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Abstract

We have designed and implemented an optimizing Java com-
piler called Swift for the Alpha architecture. Swift trans-
lates Java bytecodes to optimized Alpha code, and uses static
single assignment (SSA) form for its intermediate repres-
entation (IR). The Swift IR is relatively simple, but allows
for straightforward implementation of all the standard scalar
optimizations. The Swift compiler also implements method
resolution and inlining, interprocedural alias analysis, elim-
ination of Java run-time checks, object inlining, stack alloca-
tion of objects, and synchronization removal. Swift is written
completely in Java and installs its generated code into a high-
performance JVM that provides all of the necessary run-time
facilities.

In this paper, we describe the design and implementa-
tion of the Swift compiler system. We describe the prop-
erties of the intermediate representation, and then give de-
tails on many of the useful optimization passes in Swift. We
then provide some overall performance results of the Swift-
generated code for the SpecJVM98 benchmarks, and analyze
the performance gains from various optimizations. We find
that the Swift design is quite effective in allowing efficient
and general implementations of numerous interesting optim-
izations. The use of SSA form, in particular, has been espe-
cially beneficial, and we have found very few optimizations
that are difficult to implement in SSA.

1 Introduction

Though originally used mainly in web applications, the Java
programming language is becoming popular as a general-
purpose programming language, because of its simple design
and its properties that improve programmer productivity. Its
object-oriented features promote modularity and simplify the
coding of many kinds of applications. Its type-safe design
detects or eliminates many programming bugs that can oc-
cur in other languages. In addition, its automatic memory
management takes care of a time-consuming aspect of de-
veloping code for the application programmer.

We have developed a complete optimizing compiler for
Java called Swift. Because we believe Java will be a popular
general-purpose programming language, we are interested in
developing an intermediate representation and a set of ad-

vanced optimizations that will enable us to generate highly
efficient code for Java programs. Most existing commercial
Java systems do just-in-time (JIT) compilation that can do
only limited optimizations, but we are interested in studying
more expensive optimizations that can improve the relative
efficiency of code generated from Java, as compared to other
languages, such as C.

Java presents many challenges for a compiler attempting
to generate efficient code. The required run-time checks
and heap allocation of all objects can introduce considerable
overhead. Many routines in the standard Java library include
synchronization operations, but these operations are unne-
cessary if the associated object is only being accessed by a
single thread. Virtual method invocation is quite expensive if
it cannot be transformed to a direct procedural call. In addi-
tion, if a virtual method call cannot be resolved, the unknown
call can reduce the effectiveness of various interprocedural
analyses. Many operations can cause exceptions because of
run-time checks, and the possibility of these exceptions fur-
ther constrains many optimizations.

On the other hand, the strong typing in Java simplifies
much of the compiler analysis. In particular, Java semantics
ensure that a local variable can only be modified by expli-
cit assignment to the variable. In contrast, the creation of a
pointer to a local variable in C allows a local variable to be
modified at any time by any routine. Similarly, a field of a
Java object can never be modified by an assignment to a dif-
ferent field. Because of these properties that make most data
dependences explicit in Java programs, we believe that static
single assignment (SSA) form is highly appropriate as an in-
termediate representation for Java. SSA graphs make most or
all of the dependences in a method explicit, but provide great
freedom in optimizing and scheduling the resulting code.

We have therefore adopted SSA form in Swift, and have
used Swift to study the effectiveness of SSA form in ex-
pressing various optimizations. Though Swift is a research
platform, it is currently a complete Java compiler with all
of the standard optimizations and numerous advanced op-
timizations. Swift is written completely in Java and installs
its generated code into a high-performance JVM [12] that
provides all of the necessary run-time facilities.

In this paper, we describe the design and implementation
of the Swift compiler system, and provide performance res-
ults. The organization of the paper is as follows. We first
describe the intermediate representation in detail, and dis-
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cuss some of its advantages. We next describe the structure
of the compiler and the many interprocedural and intrapro-
cedural optimizations in Swift. We then provide some over-
all performance results of the Swift-generated code for the
SpecJVM98 benchmarks, and analyze the performance gains
from various optimizations. Finally, we discuss related work
and conclude.

2 Swift Intermediate Representation

In this section, we describe the major features of the Swift
intermediate representation (IR). A method is represented by
a static single assignment (SSA) graph [3, 15] embedded in
a control-flow graph (CFG). We first describe the structure
of the SSA graph, the structure of the CFG, and the rela-
tionship between the two. Next we describe the type system
used to describe nodes in the SSA graph. We then describe
our method of representing memory operations and ensuring
the correct ordering among them. We also describe the rep-
resentation of method calls. Finally, we discuss some of the
advantages of the Swift IR.

2.1 Static Single Assignment Graph

As we mentioned above, the basic intermediate form used
in Swift is the SSA graph. We consider the SSA form of
a method to be a graph consisting of nodes, which we call
values, that represent individual operations. Each value has
several inputs, which are the result of previous operations,
and has a single result, which can be used as the input for
other values. Since a value has only a single result, we will
frequently identify a value with the result that it produces.

In addition to its inputs, each value has an operation field
and an auxiliary operation field. The operation field indic-
ates the kind of operation that the value represents. For ex-
ample, if the operation field is add, then the value represents
an operation that adds the two incoming values to produce
its result. The auxiliary operation field is used to specify any
extra static information about the kind of operation. For ex-
ample, if the operation field is new, then the value represents
an operation that allocates a new object, and the auxiliary
field specifies the class of the object to be allocated. If the
operation field is constant, the value represents a numeric
or string constant, and the auxiliary field specifies the actual
constant.

The Swift IR contains about 55 basic operations, as sum-
marized in Figure 1. These operations include the usual
arithmetic, bitwise-logical, and comparison operators. They
also include operations for controlling program flow, mer-
ging values (phi nodes [15]), invoking methods, accessing
the contents of arrays and objects, and allocating new ob-
jects and arrays from the heap. Some object-oriented opera-
tions include instanceof computations, virtual method calls,
and interface calls. There are also a few primitives that are

Numeric operations
• constant
• add, sub, mul, div, rem, negate
• shl, shr, ushr
• and, or, xor, not
• lt, leq, eq, neq, geq, gt
• lcmp, fcmpl, fcmpg
• convert

Control operations
• if, switch, throw
• arg, return
• phi
• invoke_virtual, invoke_special,

invoke_static, invoke_interface

Memory operations
• get_field, put_field
• get_static, put_static
• arr_load, arr_store, arr_length

Run-time checks
• instanceof
• null_ck, bounds_ck, cast_ck
• init_ck

Miscellaneous
• nop
• select
• new, new_array
• monitor_enter, monitor_exit

Figure 1: Summary of Swift IR operations

particularly Java-specific, such as operations modeling the
lcmp or fcmpl bytecodes.

As with most other Java compilers, the Swift IR breaks
out the required run-time checks associated with various Java
bytecodes into separate operations. The Swift IR therefore
has individual operations representing null checks, bounds
checks, and cast checks. These operations cause a run-time
exception if their associated check fails. A value represent-
ing a run-time check produces a result, which has no rep-
resentation in the generated machine code. However, other
values that depend on the run-time check take its result as an
input, so as to ensure that these values are scheduled after the
run-time check. Representing the run-time checks as distinct
operations allows the Swift compiler to apply optimizations
to the checks, such as using common subexpression elimin-
ation on two null checks of the same array.

As an example, Figure 2 shows the expansion of a Java
array load into Swift IR. The ovals are SSA values, and the
boxes are blocks in the CFG. (The CFG will be discussed in
the next section.) array and index are the values that are in-
put to the array load operation. Java requires that a null check
and a bounds check be done before an element is loaded from
an array. The null ck value takes the array reference as input,
and throws a NullPointerException if the reference
is null. The arr length value takes an array reference and the
associated null ck value as input, and produces the length of
the array. The bounds ck value takes an array length and an
array index as inputs, and throws an ArrayIndexOutOf-
BoundsException if the index is not within the bounds
of the array. Finally, the arr load value takes an array ref-
erence, an index, and the associated null-check and bounds-
check values, and returns the specified element of the array.

Swift also has a value named init ck that is an explicit
representation of the class-initialization check that must pre-
cede some operations. This value checks if a class has been
initialized, and, if not, calls the class initialization method.
Operations that load a class variable or create a new object
both require an initialization check of the associated class.
Calls to class methods also require this check, but this check
is handled by the initialization code of the class method.
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Figure 2: Expansion of Java array load to Swift IR

Swift will eliminate redundant initialization checks during
optimization. In addition, our underlying JVM replaces an
initialization check by a NOP after the first time that it is
encountered.

The Swift IR also has about 100 machine-dependent oper-
ations which represent or map very closely to specific Alpha
machine instructions. As described below, one pass of the
compiler converts many of the machine-independent opera-
tions into one or more machine-dependent operations. The
conversion to machine-dependent values allows for optimiz-
ation of the lower-level operations, and allows the instruction
scheduling, register allocation, and code generation passes to
operate directly on the SSA graph.

Our SSA graph is essentially a factored representation of
the use-def chains for all variables in a method, since each
value explicitly specifies the values used in computing its
result. We have found that many of our optimizations can
make efficient use of def-use information as well. When
Swift builds an SSA graph, it therefore also builds up def-
use information and it updates the def-use chains whenever
the graph is manipulated. Thus, an optimization can, at any
stage, directly access all the users of a particular value.

2.2 Representing Control Flow

The Swift IR actually represents a method as an SSA graph
embedded within a control-flow graph (CFG). Each value is
located in a specific basic block of the CFG, although vari-
ous optimizations may move values among blocks or even
change the CFG. A block in a CFG has zero or more incom-
ing edges and zero or more outgoing edges. Some of the out-
going edges may represent the control-flow that results from
the occurrence of an exception. These edges are labeled with
the type of exception that causes flow along that edge.

Each method's CFG has a single entry block, a single nor-
mal exit block, and a single exceptional exit. The entry block
contains the values representing the input arguments of the
method. The exit block contains the value representing the
return operation of the method. The exceptional exit block

represents the exit of a method that results when an excep-
tion is thrown that is not caught within the current method.
Because many operations can cause run-time exceptions in
Java and these exceptions are not usually caught, there are
many blocks which have an exception edge to the exception
exit.

We have chosen in the Swift IR to use the standard defini-
tion of a basic block. All blocks end whenever an operation
is reached that has two or more control exits. An operation
that causes an exception therefore always causes the end of
a basic block. Because of the large number of operations in
Java that can cause run-time exceptions, this design can res-
ult in CFGs with large numbers of blocks. Some other Java
compilers [8, 22] have used an intermediate form with exten-
ded basic blocks, in which an exception-causing operation
does not necessarily end a block in the CFG. The use of ex-
tended basic blocks may reduce the amount of memory used
to represent the CFG. However, we believe that many of the
dataflow calculations and interesting optimizations will have
to treat the extended basic blocks as separate blocks anyway
in order to achieve the desired precision, and therefore will
become more complex. In addition, the larger basic blocks
are not as important for good scheduling, since Swift uses
global code motion and trace scheduling.

Many types of values can affect the control flow of a pro-
gram. An if node takes a boolean value as input and de-
termines the control flow out of the current block based on
that input. Similarly, a switch node determines control flow
based on an integer input. Exception-causing operations in-
clude method calls, run-time checks, and object or array al-
location. In addition, the throw operation explicitly throws
an exception.

Each block has a reference to a distinguished value, called
the control value. For a block which has more than one out-
going edge, the control value is the value that controls the
program flow or that may cause an exception. The control
value of the normal exit block is the return value. Simple
blocks with a single outgoing edge have no control value.
The control value field of a block provides easy access to
the exception-causing or control-flow value of the block. In
addition, the set of control values indicates the base set of
values in a method that are “live”, because they are used in
computing the return value and for controlling program flow.
Other live values are determined recursively based on the in-
puts of this base set. Swift uses this definition to do dead
code elimination of values that are no longer needed.

All values which are the control value of a block cannot be
moved from their block. We say that these values are pinned.
Phi nodes are also pinned. Operations that write to the global
heap (see Section 2.4) are also pinned. All other operations
are not pinned, and may be moved freely among blocks, as
long as their data dependences are respected.

