed on retry.
03:00	Failing command (RO)
	Logs the command code of a failed transaction. FCMD is set only if the transaction fails on retry.

21-12 DWMBA REGISTERS AND IBUS SIGNALS

21.4.3 XMI Failing Address Register (XFADR, bb+00008)

3	1 30	0 29 28 0		00
1	FLN		Failing Address [28:00]	
		Ad	ldress [39]	

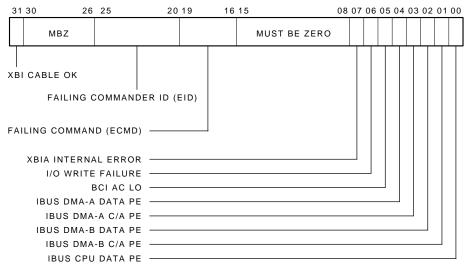

GSF_1739_89.DG

Bit(s)	Name/Description
31:30	Failing length (RO)
	Logs the value of XMI D $<31:30>$ during the command cycle of a failed transaction.
29:00	Failing address (RO)
	Logs the value of XMI D <29:00> during the command cycle of a failed transaction.
	NOTE The XFADR register bit map is shown for systems with 40-bit addressing. On these systems, XFADR bits <28:00> log address bits <28:00>, and bit <29> logs address bit <39>.

21.5 DWMBA/A RESIDENT NODE SPECIFIC REGISTERS

The DWMBA specific registers resident on the DWMBA/A module are primarily associated with XMI bus transactions and events. These registers are indicated by the prefix "A" in the register name.

21.5.1 Responder Error Address Register (AREAR, bb+000C)



TTB_X1607_88A

Bit(s)	Name/Description
31:30	Responder failing length (RO)
	Logs the value of XMI D $<\!\!31{:}30\!\!>$ of a failed XMI transaction. RFLN is loaded when the DWMBA ACKs the C/A cycle.
29:00	Responder failing address (RO)
	Logs the value of XMI D <29:00> of a failed XMI transaction. The address field is loaded when the DWMBA ACKs the C/A cycle.

21–14 DWMBA REGISTERS AND IBUS SIGNALS

21.5.2 Error Summary Register (AESR, bb+0010)

TTB_X1608_88A

Bit(s)	Name/Description
31	XBI cable OK (RO)
	Set on initialization if the IBus cables are properly installed and the XBIB module has dc power from the VAXBI backplane. If clear, and the XBIB has dc power, indicates that one or more cables is disconnected or improperly installed.
30:26	Reserved, must be zero.

Bit(s)	Name/Description										
25:20	Failing commander ID (RO)										
	Logs the XMI commander ID of a failed I/O write, I/O read, or IDENT transaction. EID is loaded after the DWMBA ACKs the XMI commander C/A cycle.										
	The EID is locked if the DWMBA is unable to complete the operation as follows:										
	1. CPU write transaction fails — sets AESR bit <06> (I/O write failure).										
	2. CPU read or IDENT transaction fails — sets XBER bit <21> (RIDNAK).										
	EID is unlocked when the locking error condition clears.										
19:16	Failing command (RO)										
	Logs the XMI command of a failed DWMBA I/O write, I/O read, or IDENT transaction. DWMBA loads the ECMD when it ACKs the XMI commander C/A cycle.										
	The ECMD is locked and unlocked under the same conditions as for bits <25:20>.										
15:08	Reserved, must be zero.										
07	XBIA Internal error (R/W1C, 0)										
	Set if an <i>unexplained</i> error internal to the XBIA module gate array is detected. Usually indicates a hardware problem (control logic encountered an undefined condition). The DWMBA issues an IVINTR with "memory write error" set in the type field.										
6	I/O write failure during CPU write transaction (R/W1C, 0)										
	Set if the XBIB module is unable to complete a CPU write transaction to one of its registers or to VAXBI address space. Setting this bit generates an IVINTR transaction with "memory write error" in the type field.										
	When I/O write failure is set, bits $<25:20>$ (EID), bits $<19:16>$, and the contents of AREAR are locked.										

