
R E V I S E D J U L Y 1 9 9 9

WRL
Research Report 98/1

Neon: A (Big) (Fast)
Single-Chip 3D
Workstation Graphics
Accelerator
Joel McCormack
Robert McNamara
Christopher Gianos
Larry Seiler
Norman P. Jouppi
Ken Correll
Todd Dutton
John Zurawski

Western Research Laboratory 250 University Avenue Palo Alto, California 94301 USA

 The Western Research Laboratory (WRL), located in Palo Alto, California, is part of Compaq’s Corporate
Research group. Our focus is research on information technology that is relevant to the technical strategy of the
Corporation and has the potential to open new business opportunities. Research at WRL ranges from Web search
engines to tools to optimize binary codes, from hardware and software mechanisms to support scalable shared
memory paradigms to graphics VLSI ICs. As part of WRL tradition, we test our ideas by extensive software or
hardware prototyping.

We publish the results of our work in a variety of journals, conferences, research reports and technical notes.
This document is a research report. Research reports are normally accounts of completed research and may in-
clude material from earlier technical notes, conference papers, or magazine articles. We use technical notes for
rapid distribution of technical material; usually this represents research in progress.

You can retrieve research reports and technical notes via the World Wide Web at:

http://www.research.digital.com/wrl/home

You can request research reports and technical notes from us by mailing your order to:

Technical Report Distribution
Compaq Western Research Laboratory
250 University Avenue
Palo Alto, CA 94301 U.S.A.

You can also request reports and notes via e-mail. For detailed instructions, put the word “ Help” in the sub-
ject line of your message, and mail it to:

wrl-techreports@pa.dec.com

Neon: A (Big) (Fast) Single-Chip 3D
Workstation Graphics Accelerator

Joel McCormack1, Robert McNamara2, Christopher Gianos3, Larry Seiler4,
Norman P. Jouppi1, Ken Correl4, Todd Dutton3, John Zurawski3

Revised July 1999

Abstract

High-performance 3D graphics accelerators tradition-
ally require multiple chips on multiple boards. Specialized
chips perform geometry transformations and lighting com-
putations, rasterizing, pixel processing, and texture map-
ping. Multiple chip designs are often scalable: they can
increase performance by using more chips. Scalability has
obvious costs: a minimal configuration needs several chips,
and some configurations must replicate texture maps. A
less obvious cost is the almost irresistible temptation to
replicate chips to increase performance, rather than to de-
sign individual chips for higher performance in the first
place.

In contrast, Neon is a single chip that performs like a
multichip design. Neon accelerates OpenGL 3D rendering,
as well as X11 and Windows/NT 2D rendering. Since our
pin budget limited peak memory bandwidth, we designed
Neon from the memory system upward in order to reduce
bandwidth requirements. Neon has no special-purpose

memories; its eight independent 32-bit memory controllers
can access color buffers, Z depth buffers, stencil buffers,
and texture data. To fit our gate budget, we shared logic
among different operations with similar implementation
requirements, and left floating point calculations to Digi-
tal's Alpha CPUs. Neon’s performance is between HP’s
Visualize fx4 and fx6, and is well above SGI’s MXE for
most operations. Neon-based boards cost much less than
these competitors, due to a small part count and use of
commodity SDRAMs.

1. Introduction

Neon borrows much of its design philosophy from
Digital’s Smart Frame Buffer [21] family of chips, in that it
extracts a large proportion of the peak memory bandwidth
from a unified frame buffer, accelerates only rendering
operations, and efficiently uses a general-purpose I/O bus.

Neon makes efficient use of memory bandwidth by re-
ducing page crossings, by prefetching pages, and by proc-
essing batches of pixels to amortize read latency and high-
impedance bus turnaround cycles. A small texture cache
reduces bandwidth requirements during texture mapping.
Neon supports 32, 64, or 128 megabytes of 100 MHz syn-
chronous DRAM (SDRAM). The 128 megabyte configu-
ration has over 100 megabytes available for textures, and
can store a 512 x 512 x 256 3D 8-bit intensity texture.

Unlike most fast workstation accelerators, Neon
doesn’t accelerate floating-point operations. Digital’s 500
MHz 21164A Alpha CPU [7] transforms and lights 1.5 to 4
million vertices per second. The 600 MHz 21264 Alpha
[12][16] should process 2.5 to 6 million vertices/second,
and faster Alpha CPUs are coming.

Since Neon accepts vertex data after lighting compu-
tations, it requires as little as 12 bytes/vertex for (x, y) co-
ordinate, color, and Z depth information. A well-designed
32-bit, 33 MHz Peripheral Component Interconnect (PCI)
supports over 8 million such vertices/second; a 64-bit PCI
supports nearly twice that rate. The 64-bit PCI transfers
textures at 200 megabytes/second, and the 64 and 128
megabyte Neon configurations allow many textures to stay
in the frame buffer across several frames. We thus saw no
need for a special-purpose bus between the CPU and
graphics accelerator.

Neon accelerates rendering of Z-buffered Gouraud
shaded, trilinear perspective-correct texture-mapped trian-
gles and lines. Neon supports antialiased lines, Microsoft
Windows lines, and X11 [27] wide lines.

1 Compaq Computer Corporation Western Research Labo-
ratory, 250 University Avenue, Palo Alto, CA 94301.
[Joel.McCormack, Norm.Jouppi]@compaq.com
2 Compaq Computer Corporation Systems Research Center,
130 Lytton Avenue, Palo Alto, CA 94301.
Bob.McNamara@Compaq.com
3 Compaq Computer Corporation Alpha Development
Group, 334 South Street, Shrewsbury, MA 01545-4172.
[Chris.Gianos, Todd.Dutton, John.Zurawski]
@Compaq.com
4 At Digital Equipment Corporation (later purchased by
Compaq) for the development of Neon, now at Real Time
Visualization, 300 Baker Avenue, Suite #301, Concord,
MA 01742. [seiler,correll]@rtviz.com

This report is a superset of Neon: A Single-Chip 3D Work-
station Graphics Accelerator, published in the
SIGGRAPH/Eurographics Workshop on Graphics Hard-
ware, August 1998, and The Implementation of Neon: A
256-bit Graphics Accelerator, published in the April/May
issue of IEEE Micro.

© 1998 Association for Computing Machinery.
© 1999 IEEE Computer Society.
© 1999 Compaq Computer Corporation.

WRL RESEARCH REPORT 98/1 NEON: A (BIG) (FAST) SINGLE-CHIP 3D WORKSTATION GRAPHICS ACCELERATOR

2

Performance goals were 4 million 25-pixel, shaded, Z-
buffered triangles/second, 2.5 million 50-pixel trian-
gles/second, and 600,000 to 800,000 50-pixel textured tri-
angles/second. Early in the design, we traded increased
gate count for reduced design time, which had the side-
effect of increasing the triangle setup rate to over 7 million
Gouraud shaded, Z-buffered triangles per second. This
decision proved fortunate—applications are using ever
smaller triangles, and the software team doubled their
original estimates of vertex processing rates.

This paper, a superset of previous papers about Neon,
discusses how our focus on efficiently using limited re-
sources helped us overcome the constraints imposed by a
single chip. We include much that is not novel, but many
recent specifications and papers describe designs that per-
form incorrect arithmetic or use excessive amounts of
logic. We therefore describe most of the techniques we
used in Neon to address these issues.

2. Why a Single Chip?

A single chip’s pin count constrains peak memory
bandwidth, while its die size constrains gate count. But
there are compensating implementation, cost, and perform-
ance advantages over a multichip accelerator.

A single-chip accelerator is easier to design. Parti-
tioning the frame buffer across multiple chips forces copy
operations to move data between chips, increasing com-
plexity, logic duplication, and pin count. In contrast, inter-
nal wires switch faster than pins and allow wider interfaces
(our Fragment Generator ships nearly 600 bits down-
stream). And changing physical pin interfaces is harder
than changing internal wires.

A single-chip accelerator uses fewer gates, as opera-
tions with similar functionality can share generalized logic.
For example, copying pixel data requires computing source
addresses, reading data, converting it to the correct format,
shifting, and writing to a group of destination addresses.
Texture mapping requires computing source addresses,
reading data, converting it, filtering, and writing to a desti-
nation address. In Neon, pixel copying and texture map-
ping share source address computation, a small cache for
texel and pixel reads, read request queues, format conver-
sion, and destination steering. In addition, pixel copies,
texture mapping, and pixel fill operations use the same
destination queues and source/destination blending logic.
And unlike some PC accelerators, 2D and 3D operations
share the same paths through the chip.

This sharing amplifies the results of design optimiza-
tion efforts. For example, the chunking fragment genera-
tion described below in Section 5.2.5 decreases SDRAM
page crossings. By making the chunk size programmable,
we also increased the hit rate of the texture cache. The
texture cache, in turn, was added to decrease texture band-
width requirements—but also improves the performance of
2D tiling and copying overlay pixels.

