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Abstract

NFS suffers from its lack of an explicit cache-consistency protocol. The
Spritely NFS experiment, which grafted Sprite’s cache-consistency protocol onto
NFS, showed that this could improve NFS performance and consistency, but
failed to address the issue of server crash recovery. Several crash recovery
mechanisms have been implemented for use with network file systems, but most
of these are too complex to fit easily into the NFS design. Spritely NFS now uses
a simple recovery protocol that requires almost no client-side support, and
guarantees consistent behavior even if the network is partitioned. This work
demonstrates that one need not endure a stateless protocol for the sake of a simple
implementation.

This Research Report is a preprint of a paper to appear in Computing Systems.
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1. Introduction

NFS has been extremely successful, in large part because it is so simple and easily im-
plemented. The NFS ‘‘stateless server’’ dogma makes implementation easy because the server
need not maintain any (non-file) state between RPCs, and so need not recover state after a crash.

Statelessness is not inherently good. Since many NFS operations are non-idempotent and
might be retried due to a communication failure, to get reasonable performance and ‘‘better cor-
rectness’’ the server must cache the results of recent transactions [11]. Such cache state is not
normally recovered after a crash, although this exposes the client to a possible idempotency
failure.

A more serious problem with NFS statelessness is that it forces a tradeoff between inter-client
cache consistency and client file-write performance.  In order to avoid inconsistencies visible to
client applications, NFS client implementations (by tradition, rather than specification) force any
delayed writes to the server when a file is closed.  This ensures that when clients use the follow-
ing sequence:

Writer Reader

open()
write()
close()

open()
read()
close()

the reader will see the most recent data, if the writer and reader explicitly synchronize so that the
reader’s open takes place after the writer’s close. (Actually, even this doesn’t quite work, as we
will see shortly.)

Unfortunately, this means that the close operation is synchronous with the server’s disk. Since
most files are small [5, 22], this effectively makes most file writes synchronous with the server’s
disk, and NFS clients spend much of their time waiting for disk writes to complete.  Also, al-
though many files have very short lifetimes and are never shared, and need never leave the
client’s cache, NFS still forces them to the server’s disk and so wastes a lot of effort.  Finally,
NFS does not guarantee cache consistency for simultaneous write-sharing, because while a file is
open, writes are not actually synchronous.

NFS implementations also trade cache consistency for client file-read performance. Since the
client’s cache would be useless if the client continually checked with the server to see if the
underlying file has been modified, practical implementations only check every few seconds (this
interval may vary based on how recently the file was last modified).  This means that, if a client
has cached an old version of a file, for several seconds after the writer’s close the reader may see
stale data.  That is, NFS implementations do not even guarantee consistency in the sequential
write-sharing case.

The net result is that occasional consistency errors plague NFS users, yet NFS cannot aggres-
sively use client caches to improve performance.
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The Sprite file system [19] solves this paradox by introducing an explicit cache-consistency
protocol. The fundamental observation is that write-sharing is rare.  It can be detected by the
server if clients report file opens and closes (not done in NFS), so the write-through-on-close
policy can be eliminated.  Instead, when write-sharing does occur, Sprite turns off all client cach-
ing for the affected file, and thus provides true consistency between client hosts.

Spritely NFS [28] was an experiment to show that a Sprite-like consistency protocol could be
grafted onto NFS, and to show that the performance advantage of Sprite over NFS was in large

part due to the consistency mechanism rather than other differences between Sprite and Unix .
Because the cache consistency protocol introduces server state that must be preserved across
crashes, Spritely NFS (like Sprite) requires a crash recovery protocol. This paper describes the
design, implementation, and performance of a simple but robust recovery protocol.  Even in the
event of a network partition, no undetected consistency failures can occur.

The main ingredients of Spritely NFS and its recovery protocol are:

• A superset of the NFS protocol, which allows the use of existing implementations
and experience, and full interoperation with NFS clients and servers.

• Explicit cache consistency, providing guaranteed consistency and better perfor-
mance.

• Server-centric recovery, which simplifies the client implementation and supports
fast recovery after a server crash.

• Support for write-behind (asynchronous writes), which improves performance, in-
cluding a technique that avoids undetected failures due to lack of server disk space.

• Detection and possible resolution of any failures caused by network partitions.
None of these individual concepts are entirely novel.  The main contribution of the Spritely NFS
project the combination of these concepts to significantly improve upon NFS without adding
excessive implementation complexity.

1.1. Status of the project

The original Spritely NFS experimental work was done in 1988.  At that time, we asserted
(perhaps naively) that since the Sprite researchers had devised a recovery protocol for their
system [31], the problem of recovery was solved in principal for Spritely NFS as well.  The
Sprite recovery protocol, however, was not entirely satisfactory for Spritely NFS (see section 5)

1and so during the next few years, several people participated in a discussion of possible alter-
natives.

In early 1992, I finally worked out a relatively pleasing recovery design, based in large part on
more recent work done on Sprite recovery [1]; this paper design was presented at a
workshop [18]. That summer, an initial implementation of the recovery protocol was done by
Bharat Shyam, an intern at my lab.  Subsequently, I continued the implementation work to the
point where the recovery protocol now works reliably and efficiently.

1Mary Baker, Cary Gray, Rick Macklem, John Ousterhout, and Brent Welch.
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This paper, therefore, describes a system that is about three-quarters complete.  Because it is
embedded in an existing commercial implementation of NFS (ULTRIX version 4.3), it may
require some additional tuning to yield the best possible performance (some conservative as-
sumptions made by the original NFS code are no longer necessary).  Also, the cache-consistency
protocol may enable several further improvements, such as directory caching and better file lock-
ing; these are described in section 10.  However, as it stands today it works well enough to be
used instead of NFS.

2. Goals and design philosophy

The design of Spritely NFS, including its recovery protocol, is meant to meet a number of
pragmatic goals:

• Simplicity: Spritely NFS was a successful experiment partly because it required
minimal changes to an NFS implementation, and almost no changes to any other
code. Any improved version should avoid unnecessary complexity, especially on
the client side; client hosts are often underpowered and administered by naive users.

• Consistency: Spritely NFS should provide guaranteed cache consistency at all
times. A partial guarantee is no improvement on NFS, since an application cannot
make use of a partially-guaranteed property.

• Performance: Spritely NFS is not worth doing unless its performance, even with
recovery, is better than that of NFS. While Spritely NFS also promises better con-
sistency, that in itself would not convince many users to switch.

• Reliability: Spritely NFS should be no less reliable than NFS or the local Unix file
system. (Note that I am satisfied with matching the lesser of these reliabilities in a
given situation; NFS is sometimes, but not always, more reliable than a local Unix
file system, and Spritely NFS sometimes must give up these NFS properties.)

• No-brainer operation: System managers should not need to do anything special to
manage a Spritely NFS system.  In particular, they should not need to adjust
parameter values.  This means also that the timeouts in the system should reflect the
delays inherent in network communication, and should never have to be tuned to
provide correct behavior in the face of slow hosts.

• Incremental adoption: Spritely NFS clients should interoperate with NFS servers,
and vice versa.  Otherwise, users will not have much of an incentive to adopt
Spritely NFS, since this would mean replacing large parts of their infrastructure all
at once.

The system described in this paper meets these goals.

3. Review of Spritely NFS

In this section I will summarize the design of Spritely NFS, postponing the issue of recovery
until section 5.  Appendix I gives a brief specification for the current version of the protocol,
including recovery.  Table 1 lists the RPCs added to the basic NFS suite, and indicates where in
this paper they are described.
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RPC name Purpose Described in

open Inform server that client will use a file section 3

close Inform server that client reference to file is section 3
no longer needed

callback Inform client that it must no longer cache a section 3
file

beginrecov Inform client that server is recovering section 6.3

endrecov Inform client that server recovery is section 6.3
complete

reqreopen Ask client to reopen some of its files section 6.3

reopen Inform server that client was using a file section 6.3
prior to the server’s recovery

clctl Inform server that client has rebooted or is sections 6.2, 7
trying to recover from a network partition

Table 1: RPC calls added in Spritely NFS

The original Spritely NFS designed introduced two new client-to-server RPC calls, open and
close. Both calls transmit the current number of read-only and read-write references the client
has to the file; since only the client increments and decrements the reference counts, these RPCs
are idempotent.  (All Spritely NFS RPCs can safely be duplicated by the network, including
those used in the recovery protocol.  Those which are not idempotent employ a monotonically
increasing sequence number, allowing the receiver to discard duplicates.)

The client data cache in Spritely NFS (as in Sprite and most NFS implementations) is or-
ganized as a set of fixed-size blocks, not as a whole-file cache.  A Spritely NFS client maintains
a flag per open file indicating whether blocks from that file may or may not be cached.  If a file
is not cachable, all reads and writes are done directly from or to the server.  If a file is cachable,
the client may use a cached copy of a data block, if present, to satisfy a read, and need not
immediately write data through to the server.

The NFS server is augmented with a ‘‘state table,’’ recording the consistency state of each
currently-open file.  In Spritely NFS, this state table is relevant only to the open and close RPCs;
all other client RPCs are handled exactly as in NFS.  When a client issues an open RPC, the
server makes an entry in its state table and then decides, based on other state table information, if
the specified open-mode conflicts with uses by other clients.  If the open is conflict free, the
server (via the RPC return value) notifies the client that it can cache the file.  Otherwise, the
client is not allowed to cache the file.

In some cases, a conflict may arise after a client has opened a file and has been allowed to
cache it.  For example, the first client host might open a file for write, and be allowed to cache it,
and then a second host might open the same file.  At this point, in order to maintain consistency,
the first client must stop caching the file.
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For this reason, Spritely NFS adds a server-to-client callback RPC to the NFS protocol.  When
a server decides that a client must stop caching a file, it does a callback to inform the client.  A
client with cached dirty blocks may have to write these blocks back to the server before replying
to the callback RPC.

Figure 1 shows what happens when the server detects write-sharing. (In the figure, time flows
down the page.  Packets are shown as arrows; RPC requests are labeled above the arrow and
RPC replies are labeled below the arrow.)  We see Client A open a file for writing, at which
point the server allows caching (because no other clients are involved).  Once Client B issues an
open, however, the server does a callback RPC to Client A. In response, Client A writes back
whatever dirty data it has, invalidates its cache, and disables further caching.  It then replies to
the server, at which point it is safe for the server to reply to Client B’s open RPC. This reply
informs Client B that it cannot cache the file, so from now on Client B will always read from the
server (and Client A will always write through to the server).

ServerClient A Client B

Open for write

Open-Reply: caching OK
Client
reads &
writes
to its
cache

Open for read
Callback: write-back
and stop caching

Write dirty data

Write-Reply

Callback-Reply

Open-Reply: don’t Cache
Client
writes
to the
server
from now
on

Client
reads
from the
server
from now
on

Read

Read-Reply
Write

Write-Reply

Figure 1: Time line for write-sharing situation

Spritely NFS clients need not write-through dirty blocks when a file is closed.  The server
keeps track of closed-dirty files and can ask the client to write the blocks back if another client
opens the file for reading, but otherwise the writer client can write the blocks back at its own
leisure (see figure 2; note that the use of two close RPC calls will be explained in section 4).  A
client with closed-dirty blocks might even remove the file before the blocks are written back,
thus avoiding wasted effort (see figure 3; note that no write RPCs are sent).  We call this tech-
nique of writing dirty blocks after the file has been closed ‘‘write-behind.’’
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ServerClient 

Open for write

Open-Reply: caching OK
Client reads &
writes to its
cache

Close: file is dirty

Close-Reply

Write dirty data

Write-Reply

Close: no dirty data

Close-Reply

Client decides
to write back
dirty data

Figure 2: Time line for client using write-behind

Write-behind does lead to one small semantic problem.  The client does not know how many
server disk blocks will be allocated to a file until all the data is written to the server, because the
server’s disk file system may require overhead blocks in addition to those used for data bytes.
Commands that try to determine the storage allocation (such as du and ls -s) will under-report the
value until the write-behind has completed.  It might be possible to provide a close estimate; this
is not done in the current implementation.

3.1. Performance paradoxes of write-behind

Consistency in Spritely NFS (and Sprite) applies to entire files, not to regions within a file.
This means that if a client wants to read a file that is closed and dirty in another client’s cache,
the server will not let the reader proceed until the writer has finished its write-back and has
responded to the callback RPC. This may take a long time (on the order of minutes if the file is
large, the writer has a large cache, and the server is slow).