21-16 DWMBA REGISTERS AND IBUS SIGNALS

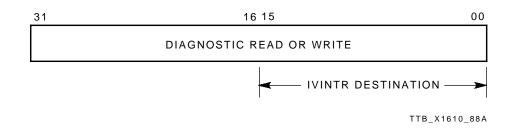
Bit(s)	Name/Description
5	BCI AC LO (R/W1C, 1)
	Set if VAXBI power falls below specifications. The DWMBA issues an IVINTR with "memory write error" in the type field. The interrupt service routine clears the bit.
	BCI AC LO is cleared by the DWMBA power-up test.
4	IBus DMA-A data parity error (R/W1C, 0)
	Set if the XBIA detects bad IBus parity while attempting to load a DMA-A data buffer location. The DWMBA issues an IVINTR with "memory write error" in the type field.
3	IBus DMA-A C/A parity error (R/W1C, 0)
	Set if the XBIA detects bad IBus parity while attempting to load a DMA-A C/A location. The DWMBA issues an IVINTR with "memory write error" in the type field if the the failing transaction is a write or interrupt. The DWMBA issues an error interrupt if this error bit is set and the appropriate mask bit is also set.
2	IBus DMA-B data parity error (R/W1C, 0)
	Set if the XBIA detects bad IBus parity while attempting to load a DMA-B data buffer location. The DWMBA issues an IVINTR with "memory write error" in the type field.
1	IBus DMA-B C/A parity error (R/W1C, 0)
	Set if the XBIA detects bad IBus parity while attempting to load a DMA-B C/A location. The DWMBA issues an IVINTR with "memory write error" in the type field if the failing DMA transaction is a write. The DWMBA issues an error interrupt if this error bit is set and the appropriate mask bit is also set.
0	IBus CPU data parity error (R/W1C, 0)
	Set if the XBIA detects bad IBus parity while attempting to load a CPU DATA location on a CPU-initiated I/O read or IDENT. The DWMBA issues a read error response (RER) to the commander and an error interrupt to the XMI if the appropriate mask bit is also set.

1

21.5.3 Interrupt Mask Register (AIMR, bb+0014)

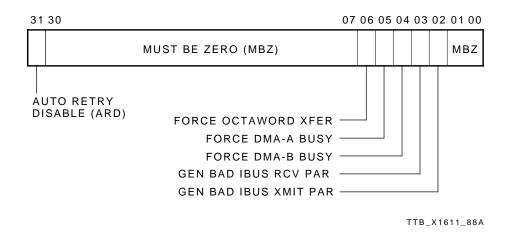
31	30 29 28	27	26	242	3 2	22 :	212	20	19	18	3 1	71	61	5 14	1	3 '	2			05	04	03	3 02	2 01	00	_	
	MBZ		MBZ		Ι									0			MUS	тв	e ze	RO							
																											DIAGNOSTIC READ OR WRITE INTR ON IBUS DMA-A C/A PE DIAGNOSTIC READ OR WRITE INTR ON IBUS DMA-B C/A PE INTR ON IBUS CPU DATA PE DIAGNOSTIC READ OR WRITE INTR ON COMMAND NO ACK/NXM INTR ON READ SEQUENCE ERROR INTR ON NO READ RESPONSE INTR ON NO READ RESPONSE INTR ON WRITE DATA NO ACK INTR ON WRITE DATA NO ACK INTR ON WRITE SEQUENCE ERROR INTR ON WRITE SEQUENCE ERROR INTR ON WRITE SEQUENCE ERROR
		L																									INTR ON CORRECTE
																											ENABLE IVINTR