A single-chip accelerator can provide more memory
for texture maps at lower cost. For example, a fully con-

figured RealityEngine replicates the texture map 20 times
for the 20 rasterizing chips; you pay for 320 megabytes of
texture memory, but applications see only 16 megabytes.
A fully configured InfiniteReality [24] replicates the tex-
ture “only” four times—but each rasterizing board uses a
redistribution network to fully connect 32 texture RAMs to
80 memory controllers. In contrast, Neon doesn’t replicate
texture maps, and uses a simple 8 x 8 crossbar to redistrib-
ute texture data internally. The 64 megabyte configuration
has over 40 megabytes available for textures after allocat-
ing 20 megabytes to a 1280 x 1024 display.

3. Why a Unified Memory System?

Neon differs from many workstation accelerators in
that it has a single general-purpose graphics memory sys-
tem to store colors, Z depths, textures, and off-screen buff-
ers.

The biggest advantage of a single graphics memory
system is the dynamic reallocation of memory bandwidth.
Dedicated memories imply a dedicated partitioning of
memory bandwidth—and wasting of bandwidth dedicated
to functionality currently not in use. If Z buffering or tex-
ture mapping is not enabled, Neon has more bandwidth for
the operations that are enabled. Further, partitioning of
bandwidth changes instantaneously at a fine grain. If texel
fetches overlap substantially in a portion of a scene, so that
the texture cache’s hit rate is high, more bandwidth be-
comes available for color and Z accesses. If many Z buffer
tests fail, and so color and Z data writes occur infrequently,
more bandwidth becomes available for Z reads. This
automatic allocation of memory bandwidth enables us to
design closer to average memory bandwidth requirements
than to the worst case.

A unified memory system offers flexibility in memory
allocation. For example, using 16-bit colors rather than 32-
bit colors gains 7.5 megabytes for textures when using a
1280 x 1024 screen.

A unified memory system offers greater potential for
sharing logic. For example, the sharing of copy and texture
map logic described above in Section 2 is possible only if
textures and pixels are stored in the same memory.

A unified memory system has one major drawback—
texture mapping may cause page thrashing as memory ac-
cesses alternate between texture data and color/Z data.
Neon reduces such thrashing in several ways. Neon’s deep
memory request and reply queues fetch large batches of
texels and pixels, so that switching between texel accesses
and pixel accesses occurs infrequently. The texel cache
and fragment generation chunking ensure that the texel
request queues contain few duplicate requests, so that they
fill up slowly and can be serviced infrequently. The mem-
ory controllers prefetch texel and pixel pages when possi-
ble to minimize switching overhead. Finally, the four
SDRAM banks available on the 64 and 128 megabyte con-
figurations usually eliminate thrashing, as texture data is
stored in different banks from color/Z data. These tech-
niques are discussed further in Section 4 below.

WRL RESEARCH REPORT 98/1 NEON: A (BIG) (FAST) SINGLE-CHIP 3D WORKSTATION GRAPHICS ACCELERATOR

3

SGI’s O2 [20] carries unification one step further, by
using the CPU’s system memory for graphics data. But
roughly speaking, CPU performance is usually limited by
memory latency, while graphics performance is usually
limited by memory bandwidth, and different techniques
must be used to address these limits. We believe that the
substantial degradation in both graphics and CPU perform-
ance caused by a completely unified memory isn’t worth
the minor cost savings. This is especially true after the
major memory price crash of 1998, and the minor crash of
1999, which have dropped SDRAM prices to under
$1.00/megabyte.

4. Is Neon Just Another PC Accelerator?

A single chip connected to a single frame buffer mem-
ory with no floating point acceleration may lead some
readers to conclude “Neon is like a PC accelerator.” The
dearth of hard data on PC accelerators makes it hard to
compare Neon to these architectures, but we feel a few
points are important to make.

Neon is in a different performance class from PC ac-
celerators. Without floating point acceleration, PC accel-
erators are limited by the slow vertex transformation rates
of Intel and x86-compatible CPUs. Many PC accelerators
also burden the CPU with computing and sending slope and
gradient information for each triangle; Neon uses an effi-
cient packet format that supports strips, and computes tri-
angle setup information directly from vertex data. Neon
does not require the CPU to sort objects into different
chunks like Talisman [3][28] nor does it suffer the over-
head of constantly reloading texture map state for the dif-
ferent objects in each chunk.

Neon directly supports much of the OpenGL rendering
pipeline, and this support is general and orthogonal. Ena-
bling one feature does not disable other features, and does
not affect performance unless the feature requires more
memory bandwidth. For example, Neon can render
OpenGL lines that are simultaneously wide and dashed.
Neon supports all OpenGL 1.2 source/destination blending
modes, and both exponential and exponential squared fog
modes. All pixel and texel data are accurately computed,
and do not use gross approximations such as a single fog or
mip-map level per object, or a mip-map level interpolated
across the object. Finally, all three 3D texture coordinates
are perspective correct.

5. Architecture

Neon's performance isn’t the result of any one great
idea, but rather many good ideas—some old, some new—
working synergistically. Some key components to Neon's
performance are:
• a unified memory to reduce idle memory cycles,
• a large peak memory bandwidth (3.2 gigabytes/second

with 100 MHz SDRAM),
• the partitioning of memory among 8 memory control-

lers, with fine-grained load balancing,

• the batching of fragments to amortize read latencies
and bus turnaround cycles, and to allow prefetching of
pages to hide precharge and row activate overhead,

• chunked mappings of screen coordinates to physical
addresses, and chunked fragment generation, which
reduce page crossings and increase page prefetching,

• a screen refresh policy that increases page prefetching,
• a small texel cache and chunked fragment generation

to increase the cache's hit rate,
• deeply pipelined triangle setup logic and a high-level

interface with minimal software overhead,
• multiple formats for vertex data, which allow software

to trade CPU cycles for I/O bus cycles,
• the ability for applications to map OpenGL calls to

Neon commands, without the inefficiencies usually as-
sociated with such direct rendering.

Section 5.1 below briefly describes Neon’s major
functional blocks in the order that it processes commands,
from the bus interface on down. Sections 5.2 to 5.6, how-
ever, provide more detail in roughly the order we designed
Neon, from the memory system on up. This order better
conveys how we first made the memory system efficient,
then constantly strove to increase that efficiency as we
moved up the rendering pipeline.

5.1. Architectural Overview

Figure 1 shows a block diagram of the major func-
tional units of Neon.

The PCI logic supports 64-bit transfers at 33 MHz.
Neon can initiate DMA requests to read or write main
memory.

The PCI logic forwards command packets and DMA
data to the Command Parser. The CPU can write com-
mands directly to Neon via Programmed I/O (PIO), or
Neon can read commands from main memory using DMA.
The parser accepts nearly all OpenGL [26] object types,
including line, triangle, and quad strips, so that CPU cycles
and I/O bus bandwidth aren’t wasted by duplicated vertex
data. Finally, the parser oversees DMA operations from
the frame buffer to main memory via Texel Central.

The Fragment Generator performs object setup and
traversal. The Fragment Generator uses half-plane edge
functions [10][16][25] to determine object boundaries, and
generates each object’s fragments with a fragment “stamp”
in an order that enhances the efficiency of the memory
system. (A fragment contains the information required to
paint one pixel.) Each cycle, the stamp generates a single
textured fragment, a 2 x 2 square of 64-bit RGBAZ (red,
green, blue, alpha transparency, Z depth) fragments, or up
to 8 32-bit color or 32 8-bit color indexed fragments along
a scanline. When generating a 2 x 2 block of fragments,
the stamp interpolates six channels for each fragment: red,
green, blue, alpha transparency, Z depth, and fog intensity.
When generating a single texture-mapped fragment, the
stamp interpolates eight additional channels: three texture

WRL RESEARCH REPORT 98/1 NEON: A (BIG) (FAST) SINGLE-CHIP 3D WORKSTATION GRAPHICS ACCELERATOR

4

coordinates, the perspective correction term, and the four
derivatives needed to compute the mip-mapping level of
detail. Setup time depends upon the number of channels
and the precision required by those channels, ranging from
over 7 million triangles/second that are lit and Z-buffered,
down to just over 2 million triangles/second that are
trilinear textured, lit, fogged, and Z-buffered. The Frag-
ment Generator tests fragments against four clipping rec-
tangles (which may be inclusive or exclusive), and sends
visible fragments to Texel Central.

Texel Central was named after Grand Central Station,
as it provides a crossbar between memory controllers. Any
data that is read from the frame buffer in order to derive
data that is written to a different location goes through
Texel Central. This includes texture mapping, copies
within the frame buffer, and DMA transfers to main mem-
ory. Texel Central also expands a row of an internal
32 x 32 bitmap or an externally supplied 32 bit word into
256 bits of color information for 2D stippled fill operations,
expanding 800 million 32-bit RGBA fragments/second or
3.2 billion 8-bit color indexed fragments/second.

