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Abstract memories; its eight independent 32-bit memory controllers
) ) N can access color buffers, Z depth buffers, stencil buffers,

High-performance 3D graphics accelerators tradition- 5 texture data. To fit our gate budget, we shared logic
ally require multiple chips on multiple boards. Specialized among different operations with similar implementation
chips perform geometry transformations and lighting com- yequirements, and left floating point calculations to Digi-
putations, rasterizing, pixel processing, and texture map-ig's Alpha CPUs. Neon’s performance is between HP's
ping. Multiple chip designs are often scalable: they can vjsyalize #¢ and ¢, and is well above SGI's MXE for
increase performance by using more chips. Scalability hasmost operations. Neon-based boards cost much less than

obvious costs: a minimal configuration needs several chips,ihese competitors, due to a small part count and use of
and some configurations must replicate texture maps. Acommodity SDRAMs.

less obvious cost is the almost irresistible temptation to
replicate chips to increase performance, rather than to de—l
sign individual chips for higher performance in the first ™
place. Neon borrows much of its design philosophy from
In contrast, Neon is a single chip that performs like a Digital's Smart Frame Buffer [21] family of chips, in that it
multichip design. Neon accelerates OpenGL 3D rendering,extracts a large proportion of the peak memory bandwidth
as well as X11 and Windows/NT 2D rendering. Since our from a unified frame buffer, accelerates only rendering
pin budget limited peak memory bandwidth, we designed operations, and efficiently uses a general-purpose I/O bus.
Neon from the memory system upward in order to reduce Neon makes efficient use of memory bandwidth by re-
bandwidth requirements. Neon has no special-purposeducing page crossings, by prefetching pages, and by proc-
essing batches of pixels to amortize read latency and high-

Introduction

impedance bus turnaround cycles. A small texture cache
' Compag Computer Corporation Western Research Labo- reduces bandwidth requirements during texture mapping.
ratory, 250 University Avenue, Palo Alto, CA 94301. Neon supports 32, 64, or 128 megabytes of 100 MHz syn-
[Joel.McCormack, Norm.Jouppi]@compag.com chronous DRAM (SDRAM). The 128 megabyte configu-

2 : ration has over 100 megabytes available for textures, and
1:%) Typtf:)qni?/rgr?ﬁ ;?rpi?;%[gflglsgzgeorz.s Research Center(’:an store a 512 x 512 x 256 3D 8_-bit intensity texture.
Bob.McNamara@Compag.com Unlike most fast workstation accelerators, Neon

doesn'’t accelerate floating-point operations. Digital's 500

® Compag Computer Corporation Alpha Development MHz 21164A Alpha CPU [7] transforms and lights 1.5 to 4
Group, 334 South Street, Shrewsbury, MA 01545-4172.  million vertices per second. The 600 MHz 21264 Alpha
[Chris.Gianos, Todd.Dutton, John.Zurawski] [12][16] should process 2.5 to 6 million vertices/second,
@Compag.com and faster Alpha CPUs are coming.

Since Neon accepts vertex data after lighting compu-
tations, it requires as little as 12 bytes/vertex(fox) co-
ordinate, color, and Z depth information. A well-designed
32-bit, 33 MHz Peripheral Component Interconnect (PCI)
supports over 8 million such vertices/second; a 64-bit PCI
This report is a superset NEon: A Single-Chip 3D Work- supports nearly twice that rate. The 64-bit PCI transfers

“ At Digital Equipment Corporation (later purchased by
Compagq) for the development of Neon, now at Real Time
Visualization, 300 Baker Avenue, Suite #301, Concord,
MA 01742. [seiler,correllj@rtviz.com

station Graphics Acceleratppublished in the textures at 200 megabytes/second, and the 64 and 128
SIGGRAPH/Eurographics Workshop on Graphics Hard-  megabyte Neon configurations allow many textures to stay
ware, August 1998, an@The Implementation of Neon: A in the frame buffer across several frames. We thus saw no
256-bit Graphics Acceleratopublished in the April/May need for a special-purpose bus between the CPU and
issue of EEE Micro. graphics accelerator.

Neon accelerates rendering of Z-buffered Gouraud
shaded, trilinear perspective-correct texture-mapped trian-
gles and lines. Neon supports antialiased lines, Microsoft
Windows lines, and X11 [27] wide lines.
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© 1999 IEEE Computer Society.
© 1999 Compag Computer Corporation.
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Performance goals were 4 million 25-pixel, shaded, Z- figured RealityEngine replicates the texture map 20 times
buffered triangles/second, 2.5 million 50-pixel trian- for the 20 rasterizing chips; you pay for 320 megabytes of
gles/second, and 600,000 to 800,000 50-pixel textured tri-texture memory, but applications see only 16 megabytes.
angles/second. Early in the design, we traded increased\ fully configured InfiniteReality [24] replicates the tex-
gate count for reduced design time, which had the side-ture “only” four times—but each rasterizing board uses a
effect of increasing the triangle setup rate to over 7 million redistribution network to fully connect 32 texture RAMSs to
Gouraud shaded, Z-buffered triangles per second. This80 memory controllers. In contrast, Neon doesn't replicate
decision proved fortunate—applications are using evertexture maps, and uses a simple 8 x 8 crossbar to redistrib-
smaller triangles, and the software team doubled theirute texture data internally. The 64 megabyte configuration
original estimates of vertex processing rates. has over 40 megabytes available for textures after allocat-

This paper, a superset of previous papers about Neonjng 20 megabytes to a 1280 x 1024 display.
discusses how our focus on efficiently using limited re-
sources helped us overcome the constraints imposed by &, Why a Unified Memory System?
single chip. We include much that is not novel, but many ) ) _
recent specifications and papers describe designs that per- Neon differs from many workstation accelerators in
form incorrect arithmetic or use excessive amounts of that it has a single general-purpose graphics memory sys-
logic. We therefore describe most of the techniques wetem to store colors, Z depths, textures, and off-screen buff-

used in Neon to address these issues. ers. _ . _
The biggest advantage of a single graphics memory

: ) system is the dynamic reallocation of memory bandwidth.
2. Why a Single Chip? Dedicated memories imply a dedicated partitioning of
A single chip’s pin count constrains peak memory memory bandwidth—and wasting of bandwidth dedicated
bandwidth, while its die size constrains gate count. But to functionality currently not in use. If Z buffering or tex-
there are compensating implementation, cost, and perform-<ture mapping is not enabled, Neon has more bandwidth for
ance advantages over a multichip accelerator. the operations that are enabled. Further, partitioning of
A single-chip accelerator is easier to design. Parti- bandwidth changes instantaneously at a fine grain. If texel
tioning the frame buffer across multiple chips forces copy fetches overlap substantially in a portion of a scene, so that
operations to move data between chips, increasing com-+the texture cache’s hit rate is high, more bandwidth be-
plexity, logic duplication, and pin count. In contrast, inter- comes available for color and Z accesses. If many Z buffer
nal wires switch faster than pins and allow wider interfaces tests fail, and so color and Z data writes occur infrequently,
(our Fragment Generator ships nearly 600 bits down- more bandwidth becomes available for Z reads. This
stream). And changing physical pin interfaces is harder automatic allocation of memory bandwidth enables us to
than changing internal wires. design closer to average memory bandwidth requirements
A single-chip accelerator uses fewer gates, as opera-than to the worst case.
tions with similar functionality can share generalized logic. A unified memory system offers flexibility in memory
For example, copying pixel data requires computing sourceallocation. For example, using 16-bit colors rather than 32-
addresses, reading data, converting it to the correct formathit colors gains 7.5 megabytes for textures when using a
shifting, and writing to a group of destination addresses. 1280 x 1024 screen.
Texture mapping requires computing source addresses, A unified memory system offers greater potential for
reading data, converting it, filtering, and writing to a desti- sharing logic. For example, the sharing of copy and texture
nation address. In Neon, pixel copying and texture map-map logic described above in Section 2 is possible only if
ping share source address computation, a small cache fotextures and pixels are stored in the same memory.
texel and pixel reads, read request queues, format conver- A unified memory system has one major drawback—
sion, and destination steering. In addition, pixel copies, texture mapping may cause page thrashing as memory ac-
texture mapping, and pixel fill operations use the same cesses alternate between texture data and color/Z data.
destination queues and source/destination blending logic.Neon reduces such thrashing in several ways. Neon’s deep
And unlike some PC accelerators, 2D and 3D operationsmemory request and reply queues fetch large batches of
share the same paths through the chip. texels and pixels, so that switching between texel accesses
This sharing amplifies the results of design optimiza- and pixel accesses occurs infrequently. The texel cache
tion efforts. For example, the chunking fragment genera-and fragment generation chunking ensure that the texel
tion described below in Section 5.2.5 decreases SDRAMrequest queues contain few duplicate requests, so that they
page crossings. By making the chunk size programmablefill up slowly and can be serviced infrequently. The mem-
we also increased the hit rate of the texture cache. Theory controllers prefetch texel and pixel pages when possi-
texture cache, in turn, was added to decrease texture bandsle to minimize switching overhead. Finally, the four
width requirements—but also improves the performance of SDRAM banks available on the 64 and 128 megabyte con-
2D tiling and copying overlay pixels. figurations usually eliminate thrashing, as texture data is
A single-chip accelerator can provide more memory stored in different banks from color/Z data. These tech-
for texture maps at lower cost. For example, a fully con- niques are discussed further in Section 4 below.

2
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SGI's O2 [20] carries unification one step further, by  the batching of fragments to amortize read latencies
using the CPU’s system memory for graphics data. But and bus turnaround cycles, and to allow prefetching of

roughly speaking, CPU performance is usually limited by pages to hide precharge and row activate overhead,
memory latency, while graphics performance is usually «  chunked mappings of screen coordinates to physical
limited by memory bandwidth, and different techniques addresses, and chunked fragment generation, which

must be used to address these limits. We believe that the reduce page crossings and increase page prefetching,

substantial degradation in both graphics and CPU perform-. g screen refresh policy that increases page prefetching,
ance caused by a completely unified memory isn't worth . 3 small texel cache and chunked fragment generation
the minor cost savings. This is especially true after the g increase the cache's hit rate,

major memory price crash of 1998, and the minor crash of, deeply pipelined triangle setup logic and a high-level
1999, which have dropped SDRAM prices to under interface with minimal software overhead,

$1.00/megabyte. « multiple formats for vertex data, which allow software
to trade CPU cycles for I/O bus cycles,

4. Is Neon Just Another PC Accelerator? « the ability for applications to map OpenGL calls to

Neon commands, without the inefficiencies usually as-

A single chip connected to a single frame buffer mem- ' i . _
sociated with such direct rendering.

ory with no floating point acceleration may lead some
readers to conclude “Neon is like a PC accelerator.” The . . , , .
dearth of hard data on PC accelerators makes it hard to  S¢ction 5.1 below briefly describes Neon's major

compare Neon to these architectures, but we feel a fewfunctional blocks in the order that it processes commands,
points are important to make. ' from the bus interface on down. Sections 5.2 to 5.6, how-

Neon is in a different performance class from PC ac- €Ver: provide more detail in roughly the orde_r we designed
celerators. Without floating point acceleration, PC accel- N€ON, from the memory system on up. This order better
erators are limited by the slow vertex transformation rates €0Nveys how we first made the memory system efficient,
of Intel and x86-compatible CPUs. Many PC accelerators (NN constantly strove to increase that efficiency as we
also burden the CPU with computing and sending slope and0ved up the rendering pipeline.
gradient information for each triangle; Neon uses an effi- . .
cient packet format that supports strips, and computes tri-5.1. Architectural Overview
angle setup information directly from vertex data. Neon
does not require the CPU to sort objects into different
chunks like Talisman [3][28] nor does it suffer the over-
head of constantly reloading texture map state for the dif- Neo
ferent objects in each chunk.