The Java VM has bytecodes that do light-weight sub-
routine calls and returns within a method. These bytecodes
are used to implement the finally statements without du-
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plicating bytecodes. However, these subroutines complicate
control-flow and data-flow representations. We have there-
fore chosen to inline these subroutines in the Swift IR, as is
done by most other Java compilers [22]. There is a possib-
ility of exponential blowup in the size of the CFG if there
are multiply nested finally clauses, but in practice this
situation is very unlikely.

2.3 Swift Type System

Every value in the SSA graph also has a program type. The
type system of the Swift IR can represent all of the types
present in a Java program. These types include base types,
such as integer, short, or double, as well as array types and
object types. We compute the type of each value of a graph as
we build the SSA graph from the method's bytecode. As has
been noted elsewhere [26], the bytecode for a method does
not always contain enough information to recover the exact
types of the original Java program. However, it is always
possible to assign a consistent set of types to the values such
that the effects of the method represented by the SSA graph
are the same as the original method. Though Java bytecode
does not make use of an explicit boolean type, we assign a
type of boolean to a value when appropriate. The boolean
type essentially indicates an integer value which can only be
0 and 1, and can enable certain optimizations that don't apply
to integers in general.

For some operations, the value type actually further spe-
cifies the operation and therefore will affect the specific ma-
chine code generated. For example, the generic add opera-
tion can specify an integer, long, or floating-point addition,
depending on its result type. Information about a value's type
can also help optimize an operation that uses that value. For
example, the compiler may be able to resolve the target of a
virtual method call if it has more specific information about
the type of the method call's receiver.

The Swift type system contains additional information
that facilitates these kinds of optimizations. It allows spe-
cification of the following additional properties about a value
with a particular Java type T:

� the value is known to be an object of exactly class T, not
a subclass of T

� the value is an array with a particular constant size

� the value is known to be non-null

By incorporating these properties into the type system, we
can describe important properties of any value in the SSA
graph by its type. In addition, we can easily indicate prop-
erties for different levels of recursive types, such as arrays.
One possible generalization of the type system is to allow
union types. However, we have not found this extension to be
very useful for the Java applications that we have examined.

2.4 Representing and Ordering Memory Op-
erations

Because of Java's strong typing and lack of pointers, the
local variables of a method cannot be read or written by any
other method in the same thread or another thread. There-
fore, all program dependences on a local variable are explicit
in the current method, and SSA form is ideal for represent-
ing these dependences. All values in the SSA graph can be
considered to be temporary variables stored in a large set
of virtual registers. It is only near the end of the compil-
ation process that the register allocator must choose which
values are stored in actual registers and which are spilled to
the stack.

On the other hand, reads and writes of global variables or
locations allocated from the heap must be represented expli-
citly as memory operations, since there may be many hid-
den dependencies among these operations. In Java, these
memory operations include getting and putting values into
the field of a class object or instance object, and getting or
putting a value into an array.

In general, the compiler must ensure that the original
ordering among memory operations is maintained, even
though the memory operations are not connected in the
standard SSA graph. For example, a store operation may
write into a field that is read by a later load operation. The
store operation does not produce any value that is used by the
later load operation, so there is no scheduling dependence
between the two operations. However, in order to maintain
the original program semantics, the compiler must ensure
that the store is executed before the load.

The Swift IR solves this problem by actually having
store operations produce a result, which is called a global
store [10]. The global store represents the current contents
of global memory. Since a store operation modifies the con-
tents of memory, it takes the latest global store as an extra
input and produces a new global store. Additionally, each
load operation takes the latest global store as an extra input.
With one exception, these connections now correctly repres-
ent the data dependences between memory operations, and
therefore allow many optimizations to immediately general-
ize to memory operations. The exception is that the SSA
graph does not include required dependences – known as
anti-dependences – between load operations and following
store operations. The Swift compiler enforces these depend-
ences via explicit checks during scheduling. It simply adds
extra constraints to ensure that a load operation which takes
a global store S as input is not moved down past a store op-
eration that modifies S (i.e. takes S as input). We chose not
to include anti-dependences edges in the SSA graph mainly
to reduce the number of edges in the graph. Note also that an
anti-dependence between a load and a store operation does
not indicate that the load is an input of the store, so repres-
enting anti-dependences would require a new kind of edge in
the SSA graph.

If the current global store is different on two incoming
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edges of a block, then a phi node must be inserted in that
block to merge the two global stores into a new current store,
just as with any other kind of value. The phi node ensures
that any memory operations in that block or below do not
incorrectly move up one side or the other of the control-flow
merge. Similarly, the phi node of global stores at the top
of a loop ensures that memory operations do not incorrectly
move out of a loop if the loop has side effects. The need
for phi nodes for global stores increases the number of nodes
in the SSA graph. However, the extra number of phi nodes
is not large, and the advantage is the simplicity that results
when memory operations are treated like all other values in
the SSA graph.

There are a number of necessary modifications to other
types of values to handle stores correctly. Method bodies
have a global store as an extra input argument. The return
value at the end of a method takes two inputs, the actual re-
turn value of the method (if there is one) and the latest global
store. This adjustment ensures that all stores are correctly
kept alive by our dead-code elimination passes. Similarly,
a throw value takes a value to throw and a global store as
input.1 As described in the next section, method calls take
a global store as input and produce a new global store as an
output, since any method call may modify global memory.

Java provides constructs for synchronizing on an object,
which we model via monitor enter and monitor exit op-
erations. The Java memory model essentially requires that
memory operations cannot move above or below these syn-
chronization operations. We easily enforce this requirement
in this Swift IR by having both monitor enter and mon-
itor exit take a global store as input and produce a new
global store as output. Optimization around reads of volatile
fields can be similarly limited by having such reads produce
a new global store as output.2

One shortcut that we take with the current Swift IR is that
operations that store into an object or an array (put field,
put static, and arr store) are pinned to their original block.
This pinning is not strictly required, since these operations
do not cause exceptions. However, a write to memory has
a control dependence on the immediately preceding control
operation that determines whether it is executed. For ex-
ample, a write to memory should not be moved up above
a preceding IF operation. In the Swift IR, we decided not
to represent these control dependences, and instead chose to
pin store operations to their original block.

Figure 3 shows a full example of the Swift IR for a method

1The exception exit of a method should also contain a return value which
takes an exception object and a global store as input. Such a return value
would typically require phi nodes with many run-time exceptionobjects and
many global stores as inputs. For simplicity, we do not represent this excep-
tion return object. This simplification does not greatly affect the compiler,
since most of the exception processing is done by the run-time system. The
only effect is that we cannot easily do method inlining inside code with an
explicit exception handler.

2For simplicity, we currently insert a special value before each read of a
volatile field that modifies the global store (but generates no actual machine
code), instead of creating special versions of the read operations.

Entry

v01 = arg 0
v02 = arg 1 (store)

B1

v03 = constant 0

B2

v04 = phi(v03, v14)
v05 = phi(v02, v12)
v06 = null_ck(v01)

B3

v07 = arr_length(v01, v06)
v08 = lt(v04, v07)
v09 = if(v08)

B4

v10 = bounds_ck(v04,  v07)

B5

v11 = const 2;
v12 = arr_store(v01, v04, v11, v06, v10, v05)
v13 = constant 1
v14 = +(v04, v13)

Exit

v14 = return(v05)

static void method(int a[]) {
  int i;
  for (i = 0; i < a.length; i++) {
    a[i] = 2;
  }
  return;
}

Figure 3: Example of Swift IR for a Full Method

that does writes to global memory. In this figure, we use
our typical method for representing the Swift IR. Because
the SSA graph can have so many nodes and edges, we give
names to all the values and specify the inputs to a value as
named arguments, rather than via edges between those val-
ues. We have indicated the CFG in the usual manner, with
one additional shortcut. We have not shown the exception
exit block, and instead indicate that a block has an outgoing
edge to the exceptional exit block by shading the block. That
is, a block is shaded if it may produce an uncaught exception.

In this example, the entry block contains a value repres-
enting the array input argument and a global store input ar-
gument. In Block 2, the value v04 is the phi node required for
the loop index i, and the value v05 is the phi node required
in the loop for the global store. Because the method has no
return value, value v14 takes only the current global store
as an input. Note that some common subexpression elimin-
ation has already occurred in this graph, since the null ck
and arr length values of the a.length expression have
already been combined with the corresponding values of the
array store.
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2.5 Method Calls

The Swift IR has operations representing the various types
of method invocation in Java, including class method calls,
instance method calls (either virtual or direct), and interface
calls. Class method calls are like normal non-object-oriented
procedure calls, since there is no receiving object. Values
representing method calls all take the method arguments as
inputs, as well as the current global store. In addition, in-
stance method calls take a null check of the receiver object
as an extra input, because Java requires that a null check on a
receiver object be done before an instance method invocation
on that object is done.

Most method calls produce a program result, as well as
producing a new global store. In order to follow the rule that
each value in the SSA graph produces a single result, method
calls produce a tuple, which consists of the method result and
the new global store. The two components of the result are
accessed by special SELECT values [10], which take a tuple
as input and produce a specified component of the tuple as
output. Values representing method calls are therefore typic-
ally followed by one or two select values in the SSA graph.

If a method call can cause an exception that is caught in the
current method, the call actually produces a distinct global
store for each normal and exception successor edge, since
the state of global memory may be different depending on
how the method call completed. In the common case when
no exception of the method call is caught, no extra store is
required, since the exception exit will not access the global
store.

In the representation of a method body, there are corres-
ponding arguments in the entry block for the incoming global
store and, if an instance method, the null check on the re-
ceiver. In the case of an instance method, the receiver, which
is the first argument, is known to be non-null, as indicated
by the null-check argument to the method call. When build-
ing an SSA graph, the compiler therefore automatically uses
the null-check argument when a null check of the receiver
is required in the method. The null-check argument does not
produce any machine code, so the null checks on the receiver
argument have been eliminated.

The above handling of the store and null-check arguments
results an especially clean implementation of method inlin-
ing. In order to do method inlining, the compiler builds
the IR of the original method and the called method. The
CFG and SSA graph of the called method are inserted into
the CFG and SSA graph of the calling method at the point
of the call, with the arguments to the method body of the
inlined method replaced by the corresponding arguments
to the method call, including the global store and the null
check. This matching process establishes all the correct de-
pendences (including those for memory operations and those
based on the null check of the receiver object) so that all
values that were within the inlined SSA graph can now be
moved anywhere allowed by the usual dependence rules.

Note that a method that has no write operations returns

its original store argument in the return operation. If this
method is inlined, then the operations that were below the
call to this method will now be using the store from above
the method call, and thus optimizations will automatically
take advantage of the fact that the inlined method has no side
effects.

2.6 Results of the Swift IR

We have found that the design of the Swift IR has worked out
especially well, and has allowed us to do simple and general
implementations of various optimizations. In this section,
we summarize some of the advantages of the IR, as well as
some other implications.

First, the rule for determining if values are equivalent, and
therefore candidates for common subexpression elimination
(CSE) is very simple, yet works for all operations. A general
rule in the Swift IR is that values with identical operations
(including the auxiliary operation) and equivalent inputs are
equivalent. This rule follows because the global store inputs
conservatively represent memory dependences, and all other
true data dependences are explicit in the inputs to values.3

With this rule, global CSE can be applied to all values, in-
cluding, for example, memory reads. Values that load the
field of an object will be candidates for CSE only if they
access the same field of the same object, and they have the
same global store input. Because the rule about equivalent
values is so simple, it is easy to apply in a limited fashion
where useful in many other passes of the compiler. In partic-
ular, the Swift compiler does a limited form of CSE while
building the SSA graph in order to reduce the number of
nodes initially created.

Another advantage of the Swift IR is that almost all data
flow and ordering dependences are explicit in the SSA graph.
As mentioned in Section 2.4, anti-dependences are not ex-
plicitly represented and must be generated during schedul-
ing passes. In addition, we have pinned various operations
to their basic blocks so as not to have to represent vari-
ous control dependences. However, all other values are eas-
ily moved around, subject to the straightforward scheduling
constraints. Like CSE, scheduling is still simple enough that
several passes in Swift do limited forms of scheduling to de-
termine if some other optimization would be useful.

As we explained in Section 2.5, method inlining is quite
simple in the Swift IR. In addition, method inlining just pro-
duces a slightly larger SSA graph that is like any other graph
and only includes the required dependences between values
in the inlined method and values in the calling method. All
the standard optimizations, such as CSE, code motion, and
dead-code elimination, apply after method inlining without
any artificial restrictions.