Texture mapping is performed at a peak rate of one
fragment per cycle before a Pixel Processor tests the Z
value. This wastes bandwidth by fetching texture data that
are obscured, but pre-textured fragments are about 350 bits
and post-textured fragments are about 100 bits. We
couldn’t afford more and wider fragment queues to texture
map after the Z depth test. Further, OpenGL semantics

don’t allow updating the Z buffer until after texture map-
ping, as a textured fragment may be completely transpar-
ent. Such a wide separation between reading and writing Z
values would significantly complicate maintaining frame
buffer consistency, as described in Section 5.2.2 below.
Finally, distributing pretextured fragments to the Memory
Controllers, then later texturing only the visible fragments
would complicate maintaining spatial locality of texture
accesses, as described in Section 5.3.4 below.

Texel Central feeds fragments to the eight Pixel Proc-
essors, each of which has a corresponding Memory Con-
troller. The Pixel Processors handle the back end of the
OpenGL rendering pipeline: alpha, stencil, and Z depth
tests; fog; source and destination blending (including raster
ops and OpenGL 1.2 operations like minimum and maxi-
mum); and dithering.

The Video Controller refreshes the screen, which can
be up to 1600 x 1200 pixels at 76 Hz, by requesting pixel
data from each Memory Controller. Each controller
autonomously reads and interprets overlay and display
format bytes. If a pixel’s overlay isn’t transparent, the
Memory Controller immediately returns the overlay data;
otherwise it reads and returns data from the front, back,
left, or right color buffer. The Video Controller sends low
color depth pixels (5/5/5 and 4/4/4) through “inverse dith-
ering” logic [5], which uses an adaptive digital filter to
restore much of the original color information. Finally, the
controller sends the filtered pixels to an external RAMDAC
for conversion to an analog video signal.

Neon equally partitions frame buffer memory among
the eight Memory Controllers. Each controller has five
request queues: Source Read Request from Texel Central,
Pixel Read and Pixel Write Request from its Pixel Proces-
sor, and two Refresh Read Requests (one for each SDRAM
bank) from the Video Controller. Each cycle, a Memory
Controller services a request queue using heuristics that
reduce wasted memory cycles.

A Memory Controller owns all data associated with a
pixel, so that it can process rendering and screen refresh
requests independently of the other controllers. Neon
stores the front/back/left/right buffers, Z, and stencil buff-
ers for a pixel in a group of 64 bits or 128 bits, depending
upon the number of buffers and the color depth. To im-
prove 8-bit 2D rendering speeds and to decrease screen
refresh overhead, a controller stores a pixel’s overlay and
display format bytes in a packed format on a different page.

5.2. Pixel Processors and Memory Controllers

Neon’s design began with the Pixel Processors and
Memory Controllers. We wanted to effectively use the
SDRAM’s large peak bandwidth by maximizing the num-
ber of controllers, and by reducing read/write turnaround
overhead, pipeline stalls due to unbalanced loading of the
controllers, and page crossing overhead.

Command Parse r

Fragment Genera tor

64-b i t PCI

Texel Cent ra l

P ixe l Processor

Memory Cont ro l le r

4-16 megabytes
S D R A M

PCI In ter face

V ideo
Contro l ler

Repl icated 8
t imes

Figure 1: Neon block diagram

WRL RESEARCH REPORT 98/1 NEON: A (BIG) (FAST) SINGLE-CHIP 3D WORKSTATION GRAPHICS ACCELERATOR

5

5.2.1. Memory Technology

We evaluated several memory technologies. We
quickly rejected extended data out (EDO) DRAM and
RAMBUS RDRAM due to inadequate performance (the
pre-Intel RAMBUS protocol is inefficient for the short
transfers we expected), EDO VRAM due to high cost, and
synchronous graphic RAM (SGRAM) due to high cost and
limited availability. This left synchronous DRAM
(SDRAM) and 3D-RAM.

3D-RAM [6], developed by Sun and Mitsubishi, turns
read/modify/write operations into write-only operations by
performing Z tests and color blending inside the memory
chips. The authors claim this feature gives it a “3-4x per-
formance advantage” over conventional DRAM technology
at the same clock rate, and that its internal caches further
increase performance to “several times faster” than con-
ventional DRAM.

We disagree. A good SDRAM design is quite com-
petitive with 3D-RAM’s performance. Batching eight
fragments reduces read latency and high-impedance bus
turnaround overhead to ½ cycle per fragment. While 3D-
RAM requires color data when the Z test fails, obscured
fragment writes never occur to SDRAM. In a scene with a
depth complexity of three (each pixel is covered on average
by three objects), about 7/18 of fragments fail the Z test.
Factoring in batching and Z failures, we estimated 3D-
RAM’s rendering advantage to be a modest 30 to 35%.
3D-RAM’s support for screen refresh via a serial read port
gives it a total performance advantage of about 1.8-2x
SDRAM. 3D-RAM’s caches didn’t seem superior to intel-
ligently organizing SDRAM pages and prefetching pages
into SDRAM’s multiple banks; subsequent measurement of
a 3D-RAM-based design confirmed this conclusion.

3D-RAM has several weaknesses when compared to
SDRAM. It does not use 3-input multipliers like those
described below in Section 5.3.7, so many source and des-
tination blends require two cycles. (Some of these blends
can be reduced to one cycle if the graphics chip does one of
the two multiplies per channel.) Blending is limited to
adding the source and destination factors: subtraction, min,
and max aren’t supported. 3D-RAM’s blending logic in-
correctly processes 8-bit data using base 256 arithmetic,
rather than OpenGL’s base 255 arithmetic (see Section
5.2.6 below). 3D-RAM computes the product FF16 × FF16

as FE16, and so thinks that 1 × 1 < 1! 4/4/4/4 color pixels
(four bits each of red, green, blue, and alpha transparency)
suffer more severe arithmetic errors; worse, 3D-RAM can-
not dither high-precision color data down to 4/4/4/4, lead-
ing to banding artifacts when blending. Support for 5/6/5
or 5/5/5/1 color is almost nonexistent. Working around
such deficiencies wastes space and time, as the graphics
accelerator must duplicate logic, and 3D-RAM sports a
slow 20 nsec read cycle time.

3DRAM does not take a Z/color pair in sequential or-
der; the pair is presented to separate 3DRAM chips, and a
Z buffer chip communicates the result of the Z test to a

corresponding color data chip. As a result, half the data
pins sit idle when not Z buffering.

3D-RAM parts are 10 megabits—the RAM is 5/8
populated to make room for caches and for Z compare and
blending logic. This makes it hard to support anything
other than 1280 x 1024 screens. 3D-RAM is 6 to 10 times
more expensive per megabyte than SDRAM. Finally, we’d
need a different memory system for texture data. The per-
formance advantage during Z buffering didn’t outweigh
these problems.

5.2.2. Fragment Batching and Overlaps

Processing fragments one at a time is inefficient, as
each fragment incurs the full read latency and high imped-
ance bus turnaround cycle overhead. Batch processing
several fragments reduces this overhead to a reasonable
level. Neon reads all Z values for a batch of fragments,
compares each to the corresponding fragment’s Z value,
then writes each visible fragment’s Z and color values back
to the frame buffer.

Batching introduces a read/write consistency problem.
If two fragments have the same pixel address, the second
fragment must not use stale Z data. Either the first Z write
must complete before the second Z read occurs, or the sec-
ond Z “read” must use an internal bypass. Since it is rare
for overlaps to occur closely in time, we found it acceptable
to stop reading pixel data until the first fragment’s write
completes. (This simplifying assumption does not hold for
anti-aliasing graphics accelerators, which generate two or
more fragments at the same location along adjoining object
edges.)

We evaluated several schemes to create batches with
no overlapping fragments, such as limiting a batch to a
single object; all these resulted in average batch lengths
that were unacceptably short. We finally designed a fully
associative eight-entry overlap detector per Memory Con-
troller, which normally creates batches of eight fragments.
(The size of the batch detector is matched to the total buff-
ering capacity for writing fragments.) The overlap detector
terminates a batch and starts a new batch if an incoming
fragment has the same screen address as an existing frag-
ment in the batch, or if the overlap detector is full. In both
cases, it marks the first fragment in the new batch, and
“forgets” about the old batch by clearing the associative
memory. When a memory controller sees a fragment with
a “new batch” mark, it writes all data associated with the
current batch before reading data for the new batch. Thus,
the overlap detector need not keep track of all unretired
fragments further down the pixel processing pipeline.

To reduce chip real estate for tags, we match against
only the two bank bits and the column address bits of a
physical address. This aliases all pairs of A and B banks,
as shown in Figure 2. Note how the red triangle spans four
physical pages, and how its fragments are aliased into two
pages. If two fragments are in the same position on differ-
ent pages in the same SDRAM bank, the detector falsely
flags an overlap. For example, the blue triangle appears to

WRL RESEARCH REPORT 98/1 NEON: A (BIG) (FAST) SINGLE-CHIP 3D WORKSTATION GRAPHICS ACCELERATOR

6

overlaps the red triangle in the aliased tag space. This
“mistake” can actually increase performance. In such
cases, it is usually faster to terminate the batch, and so turn
the bus around twice to complete all work on the first page
and then complete all work on the second page, than it is to
bounce twice between two pages in the same bank (see
Section 5.2.4 below).