Neon directly supports much of the OpenGL rendering

pipeline, and this support is general and orthogonal. Ena-j - 1o the Command Parser. The CPU can write com-
bling one feature does not disable other features, and doeg . qs directly to Neon via Programmed I/0 (PIO), or
not affect performance unless the feature requires morey..on can read commands from main memory using DMA
gemo(;;l/_ Il_aandv;/rl]dtth. F(_)r elztxample,l Ne_(()jn cag Jenﬁe(; The parser accepts nearly all OpenGL [26] object types,
pentL fines that are simuftaneously wide and dashed.i, ., ging line, triangle, and quad strips, so that CPU cycles

Neon supports all OpenGL_l.Z source/destir!ation blendingand I/O bus bandwidth aren’t wasted by duplicated vertex
modes, and both exponential and exponential squared fogblata. Finally, the parser oversees DMA operations from

modes. All pixel and texel (_jata.are accurately ?OmpUted'the frame buffer to main memory via Texel Central.
and do not use gross approximations such as a single fog or The Fragment Generator performs object setup and

mip-map Ieve! per Ot.)jECt’ or a mip-map level interpo_lated traversal. The Fragment Generator uses half-plane edge
across the ci_bject. Fmtally, all three 3D texture coordinates, - tions [10][16][25] to determine object boundaries, and
are perspective correct. generates each object’s fragments with a fragment “stamp”
. in an order that enhances the efficiency of the memory
5. Architecture system. (A fragment contains the information required to

Neon's performance isn't the result of any one great paint one pixel.) Each cycle, the stamp generates a single

idea, but rather many good ideas—some old, some new—extured fragment, a 2 x 2 square of 64R{EBAZ (red,

working synergistically. Some key components to Neon's 9r€€n. blue, alpha transparengydepth) fragments, or up
performance are: to 8 32-bit color or 32 8-bit color indexed fragments along

- a unified memory to reduce idle memory cycles, a scanline. When generating a 2 x 2 block of fragments,

. . ; the stamp interpolates six channels for each fragment: red,
ai[{irggopﬁﬂaﬁzmseén;;p?andWIdth (32 glgabytes/secondgreen’ blue, alpha transparency, Z depth, and fog intensity.

.« the partitioning of memory amond 8 Memory control- When generating a single texture-mapped fragment, the
partitioning of y 9 y stamp interpolates eight additional channels: three texture
lers, with fine-grained load balancing,

Figure 1 shows a block diagram of the major func-
tional units of Neon.
The PCI logic supports 64-bit transfers at 33 MHz.
n can initiate DMA requests to read or write main
memory.
The PCI logic forwards command packets and DMA
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coordinates, the perspective correction term, and the fourdon’t allow updating the Z buffer until after texture map-
derivatives needed to compute the mip-mapping level of ping, as a textured fragment may be completely transpar-
detail. Setup time depends upon the number of channelent. Such a wide separation between reading and writing Z
and the precision required by those channels, ranging fromvalues would significantly complicate maintaining frame
over 7 million triangles/second that are lit and Z-buffered, buffer consistency, as described in Section 5.2.2 below.
down to just over 2 million triangles/second that are Finally, distributing pretextured fragments to the Memory
trilinear textured, lit, fogged, and Z-buffered. The Frag- Controllers, then later texturing only the visible fragments
ment Generator tests fragments against four clipping rec-would complicate maintaining spatial locality of texture
tangles (which may be inclusive or exclusive), and sendsaccesses, as described in Section 5.3.4 below.
visible fragments to Texel Central. Texel Central feeds fragments to the eight Pixel Proc-
Texel Central was named after Grand Central Station, essors, each of which has a corresponding Memory Con-
as it provides a crosshar between memory controllers. Anytroller. The Pixel Processors handle the back end of the
data that is read from the frame buffer in order to derive OpenGL rendering pipeline: alpha, stencil, and Z depth
data that is written to a different location goes through tests; fog; source and destination blending (including raster
Texel Central. This includes texture mapping, copies ops and OpenGL 1.2 operations like minimum and maxi-
within the frame buffer, and DMA transfers to main mem- mum); and dithering.
ory. Texel Central also expands a row of an internal The Video Controller refreshes the screen, which can
32 x 32 bitmap or an externally supplied 32 bit word into be up to 1600 x 1200 pixels at 76 Hz, by requesting pixel
256 bits of color information for 2D stippled fill operations, data from each Memory Controller. Each controller
expanding 800 million 32-biRGBA fragments/second or autonomously reads and interprets overlay and display
3.2 hillion 8-bit color indexed fragments/second. format bytes. |If a pixel's overlay isn't transparent, the
Texture mapping is performed at a peak rate of one Memory Controller immediately returns the overlay data;
fragment per cycleoefore a Pixel Processor tests the Z otherwise it reads and returns data from the front, back,
value. This wastes bandwidth by fetching texture data thatleft, or right color buffer. The Video Controller sends low
are obscured, but pre-textured fragments are about 350 bitgolor depth pixels (5/5/5 and 4/4/4) through “inverse dith-
and post-textured fragments are about 100 bits. Weering” logic [5], which uses an adaptive digital filter to
couldn’t afford more and wider fragment queues to texture restore much of the original color information. Finally, the
map after the Z depth test. Further, OpenGL semanticscontroller sends the filtered pixels to an external RAMDAC
for conversion to an analog video signal.

Neon equally partitions frame buffer memory among

* the eight Memory Controllers. Each controller has five
64-bit PCI request queues: Source Read Request from Texel Central,

+ Pixel Read and Pixel Write Request from its Pixel Proces-

PCI Interface sor, and two Refr(_ash Read Requests (one for each SDRAM
bank) from the Video Controller. Each cycle, a Memory
# Controller services a request queue using heuristics that
reduce wasted memory cycles.
A Memory Controller owns all data associated with a
pixel, so that it can process rendering and screen refresh
requests independently of the other controllers. Neon

» Command Parser

Y

Fragment Generato stores the front/back/left/right buffers, Z, and stencil buff-
v ers for a pixel in a group of 64 bits or 128 bits, depending

y Video upon the number of buffers and the color depth. To im-

Texel Central < Controller prove 8-bit 2D rendering speeds and to decrease screen

A A refresh overhead, a controller stores a pixel's overlay and

display format bytes in a packed format on a different page.

Pixel Processor

i 5.2. Pixel Processors and Memory Controllers

times

y I Neon’s design began with the Pixel Processors and
Memory Controller f Memory Controllers. We wanted to effectively use the
7y e SDRAM'’s large peak bandwidth by maximizing the num-
Y ‘ ber of controllers, and by reducing read/write turnaround
4-16 megabytes ‘ _ overhead, pipeline stalls due to unbalanced loading of the
SDRAM ‘L Replicated 8 controllers, and page crossing overhead.

Figure 1: Neon block diagram
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5.2.1. Memory Technology corresponding color data chip. As a result, half the data

. pins sit idle when not Z buffering.
We evaluated several memory technologies. We 3D-RAM parts are 10 megabits—the RAM is 5/8

quickly rejected extended _data out (EDO) DRAM and populated to make room for caches and for Z compare and
RAMBUS RDRAM due to inadequate performance (the blending logic. This makes it hard to support anything

pre-Intel RAMBUS protocol is inefficient for the short i o0 than 1280 x 1024 screens. 3D-RAM is 6 to 10 times
transfers we expec?ed), EDO VRAM due to hllgh cost, and ., e expensive per megabyte than SDRAM. Finally, we'd
synchronous graphic RAM (SGRAM) due to high cost and need a different memory system for texture data. The per-

limited availability. ~ This left synchronous DRAM (). o0 advantage during Z buffering didn’t outweigh
(SDRAM) and 3D-RAM. these problems.