This kind of delay does not occur with NFS (because the writer cannot keep many dirty blocks
in its cache) or with a local file system (because there is no cache-consistency issue), and it may
seem like a serious performance problem.  What it is, however, is simply the exposure of a
choice that isn’t necessary with a local file system, and isn’t allowed by NFS.
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ServerClient

Open for write

Open-Reply: caching OK
Client writes
to its cache

Close: file is dirty

Close-Reply

Close: no dirty data

Close-Reply

Open for read

Open-Reply: caching OK
Client reads
from its cache

Close: file is dirty

Close-Reply

Client decides
to delete file

Remove

Remove-Reply

Figure 3: Time line for client removing file before write-back

Consider the example of a parallel make procedure, which first tells a number of client hosts to
compile, in parallel, the individual modules making up the target program, and then instructs one
client to link the modules together.  Relative to the object modules, the compiler hosts are writers
and the linker host is the reader.  Using NFS, the linker can start immediately after the last com-
pilation is done, because at that point all the blocks of the object modules have been written to
the server.  If the clients use Spritely NFS and do write-behind, the linker will have to wait for all
the write-backs to take place.  In fact, it will probably open the object modules one at a time, and
so could be forced to pay the penalties serially.

An application therefore ought to have the ability to control when its writes are done.  In the
case of a parallel make, the compiler should specify that object-module writes take place
asynchronously but as soon as possible, so that they will mostly overlap with other activity. (If
the compiler includes an optimization pass that reads and rewrites the object file, only that pass
should specify write-ASAP behavior, since the dirty data from the first pass need never go to the
server.) During a single-host make, on the other hand, the compiler should should specify write-
behind because that will reduce the elapsed time until the compiled program is ready to use.
This implies that the compiler must provide a way for the parallel-make program to instruct it to
request write-ASAP behavior.
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It might also be possible to devise heuristics that would allow the file system to decide
whether write-behind or write-ASAP is appropriate. This could be difficult; one would not be
able to rely on past accesses to the specific file, since (in the case of a parallel make) it has just
come into existence, nor could one rely on the past behavior of a specific process since, in this
example, a compiler process typically generates one object file and then exits.  One possible
approach would be to assume that files created in write-shared directories are likely to be shared
themselves.

We could also limit the write-back delay by insisting that the writing client return the dirty
blocks in sequence, and allowing the reading client to proceed with sequential reads as long as
they did not get ahead of the writes. This method would greatly complicate the protocol and its
implementation, and would probably not provide much advantage.

3.2. Cache version numbers

When a client reopens a closed file for which it has cached data blocks, how does it know if
these cached blocks are still valid?  We solve this by associating a version number with each file,
which increases each time the file is opened for writing.  The server returns the current and
previous version numbers in reply to an open RPC; the client remembers the current version
number for each file for which it might cache data blocks.

If the server’s current version number matches the client’s cached version number, the cached
blocks are obviously current. If the server’s previous version number matches the client’s
cached version number, and the client is performing an open-for-write, then the change in ver-
sion number was caused by the current open operation, and the cached blocks are still current.
Otherwise, some other client may have written the file since the cached blocks were read, and
they must be invalidated.

Sprite maintains each file’s version number on-disk (i.e., in non-volatile storage).  For Spritely
NFS, which makes use of existing disk file system designs, we decided that it would be in-
feasible to require the server to maintain a non-volatile file version number.  Spritely NFS still
guarantees that a file’s version number will increase on every open-for-write, as long as the serv-
er does not crash. During crash recovery, clients obtain new version numbers from the server for
the files they have open (or for which they have cached dirty data), but not for files that are
closed-clean. This means that client caches of data for closed-clean files must be invalidated on
server recovery; we believe that this will not seriously reduce the effectiveness of the client
cache.

A Spritely NFS server stores a file’s current version number in the corresponding state table
entry. While the file is open, this entry is guaranteed to persist, but (because server memory is
bounded) the state-table entry for a closed file may be kicked out, to make room for a new active
entry. If a client then reopens the file, the server no longer remembers the file’s current version
number. We preserve correct behavior in this case by assigning a new version number that is
known to be higher than any previously issued; this forces the client to invalidate its old cached
blocks even though they might be valid.  This should not cause much performance loss unless
the server’s state table is nearly full.

8
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The simplest way for the server to ensure that a file’s version number increases, even if the
file is not listed in any table, is to use a global counter and increment this counter whenever a file
is opened for writing.  If the server performs an open-for-write once each millisecond (probably
the rate would be much lower than this), a 32-bit counter would roll over after about 7 weeks.  At
that time the server could simply invoke its crash-recovery mechanism to force the clients to
obtain new version numbers.

The server could avoid incrementing the global counter on each open-for-write by instead in-
crementing only the values in active state table entries.  When a state table entry is replaced (and
hence its value is about to be lost), the global counter must then be updated to be the maximum
of its current value and the value in the deleted entry.  It could then never be less than the proper
value for a ‘‘forgotten’’ entry.  This would probably reduce the rate of counter wraparound, al-
though the worst-case behavior would not change.

3.3. Choice of update policy

A system that delays writing data to the disk or file server should not delay these writes
forever. A mechanism that writes out dirty blocks older than a certain age limits the potential
damage caused by a crash, and may also improve read latency by maintaining a pool of clean
blocks.

The traditional Unix update policy is to write out all dirty blocks every 30 seconds, along with
all the modified metadata (that is, structural information about the file system, including super-
blocks and inodes) [15]. This simple ‘‘periodic update’’ (PU) policy has been shown in a
simulation study [8] to increase read-latency (and especially the variance in read-latency), since
twice a minute the disk queues can become quite long.  The same study suggests that the ‘‘in-
dividual periodic update’’ (IPU) policy, in which each block is written as its age reaches a
threshold, should provide better performance (essentially by spreading the write load more
smoothly).

In practice, it is simpler to approximate IPU by checking the age of dirty buffers every few
seconds, rather than managing a precise timer for each dirty buffer.  This means that, in the best
case, one N/30 of the dirty blocks will be written every N seconds, which (for small N) keeps the
variation in queue length much smaller.  In the worst case, where the system manages to dirty the
entire cache during a period of N seconds, IPU and PU perform identically.

Sprite originally used a modified version of the PU policy [19]. It now uses a policy similar to
IPU: every five seconds, the system iterates over modified files and writes out all the cached
blocks of any file whose oldest dirty block is at least 30 seconds old [10].

The motivation behind this version of the IPU policy was not, apparently, to reduce read
latency by reducing peak queue length, but rather to maximize the average write-back delay
without increasing the worst-case exposure to crashes.  Increasing write-back delay should im-
prove performance if, as the Sprite designers believed [22], many files have lifetimes so short
that they need never be written out to the disk or server.  (The original Unix policy can write out
blocks aged anywhere between 0 and 30 seconds, and so will often write blocks from short-lived
files.) Since the Sprite policy ignores the ages of the individual blocks, if a large file is written
gradually into the cache, after about 30 seconds all of its blocks will suddenly be forced onto the
output queue.  Sprite’s policy therefore approximates IPU only for small or rapidly-written files.
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The current implementation of Spritely NFS uses a simple mechanism that closely ap-
proximates IPU: once a second, any dirty block older than 30 seconds is written out.  As in the
current Sprite method, a block’s age is measured from the time it is first made dirty, rather than
from the most recent modification.

Since NFS does not often delay writes, it is essentially insensitive to the update policy.
Spritely NFS introduces delayed writes, and so it does benefit from an IPU policy, although the
protocol does not specify any particular update policy.  In section 8.1, I will show that IPU
provides a small but measurable performance advantage.

3.4. Avoiding unbounded timeouts during callbacks

One aspect of the callback mechanism requires some ingenuity in order to avoid complex
timeout issues.  Because it may take a client an arbitrarily long time to respond to a callback
(during this time, it may have to write a lot of data to an arbitrarily slow server), the server
cannot infer from a timeout on a callback RPC that the client is down.

The solution to this involves several tricks.  First, we note that the RPC layer normally
reissues a request several times before telling the caller that the request has timed out. Consider
a client that, because it is busy doing the write-back, fails to reply in time to the first instance of
a callback RPC. When the server retransmits the callback, the client notices that a callback is
currently in progress for the specified file, and replies to the retransmitted RPC with a ‘‘try
later’’ error code.  The server, upon receiving this code, delays for a while and tries again.  (The
protocol might be more robust if it allowed the server to determine that the client is making
‘‘reasonable progress,’’ to avoid deadlocks resulting from communications error.)

This mechanism could fail if the server’s first few RPC requests really are dropped (by a lossy
network or a busy client), and so the server uses an additional mechanism to avoid prematurely
declaring a client to be dead.  If the callback RPC times out, the server issues a null RPC, to
which a live client should respond immediately.  If the client does respond, then the server retries
the callback RPC (but with a longer timeout); otherwise, the server declares the client dead.

While the server is waiting for the callback to complete, the client that issued the open that
caused the callback is also waiting for the server, and its RPC might also time out.  We solve this
by allowing the server to return the ‘‘try later’’ error code in response to a prematurely
retransmitted open, which causes the client doing the open to delay for a while and then retry.
Unless the reply to the original open is somehow dropped, the final retransmitted open is redun-
dant, but because open is idempotent, no real harm is done.

Figure 4 shows an example where both the server and the client doing the open must wait
longer than their RPC timeouts, while another client writes back its dirty data. This example
represents more or less the worst case; the point to observe is that no matter how long the write-
back takes, none of the participants will give up.

10



RECOVERY IN SPRITELY NFS

ServerClient A Client B

Open for write

Open-Reply: caching OK
Client
writes
lots of
data to
its
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Open for read #1
Callback #1: write-back
and stop caching

Write dirty data

Write-Reply

Callback-Reply #3: OK

Open-Reply #1:
don’t cache

Callback retransmit #2

Reply to #2: Try Later

Write dirty data

Write-Reply
Open for read #2

Reply to #2: Try Later

Callback-Reply #1: OK

Callback retransmit #3

Open for read #3
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out and retransmits
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and retransmits

Client times
out and
retransmits
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Server drops
late reply
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Figure 4: Time line for timeouts during callback
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3.5. Automatic recognition of Spritely NFS hosts

I argued that without a path for incremental adoption, users will have little incentive to install
Spritely NFS, because all-at-once changeovers cause major disruption.  A sudden change to a
new, untried system makes system managers nervous.

Spritely NFS uses the same RPC program number and version as NFS, and can easily coexist
with pure NFS hosts. The two problems to solve are automatic configuration (so that network
managers need not worry about who is running what) and maintenance of consistency guarantees
(so that NFS clients get at least the level of consistency that they would if all clients were using
NFS).

When a Spritely NFS client mounts a file system from a remote server, the first RPC that it
issues (after having gone through the mount protocol) is a clctl (client-control) RPC. (The
details of this RPC are related to crash recovery and are discussed in section 6.2.)  If the server
speaks only NFS, it will respond to this with a PROC_UNAVAIL error code. The client records
this fact (in a per-filesystem data structure) and treats the file system as a purely NFS service.  If
the server responds to the clctl RPC, then it must be a Spritely NFS server, and the client then
follows the Spritely NFS protocol.

A Spritely NFS server recognizes Spritely NFS clients because they issue clctl RPCs before
anything else.  Spritely NFS servers keep track of the addresses of their Spritely NFS clients, to
be used for crash recovery (see section 6.3) and space reservation, but otherwise act identically
to NFS servers.

In principle, we can establish rules that allow Spritely NFS hosts to detect when their peers
change flavor (i.e., upgrade from NFS to Spritely NFS, or change from Spritely NFS back to
NFS). Some speculations on how this might be done were presented in an earlier paper [18].

3.6. Consistency between Spritely NFS and NFS clients

A Spritely NFS server should provide consistency between NFS and Spritely NFS clients
write-sharing a file (as much as possible).  The server does this by treating each NFS RPC
referencing a Spritely NFS file as if it were bracketed by an implicit pair of open and close
operations. (The actual implementation should be more clever, bypassing the Spritely NFS state
transition machinery when possible, to avoid adding excess delay to NFS operations.  Also, it
should not attempt to send a callback to an NFS client that has a file ‘‘open.’’)

This gives Spritely NFS clients nearly perfect consistency (since NFS clients use write-
through, more or less).  The NFS clients get no-worse-than-NFS consistency, since any reads
they do to the server will return the latest copy of the data. (NFS clients cannot get perfect
consistency, since they sometimes read from their caches when their caches are stale.)

An NFS client attempting to access a file for which a Spritely NFS client is currently caching
a lot of dirty data might run into the kind of delay described in section 3.1.  That is, the Spritely
NFS client might take a long time to write back its dirty data, so the server might not im-
mediately respond to the NFS read or write RPC.
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In section 3.1, this was described as a performance issue, because Spritely NFS clients are
willing to wait indefinitely for an open to complete.  With an NFS client, however, we cannot
use the mechanism described in section 3.4, returning a special error code saying ‘‘try again
later,’’ because NFS clients will not recognize this code. The upshot is that a NFS client using a
‘‘soft mount’’ (which turns RPC timeouts into failures) could report a transient error when read-
ing or writing a file being written by a Spritely NFS client.  This can only happen if the file is
large and the Spritely NFS client has written it quickly, causing a sizable backlog of dirty blocks
to accumulate in its cache.

3.7. Evolution of the Spritely NFS protocol

The Spritely NFS protocol has evolved somewhat since our original publication [28]. In ad-
dition to the recovery mechanisms, we found that we had to make several changes to the cache-
consistency protocol itself.