TTB_X1609_88A


21–18 DWMBA REGISTERS AND IBUS SIGNALS

Bit(s)	Name/Description
31	Enable IVINTR transactions (R/W, 0)
	When set, enables issuing IVINTRs on XMI if the IVINTR destination register is properly configured.
	NOTE Bit <31> must be set to ensure proper error reporting of asynchronous write failures and the occurrence of a pending VAXBI power-fail not initiated by XMI AC LO, XMI DC LO, or VAXBI node reset.
30:28	Reserved (RO, 0). Bits must be zero.
27	INTR on corrected confirmation (R/W, 0)
	When set, the XBIA asserts the IR XMI ERR BIT SET L line on the IBus, which generates an interrupt request if XBER <27> (corrected confirmation) is set.
26:24	Reserved (RO, 0). Bits must be zero.
23	INTR on parity error (R/W, 0)
	Same as bit <27> except interrupt generated if XBER <23> is set.
22	INTR on write sequence error (R/W, 0)
	Same as bit <27> except interrupt generated if if XBER <22> is set.
21	INTR on read/IDENT NOACK (R/W, 0)
	Same as bit <27> except interrupt generated if XBER <21> is set.
20	INTR on write data NOACK (R/W, 0)
	Same as bit <27> except interrupt generated if XBER <20> is set.
19	INTR on corrected read data (R/W, 0)
	Same as bit <27> except interrupt generated if XBER <19> is set.
18	INTR on no read response (R/W, 0)
	Same as bit <27> except interrupt generated if XBER <18> is set.
17	INTR on read sequence error (R/W, 0)
	Same as bit <27> except interrupt generated if XBER <17> is set.
16	INTR on read error response (R/W, 0)
	Same as bit <27> except interrupt generated if XBER <16> is set.

Bit(s)	Name/Description
15	INTR on command NOACK (R/W, 0)
	Same as bit <27> except interrupt generated if XBER <15> is set.
14	Reserved (RO, 0). Bits must be zero.
13	Diagnostic read or write (RO)
	Used by diagnostics.
12:5	Reserved (RO, 0). Bits must be zero.
4	Diagnostic read or write (RO)
	Used by diagnostics.
3	INTR on IBus DMA-A C/A PE (R/W, 0)
	Same as bit <27> except interrupt generated if an IBus parity error was detected while the XBIB attempted to load a DMA-A C/A location.
2	Diagnostic read or write (RO)
	Used by diagnostics.
1	INTR on IBus DMA-B C/A PE (R/W, 0)
	Same as bit <27> except interrupt generated if an IBus parity error was detected while the XBIB was attempting to load a DMA-B C/A location.
0	INTR on IBus CPU DATA PE (R/W, 0)
	Same as bit <27> except interrupt generated if an IBus parity error was detected while the XBIB was attempting to load the CPU data location.

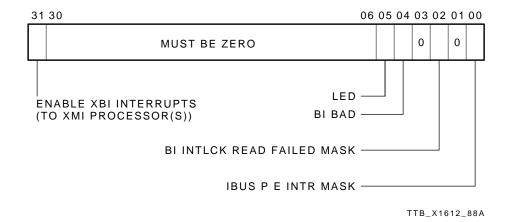

21-20 DWMBA REGISTERS AND IBUS SIGNALS

21.5.4 Implied Vector Interrupt Destination/Diagnostic Register (AIVINTR, bb+0018)

Bit(s)	Name/Description
31:00	Diagnostic read or write (R/W)
	Used by diagnostic routines to verify the integrity of the main data path in the XBIA gate array. Diagnostics raise the processor IPL level above IPL 30 to inhibit the XBIA from issuing an IVINTR (generating an unexpected interrupt) should an error occur.
	On DWMBA initiated IVINTR transactions, bits<15:00> are the IVINTR destination bits.
15:00	IVINTR destination (R/W, 0)
	Specifies the XMI nodes targeted by the DWMBA on an implied vector interrupt transaction. Each bit corresponds to an XMI node. For example, if bit <12> is set, XMI node 12 is selected for the IVINTR transaction. Any number of bits can be set.

21.5.5 Diagnostic Control Register 1 (ADG1, bb+001C)

Bit(s)	Name/Description
31	Auto retry disable (R/W, 0)
	When set, disables retries of failed XMI commander transfers. XMI error indications (NOACKs) are immediately logged in the XBER and the appropriate action is taken.
	NOTE Since an XMI node can issue a valid NOACK due to a busy condition, the user must ensure that either a busy NOACK cannot be issued by the targeted node or that the DWMBA can handle an incomplete transaction if auto retry disable is set.
30:7	Reserved (RO, 0). Bits must be zero.