3D-RAM [6], developed by Sun and Mitsubishi, turns
read/modify/write operations into write-only operations by
performing Z tests and color blending inside the memory
chips. The authors claim this feature gives it a “3-4x per- Processing fragments one at a time is inefficient, as
formance advantage” over conventional DRAM technology each fragment incurs the full read latency and high imped-
at the same clock rate, and that its internal caches furthemnce bus turnaround cycle overhead. Batch processing
increase performance to “several times faster” than con-several fragments reduces this overhead to a reasonable
ventional DRAM. level. Neon reads all Z values for a batch of fragments,
We disagree. A good SDRAM design is quite com- compares each to the corresponding fragment's Z value,
petitive with 3D-RAM’'s performance. Batching eight then writes each visible fragment’s Z and color values back
fragments reduces read latency and high-impedance buso the frame buffer.
turnaround overhead to Y2 cycle per fragment. While 3D- Batching introduces a read/write consistency problem.
RAM requires color data when the Z test fails, obscured If two fragments have the same pixel address, the second
fragment writes never occur to SDRAM. In a scene with a fragment must not use stale Z data. Either the first Z write
depth complexity of three (each pixel is covered on averagemust complete before the second Z read occurs, or the sec-
by three objects), about 7/18 of fragments fail the Z test. ond Z “read” must use an internal bypass. Since it is rare
Factoring in batching and Z failures, we estimated 3D- for overlaps to occur closely in time, we found it acceptable
RAM’s rendering advantage to be a modest 30 to 35%.to stop reading pixel data until the first fragment’s write
3D-RAM’s support for screen refresh via a serial read port completes. (This simplifying assumption does not hold for
gives it a total performance advantage of about 1.8-2xanti-aliasing graphics accelerators, which generate two or
SDRAM. 3D-RAM'’s caches didn't seem superior to intel- more fragments at the same location along adjoining object
ligently organizing SDRAM pages and prefetching pages edges.)
into SDRAM'’s multiple banks; subsequent measurement of We evaluated several schemes to create batches with
a 3D-RAM-based design confirmed this conclusion. no overlapping fragments, such as limiting a batch to a
3D-RAM has several weaknesses when compared tosingle object; all these resulted in average batch lengths
SDRAM. It does not use 3-input multipliers like those that were unacceptably short. We finally designed a fully
described below in Section 5.3.7, so many source and desassociative eight-entry overlap detector per Memory Con-
tination blends require two cycles. (Some of these blendstroller, which normally creates batches of eight fragments.
can be reduced to one cycle if the graphics chip does one o{The size of the batch detector is matched to the total buff-
the two multiplies per channel.) Blending is limited to ering capacity for writing fragments.) The overlap detector
adding the source and destination factors: subtraction, minterminates a batch and starts a new batch if an incoming
and max aren’t supported. 3D-RAM’s blending logic in- fragment has the same screen address as an existing frag-
correctly processes 8-bit data using base 256 arithmeticment in the batch, or if the overlap detector is full. In both
rather than OpenGL’s base 255 arithmetic (see Sectioncases, it marks the first fragment in the new batch, and
5.2.6 below). 3D-RAM computes the productFFFFg “forgets” about the old batch by clearing the associative
as FEg, and so thinks that 21 < 1! 4/4/4/4 color pixels — memory. When a memory controller sees a fragment with
(four bits each of red, green, blue, and alpha transparencyp “new batch” mark, it writes all data associated with the
suffer more severe arithmetic errors; worse, 3D-RAM can- current batch before reading data for the new batch. Thus,
not dither high-precision color data down to 4/4/4/4, lead- the overlap detector need not keep track of all unretired
ing to banding artifacts when blending. Support for 5/6/5 fragments further down the pixel processing pipeline.
or 5/5/5/1 color is almost nonexistent. Working around To reduce chip real estate for tags, we match against
such deficiencies wastes space and time, as the graphicenly the two bank bits and the column address bits of a
accelerator must duplicate logic, and 3D-RAM sports a physical address. This aliases all pairs of A and B banks,
slow 20 nsec read cycle time. as shown in Figure 2. Note how the red triangle spans four
3DRAM does not take a Z/color pair in sequential or- physical pages, and how its fragments are aliased into two
der; the pair is presented to separate 3DRAM chips, and gages. If two fragments are in the same position on differ-
Z buffer chip communicates the result of the Z test to a ent pages in the same SDRAM bank, the detector falsely
flags an overlap. For example, the blue triangle appears to

5.2.2. Fragment Batching and Overlaps
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Figure 2: The partial tag compare aliases all pairs of A and 8 9l10l11112/ 13114/ 15 8| 9
B bank pages, sometimes creating false overlaps

overlaps the red triangle in the aliased tag space. This
“mistake” can actuallyincrease performance. In such
cases, it is usually faster to terminate the batch, and so turi Figure 4: Typical 2D pixel interleaving
the bus around twice to complete all work on the first page
and then complete all work on the second page, than it is to
bounce twice between two pages in the same bank (see
Section 5.2.4 below).

5.2.3. Memory Controller Interleaving

Most graphics accelerators load balance memory con-
trollers by interleaving them in one or two dimensions,
favoring either screen refresh or rendering operations. An
accelerator may cycle through all controllers across a scan-
line, so that screen refresh reads are load balanced. This ] o ]
one-dimensional interleaving pattern creates vertical strips Figure 5: Neon'’s rotated pixel interleaving

of ownership, as shown in Figure 3. Each square repre-

sents a pixel on the screen; the number inside indicatesgl\r/ieg g)?a?ceerlga'zatchhe C?ggzlrlﬁr'asNNaég?:{\é Vgrt'é:slaﬁga:gzz“
which memory controller owns the pixel. P P ’ pag y

The SGI RealityEngine [1] has as many as 320 mem- wide but not very high (see Section 5.2.4 below). Conse-
ory controllers. To improve load balancing during render- qguently, for such triangles the controllers frequently cannot

ing, the RealityEngine horizontally and vertically tiles a 2D h|d_e a_II of the precharge & row activate overhead when

interleave pattern, as shown in Figure 4. Even a two- SW'tChmg banks. -

dimensional pattern may have problems load balancing the Making eac_h squarein Figure 5 represent a 2x2 or
controllers. For example, if a scene has been tessellate ven a 4 x4 pixel area Increases memory efficiency by
into vertical triangle strips, and the 3D viewpoint maintains Increasing the number of pixels some controllers access on

this orientation (as in an architectural walk-through), a sub- a page, while hopefully reducing to zero the nur_nber of
set of the controllers get overworked. pixels other controllers access on that page. This larger

Neon load balances controllers for both rendering and granularity still distributes work evenly among controllers,

screen refresh operations by rotating a one-dimensional.bUt requires a much larger screen area to average out the

interleaving pattern by two pixels from one scanline to the greﬁgu!arltles. '.I;h|.s Th tul\r/ln requwgs Itnclrleaseq fre:jgm?nt
next, as shown in Figure 5. This is also a nice pattern for utiering capacity in the Viemory Lontrollers, in order to

texture maps, as any 2 x 2 block of texels resides in differ- prevent gta_\rvatio_n caused by one or more controllers emp-
ent memory controllers. (The SGI InfiniteReality [24] uses g'rn%rthebre'gggr?:}ngNZi%miEtt qﬁ:\ng' Avgﬁtgozfguﬁ daﬁﬁ;?/e
a rotated pattern like Neon within a single rasterizing engu hqreal astate 1o rer’ned this inefficienc

board, but does not rotate the 2-pixel wide vertical strips 9 y y:

owned by each of the four rasterizing boards, and so has

the same load balancing problems as an 8-pixel wide non-2-2-4. SDRAM Page Organization

rotated interleave.) _ SDRAM'’s have two or four banks, which act as a two
In retrospect, Neon nicely bala_nces vv_ork among the or four entry direct mapped page cache. A page of
Memory Controllers, but at such a fine grain that the con- gpRAM data must be loaded into a bank with a row acti-
trollers make too many partially prefetched page crossings.yate command before reading from the page. This load is
Small objects tend to include only a few locations on a destructive, so a bank must be written back with a pre-

o|lo | ~|dv | o
P N 0w |-
N oo~
Wk | N0 | w
NN | ol |~
O w |-~ o;
ol || oo
~N oWk~
o|lo | ~|d | o
P l~NlOo|lw |-
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A|B|A|B|A B T e —— |
AlB|A B|A 5/6|7]|8]9]|10]11 12
AlB/A B A B 13| 14| 15| 16| 17| 18
N9 20f 21) 22| 23] 24/
Figure 6: Page interleaving with two banks 25| 26| 271 28
charge command before loading another page into the \&8 291 30
bank. These commands take several cycles, so it is desir-
able to access as much data as possible on a page before 31 3}/
moving to a new page. It is possible to prefetch a page into
one bank—that is, precharge the old page and row activate

a new page—while reading or writing data to a different
bank. Prefetching a page early enough hides the prefetch Figure 7: Scanline fragment generation order
latency entirely.

Neon reduces the frequency of page crossings by allo-
cating a rectangle of pixels to an SDRAM page. Object
rendering favors square pages, while screen refresh favors VT‘Z“%%\\

5
7
9

wider pages. Neon keeps screen refresh overhead low by

allocating on-screen pages with at worst an 8 x 1 aspect 6[12)13) 14] 15) 16

ratio, and at best a 2 x 1 aspect ratio, depending upon pixel 81171 18] 19 20
10| 21| 22| 23 24

size, number of color buffers, and SDRAM page size.
Texture maps and off-screen buffers, with no screen refresh

constraints, use pages that are as square as possible. Three- 321 25| 26| 27
dimensional textures use pages that are as close to a cube of
texels as possible. \3\3 28| 29

In the 32 megabyte configuration, each Memory Con- 30 3}/
troller has two banks, called A and B. Neon checkerboards

pages between the two banks, as shown in Figure 6. All
horizontal and vertical page crossings move from one bank
to the other bank, enhancing opportunities for prefetching.
In the 64 and 128 megabyte configurations, each con- Figure 8: Neon’s chunking fragment generation order
troller has four banks. Checkerboarding all four banks

doesn’t improve performance sufficiently to warrant the Stamp generates an object in rectangular “chunks.” When

e g 10 e banke I Paalel nttexture mapping, a chrk coresponcs 1 a page 5o ht
tom haI’f of memoryg and the othgr two banks to the top the stamp generates an object's fragments one page at a
half. Software preferentially allocates pixel buffers to the time. - This decreases page crossings, and gives the maxi-

mum possible time to prefetch the next page. Figure 8
botto_m wo banks, and texture maps to the top two banks'shows the order in which Neon generates fragments for the
to eliminate page thrashing between drawing buffer and

texture mMap acoesses same triangle. Note how the “serpentine” order in which
P ' chunks are visited further increases the number of page
crossings that can exploit prefetching.

To further increase locality of reference, the Fragment

5.2.5. Fragment Generation Chunking

Scanline-based algorithms generate fragments in an5.2.6. Repeated Fraction Arithmetic
order that often prohibits or limits page prefetching. Figure
7 shows a typical fragment generation order for a triangle rocessing, but also upon arithmetic accuracy. Since many

that touches four pages. The shaded pixels belong to bank, . . :
A. Note how only the four fragments numbered 0 through Eﬂe&gns do not blend or dither pixel values correctly, we

We concentrated not only upon the efficiency of pixel

3 access the first A page before fragment 4 accesses the escribe the arithmetic behind these operations in this and

; . e next section.
page, which means that the precharge and row activate If the binary point is assumed to be to the left ohan
overhead to open the first B page may not be completelybit i

. : . ixed point color value, the value represents a discrete
hidden. Note also that fragment 24 is on the first B Page, | imber in the inclusive range [0, 1 -2 However,

while frag”?‘?”t 25is on the_second B page. In this case theOpenGL and common sense require that the number 1 be
page transition cannot be hidden at all. representable. We can accomplish this by dividing-ait



WRL RESEARCHREPORT98/1 NEON: A (BIG) (FAST) SINGLE-CHIP 3D WORKSTATION GRAPHICS ACCELERATOR

value by 2-1 rather than by™2 This is not as difficult as r=v,/(2"-1)
it sounds:v,/(2"-1) is representable in binary form by infi- = 0. VoV Vyy ... (base 2)
nitely repeating the-bit numberv, to the right of the bi-

| _ Next, convert this into am-bit number:
nary point. This led us to refer to such numbers as ‘“re-

peated fractions.” Vi = floor(r * (2™ — 1) +d(x, y))
Jim Blinn provides a detailed description of repeated = floor(f <<m) —r) +d(x, y))
fraction numbers in [4]. Briefly, ordinary binary arithme- Rather than convert the binary product to a repeated

tic is inadequate for multiplication. The product's implicit fraction number, then dither that result, Neon combines the
divisor is (2-1), and so the product must be converted to a repeated fraction adjustment with dithering, so that dither-
bit pattern whose implicit divisor is'2. Simply rounding  ing operates on thenzit product. Neon approximates the
the product ta bits is equivalent to dividing by"2ather  above conversions to a high degree of accuracy with:

than by 2-1, and so biases the result toward 0. This is why q=atb:

3D-RAM computes X 1 < 1. If multiple images or trans- (e

parent surfaces are composited with this erroneous bias, the Vi = Jr(qurX(q )>i éﬂn;}))); ((q;: inr)n)_ @>> (ren-1)

resulting color may be significantly darker than desired. Y.