5.2.3. Memory Controller Interleaving

Most graphics accelerators load balance memory con-
trollers by interleaving them in one or two dimensions,
favoring either screen refresh or rendering operations. An
accelerator may cycle through all controllers across a scan-
line, so that screen refresh reads are load balanced. This
one-dimensional interleaving pattern creates vertical strips
of ownership, as shown in Figure 3. Each square repre-
sents a pixel on the screen; the number inside indicates
which memory controller owns the pixel.

The SGI RealityEngine [1] has as many as 320 mem-
ory controllers. To improve load balancing during render-
ing, the RealityEngine horizontally and vertically tiles a 2D
interleave pattern, as shown in Figure 4. Even a two-
dimensional pattern may have problems load balancing the
controllers. For example, if a scene has been tessellated
into vertical triangle strips, and the 3D viewpoint maintains
this orientation (as in an architectural walk-through), a sub-
set of the controllers get overworked.

Neon load balances controllers for both rendering and
screen refresh operations by rotating a one-dimensional
interleaving pattern by two pixels from one scanline to the
next, as shown in Figure 5. This is also a nice pattern for
texture maps, as any 2 x 2 block of texels resides in differ-
ent memory controllers. (The SGI InfiniteReality [24] uses
a rotated pattern like Neon within a single rasterizing
board, but does not rotate the 2-pixel wide vertical strips
owned by each of the four rasterizing boards, and so has
the same load balancing problems as an 8-pixel wide non-
rotated interleave.)

In retrospect, Neon nicely balances work among the
Memory Controllers, but at such a fine grain that the con-
trollers make too many partially prefetched page crossings.
Small objects tend to include only a few locations on a

given page in each controller. Narrow vertical triangle
strips exacerbate the problem, as Neon’s pages are usually
wide but not very high (see Section 5.2.4 below). Conse-
quently, for such triangles the controllers frequently cannot
hide all of the precharge & row activate overhead when
switching banks.

Making each square in Figure 5 represent a 2 x 2 or
even a 4 x 4 pixel area increases memory efficiency by
increasing the number of pixels some controllers access on
a page, while hopefully reducing to zero the number of
pixels other controllers access on that page. This larger
granularity still distributes work evenly among controllers,
but requires a much larger screen area to average out the
irregularities. This in turn requires increased fragment
buffering capacity in the Memory Controllers, in order to
prevent starvation caused by one or more controllers emp-
tying their incoming fragment queues. We couldn’t afford
larger queues in Neon, but newer ASICs should have
enough real estate to remedy this inefficiency.

5.2.4. SDRAM Page Organization

SDRAM’s have two or four banks, which act as a two
or four entry direct mapped page cache. A page of
SDRAM data must be loaded into a bank with a row acti-
vate command before reading from the page. This load is
destructive, so a bank must be written back with a pre-

Figure 2: The partial tag compare aliases all pairs of A and
B bank pages, sometimes creating false overlaps

0 1 2 3 4 5 6 7 0 1

0 1 2 3 4 5 6 7 0 1

0 1 2 3 4 5 6 7 0 1

Figure 3: Typical 1D pixel interleaving

0 1 2 3 4 5 6 7 0 1

8 9 10 11 12 13 14 15 8 9

0 1 2 3 4 5 6 7 0 1

Figure 4: Typical 2D pixel interleaving

0 1 2 3 4 5 6 7 0 1

2 3 4 5 6 7 0 1 2 3

4 5 6 7 0 1 2 3 4 5

6 7 0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 0 1

Figure 5: Neon’s rotated pixel interleaving

WRL RESEARCH REPORT 98/1 NEON: A (BIG) (FAST) SINGLE-CHIP 3D WORKSTATION GRAPHICS ACCELERATOR

7

charge command before loading another page into the
bank. These commands take several cycles, so it is desir-
able to access as much data as possible on a page before
moving to a new page. It is possible to prefetch a page into
one bank—that is, precharge the old page and row activate
a new page—while reading or writing data to a different
bank. Prefetching a page early enough hides the prefetch
latency entirely.

Neon reduces the frequency of page crossings by allo-
cating a rectangle of pixels to an SDRAM page. Object
rendering favors square pages, while screen refresh favors
wider pages. Neon keeps screen refresh overhead low by
allocating on-screen pages with at worst an 8 x 1 aspect
ratio, and at best a 2 x 1 aspect ratio, depending upon pixel
size, number of color buffers, and SDRAM page size.
Texture maps and off-screen buffers, with no screen refresh
constraints, use pages that are as square as possible. Three-
dimensional textures use pages that are as close to a cube of
texels as possible.

In the 32 megabyte configuration, each Memory Con-
troller has two banks, called A and B. Neon checkerboards
pages between the two banks, as shown in Figure 6. All
horizontal and vertical page crossings move from one bank
to the other bank, enhancing opportunities for prefetching.

In the 64 and 128 megabyte configurations, each con-
troller has four banks. Checkerboarding all four banks
doesn’t improve performance sufficiently to warrant the
complication of prefetching two or three banks in parallel.
Instead, these configurations assign two banks to the bot-
tom half of memory, and the other two banks to the top
half. Software preferentially allocates pixel buffers to the
bottom two banks, and texture maps to the top two banks,
to eliminate page thrashing between drawing buffer and
texture map accesses.

5.2.5. Fragment Generation Chunking

Scanline-based algorithms generate fragments in an
order that often prohibits or limits page prefetching. Figure
7 shows a typical fragment generation order for a triangle
that touches four pages. The shaded pixels belong to bank
A. Note how only the four fragments numbered 0 through
3 access the first A page before fragment 4 accesses the B
page, which means that the precharge and row activate
overhead to open the first B page may not be completely
hidden. Note also that fragment 24 is on the first B page,
while fragment 25 is on the second B page. In this case the
page transition cannot be hidden at all.

To further increase locality of reference, the Fragment
Stamp generates an object in rectangular “chunks.” When
not texture mapping, a chunk corresponds to a page, so that
the stamp generates an object’s fragments one page at a
time. This decreases page crossings, and gives the maxi-
mum possible time to prefetch the next page. Figure 8
shows the order in which Neon generates fragments for the
same triangle. Note how the “serpentine” order in which
chunks are visited further increases the number of page
crossings that can exploit prefetching.

5.2.6. Repeated Fraction Arithmetic

We concentrated not only upon the efficiency of pixel
processing, but also upon arithmetic accuracy. Since many
designs do not blend or dither pixel values correctly, we
describe the arithmetic behind these operations in this and
the next section.

If the binary point is assumed to be to the left of an n-
bit fixed point color value, the value represents a discrete
number in the inclusive range [0, 1 – 2-n]. However,
OpenGL and common sense require that the number 1 be
representable. We can accomplish this by dividing an n-bit

A B A B A B

B A B A B A

A B A B A B

Figure 6: Page interleaving with two banks

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28

28 29 30

31 32

0 1 2 3 4

5 6 7 8 9 10 11 12

Figure 7: Scanline fragment generation order

7 8 17 18 19 20

9 10 21 22 23 24

32 25 26 27

33 28 29

30 31

0 1 2 3 11

4 5 6 12 13 14 15 16

Figure 8: Neon’s chunking fragment generation order

WRL RESEARCH REPORT 98/1 NEON: A (BIG) (FAST) SINGLE-CHIP 3D WORKSTATION GRAPHICS ACCELERATOR

8

value by 2n-1 rather than by 2n. This is not as difficult as
it sounds: vn/(2

n-1) is representable in binary form by infi-
nitely repeating the n-bit number vn to the right of the bi-
nary point. This led us to refer to such numbers as “re-
peated fractions.”

Jim Blinn provides a detailed description of repeated
fraction numbers in [4]. Briefly, ordinary binary arithme-
tic is inadequate for multiplication. The product’s implicit
divisor is (2n-1)2, and so the product must be converted to a
bit pattern whose implicit divisor is 2n-1. Simply rounding
the product to n bits is equivalent to dividing by 2n rather
than by 2n-1, and so biases the result toward 0. This is why
3D-RAM computes 1 × 1 < 1. If multiple images or trans-
parent surfaces are composited with this erroneous bias, the
resulting color may be significantly darker than desired.

We can use ordinary binary arithmetic to compute the
repeated fraction product p of two n-bit repeated fraction
numbers a and b:

q = a*b + 2n-1;
p = (q + (q >> n)) >> n;

This adjustment can be implemented with an extra
carry-propagate adder after the multiply, inside the multi-
plier by shifting two or more partial sums, or as part of the
dithering computations described in the following section.

5.2.7. Dithering

Dithering is a technique to spread errors in the reduc-
tion of high-precision n-bit numbers to lower-precision m-
bit numbers. If we convert an n-bit number vn to an m-bit
number vm by rounding (adding ½ and truncating) and
shifting:

vm = (vn + 2n-m-1) >> (n-m)

we will probably see color banding if m is less than about 8
to 10 bits, depending upon room lighting conditions. Large
areas are a constant color, surrounded by areas that are a
visibly different constant color.