The original specification for the open RPC, instead of passing read and write reference
counts, passed a boolean flag indicating whether this new reference would be used for writing.
The server was responsible for incrementing the reference counts as each open was received.
This design was flawed in that it was not idempotent; a duplicated RPC would cause the server’s
counts to be wrong.  A race between a duplicated open RPC and a close RPC could cause serious
problems. In the new design, the client maintains the reference counts and simply reports them
to the server.  The old design meant that we could not use a single method for both open and
reopen, since reopen inherently needs to pass reference counts.

Similarly, the close RPC originally passed a boolean flag indicating if the reference being
closed had been open for writing.  We replaced this with a pair of reference counts.  We also
added a count of the number of cached dirty bytes, to support the space-reservation mechanism.

We also added the possibility for the open and callback RPCs to return a new status code,
meaning ‘‘try again later.’’  This avoids the need to bound the amount of time needed for a client
to write back its dirty blocks, as a result of a callback (which in turn is always the result of an
open). Instead, all the parties involved now know to keep retrying an operation until it succeeds,
fails, or times out.  A timeout now indicates a host or network failure, and cannot be the result of
having too much work to do in a fixed amount of time.

This technique would not have been practical without the change to an idempotent open RPC.
Using the old protocol, it would have been quite tricky to keep track of the half-completed open
operations, to avoid incorrectly incrementing the reference counts.  Also, the new protocol
avoids the need to lock a state table entry while a callback is in progress; this eliminates a pos-
sible deadlock if the called-back client decides to close the file as a result of the callback.

4. Dealing with ENOSPC

One problem with the write-behind policy is that one or more of these writes might fail.  In
NFS, since the client implementation forces all writes to the server before responding to the
close system call, an application which checks the return value from both write and close calls
will always know of any write failures.  Not so in Spritely NFS: since the failure might occur
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long after the application has released its descriptor for the file (or even after the application has
exited). This could cause trouble for applications that do not explicitly flush their data to disk.

There are three categories of error that can occur on a client-to-server write operation:
1. Communications failure: the network is partitioned or the server crashes, and the

RPC times out before the failure is repaired.

2. Server disk hardware error: the disk write operation fails, or the disk fails after
the write completes.

3. Server out of disk space: no space is available on the server disk.
2The first error can be turned into a delay by simply retrying the RPC until the server responds .

If the client crashes in the interim, then the dirty block is lost ... but this is no different from a
normal local-filesystem delayed write in Unix.

The second error is not generally solvable, even by a strict write-through policy.  It is true that
the NFS approach will report detectable write failures, but these are increasingly rare (because
techniques such as bad-block replacement can mask them).  Again, normal Unix local-filesystem
semantics does not prevent this kind of error from occurring long after a file has been closed.

The third error (ENOSPC, in Unix terms) is the tricky one.  We want to report these to the
application, because it might want to recover from the condition, and because there is no obvious
way for the underlying file system mechanism to recover from ENOSPC.  (Also, unlike the other
two kinds of errors, one cannot avoid ENOSPC errors through fault-tolerance techniques.)

Sprite does not completely solve this problem; that is, Sprite applications can believe their
writes are safe but the delayed writes pile up in a volatile cache because the server is out of
space [2]. AFS apparently follows the same approach as NFS, forcing modified data back to the
server when the file is closed [12].

Spritely NFS solves the ENOSPC problem by reserving disk space for the remaining dirty
data when the file is closed.  That is, when a dirty file is closed, the client counts up the number
of dirty bytes and requests that the server reserve that much disk space for the file.  The server
may respond with an ENOSPC error at this point, in which case the client can revert to a write-
through on close policy.  Note that the server may respond to close with ENOSPC even when
enough space does exist, so the client must attempt the writes and report an error to the applica-
tion only if a write actually fails.

A client cannot exactly determine the amount of space required to write a set of dirty buffers.
Server file system space is typically allocated in units of blocks, not bytes: NFS does provide the
block size to the client, so the client’s reservation request conservatively rounds up the size of
every dirty buffer to a multiple of the block size.  Also, the underlying disk file system may
require overhead space (such as ‘‘indirect blocks’’), so the server must increase the reservation
by its own conservative estimate of the number of overhead bytes.

2This is not true if the client uses a ‘‘soft mount,’’ which turns RPC timeouts into errors rather than retries.  Soft
mounts are generally thought of as living dangerously, although delaying writes after a close does make them even
more dangerous. Perhaps soft-writes-after-close should be made ‘‘harder’’ as long as the client has enough buffer
cache to avoid interference with other operations.
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Because the space reservation is a conservative overestimate, when the client is done writing
back the dirty data there will probably still be some residual space reserved at the server.  Also, a
client might truncate or remove a file before writing back the dirty buffers.  At some point the
client must release the excess reservation, or else the server’s disk would gradually become com-
mitted to phantom data.  The client does this by sending an final close RPC, which ‘‘reserves’’
zero bytes for the file (see figures 2 and 3).  This also causes the server to change its state-table
entry from closed-dirty to closed, which allows the table storage to be reclaimed.

The bookkeeping for the space reservation made by a close RPC involves maintaining two
separate counts. The Spritely NFS server layer keeps track of the remaining reservation for the
given file, in the corresponding state table entry.  It must also arrange with the underlying disk
file system to reserve some of the remaining free space for the file in question.  The file system
need not actually allocate space on disk for the reservation; rather, it only needs to keep a count
of the number of free bytes and the number of reserved bytes, and ensure that the difference
never becomes negative.  The reservation counts need not be kept on stable storage, since they
will be recovered during the server crash-recovery phase (see section 6.6).  This means that the
overhead of maintaining these counts is quite low. Note that the file system must enforce the
reservation against local applications as well as against remote clients.

When a server handles a write RPC for a closed file, it decrements the reservation in the state-
table entry, and must also tell the underlying file system to decrement its count of reserved bytes.
(If a client in the closed-dirty state tries to use more space than its reservation allows, the write
will fail.)  Both counts are decremented by the amount of new space actually allocated as a result
of the write, not the transfer count of the write RPC (which may be either larger or smaller than
the actual new space required).

This turns out to be tricky to implement correctly in the highly-layered ULTRIX server code
(typical, probably, of other NFS implementations) because there is no straightforward way to
determine how much space is required for a file-system write without actually performing the
write. The current implementation does this determination by assuming the worst possible space
allocation, making this space available for writing by deducting it from the reservation, perform-
ing the write, and then seeing how much space was actually allocated. The difference between
the worst-case value and the actual value (i.e., the amount of reservation that was deducted be-
fore the write but not used) is then added back to the remaining reservation.  This results in
correct bookkeeping, and does not require any restructuring of the traditional disk file system
code, but does leave a brief window where another writer could ‘‘steal’’ the last remaining
blocks of free space on a disk.  A race-free solution to the problem seems feasible, but will
require a much deeper understanding of the disk file system implementation.

One subtle problem can occur with this scheme if two processes on one client are writing the
same file. After one successfully closes the file (i.e., the server grants a reservation), if the other
process extends the file so much that the server runs out of disk space, some part of the file
might not be written to the server.  This is not an entirely contrived example; the file might be a
‘‘log,’’ appended to by multiple processes.  The client implementation could preserve correct
semantics in such a case by ordering the disk writes so that none of the blocks dirtied after the
close are written to the server before the other dirty blocks of that file.  The current client im-
plementation simply forces all dirty blocks to the server before reopening a closed-dirty file for
write; this is correct, but wastes the benefit of write-behind for frequently opened files.
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If a client crashes while holding a reservation, or simply never makes use of it, the space could
be tied up indefinitely.  Thus, the server should set a time limit on any reservation grant (perhaps
in proportion to the number of blocks reserved; if a client reserves space for a billion bytes, it is
unlikely that they could all be written back within a short interval.  A server might also refuse to
honor a reservation for more than a few second’s worth of disk writes).  When the time limit
expires and if space is low, the server can reclaim the reservation by doing a callback (to force
the client to write back the dirty blocks).

A client that fails to respond to the callback, perhaps because of a network partition, might end
up being unable to write dirty blocks if the server reclaims its reservation.  Since a partition
might last arbitrarily long, there is not much that can be done about this: conceptually, this is the
same as partition during a consistency-callback, since in either case the write-caching client is
unable to write its modifications back to the server.  In section 6.1, I will discuss how the
protocol deals with such contingencies.  To avoid unnecessarily provoking this problem, a server
should refrain from reclaiming timed-out reservations as long as sufficient free space remains.

If, after the partition heals, the server has sufficient disk space and has not allowed a conflict-
ing open, the client could transparently recover from the partition (see section 7). On the other
hand, if recovery is impossible, because no disk space is left or because conflicting access has
been allowed, then the client host may have no way to notify the application that wrote the file.
The application has already closed the file, and may even have exited.  In this case, the modified
data would be lost, just as if a disk sector had been corrupted; applications that cannot afford
data loss should be taking measures to defend against it, whether caused by local-disk or network
failure.

The space-reservation mechanism, in summary, appears to provide the correct failure seman-
tics without seriously compromising performance.  The change to the protocol is quite simple;
however, this feature does complicate both the client and server implementations in a number of
ways, and for that reason is not entirely satisfying.

5. Overview of the recovery protocol

Several different recovery mechanisms might have been used for Spritely NFS.  The original
recovery mechanism used in Sprite [31] depends on a facility implemented in the RPC layer that
allows the clients and servers to keep track of the up/down state of their peers.  When a client
sees a server come up, the Sprite file system layer then reopens all of its files.

This approach provides more general recovery support than is needed for Spritely NFS, and it
has several drawbacks.  First, it would require changes to the RPC protocol now used with NFS,
some additional overhead on each RPC call, and some additional timer manipulation on the
client. In other words, it complicates the client implementation, which is something we wish to
avoid. Second, recent experience at Berkeley [3] has shown that such a ‘‘client-centric’’ ap-
proach can cause massive congestion of a recovering server. Sun RPC has no way to flow-
control the actions of lots of independent clients (a negative-acknowledgement mechanism was
added to Sprite’s RPC protocol to avoid server congestion [3]).

Third, the server has no way of knowing for sure when all the clients have contacted it; even if
all the clients actually respond quickly, the server still must wait for the longest reasonable client
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timeout interval in case some client hasn’t yet tried to recover. This can make fast recovery
impossible. Fourth, if a partition occurs during the recovery phase, partitioned clients may never
discover that they have inconsistent consistency state.

Another possible approach is the ‘‘leases’’ mechanism [9]. A lease is a promise from the
server to the client that, for a specified period of time, the client has the right to cache a file.  The
client must either renew the lease or stop caching the file before the lease expires.  Since the
server controls the maximum duration of a lease, recovery is trivial: once rebooted, the server
simply refuses to issue any new leases for a period equal to the maximum lease duration.  A
server will renew existing leases during this period; the clients will continually retry lease
renewals at the appropriate interval.  Once the recovery period has expired, no old lease can
conflict with any new lease, and so no server state need be rebuilt.

The problem with leases is that they do not easily support write-behind.  Consider what can
happen if a client holding dirty data is partitioned from the server during the recovery phase (not
an unlikely event, since a network router or bridge might be knocked out by the same problem
that causes a server crash), or if the server is simply too overloaded to renew all the leases before
they expire.  In either case, the client is left holding the bag: the server will have honored its
promise not to issue a conflicting lease, but will not have given the client a useful chance to write
back its dirty data before a conflict might result.

Another potential problem with leases is that the duration of a lease is a parameter that must
be chosen by the server.  The correct choice of this parameter is a compromise between the
amount of lease-renewal traffic and the period during which a recovering server cannot issue
new leases, and it is unlikely that the average system manager will be able to make the right
choice. The original Sprite protocol has a similar parameter, the interval between ‘‘are you
alive?’’ null RPCs, which again trades off extra traffic against the duration of the recovery phase.
We would like to avoid all unnecessary parameters in the protocol, since these force people to
make choices that might well be wrong.  (Also, timer-based mechanisms require increased timer
complexity and overhead on the client.)

The current proposal is a ‘‘server-centric’’ mechanism, similar to one being implemented for
Sprite, that relies on a small amount of non-volatile state maintained by the server [1]. The idea
is that in normal operation, the server keeps track of which clients are using Spritely NFS; during
recovery, the server then contacts these clients and tells them what to do.  Since the recovery
phase is entirely controlled by the server, there is less chance for congestion (the server controls
the rate at which its resources are used).  More important, the client complexity is minimal:
rather than managing timers and making decisions, all client behavior during recovery is in
response to server instructions.  That is, the clients require no autonomous ‘‘intelligence’’ to
participate in the recovery protocol.