We can use ordinary binary arithmetic to compute the ~ Similar to adding a rounding bit (i.e™9 below the
repea‘[ed fraction produa of two n-bit repeated fraction topn bits as in Section 5.2.6 above, here we add a rounding
numbersa andb: bit 2™** below the dither bits. The valeerepresents how

e 1 far the dither bits extend past the togits of the product.

q :a b+ 2" ) Neon computes 5 unique dither bits, and expands these by

P=@+@>>n)) >>n replication if needed so that they extend 6 bits past the top

This adjustment can be implemented with an extra 8 bits of the product.
carry-propagate adder after the multiply, inside the multi- Finally, certain frame buffer operations should be
plier by shifting two or more partial sums, or as part of the idempotent. In particular, if we read a low-precisio#bit
dithering computations described in the following section. repeated fraction number from the frame buffer into a high-

precisionn-bit repeated fraction register, multiply by 1.0
5.2.7. Dithering (that is, 2-1), dither, and write the result back, we should
o . _ not change then-bit value. Ifn is a multiple ofm, this
_ Dithering is a technique to spread errors in the reduc- p5nhens automatically. But if, for exampieis 8 andm is
tion of high-precisiom-bit numbers to lower-precisiom- 5, certainm-bit values will change. This is especially true

bit numbers. If we convert ambit numberv, to anm-bit if 5-bit values are converted to 8-bit values by replication

number vy, by rounding (adding ¥z and truncating) and [31] rather than to the closest 8-bit value. Our best solu-

shifting: tion to this problem was to clamp the dither values to lie in
Vi = (v + 2™ >> (n-m) the half-open intervale[m, n), 1 —&(m, n)), whereeg is

we will probably see color bandingrif is less than about 8 rélatively small. For exampks, 8) is 3/32.
to 10 bits, depending upon room lighting conditions. Large

areas are a constant color, surrounded by areas that are 2.3. Texel Central

visibly different constant color.

Instead of adding the constant rounding Bi*2 a
dithering implementations commonly add a variable
rounding valued(x, y) in the half-open range from [0, 1).
(Here and below, we assume tlabas been shifted to the
appropriate bit position in the conversion.) The rounding

Texel Central is the kitchen sink of Neon. Since it is
the only crossbar between memory controllers, it handles
texturing and frame buffer copies. Pixel copying and tex-
ture mapping extensively share logic, including source ad-
dress computation, a small cache for texel and pixel reads,

lue 7 I ted functi f the bottom bit read request queues, format conversion, and destination
value Is usually computed as a function ot the bottom b ssteering. Since it has full connectivity to the Pixel Proces-

of the &, y) position of the pixel, and must have an average sors, it expands a row of the internal 32 x 32 bitmap or an

value of 0.5 when evaluated over a neighborhood of nearby ; :
(%, y) positions. Dithering converts the banding artifacts to externally supplied bitmap to foreground and background

. ) . . - . colors for transparent or opaque stippling.
g?fzh(\;\';;g Tﬁeﬂ?c?foﬁﬁ&?irgi;atlr?(lengi?ﬁérI;utr?;i:;enm;sblts The subsections below describe the perspective divide
too regular, dithering also introduces dither matrix artifacts, pipeline, a method of computing OpenGL’s mip-mapping

hich fest th | t ted patt f dark level of detail with high accuracy, a texture cache that re-
which manitest themselves at repeated patterns ot darkety  .qq memory bandwidth requirements with fewer gates
and lighter pixels.

. . than a traditional cache, and the trilinear filtering multiplier
The above conversion is correct for binary numbers,

but not for repeated fractions. We can divide the repeated
fraction computations into two parts. First, compute the

real number in the closed interval [0, 1] that thleit num-

ber represents:
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5.3.1. Perspective Divide Pipeline Computing OpenGL’'s desiredOD requires deter-

.. , . mining the distances moved in the texture map iruthad
Exploiting Heckbert and Moreton's observations [14],  girections as a function of moving in tlkeandy direc-

we inferpolate ,the planar (affine) texture coordinate chan- o< on the screen. That is, we must compute the four
Pelsu = u/g, v = vi ﬂ ar:fyv(; - r‘}"” 9 [;: orheaclh textured partial derivative®u/ox, ov/0x, du/dy, anddv/dy.
ragment, we ’mustt en divide these by the planar perspec= U'(X, y), V(% y), andq’(x, y) are the planar functions
tive channelq’ = 1/ to yield the three-dimensional per- u(x, Yiax ), VX, Y v), and 14(x, y), then:
spective-correct texture coordinates ¢, w). Many im- ' PO A e e ' ,
plementations compute the reciprocal af, then perform ou/ox = ('(x, y) * ou’/ox — u(x, y) * og'/ox) / g'(x, y)2
three multiplies. We found that a 12-stage, 6-cycle divider oVIOX = (q'(X, y) * ov/ox — (X, y) * 0q'/0X) / q'(X, y)
pipeline was both smaller and faster. This is because we  du/dy = (q'(x, y) * ou/dy — U(x,y) * aq/ay) / g'(X, y)?
use a small divider stage that avoids propagating carries as  av/dy = ((x, y) * av/dy — V(x, y) * aq/dy) / q'(x, y)?
it accumulates the quotient, and we decrease the width of
each stage of the divider.

The pipeline is built upon a radix-4 non-restoring di-
vider stage that yields two bits of quotient. A radix-4 di-
vider has substantial redundancy (overlap) in the incre-

mental quotient bits we can choose for a given dividend , :

and divisor. A typical radix-4 divider [11] exploits this '092(%)]eaf:1el:nt$;fogrs"f;?§ 'slg?‘?f gﬁ‘;{;ﬂ? Zi'g"{hus s

redundancy to restrict quotients to#l, and+2, avoiding relatively easy to implement setup and interpolation hard-

quotients of3 so that a 2-input adder can compute the new yare for them. If an application specifies a mip-mapping

partial remainder. This requires a table indexed by five (axtyre mode, Neon computes numerators from the vertex

remainder bits and three divisor bits (excluding the leading textyre coordinates, with no additional software input.

1 bit) to choose two new quoti_ent bits. It also means that Neon uses the above partial derivative equations to

when a new negative quotient is added to the previous parcompute initial values for the numerators using eight mul-

tial quotient, the carry bit can propagate up the entire sum. ipjies, in contrast to the 12 multiplies described in [8]. The
Neon instead exploits the redundancy to avoid an in- setup computations for theandy increments use different

cremental quotient of 0, and uses a 3-input adder to allowgqyations, which are obtained by substituting the defini-

an incremental quotient af3. This SlmpIIerS the table tions fOfU’(X, y)’ V’(X, y), andq’(X, y), then S|mp||fy|ng

lookup of new quotient bits, requiring just three partial re- , , , ,

mainder bits and one divisor bit (excluding the leading 1). ou/ox :,((aqlay* (?ulax —,aqlax* a’ulay) *’y )

It also ensures that the bottom two bits of the partial quo- +q/(0, 0) * ou7ox - u'(0,0) * 9q70x) / q'(x. y)

tient can never be 00, and so when adding new negative ~ 9V/0x = ((0q7dy * av/ox —dq/ox * ov'/dy) * y

(We've dropped the dependency wandy for terms

that are constant across an object.) The denominator is the
same in all four partial derivatives. We don't compute
q'(x, y)? and divide, as suggested in [8], but instead imple-
ment these operations as a doubling and a subtraction of

quotient bits to the previously computed partial quotient, +0(0, 0) * 0v/9x ~v'(0,0) * q10X) / q'(x, y)?
the carry propagates at most one bit. Here are the three 0wy = ((0q70x * ou7dy —oqr/dy * Ou/ox) * x
cases where the (unshifted) previous partial quotient ends +q'(0, 0) * ou/dy —u'(0,0) * 0q/ay) / g'(x, y)
in 01, 10, and 11, and the new quotient bits are negative. 0vioy = ((0q/dx * ov'/oy —oqi/dy * ov'/0x) * X

+(0, 0)* 0v/dy —v'(0,0) * aq'/dy) / q'(x, y)*
ab0100 ab1000 abl1100

+1111xy + 1111xy +1111xy First, note that the numerators @&f/0x and ov/ox de-
ab00xy abOlxy ablOxy pend only upory, and thatou/dy and dv/idy depend only
uponx. Second, note that tlde/dy anddv/dy x increments
Neon does not compute the new partial remainders,are the negation of théu/dx andov/ox y increments, re-
nor maintain the divisor, to the same accuracy throughoutspectively. Finally, we don’t need the constant offsets—
the divide pipeline. After the third 2-bit divider stage, their the initial values of the numerators take them into account.
sizes are reduced by two bits each stage. This results in aliVe thus use four multiplies to obtain two increments.

insignificant loss of accuracy, but a significant reduction in OpenGL next determines the length of the two vectors
gate count. (Ou/ox, ov/ox) and @Qu/dy, ovidy), takes the maximum
length, then takes the base 2 logarithm:

5.3.2. Accurate Level of Detall Computation LOD = Iogz(max(sqrt(()ulax)z + (aV/aX)Z),

Neon implements a more accurate computation of the sqrt(@u/dy)” + (v/dy)?)))
mip-mapping [32] level of detailLOD) than most hard- Software does four multiplies for the squares, and con-
ware. TheLOD is used to bound, for a given fragment, the yerts the square root to a divide by 2 after the.log
instantaneous ratio of movement in the texture map coordi-  Note that thisLOD computationrequiresthe compu-

nate spaceu( V) to movement in screen coordinate space tation of all four derivatives. The maximum can change
(x, y). This avoids aliasing problems caused by undersam-from one square root to the other within a single object.
pling the texture data. Accelerators that whittle theOD computation down to a
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11 fetches are redundant; Hakura & Gupta [13] found that
' each trilinearly filtered texel is used by an average of four
fragments. Each cache stores 32 bytes of data, so holds 8

""" - 1 32-bit texels, 16 16-bit texels, or 32 8-bit texels. Neon’s
s total cache size is a mere 256 bytes, compared to the 16 to
0.9 128 kilobyte texel caches described in [13]. Our small

: cache size works well because chunking fragment genera-

tion improves the hit rate, the caches allow many more
\ 0.8
0.7

outstanding misses than cache lines, the small cache line
—— Desired computation

size of 32 bits avoids fetching of unused data, and we never
speculatively fetch cache lines that will not be used.