Instead of adding the constant rounding bit 2n-m-1, a
dithering implementations commonly add a variable
rounding value d(x, y) in the half-open range from [0, 1).
(Here and below, we assume that d has been shifted to the
appropriate bit position in the conversion.) The rounding
value is usually computed as a function of the bottom bits
of the (x, y) position of the pixel, and must have an average
value of 0.5 when evaluated over a neighborhood of nearby
(x, y) positions. Dithering converts the banding artifacts to
noise, which manifests itself as graininess. If too few bits
of x and y are used to compute d, or if the dither function is
too regular, dithering also introduces dither matrix artifacts,
which manifest themselves at repeated patterns of darker
and lighter pixels.

The above conversion is correct for binary numbers,
but not for repeated fractions. We can divide the repeated
fraction computations into two parts. First, compute the
real number in the closed interval [0, 1] that the n-bit num-
ber represents:

r = vn / (2
n – 1)

= 0. vn vn vn … (base 2)

Next, convert this into an m-bit number:

vm = floor(r * (2m – 1) + d(x, y))
 = floor((r << m) – r) + d(x, y))

 Rather than convert the binary product to a repeated
fraction number, then dither that result, Neon combines the
repeated fraction adjustment with dithering, so that dither-
ing operates on the 2n-bit product. Neon approximates the
above conversions to a high degree of accuracy with:

q = a*b;
vm = (q + (q >> (n–1)) – (q >> m) – (q >> (m+n–1)

+ d(x, y) + 2n-e-1) >> (2*n – m)

Similar to adding a rounding bit (i.e. 2n-1) below the
top n bits as in Section 5.2.6 above, here we add a rounding
bit 2m-e-1 below the dither bits. The value e represents how
far the dither bits extend past the top m bits of the product.
Neon computes 5 unique dither bits, and expands these by
replication if needed so that they extend 6 bits past the top
8 bits of the product.

Finally, certain frame buffer operations should be
idempotent. In particular, if we read a low-precision m-bit
repeated fraction number from the frame buffer into a high-
precision n-bit repeated fraction register, multiply by 1.0
(that is, 2n–1), dither, and write the result back, we should
not change the m-bit value. If n is a multiple of m, this
happens automatically. But if, for example, n is 8 and m is
5, certain m-bit values will change. This is especially true
if 5-bit values are converted to 8-bit values by replication
[31], rather than to the closest 8-bit value. Our best solu-
tion to this problem was to clamp the dither values to lie in
the half-open interval [ε(m, n), 1 – ε(m, n)), where ε is
relatively small. For example ε(5, 8) is 3/32.

5.3. Texel Central

Texel Central is the kitchen sink of Neon. Since it is
the only crossbar between memory controllers, it handles
texturing and frame buffer copies. Pixel copying and tex-
ture mapping extensively share logic, including source ad-
dress computation, a small cache for texel and pixel reads,
read request queues, format conversion, and destination
steering. Since it has full connectivity to the Pixel Proces-
sors, it expands a row of the internal 32 x 32 bitmap or an
externally supplied bitmap to foreground and background
colors for transparent or opaque stippling.

The subsections below describe the perspective divide
pipeline, a method of computing OpenGL’s mip-mapping
level of detail with high accuracy, a texture cache that re-
duces memory bandwidth requirements with fewer gates
than a traditional cache, and the trilinear filtering multiplier
tree.

WRL RESEARCH REPORT 98/1 NEON: A (BIG) (FAST) SINGLE-CHIP 3D WORKSTATION GRAPHICS ACCELERATOR

9

5.3.1. Perspective Divide Pipeline

Exploiting Heckbert and Moreton’s observations [14],
we interpolate the planar (affine) texture coordinate chan-
nels u’ = u/q, v’ = v/q, and w’ = w/q. For each textured
fragment, we must then divide these by the planar perspec-
tive channel q’ = 1/q to yield the three-dimensional per-
spective-correct texture coordinates (u, v, w). Many im-
plementations compute the reciprocal of 1/q, then perform
three multiplies. We found that a 12-stage, 6-cycle divider
pipeline was both smaller and faster. This is because we
use a small divider stage that avoids propagating carries as
it accumulates the quotient, and we decrease the width of
each stage of the divider.

The pipeline is built upon a radix-4 non-restoring di-
vider stage that yields two bits of quotient. A radix-4 di-
vider has substantial redundancy (overlap) in the incre-
mental quotient bits we can choose for a given dividend
and divisor. A typical radix-4 divider [11] exploits this
redundancy to restrict quotients to 0, ±1, and ±2, avoiding
quotients of ±3 so that a 2-input adder can compute the new
partial remainder. This requires a table indexed by five
remainder bits and three divisor bits (excluding the leading
1 bit) to choose two new quotient bits. It also means that
when a new negative quotient is added to the previous par-
tial quotient, the carry bit can propagate up the entire sum.

Neon instead exploits the redundancy to avoid an in-
cremental quotient of 0, and uses a 3-input adder to allow
an incremental quotient of ±3. This simplifies the table
lookup of new quotient bits, requiring just three partial re-
mainder bits and one divisor bit (excluding the leading 1).
It also ensures that the bottom two bits of the partial quo-
tient can never be 00, and so when adding new negative
quotient bits to the previously computed partial quotient,
the carry propagates at most one bit. Here are the three
cases where the (unshifted) previous partial quotient ends
in 01, 10, and 11, and the new quotient bits are negative.

 ab0100 ab1000 ab1100
+ 1111xy + 1111xy + 1111xy
 ab00xy ab01xy ab10xy

Neon does not compute the new partial remainders,
nor maintain the divisor, to the same accuracy throughout
the divide pipeline. After the third 2-bit divider stage, their
sizes are reduced by two bits each stage. This results in an
insignificant loss of accuracy, but a significant reduction in
gate count.

5.3.2. Accurate Level of Detail Computation

Neon implements a more accurate computation of the
mip-mapping [32] level of detail (LOD) than most hard-
ware. The LOD is used to bound, for a given fragment, the
instantaneous ratio of movement in the texture map coordi-
nate space (u, v) to movement in screen coordinate space
(x, y). This avoids aliasing problems caused by undersam-
pling the texture data.

 Computing OpenGL’s desired LOD requires deter-
mining the distances moved in the texture map in the u and
v directions as a function of moving in the x and y direc-
tions on the screen. That is, we must compute the four
partial derivatives ∂u/∂x, ∂v/∂x, ∂u/∂y, and ∂v/∂y.

If u’(x, y), v’(x, y), and q’(x, y) are the planar functions
u(x, y)/q(x, y), v(x, y)/q(x, y), and 1/q(x, y), then:

∂u/∂x = (q’(x, y) * ∂u’/∂x – u’(x, y) * ∂q’/∂x) / q’(x, y)2

∂v/∂x = (q’(x, y) * ∂v’/∂x – v’(x, y) * ∂q’/∂x) / q’(x, y)2

∂u/∂y = (q’(x, y) * ∂u’/∂y – u’(x, y) * ∂q’/∂y) / q’(x, y)2

∂v/∂y = (q’(x, y) * ∂v’/∂y – v’(x, y) * ∂q’/∂y) / q’(x, y)2

(We’ve dropped the dependency on x and y for terms
that are constant across an object.) The denominator is the
same in all four partial derivatives. We don’t compute
q’(x, y)2 and divide, as suggested in [8], but instead imple-
ment these operations as a doubling and a subtraction of
log2(q’) after the log2 of the lengths described below.

The numerators are planar functions, and thus it is
relatively easy to implement setup and interpolation hard-
ware for them. If an application specifies a mip-mapping
texture mode, Neon computes numerators from the vertex
texture coordinates, with no additional software input.

Neon uses the above partial derivative equations to
compute initial values for the numerators using eight mul-
tiplies, in contrast to the 12 multiplies described in [8]. The
setup computations for the x and y increments use different
equations, which are obtained by substituting the defini-
tions for u’(x, y), v’(x, y), and q’(x, y), then simplifying:

∂u/∂x = ((∂q’/∂y * ∂u’/∂x – ∂q’/∂x * ∂u’/∂y) * y
+ q’(0, 0) * ∂u’/∂x – u’(0,0) * ∂q’/∂x) / q’(x, y)2

∂v/∂x = ((∂q’/∂y * ∂v’/∂x – ∂q’/∂x * ∂v’/∂y) * y
+ q’(0, 0) * ∂v’/∂x – v’(0,0) * ∂q’/∂x) / q’(x, y)2

∂u/∂y = ((∂q’/∂x * ∂u’/∂y – ∂q’/∂y * ∂u’/∂x) * x
+ q’(0, 0) * ∂u’/∂y – u’(0,0) * ∂q’/∂y) / q’(x, y)2

∂v/∂y = ((∂q’/∂x * ∂v’/∂y – ∂q’/∂y * ∂v’/∂x) * x
+ q’(0, 0) * ∂v’/∂y – v’(0,0) * ∂q’/∂y) / q’(x, y)2

First, note that the numerators of ∂u/∂x and ∂v/∂x de-
pend only upon y, and that ∂u/∂y and ∂v/∂y depend only
upon x. Second, note that the ∂u/∂y and ∂v/∂y x increments
are the negation of the ∂u/∂x and ∂v/∂x y increments, re-
spectively. Finally, we don’t need the constant offsets—
the initial values of the numerators take them into account.
We thus use four multiplies to obtain two increments.