3One detail is that the auxiliary field of control operations and phi nodes
is set to be the block in which they are located, so that control operations
are never combined and phi nodes are only combined if they have identical
inputs and are in the same block.
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Figure 4: Organization of the Swift Compiler

One property of SSA that became clear to us only after
using it in the Swift compiler is that SSA improves the ef-
fectiveness of peephole optimizations. SSA form exposes all
the users of a value, rather than having some limited window.
The Swift compiler therefore applies pattern-based peephole
optimizations, where the peephole is essentially the whole
method, and values in the pattern can be arbitrarily far apart
in the control flow of the method. For example, one peep-
hole optimization says that a length operation applied to an
array allocated in the method can be replaced by the size ar-
gument to the allocation operation. This optimization can
be applied no matter where the allocation and length opera-
tions are in the method. In fact, it is frequently useful for the
case when an array is allocated at the beginning of a method,
and length operations, often generated because of required
bounds checks, occur throughout the method.

We should note that the use of SSA form does put some
constraints on the Swift compiler. First, and most im-
portantly, the register allocator must be quite effective and
general-purpose, since it must assign the numerous values of
the SSA graph to registers and stack locations with minimal
copies and spills. Otherwise, the optimization advantages of
SSA may be outweighed by the cost of copying and spill-
ing values. Similarly, the passes that do the final placement
of values in blocks and scheduling within blocks are quite
important. The use of SSA form provides much freedom in
placing values into a final schedule, so the scheduling passes
must make effective use of available information in comput-
ing a good schedule.

Finally, some groups [22] have noted that SSA form is dif-
ficult to use for restructuring optimizations, since it may be
difficult to add required phi nodes correctly as code is re-
structured and new join points are created. We have not en-
countered any difficulty with keeping an SSA graph correctly
structured for almost all of our optimizations, including
many that modify the CFG, such as branch removal, method
inlining, method splitting, conditional constant propagation,

etc. The only optimization that we found difficult in SSA
form was loop peeling (see Section 3.3.5). However, other
restructuring optimizations, such as loop unrolling or loop
interchange, might also be complex in SSA form.

3 The Organization of Swift and its
Optimizations

In this section, we describe the basic organization of the
Swift compiler, in terms of the sequence of passes that con-
vert Java bytecode to Alpha machine code, and then we
describe individual passes in more detail. Figure 4 shows
the overall high-level flow of the compiler. The IR for a
method is built based on the bytecode of the method, and
any available profile information is used to annotate the
CFG. A variety of interprocedural optimizations are applied,
which may require accessing information about other meth-
ods and classes. These interprocedural optimizations, such
as method inlining, can expose many opportunities for later
optimizations. Then, a variety of machine-independent op-
timizations are applied. A tree-matching algorithm is then
used to convert many operations to a lower and/or machine-
dependent form and to do peephole optimizations. Some
further optimizations are applied to the machine-dependent
form, mainly global CSE and code motion, to take advantage
of opportunities exposed by the machine-dependent form.
Finally, actual Alpha code is generated by a sequence of
passes that do instruction scheduling, register allocation, and
code generation. All of these passes operate on the repres-
entation of the method in Swift IR. Figure 5 provides a more
detailed list of the analyses and optimizations that occur dur-
ing compilation and will be discussed below.
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Interprocedural analyses
• alias analysis
• class hierarchy analysis
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• method resolution
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Figure 5: Analyses and Optimizations of Swift Compiler

3.1 Building the IR

Swift generates the IR from a method's bytecode in a manner
similar to other Java compilers that use SSA form for their
intermediate representation. First, the bytecode is scanned to
determine the number of basic blocks and the edges between
the basic blocks. Then, a phi node placement algorithm [30]
is executed to determine which local variables of the JVM
require phi nodes in the various basic blocks. Then the byte-
codes of each of the basic blocks are executed via abstract
interpretation, starting with the initial state of the local vari-
ables on method entry. The abstract interpretation maintains
an association between JVM local variables and SSA values,
determines the appropriate inputs for new values, and builds
the SSA graph.

Swift does numerous simple optimizations during creation
of the SSA graph in order to reduce the number of nodes cre-
ated. As described above, it can replace an arr length op-
eration with the allocated size of an array, if the array was
allocated in the current method. It can also eliminate bounds
checks if the index and array length are constant. These
optimizations are especially important in methods (such as
class initialization methods) which initialize large constant-
sized arrays.

Swift can also take advantage of profile information that
was produced by previous runs. Based on the profile in-
formation, Swift annotates the edges of the CFG indicating
their relative execution frequency. This profile information is
mainly used for decisions about code layout and the choos-
ing of traces by the trace scheduler. If no profile information
is available, Swift guesses reasonable execution frequencies
based on the loop structure of the CFG.

Swift maintains the invariant that there are no critical
edges in the CFG. A critical edge is an edge whose source
is a block with multiple successors and whose destination is
a block with multiple predecessors. Critical edges must be
eliminated in order to facilitate the first phase of register al-
location, which, as described in Section 3.4.3, places copy
operations at the inputs of phi nodes. In addition, the re-

moval of critical edges ensures that global code motion (see
Section 3.3.2) has the greatest freedom in placing values so
as to minimize unnecessary computations in the final code.
A critical edge can be eliminated by introducing an empty
block between the source and destination of the edge. Swift
eliminates all critical edges immediately after building the
CFG, and later phases that modify the CFG are written to
ensure that they do not create critical edges.

3.2 Interprocedural Analysis and Optimiza-
tions

The Swift compiler does extensive interprocedural analysis
and numerous interprocedural optimizations, many of which
can individually be turned on and off. The interproced-
ural analyses include class hierarchy analysis (CHA), type
propagation, type- and field-based alias analysis, escape ana-
lysis, and a new form of analysis called field analysis [24].
Some of the associated optimizations include method resol-
ution, method inlining, elimination of run-time checks, re-
moval of unnecessary data dependence edges, stack alloca-
tion, and synchronization removal.

Several interprocedural optimizations are combined into a
single pass and are applied repeatedly, because each optimiz-
ation can enable further optimizations. These optimizations
include method resolution, method inlining, type propaga-
tion, and determining types based on field analysis. For ex-
ample, the inlining of one method can clarify the type of a re-
ceiver of another method call, which may enable that method
call to be resolved and possibly inlined as well.

In the following sections, we describe the various inter-
procedural analyses done by Swift, and their use in various
optimizations.

3.2.1 Class and Method Analysis

Swift contains modules that compute and cache useful pieces
of information about classes and methods. By default, these

8



WRL Research Report 2000/2 The Swift Java Compiler: Design and Implementation

modules operate on demand and analyze classes and meth-
ods only when requested because Swift encounters an oppor-
tunity for a possible optimization.

The basic information maintained about classes is the
class hierarchy, as determined by the subclassing relation-
ship. By default, this hierarchy is built only as necessary to
help resolve method calls. However, Swift can optionallyuse
class-hierarchy analysis (CHA) in resolving method calls.
CHA assumes that the set of classes is fixed at compile time,
so the entire class hierarchy is known by the compiler [17].
With this assumption, many virtual method calls can be re-
solved, because the compiler can determine that there is only
one possible implementation of a specified method in a class
or all of its known subclasses. If CHA is turned on, Swift
loads information on all the known classes and builds a rep-
resentation of the class hierarchy. It can then easily scan all
the subclasses of any given class. If CHA is not being used,
Swift only assumes that it knows all the subclasses of a class
if it is marked final.

Swift also maintains a variety of information about meth-
ods in a hash table. Simple examples include the size of the
method's bytecode (for use in deciding whether to inline a
call) and whether the method is reimplemented in a subclass
(for use in resolving a method call). In addition, a method
entry can store many other useful properties which can only
be determined by examining the method bytecode. For ex-
ample, Swift can determine, when useful for optimization,
if a method is guaranteed to return a non-null result. These
properties are typically determined on demand by building
the Swift IR for the method and then examining the result-
ing graphs. The use of SSA in the Swift IR naturally makes
these properties somewhat flow-sensitive.

3.2.2 Type Propagation

Type propagation is useful for resolving some virtual method
calls, especially when CHA is not being used. As we men-
tioned above, Swift assigns types to all values based on avail-
able information in the bytecode and SSA graph. Some val-
ues have very specific types. For example, a value that al-
locates a new object of a particular class C is known to have
an exact type of class C, not any subclass of C, even though
the static type in the original Java program indicates C or any
subclass. Type propagation ensures that this exact informa-
tion is recorded in the type field of applicable values. The
use of SSA form makes the type propagation flow-sensitive,
since types are merged correctly at control-flow joins. Given
the type propagation, Swift can resolve a virtual method call
directly if the receiver object of the call has an exact type.

Exact types can be determined in several ways. First, as
mentioned above, exact types are known when an object or
array is directly allocated. Second, one of the properties of
methods that Swift can compute on demand is whether the
method returns an object with an exact type. Third, Swift
can use field analysis, as described in the next section, to
determine if a load from a field of an object always returns

public class Plane {
private Point[] points;

public Plane() {
points = new Point[3];

}

public void SetPoint(Point p, int i) {
points[i] = p;

}

public Point GetPoint(int i) {
return points[i];

}
}

Figure 6: Example Class for Field Properties

an object with an exact type.

3.2.3 Field Analysis

Field analysis is an inexpensive kind of interprocedural ana-
lysis that determines useful properties of a field of an object
by scanning the code that could possibly access that field, as
dictated by language access rules. For example, a private
field in Java can only be accessed by methods in the local
class, while a package field can only be accessed by meth-
ods in classes that are in the same package as the containing
class.4 An example of a field property is more exact informa-
tion on the type of a field. Field analysis can often show that
a field, if non-null, only references objects of class C, and
never objects of any of C's subclasses. Similarly, field ana-
lysis can often prove that a field, if non-null, always contains
an array of a particular constant size.

As an example, consider the code in Figure 6. Because
the field points is private, the compiler only needs to
scan the instance methods in class Plane to determine its
properties. The compiler can prove that points, when non-
null, must reference an array with base-type Point and a
fixed size of 3. In addition, the compiler knows that points
is non-null anywhere outside Plane's constructor.

As mentioned above, Swift uses exact type information
from field analysis to help resolve method calls. Informa-
tion about the size of fixed-sized arrays is used to simplify
or eliminate bounds-check computations. Null checks can
potentially be eliminated for fields that are known to be non-
null. While Swift (like most Java systems) uses page protec-
tion to implement null checks without any extra code, elim-
inating the null check is still useful because it gives the com-
piler more flexibility in code motion. As with the class and
method analysis modules, a property of a field is computed
on demand only if required for a potential optimization. For
more details on field analysis, see [24].

4A Java field without any access modifiers is visible to its entire package
and therefore we call it a package field.

9



WRL Research Report 2000/2 The Swift Java Compiler: Design and Implementation

Ray

start
end

Point

int x;
int y;

int x;
int y;

(a)

Ray

start

end

int x;
int y;

int x;
int y;

(b)

Figure 7: Example of Object Inlining

We have also used the field analysis approach to determ-
ine fields that are candidates for object inlining. Object in-
lining [21] is a method of reducing the overhead of accessing
objects by allocating the storage of an object within its con-
taining object. If object B is inlined in object A, the cost for
accessing object B is reduced by a pointer dereference. Ob-
jects A and B are likely to be frequently accessed together,
so cache locality may be improved by inlining if A and B are
now stored in the same cache line. As an example of object
inlining, Figure 7(a) shows the storage layout for a Ray ob-
ject which references two Point objects. Figure 7(b) shows
the storage layout when the two Point objects are inlined
into the Ray object.

Our analysis is unique in that it finds both objects that can
be inlined without a header for the inlined object, and objects
that can be inlined, but require with an object header. The
object header contains an indication of the type of the ob-
ject and its method table, and is also typically used for syn-
chronizing on the object. The header information is there-
fore needed for many operations on the object, including vir-
tual method invocations, synchronization, and type-inclusion
checks. If an object is inlined with a header, then a reference
to the object can be allowed to escape into the heap. We
are not aware of any other implementations of object inlin-
ing that allow references to inlined objects to be stored in the
heap.