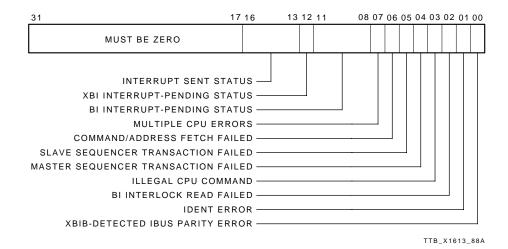

21–22 DWMBA REGISTERS AND IBUS SIGNALS

Bit(s)	Name/Description
6	Force octaword transfers (R/W, 0)
	When set, forces the XBIA to generate octaword DMA transactions, regardless of the length code loaded in the DMA buffer.
	This bit is used with ADG1 <5:4> (force DMA-A/B busy), BDCR1 <6> (flip FADDER bit 1), and BDCR1 <4> (flip bit 29) to allow diagnostics to test the XBI DMA buffer memory using loopback transactions to XMI memory.
	NOTE When BDCR1 <4> is set to use the diagnostic DMA loopback feature, only legal addresses (2xxx xxx0 or 2xxx xxx4) are allowed; illegal addresses (2xxx xxx8 and 2xxx xxxC) result in undefined data.
5	Force DMA-A buffer busy (RW, 0)
	When set, places the DMA-A buffer into the busy state, forcing all DMA traffic through the DMA-B buffer.
	NOTE If bits <5> and <4> are both set, all DMA transactions (VAXBI transactions that select the DWMBA as the slave and whose address falls within the bounds of the starting and ending address registers) will stall.
4	Force DMA-B buffer busy (R/W, 0)
	Same as bit <5> except that all DMA traffic is forced through the DMA-A buffer.
3	Generate bad IBus receiver parity (R/W, 0)
	When set, forces the IBus parity check bit in the XBIA to a one, regardless of the data being loaded. Diagnostic routines use this bit with specific data patterns to force IBus parity check errors in the XBIA when the XBIB loads the C/A or data buffers in the XBIA gate array.
2	Generate bad IBus transmit parity (R/W, 0)
	When set, forces the IBus parity bit sent to the XBIB to a one, regardless of the data being transmitted. Diagnostic routines use this bit with specific data patterns to force IBus parity errors in the XBIB when the XBIB fetches the C/A or data buffers from the XBIA gate array.
1:0	Reserved (RO, 0). Bits must be zero.

21.6 DWMBA/B RESIDENT NODE SPECIFIC REGISTERS

The DWMBA specific registers resident on the DWMBA/B module are primarily associated with VAXBI bus transactions and events. These registers are indicated by the prefix "B" in the register name.

21.6.1 Control and Status Register (BCSR, bb+0040)



Bit(s)	Name/Description
31	Enable XBI interrupts (R/W, 0)
	When set, enables the DWMBA to generate XMI interrupts in response to DWMBA generated or VAXBI generated interrupts. The appropriate interrupt mask bits must also be set for interrupts to be generated.
30:6	Reserved (RO, 0). Bits must be zero.
5	LED (R/W, 0)
	When set, illuminates LED D1. Cleared on power-up until node passes self-test.

21–24 DWMBA REGISTERS AND IBUS SIGNALS

Bit(s)	Name/Description
4	BI BAD (RO)
	On power-up or reset, reflects the state of BI BAD L on the VAXBI. Used by console initialization software and error handling routines to detect faulty VAXBI nodes. The assertion of BI BAD L on the VAXBI results in the assertion of XMI BAD.
3	Reserved (R/W, 0). Bit must be zero.
2	BI interlock read failed mask (R/W, 0)
	When set, causes the DWMBA to generate an error interrupt request if BESR <2> (BI interlock read failed) is set.
1	Reserved (RO, 0). Bit must be zero.
0	IBus parity error interrupt mask (R/W, 0)
	When set, causes the DWMBA to generate an error interrupt request if BESR <0> (XBIB-detected IBus parity error) is set.