The texel cache also improves rendering of small X11
and Windows 2D tiles. An 8 x 8 tile completely fits in the
caches, so once the caches are loaded, Texel Central gener-

Level of detalil

- = ‘Neon's approximation

— Typical approximation 0.6 ates tiled fragments at the maximum fill rate of 3.2 giga-
bytes per second. The cache helps larger tiles, too, as long
‘ ‘ ‘ ‘ ‘ 0.5 as one scanline of the tile fits into the cache.

0 10 20 30 40 . .
Angle in degrees 5.3.4. Improving the Texel Cache Hit Rate
In order to avoid capacity misses in our small texel

cache, fragments that are close in 2D screen space must be

single interpolated channel may incur substantial errors,generated closely in time. Once again, scanline-based

and cannot comply with OpenGL’s lax requirements. fragment generation is non-optimal. If the texel require-
OpenGL allows implementations to compute @D ments of one scanline of a wide object exceed the capacity

using gross approximations to the desired computation.©of the cache, texel overlaps across adjacent scanlines are

Hardware commonly takes the maximum of the partial de- Not captured by the cache, and performance degrades to
rivative magnitudes: that of a single-line cache. Scanline generators can allevi-

ate this problem, but not eliminate it. For example, frag-
LOD = log,(max(absqu/dx), abs@v/ox), ment generation may proceed in a serpentine order, going
absju/dy), absfviay))) left to right on one scanline, then right to left on the next.
This can result in ahOD that is too low by half a  This always capturesomeoverlap between texel fetches
mipmap level, an error which reintroduces the aliasing arti- on different scanlines at the edges of a triangle, but also
facts that mip-mapping was designed to avoid. halves the width at which cache capacity miss problems
Neon uses a two-part linear function to approximate appear.
the desired distances. Without loss of generality, assume  Neon attacks this problem by exploiting the chunking
thata> 0,b > 0,a>b. The function: fragment generation described in Section 5.2.5 above.
. When texturing, Neon matches the chunk size to the texel
if (b <a/2) returna + b/4 else returna/8 +b/2 cache size. Capacity misses still occur, but usually only for
is within + 3% of sqrtg’ + b?). This reduces the maximum fragments along two edges of a chunk. Neon further re-
error to about +0.05 mipmap levels—a ten-fold increase in duces redundant fetches by making chunks very tall and
accuracy over typical implementations, for little extra one pixel wide (or vice versa), so that redundant fetches are
hardware. The graph in Figure 9 shows three methods ofmostly limited to the boundaries between chunk rows.
computing the level of detail as a texture mapped square on  Figure 10 shows fragment generation order for texture
the screen rotates fromi through 45. In this example, the  mapping, where the chunks are shown as 4 x 1 for illustra-
texture map is being reduced by 50% in each direction, andtion purposes. (Chunks are actually 8 x 1 for 32-bit and 16-
so the desiredlOD is 1.0. Note how closely Neon’s im-  bit texels, and 16 x 1 for 8-bit texels.) The chunk bounda-
plementation tracks the desiré®D, and how poorly the  ries are delineated with thick lines. Neon restricts chunks

Figure 9: Various level of detail approximations

typical implementation does. to be aligned to their size, which causes triangles to be split
into more chunk rows than needed. Allowing chunks to be
5.3.3. Texel Cache Overview aligned to the stamp size (which is 1 x 1 when texturing)

. o would eliminate this inefficiency: the top of the triangle
Texel Central has eight fully associative texel caches, yqouiq then start at the top of the first chunk row, rather
one per memory controller. These are vital to texture map-i,an some point inside the row.

ping performance, since texel reads steal bandwidth from If each texel is fetched on behalf of four fragments,

other memory transactions. Without caching, the 8 texel oy nking reduces redundant fetches in large triangles by
fetches per cycle for trilinear filtering require the entire nearly a factor of 8, and texel read bandwidth by about
peak bandwidth of memory. Fortunately, many texel 359, "\when compared to a scanline fragment generator.

10
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index—this is the location that the new data will eventually
[ | be written to in the Data Cache. The cache logic appends
‘TT?$+ N i — the requested address to the Address Queue, writes the ad-
2141618 9]10f11]12 dress into the Address Cache line at the location specified
20l 261 221 18l 15 13 by the LRWC, and increments the LRWC. The Memory
Controller eventually services the entry in the Address

Ql 271 231 19| 16 1/1/ Queue, reads the texel data from memory, and deposits the
corresponding texel data at the tail of the Data Queue.
28|24 20f 17 To supply texture data that was cached or read from
\&9 25| 21 memory to the texel filter tree, the cache hardware exam-
ines the head entry of the Probe Result Queue each cycle.
3233 A “hit” entry means that the requested data is available in

the Data Cache at the location specified by the cache index.
When the requested data is consumed, the head entry of the
Probe Result Queue is removed.

Figure 10: Chunking improves the texel cache hit rate If the head entry indicates a “miss” and the Data
Queue is non-empty, the requested data is in the head entry
of the Data Queue. When the data is consumed, it is writ-

5.3.5. Texel Cache Operation ten into the Data Cache at the location specified by the

) cache index. The head entries of the Probe Result and Data
A texel cache must not stall requests after a miss, O Queues are then removed.

performance would be worse than not using a cache at all!
Further, the cache must track a large number of outstanding‘5
misses—since several other request queues are vying for -
the memory controller's attention, a miss might not be Neon is designed to trilinear filter texels. All other
serviced for tens of cycles. texel filtering operations are treated as subsets of this case
A typical CPU cache requires too much associative by adjusting theu, Vo, u, Vi, LOD) coordinates, wherei,
logic per outstanding miss. By noting that a texel cache vp) are coordinates in the lower mipmap level angd )
should always return texels in the same order that theyare coordinates in the next higher mipmap level. For ex-
were requested, we eliminated most of the associativeample, filters that use the nearest mip-map level add 0.5 to
bookkeeping. Neon instead uses a queue between the adhe LOD, and then zero the fractional bits. Point-sample
dress tags and the data portion of the texel cache to mainfilters that use the nearest texel in a mip-map do the same
tain hit/miss and cache line information. This approach to theu,, W, W, andv; coordinates. Filtering modes that
appears to be similar to the texel cache described in [33]. don’t use mip-maps zero the entir@D.
Figure 11 shows a block diagram of the texel cache. If Although all filtering modes look like a trilinear fil-
an incoming request address matches an Address Cachtering after this coordinate adjustment, each mode con-
entry, the hardware appends an entry to the Probe Resulsumes only as much memory bandwidth as needed. Before
Queue. This entry records that a hit occurred at the cacherobing the address cache, a texel's/, andLOD values
line index of the matched address. are examined. If the texel's value is irrelevant, because it
If the request doesn't match a cached address, thewill be weighted by a coefficient of zero, then the request is
hardware appends an entry to the Probe Result Queue indinot made to the address or data portions of the cache.
cating a miss. This miss entry records the current value of
the Least Recently Written Counter (LRWC) as the cache

3.6. Unifying Texel Filtering Modes

*

Read Request Address Read Reply Data
\
Cache/

Queue Mux

LRW o Address ——hit/miss— pgpe Resul >  Data A A
Counter Cache ——cache index— Queue » Cache
Address » Memory - Data
Queue Controller Queue

Figure 11: Texel cache block diagram

11
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5.3.7. Filter Tree Structure

Neon'’s trilinear filter multipliers directly compute the

function:
a*(1.0-c) + b*c

NEON: A (BIG) (FAST) SINGLE-CHIP 3D WORKSTATION GRAPHICS ACCELERATOR

2 x 2 sampling square. For example, the Gaussian filter:

f(U, V) — e—O( (u2+V2)

flu,v) =0
is separable into:
fu,v) =" e%v

This requires minor changes to a standard multiplier.
The value (1.G) is represented as+1. For each bit of,

rather than adding a shiftddor 0, the multipli

er adds a

shiftedb ora. That is, at each bit in the multiplier array, an

AND gate is replaced with a multiplexer. An
also needed to unconditionally addain

where thec input is the fractional bits ai, v, or

extra row is

LOD, as

whenu<landv<1

otherwise

If we remap the fractional bits ofas:

madu] =e*

u? / (e—d u? + g0 (l—u)z)

and do the same far, for both mip-map levels, and then

Trilinear fi|tering uses seven of these mu|tip|iersi feed the mapped fractional bits into the filter tree, it com-
putes the desired separable function. The first level of the
shown in Figure 12. Each 2 x 2 x 2 cube shows which tex- trée computes:
els have been blended. The front half of the cube is the
lower mip-map level, the back half is the higher mip-map
level. The first stage combines left and right pairs of tex-
els, by applying the fractionak andu, bits to reduce the

2 2 2 2
tbottom: (tOO* e—Gu +t10* e—a @ Y ) / (e—au '|‘e_CI @ U))

—
ttop = ¢Ol *e

)2 2 _)2
u +tll*e—0(1 u))/(e—au +e—0(1 u))

The second level of the tree computes:

eight texels to four intermediate values. The second stage
combines the top and bottom pairs, using the fractignal
andv, bits to reduce the four values to the two bilinear fil-

tered results for each mip-map level.
blends the two bilinearly filtered values into
filtered result using the fractionhOD bits.

a trilinearly

The third stage

It's easy to see that this tree can implement any 2D

separable filter in whicf(u) = 1 —f(1 —u), by usi

ng a sim-

sian results from the two adjacent mip-maps.