For this to work, the use of stable storage for server state must be quite limited, both in space
and in update rate.  The rate of reads need not be limited, since a volatile cache can satisfy those
with low overhead.  Stable storage might be kept in a non-volatile RAM (NVRAM), but if the
update rate is low enough it is just as easy to keep this in a small disk file, managed by a daemon
process. Updates to this disk file might delay certain RPC responses by a few tens of mil-
liseconds, but (as you will see) such updates are rare.
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6. Details of the recovery protocol

The stable storage used in this protocol is simply a list of client hosts, with a few extra bits of
information associated with each client.  One is a code saying if this client is an NFS client or a
Spritely NFS client. Only Spritely NFS clients participate in the recovery protocol, but we keep a
list of NFS clients because this could be useful to a system manager.  Another flag records
whether the client was unresponsive during a recovery phase or callback RPC; this allows us to
report to the client all network partitions, once they are healed.

6.1. Normal operation

During normal operation, the server maintains the client list by monitoring all RPC operations.
If a previously unknown client makes a clctl RPC, then it is obviously a Spritely NFS system.  If
a previously unknown client makes any file-manipulating RPC, then it is an NFS client.  If a host
thought to be an NFS client does a clctl, then it presumably has become a Spritely NFS client,
and will participate in the Spritely NFS protocol from now on (see section 3.5).

The client list changes only when a new client arrives (or changes between NFS and Spritely
NFS). This is an extremely rare event (most servers are never exposed to more than a few
hundred clients) and so it does not matter how expensive it is.  In the current implementation, the
client list is kept in a disk file and the update cost is a few disk accesses; that is, comparable to
the basic cost of a file access.

On the other hand, the server must check the cached copy of the client list on almost every
RPC. This is done quite cheaply by keeping the client list as a broad hash table, and by keeping
a one-entry lookaside buffer (since in many cases, the server will receive several RPCs in a row
from the same client). The overhead should be less than is required to maintain the usual NFS
transaction cache.

Note that the server’s volatile copy of the client list need not contain the entire list of clients,
but could be managed as an LRU cache, as long as it is big enough to contain the working set of
active clients.  This might conserve memory if there are a lot of inactive clients on the list.

If a client fails to respond to a callback (or during the server recovery phase, described in
section 6.3) then the server marks it as ‘‘embargoed.’’  This could be because the client has
crashed, but it might be because the client has been partitioned from the server.  As I described
in section 3, the server goes to some lengths to ensure that a callback does not time out if the
client is actually alive and reachable.

When an embargoed client tries to contact the server, the server responds to the RPC with an
error code saying ‘‘you are embargoed.’’  The client thus knows that it was partitioned during an
operation that might have left its state inconsistent, and can take action to repair things (or at
least report the problem to the user).  See section 7 for more details.
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6.2. Client crash recovery

When a client crashes and reboots, we do not want the server to be left believing that the client
has files open. This could lead to false conflicts and thus reduced caching.  The server could
discover some false conflicts if, when it does a callback, the client replies ‘‘but I don’t have that
file open.’’ In other cases the false conflict would not cause a callback (i.e., if caching is already
disabled) and would not be discovered.  Also, these ‘‘false opens’’ waste resources: entries in the
server’s state table, and reserved space on the local file systems.

Spritely NFS solves this problem by using the clctl RPC, issued by a Spritely NFS client when
it mounts a file system, to detect client reboots.  The clctl RPC arguments include an op-code
that in this case indicates that the client might have rebooted, and an epoch number that allows
the server to determine if a reboot has actually occurred.  The client must generate an epoch
number that increases monotonically on each reboot, and otherwise does not increase at all.  The
server records the client’s epoch number in the corresponding client list entry.  If the epoch
received in a clctl RPC is greater than the previously recorded epoch, the server closes all
Spritely NFS files opened by that client and releases all associated space reservations.

The simplest way for a client to generate a monotonically increasing epoch is to use the time
at which it booted.  Most computer hardware now includes a battery operated clock; otherwise,
the client could use any of several simple time-server protocols to obtain the current time upon
booting. If the client uses a clock with a resolution of one second, this means that it cannot
reboot more than once per second; this is not likely to be an onerous restriction.

If the client uses NVRAM to keep dirty blocks across a crash, it should also use it to preserve
a list of all writable file handles.  When rebooting, it must first write back the dirty blocks, and
then it can send the clctl RPC. Alternatively, the protocol might be modified to add a new clctl
op-code that says ‘‘close all the files for which I have read-only references,’’ allowing the client
to write-back and close the writable files in the normal way.

If a client reboots while a server is down (or unreachable because of a network partition), the
client simply keeps retrying its mount operation until the server recovers (or becomes reachable),
just as is done in NFS.

When a client reboots and sends a clctl specifying ‘‘close all my open files,’’ the server should
also clear an embargo against the client (if one has been set).  This is because a client starting
with a tabula rasa does not care about the consistency state of files it previously had open.

6.3. Server crash recovery

When a server crashes and reboots, it first obtains the client list from stable storage and
reloads it into volatile memory.  The server then enters a recovery phase consisting of several
steps, herding the clients through these steps by issuing a series of recovery-specific callback
RPCs. The steps, diagramed in figure 5, are:

1. Initiate recovery: The server contacts each non-embargoed Spritely NFS client on
the client list.  The beginrecov callback RPC tells the client that the recovery phase
is starting; until the recovery termination step is complete, clients are not allowed
to do new open or close RPCs, and cannot perform any data operations on existing
files.
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Server Client A Client B

BeginRecov

BeginRecov

BeginRecov-reply

BeginRecov-reply

EndRecov

EndRecov

EndRecov-Reply

EndRecov-Reply

Step I:
Inform clients
recovery is in
progress;
detect dead or
partitioned
clients

Step III:
Inform clients
recovery is
complete

Step II:
Ask each client
to reopen all of
its files

Figure 5: Time line for server recovery

When a client responds to this RPC, the server knows that the client is participating
in the recovery protocol; clients that do not respond are marked as embargoed.
During the rest of recovery, embargoed clients are ignored and we can assume that
the other clients will respond promptly.  However, during this step long timeouts
may be needed.  On the other hand, beginrecov can be sent to all clients in parallel,
so the worst-case length of this step is only slightly longer than the maximum
timeout period for a single client.

At the end of this step, we can update the stable-storage client list to reflect our
current notion of each client’s status.

2. Rebuild consistency state: The server contacts each non-embargoed client and
instructs it to reopen all of the files that it currently has open, using the reqreopen
(Request Re-open) RPC.  If the clients do not cheat, the resulting opens will have
no conflicts, since before the server crashed there were no conflicts and no new
opens could have taken place since the crash.  See figure 6 for an example of this
step.

Since each server may have to open multiple files, and since file-open operations
are moderately expensive (requiring manipulation of the state table), the server
may want to do these callbacks serially rather that in parallel (or semi-parallel, to
limit the load to a reasonable value). This should not result in too much delay,
since we are reasonably sure that the clients involved will respond.
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Files are reopened using the reopen RPC, which is similar in form to the open RPC
except that it allows several files to be opened in one call.  Also, in addition to
conveying read-only and read-write reference counts for each file, it also conveys
the number of dirty bytes for closed-dirty files.  This allows the server to recom-
pute space reservations.  (See section 6.6 for more details.)

During this step, a client may have to reopen an arbitrary number of files, and so
the server cannot bound the amount of time required to finish the process.  There-
fore, the reqreopen RPC authorizes the client to issue only a small number of
reopen RPCs. The client’s response to reqreopen includes a flag saying ‘‘I’m
done’’ or ‘‘I have more files to reopen’’; the server loops issuing the reqreopen
RPC until the client responds ‘‘I’m done.’’  In figure 6, Client A has 11 files to
reopen and must do this in two separate batches; Client B has no files to reopen
and replies immediately with ‘‘I’m done.’’

This allows the server to use the normal RPC timeout mechanism to decide if a
client has died or become unreachable.  If a client fails to respond to reqreopen,
then the server marks it as embargoed and updates the stable-storage list.  Other-
wise, once the client responds ‘‘I’m done,’’ the server is sure that all the client’s
files have been reopened.

At the end of this step, the server has a complete and consistent state table, listing
all of the open and closed-dirty files.  In the current version of the protocol, closed-
clean files are not reopened, because that is not necessary for correctness.

3. Terminate recovery: The final step is to contact each client to inform it that
recovery is over.  Once a client receives the endrecov RPC, it can do any operation
it wants. As in the recovery initiation step, the server can do these callbacks in
parallel, but in any case the clients are unlikely to time out so the duration of this
step should be brief.

Note that NFS server hosts typically export a number of file systems, and a client may mount
several file systems from a given host.  All Spritely NFS recovery operations refer to hosts and
files, not specific file systems.  This works fine, and is simpler than the alternative, which would
be to do recovery on a filesystem-by-filesystem basis.

6.4. Crashes during server recovery

It is possible that the server may crash and reboot during the recovery phase. For this reason,
we need a mechanism to ensure that the client reopens all of its files following the most recent
reboot. To support this, the beginrecov and endrecov RPCs carry a monotonically increasing
sequence number.  The client simply ignores all stale and duplicated beginrecov and endrecov
RPCs.

The condition that these sequence numbers are monotonically increasing must hold true across
server crashes.  One way for the server to safely generate the sequence number is to start with the
time-of-boot, and increment the counter as subsequent beginrecov and endrecov RPCs are
generated. (A system manager may want to trigger the recovery process even if the server has
not crashed, in cases where the server’s state may have become damaged.) As with the client
epoch value, if the server uses a clock with a one-second resolution, this means that the server
cannot successfully reboot more than once every two seconds.
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Server Client A Client B

ReqReopen: 2 credits

Reopen 4 files

Reopen-Reply

Reopen 4 files

Reopen-Reply

ReqReopen-Reply: more

ReqReopen: 2 credits

ReqReopen-Reply: done

Reopen 3 files

Reopen-Reply

ReqReopen: 2 credits

ReqReopen-Reply: done

Figure 6: Time line for step II of server recovery

When the client receives a beginrecov with a new sequence number, it marks all of its open
(or closed-dirty) files for that server as in need of reopening.  When a reqreopen RPC arrives, the
client searches its data structures for files still marked as in need of reopening. Thus, if the
server crashes and reboots at any stage in this process, the client is assured of reopening all of its
files before recovery ultimately terminates.

If a client crashes and reboots during server recovery, then of course it need not reopen any
files. The server detects that the client has revived when the client sends its clctl RPC.

6.5. Log-based recovery

Because the recovery protocol is server-centric, it leaves the implementor of the server a lot of
freedom to choose different strategies.  V. Srinivasan [27] has pointed out that nothing in the
protocol prevents the server from using additional stable storage to obviate part or all of the
recovery protocol.

The server could, for example, log all opens and closes to stable storage.  Since the ‘‘open
lifetime’’ of files is fairly short (often less than 100 milliseconds [5]) it would not make sense to
log every such event to disk.  Instead, the server could keep the head of the log in NVRAM,
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3which would allow it to elide the short-lived opens before writing the log to the disk . Some sort
of log-cleaning algorithm, analogous to that required by a log-structured file system [24], would
be necessary.  Alternatively, the on-disk information could be structured as a database, which
would take more work to update but which would not need cleaning.  Using the log or database,
the server could recover its consistency state without any help from the clients.

A much simpler approach would be to keep track, in the client list, of those clients that have
any files open at all.  During crash recovery, the server could ignore any client known to have no
open files, thus speeding recovery and perhaps avoiding timeouts for clients that have been
removed from service.  This modification would increase the update rate for the stable-storage
copy of client list. However, the server could delay the update on a client’s last close, anticipat-
ing a subsequent open in the near future, because this would not affect the correct behavior of the
recovery protocol.  A delay interval of, say, one minute would probably avoid almost all extra
updates without significantly increasing the cost of recovery.

6.6. Recovery of space reservations

Since the server host’s count of reserved disk blocks may be updated quite often, it does not
make sense to keep it in stable storage.  (Maintaining a stable accurate value could ap-
proximately double the latency of disk writes for closed-dirty files.)  Instead, we recompute this
value during the recovery phase.  When recovery starts, the server set the value to zero.  The
clients then tell the server what their remaining reservations are, using the reopen RPC. Once
recovery is done, the server has a consistent count of the total reservation requirements.

During recovery, a client cannot simply request a reservation for the number of dirty blocks it
currently holds, because the server might have denied the reservation when it was initially re-
quested. The client must remember when a close failed to obtain a reservation for a file, and
when reopening that file must not request a reservation for it.

Note that it is not necessary for a client to compute how much of the requested reservation
actually remains to be used, because while a client holds a reservation no new application-level
writes can be made to the file (even by the same client).  In order to make new writes, the client
must first reopen the file, which voids any pending reservation.

If the network is partitioned during recovery, we might end up in a state where the server does
not know of a client’s reservation requirements, and so gives the space away once recovery is
over. If the partition heals, we may discover that no conflicting open prevents the embargoed
client from writing its dirty blocks, but there is no longer any space to hold them.  If so, the client
host will at least know what has happened (because the reservation request carried in the reopen
RPC will fail).