Our field analysis finds fields whose contents can always
be inlined. The basic criteria is that a new object of partic-
ular class must be allocated and assigned to the field in all
constructors for the containing class, and the field must not
be reassigned by any other method that can access the field.
In addition, the inlined object must include its header, if an
operation that might require the header may be executed or if
a reference to the object might be stored into the heap.5 For
more details on our analysis and implementation of object
inlining, see [24].

5For the purposes of object inlining, we use very quick and simple tests
to determine whether the object might be stored into the heap, in contrast to
the more general escape analysis described in the next section.

3.2.4 Escape Analysis

Escape analysis is used to determine if a reference to an ob-
ject escapes a thread (i.e. can be accessed by another thread)
or a particular method call (i.e. can still be accessed by the
current thread after the method call completes). Escape ana-
lysis is a necessary component for determining if an object
can be allocated on the stack, rather than the heap. If a ref-
erence to an object does not escape a particular method call
(along with a few other conditions), then the object can be
allocated on the stack frame of that call. Escape analysis can
also be used for eliminating or reducing the cost of unne-
cessary synchronization. If a reference to an object does not
escape a thread, then synchronization on the object is unne-
cessary.6

Our basic escape analysis assumes that an object escapes
if a reference to the object is ever stored into a global vari-
able or a heap object (including arrays). We can then use a
simple dataflow analysis [23] to determine if any value in an
SSA graph escapes. To increase the precision, we make use
of summary information about the effects of called meth-
ods. Our method analysis module does an interprocedural
dataflow analysis on demand to determine if a method may
store or return its arguments, and if it definitely returns an
unaliased object (i.e. a new object that has not already been
stored). If a method call is not resolvable or analyzable, the
conservative assumption is made that the method call returns
and stores all parameters and does not return an unaliased
object.

We have also extended the simple analysis to take advant-
age of some information available from field analysis. The
main idea is to discover fields which are encapsulated, in the
sense that the field is initialized with a reference to a new
object by methods in the object's class or package, can only
be accessed by these methods, and and is never “leaked” by
these methods. If we discover an object that does not escape,
then the contents of any encapsulated fields of that object do
not escape, and so on, recursively.

Given the above escape analysis, stack allocation and syn-
chronization removal are implemented fairly easily. While
compiling a method, Swift looks for candidate values, which
are either objects that are allocated directly in the method,
or are newly allocated, unaliased objects returned by method
calls. Swift then reduces its list to the candidates which it
can prove do not escape the current method. There are also
additional restrictions for objects that will be stack allocated,
such as that each object must have a known, exact type and
arrays must have small, constant lengths. If an object can be
stack allocated, then an operation to allocate the object on
the stack is added to the current SSA graph, and the existing

6Under the current Java memory model, the synchronization cannot ne-
cessarily be removed, since the use of synchronization must cause all up-
dates by the local processor to be committed and all updates by other pro-
cessors to be seen. However, the Java memory model will likely be revised
so that synchronizationonly has such effects for accesses that are connected
by chains of synchronizations on the same objects [1].
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class Example {
int A[] = new int[10];
int B[] = new int[10];

public void method() {
for (int i = 0; i < 10; i++)
A[i] = 0;
B[i] = 1;

}
}

Figure 8: Code with Data Dependences between Memory
Operations

allocation operation is removed. If the object was allocated
by a called method, then another version of that method is
generated which initializes the object allocated on the stack,
rather than creating its own object. If Swift determines that
synchronization on an object can be removed, then it scans
all uses of the object and removes any synchronization oper-
ations. This process may also result in new, unsynchronized
versions of called methods being created.

3.2.5 Alias Analysis

Swift includes a phase which does a form of alias analysis
and attempts to relax some of the data dependences in the
SSA graph so as to allow further optimizations. This phase
tries to eliminate data dependences between two memory op-
erations when it can prove that the accessed locations are not
aliased, i.e. cannot be the same. As an example, consider
the code in Figure 8. The loop contains two array store op-
erations, so its representation in Swift IR requires a phi node
at the top of the loop merging the initial global store entering
the loop and the global store at the end of each loop iteration.
The get field operations that load the values of A and B take
the global stores produced inside the loop as inputs, and can-
not move above the loop. The generated code will therefore
reload the values of A and B in each iteration of the loop.

Clearly, though, from Java's type rules, the values of A and
B cannot be modified by stores to integer arrays, so the loads
of A and B should be moved out of the loop. In general, a
memory operation that accesses a particular field or an array
element of a particular type can only be affected by memory
operations that access the same field or same type of array
element. We would like a way to represent these reduced
dependences among memory operations caused by Java se-
mantics, while still enforcing other required dependences.

One possible way of representing dependences among
memory operations with more precision is to have many dif-
ferent types of “global stores”. For example, we could have
a separate global store for each distinct field and each type of
array element. A write to field f of an object would modify
the “f” global store, but not any other global store. Simil-
arly, a read of field g of an object would only take the “g”
global store as input, and therefore would not be affected by

Store operation v of LocType L
Method call v with known store

effects on L1, L2, etc...
Method call v with unknown effects
Lock or unlock operation v
Phi node v

update input mapping with (L, v)
update mapping with  (L1, v),
(L2, v), etc...
change mapping to (L,v) for all L
change mapping to (L, v) for all L
for any L that maps to u on all
inputs, use (L, u) else use (L, v)

⇒

⇒

⇒

⇒

⇒

Figure 9: Transfer Function for Store Resolution

a preceding write to field f.
There are several problems with this approach. First, there

would be many more edges and nodes in the SSA graph. Ex-
tra phi nodes would now possibly be required for many dif-
ferent kinds of global stores, and a method body would now
require arg nodes for many kinds of global stores. If the ef-
fects of a method call are unknown, then it would have to
take every possible kind of global store as input, and pro-
duce new versions as output. The same requirement would
also apply for synchronization nodes. Also, method inlining
would become much more complicated, and might require
that new global store arg nodes for the caller method be cre-
ated to represent the effects of the called method.

We have chosen to stay with the basic Swift IR, but to use
a process which we call store resolution to relax memory
dependences by changing the global store inputs of some
memory operations. For example, in Figure 8, the desired
effect can be achieved by changing the store inputs of the
loads of A and B to be the original store input of the method,
rather than one of the global stores in the loop. The loads of
A and B can then be moved out of the loop.

Store resolution first does a forward dataflow computation
to build up informationabout memory operations, as follows.
Let us call a value a “StoreOp” if it produces a new global
store. StoreOps are either writes to memory, method calls,
or phi nodes. The idea is to look at the subgraph of the SSA
graph which consists of StoreOps. We want to compute in-
formation at these nodes about sets of locations that are easy
to classify. As we mentioned above, in Java we can easily
distinguish stores to particular fields of various types, and
also to array elements of particular types. Let us refer to
these different sets of locations as LocTypes. Then, we wish
to compute information at each node of the subgraph that
indicates, for each LocType, the most recent StoreOp that
might have modified locations of that type.

In our dataflow analysis, the state at each node is concep-
tually a mapping from each LocType to the most recent pre-
ceding StoreOp which might have modified locations of that
LocType. For implementation efficiency, our state has one
entry indicating the default StoreOp that applies to most Loc-
Types, and then individual ordered pairs (LocType, StoreOp)
for any LocTypes that don't map to the default StoreOp. The
forward transfer function for the dataflow problem is shown
in Figure 9. Because our method is a full dataflow analysis,
it does correct summaries for loops. In particular, it will cor-
rectly determine when a particular LocType cannot be mod-
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ified in a loop.
Once we have obtained the state information for each

node, store resolution then uses this information to update
dependences based on this information. In particular, we ex-
amine each load operation in the method. Each load opera-
tion has a particular global store G as input. We use the state
information at G to determine the actual global store H that
the load operation may depend on, based on the LocType of
the load. If G is different from H, than we change the load
operation to use H as its input rather than G.7

By changing the store input, store resolution makes the
relaxed dependence information available to all later passes.
For example, if there are two identical load operations and
store resolution changes the store input of one to be the same
as the other, then a later CSE pass will naturally combine the
loads into a single operation. Similarly, a load operation will
automatically be scheduled earlier if possible, and may be
moved out of a loop.

Our analysis is interprocedural, since it makes use of sum-
maries of the effects of methods. As with other method prop-
erties, the write effects of methods are computed on demand
by the method analysis module. The summary is a flow-
insensitive list of fields and array element types (LocTypes)
that the method (and all methods that it might call) might
modify. Unlike many other properties, the immediate effects
of a method can be determined by examining the bytecode
without building a CFG or SSA graph.

By categorizing locations into distinct field and array ele-
ment types, we have used a type-based alias analysis scheme
(where the field name of a location is also considered part of
its type). However, store resolution can easily be used with a
more sophisticated alias analysis technique which manages
different kinds of LocTypes and produces more precision.

3.2.6 Method Resolution and Inlining

As described in the above sections, Swift resolves virtual
method calls using information from various kinds of ana-
lyses. If CHA is being used, then method information may
indicate that there is only one possible implementation of
that could be referenced by a virtual call, given the static
type of the receiver. If CHA is not being used, Swift can
still determine that there is only one implementation if cer-
tain classes or methods are declared as final. Alternat-
ively, type propagation (possibly with help from field ana-
lysis) may indicate that the receiver must have a particular
exact type and therefore can only invoke a specific method.
Information on exact object types is also used to resolve in-
terface calls.

We already described the basic implementation of method
inlining in Section 2.5. If inlining is turned on, Swift inlines
a method if the method call can be resolved and the size of
the method is below a certain threshold. Together with the

7Swift maintains a record of the original store input G, so that the ap-
propriate anti-dependences can be calculated in the scheduling phases, as
described in Section 2.4.

other interprocedural optimizations, method inlining is ap-
plied recursively a small number of times. Recursive inlining
is especially important for eliminating the costs of calling su-
perclass constructor methods, most of which may be empty.

If Swift is being used in an environment where dynamic
loading can occur, Swift can limit its use of CHA to simplify
correctness issues. In general, if a method M is compiled
with information that a particular class has no subclasses or
a particular method has only a single implementation below a
certain class, then M's code must be modified if the dynamic
loading of code means that such information is no longer
true. However, it can sometimes be difficult to modify ex-
isting code. The problem is that the method M that we want
to modify may actually be running or active (on the stack)
at the time. In fact, M may be executing an infinite loop
or a long-running computation (e.g. reading input from a
large file). Therefore, we cannot simply ”wait” until M is no
longer running to modify it.

If M has a virtual method call C that is resolved to a dir-
ect call using CHA, but the call is not inlined, then it is easy
to modify M to turn off the CHA optimization, even if M is
running. The JVM can generate a stub that does the virtual
call instead, and then atomically change the call C to jump
to the stub. A more difficult problem is to reverse the effects
of CHA when the virtual method call C has been resolved
and inlined. However, as observed in [18], the resolved call
C only becomes incorrect if its receiver can possibly contain
a new object from the dynamically loaded class. If the re-
ceiver of C is an argument of the containing method M, then
the receiver existed before the current entry to M and cannot
change. Therefore, the receiver cannot reference an object of
the dynamically loaded class, so the resolution of C will be
correct at least within the current invocation of M. So, M can
be invalidated simply by creating a new version of M with
the virtual call reinstated, and ensuring that any future calls
to M use the new version. Alternatively, instead of generat-
ing new compiled code, the JVM can just ensure that future
calls to M revert to interpreting the bytecode directly or using
less-optimized JIT code.

When Swift is invoked in specified mode (which we call
simple-CHA), it will limit its use of CHA as follow. Swift
will not use CHA to resolve methods for use by any interpro-
cedural analysis, such as alias analysis or escape analysis.
Swift will only use CHA to resolve virtual method calls in
the method being compiled and convert them to direct calls.
In addition, Swift will not generally do method inlining on
a method call that was resolved by CHA. However, it will
allow method inlining if the receiver of the call is an input
argument of the containing method. Given these limitations,
the JVM can readily update code optimized using CHA when
a class is dynamically loaded. Swift simply needs to provide
the JVM with a list, for each compiled method M, of the
classes which, if subclassed by a dynamically loaded class,
may require M to be modified or invalidated. Along with
each class, Swift should indicate which new method imple-
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mentations would require a modification of M, and, for each
of these, whether a particular direct call can be modified or
if M's code must be invalidated or recompiled.