2 02 02
t = (toogom™* € "‘ttop*e_or(1 v))/(e—av2+e—a(1 V))

—

=(too* e * € + 1ty
2 2
+ t01*e—au *e—a(l V) + oty *

—
e

& d (102 4 = V2

(1—u)2 * e—a (1—v)2)

[+ 0y (0 4 g 0

The third level of the tree linearly combines the Gaus-

Using a

ple one-dimensional filter coefficient table. For example, it Gaussian filter rather than a bilinear filter on each mip-map

could be used for a separable cubic filter of radius 1:

f(u) = 2*abs(®) — 3*® + 1

implementany separable filter truncated to O

e

beyond the

v

a*(l-c

b*c

v
)+

<— frac(y) —»

Y

L

'

i

a*(l-c
b*c

\
)+
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Less obviously, we later realized that the filter tree can further in [22].
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Figure 12: Filter multiplier tree
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5.4. Fragment Generator three additional 600-bit save states and associated multi-
_ ) plexers. But chunking improves the texture cache hit rate

The Fragment Generator determines which fragmentsang decreases page crossings, especially non-prefetchable
are within an object, generates them in an order that re-crossings. We found the cost well worth the benefits.
duces memory band\_/vidth requi.rements, and interpolates(Chunking could be a lot cheaper—we recently discovered
the channel data provided at vertices. _ that we could have used a single additional save state.)

The fragment generator uses half-plane edge functions  The Fragment Generator contains several capabilities
[10][16][25] to determine if a fragment is within an object. gpecific to lines. The setup logic can adjust endpoints to
The three directed edges of a triangle, or the four edges of @ender Microsoft Windows “cosmetic” lines. Lines can be
line, are represented by planar (affine) functions that aregashed with a pattern that is internally generated for
negative to the left of an edge, positive to the right, and gpenGL lines and some X11 lines, or externally supplied
zero on an edge. A fragment is inside an object if it is 10 py software for the general X11 dashed line case. We paint
the right of all edges in a clockwise series, or to the left of OpenGL wide dashed lines by sweeping the stamp hori-
all the edges in a counterclockwise series. (Fragments exyontally across scanlines fgrmajor lines, and vertically
actly on an edge of the object use special inclusion rules.)5cr0ss columns foc-major lines. Again, to avoid slowing
Figure 13 shows a triangle described by three clockwiseihe movement logic, we don’t change the movement algo-
edges, which are shown with bold arrows. The half-plane jjthm. |nstead, the stamp always moves across what it
where each edge function is positive is shown by severaliyinks are scanlines, and we lie to it by exchangiagd y

thin “shadow” lines with the same slope as the edge. Thecqordinate information on the way in and out of the stamp
shaded portion shows the area where all edge functions ar¢,ovement logic.

positive. _ Software can provide a scaling factor to the edge

For most 3D operations, a 2 x 2 fragment stamp evalu-gquations to paint the rectangular portion of X11 wide
ates the four edge equations at _each of the four positions injpes. (This led us to discover a bug in the X11 server’s
the stamp. Texture mapped objects use a 1 x 1 stamp, angjde line code.) Software can provide a similar scaling
2D objects use an 8 x 1 or 32 x 1 stamp. The stamp bristlegactor for antialiased lines. Neon nicely rounds the tips of
with several probes that evaluate the edge equations outsidgntialiased lines and provides a programmable filter radius;
the stamp boundaries; each cycle, it combines these resultgese features are more fully described in [23]. The
to determine in which direction the stamp should move OpenGL implementation exploits these features to paint

next. Probes are cheap, as they only compute a sign bitgptigliased square points up to six pixels in diameter that
We use enough probes so that the stamp avoids moves t@,ok ike the desired circular points.

locations outside the object (where it does not generate any

fragments) unless it must in order to visit other positions

inside the object. When the stamp is one pixel high or5'5' Command Parser

wide, several different probes may evaluate the edge func-  The Command Parser decodes packets, detects packet
tions at the same point. The stamp movement algorithmerrors, converts incoming data to internal fixed-point for-
handles coincident probes without special code for the mats, and decomposes complex objects like polygons,
myriad stamp sizes. Stamp movement logic cannot bequads, and quad-strips into triangle fans for the fragment
pipelined, so simplifications like this avoid making a criti- generator. Neon's command format is sufficiently compact
cal path even slower. that we use the PCI bus rather than a high-speed proprie-

The stamp may also be constrained to generate alltary bus between the CPU and the graphics device. A well-
fragments in a2by 2" rectangular “chunk” before moving  implemented 32-bit, 33 MHz PCI provides over 100 mega-
to the next chunk. Neon’s chunking is not cheap: it usesbytes/second for DMA and sequential PIO (Programmed
I/0) writes, while a 64-bit PCI provides over 200 mega-
bytes/second.

We don't initiate activity with out-of-order writes to
registers or frame buffer locations, but use low-overhead
variable-length sequential commands to exploit streaming
transfers on the PCI. The processor can write commands
directly to Neon, or can write to a ring buffer in main
memory, which Neon reads using DMA.

Neon supports multiple command ring buffers at dif-
ferent levels of the memory hierarchy. The CPU preferen-
tially uses a small ring buffer that fits in the on-chip cache,
which allows the CPU to write to it quickly. If Neon falls
behind the CPU, which then fills the small ring buffer, the
CPU switches to a larger ring buffer in slower memory.
Once Neon catches up, the CPU switches back to the

Figure 13: Triangle described by three edge functions ~ smaller, more efficient ring buffer.
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5.5.1. Instruction Set 5.5.2. Vertex Data Formats

Polygonvertex commands draw independent triangles, Neon supports multiple representations for some data.
triangle strips, and triangle fans, and independent quadrilat-For example, RGBA color and transparency can be sup-
erals and quad strips. They consist of a 32-bit commandplied as four 32-bit floating point values, four packed 16-
header word, a 32-bit packet length, and a variable amountit integers, or four packed 8 bit integers. &endy co-
of per-vertexor per-objectdata, such as Z depth informa- ordinates can be supplied as two 32-bit floating point val-
tion, RGB colors, alpha transparency, eye distance for fog,ues, or as signed 12.4 fixed-point numbers. Using floating
and texture coordinatesPer-vertex data is provided at each point, the six valuesx(y, z, r, g, b) require 24 bytes per
vertex, and is smoothly interpolated across the object. Pervertex. Using Neon’s most compact representation, they
object data is provided only at each vertex that completesrequire only 12 bytes per vertex. These translate into about
an object (for example, each third vertex for independent4 million and 8 million vertices/second on a 32-bit PCI.
triangles, each vertex after the first two for triangle strips), If the CPU is the bottleneck, as with lit triangles, the
and is constant across the object. Thus, the CPU provide€PU uses floating-point values and avoids clamping, con-
only as much data as is actually needed to specify a polyversion, and packing overhead. If the CPU can avoid
gon; there is no need to replicate data when painting flatlighting computations, and the PCI is the bottleneck, as
shaded triangles or when painting strips. We don't provide with wireframe drawings, the CPU uses the packed for-
per-packetdata, since it would save only one word over mats. Future Alpha chips may saturate even a 64-bit PCI
changing the default color and Z registers with a registeror an AGP-2 bus with floating point triangle vertex data,
write command. but may also be able to hide clamping and packing over-

Line vertex commands draw independent lines and line head using new instructions and more integer functional
strips. In addition to per-vertex and per-object data, line units. Packed formats on a 64-bit PCI allows transferring
commands also allow several typespef-pixeldata. This about 12 to 16 millionx, y, z r, g, b) vertices per second.
lets us implement new functionality in software while tak-
ing advantage of Neon's existing capabilities. Painting a 5.5.3. Better Than Direct Rendering
triangle using lines and per-pixel data wouldn't offer ) )
blinding performance, but it would be faster than having to Many vendors have implemented some forndioéct
paint using Neon’s Point command. rende_rlng |n_Wh_|ch appllcat|or!s get direct control of a

The Point vertex command draws a list of points, and graphlcs device in o_rder to avoid the overhead of encoding,
takes per-vertex data. Points may be wide and/or an-COPYing, and decoding an OpenGL command stream [18].
tialiased. (Antialiased points aren't true circles, but are (X11 command streams are generally not directly renderfad,
antialiased squares with a wide filter, so look good only for 8 X11 semantics are harder to satisfy than OpenGL’s.)
points up to about five or six pixels wide.) We were unhappy with some of the consequences of direct

Rectangle commands paint rectangles to the framer€ndering. To avoid locking and unlocking overhead, CEU
buffer, or DMA rectangular regions of the frame buffer to context switches must save and restore both the architec-
main ’memory. Rectangles may be solid filled, or fore- tural and internal implementation state of the graphics de-
ground and background stippled using the internal 32 x 32Viceé on demand, including in the middle of a command.
stipple pattern, or via stipple data in the command packet, Piréct rendering applications make new kernel calls to ob-
Rectangles may also fetch source data from severagltain information about the window hierarchy, or to accom-
sources: from inline data in the packet, from main memory plish tasks that should not or cannot be directly rendered.
locations specified in the packet, from an identically sized 1 Nes€ synchronous kemel calls may in turn run the X11
rectangle in frame buffer memory, from & 22" tile, or server before returning. Applications that don't use direct
from an arbitrary sized texture map using any of the texture "€Nndering use more efficient asynchronous requests to the
map filters. This last capability means that Neon can X11 Server. , . .
rescale an on-screen video image via texture mapping and__N€on uses a technique we called “Better Than Direct
deposit the result into main memory via DMA with no in- Réndering” (BTDR) to provide the benefits of direct ren-
termediate buffers. dering without these disadvantages. Like direct rendering,

The Interlock command ensures that a buffer swap BTDR allows client applications to create hardware-
doesn't take place until screen refresh is outside of a smaliSPecific rendering commands.  Unlike direct rendering,
critical region (dependent upon the window size and loca- BTDR leaves dispatching of these commands to the X11
tion), in order to avoid tearing artifacts. And a multichip S€rver- In effect, the application creates a sequence of
variant of the interlock command guarantees that a bufferNardware rendering commands, then asks the X11 server to
swap takes place only when a group of Neon chips are alic@!l them as a subroutine. To avoid copying client-

ready to swap, so that multiple monitors can be animateg9€nerated commands, Neon supports a s_ingle—level caII_to a
synchronously. command stream stored anywhere in main memory. Since

only the X11 server communicates directly with the accel-
erator, the accelerator state is never context switched pre-
emptively, and we don't need state save/restore logic.
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Since hardware commands are dispatched in the correct 3. Reading color data from an A and B bank pair (16

sequence by the server, there is no need for new kernel 32-bit pixels) if the corresponding overlay (read
calls. Since BTDR maintains atomicity and ordering of awhile ago in step 1) is transparent.
commands, we believe (without an existence proof) that I the overlay isn't transparent, the controller doesn't

BTDR could provide direct rendering benefits to X11, with read the corresponding 32-bit color data. If the root win-

much less work and overhead than Mark Kilgard’s D11 dow and 2D windows use the 8-bit overlay, then only 3D

proposal [19]. windows fetch 32-bit color data, which further increases
memory bandwidth available for rendering.