Bit(s)	Name/Description
31:17	Reserved (RO, 0). Bits must be zero.
16:13	Interrupt-sent status (RO, 0)
	These bits correspond to IPL <17:14>. BESR <16> corresponds to IPL <17>, BESR <15> to ILP <16>, an so on. Bits <16:13> and <12:8> determine the current interrupt-pending status.
12	XBI interrupt-pending status (RO, 0)
	When set, indicates that a DWMBA interrupt is pending.
11:8	BI interrupt-pending status (RO, 0)
	Thses bits indicate that one or more VAXBI generated interrupts targeting the DWMBA were received, but that a CPU IDENT at the correct IPL has not yet been received. BESR <11> corresponds to IPL <17> and BESR <8> to IPL <14>.

21–26 DWMBA REGISTERS AND IBUS SIGNALS

_|

Bit(s)	Name/Description
7	Multiple CPU errors (R/W1C, 0)
	Set if BESR <4> and <0> were set due to an IBus parity error on a CPU transaction while the C/A or data is removed from the CPU buffer. Indicates that an error occurred on a subsequent CPU transaction before software acknowledged a previously failed transaction.
	Bit <7> is not set if a parity error occurs on write data accompanying the command/address on which an error was detected since the transaction has already been recorded as failed.
6	Command/address fetch failed (RO, 0)
	Set with BESR <0> to indicate that the XBIB detected an IBus parity error on the C/A fetch from the CPU C/A buffer. Bit is not set on a XBIB detected IBus parity error when write data is fetched from the CPU write data buffer.
5	Slave sequencer transaction failed (RO, 0)
	Set with BESR <0> to indicate that an IBus parity error occurred while the slave sequencer was in control of the IBus during a read data fetch from the DMA read buffer.
4	Master sequencer transaction failed (RO, 0)
	Set with BESR <0> to indicate that an IBus parity error occurred while the master sequencer was in control of the IBus during a C/A or write data fetch from the CPU buffer. The bit is not valid unless bit <0> is also set.
3	Illegal CPU command (RO)
	Set to indicate that an illegal CPU command was decoded by the XBIB. This error occurs only if an undetected multi-bit parity error condition exists during the time the XBIB fetches the commmand/address from the CPU buffer. The master sequencer will terminate the transaction and signal the XBIA that the transaction failed.

The setting of this bit does not generate an error interrupt.

Bit(s) Name/Description

2 BI interlock read failed (R/W1C, 0)

When set, indicates that a VAXBI to XMI memory interlock read operation failed to complete on the VAXBI. When this occurs, the lock set in XMI memory will most likely not be unlocked by the VAXBI device that issued the interlock. The contents of BTIM and the setting of bit <2> can be used to determine the locked address in XMI memory. The operating system can clear the XMI memory lock by writing to a specific CSR in XMI memory.

Bit <2> is set whenever a VAXBI interlock read command was decoded and the summary EV code of illegal CNF received for slave data (ICRSD) is decoded during a VAXBI interlock read transaction. The setting of bit <2> locks the timeout address register. Writing a one to the bit clears the bit and its lock on the register.

When this bit and the corresponding mask bit are set, an error interrupt request is generated.

1 IDENT error (R/W1C, 0)

When set, indicates that the DWMBA received an XMI IDENT transaction and no VAXBI nor DWMBA interrupt requests were pending at the IDENT IPL. This may indicate that an error condition exists on the XMI bus with multiple IDENTs being issued for the same interrupt transaction.

Only one XMI IDENT is issued on the XMI if a single interrupt targets multiple CPUs. All other CPUs cancel their IDENT transactions if they detect an IDENT transaction that matches the node ID and IPL of the IDENT they are waiting to issue.

IDENT error is set if a CPU IDENT command is decoded and no interrupts are pending in the XBIB gate array. The setting of the bit does not generate an XBI error interrupt.