3.2.7 Method Splitting

Object-oriented programs frequently have small methods
that access an encapsulated field or array element in an ob-
ject. Method inlining naturally reduces the overhead of these
small methods, by eliminating the method call overhead and
allowing further opportunities for optimizations. However,
sometime these methods contain one or more quick tests
for unusual cases before executing a small amount of code
in the common case. In the unusual case, these methods
may do much more computation or throw an exception.
Important examples include methods in the standard Java
library such as java.util.Vector.elementAt and
java.lang.String.charAt. A problem with these
kinds of methods is that they will not be inlined, because
of the code that handles the unusual cases. In addition, when
they are compiled as a separate routine, there will likely be
extra register saves and restores, because of the extra code.

Swift addresses this problem by checking if it would be
beneficial to split up a method. In general, a method should
be split if it has only a small amount of code that is com-
monly executed, as defined by profile information or static
estimates. Currently, Swift defines the “splittable” property
much more conservatively, in order to simplify the imple-
mentation of method splitting. A method is splittable only if
it has a single path to the return statement that calls no other
methods, as well multiple other paths that eventually throw
exceptions. In such cases, the path to the normal exit is the
common case.

The information about whether a method is splittable is
another property that is computed and cached by the method
analysis module. When Swift compiles a splittable method,
it will create auxiliary methods that execute the code along
the abnormal paths that throw exceptions. Swift then modi-
fies the IR of the original method by replacing the abnormal
paths with calls to the auxiliary methods. In addition, if a
method calls a splittable method, then Swift only inlines the
“split” version of the method with calls to the auxiliary meth-
ods.

3.3 Intraprocedural Optimizations

Once all the interprocedural analysis and associated optimiz-
ations have been done, Swift does all the standard intrapro-
cedural optimizations on the existing IR, as well as a number
of optimizations that are more Java-specific. In this section,
we describe some of the interesting aspects of these optimiz-
ations and their implementation in the Swift IR.

3.3.1 Global Common Subexpression Elimination

By default, Swift does global common-subexpression elim-
ination (CSE) and global code motion, as described by
Click [11]. That is, by default, Swift will apply CSE to any
two values that are equivalent, no matter where they occur in
the control-flow graph. In particular, Swift will replace one
value by an equivalent value, even if neither value dominates
the other. In this case, the resulting value does not neces-
sarily dominate all its users. Global CSE must therefore be
followed by a pass of global code motion, which places val-
ues in blocks so that all values dominate all their users.

As described in Section 2.6, two values are equivalent if
and only if they have identical operations (including the aux-
iliary operation) and have equivalent inputs. During global
CSE, Swift computes equivalent values via a partitioning al-
gorithm [3, 11]. It splits all values into initial partitions based
solely on their operation fields and puts the partitions on a
work-list. Each time it takes a partition P off the work-list, it
builds the set of values Si which take one of the values in the
partition as the ith input, as i ranges over the possible input
numbers. If there is a partition Q which has some set of its
values Q', but not all its values, in S i, then Q is split up into
Q' and Q � Q 0, and the smaller of the two resulting parti-
tions is added to the worklist. Eventually, this partitioning
algorithm terminates, and all values in a partition are equi-
valent.

We make one modification to the partitioning algorithm
to deal with values that cause exceptions. Exception-causing
values cannot be moved from their original block, so we can-
not use code motion to ensure that these values dominate
their uses after CSE is applied. So, if there are two identical
exception-causing values, the first value can only replace the
second if the first value's block dominates the second value's
block. In addition, the second value is redundant only if the
first value definitely did not throw an exception. So, Swift
also requires that the second value's block is dominated by
the non-exception successor of the first value's block.

To satisfy these conditions, we modify the CSE algorithm
as follows. Our rule is to keep the dominating value of a par-
tition of exception-causing values as the first element of the
partition. Every time that the above partitioning algorithm
reaches quiescence, we find the value V in each partition
with exception-causing values that is at the highest level of
the dominator tree. We make V be the first value of the par-
tition and test that V dominates the rest, according to the
above condition. If not, then we break up the partition into
those dominated by V and those that are not. The smaller
of the two partitions is added to the worklist, and we again
run the partitioning to quiescence, and so on. Eventually, all
partitions with exception-causing values will have their first
value dominating the rest.

Once Swift has computed the final partitions of the values,
it iterates through all the partitions. If a partition has more
than one element, Swift chooses a representative value from
the partition, which must be the value that dominates the oth-
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ers in the case of exception-causing values. It then changes
all users of a value in the partition to use the representative
value. All of the other values in the partition are no longer
used and are removed.

Global CSE is highly effective at removing many run-
time checks. For example, many null checks of the same
input argument or local variable will be eliminated automat-
ically, as long as one of the null checks dominates the oth-
ers. Whenever a run-time check is eliminated via CSE, Swift
automatically removes the exception edge of the containing
block and merges the block with the successor block. Thus,
the elimination of redundant run-time checks greatly com-
presses the CFG as well.

Note that CSE also applies to loads of fields or array ele-
ments. When preceded by the store resolution phase that
makes alias information available by relaxing memory de-
pendences, global CSE automatically accomplishes the re-
moval of redundant loads, which frequently requires a separ-
ate pass in other intermediate representations. [14].

Swift currently does global CSE (and global code mo-
tion) once during the machine-independent processing, after
all interprocedural optimizations. This CSE pass elimin-
ates redundant expressions that are in the original method or
that are exposed by interprocedural optimizations, and can
greatly reduce the size of the SSA graph. Swift does an-
other round of global CSE (and global code motion) after
the conversion to machine-dependent IR, in order to elimin-
ate common expressions revealed by the conversion to the
lower-level form.

3.3.2 Global Code Motion

Swift currently uses Click's global code motion al-
gorithm [11]. The exact choice of a code motion algorithm
is not very important, since Swift has a final scheduling pass
which can move values over traces consisting of multiple ba-
sic blocks. The main purpose of the code motion pass is to
move loop-independent values outside of loops and to en-
sure that all values are in blocks that dominate their users
after global CSE.

Click's code motion algorithm proceeds via two passes
over the SSA graph. The first pass finds the earliest pos-
sible placement for all values by requiring only that a value
be placed such that it is dominated by all its inputs. The
second pass finds the latest possible placement for all values
by requiring only that a value be placed in a position that
dominates all its users (and also respects any necessary anti-
dependences, as described in Section 2.4). For any particular
value, the early placement will dominate the late value. After
determining the latest placement for the value in the second
pass, the algorithm scans the sequence of blocks from the
early to the late placement of a value. It then places the value
in the latest possible block (i.e. lowest in the dominator tree)
which is at the lowest loop nesting. The result is that a value
is moved out of loops as much as possible, and is otherwise
put in the most control-dependent block.

public boolean equals(Object o) {
if (this == o)
return true;

ValueVector vv = (ValueVector) o;
if (ptr != vv.ptr)
return false;

for (int i=0; i< ptr; i++)
if (!v[i].equals(vv.v[i]))
return false;

return true;
}

Figure 10: Example of Elimination of Duplicate Inputs to
Phi Nodes

Immediately before code motion, Swift does a quick pass
to try to eliminate duplicate inputs to phi nodes. The mo-
tivation is for code such as the method from a SpecJVM98
benchmark shown in Figure 10. The SSA graph for the
method has a phi node in the final block that merges all the
possible return values. This phi node has two inputs which
are the value 'true' (actually just 1) and two inputs which
have the value 'false' (actually just 0). The generated code
has two sequences that load zero and jump to the epilog, and
two sequences that load 1 and jump to the epilog. (Even
worse, the constant 1 is sometimes put in a different register
and hoisted to the dominating block of the branches, result-
ing in greater register pressure.)

To get rid of these duplicate code sequences, Swift scans
blocks for phi nodes with duplicated inputs. If such a phi
node is found, and the only other phi node in the block is
for global stores, then the compiler eliminates the duplicate
inputs by inserting an extra predecessor block that joins all
the blocks corresponding to the duplicate inputs. (The new
block may need to have a phi node to merge the store inputs
for these blocks, but this doesn't not actually generate any
code.) The result of the optimization is that the register cop-
ies for the duplicated phi inputs will be merged into a single
code sequence, and the duplicated value can now possibly
move down into the new block.

So, in the example in Figure 10, there will be just one code
sequence that loads one and returns, and one code sequence
that loads zero and returns. This optimization occurs most
frequently with return values, but is applied when appropri-
ate for any phi nodes with duplicated inputs.

3.3.3 Branch Removal

Swift has a phase that uses two methods to attempt to re-
move branches. The first method tries to remove branches
that are used just to compute a value that is either 0 or 1. Such
branches often occur in the computation of boolean values,
since the Java virtual machine represents false with a value
of 0 and true with a value of 1. However, the Java virtual
machine does not have any bytecodes that produce a boolean
value directly from a comparison, so boolean values must be
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B1
if (cond1)

B2
if (cond2)

B3

B5B4
succeed();

B6
fail();

B1,2
if (cond1 & cond2)

B3,5B4
succeed();

B6
fail();

Figure 11: Branch Removal Transformation

computed via a comparison branch whose two destinations
assign a 0 or a 1 into a local variable. The goal of the optim-
ization is to convert the branch and associated phi node into
a single comparison operator that produces a boolean dir-
ectly. The actual optimization is fairly simple. Swift simply
searches through all the phi nodes in the method, looking for
phi nodes whose two inputs are constants of 0 and 1. If such
a phi node is associated with a simple IF-THEN-ELSE con-
trol flow, then Swift can replace uses of the phi node with
the controlling boolean of the if node (or its negation). If
the IF-THEN-ELSE becomes useless when the phi node is
optimized away, then the if node and the associated control-
flow structure are also removed.

Swift also tries to remove branches by converting logical
AND/OR expressions to bitwise AND/OR expressions. For
example, the code for a conditional such as if (cond1
&& cond2) normally requires two branches, since the se-
mantics of the logical-AND operator in Java requires that
the second condition is not executed if the first one fails.
However, if the second test is fairly simple and has no side ef-
fects, then code that executes both tests, combines the result
(via a bitwise-AND), and then does a conditional branch will
perform better than code that does two conditional branches.
The reduced number of branches is especially important for
out-of-order processors, since extra branches can reduce the
rate of instruction fetching and also may result in speculation
down a wrong path.

This optimization is also fairly simple to implement in
the Swift IR. This transformation is illustrated in Figure 11.
Swift simply looks through all blocks in the CFG for a block
that is controlled by an if node and one of whose successors
is also a block controlled by an if. If a candidate block
is found, then Swift checks other criteria. In general, the
blocks involved (B1, B2, B3, and B4 in the figure) must con-
tain a small number of operations and must not contain any
memory write operations, method calls, or other exception-
causing operations. If the criteria are met, then the condi-
tions of the ifs in B1 and B2 are combined (with an and or
or as appropriate), B2 is eliminated, and the contents of B5
are merged into B3.

public static int sum(int a[]) {
int r = 0;
for (int i = 0; i < a.length; i++)
r += a[i];

return r;
}

Figure 12: Example of Bounds check Elimination

3.3.4 Run-time Check Elimination

Swift includes a simple pass that attempts to eliminate some
run-time checks or type tests based on properties of values
that can be proved from the control flow of a method. For
example, if a method contains an IF statement checking if a
value is non-null, then null checks can be eliminated in one
branch of the IF, because the value is known to be non-null.

Swift currently does a fast, simple analysis, rather than
trying to prove properties using general theorem proving or
general manipulation of inequalities. The basic technique is
as follows. Swift scans the current SSA graph for run-time
checks that have not been eliminated. Suppose it encounters
a null check of a value v. Swift then examines all the users of
v, i.e. values that take v as an input. Swift searches for a user
that is a comparison of v with null, such that the compar-
ison is used by an if value. Then v is known to be non-null
on one of the outgoing edges of the IF block. If the successor
block S along that edge dominates the block containing the
null check, then the null check can be eliminated. However,
values that depend on that null check must not float above S.
So, Swift places a special pin value in block S and changes
all users of the null check to use the pin value instead. pin
values do not generate any machine code, but, as their name
suggests, they are pinned to their original block. Therefore,
values that depend on the null check will stay within the cor-
rect branch of the IF statement. A similar process applies
for cast checks. In the case of a cast check of value v, Swift
scans the users of v for instanceof checks on v that control
an IF. Redundant IFs are similarly eliminated by searching
for a dominating IF with the same controlling condition.