5.6. Video Controller

The Video Controller refreshes the display, but dele-
gates much of the work to the memory controllers in order Dithering is commonly used with 16 and 8-bit color
to increase opportunities for page prefetching. It periodi- pixels. Dithering decreases spatial resolution in order to
cally requests pixels from the memory controllers, “inverse increase color resolution. In theory, the human eye inte-
dithers” this data to restore color fidelity lost in the frame grates pixels (if the pixels are small enough or the eye is
buffer, then sends the results to an IBM RGB640 myopic enough) to approximate the original color. In
RAMDAC for color table lookup, gamma correction, and practice, dithered images are at worst annoyingly patterned

5.6.2. Inverse Dithering

conversion to an analog video signal. with small or recursive tessellation dither matrices, and at
best slightly grainy with the large void-and-cluster dither
5.6.1. Opportunistic Refresh Servicing matrices we have used in the past [29].

Hewlett-Packard introduced “Color Recovery™” [2] to

Each screen refresh request to a memory controller e form this integration digitally and thus improve the
asks for data from a pair of A and B bank pages. The g ity of dithered images. Color Recovery applies a 16
memory controller can usually finish rendering in the cur- pixel wide by 2 pixel high filter at each 8-bit pixel on the
rent bank , ping-pong between banks to satisfy the refreshaih oyt to the RAMDAC. In order to avoid blurring, the

request, and return to rendering in the other bank—usingsjjter js not applied to pixels that are on the opposite side of
prefetching to hide all page crossing overhead. For exam-y, “edge,” which is defined as a large change in color.

ple, if the controller is curren_tly ac_cessing an A bank page HP’s implementation has two problems. Their dither-
when the refresh request arrives, it prefetches the refresh E?ng is non-mean preserving, and so creates an image that is
page while it finishes rendering the rest of the fragments ony, gark and too blue. Their reconstruction filter does not
the A bank page. It then prefetches the refresh A page;ompensate for these defects in the dithering process. And
while it fetches pixels frpm the_ ref_resh B page, prefetches aihe 2 pixel high filter requires storage for the previous
new B page for rendering while it fetches pixels from the gcanline’s pixels, which would need a lot of real estate for
refresh A page, and finally returns to rendering in the new Neon’s worst case scanlines of 1920 16-bit pixels. The

B page. i .. alternative—fetching pixels twice—requires too much
Screen refresh reads cannot be postponed indefinitelyy,nqwidtnh.

in an attempt to increase prefetching. If a memory con- Neon implements an “inverse dithering” process simi-

troller is too slow in satisfying the request, the Video Con- |5 t5 Color Recovery, but dynamically chooses between
troller forces it to fetch refresh data immediately. When geyeral higher quality filters, all of which are only one pixel
the controller returns to the page it was rendering, it cannothigh. We used both mathematical analysis of dithering

prefetch it, as this page is in the same bank as the seconf|nctions and filters, as well as empirical measurements of

screen refresh page. images, to choose a dither matrix, the coefficients for each
The Video Controller delegates to each Memory Con- fijter and the selection criteria to determine which filter to

troller the interpret.ation qf overlay and display format apply to each pixel in an image. We use small asymmetri-
bytes, and the reading of pixels from the front, back, left, or 5| filters near high-contrast edges, and up to a 9-pixel wide
right buffers. This allows the memory controller to imme- ey for the interior of objects. Even when used on Neon's
diately follow overlay and display format reads with color |o\est color resolution pixels, which have 4 bits for each
data reads, further increasing prefetching efficiency. To ¢olor channel, inverse dithering results are nearly indistin-

hide page crossing overhead, the memory controller musty,ishable from the original 8 bits per channel data. More
read 16 16-bit pixels from each overlay and display format yetails can be found in [5] and [30].

page, but only 8 32-bit pixels from each color data page.
The memory controller thus alternates between:
1. Reading overlay and display format from an A
and B bank pair of pages (32 16-bit pixels), then Modern CPUs include performance counters in order
2. Reading color data from a different A and B bank to increase the efficiency of the code that compilers gener-
pair (16 32-bit pixels) if the corresponding overlay ate, to provide measurements that allow programmers to
(that was just read in step 1) is transparent. tune their code, and to help the design of the next CPU.
and sometime later:

5.7. Performance Counters
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Neon includes the same sort of capability with greater .
flexibility. Neon includes two 64-bit counters, each fully 7]
programmable as to how conditions should be combined -
before being counted. We can count multiple occurrences
of some events per cycle (e.g., events related to the eighi
memory controllers or pixel processors). This allows us to -
directly measure, in a single run, statistics that are ratios or . |&
differences of different conditions. :

5.8. “Sushi Boat” Register Management

Register state management in Neon is decentralized
and pipelined. This reduces wiring congestion—rather
than an explosion of signals between the Command Parse! |
and the rest of the chip, we use a single existing pathway
for both register reads and writes. This also reduces pipe-
line stalls needed to ensure a consistent view of the register -
state. (The “sushi boat” name comes from Japanese restau |
rants that use small boats in a circular stream to deliver -
sushi and return empty trays.)

Registers are physically located near logic that uses
them. Several copies of a register may exist to limit physi-
cal distances from a register to dependent logic, or to re-
duce the number of pipeline stages that are dependent upol. : ;
a register’'s value. The different copies of a register may Figure 14: Neon die plot
contain different data at a given time.

Register writes are sent down the object ters, as well as to board configuration switches. One pin is
setup/fragment generation/fragment processing pipeline.for the core logic clock, and the remaining 9 pins are for
The new value is written into a local register at a point that device testing.
least impacts the logic that depends upon it. Ideally, a reg-  Figure 14 shows a plot of the metal layers of the die.
ister write occurs as soon as the value reaches a local regPata flows in through the PCI interface, right to the Com-
ister. At worst, several pipe stages use the same copy of anand Parser, up to the Fragment Generator setup logic, up
register, and thus a handful of cycles must be spent drain-again to the stamp movement logic, right to the interpola-
ing that portion of the pipeline before the write commits. tion of vertex data, right into Texel Central, and finally out

Register reads are also sent down the pipeline. Onlyto the eight Pixel Processor/Memory Controllers on the
one copy of the register loads its current value into the readperiphery of the. The Video Refresh block is small be-
command; other copies simply let the register read passcause it includes logic only for sending requests for pixel
unmodified. The end of the pipeline feeds the register backdata, and for inverse dithering; the line buffers are resident

to the Command Parser. in the memory controller blocks. The congested wiring
channels between blocks are a consequence of IBM’'s sug-
6. Physical Characteristics gestion that interblock wiring flow through small areas on

the sides of each block.
Neon is a large chip. Its die is 17.3 x 17.3 mm, using

IBM's 0.35 um CMOS 5S standard cell process with 5 7. CAD and Verification Environment

metal layers [15]. (Their 0.2fm 6S technology would ) ) )

reduce this to about 12.5x12.5 mm, and Ou8 7S We designed Neon using the C programming Ign-

would further reduce this to about 9 x 9 mm.) The design 9uage, rather than Verilog or VHSIC Hardware Description

uses 6.8 million transistors and sample chips run at the 10d-anguage (VHDL). This section discusses the advantages

MHz design frequency. of using C, our simulator, the C to Verilog compller',.spt'a-
The chip has 628 signal pins, packaged in an 824_pinC|aI-purpose gate generators, and our custom verification

ceramic column grid array. The 8 memory controllers each Software.

use 32 data pins and 24 address, control, and clock pins; an

additional two pins for SDRAM clock phase adjustment 7.1. C vs. Verilog and VHDL

make a total of 450 signal pins to memory. The 64-bit PCI

interface uses 88 pins. The video refresh portion of the

RAMDAC interface uses 65 pins. Another 15 pins provide

a general-purpose port—a small FPGA connects the port t

the RAMDAC, VGA, and programmable dot clock regis-

The C language has several advantages over Verilog.
In particular, C supports signed numbers and record struc-
tures, which we used extensively in Neon. On the other
0hand, C has no way of specifying bit lengths. We solved
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this deficiency by using a C++ compiler, and added two Boolean operators, in order to minimize the gates required
new types with C++ templatesBitgn] is an unsigned to evaluate the expression correctly.

number ofn bits; Signedin] is a 2's complement number of In addition,c2v checks assignments to ensure that the
n bits, including the sign bit. In retrospect, we should also right-hand side of an expression fits into the left-hand side.
have added the type construct®angglower, uppei, in This simple check statically caught numerous examples of
order to further enhance the range-checkingc2n, de- code trying to assign, for example, three bits of state infor-
scribed below in Section 7.3. mation into a 2-bit field.

VHDL has all of these language features. We still saw

C as a better choice. In addition to the advantages dis-7.4. Synthesis vs. Gate Generators
cussed below, coding in C gave us the entire C environ-

ment while developing, debugging, and verifying Neon. Initial benchmarks using Synopsys to generate adders
For example, early, high-level models of the chip used li- @nd multipliers yielded structures that were larger and
brary calls to mathematical functions. slower than we expected. IBM’s parameterized libraries

weren't any better. These results, coupled with our non-
7.2. Native C Simulator standard arithmetic requirements (base 255 arithmetic,

a*(1-c) + b*c multiplier/adders, etc.) led us to design a

We've used our own 2-state event-driven simulator for library of gate generators for addition, multiplication, and
years. It directly calls the C procedures used to describedivision. We later added a priority encoder generator, as
the hardware, so we can use standard C debugging tools. IBynopsys was incapable of efficiently handling chained
topologically sorts the procedures, so that the event flagif...then..else if.. statements. We also explicitly wired
scanning proceeds from top to bottom. (Apparent “loops” multiplexers for Texel Central’s memory controller cross-
caused by data flowing back and forth between two mod- bar and format conversion: Synopsys took a day to synthe-
ules with multiple input/output ports are handled specially.) size a structure that was twice as large, and much slower,
Evaluating just the modules whose input changes invokesthan the one we created by hand.
on average 40% to 50% of Neon’s presynthesis high level From our experiences, we view Synopsys as a weak
behavioral code. (This could have been smaller, as manytool for synthesizing data paths. However, the only alter-
designers were sloppy about importing large wire structuresnative seems to be wiring data paths by hand.
in toto, rather than the few signals that they needed.) The
simulator evaluated only 7% to 15% of the synthesized 7.5. Hardware Verification
gate-level wirelist each cycle.