21-28 DWMBA REGISTERS AND IBUS SIGNALS

Bit(s)	Name/Description
0	XBIB-detected IBus parity error (R/W1C, 0)
	Set if the XBIB detects an IBus parity error during one of the following:
	C/A cycle of a CPU transaction
	• Write data cycle when the data is removed from the CPU buffer by the master sequencer
	• DMA read data cycle when the read data is removed from the DMA read buffer by the slave sequencer
	Bits <6:4> identify the error condition.
	If XBIB-detected IBus parity error is set with its corresponding mask bit, an error interrupt request is generated. If the bit is set due to an error during a DMA read data cycle, the BTIM register is locked. Writing a one to the bit clears bits <6:4> and the lock on the BTIM register.

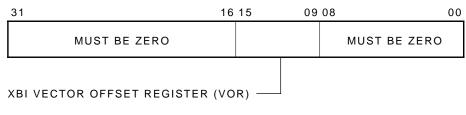
21.6.3 Interrupt Destination Register (BIDR, bb+0048)

31	16	15	00
	DIAGNOSTIC READ/WRITE	INTERRUPT DESTINATION	

TTB_X1614_88A

Bit(s)	Name/Description
31:00	Diagnostic read/write (R/W)
	Used by diagnostics to verify the integrity of the XBIB gate array data path.
15:00	Interrupt destination (R/W, 0)
	These bits specify the XMI nodes to be the targets of DWMBA generated interrupts. Each bit corresponds to one XMI node. Multiple bits can be set to interrupt multiple XMI nodes.
	During diagnostic execution, bits <15:00> are treated as diagnostic read/write bits.

21-30 DWMBA REGISTERS AND IBUS SIGNALS


21.6.4 Timeout Address Register (BTIM, bb+004C)

31 30 29 00		
BI DMA ADDRESS		
- LENGTH		
	BI DMA ADDRESS	

TTB_X1615_88A

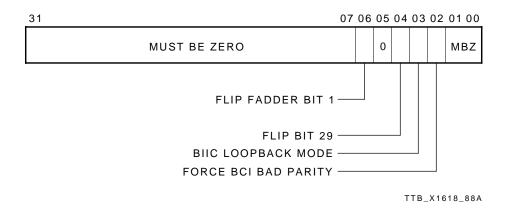
Bit(s)	Name/Description
31:30	Length (RO)
	Data size of the last VAXBI-to-XMI transaction. Loaded when the VAXBI C/A is latched from the VAXBI.
29:00	BI DMA failing address (RO)
	Physical address of the last VAXBI-to-XMI transaction. If no errors are detected, the BTIM register reads back the last VAXBI transaction. The register is locked on certain error conditions (see BESR 5:4,0 bit descriptions) and unlocked when the error condition is cleared.

21.6.5 Vector Offset Register (BVOR, bb+0050)

TTB_X1616_88A

Bit(s)	Name/Description
31:16	Reserved, must be zero.
15:09	XBI vector offset register (R/W, 0)
	Loaded by software on system initialization with a value that is concatenated with VAXBI device-supplied vectors. Ensures that multiple DWMBAs, and VAXBI buses with the same devices, have unique entry points into the SCB (provided that bits <13:09> of the VAXBI vector are equal to zero).
08:00	Reserved, must be zero.

21-32 DWMBA REGISTERS AND IBUS SIGNALS


21.6.6 Vector Register (BVR, bb+0054)

31	16 15 02		01 00
	MUST BE ZERO	XBI VECTOR	MBZ

TTB_X1617_88A

Bit(s)	Name/Description
31:16	Reserved, must be zero.
15:2	XBI vector (R/W, 0)
	Loaded by software on system initialization with the DWMBA XMI vector. The vector is transmitted to the IDENTing XMI node if the pending DWMBA interrupt request matches the interrupt source and IPL sent during the XMI IDENT transaction. The vector is not sent on VAXBI generated interrupts or BIIC interrupts due to error conditions.
1:0	Reserved, must be zero.