OpenGL next determines the length of the two vectors
(∂u/∂x, ∂v/∂x) and (∂u/∂y, ∂v/∂y), takes the maximum
length, then takes the base 2 logarithm:

LOD = log2(max(sqrt((∂u/∂x)2 + (∂v/∂x)2),
 sqrt((∂u/∂y)2 + (∂v/∂y)2)))

Software does four multiplies for the squares, and con-
verts the square root to a divide by 2 after the log2.

Note that this LOD computation requires the compu-
tation of all four derivatives. The maximum can change
from one square root to the other within a single object.
Accelerators that whittle the LOD computation down to a

WRL RESEARCH REPORT 98/1 NEON: A (BIG) (FAST) SINGLE-CHIP 3D WORKSTATION GRAPHICS ACCELERATOR

10

single interpolated channel may incur substantial errors,
and cannot comply with OpenGL’s lax requirements.

 OpenGL allows implementations to compute the LOD
using gross approximations to the desired computation.
Hardware commonly takes the maximum of the partial de-
rivative magnitudes:

LOD = log2(max(abs(∂u/∂x), abs(∂v/∂x),
 abs(∂u/∂y), abs(∂v/∂y)))

This can result in an LOD that is too low by half a
mipmap level, an error which reintroduces the aliasing arti-
facts that mip-mapping was designed to avoid.

Neon uses a two-part linear function to approximate
the desired distances. Without loss of generality, assume
that a > 0, b > 0, a > b. The function:

if (b < a/2) return a + b/4 else return 7a/8 + b/2

is within ± 3% of sqrt(a2 + b2). This reduces the maximum
error to about ±0.05 mipmap levels—a ten-fold increase in
accuracy over typical implementations, for little extra
hardware. The graph in Figure 9 shows three methods of
computing the level of detail as a texture mapped square on
the screen rotates from 0° through 45°. In this example, the
texture map is being reduced by 50% in each direction, and
so the desired LOD is 1.0. Note how closely Neon’s im-
plementation tracks the desired LOD, and how poorly the
typical implementation does.

5.3.3. Texel Cache Overview

Texel Central has eight fully associative texel caches,
one per memory controller. These are vital to texture map-
ping performance, since texel reads steal bandwidth from
other memory transactions. Without caching, the 8 texel
fetches per cycle for trilinear filtering require the entire
peak bandwidth of memory. Fortunately, many texel

fetches are redundant; Hakura & Gupta [13] found that
each trilinearly filtered texel is used by an average of four
fragments. Each cache stores 32 bytes of data, so holds 8
32-bit texels, 16 16-bit texels, or 32 8-bit texels. Neon’s
total cache size is a mere 256 bytes, compared to the 16 to
128 kilobyte texel caches described in [13]. Our small
cache size works well because chunking fragment genera-
tion improves the hit rate, the caches allow many more
outstanding misses than cache lines, the small cache line
size of 32 bits avoids fetching of unused data, and we never
speculatively fetch cache lines that will not be used.

The texel cache also improves rendering of small X11
and Windows 2D tiles. An 8 x 8 tile completely fits in the
caches, so once the caches are loaded, Texel Central gener-
ates tiled fragments at the maximum fill rate of 3.2 giga-
bytes per second. The cache helps larger tiles, too, as long
as one scanline of the tile fits into the cache.

5.3.4. Improving the Texel Cache Hit Rate

In order to avoid capacity misses in our small texel
cache, fragments that are close in 2D screen space must be
generated closely in time. Once again, scanline-based
fragment generation is non-optimal. If the texel require-
ments of one scanline of a wide object exceed the capacity
of the cache, texel overlaps across adjacent scanlines are
not captured by the cache, and performance degrades to
that of a single-line cache. Scanline generators can allevi-
ate this problem, but not eliminate it. For example, frag-
ment generation may proceed in a serpentine order, going
left to right on one scanline, then right to left on the next.
This always captures some overlap between texel fetches
on different scanlines at the edges of a triangle, but also
halves the width at which cache capacity miss problems
appear.

Neon attacks this problem by exploiting the chunking
fragment generation described in Section 5.2.5 above.
When texturing, Neon matches the chunk size to the texel
cache size. Capacity misses still occur, but usually only for
fragments along two edges of a chunk. Neon further re-
duces redundant fetches by making chunks very tall and
one pixel wide (or vice versa), so that redundant fetches are
mostly limited to the boundaries between chunk rows.

Figure 10 shows fragment generation order for texture
mapping, where the chunks are shown as 4 x 1 for illustra-
tion purposes. (Chunks are actually 8 x 1 for 32-bit and 16-
bit texels, and 16 x 1 for 8-bit texels.) The chunk bounda-
ries are delineated with thick lines. Neon restricts chunks
to be aligned to their size, which causes triangles to be split
into more chunk rows than needed. Allowing chunks to be
aligned to the stamp size (which is 1 x 1 when texturing)
would eliminate this inefficiency: the top of the triangle
would then start at the top of the first chunk row, rather
than some point inside the row.

If each texel is fetched on behalf of four fragments,
chunking reduces redundant fetches in large triangles by
nearly a factor of 8, and texel read bandwidth by about
35%, when compared to a scanline fragment generator.

0.5

0.6

0.7

0.8

0.9

1

1.1

0 10 20 30 40
Angle in degrees

Le
ve

l o
f d

et
ai

l

Desired computation

Neon's approximation

Typical approximation

Figure 9: Various level of detail approximations

WRL RESEARCH REPORT 98/1 NEON: A (BIG) (FAST) SINGLE-CHIP 3D WORKSTATION GRAPHICS ACCELERATOR

11

5.3.5. Texel Cache Operation

A texel cache must not stall requests after a miss, or
performance would be worse than not using a cache at all!
Further, the cache must track a large number of outstanding
misses—since several other request queues are vying for
the memory controller’s attention, a miss might not be
serviced for tens of cycles.

A typical CPU cache requires too much associative
logic per outstanding miss. By noting that a texel cache
should always return texels in the same order that they
were requested, we eliminated most of the associative
bookkeeping. Neon instead uses a queue between the ad-
dress tags and the data portion of the texel cache to main-
tain hit/miss and cache line information. This approach
appears to be similar to the texel cache described in [33].

Figure 11 shows a block diagram of the texel cache. If
an incoming request address matches an Address Cache
entry, the hardware appends an entry to the Probe Result
Queue. This entry records that a hit occurred at the cache
line index of the matched address.

If the request doesn't match a cached address, the
hardware appends an entry to the Probe Result Queue indi-
cating a miss. This miss entry records the current value of
the Least Recently Written Counter (LRWC) as the cache

index—this is the location that the new data will eventually
be written to in the Data Cache. The cache logic appends
the requested address to the Address Queue, writes the ad-
dress into the Address Cache line at the location specified
by the LRWC, and increments the LRWC. The Memory
Controller eventually services the entry in the Address
Queue, reads the texel data from memory, and deposits the
corresponding texel data at the tail of the Data Queue.

To supply texture data that was cached or read from
memory to the texel filter tree, the cache hardware exam-
ines the head entry of the Probe Result Queue each cycle.
A “hit” entry means that the requested data is available in
the Data Cache at the location specified by the cache index.
When the requested data is consumed, the head entry of the
Probe Result Queue is removed.

If the head entry indicates a “miss” and the Data
Queue is non-empty, the requested data is in the head entry
of the Data Queue. When the data is consumed, it is writ-
ten into the Data Cache at the location specified by the
cache index. The head entries of the Probe Result and Data
Queues are then removed.

5.3.6. Unifying Texel Filtering Modes

Neon is designed to trilinear filter texels. All other
texel filtering operations are treated as subsets of this case
by adjusting the (u0, v0, u1, v1, LOD) coordinates, where (u0,
v0) are coordinates in the lower mipmap level and (u1, v1)
are coordinates in the next higher mipmap level. For ex-
ample, filters that use the nearest mip-map level add 0.5 to
the LOD, and then zero the fractional bits. Point-sample
filters that use the nearest texel in a mip-map do the same
to the u0, v0, u1, and v1 coordinates. Filtering modes that
don’t use mip-maps zero the entire LOD.

Although all filtering modes look like a trilinear fil-
tering after this coordinate adjustment, each mode con-
sumes only as much memory bandwidth as needed. Before
probing the address cache, a texel’s u, v, and LOD values
are examined. If the texel’s value is irrelevant, because it
will be weighted by a coefficient of zero, then the request is
not made to the address or data portions of the cache.