One (rather crude) approach to this problem is to set aside some disk space in anticipation of
this problem. For example, some file systems, such as the Berkeley Fast File System [15],
reserve a certain amount of free space in order to obtain better performance.  This free-space

3Or it could keep the entire state table in a huge NVRAM [4]; see section 11.
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reserve, which can be used up by super-user processes on BSD systems, might also be employed
to store blocks written back from embargoed clients.  However, this is at best a stop-gap solution
and can lead to some tricky management problems: what do you do when this space also runs
out?

6.7. Congestion avoidance during recovery

The primary mechanism to avoid server congestion during recovery is the server-centric ap-
proach, in which the server tells clients to perform their recovery operations rather than help-
lessly accepting RPCs from all clients at once.  The server may choose to do things entirely
serially (that is, only allow one client at a time to do reopen RPCs), or it may send reqreopen
RPCs to several clients in parallel.  This will probably reduce the elapsed time of the recovery
phase, although some care will be necessary to set the right level of parallelism.  The server may
be able to monitor its load during recovery, and adjust the number of parallel operations accord-
ingly. Because reqreopen sets a ‘‘credit limit’’ on the number of files a client is allowed to
reopen, the server is able react quickly when the load gets too high.

During the recovery phase, the server must not honor non-recovery RPCs, or else inconsis-
tencies might arise. In our implementation, the server simply drops such RPCs during recovery,
rather than sending an error reply.  Not only does this protect vanilla-NFS clients from un-
expected errors; it also reduces the load on the server, since clients will have to time out before
retrying these RPCs.

The clients also try to reduce the server load during recovery, by suppressing the transmission
of non-recovery RPCs.  This can be done by setting a flag in the appropriate data structure,
causing the RPC transmission code to block on any RPC except reopen. When the client host
receives the endrecov RPC, it unblocks any processes waiting to send RPCs to the server.

7. Resolving embargoes

A server embargoes a Spritely NFS client because it believes that the client’s state may have
become inconsistent as the result of a communications failure, and that the client may not be
aware of this.  When a client attempts to use a server that has embargoed it, the server returns a
specific error code for all RPCs except clctl. The client must then resolve the embargo before
continuing to use the server. Embargo resolution means determining which open files might be
inconsistent, and reestablishing access to files for which consistency still exists.

Note that any scheme for embargo resolution that detects all true conflicts will also give false
positives; that is, a client may decide that a conflict exists when it does not.  This means that the
Spritely NFS client code must inform applications (or users, or system managers) about all
potential inconsistencies, and let some higher intelligence decide what to do. Any ‘‘silent’’
failures could cause unacceptable errors; the embargo-resolution algorithms are meant to err on
the side of caution.

The mechanisms described in this section are not yet implemented, but I do not expect them to
involve much complexity.
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7.1. Clearing an embargo

When the client finds out that it has been embargoed by the server, it must first clear the
embargo condition using the clctl RPC. There is, however, a scenario where a simple version of
this mechanism could lead an inconsistent state. Suppose that the server tries to contact the
client, times out, and declares an embargo at time T . At time T , the server receives an RPC1 2
from the client, and returns the error code saying ‘‘you are embargoed,’’ which causes the client
to send a clctl RPC to clear the embargo.  Suppose now that a duplicate of this RPC is delayed in
the network.  The first copy reaches the server at time T , which clears the embargo, and then3
unsuccessfully tries to contact the client again.  The server declares a new embargo at time T ,4
and then the delayed duplicate clctl arrives. This causes the server to believe that the client has
cleared the second embargo, but the client does not realize that a second embargo has been
declared, and might end up with an inconsistent cache.

We could solve this problem by doing a three-way handshake between the client and server,
but instead we use a method based on synchronized clocks.  It is safe to assume that the clocks
are synchronized to within a few seconds; this is necessary anyway for proper operation of NFS,
and is more than possible using a protocol such as NTP [16], which normally achieves clock
skews on the order of milliseconds.

In this approach, the server records (in volatile storage) the time at which a client is declared
as embargoed.  The client passes its current time in the clctl RPC; only if the RPC was issued
after the embargo was declared will the server accept it.  If the client’s clock is slower than the
servers, it can keep retransmitting the RPC (with a new timestamp) until the server accepts it.

If the client’s clock is much faster than the server’s, this method could still fail.  The condition
for correctness in the worst case is that the clock skew must be less than the amount of time it
takes the server to declare an embargo.  Since this is on the order of several seconds, with
reasonable clocks it should not be a problem.

7.2. Detecting potential inconsistencies

The client needs an algorithm for deciding if, while it was embargoed, the server granted con-
flicting access to an open file. A conflicting access is any write-access to a file open only for
reading, or any access to a file for which the client has cached dirty data.  Of course, we do not
want the conflict-detection scheme to give more false positives than necessary.

There are two different ways in which a client can become embargoed by a server:  a callback
RPC to the client could fail, or the client could fail to respond during recovery.  In the first case,
the server explicitly knows that the embargoed client may have an inconsistency with respect to
a specific file.  In the second case, the server has no knowledge that the client is using a specific
file, which forces us to find an algorithm that relies only on information available to the client.

What the client needs to know is whether a conflicting access has been made to the file fol-
lowing the client’s last successful access.  As it happens, the NFS protocol already provides this
information. The standard NFS read and write RPCs always return the current attributes of a
file, and the returned attributes include the last-access and last-modification timestamps (atime
and mtime, respectively).
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To detect a potential conflict, the embargoed client must merely obtain the current attributes
from the server and perform the appropriate comparison.  The timestamps offer at least one-
second resolution.  Therefore, to prevent the client from drawing the wrong conclusion, the serv-
er must wait at least one second before declaring an embargo (we would hardly expect the RPC
timeout period to be shorter than that).

The server must also ensure that updates to the timestamp attributes survive across crashes.
Otherwise, the following scenario will lead to an undetected inconsistency:

1. Client A, with exclusive write access to a file, caches dirty data.

2. The server crashes and recovers, failing to contact client A.

3. Client B opens, reads, and closes the file.

4. The server crashes before atime is updated on stable storage.

5. The server recovers, and client A realizes that it is embargoed.  It samples the
atime of the file, decides that no conflicting access has been granted, and writes its
cached data back to the file.

Unfortunately, this means that Client B’s view of the file may not be consistent with the dirty
data that client A writes.

We would rather not insist that the server update atime on stable storage before replying to
every read RPC; it would make read access much slower.  This is not necessary; the server need
only stably update atime in two situations:

1. On the first read access to a file after embargoing a client using that file.

2. On the first read access to any file after rebooting, if any client was embargoed
during recovery.

Since embargo declarations are rare, we can simplify the first situation to be ‘‘the first read ac-
cesses to all files after any client has been embargoed.’’  The two cases may then be combined
into a simple mechanism: the server keeps a global timestamp reflecting the most recent reboot
or embargo-declaration.  If, on a read RPC, the initial access-time of a file is less than this times-
tamp, the attributes must be made stable before responding to the RPC.

As for the mtime attribute, the server normally updates its value whenever a write RPC causes
any change to the amount of disk space allocated to the file.  Still, there are times (writes that do
not change the file size) when mtime is not necessarily updated immediately.  The conflict detec-
tion algorithm requires that mtime be made stable on the first write access to a file after a client
using that file is embargoed, or after rebooting if any client was embargoed in recovery.  In other
words, we can use a policy analogous to that used for the atime attribute: If, on a write RPC, the
initial modify-time of a file is less than the global timestamp, the attributes must be made stable
before responding to the RPC.

Note that the file version number returned by the Spritely NFS open RPC is not sufficient to
detect possible conflicts, since it is not updated on read-only accesses to a file.
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7.3. A resolution algorithm

When a client learns that it has been embargoed by a server, it goes through the following
sequence:

1. Mark, in its table of active files, all open and closed-dirty files on that server as
needing embargo resolution.

2. Internally inhibit any RPCs to the server, except for open, close, and clctl.

3. Perform a clctl RPC on the server, with an op-code that means ‘‘clear my em-
bargo’’; the server will then let the client perform normal RPCs.

4. Run through the set of files needing embargo resolution, performing an open RPC
on each one.  This has two consequences:

a. If the server has crashed and recovered, it now knows that the client wants
access to the files. For closed-dirty files, the client should open them as if
for write access.

b. The client obtains the current attributes for each of the files.

5. As the current attributes for the files are obtained, the client compares the atime
and mtime values against its cached copies of the attributes. If a conflicting access
has occurred, the file is put into an error state.

6. When checking what was a closed-dirty file, which is now open for writing:
a. If no conflicting access has occurred, put the file back into the closed-dirty

state, using the close RPC to reserve sufficient disk space.

b. If a conflict was detected, close the file without reserving any space.

7. After all files have been checked, reallow all RPCs to the server.
If the server reembargoes the client during this sequence, it can be safely restarted from scratch
when the network partition heals.

7.4. Repairing inconsistent files

After the embargo resolution algorithm has been run, some of the client’s files might be
marked as being in an inconsistent state.  (If the embargo occurred because a space reservation
expired, it may be impossible to write the modified data back to the server).  I do not pretend to
know how to solve this problem, and in general it cannot be solved without some knowledge of
the particular application.  The LOCUS distributed system [23] knew how to resolve partitioned
updates to directories and mailbox files.  The ‘‘reintegration’’ techniques used in the Coda
system [25] might also prove useful.  The best solution is to build robust networks, so that par-
titions are rare and the problem seldom arises.

8. Performance

Our original goal with Spritely NFS was to improve performance over NFS.  Since NFS does
not need to support a recovery protocol, we must show that the added recovery overhead in
Spritely NFS does not eliminate our advantage.  Note that the original, non-recovering version of
Spritely NFS did better than NFS on realistic benchmarks even though NFS does not have to do

27



RECOVERY IN SPRITELY NFS

any open and close RPCs; that is, Spritely NFS saves enough through better use of the client
cache to make up for the extra RPCs.

The recovery protocol has two kinds of costs: in normal operation, there is a small overhead
on each RPC, and after a server crash, there is a recovery phase.  Since NFS has no recovery
phase, it will always be faster at continuing after a server reboot.  These should be rare events, so
the cost of recovery will be amortized over a long period of useful work.  At any rate, the server-
centric approach should allow us to do efficient recovery, since we are not put at risk of server
overload during the recovery phase.

8.1. Performance of Spritely NFS in normal operation

In the original paper on Spritely NFS [28], we presented some measurements showing that
Spritely NFS outperformed NFS, even though it may have to do extra RPCs (open and close).
Spritely NFS, through its use of delayed writes, achieved more parallelism (and sometimes fewer
total write RPCs) than NFS.  In the intervening years, the state of the art in NFS implementation
has improved considerably.  The most important changes have reduced the cost of NFS write
operations, and so one might expect the relative advantage of Spritely NFS to drop.  Spritely
NFS also uses fewer read and getattr RPCs, in many cases.  The use of faster disks, faster server
CPUs, and bigger file caches should also reduce this relative advantage.

There are few good benchmarks of overall file system performance.  (The LADDIS [13]
benchmark is not appropriate, because it specifically tests the performance of an NFS server and
not that of the entire client-server system.) Our original paper used the ‘‘Modified Andrew
Benchmark’’ [20], a single-client benchmark which simulates a software development task but
produces numbers that are independent of the host’s native compiler.  For this paper, I used the
same benchmark, although it is not necessarily representative of typical applications.  I modified
the benchmark slightly, to write back all dirty blocks before timing is started (that is, to start with
a clean buffer cache), and to execute certain frequent commands (grep, wc) from the local
/tmp directory rather than via NFS.

I ran the benchmark on various combinations of three different configurations:

Slow DECstation-3100 (approx. 11.3 SPECmarks), 24 Mbyte RAM, RZ23 disk.

Medium DECstation-5000/200 (approx. 18.5 SPECmarks), 48 Mbyte RAM, RZ58
disk.

Fast DECstation-5000/200 (approx. 18.5 SPECmarks), 48 Mbyte RAM, RZ58
disk, NVRAM.

The ‘‘Fast’’ system is in fact the same system as the ‘‘Medium’’ system, except that it also has
PrestoServe non-volatile RAM.  This means that, when it is acting as a server, NFS writes do
not need to be synchronous with the disk.  The systems were connected over an Ethernet, which
bore little additional traffic during the benchmark trials.

Both systems ran identical software, and could act as either client or server.  The ULTRIX 4.3
NFS server implementation supports the ‘‘write-gathering’’ technique, which allows several
write RPCs in a row to be satisfied while only performing one update of the file system’s over-
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4head data . Identical kernels were used in all tests; a flag variable was used to enable or disable
Spritely NFS behavior.  Another flag controls whether local-disk writes are delayed; although by
default in ULTRIX this flag is cleared, during these benchmark trials delayed writes were en-
abled.

Each system provided four NFS server threads and four ‘‘block-I/O daemon’’ threads.  These
are default values; folklore suggests that using more threads would improve performance (espe-
cially with the write-gathering technique), but I measured no significant performance change
when using 20 of each kind of thread.  This is probably because the benchmark uses relatively
small files, and so extra parallelism in the form of asynchronous writes is not available.