Swift does somewhat more work to try to prove that a
bounds checks will always succeed. Suppose Swift is trying
to eliminate a bounds check whose index is value v. Again,
Swift scans the users of v to derive conditions on v. If it
finds a comparison on v that controls an IF, then it may know
that the comparison or its negation is true. Alternatively, if v
is found to be an induction variable of a loop that is mono-
tonically increasing/decreasing, then v is guaranteed to be
greater/less than its starting value. For example, consider
the code in Figure 12. The for-loop termination condition
guarantees that i is less than a.length anywhere inside
the loop body. Also, since i is a monotonically increasing
induction variable that starts at zero, it is guaranteed to be
greater than or equal to zero. Together, these two properties
guarantee that the bounds check associated with accessing
a[i] will always succeed, so Swift will remove it.
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As we said above, Swift does not attempt to solve a gen-
eral system of inequalities involvingi in order to prove prop-
erties about i. It simply looks at all the users of the value
representing i, and determines if any direct comparisons of
i can be shown to be true. It also determines if i is an in-
duction variable, and, if so, whether another condition about
i can be shown. Swift will apply the condition gathering
recursively down to a fixed depth, so it can show that x is
greater than zero if it shows that x is greater than y, and it
shows that y is greater than zero. Swift also incorporates
the knowledge of a few algebraic rules, such as that adding
two values greater than zero gives a result that is greater than
zero.

Our simple approach is effective because our IR provides
immediate access to all the users of a value v, and therefore
makes it easy to find program expressions that help prove
properties about v. In addition, Swift does a round of global
CSE before doing check removal, so Swift has already com-
bined values equivalent to v and collected all their uses to-
gether.

Storing to an array in Java also requires a run-time check,
called an array store check, to ensure that the object being
stored into the array is compatible with the base type of the
array. Swift attempts to eliminate array store checks via sev-
eral methods. However, these tests for removal are actually
done during the conversion of array operations to machine-
dependent form. Swift will eliminate an array store check
if the base type of the array is exactly known and can hold
the known type of the stored value. It will also eliminate
the store check if the stored value is known to be null or has
been loaded from another element of the same array. Finally,
Swift also checks if the class of the base type of the array
has no subclasses (either based on the use of final or via
CHA.). If so, the array store check cannot fail and is elimin-
ated.

3.3.5 Loop Peeling

Loop peeling is an optimization that “peels” off one or more
of the initial iterations of a loop into straight-line code pre-
ceding the loop. Loop peeling has been used for optimiz-
ing loops in scientific programs that have a special condition
associated with the initial iteration(s) because of cylindrical
boundary conditions. However, we have adapted loop peel-
ing for use in a Java compiler to aid in optimizing loops
which contain run-time checks. The problem that we wish
to solve is that there are often loop-invariant run-time checks
in a loop. For example, there may be a required null check
for an array that is first accessed inside the loop. We would
like to move such a check outside the loop, but the check
is pinned, since it may cause an exception that should not
be thrown if no iterations of the loop are executed. However,
once the check has succeeded in the first iteration of the loop,
it is redundant, since it will succeed in all later iterations.
Swift therefore uses loop peeling to separate out part of the
first iteration. Global CSE will then automatically eliminate

B1

B0

B2

B3

B4

B3

B0

B4

B1

B2

B1’

B2’

Figure 13: Loop Peeling Transformation

the run-time check still in the loop as redundant. Note that
the Swift compiler only does loop peeling to move a check
out of a loop if the check has not otherwise been eliminated
by field analysis, CSE, or the check removal described in
Section 3.3.4. Interestingly, in simple cases, the end result
often looks like standard code motion of the run-time check
out of the loop.

Our loop peeling pass begins with a search phase that
looks for loops which should be peeled. The search includes
all loops, starting with the most highly nested loops first.
A loop is a candidate if it contains a loop-invariant fault-
ing operation. Also, the faulting operation must dominate
the source blocks of all of the loop backedges. Otherwise,
it may not be executed on every iteration or it may actually
be in code that is exiting the loop. The set of blocks that are
dominated by the loop header and dominate the block con-
taining the faulting operation will be the “peel”, the part of
the first iteration that will be peeled off before the main loop.
Because we do not want to create too much duplicated code,
another criteria is that the peel is not too large. We therefore
choose the largest useful peel that does not exceed a max-
imum number of blocks. To simplify the peeling process,
there are also a few other requirements. For example, a peel
is not allowed to contain a nested loop.

The loop peeling process is complex, but straightforward.
The main idea is to duplicate the blocks of the peel and
change the control flow to go first through the duplicated
blocks and then enter the loop below the peel. The trans-
formation is illustrated in Figure 13. Call the originals blocks
in the loop that are being peeled the “peel-originals” (striped
in the figure) and the duplicated blocks the “peel-copies”
(gray in the figure). First, the peel-original blocks are copied
to form the peel-copy. The values in the peel-original are
also duplicated to the peel-copy. During the copying, uses of
the phi nodes at the top of the loop peel are converted to uses
of the associated phi input entering from outside the loop.
Then the edges entering the loop header from outside the
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loop are changed to point to the peel-copy. Removing the
edges entering the loop header may cause some phi nodes
in the original loop header to disappear. The successor of
the last block of peel-copy is set to be the block in the loop
just below the peel-original, which will now become the new
loop header. Finally, for all values which were copied, phi
nodes are created in the new loop header and all other blocks
(such as loop exits) that join edges from the peel-copies and
peel-originals. There are very rare cases when the addition of
these phi nodes may require the creation of further phi nodes.
In these cases, we abort the peeling process. Alternatively,
we have also done an implementation in which we rerun the
phi-node placement algorithm [30] on just these new nodes
to determine all additional phi nodes required.

3.3.6 Pattern-based Peephole Optimizer

Swift contains several passes that do pattern-based trans-
formations of the SSA graph. For example, one pass does
machine-independent peephole optimizations, and another
pass does machine-dependent conversion, as well as some
machine-dependent peephole optimizations. These passes
are all automatically generated by a pattern-matcher gener-
ator. This generator takes a set of graph rewriting rules as in-
put and produces a compiler pass which transforms the SSA
graph according to those rules.

Each rule consists of a pattern that can match a piece of the
SSA graph, and some Java code which is executed when the
pattern matches. The pattern language allows matching of
node operations, auxiliary operations, and types, and allows
nested matching on the inputs to a node. For example, here is
a simple rule that matches an integer addition of an arbitrary
value and zero:

add@int(_, constant[0]) { ... }

The pattern language allows matching of any operation, a
particular operation, a list of operations, or any operation
not in a list. Similar matching capabilities exist for types.
The language also allows binding of a variable to a partic-
ular value in a pattern, for use in the action part of the rule.
The top-level value that is matched by the pattern is available
in the action via the keyword self. The action can mutate
the self value or any of its inputs (recursively).

The graph rewriting order is as follows. An SSA value
is processed before all of its inputs (except when there are
cycles in the value graph due to phi-nodes.) For each value,
rules are applied in the order specified by the rules file until
one matches and mutates a value. The rewriting then pro-
ceeds to the next value. Repeated passes are made through
the entire SSA graph until no changes occur on a pass. The
ordering of rules is therefore somewhat important in ensur-
ing that optimizations are applied in the most effective order,
but we have not found it difficult to choose such an ordering.

Many of our machine-independent peephole optimiza-
tions apply algebraic or boolean identifies. We have pre-
viously mentioned the optimization in which the length of

a value which is a new array is replaced by the allocated
size of the array. Another interesting optimization is repla-
cing a get field operation by the value stored by a previous
put field operation, given that the object and global store in-
puts of the two values are identical.

3.3.7 Other Optimizations

Swift does a number of other standard machine-independent
optimizations. First, it does repeated passes of dead code
elimination, typically after a pass that has greatly changed
the structure of the SSA graph. As mentioned in Section 2.2,
the live values in a Swift SSA graph are the control values
and (recursively) all inputs of live values. Swift does dead
code elimination by simply marking all the live values, and
then removing all the unmarked values.

Another standard pass that Swift does is conditional con-
stant propagation [32]. This pass does constant propagation
and elimination of impossible control flow in the same pass.
In this way, more optimization opportunities are found than
would be found by each pass individually. Finally, Swift
also includes a general strength reduction pass. We use the
method described in [13], which is an elegant version of
strength reduction for SSA graphs.

3.4 Machine-dependent Processing

In this section, we describe some of the machine-dependent
phases in the Swift compiler. The pass that converts the IR
to machine-dependent operations is generated by the same
pattern-matcher generator that is described in Section 3.3.6,
and we will not describe it further. The other machine-
dependent passes described below include sign-extension
elimination, instruction scheduling, register allocation, and
code generation.

3.4.1 Sign-extension Elimination

The semantics of Java require that sign extension operations
be performed quite often. However, a little bit of analysis
can often prove that these sign-extension operations are not
needed. For example, in the setX method in Figure 14,
an int is cast to a short and then stored into a short
field. Because the store only uses the low-order 16 bits of
the casted value, we don't actually need to perform the cast.
The sign-extension cleanup pass searches for cases like this
one and eliminates any redundant operations it finds.

Two different techniques are used to perform sign-
extension elimination. The first technique computes how
many low-order bits each input of a value needs. This in-
formation is computed by a simple backwards walk through
the SSA graph. Then, any operation whose output is equal
to one of its inputs on those low-order bits can be replaced
with that input. For instance, the sextw in Figure 14 only
needs to compute the low-order 16 bits of its output, and a
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class Example {
short x;
void setX(int v) {
x = (short) v;

}
int highHalf(long v) {
long t = v >> 32;
return (int) t;

}
}

** code for Example.setX
0x00000 sextw a1, a1 ; useless!
0x00004 stw a1, 8(a0)
0x00008 ret (ra), 1

** code for Example.highHalf
0x00000 sra a1, 32, v0
0x00004 sextl v0, v0 ; useless!
0x00008 ret (ra), 1

Figure 14: Examples of useless sign extensions.

sextw is the identity function on its low-order 16 bits, so
the sextw can be safely replaced with its input.

The second technique computes the state of the high-order
bits of each value. The state of a value includes the num-
ber of known bits and whether those bits are zero or sign-
extension bits. Any operation that we can show to be unne-
cessary because its input is in a certain state can then be elim-
inated. For example, in Figure 14, the t variable in high-
Half is known to have its high 32 bits in a sign-extended
state. Because any sextl is a NOP when its input is already
32-bit sign extended, the subsequent sextl can be elimin-
ated.

3.4.2 Trace Scheduling and Block Layout

Swift has a full instruction scheduler that can operate on
traces of one or more basic blocks. The scheduling process
includes three main steps: (1) decomposing the CFG into
traces; (2) scheduling the instructions within each trace; and
(3) determining a good sequence for the layout of the traces.

The choice of traces is driven by profile information or
static estimates of block and edge execution frequencies. A
simple greedy algorithm proceeds by choosing the most fre-
quently executed block B that is not yet placed in a trace as
the first block in a new trace. The algorithm then tries to ex-
tend the trace upwards and downwards in the CFG. If B has
only a single predecessor P in the CFG and P is not yet in
a trace, then P is added to the trace and so on, recursively,
with P's predecessor. The trace is then extended downward
by following the most frequently executed successor edge of
B. If that edge goes to block S, and S is not in a trace yet, and
S has only a single predecessor, then S is added to the trace,
as so on, recursively, with S's successors. The algorithm pro-

ceeds until all blocks have been placed in a trace. The result
is a set of traces that are extended basic blocks and that cover
the CFG.

The instruction scheduler operates on a trace at a time.
It first builds up a set of all the dependences that determ-
ine where a value (instruction) can be placed. Most of these
dependences already exist in the Swift IR, but the instruc-
tion scheduler explicitly adds control and anti-dependences.
Because all the control dependences are explicit, memory
store operations are not pinned in any particular block during
scheduling. However, control-flow and exception-causing
operations are still required to be at the end of the basic block
which they control. In addition, special “out-of-trace” de-
pendences are added to make sure that a value is scheduled
early enough in the trace to dominate any of its users that are
not in the trace.