30 26 22 18 15 13

31 27 23 19 16 14

28 24 20 17

29 25 21

32 33

0 1 3 5 7

2 4 6 8 9 10 11 12

Figure 10: Chunking improves the texel cache hit rate

Address
Cache

Address
Q u e u e

M e m o r y
Contro l ler

Probe Resu l t
Q u e u ecache index

hi t /miss Data
Cache

Data
Q u e u e

Cache/
Q u e u e M u x

L R W
Counte r

Read Rep ly DataRead Reques t Address

Figure 11: Texel cache block diagram

WRL RESEARCH REPORT 98/1 NEON: A (BIG) (FAST) SINGLE-CHIP 3D WORKSTATION GRAPHICS ACCELERATOR

12

5.3.7. Filter Tree Structure

Neon’s trilinear filter multipliers directly compute the
function:

a*(1.0-c) + b*c

This requires minor changes to a standard multiplier.
The value (1.0-c) is represented as ~c+1. For each bit of c,
rather than adding a shifted b or 0, the multiplier adds a
shifted b or a. That is, at each bit in the multiplier array, an
AND gate is replaced with a multiplexer. An extra row is
also needed to unconditionally add in a.

Trilinear filtering uses seven of these multipliers,
where the c input is the fractional bits of u, v, or LOD, as
shown in Figure 12. Each 2 x 2 x 2 cube shows which tex-
els have been blended. The front half of the cube is the
lower mip-map level, the back half is the higher mip-map
level. The first stage combines left and right pairs of tex-
els, by applying the fractional u0 and u1 bits to reduce the
eight texels to four intermediate values. The second stage
combines the top and bottom pairs, using the fractional v0

and v1 bits to reduce the four values to the two bilinear fil-
tered results for each mip-map level. The third stage
blends the two bilinearly filtered values into a trilinearly
filtered result using the fractional LOD bits.

It’s easy to see that this tree can implement any 2D
separable filter in which f(u) = 1 – f(1 – u), by using a sim-
ple one-dimensional filter coefficient table. For example, it
could be used for a separable cubic filter of radius 1:

f(u) = 2*abs(u3) – 3*u2 + 1

Less obviously, we later realized that the filter tree can
implement any separable filter truncated to 0 beyond the

2 x 2 sampling square. For example, the Gaussian filter:

f(u, v) = e–α (u2 + v2) when u < 1 and v < 1
f(u, v) = 0 otherwise

is separable into:

f(u, v) = e–α u2
 e

–α v2

If we remap the fractional bits of u as:

map[u] = e–α u2
 / (e–α u2

 + e–α (1–u)2)

and do the same for v, for both mip-map levels, and then
feed the mapped fractional bits into the filter tree, it com-
putes the desired separable function. The first level of the
tree computes:

tbottom = (t00 * e
–α u2

 + t10 * e
–α (1–u)2) / (e–α u2

 + e–α (1–u)2)

ttop = (t01 * e
–α u2

 + t11 * e
–α (1–u)2) / (e–α u2

 + e–α (1–u)2)

The second level of the tree computes:

t = (tbottom * e
–α v2

 + ttop * e
–α (1–v)2) / (e–α v2

 + e–α (1–v)2)

= (t00 * e
–α u2

 * e–α v2
 + t10 * e

–α (1–u)2 * e–α v2

+ t01 * e
–α u2

 * e–α (1–v)2 + t11 * e
–α (1–u)2 * e–α (1–v)2)

/ (e–α u2
 + e–α (1–u)2) * (e–α v2

 + e–α (1–v)2)

The third level of the tree linearly combines the Gaus-
sian results from the two adjacent mip-maps. Using a
Gaussian filter rather than a bilinear filter on each mip-map
improves the quality of texture magnification, though it
reduces the sharpness of minified images. It also improves
the quality of anisotropic texture minification, as discussed
further in [22].

a*(1-c) +
b*c

f rac(u0) a*(1-c) +
b*c

a*(1-c) +
b*c

f rac(u1) a*(1-c) +
b*c

a*(1-c) +
b*c

f rac(v0) a*(1-c) +
b*c

f rac(v1)

a*(1-c) +
b*c

f rac (LOD)

Figure 12: Filter multiplier tree

WRL RESEARCH REPORT 98/1 NEON: A (BIG) (FAST) SINGLE-CHIP 3D WORKSTATION GRAPHICS ACCELERATOR

13

5.4. Fragment Generator

The Fragment Generator determines which fragments
are within an object, generates them in an order that re-
duces memory bandwidth requirements, and interpolates
the channel data provided at vertices.

The fragment generator uses half-plane edge functions
[10][16][25] to determine if a fragment is within an object.
The three directed edges of a triangle, or the four edges of a
line, are represented by planar (affine) functions that are
negative to the left of an edge, positive to the right, and
zero on an edge. A fragment is inside an object if it is to
the right of all edges in a clockwise series, or to the left of
all the edges in a counterclockwise series. (Fragments ex-
actly on an edge of the object use special inclusion rules.)
Figure 13 shows a triangle described by three clockwise
edges, which are shown with bold arrows. The half-plane
where each edge function is positive is shown by several
thin “shadow” lines with the same slope as the edge. The
shaded portion shows the area where all edge functions are
positive.

For most 3D operations, a 2 x 2 fragment stamp evalu-
ates the four edge equations at each of the four positions in
the stamp. Texture mapped objects use a 1 x 1 stamp, and
2D objects use an 8 x 1 or 32 x 1 stamp. The stamp bristles
with several probes that evaluate the edge equations outside
the stamp boundaries; each cycle, it combines these results
to determine in which direction the stamp should move
next. Probes are cheap, as they only compute a sign bit.
We use enough probes so that the stamp avoids moves to
locations outside the object (where it does not generate any
fragments) unless it must in order to visit other positions
inside the object. When the stamp is one pixel high or
wide, several different probes may evaluate the edge func-
tions at the same point. The stamp movement algorithm
handles coincident probes without special code for the
myriad stamp sizes. Stamp movement logic cannot be
pipelined, so simplifications like this avoid making a criti-
cal path even slower.

The stamp may also be constrained to generate all
fragments in a 2m by 2n rectangular “chunk” before moving
to the next chunk. Neon’s chunking is not cheap: it uses

three additional 600-bit save states and associated multi-
plexers. But chunking improves the texture cache hit rate
and decreases page crossings, especially non-prefetchable
crossings. We found the cost well worth the benefits.
(Chunking could be a lot cheaper—we recently discovered
that we could have used a single additional save state.)

The Fragment Generator contains several capabilities
specific to lines. The setup logic can adjust endpoints to
render Microsoft Windows “cosmetic” lines. Lines can be
dashed with a pattern that is internally generated for
OpenGL lines and some X11 lines, or externally supplied
by software for the general X11 dashed line case. We paint
OpenGL wide dashed lines by sweeping the stamp hori-
zontally across scanlines for y-major lines, and vertically
across columns for x-major lines. Again, to avoid slowing
the movement logic, we don’t change the movement algo-
rithm. Instead, the stamp always moves across what it
thinks are scanlines, and we lie to it by exchanging x and y
coordinate information on the way in and out of the stamp
movement logic.

Software can provide a scaling factor to the edge
equations to paint the rectangular portion of X11 wide
lines. (This led us to discover a bug in the X11 server’s
wide line code.) Software can provide a similar scaling
factor for antialiased lines. Neon nicely rounds the tips of
antialiased lines and provides a programmable filter radius;
these features are more fully described in [23]. The
OpenGL implementation exploits these features to paint
antialiased square points up to six pixels in diameter that
look like the desired circular points.

5.5. Command Parser

The Command Parser decodes packets, detects packet
errors, converts incoming data to internal fixed-point for-
mats, and decomposes complex objects like polygons,
quads, and quad-strips into triangle fans for the fragment
generator. Neon’s command format is sufficiently compact
that we use the PCI bus rather than a high-speed proprie-
tary bus between the CPU and the graphics device. A well-
implemented 32-bit, 33 MHz PCI provides over 100 mega-
bytes/second for DMA and sequential PIO (Programmed
I/O) writes, while a 64-bit PCI provides over 200 mega-
bytes/second.

We don’t initiate activity with out-of-order writes to
registers or frame buffer locations, but use low-overhead
variable-length sequential commands to exploit streaming
transfers on the PCI. The processor can write commands
directly to Neon, or can write to a ring buffer in main
memory, which Neon reads using DMA.

Neon supports multiple command ring buffers at dif-
ferent levels of the memory hierarchy. The CPU preferen-
tially uses a small ring buffer that fits in the on-chip cache,
which allows the CPU to write to it quickly. If Neon falls
behind the CPU, which then fills the small ring buffer, the
CPU switches to a larger ring buffer in slower memory.
Once Neon catches up, the CPU switches back to the
smaller, more efficient ring buffer.Figure 13: Triangle described by three edge functions

WRL RESEARCH REPORT 98/1 NEON: A (BIG) (FAST) SINGLE-CHIP 3D WORKSTATION GRAPHICS ACCELERATOR

14

5.5.1. Instruction Set

Polygon vertex commands draw independent triangles,
triangle strips, and triangle fans, and independent quadrilat-
erals and quad strips. They consist of a 32-bit command
header word, a 32-bit packet length, and a variable amount
of per-vertex or per-object data, such as Z depth informa-
tion, RGB colors, alpha transparency, eye distance for fog,
and texture coordinates. Per-vertex data is provided at each
vertex, and is smoothly interpolated across the object. Per-
object data is provided only at each vertex that completes
an object (for example, each third vertex for independent
triangles, each vertex after the first two for triangle strips),
and is constant across the object. Thus, the CPU provides
only as much data as is actually needed to specify a poly-
gon; there is no need to replicate data when painting flat
shaded triangles or when painting strips. We don’t provide
per-packet data, since it would save only one word over
changing the default color and Z registers with a register
write command.