The benchmark has five phases:
1. Directory creation

2. File copying

3. Recursive directory operations

4. Scanning of all files

5. Compilation and linking
Very little user-mode CPU time is expended during the first four phases.  The last phase, com-
pilation, does require substantial user-mode computation: approximately 71 seconds on the
‘‘Slow’’ system, and 42 seconds on the ‘‘Medium’’/‘‘Fast’’ system.

Table 2 shows the results, for various combinations of client and server, and for two different
update policies (see section 3.3).  Times are given in seconds, and are averaged over five trials
for each configuration.

From the last column of the table, one can see that the Individual Periodic Update (IPU) policy
is a clear improvement over the Periodic Update (PU) policy, especially when the disk is slow
(the RZ23 disk has a specified average access time of 26.8 msec; for the RZ58, the average is
18.1 msec).  Only in the case of NFS, where few writes are delayed, is the update policy mostly
irrelevant. (The IPU policy does speed some of the NFS-based configurations somewhat, but
only because the compilation phase writes a lot of data to /tmp, which is a local disk in all
cases.)

The relative performance advantage of Spritely NFS, based on the overall elapsed time for the
benchmark, is summarized in table 3.  (These ratios are calculated from the results of the trials
using the IPU policy.)  With a slow server, Spritely NFS provides a distinct performance im-
provement (about 26% on the overall elapsed time).  With a fast server, the improvement is
smaller (about 4% overall).  In practice, server speed is not solely a function of server hardware;
a load placed on the server by other clients should also increase the relative advantage of Spritely
NFS.

4This technique appears to have been independently invented by several people, none of whom have published a
full description.  Epoch’s HyperWrite was apparently the first such product to ship [6].
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Client Server Type Update Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Total
policy mkdir copy ls -R find make time

Fast Local PU 0.2 3 6 7 57 73

Fast Local IPU 0.4 3 7 6 55 70

Medium Local PU 2 5 7 7 67 88

Medium Local IPU 2 5 6 6 64 83

Slow Local PU 4 12 15 14 126 171

Slow Local IPU 4 11 14 11 117 158

Fast Slow NFS PU 3 21 7 6 97 134

Fast Slow NFS IPU 4 21 7 6 96 134

Fast Slow SNFS PU 4 15 8 8 76 109

Fast Slow SNFS IPU 4 14 7 7 74 105

Slow Fast NFS PU 1 8 17 14 114 154

Slow Fast NFS IPU 1 9 17 14 113 154

Slow Fast SNFS PU 1 6 18 15 111 151

Slow Fast SNFS IPU 1 6 15 14 111 148

Slow Medium NFS PU 3 13 17 15 128 176

Slow Medium NFS IPU 3 13 17 14 123 170

Slow Medium SNFS PU 2 10 16 15 118 161

Slow Medium SNFS IPU 3 9 15 14 114 156

Numbers are time in seconds, averaged over 5 trials; differences of less than 1
second are not significant.

Table 2: Performance on Modified Andrew Benchmark

Client Server NFS Total Time SNFS Total Time Ratio

Fast Slow 134 sec 105 sec 1.26

Slow Medium 170 sec 156 sec 1.09

Slow Fast 154 sec 148 sec 1.04

Table 3: Elapsed time ratios on Modified Andrew Benchmark

These trials were run with the /tmp directory on the client’s local disk; this seems to be a
realistic configuration now that people are less enamored of fully diskless workstations.  Since
the compilation phase does a number of write-read-remove sequences on temporary files, one
might expect Spritely NFS to show an even larger advantage on diskless clients.

One can also gain some insight into the effects of the cache-consistency protocol by counting
the number of different RPC operations performed, as shown in table 4. The table shows the
mean RPC counts for the configuration that gained the most from Spritely NFS (‘‘Fast’’ client,
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‘‘Slow’’ server, and the IPU update policy).  The RPC counts for the nominally local case are
also shown, because I was unable to entirely prevent the client from doing a few remote opera-
tions. The counts in this column are fairly small; investigation shows that these background
RPCs are due to the use of the NFS automounter [7], and do not actually go over the network.

Spritely NFS uses fewer getattr, read, and write RPCs than NFS does, at the expense of a
number of open and close RPCs. The total number of RPCs used by Spritely NFS is somewhat
lower, but the real performance advantage comes from write-behind and from more frequent
client cache hits.  Many of the reads done by NFS actually try to retrieve data beyond the current
end-of-file; Spritely NFS can avoid these reads because, while a file is open and cachable, the
client reliably knows the length of the file.

RPC type Local Disk NFS Spritely NFS

getattr 307 1225 259

setattr 0 22 22

lookup 62 810 535

readlink 126 0 0

read 0 1186 836

write 0 476 192

create 0 96 96

remove 0 6 6

rename 0 4 4

mkdir 0 20 20

readdir 0 157 157

open 703

close 764

callback 0

Total 495 4002 3595

Table 4: RPC operation counts for Modified Andrew Benchmark

Spritely NFS, in this benchmark, performs almost as many lookup and getattr operations as
read and write operations. It thus seems likely that improving the caching of directory entries
and file attributes could significantly improve performance; see section 10 for some thoughts on
how this might be accomplished.

8.2. Cost of client list maintenance

The additional per-RPC overhead in Spritely NFS comes from the maintenance of the client
list. I argued earlier that this is negligible; most of the time, we simply do a hash-table lookup to
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5discover that the client is already known and not embargoed . Very rarely, we must update
stable storage, but it is unlikely that a server would see such a high rate of new clients that this
becomes a measurable overhead.

In a simple test (repeated invocations of the NFS null RPC, using a fast server), the client list
check added an average of about 28 microseconds, or about 2.3%. On actual RPC requests, the
server performs far more work, so the overhead ratio would be even lower.  The per-RPC over-
head for client list checks does not cause a measurable difference in Spritely NFS performance
on realistic benchmarks.

8.3. Cost of server recovery

The cost of server recovery is essentially proportional to the number of files reopened in step
II, since there are likely to be many more open files than active clients.  When a client reopens N
files, the number of reqreopen and reopen RPCs used is about 2×N/M, where M is the number
of files that can be described in one reopen request. M could be as high as 96, but the current
implementation uses M = 4 to facilitate debugging.  The server may have to go to the disk for
each file reopened, so there may be O(N) server disk accesses during recovery.  In practice, the
number of disk accesses could be much lower, since caching and spatial locality often obviate
the need to read the disk each time a file is opened.

To get an idea of how long recovery might take, I induced a client host to keep 393 files open
at once, did enough activity on the server to flush out its disk cache, and then triggered the
recovery protocol.  The complete recovery procedure took about two seconds of elapsed time.
This suggests that recovery takes about 5-7 msec., on average, for each open file, but one cannot
safely extrapolate from this simple measurement to predict how long it might take to recover a
heavily-used server.

8.4. Space overhead

One disadvantage of ‘‘stateful’’ servers is that they require storage space to keep track of
client state. A Spritely NFS server needs to keep a state table entry for each file opened (or
closed-dirty) by any client.  The size of the table entry is proportional to the number of clients
who have the file open.  This means that in the worst case, the state table requires storage
proportional to the sum of the size of the ‘‘file tables’’ on all of the possible clients.

In our implementation of the server, state table entries consist of a fixed-length record describ-
ing the file state, possibly pointing to a linked list of smaller records recording client references
to the file.  Each of the file-state records uses 72 bytes; each of the client-state records uses 20
bytes. With some clever encoding, the file-state record could be shrunk to perhaps 48 bytes and
the client-state record could be shrunk to 16 bytes, but even so the space requirements are not
insignificant.

5The per-RPC operations in the original Sprite recovery mechanism apparently made a small but measurable
difference in the RPC overhead.  This might have been because on each RPC request and reply, the code was forced
to manipulate timers.
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For example, suppose that a server has 100 clients, each of which has 1000 different files
open. This would require the server to maintain 100,000 records of each type, using up more
than 9 megabytes of kernel memory (or 7 Mbytes if better encodings are used). Although
memory densities and costs improve rapidly from year to year, that is a not an inconsequential
amount of storage.  Also, after a server crash it must all be reconstructed by the recovery
protocol, which might take some time.

And this is not necessarily a worst-case scenario; if clients are allowed to cache attributes of
files that they do not currently have open (see section 10), the potential size of the state table
could be proportional to the number of files in the server’s file system multiplied by the number
of clients.

John Ousterhout [21] has suggested that if the server runs out of space in its state table, it
could select certain entries (perhaps using an LRU scheme) to be discarded.  Before discarding
an entry, the server would inform the relevant clients via a callback RPC. Clients with cached
dirty data would have to write it back to the server at this point.  Once a client has been told that
a file’s entry has been discarded, it could not cache or access that file before reopening it; this
means that no potential cache inconsistency is introduced.

This mechanism would work like a demand-paged memory system, except that in this case,
the ‘‘backing store’’ consists of the clients’ file tables rather than stable storage.  If the server
crashes, during recovery the clients would not have to reopen these ‘‘paged-out’’ entries, and so
the duration of the recovery phase might be shortened. Of course, just as with demand-paged
memory, if the working set is larger than the available storage, the system will thrash.

9. Software complexity

Since I have described this recovery protocol as ‘‘simple,’’ it seems appropriate to describe
how much work it would take to convert an NFS implementation to support Spritely NFS with
recovery. The original Spritely NFS implementation was written in the course of a month or so
by a programmer who had never before studied the Unix kernel.  A prototype implementation of
the recovery protocol also took about a month.  I spent several more months cleaning up these
prototype implementations, revising the protocol, and finishing off loose ends.

This section sketches the existing Spritely NFS implementation.  Space does not permit the
discussion of many tricky details, which are present in any distributed file system implemen-
tation.

9.1. Client implementation overview

Starting with the ULTRIX 4.3 client NFS implementation, the modifications necessary to sup-
port Spritely NFS are fairly simple. The open and close operations have to be implemented, the
per-file data structures need to include cachability information, and the data access paths need to
observe the cachability information.  By far the most complexity comes from dealing with write-
behind, since this involves a number of asynchronous operations, and violates assumptions made
all over the original NFS code.
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The client needs to run a daemon process to handle callback requests.  It turns out that the
existing NFS server daemon does just fine for this; the NFS server code in the client kernel
handles the new callback RPCs.  Some care has to be taken to avoid tying up all the daemon
threads handling callbacks, or else two Spritely NFS systems serving each other might deadlock.

Very few changes are needed in other components of the client operating system. The code
that manages the table of open and closed files (the equivalent of the Unix inode table) must
inform the Spritely NFS client code when a closed-dirty file is being removed from this table to
make room for a new entry.  The space-reservation mechanism requires a mechanism to count
the amount of cached dirty data.  It is also useful to provide a mechanism to remove dirty blocks
from the file cache, for use when the file that contains those blocks is deleted; this improves
performances by eliminating useless write-backs.  We also had to fix a few bugs that were only
tickled by Spritely NFS.

9.2. Server implementation overview

The changes to the server are in some ways simpler than the client changes, although they
involve more new lines of code.  For Spritely NFS without recovery, the changes were quite
localized: the existing RPC server procedures were not touched, and all the new code related to
handling the open and close RPCs and performing callbacks.

To support recovery, the server code that dispatches RPC operations must check (and, rarely,
update) the client list on each RPC.  Almost all of the remaining recovery protocol is im-
plemented in a user-mode daemon program, which provides two services:

• When the kernel wants to update the stable copy of the client list, the daemon trans-
fers the information to a simple database it maintains in a disk file.

• All of the RPCs generated by the server during the recovery phase (that is,
beginrecov, reqreopen, and endrecov) are issued by the daemon process.  During
recovery, the server’s kernel code handles the reopen RPCs.

These two functions are done in separate processes, to simplify the concurrency issues.

In order to allow these functions to be done outside the kernel, the kernel code does have to
provide an interface by which it communicates with the user-level daemon.  This is done using a
number of ioctl commands. One of these is used to pass client list modifications to the daemon
process. The rest are used to control the kernel’s internal client list database, to obtain the cur-
rent recovery epoch (for use in the beginrecov and endrecov RPCs), and to suppress handling of
non-recovery RPCs during the recovery phase.

The space reservation mechanism adds some code to the handler for the write RPC. It also
requires some support from the underlying local file system, about 40 lines of new code, to do
the necessary bookkeeping.

In order to provide full consistency between Spritely NFS clients and local file system ap-
plications running on the server, there would have to be some additional linkages between the
local file system’s open and close operations and the Spritely NFS state-table mechanism.  For
example, when a local process opens a file, this might require Spritely NFS to change a client’s
cachability information for that file.
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9.3. Code complexity metrics

There are many ways to measure the complexity of a software system, but I will rely on just
two: the number of lines of source code, and the number of instruction bytes.  By either measure,
Spritely NFS is about 50% more complex than vanilla NFS.