The scheduler also includes a model of the Alpha 21164
and 21264 pipelines, embodied in a finite automata. This
automata allows the scheduler to determine when the result
of an operation is likely to be ready, based on the expec-
ted latency of the operation and the state of the pipeline [4].
Given the dependence and latency information, the overall
scheduling algorithm is fairly simple. At each point, the
scheduler chooses to schedule a value whose dependences
have all been satisfied, and whose inputs are all ready or
will be ready at the earliest time. Whenever a control-flow
or exception-causing value is chosen, then the current basic
block is ended. When a value is scheduled, the state of the
finite automata is updated to reflect its execution.

Swift again uses profile information for determining a
good layout for the traces. The main goal is to ensure
that traces joined by frequently executed edges are placed
next to each other, so that an extra branch instruction is
avoided and instruction cache locality is improved. Swift
uses a simple version of Pettis and Hansen's code layout
algorithm [29], which is a greedy algorithm that gradually
merges blocks/traces into sequences, and always merges the
two sequences that have the heaviest-weight edge between
an element of one and an element of the other. Eventu-
ally, the algorithm produces a single sequence, which is the
layout of the blocks/traces. Swift modifies the dynamic or
statically estimated profile information slightly, by reducing
the weight of other outgoing edges of a block which has an
edge that exits a loop. This change makes it likely that a
loop exit block will be placed at the end of a loop, thereby
ensuring that there is only one branch per loop iteration in
the case of a simple loop. Swift also gives lower weight
to edges that leave a trace in the middle, since these edges
have already been determined to be less important than the
remaining edges in the trace.

3.4.3 Register Allocation

The register allocator in Swift is a modified Briggs-style col-
oring allocator [7]. Our allocator is novel in that it does not
use coalescing, but instead uses a special data structure, the
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bias graph, to direct coloring and limit the number of copies
introduced.

Register allocation proceeds by assigning each value a
color which represents a particular register assignment. Re-
strictions on which values can be in which registers at par-
ticular times are encoded in a graph coloring problem which
is then solved by coloring heuristics. Allocation proceeds
according to the following algorithm:

1. Insert copies

2. Precolor

3. Construct bias graph

4. Construct interference graph

5. Compute coloring order

6. Color values

7. If some values failed to be colored

(a) Spill uncolored values to the stack

(b) Go to step 4

8. Clean up

We now briefly describe each of the above phases. The
first phase adds copies in the SSA graph to allow coloring to
occur. Copies are required because the fundamental assump-
tion of a coloring allocator is that each value is allocated to
exactly one register for its entire lifetime. If a value may need
to move from one register to another, a copy must be inserted
so that the value can be in more than one register. Copies are
inserted wherever a copy might be required, as, for instance,
when moving a method argument or return value to or from
a fixed register. Copies are also required for all the inputs of
a phi node, since the input values of the phi node may not be
assigned to the same register as the phi node itself. In addi-
tion, we use the LIMIT algorithm [27] to split the live ranges
of values around loops in which they are not referenced. The
live range of a value is split by inserting copies of the value
before and after the loop, which facilitate their spill of the
value in deference to values which are used in those loops.

The next phase is value precoloring. The compiler determ-
ines which values must be assigned to certain registers and
fixes their color assignment. Values which have fixed register
assignments include method arguments and return values.

Next, we construct the bias graph, which is an undirec-
ted graph that has values as nodes and edges between nodes
which we want to color the same color. The idea behind the
bias graph is to undo as many of the copy insertions from
step 1 as possible by trying to color the input and output of a
copy the same color. The bias graph will be used in step 6 to
select among the possible colors for a value.

Then, we construct the interference graph. The interfer-
ence graph has values as nodes and edges between nodes that
cannot be assigned the same color because their live ranges

A B C

D E F

Figure 15: Bias graph coloring

overlap. The interference graph completely encodes the pos-
sible legal assignments of colors to values. The register al-
location problem thus reduces to the graph coloring prob-
lem: finding an assignment of colors to nodes such that no
two nodes which are adjacent in the interference graph have
the same color. The graph coloring problem is NP-hard in
general, so we use heuristics to solve it.

The next step is to compute a coloring order for all of
the nodes. The idea is to select a coloring order that colors
“hard” nodes first and “easy” nodes last, where the difficulty
of coloring a node is approximately proportional to its de-
gree in the interference graph. The algorithm proceeds by re-
peatedly removing a node with minimum degree from the in-
terference graph and deleting any edges which involved that
node. This step is repeated until all nodes are removed from
the graph. Note that the node with the smallest remaining
degree among all nodes remaining in the interference graph
is removed. The order of coloring is then the reverse order
in which the nodes were removed. This order ensures that
nodes with low degree (and thus easy to color) are colored
after nodes with higher degree.

The last major step is to color each of the nodes in the or-
der computed. To color an individual node, we first compute
the set of possible legal colorings of that node. The legal
colorings of a node include all registers that could hold the
associated value (i.e., all floating-point registers for floating-
point values), minus the colors of any colored neighbors of
the node in the original interference graph. Any color in this
set would be a legal color to assign to that node. If the set
is empty, then the node cannot be colored and step 7 will
trigger when coloring is completed.

The bias graph is used to make an intelligent choice of a
color from the set of legal colorings allowed by the interfer-
ence graph. Figure 15 illustrates how biased coloring works.
Dotted lines are edges in the bias graph, and solid lines are
edges in the interference graph. From the node we wish to
color, we do a breadth-first search in the bias graph. If we
find a node that is already colored, we color the original node
the same color if no node along the path from the start to the
colored node cannot be colored that color. For instance, if
we are trying to color node A, then we first try to color it the
same color as node B, if B is colored. If B is not colored, we
try to color it the same color as node C, but only if that color
is also an allowed color for node B, i.e. is not the color of
node E. In other words, there is no point in coloring A and C
the same color if that color can't also be used for B.
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If none of the nodes found have a color that can be used
for A, then we do another BFS on uncolored nodes in the
bias graph, intersecting the set of colors allowed for A with
the set of colors allowed for each uncolored node. The color
we choose for A is any color from the last nonempty set of
colors computed this way. This rule allows for the maximum
number of nodes connected to A in the bias graph to later
pick A's color to match with.

If coloring does not succeed, then we must spill values to
the stack. The value corresponding to each node that was
not colored is spilled by inserting a spill value just after its
definition and a restore value before each use. That way, the
original value and the newly added restore values need to be
in a register over a shorter range and thus will hopefully be
easier to color on the next pass.

When coloring succeeds, a final cleanup pass is done to
remove copies that have the same source and destination, as
well as remove unnecessary restore operations. The cleanup
pass does a dataflow computation to determine what value
each register holds after each instruction and uses this in-
formation to replace each input value of each instruction with
the oldest copy of that input value which is still in a register.

3.4.4 Code Generation

Swift's code generation pass is a translation of the SSA op-
erations into machine code. Most operations remaining in
the SSA graph after machine-dependent translation (Sec-
tion 3.3.6) correspond to zero or one Alpha instructions, so
emitting code for those operations is straightforward. The
code generator is also responsible for the following tasks:

� Computing the stack frame size.

� Emitting prolog code.

� Emitting code for each block, in the order determined
by the scheduling pass (Section 3.4.2).

� Emitting a branch when one of the successors (possible
the only successor) of a block is not the immediately
following block in the block layout.

� Emitting epilog code.

� Emitting auxiliary information, including a list of relo-
cation entries, a list of associated constants, an excep-
tion table, and a bytecode map.

Swift does some extra processing to determine which
blocks are empty (i.e. contain only values that generate no
code), so that it can easily determine when branches are ne-
cessary and which non-empty block is the final destination
of a branch.

4 Performance Results

In this section, we give some performance results for the
Swift Java compiler. We first describe the experimental plat-
form, the applications used in our study, and some overall
performance results. We then analyze in detail the useful-
ness of various optimizations.

4.1 Experimental Platform

Our performance results are for the Swift compiler running
under Tru64 Unix (formerly known as Digital Unix) on an
Alpha workstation. The workstationhas one 667 MHz Alpha
21264 processor, which has 64 Kbyte on-chip instruction and
data caches and a 4 Mbyte board-level cache. The generated
code is installed into a high-performance JVM for Java 1.2
that has a mostly-copying garbage collector, extremely fast
synchronization, and quite good JIT code generation [12].
The fast JVM also does a limited form of CHA, since it will
resolve a virtual call to a direct call based on the set of classes
already loaded, but go back to using a virtual call if a new
class is loaded which causes a virtual call to be necessary.
The heap size used in all the runs is 100 Mbytes.

4.2 General Results

We measure our results for a number of applications, in-
cluding those in the SpecJVM98 suite. Table 1 lists the ap-
plications and problem domains, as well as the number of
lines of code. Column 4 contains the base running times
of each application when running on the high-performance
JVM (without using Swift). Columns 5, 6, and 7 contain the
times when running using Swift-generated code. The res-
ults in Column 7 are when all optimizations are used. The
result in Column 5 are for the same optimizations, except
class hierarchy analysis is not used. Clearly, the use of CHA
greatly increases the overall performance. The overall spee-
dup of the Swift-generated code without CHA over the fast
JVM is somewhat low, because the fast JVM is already using
CHA to resolve method calls, as indicated above. The res-
ults in Column 6 include the use of simple-CHA (s-CHA),
as described in Section 3.2.6. Interestingly, the performance
is only somewhat less than the performance with full CHA.
Hence, simple-CHA appears to be a useful alternative when
Swift-generated code is to be used in the presence of dy-
namic loading.

For the applications in Table 1, Swift compiles at the rate
of about 1800-2200 lines per second on the local machine,
when all optimizations are on except those enabled by escape
analysis (synchronization removal and stack allocation). Es-
cape analysis can take significant CPU time, since methods
are recursively analyzed for their effects on their arguments.
In particular, escape analysis may require examining numer-
ous methods in the standard Java library. In general, the com-
pilation slows down by about 20-40% when escape analysis
is used, and it may sometimes be even slower.
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lines JVM Swift run-time
problem domain of time w/o with with

code CHA s-CHA CHA
compress text compression 910 12.68s 9.61s 9.72s 9.66s
jess expert system 9734 4.97s 4.35s 4.17s 4.12s
cst data structures 1800 8.02s 5.97s 5.65s 5.38s
db database retrieval 1026 17.73s 15.62s 12.73s 12.44s
si interpreter 1707 8.09s 6.48s 5.93s 6.33s
javac Java compiler �18000 8.50s 7.57s 7.14s 7.00s
mpeg audio decompr. �3600 10.63s 5.74s 5.60s 5.68s
richards task queues 3637 8.09s 8.52s 5.30s 4.69s
mtrt ray tracing 3952 4.69s 5.11s 2.09s 1.59s
jack parser generator �7500 5.92s 5.27s 4.90s 4.96s
tsgp genetic program. 894 35.89s 25.70s 24.10s 24.05s
jlex scanner generator 7569 4.96s 4.10s 3.84s 2.95s

speedup over JVM 1.21x 1.43x 1.52x

Table 1: Java Applications and Overall Results

inl cha fld objinl split stk sync sr cse gcm peel ckelim selim br
compress 1.16 1.20 1.16 1.09 1.06 1.04
jess 1.07 1.09 1.04 1.03 1.04
cst 1.08 1.04 1.05 1.07
db 1.05 1.26 1.04 1.03 1.03 1.04 1.03
si 1.27 1.14 1.05 1.04 1.06 1.16 1.12 1.04 1.09
javac 1.09 1.09
mpeg 1.07 1.13 1.05 1.35
richards 1.40 1.76 1.11
mtrt 1.57 2.68 1.27 1.16 1.13 1.09 1.06
jack 1.05
tsgp 1.03 1.05 1.12 1.05 1.05
jlex 1.22 1.19 1.15 1.18 1.15

Table 2: Effects of Various Optimizations

4.3 Detailed Results

Table 2 specifies the effects of performance improvements
of many of the Swift optimizations on our applications. The
table includes rows for each application and columns for
analyses/optimizations. The labels on the columns are: inl
(method inlining), cha (using CHA), fld (field analysis),
objinl (object inlining), split (method splitting), stk (stack
allocation), sync (synchronization removal), sr (store res-
olution), cse (global CSE), gcm (global code motion), peel
(loop peeling), ckelim (run-time check elimination via pro-
gram properties), selim (sign-extension elimination), and br
(branch removal). The number in each box specifies the in-
crease in execution time for the specified application when
the associated optimization or analysis is not used.8 (A box
is left blank if there is no significant change in performance.)
The baseline performance is the run-time of the application
with all optimizations enabled. Note that the numbers going

8When global code motion is disabled, the CSE pass is modified to only
combine values when one value dominates the other.

across a row are not additive, since disabling one optimiza-
tion or analysis often reduces the effectiveness of another op-
timization. In particular, the field analysis results include the
effect of object inlining, since object inlining is completely
disabled if field analysis is disabled. Note also that perform-
ance can change when disabling an optimization simply be-
cause the layout of the application in the instruction cache
changes. The usefulness of various optimizations would also
change if we measured results on a processor with different
properties (e.g. a statically-scheduled processor). So, the
numbers in Table 2 should be taken simply as rough indicat-
ors of the usefulness of various optimizations.