21.6.7 Diagnostic Control Register 1 (BDCR1, bb+0058)

Bit(s)	Name/Description
31:7	Reserved, must be zero.
6	Flip FADDR address bit 1 (R/W, 0)
	Used with bit <04> (flip bit 29) and ADG1 <5:4> (force DMA-A/B busy bits) to enable diagnostics to test DMA buffer memory using CPU loopback transactions to XMI memory. When the bit is set, the inverted state of FADDR address bit 1 is used to address the data words in the buffer, allowing diagnostics to use the buffer locations that normally would only be used for transfers greater than a quadword.

Setting this bit only affects FADDR address bit 1 when the XBIB logic accesses data locations in the DMA buffer. During the cycle when the C/A is addressed in the buffer, the state of the bit has no effect on the buffer address.

5 Reserved, must be zero.

21-34 DWMBA REGISTERS AND IBUS SIGNALS

Bit(s)	Name/Description
4	Flip bit 29 (R/W, 0)
	When set, inverts the state of address bit 29 after the CPU C/A was fetched and decoded by the master sequencer. The new address (now pointing to XMI memory space) is issued to the VAXBI, and the DWMBA is selected as the VAXBI slave. The DWMBA processes the transaction as it would any other VAXBI initiated DMA longword transaction, allowing diagnostic programs executing on the XMI to issue a CPU transaction to the DWMBA, which converts it into a DMA transaction.
3	BIIC loopback mode (R/W, 0)
	When set, forces all requests to the BIIC master port to be loopback requests. This allows the master sequencer to make loopback requests to access BIIC registers. The loopback mode prevents the BIIC from initiating VAXBI cycles to access the BIIC registers. When the BIIC is in loopback mode, it ignores the node ID portion of the address presented to it.
2	Force BCI bad parity (R/W, 0)
	When set, forces bad parity onto the BCI bus to the VAXBI during CPU C/A, CPU data cycles, and DMA read data cycles.
1:0	Reserved, must be zero.

21.7 VAXBI REGISTERS

The DTYPE register is the only VAXBI register described in this handbook. Refer to the *VAXBI System Reference Manual* for descriptions of all VAXBI registers.

The DTYPE register is loaded during self-test by console code with the DWMBA VAXBI device type, and by the revision select logic with the revision level. The DTYPE register is located at the base address (offset: 0000) of the DWMBA's I/O adapter address space.

31		16 15		00
	DEVICE REVISION		DEVICE TYPE	

TTB_X1620_88A

Bit(s) Name/Description

31:16 Device revision (R/W, 0)

Loaded by hardware with the revision level of the device. For revision H, the DREV field contains 7 (hex). There is no revision I. Starting with revision J, the DREV field reflects the letter revision of the module as follows:

DREV	DWMBA/B Revision	
000A	JO	
000A	J1	
000B	K1, K2, Kn	
	•	
001A	Z0, Z1, Zn	

21-36 DWMBA REGISTERS AND IBUS SIGNALS

Bit(s)	Name/Description	
15:0	Device type (R/W, 0)	
	Identifies the VAXBI node type. Loaded by the console code after successful completion of self-test.	
	The DTYPE for the DWMBA is 2107 (hex).	

21.8 IBUS SIGNALS

Bidirectional

IB D <31:00> IB I <3:0> IB P0

XBIA to XBIB

IR DMAA BUF AVAIL L IR DMAB BUF AVAIL L IR CPU BUF LOADED L IR XMI ERR BIT SET L IR READ DATA AVAIL L IR READ DATA FAULT L IR LOC RESPONSE L IR ADAPTER RESET L IR XMI AC LO H IR XMI DC LO H IR XMI RESET L

XBIB to XBIA

IM FADDR <3:0> IM FILE LOAD STROBE L IM FILE READ ENABLE L IM DMA READ CMD L IM CPU XACTION DONE L IM CPU LOC RESPONSE L IM DMAA BUF LOADED L IM CLR READ STATUS L IM CLR READ STATUS L IM XACTION FAULT L IM CLR INTR L IM XBIB POWER OK H <3:0> IM BUF BI RESET L IM BI AC LO L IM BI BAD L