The original ULTRIX 4.3 implementation of NFS comprises 12283 lines in 14 kernel source
files (not counting the RPC layer).  This implementation of Spritely NFS comprises 19419
source lines in 22 source files, for a net increase of 7136 lines, or 58%.  (Source line counts
include comments and blank lines.)

The ULTRIX NFS code compiles into 8 object modules, containing 75472 ‘‘text’’ bytes.  The
Spritely NFS code compiles into 14 modules containing 119264 text bytes, also for a net in-
crease of 58%.

The current Spritely NFS code is actually larger than it might be in a final implementation,
since it is somewhat more heavily commented than the NFS code, it includes blocks of the
original NFS code ‘‘#ifdef’ed out,’’ and it includes numerous debugging statements.  On the
other hand, several features left to be implemented will add to the code size.

The modules added for Spritely NFS are:

Client callback/recovery code
Handlers to serve the callback RPC and recovery-related RPCs (827 lines).

Server client-list and daemon interface
Code to maintain client list in kernel, and to interface to user-level client-list/recovery
daemon (696+90 lines).

New server RPCs, space reservation, and callback
Handlers for the open, close, reopen, and clctl RPCs, support for space reservation,
and code to perform consistency callbacks (940 lines).

Miscellaneous subroutines
For both client and server code (344 lines).

State table
Code to maintain the server’s state table database (920+96 lines).

State transitions
Code to handle open and close state transitions (847 lines).

The bulk of the new modules is concentrated in server code; there are 3589 lines of new
server-side modules, versus just 827 lines in one new client-side module (and 344 lines in one
shared module).  However, the changes made to existing modules are mostly to client code; 1121
lines were added to client modules, 343 lines were added to server modules, and 912 lines were
added to shared modules.

The user-mode daemon process, which provides stable storage for the client list, and which
manages the recovery procedure, is about 1300 lines of source code.  This code is not par-
ticularly complicated, and the main code of the recovery protocol itself requires less than 200
lines. This implementation of the daemon does recovery one client at a time; to support paral-
lelism in the recovery procedure, the daemon would have to manage multiple threads and so
might be considerably more complicated.
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9.4. Pitfalls

The fact that most of the changes to existing code were in client-side modules confirms our
experience that the conceptual complexity is mostly in client code. In particular, it turns out to
have been quite tricky to add write-after-close to the existing NFS implementation, since the
NFS code makes many assumptions about the quiescence of a file after it is closed.  Bugs result-
ing from violations of these assumptions proved to be the most difficult to discover and repair.

The ULTRIX kernel supports symmetric multiprocessing, and so uses explicit locks to protect
kernel data structures.  The existing locking design does not support some of the situations aris-
ing in Spritely NFS very well, and there are still a few races in the code that should be protected
by new locks.

For example, when the client receives a beginrecov RPC, it must go through the table of open-
file descriptors or ‘‘gnodes,’’ looking for gnodes which must be reopened.  During the process of
examining one of these gnodes, we would like to be able to lock it, because some other process
may decide to trash it while we are looking at it (which might cause us to dereference a dangling
pointer and crash).  However, we cannot use the normal gnode locking mechanism, because the
gnode might already be locked by another process; that process may be blocked waiting for the
server to finish recovery, and so if we tried to acquire the gnode lock at this point we would
probably deadlock.

Obvious solutions exist that involve the use of additional locks, but these solutions add extra
locking overhead to all file system operations.  It would be nice to find a solution that did not
have much extra cost except during recovery.

10. Future extensions

Spritely NFS currently provides explicit consistency only for file data and for the attributes of
currently-open files.  The protocol could be extended to provide true consistency for directories,
for attributes of non-open files, and perhaps for file locks. While these extensions have not yet
been implemented, they do have implications for the recovery mechanism.

For additional discussion of directory caching and attributes caching for Spritely NFS, see
[18].

10.1. Directory caching

A large fraction of NFS traffic consists of directory lookups and listings.  Many NFS im-
plementations cache directory entries, but because NFS has no consistency protocol these caches
must time out quickly, and even so can become inconsistent.

Recent measurements on Sprite suggests that it is better to cache (and invalidate) entire direc-
tories rather than individual entries, since a directory is often the region of exploitable locality of
reference [26]. This nicely matches the Spritely NFS model; the client simply does an open on a
directory before doing readdir RPCs, and keeps the result of the readdir in a cache. When the
client removes a directory from its cache, it does a close RPC to inform the server.  If a different
client modifies the directory (using an RPC such as create, remove, rename, etc.), then the server
does a callback to cause the first client to invalidate its cache.
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Whole-directory caching is especially effective at satisfying lookups for non-existent entries.
This can significantly improve performance because some applications (particularly compilers
and command shells) often lookup name that do not exist, as they follow a ‘‘search path’’ look-
ing for a file.  Such ‘‘negative’’ caching requires guaranteed consistency in order to provide safe
results for distributed applications.

Should clients write-through directory changes (i.e., creations, renames, or removals), or could
changes be done using write-back?  Write-back is far more complex, especially because it makes
it much harder to provide the failure-atomicity guarantee that Unix has traditionally attempted
for directory operations.  If only write-through is allowed, then open on a directory always al-
lows the client to cache; it serves solely to inform the server of which clients might need
callbacks when an entry is changed.

Moreover, during server recovery the clients can simply flush their directory caches. When,
subsequent to recovery, a client needs to read a directory, it then does a fresh open to notify the
server that it wants to see callbacks.  Reloading the directory caches, rather than revalidating
them (as is done with cached data), is unlikely to be expensive because even a small directory
cache yields a high hit rate [26].

Write-through also avoids having to coordinate the allocation of file identifiers between the
client and the server, when new files are created.  The client transmits the create operation to the
server, which allocates a file identifier, inserts a new directory entry, and returns the new iden-
tifier to the client.  The client can then update its cached copy of the directory.  A write-back
scheme for file creation would be much more complex.

10.2. Attributes caching

Spritely NFS provides consistency for file attributes (length, protection, modification time,
etc.) only for open files.  Some applications (for example make, ls -l, and du) use the at-
tributes of files that they won’t (or can’t) open. Because attributes are read so often, NFS im-
plementations are forced to provide ‘‘attribute caching’’ using a probabilistic consistency
mechanism: cached attributes time out after a few seconds.

Spritely NFS could be extended to support consistent caching of attributes, using some sort of
open-for-attributes-read RPC. This RPC, which might be called openattr, would return the cur-
rent attributes, thereby avoiding the need for a getattr RPC, and would also tell the client if the
attributes were cachable or not.  The lookup, and optionally the close, operations could also in-
dicate that the client wants to cache a file’s attributes.  The server would then use a callback to
invalidate a client’s cache entry when some other client changes the attributes of the correspond-
ing file.

It is not clear that consistent attributes caching is necessary; experience with NFS has shown
that weak consistency is usually sufficient, because few applications depend on strong consis-
tency for unopened files.  (Weak attribute-consistency on open files causes errors when two
client hosts simultaneously attempt to append to the same file, since they have an inconsistent
view of the length of the file.)
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It is also unclear if introducing consistent attributes caching will help or hurt performance. It
might obviate many of the getattr calls now done by NFS (see section 8.1), but it might also
greatly increase memory requirements at the server, for tracking the state of cached attributes
(see section 8.4).

If consistent attributes caching is added to Spritely NFS, clients would presumably still write-
6through all attributes changes . It would not be possible to use a write-back policy for attributes

changes without making widespread changes to the client NFS implementation, and it would
probably not be worth the effort (since explicit attribute modifications are rare).

As with directory caches, use of write-through for attributes means that during server recovery
the clients need merely flush their caches of attribute information for non-open files. After
recovery, a client wishing to cache a file’s attributes would again do an openattr RPC on the file.
It would not be cost-effective to do a reopen during recovery for every attribute-cache entry,
since the cost of the reopen would be no less than the cost of simply doing the openattr. Doing
the work after recovery shortens the recovery phase and avoids reloading cached information
that might not be needed.

10.3. File locking

Although write-sharing is normally rare, when processes do write-share a file, they often use a
locking mechanism to serialize access to the file.  Since the basic NFS protocol does not provide
file-locking primitives, a separate ‘‘NFS locking protocol’’ is often used [32]. This protocol is
typically implemented in user-level processes on both the client and server. When a client ap-
plication issues a lock command, the client kernel forwards the lock operation to the lock
daemon process on the server, via the local lock daemon process.  The client kernel also marks
the file as uncachable, in order to avoid consistency problems.  An associated status protocol
detects host reboots and causes the lock daemons to resubmit their lock requests.

For Spritely NFS, with its explicit consistency protocol and recovery mechanism, it would
make sense to design a locking mechanism that is part of the main protocol.  This was not done
for NFS presumably because it would have introduced server state, but it would solve a number
of performance problems with the current locking mechanism:

• When NFS clients do lock operations, the lock server must participate because the
clients have no way of knowing if other client hosts are involved.  In Spritely NFS,
if a client host has the right to write-cache a file, then it need not contact the server
to do locking, since no other client host could be using the file.  When the file be-
comes shared and the server does a callback, the client would then forward its lock
status to the server.

• NFS clients disable data caching when using locking, because this strongly implies
that another client may be using the file and their caches might be inconsistent.
Spritely NFS clients can continue to cache as long as no write-sharing is taking
place.

6Except for file-length changes caused by writes, since this would destroy the performance advantage of write-
behind. A client would not be allowed to cache attributes of a file currently open for writing (or closed-dirty) by
another client.
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• Since NFS locking is implemented outside of the kernel, every lock operation causes
at least a pair of context switches on the client host, and several extra domain-
crossings (between kernel and user) on the server.  This extra overhead can make
locking quite costly.  If Spritely NFS provided locking as part of the main protocol,
it would be implemented using the kernel-to-kernel RPC path and would not require
extra domain-crossing or context-switching.

Spritely NFS would not need a separate protocol for recovering client lock status after a server
crash. During the second step of the recovery phase, clients would be told to resubmit their lock
requests to the server, after they have reopened their files.  Unlike the NFS status protocol, in
which clients rely on timeouts to discover server recovery in time to rebuild their locks, the
Spritely NFS recovery protocol guarantees that clients will be able to rebuild locks before
recovery completes.

In Unix, writes to regular regular files are atomic: even if a given write system call involves
multiple disk blocks, if another process issues a single read system call for a subset of the region
being written, that read will return either only old data or only modified data.  NFS cannot make
this guarantee, since the server cannot lock a file against reads during a multi-block write.
Spritely NFS, in its current form, also does not directly provide atomicity.  For both NFS and
Spritely NFS, atomicity could be provided using a locking mechanism. Spritely NFS has the
advantage that the extra locking overhead is necessary only if write-sharing is actually taking
place.

10.4. Security

NFS does not provide much in the way of security, but in principle one can use cryptographic
techniques to prevent illicit access to file data [12, 30]. Spritely NFS introduces the possibility
of malicious interference with the cache-consistency and recovery protocols.  Fortunately, the
worst that could be done this way would be to slow down legitimate clients (perhaps by forcing
them to stop caching the files they are using, or wait for spurious callbacks to time out).

I believe one could add authentication mechanisms to the Spritely NFS protocol that would
prevent an intruder from interfering with access to a file that it otherwise was not authorized to
use, and to reject spurious callbacks.  This would not eliminate the threat of denial-of-service
attacks, and could add considerable overhead to the protocol, so it is probably not worth the
effort.

10.5. Memory-mapped files

Many operating systems support memory-mapped files: an entire file appears in a region of a
process address space, and file reads and writes occur as the result of virtual-memory operations
instead of explicit system calls. Memory-mapped files are a convenient way to implement dis-
tributed shared memory, if an efficient consistency mechanism is available.  NFS does not
provide sufficient consistency for shared memory applications. Sprite (and Spritely NFS)
provides consistency but not efficiently, since when a file is write-shared, Sprite forces the
clients to contact the server on every access.  That is, Sprite does not allow a distributed-shared-
memory application to use page-level caching to take advantage of locality of reference.
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The Mether-NFS system [17] uses the standard set of NFS remote procedures to implement a
cache-consistent distributed shared memory.  Unlike Sprite, MNFS allows clients to cache pages
from a write-shared file. The MNFS server keeps a map recording the current readers and writer
of each page of the file.  When a client wants to use a page for which it does not currently have
appropriate access rights, it contacts the server (using an NFS read RPC), using some high-order
bits in the file-offset argument to indicate if it wants to read or write the page.  The server in turn
contacts the current writer of that page and retrieves the current value, using an NFS read RPC
as a sort of callback.  The server may also cause any cached copies at other clients to be in-
validated, if the client intends to write the page.

One could extend Spritely NFS to support the MNFS approach to write-shared files.  This
would require a recovery mechanism for the server’s page-map.  A simple way to accomplish
this is to start by using the current recovery algorithm to rebuild the server’s state-table entry for
the write-shared files.  Then, the server would callback each client using a write-shared file,
forcing them to write-back all dirty pages for the file, and to invalidate all cached pages for the
file.