We can make a few observations from the table. First,
method inlining, CHA, and global CSE are effective at im-
proving the performance of almost all applications. Method
inlining is especially important for mtrt and richards, be-
cause they have many calls to small methods. CHA is highly
important for richards and mtrt as well, since most of the
calls to small methods are virtual calls, and no classes are
declared final. The use of CHA has a large effect on sev-
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total allocated % stack allocated inlined
objects bytes objects bytes objects

compress 529 109M 5.1 .0005 75
jess 7907874 246M .0004 .0002 407
cst 3699556 91.6M 3.9 2.5 31
db 3058608 71.7M 95.0 64.8 15636
si 9122929 139M 12.3 21.9 3
javac 4557786 101M 12.6 8.7 29344
mpeg 1136 92.1K 0.2 .0006 250
richards 20815 458K 10.0 5.4 5600
mtrt 6560044 116M 83.4 79.7 381671
jack 5905911 107M 38.0 56.1 48734
tsgp 5256 3.65M 0.9 .0003 1
jlex 1359094 43.7M 14.2 10.6 33

Table 3: Dynamic Allocation Counts

eral applications, not only because it helps method resolution
and inlining, but also because it allows other analyses (such
as escape analysis) to derive more useful information in the
presence of virtual calls.

Field analysis has a large effect in compress and mpeg,
because it helps eliminate many null checks and bounds
checks on some constant-sized buffers and computation ar-
rays. Similarly, in mtrt, field analysis helps eliminate checks
on small arrays used in data structures. For example, in mtrt,
a data element known as an oct-node always contains arrays
to hold six references to adjacent oct-nodes, eight references
to child oct-nodes, and six references to face objects. Object
inlining also improves the performance of mtrt by inlining
some of these arrays. In db, Swift successfully inlines a vec-
tor object contained within a database entry (including its
header), thereby eliminating an extra pointer dereference on
each access.

Method splitting is useful in db because db uses
java.util.Vector.elementAt. Splitting is also
highly effective in si because the ensureOpen method in
java.io.PushbackInputStream does only a simple
check on a file handle, and it is called by the frequently-used
read method.

Stack allocation is often successful in finding many ob-
jects that can be stack allocated, but performance does not
always improve correspondingly, because of the large heap
and the effectiveness of the JVM's garbage collector. Table 3
shows dynamic counts of the objects and bytes allocated
in each application, and the percentage of the objects and
bytes that were allocated on the stack. The performance of
db improves because an important comparison routine re-
peatedly generates and uses an enumeration object, which
can be stack allocated. Similarly, an important routine in
mtrt uses a temporary object in its computation which can be
allocated on the stack. Gains from stack allocation would be
greater for runs using a smaller maximum heap.

As with stack allocation, synchronization removal typic-
ally finds numerous objects whose operations can be un-
synchronized, especially manipulations of StringBuffer

objects (which are used in building new strings). However,
many synchronization sites do not contribute significantly
to an application's run time. The improvements in cst and
jlex result from removing synchronization for frequent oper-
ations on vector and hash table data structures that are im-
plemented in the Java standard library.

Storage resolution is effective in compress, mtrt, and tsgp,
because each has important loops whose memory opera-
tions and run-time checks are effectively optimized only
after memory dependences are relaxed. Global code mo-
tion doesn't seem to greatly affect performance, perhaps be-
cause most important movement of values out of loops is
already accomplished by CSE. Sign-extension elimination
is effective in compress and si, because these applications
do many memory accesses to byte arrays. Branch removal
is especially effective in richards, because it eliminates the
branches in the computation of a boolean by a frequently
called method.

In Figure 16 and 17, we show the effects of various optim-
izations on the numbers of null checks and bounds checks
executed in each application. For each application, the first
bar, which is labeled 'N' and scaled to 100%, represents the
number of checks executed when all optimizations except
CSE, check elimination, field analysis, and loop peeling are
used. Successive bars represent the number of checks ex-
ecuted as the following optimizations are successively ad-
ded: CSE ('C'), check elimination ('E'), field analysis ('F'),
and loop peeling ('P'). Clearly CSE is highly effective at
eliminating null checks, but does not eliminate many bounds
checks (except for mpeg and tsgp). Similarly, loop peeling
eliminates a large number of null checks in several applica-
tions, but does not typically remove bounds checks. These
results make sense, since bounds checks are not typically
loop-invariant. Field analysis is useful for eliminating many
null checks and bounds checks on the contents of fields.
Check elimination removes significant null checks in a few
applications and a noticeable number of bounds checks in a
few applications.

In Figure 18, we show the effect on execution time when
all run-time checks are removed. Clearly, removing run-time
checks without proving that they cannot cause an exception
is in violation of Java semantics, but we provide these res-
ults to give an estimate of the cost of the remaining run-time
checks that Swift cannot eliminate. The left bar represents
the time for each application when all optimized applications
are turned on, and is scaled to 100%. The right bar represents
the time when the remaining run-time checks are replaced by
pin operations. We cannot completely remove the run-time
checks, since then operations depending on the checks might
move up above a conditional or other operation that guards
the operation and ensures that it is legal. We do move the
pin operations upward in the CFG as far as possible without
going past a branch or memory store operation. Figure 18
shows that the overhead of the remaining run-time checks in
Swift code is about 10-15%.
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Figure 16: Dynamic Counts of Null Checks
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Figure 17: Dynamic Counts of Bounds Checks

In Figure 19, we show the effects of several optimizations
on the number of virtual and interface method calls. The first
bar, again labeled 'N' and scaled to 100%, for each applic-
ation represents the total number of unresolved virtual and
interface method calls when only virtual calls to private or
final methods are resolved. The following bars represent the
unresolved calls as the use of the following information is
successively added: type propagation ('T'), class hierarchy
analysis ('C'), field analysis ('F'), and information about the
types of the return values of methods ('M'). CHA clearly
helps resolve a large number of calls in most of the applic-
ations. Type propagation, field analysis, and method return
information each have mostly small effects on a number of
applications. The method return information is useful in db
for resolving a number of interface calls to enumeration ob-
jects.

5 Related Work

There is clearly much work related to the design of the Swift
IR and the optimizations done by Swift. In this section, we
first give details on some other optimizing Java compilers
and then describe some of the work related to Swift's most
interesting techniques.

Many just-in-time (JIT) Java compilers have existed for
several years, but we will not discuss them here. However,
there are also several other complete optimizing compilers
for Java. Marmot [22] is a research compiler from Mi-
crosoft, and uses SSA for its intermediate form. It does a
form of CHA, but doesn't have much interprocedural ana-

lysis, does limited code motion, and does not do any instruc-
tion scheduling. Unlike Swift, it has a separate low-level
IR that is not SSA-based. The Jalapeno [8] system includes
a JVM written almost exclusively in Java and an optimiz-
ing compiler. The compiler has three different levels in its
IR and is not SSA-based. Jalapeno currently does very lim-
ited optimizations across basic blocks. BulletTrain [28] is
a commercial compiler which uses SSA for its IR. It ap-
parently does some check elimination, loop unrolling, type
propagation, and method inlining. HotSpot [31] is a com-
mercial Java compiler from Sun that dynamically compiles
code that is frequently executed and can use run-time profil-
ing information. It does method inlining based on class hier-
archy analysis. TurboJ [25] is a commercial Java compiler
that translate bytecodes to C, for compilation by the native
C compiler. It does some method resolution, inlining, CSE,
and code motion during the translation.

With respect to the ordering of memory operations, Mar-
mot [22] appears to keep memory operations in order, ex-
cept for doing a special pass to promote loads out of loops.
Jalapeno [8] builds an instruction-level dependence graph
that includes all data and control dependences after lower-
ing the IR. This information is not available to the earlier
high-level passes. Diwan [19] used type-based alias analysis
to disambiguate locations, as we do. However, he does not
incorporate the results of the analysis into an SSA represent-
ation. Cytron [16] represents alias information in an SSA
graph by explicitly inserting calls that may modify values if
an associated pointer operation may modify the value. Such
an approach can greatly increase the size of the SSA graph.
Instead, we enforce strict memory ordering via the global
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Figure 18: Change in Execution Time When Removing Remaining Bounds Checks
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Figure 19: Dynamic Counts of Virtual and Interface Calls

store inputs and relax dependences when we can prove there
are no aliases.

Diwan et al. [20] proposes the use of aggregate analysis to
detect when a polymorphic data structure is used in a mono-
morphic way by looking at the types of all assignments to
a particular field. For example, the analysis is used to show
that a linked list of general objects actually contains only
objects of a certain class or its subclasses. This analysis
is related to our field analysis that determines exact types,
but aggregate analysis does not make use of any modularity
properties in the language, or investigate any other properties
of fields.

Dolby and Chien [21] describe an object inlining optimiz-
ation for C++ programs. Their analysis uses a fully context-
sensitive interprocedural framework and thus allows object
inlining in specific cases on a field that cannot be inlined in
general. In particular, they do not require that the field be
initialized with a new object in the constructor. However,
their analysis times are measured in minutes, whereas our
analysis is always only a small number of seconds. Also, we
allow objects to be inlined (with a header), even if a refer-
ence to the objects escape the local context. A large amount
of related work with respect to object inlining (or unboxing)
also exists for functional languages, as described in [21].

There are have been a variety of recent approaches to do-
ing useful escape analysis. [2, 5, 6, 9, 33]. We have done
the simplest form of escape analysis [23], augmented with
information from field analysis. As far as we know, none
of the preceding systems use field access properties to aid
in their escape analysis. Some Java compilers no doubt per-
form extra optimizations for final fields, but none seem to

have exploited field properties to the same extent as Swift.
Most of the other recent approaches have used methods that
are more complicated and potentially quite expensive com-
putationally.

6 Conclusion

We have implemented a complete optimizing compiler for
Java with an intermediate form based on static single assign-
ment (SSA). We have found that the design of the Swift IR
has simplified many aspects of the compiler, and almost all
optimizations have been easy to express in SSA form. Be-
cause the Swift IR includes machine-dependent operations,
all passes can operate directly on the same SSA-based rep-
resentation, thereby allowing them to take advantage of com-
mon functionality for manipulating the CFG and SSA graph.
Our compiler has a speed comparable to normal C compilers,
even though it does extensive interprocedural analysis.

Overall, we have found that numerous optimizations are
necessary to remove the many sources of overhead in Java.
As might be expected, the most effective optimizations in
Swift are method inlining, class hierarchy analysis (which
helps resolve virtual methods), and global CSE. However,
both field analysis and store resolution, which are techniques
unique to Swift, have significant effects on a number of ap-
plications. Many other optimizations have a big effect on one
application and/or limited effects on several applications.

There is still much room for improving performance of
Java programs. More extensive interprocedural analysis and
more powerful provers of program properties could help
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eliminate more of the run-time checks. Much overhead still
remains because of the use of virtual method calls and object
inheritance. Swift could eliminate more of this overhead by
techniques such as context-sensitive interprocedural analysis
or eliminating inheritance for an important class by copying
the inherited methods into the class. Finally, much of the
overhead in Java appears to result from the object-oriented
style that results in many smaller objects (or structures) than
in a corresponding C program. This style results in greater
memory latencies during execution as pointers between ob-
jects are dereferenced. Hence, there are many opportunities
to increase performance by optimizations such as prefetch-
ing, co-locating objects, or more aggressive object inlining.
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