The simulator runs about twice as fast as the best  We have traditionally tested graphics accelerators with
commercial simulator we benchmarked. We believe this is 9igabytes of traces from the X11 server. Designers gener-
due to directly compiling C code, especially the arithmetic ate traces from the high-level behavioral model by running
operations in high-level behavioral code; and to the low @nd visually verifying graphics applications. With Neon,
percentage of procedures that must be called each cycleWe expected the behavioral model to simulate so slowly
especially in the gate-level structural code. Even better, wethat it would be impossible to obtain enough data.
have no per-copy licensing fee. During Neon's develop- A number of projects at Digital, including all Alpha
ment, we simulated over 289 billion cycles using 22 Alpha Processors, have used a language called Segue for creating
CPUs. We simulated 2 billion cycles with the final full- test suites. Segue allows the pseudo-random selection of

chip structural model. weighed elements within a set. For example, the expres-
sion X = {1:5, 2:15, 3:80} randomly selects the value 1, 2
7.3. C to Verilog Translation or 3 with a probabilities of 5%, 15% or 80%. Segue is well

suited for generating stimulus files that require a straight-

We substantially modifiedcc [9], a portable C com-  forward selection of random data, such as corner-case tests
piler, to create2y, a C to Verilog translator. This transla- or random traffic on a PCI bus. Unfortunately, Segue is a
tor confers a few more advantages to using C. In particu-rudimentary language with no support for complex data
lar, c2v evaluates the numeric ranges of expressions, andprocessing capabilities. It lacks multidimensional arrays,
expands their widths in the Verilog output to avoid over- pointers, file input, and floating-point variables, as well as

flow. For example: symbolic debugging of source code. C supports the desired

- . programming features, but lacks the test generation fea-
Bitg2] a, b, ¢, d; .

if (a+b) < (c+d) ... tures. Because we use C and C++ extensively for the Neon

design and the CAD suite, we decided to enhance C++ to

is evaluated in Verilog or VHDL using the maximum pre- gypport the Segue sets. We call this enhanced language
cision of the variables—two bits—and so can yield the segue++.

wrong answer. The2v translator forces the expression to Segue++ is an environment consisting of C++ class

be computed with three bitsc2v computes the tightest  definitions with behavior like Segue sets, and a preproces-
possible bounds for expressions, including those that usesor to translate the Segue++ code to C++. We could have
used the new C++ classes without preprocessing, but the
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Triangle size Random triangles Random strips  Aligned strips  Peak generation
10-pixel N/A N/A 7.8 7.8

25-pixel 2.6 4.2 5.4 7.5

50-pixel 1.6 2.3 2.8 4.5

25-pixel, trilinear textured| N/A 2.0 2.3 4.0

50-pixel, trilinear textured| 0.75 1.3 1.4 2.0

Table 1: Shaded, Z-buffered triglas, millions of triagles/second

limitations of C++ operator overloading makes the code ) )
difficult to read and write. Furthermore, the preprocessor 1ype of line Random strips
allows us to define and select set members inside C++
code, and we can imbed C++ expressions in the expres-
sions for set members. The users of Segue++ have all the 10-pixel, shaded, no Z 10.6
featpres of thg C+f Ianguage_as well as th_e development 10-pixel, shaded, Z-buffered 78
environment, including symbolic debugging linked back to
the original Segue++ code. 10-pixel, shaded, Z-buffered, 4.7
Segue++ proved invaluable for our system tests, which antialiased T

tested the complete Neon chip attached to a number of dif- ) . )

ferent PCI transactors. The system tests generate a number Table 2: Random line sps, millions of lines/second
of subtests, with each subtest using different functionality
in the Neon chip to render the same image in the frame
buffer. For example, a test may render a solid-colored
rectangle in the frame buffer. One subtest may download
the rectangle from memory using DMA, another may draw
the rectangle using triangles, etc. Each subtest can va%
global attributes such as the page layout of the frame

buffer, or the background traffic on the PCI bus. We dis- thouah babl p fetchabl ¢
covered a surprisingly rich set of possible variations for lough probably Sulters more non-pretetchable page tran-
itions than a well-written application. Triangle results are

each subtest. The set manipulation features of Segue+ . ) e ;
allowed us to generate demanding test kernels, while theShOWn in the R_andom strips™ column of Table 1, line re-
general programming features of Segue++ allowed us toSUItS are shovv_n in Table 2 .
manipulate the test data structure to create the subtests. . The only fill rates we ve measured are not Z-t_ested, in
The system tests found many unforeseen interaction-effectViCh case Neon achieves 240 million ,‘,54'b't frag-
bugs in the Neon design. ments/second. However, Fhe Aligned strip column in
Table 1 shows triangle strips that were aligned to paint
mostly on one page or a pair of pages, which should pro-
8. Performance vide a lower bound on Z-tested fill rates. Note that 50-

In this section, we discuss some performance results,Pixel triangles paint 140 million Z-buffered, shaded pix-
based on Cyc|e-accurate simulations of a 100 MHz part_GIS/Second, and 70 million trilinear textured, Z'buffered,
(Power-on has proceedgdrys|ow|y_ Neon was cancelled shaded piXGIS/SeCOﬂd. In the SpeCial case of bi”nearly
shortly before tape-out, so any work occurs in people’s magnifying an image, such as scaling video frames, we
spare time. The chip does run at speed, and the few reabelieve Neon will run extremely close to the peak texture
benchmarks we have performed validate the simulations.) fill rate of 100 million textured pixels/second.

We achieved our goal of using memory efficiently. The “Peak generation” column in Table 1 shows the
When painting 50-pixel triangles to a 1280 x 1024 screen Maximum rate at which fragments can be delivered to the
refreshed at 76 Hz, screen refresh consumes about 25% dghemory controllers. For 10-pixel triangles, the limiting
memory bandwidth, rendering consumes another 45%, andactor is setup. For larger triangles, the limiting factor is
overhead cycles that do not transfer data (read latenciesobject traversal: the 2 x 2 stamp generates on average 1.9
high-impedance cycles, and page precharging and row adfragments/cycle for 25-pixel triangles, and 2.3 frag-
dressing) consume the remaining 30%. When filling large Ments/cycle for 50-pixel triangles. For textured triangles,
areas, rendering consumes 60% of bandwidth. the stamp generates one fragment/cycle.

As a worst-case acid test, we painted randomly placed ~ Neon's efficient use of memory bandwidth is impres-
triangles with screen refresh as described above. Each obsive, especially when compared to other systems for which
ject requires at least one page fetch. Half of these pageve have enough data to compute peak and obtained band-

10-pixel, constant color, no Z 11.0

fetches cannot be prefetched at all, and there is often insuf-
ficient work to completely hide the prefetching in the other
half. The results are shown in the “Random triangles” col-
umn of Table 1. (Texels are 32 bits.)

We also painted random strips of 10 objects; each list
egins in a random location. This test more closely resem-
bles the locality of rendering found in actual applications,
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width. For example, we estimate that the SGI Octane 10. Acknowledgements

MXE, using RAMBUS RDRAM, has over twice the peak ) )

bandwidth of Neon—yet paints 50-pixel Z-buffered trian- ~ Hardware Design & Implementation: Bart Berko-
gles about as fast as Neon. Even accounting for the MXE’sWitz, Shiufun Cheung, Jim Claffey, Ken Correll, Todd
48-bit colors, Neon extracts about twice the performance Putton, Dan Eggleston, Chris Gianos, Tracey Gustafson,
per unit of bandwidth. The MXE uses special texture- 10M Hart, Frank Hering, Andy Hoar, Giri lyengar, Jim
mapping RAMs, and quotes a “texture fill rate” 38% higher Knittel, Norm Jouppi, Joel McCormack, Bob McNamara,
than Neon’s peak texture fill rate. Neon uses SDRAM and Laura Mendyke, Jay Nair, Larry Seiler, Manoo Vohra,
steals texture mapping bandwidth from other rendering Robert Ulichney, Larry Wasko, Jay Wilkinson.

operations. Yet their measured texture mapped perform-  Hardware Verification: Chris Brennan, John Ep-
ance is equivalent. Tuning of the memory controller heu- Pling, Tyrone Hallums, Thom Harp, Peter Morrison,
ristics might further improve Neon’s efficiency. Julianne Romero, Ben Sum, George Valaitis, Rajesh

We have also achieved our goals of outstanding Viswanathan, Michael Wright, John Zurawski.

price/performance. When compared to other workstation ~ CAD Tools: Paul Janson, Canh Le, Ben Marshall,

accelerators, Neon is either a lot faster, a lot cheaper, ofR@én Ramchandani.

both. For example, HP's $accelerator is about 20% to

Software: Monty Brandenberg, Martin Buckley, Dick

80% faster than Neon—at about eight times our anticipatedCoulter, Ben Crocker, Peter Doyle, Al Gallotta, Ed Gregg,

list price.

Teresa Hughey, Faith Lin, Mary Narbutavicius, Pete Ni-

Good data on PC accelerators is hard to come byshimoto, Ron Perry, Mark Q_uinla_n, Jim Rees, Shobana
(many PC vendors tend to quote peak numbers withoutSampath, Shuhua Shen, Martine Silbermann, Andy Vesper,
supporting details, others quote performance for small Bing Xu, Mark Yeager.

screens using 16-bit pixels and texels, etc.). Nonetheless,

Keith Farkas commented extensively on far too many

when compared to PC accelerators in the same price rangelrafts of this paper.

Neon has a clear performance advantage. It appears to be

Many of the techniques described in this paper are pat-

about twice as fast, in general, as Evans & Sutherland’sent pending.

REALimage technology (as embodied in the Mitsubishi
3DPro chip set), and the 3Dlabs GLINT chips.
9. Conclusions s

Historically, fast workstation graphics accelerators
have used multiple chips and multiple memory systems to [2]
deliver high levels of graphics performance. Low-end
workstation and PC accelerators use single chips connected
to a single memory system to reduce costs, but their per-
formance consequently suffers.

The advent of 0.3am technology coupled with ball or
column grid arrays means that a single ASIC can contain[3l
enough logic and connect to enough memory bandwidth to
compete with multichip 3D graphics accelerators. Neon
extracts competitive performance from a limited memory
bandwidth by using a greater percentage of peak memory[4]
bandwidth than competing chip sets, and by reducing
bandwidth requirements wherever possible. Neon fits on
one die, because we extensively share real estate amonP5
similar functions—which had the nice side effect of mak- [3]
ing performance tuning efforts more effective. Newer 0.25
um technology would reduce the die size to about 166 mm
and increase performance by 20-30%. Emerging Q8
technology would reduce the die to about 80°namd in-
crease performance another 20-30%. This small die size,
coupled with the availability of SDRAM at less that a dol-
lar a megabyte, would make a very low-cost, high- [6]
performance accelerator.
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