At this point, the server can recreate its page-map for the file as an array of ‘‘empty’’ records,
because no clients are caching pages from the file.  This is a consistent state for the page-map.
This approach effectively pages the entire mapped file out to the server’s disk, and then pages it
back in as clients start to use it again, so it could be quite slow.

It would be more efficient to rebuild the server’s page-map directly, using information held by
the clients. In this approach, clients would not write-back or invalidate their shared-file pages.
Instead, the server would callback to each client to obtain the status of the pages in a given file.
The client would return a list of the pages it holds in its cache, indicating which of them are
writable.

All MNFS files are backed by actual server disk files; since MNFS follows NFS semantics for
server writes, any pages written back to the server would survive across crashes. However, a
dirty page held by a failed client would be lost; this makes it impractical for MNFS (or a similar
extension to Spritely NFS) to protect applications from client crashes.

11. Other related work

Several interesting papers related to recovery in distributed file systems have never been
published. Rick Macklem worked on ‘‘Not Quite NFS,’’ an attempt to use the leases model to
provide recovery for an NFS extended with a Sprite-like consistency protocol.  Meanwhile, the
Echo file system project at Digital’s Systems Research Center has grappled with a number of
similar issues, especially those related to write-behind [14].

Mary Baker and Mark Sullivan describe a similar approach to state recovery [4], using a
‘‘recovery box’’: stable storage for selected pieces of system state, to allow a system to reboot
quickly. In their approach, a file server would store all the open file handles in stable storage,
with the assumption that these are unlikely to be corrupted by (or just prior to) a crash.  Spritely
NFS is more conservative, both in that it does not require a large chunk of low-latency stable
storage, and because it makes far weaker assumptions about the effects of a crash.  Their system,
however, leads to much quicker recovery.
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12. Conclusion

Adding cache consistency to NFS was an interesting experiment, but without a recovery
protocol Spritely NFS was not suitable for production use.  The recovery mechanisms described
in this paper should be enough to make Spritely NFS a real alternative to NFS.  The recovery
mechanism is so simple, especially on the client side, that one can no longer claim that only a
stateless protocol admits a simple implementation.

Even if Spritely NFS never becomes widely used, I believe that this simplified approach to
recovery will be useful in other contexts. A similar approach is being used now in Sprite, and
their experiences should help to validate the design.
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Appendix I. Protocol specification
This appendix gives a brief specification for the Spritely NFS protocol.  The original NFS

specification [29] is included as a subset, and is not repeated here.  One should read the body of
this paper before attempting to understand this specification.

This specification reflects the state of the Spritely NFS implementation as this paper is being
written. The actual protocol changes constantly and so this specification should be viewed as a
research prototype, not as a standard.

I.1. New error codes

The stat enumeration includes several new values:
NFSERR_TABLEFULL=100,
NFSERR_CALLBACKFAIL=101,
NFSERR_NOTRECOVERING=102,
NFSERR_EMBARGOED=103,
NFSERR_INCONSISTENT=104,
NFSERR_TRYLATER=105

The meanings of these values are:

NFSERR_TABLEFULL
The server’s state table is full and no new files may be opened.

NFSERR_CALLBACKFAIL
An NFSPROC_CALLBACK RPC from a server to a client is rejected because it is mal-
formed or out of sequence.

NFSERR_NOTRECOVERING
An NFSPROC_REOPEN RPC is rejected because the server is not currently in its crash-
recovery phase.

NFSERR_EMBARGOED
The client is embargoed from further operations until it takes steps to clear the embargo.
This may be issued in response to any RPC, except for NFSPROC_CLCTL.

NFSERR_INCONSISTENT
Some violation of the cache-consistency protocol has led to a state that is either incon-
sistent, or would be inconsistent if the requested RPC were to be executed.

NFSERR_TRYLATER
An NFSPROC_CALLBACK or NFSPROC_OPEN RPC cannot be completed without dead-
locking or blocking for a long interval.  The RPC should be retried after a few seconds.
The intent of this status code is to avoid having an unbounded delay on any RPC call.

I.2. New data types

The openargs data type is used with the NFSPROC_OPEN RPC (and indirectly with the
NFSPROC_REOPEN RPC) to communicate the client’s current open-for-read and open-for-write
reference counts.
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typedef struct {
fhandle file;
unsigned mdev;
unsigned rcount;
unsigned wcount;

} openargs;

For the specified file, the client’s current count of read-only opens is rcount, and the current
count of read-write opens is wcount. The mdev field is used to disambiguate a file handle
during a callback.  The server does not otherwise interpret the mdev field.

The openres data type is used in the reply to an NFSPROC_OPEN or NFSPROC_REOPEN
RPC.

typedef union switch (stat status) {
NFS_OK:

struct {
unsigned cacheVers;
unsigned oldCacheVers;
boolean cacheEnabled;
fattr attributes;

}
default:

struct {}
} openres;

The cacheVers field carries the current version number of the file, which changes on each
open-for-write. The oldCacheVers field carries the previous version number. This allows a
client to decide if its cached data from the file is still valid: if it matches the cacheVers field,
then this file has not been opened for write since the data was cached; if it matches the
oldCacheVers field, then the version changed because of the client’s current open-for-write
operation.

The cacheEnabled field indicates whether the client is allowed to cache the file.

The attributes field contains the current attributes values for the file.  If the file is cach-
able, this allows the client to avoid doing a subsequent NFSPROC_GETATTR.

The reopeninfo data type is used with the NFSPROC_REOPEN RPC to pass information
about a file that a client currently has open (or for which it has cached dirty blocks).

typedef struct {
openargs openargs;
unsigned dirtybytes;

} reopeninfo;

The openargs field contains the information needed by the server to rebuild its state-table
entry for an open file.  The dirtybytes value is necessary when rebuilding a state-table entry
for a closed-dirty file; see the description of NFSPROC_CLOSE for more details.
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I.3. Existing RPC server procedures

None of the RPC definitions in the original NFS specification [29] have been changed in
Spritely NFS.  The only exception is that a Spritely NFS server may return a status value of
NFSERR_EMBARGOED in reply to any RPC request (but only if the client is known to be using
Spritely NFS).

I.4. New RPC server procedures

These procedures are add to the NFS server to support Spritely NFS consistency and crash
recovery.

18 NFSPROC_OPEN (file) returns (reply)
openargs fileargs;
openres reply;

This RPC is used to inform the server that the client is increasing one of its open-file reference
counts for a specified file.  It may not be used to decrease the reference counts.  Because the
client’s current value of the reference count is transmitted, rather than the net change, this RPC is
idempotent.

19 NFSPROC_CLOSE (file, mode, rcount, wcount, dirtybytes)
returns (status)

fhandle file;
unsigned rcount;
unsigned wcount;
unsigned dirtybytes;
stat status;

This RPC is used to inform the server that the client is decreasing one of its open-file reference
counts for the file. The rcount argument carries the number of read-only references; the
wcount argument carries the number of read-write references.  The dirtybytes argument is
used only when the reference counts both are zero, and the file had been both open for writing
and cachable.  The value of dirtybytes must be an upper bound on the number of bytes that
the client has buffered for subsequent write-back for this file.

If the value of dirtybytes is non-zero, and the server replies with NFS_OK, the client is
responsible for eventually issuing another NFSPROC_CLOSE RPC once all the dirty data has
been written back.  This final NFSPROC_CLOSE may be elided if the client opens the file again.
(A minimal server may avoid implementing the space-reservation mechanism, at the expense of
reduced performance.  Such a server would always return ENOSPC if dirtybytes is non-
zero).

If the server returns NFSERR_NOSPC in response to this RPC, the client should try to write
all the buffered dirty data (using NFSPROC_WRITE), which might succeed.  The client should
then repeat the NFSPROC_CLOSE operation with dirtybytes equal to zero.
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21 NFSPROC_REOPEN (epoch, files) returns (reply)
unsigned epoch;
reopeninfo files<REOPEN_MAXFILES>;
union switch (stat status) {

openres results<REOPEN_MAXFILES>;
} reply;

This RPC is used only during server recovery, and only in response to an
NFSPROC_REQREOPEN RPC, described in section I.5. The client uses it to report the current
reference-count state of any files that it has open on the server, and the number of dirty bytes
(see the description of NFSPROC_CLOSE) for files that it does not have open but still has
cached dirty data.  The files array carries one entry for each file to be reopened.

The server replies with an array of result values, corresponding to the files listed in the request
RPC. Note that the server may change the cache-version numbering for a file after a crash, and
so the client must update its view of the cache version as a result of this operation.  This also
means that cached data for files that the client does not reopen (i.e., closed, all-clean files) must
be discarded during recovery, since the cacheVers returned by a subsequent NFSPROC_OPEN
cannot be compared against the value held by the client.

The epoch argument is meant to carry the client’s view of the server’s recovery epoch (see
NFSPROC_BEGINRECOV), to prevent the server from accepting requests from a previous
recovery phase.  This might be superfluous.

The value of REOPEN_MAXFILES is arbitrarily set to 96, to keep the size of the reply under
8k bytes.  However, a client host should not normally try to reopen so many files at once, but
should limit the sizes of each of the RPC and its reply so that they fit into a single network
packet. Also, the client must not reopen more files than specified by the nfilesperreopen
argument provided in the server’s NFSPROC_REQREOPEN RPC.

25 NFSPROC_CLCTL (flags, epoch) returns (status)
unsigned flags;
unsigned epoch;
stat status;

This RPC is used by a Spritely NFS client when it reboots and when it is clearing an embargo.
The flags argument is a set of bits:

001 Clear embargoed state

002 Client just rebooted

The epoch value is used to make this RPC idempotent.  When the RPC is used to report a
reboot, the epoch must be higher than reported for any previous incarnation of the client; this
informs the server that it can discard all of its state related to this client.  The client should not
retransmit this RPC with an increased epoch value, because its state will be lost.

When this RPC is used to clear an embargo, the client should set the epoch value to the current
time, in seconds since midnight January 1, 1970 UTC.  (This is the same format used for the
seconds field of the timeval data type.)  The server must then check that the value is greater
than the time that the embargo was declared for this client; if it is not, the server should reply
with NFSERR_EMBARGOED. The client should continue to retransmit, with an updated epoch
value, until the server accepts the RPC.

48



RECOVERY IN SPRITELY NFS

I.5. New RPC callback procedures

These callback procedures are handled by the Spritely NFS client.  That is, for these
procedures the ‘‘RPC client’’ is the Spritely NFS server, and the ‘‘RPC server’’ is the Spritely
NFS client.

20 NFSPROC_CALLBACK (file, code, mdev, attr)
returns (status)

fhandle file;
unsigned code;
unsigned mdev;
fattr attr;
stat status;

This RPC is used to inform the client that it no longer has permission to cache the file, be-
cause some other client is now sharing it.  The code argument is a set of bits, which may be
OR’ed together:

001 write back dirty blocks

002 stop caching this file

The mdev argument is the value that was passed by client in its NFSPROC_OPEN RPC, and is
used by the client to locate its state related to the file.  The attr argument provides the current
attributes for the file.

23 NFSPROC_BEGINRECOV (epoch) returns (status)
unsigned epoch;
stat status;

This RPC is used to initiate recovery.  The server sends it to each known Spritely NFS client.
After receiving this RPC, the client should refrain from sending any RPCs (except
NFSPROC_REOPEN, when prompted with an NFSPROC_REQREOPEN) until an
NFSPROC_ENDRECOV is received.  The client should also refrain from timing out pending
RPCs.

When this RPC is received, the client should somehow record or mark the set of files that it
has open (or closed-dirty) on this server, so it knows what needs to be reopened.

The client must reject this RPC if the epoch value is not greater than the epoch argument of
the most recent NFSPROC_ENDRECOV RPC (if any have been received since the client booted).

24 NFSPROC_ENDRECOV (epoch) returns (status)
unsigned epoch;
stat status;

This RPC is used to conclude recovery.  Once this RPC has been received, the client may resume
normal use of the server.

The client must reject this RPC if the epoch value is not greater than the epoch argument of
the most recent NFSPROC_BEGINRECOV RPC.
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22 NFSPROC_REQREOPEN (epoch, nreopens, nfilesperreopen)
returns (reply)

unsigned epoch;
unsigned nreopens;
unsigned nfilesperreopen;
union switch (stat status) {

boolean done;
} reply;

This RPC is used only during server crash recovery.  The server uses it to tell the client to reopen
some of its files. The client may issue up to nreopens NFSPROC_REOPEN RPCs to the serv-
er, each specifying up to nfilesperreopen files. It then replies with the boolean value
done set to TRUE if it has no more files left to reopen.  If the client has not reopened all of its
files, it replies with done set to FALSE, and the server issues another NFSPROC_REOPEN
RPC.

The client must reject this RPC if the epoch value is not the same as the epoch argument of
the most recent NFSPROC_BEGINRECOV RPC.
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