Line vertex commands draw independent lines and line
strips. In addition to per-vertex and per-object data, line
commands also allow several types of per-pixel data. This
lets us implement new functionality in software while tak-
ing advantage of Neon’s existing capabilities. Painting a
triangle using lines and per-pixel data wouldn’t offer
blinding performance, but it would be faster than having to
paint using Neon’s Point command.

The Point vertex command draws a list of points, and
takes per-vertex data. Points may be wide and/or an-
tialiased. (Antialiased points aren’t true circles, but are
antialiased squares with a wide filter, so look good only for
points up to about five or six pixels wide.)

Rectangle commands paint rectangles to the frame
buffer, or DMA rectangular regions of the frame buffer to
main memory. Rectangles may be solid filled, or fore-
ground and background stippled using the internal 32 x 32
stipple pattern, or via stipple data in the command packet.
Rectangles may also fetch source data from several
sources: from inline data in the packet, from main memory
locations specified in the packet, from an identically sized
rectangle in frame buffer memory, from a 2m x 2n tile, or
from an arbitrary sized texture map using any of the texture
map filters. This last capability means that Neon can
rescale an on-screen video image via texture mapping and
deposit the result into main memory via DMA with no in-
termediate buffers.

The Interlock command ensures that a buffer swap
doesn’t take place until screen refresh is outside of a small
critical region (dependent upon the window size and loca-
tion), in order to avoid tearing artifacts. And a multichip
variant of the interlock command guarantees that a buffer
swap takes place only when a group of Neon chips are all
ready to swap, so that multiple monitors can be animated
synchronously.

5.5.2. Vertex Data Formats

Neon supports multiple representations for some data.
For example, RGBA color and transparency can be sup-
plied as four 32-bit floating point values, four packed 16-
bit integers, or four packed 8 bit integers. The x and y co-
ordinates can be supplied as two 32-bit floating point val-
ues, or as signed 12.4 fixed-point numbers. Using floating
point, the six values (x, y, z, r, g, b) require 24 bytes per
vertex. Using Neon’s most compact representation, they
require only 12 bytes per vertex. These translate into about
4 million and 8 million vertices/second on a 32-bit PCI.

If the CPU is the bottleneck, as with lit triangles, the
CPU uses floating-point values and avoids clamping, con-
version, and packing overhead. If the CPU can avoid
lighting computations, and the PCI is the bottleneck, as
with wireframe drawings, the CPU uses the packed for-
mats. Future Alpha chips may saturate even a 64-bit PCI
or an AGP-2 bus with floating point triangle vertex data,
but may also be able to hide clamping and packing over-
head using new instructions and more integer functional
units. Packed formats on a 64-bit PCI allows transferring
about 12 to 16 million (x, y, z, r, g, b) vertices per second.

5.5.3. Better Than Direct Rendering

Many vendors have implemented some form of direct
rendering, in which applications get direct control of a
graphics device in order to avoid the overhead of encoding,
copying, and decoding an OpenGL command stream [18].
(X11 command streams are generally not directly rendered,
as X11 semantics are harder to satisfy than OpenGL’s.)
We were unhappy with some of the consequences of direct
rendering. To avoid locking and unlocking overhead, CPU
context switches must save and restore both the architec-
tural and internal implementation state of the graphics de-
vice on demand, including in the middle of a command.
Direct rendering applications make new kernel calls to ob-
tain information about the window hierarchy, or to accom-
plish tasks that should not or cannot be directly rendered.
These synchronous kernel calls may in turn run the X11
server before returning. Applications that don’t use direct
rendering use more efficient asynchronous requests to the
X11 server.

Neon uses a technique we called “Better Than Direct
Rendering” (BTDR) to provide the benefits of direct ren-
dering without these disadvantages. Like direct rendering,
BTDR allows client applications to create hardware-
specific rendering commands. Unlike direct rendering,
BTDR leaves dispatching of these commands to the X11
server. In effect, the application creates a sequence of
hardware rendering commands, then asks the X11 server to
call them as a subroutine. To avoid copying client-
generated commands, Neon supports a single-level call to a
command stream stored anywhere in main memory. Since
only the X11 server communicates directly with the accel-
erator, the accelerator state is never context switched pre-
emptively, and we don’t need state save/restore logic.

WRL RESEARCH REPORT 98/1 NEON: A (BIG) (FAST) SINGLE-CHIP 3D WORKSTATION GRAPHICS ACCELERATOR

15

Since hardware commands are dispatched in the correct
sequence by the server, there is no need for new kernel
calls. Since BTDR maintains atomicity and ordering of
commands, we believe (without an existence proof) that
BTDR could provide direct rendering benefits to X11, with
much less work and overhead than Mark Kilgard’s D11
proposal [19].

5.6. Video Controller

The Video Controller refreshes the display, but dele-
gates much of the work to the memory controllers in order
to increase opportunities for page prefetching. It periodi-
cally requests pixels from the memory controllers, “inverse
dithers” this data to restore color fidelity lost in the frame
buffer, then sends the results to an IBM RGB640
RAMDAC for color table lookup, gamma correction, and
conversion to an analog video signal.

5.6.1. Opportunistic Refresh Servicing

Each screen refresh request to a memory controller
asks for data from a pair of A and B bank pages. The
memory controller can usually finish rendering in the cur-
rent bank , ping-pong between banks to satisfy the refresh
request, and return to rendering in the other bank—using
prefetching to hide all page crossing overhead. For exam-
ple, if the controller is currently accessing an A bank page
when the refresh request arrives, it prefetches the refresh B
page while it finishes rendering the rest of the fragments on
the A bank page. It then prefetches the refresh A page
while it fetches pixels from the refresh B page, prefetches a
new B page for rendering while it fetches pixels from the
refresh A page, and finally returns to rendering in the new
B page.

Screen refresh reads cannot be postponed indefinitely
in an attempt to increase prefetching. If a memory con-
troller is too slow in satisfying the request, the Video Con-
troller forces it to fetch refresh data immediately. When
the controller returns to the page it was rendering, it cannot
prefetch it, as this page is in the same bank as the second
screen refresh page.

The Video Controller delegates to each Memory Con-
troller the interpretation of overlay and display format
bytes, and the reading of pixels from the front, back, left, or
right buffers. This allows the memory controller to imme-
diately follow overlay and display format reads with color
data reads, further increasing prefetching efficiency. To
hide page crossing overhead, the memory controller must
read 16 16-bit pixels from each overlay and display format
page, but only 8 32-bit pixels from each color data page.
The memory controller thus alternates between:

1. Reading overlay and display format from an A
and B bank pair of pages (32 16-bit pixels), then

2. Reading color data from a different A and B bank
pair (16 32-bit pixels) if the corresponding overlay
(that was just read in step 1) is transparent.

and sometime later:

3. Reading color data from an A and B bank pair (16
32-bit pixels) if the corresponding overlay (read
awhile ago in step 1) is transparent.

If the overlay isn’t transparent, the controller doesn’t
read the corresponding 32-bit color data. If the root win-
dow and 2D windows use the 8-bit overlay, then only 3D
windows fetch 32-bit color data, which further increases
memory bandwidth available for rendering.

5.6.2. Inverse Dithering

Dithering is commonly used with 16 and 8-bit color
pixels. Dithering decreases spatial resolution in order to
increase color resolution. In theory, the human eye inte-
grates pixels (if the pixels are small enough or the eye is
myopic enough) to approximate the original color. In
practice, dithered images are at worst annoyingly patterned
with small or recursive tessellation dither matrices, and at
best slightly grainy with the large void-and-cluster dither
matrices we have used in the past [29].

Hewlett-Packard introduced “Color Recovery™” [2] to
perform this integration digitally and thus improve the
quality of dithered images. Color Recovery applies a 16
pixel wide by 2 pixel high filter at each 8-bit pixel on the
path out to the RAMDAC. In order to avoid blurring, the
filter is not applied to pixels that are on the opposite side of
an “edge,” which is defined as a large change in color.

HP’s implementation has two problems. Their dither-
ing is non-mean preserving, and so creates an image that is
too dark and too blue. Their reconstruction filter does not
compensate for these defects in the dithering process. And
the 2 pixel high filter requires storage for the previous
scanline’s pixels, which would need a lot of real estate for
Neon’s worst case scanlines of 1920 16-bit pixels. The
alternative—fetching pixels twice—requires too much
bandwidth.

Neon implements an “inverse dithering” process simi-
lar to Color Recovery, but dynamically chooses between
several higher quality filters, all of which are only one pixel
high. We used both mathematical analysis of dithering
functions and filters, as well as empirical measurements of
images, to choose a dither matrix, the coefficients for each
filter, and the selection criteria to determine which filter to
apply to each pixel in an image. We use small asymmetri-
cal filters near high-contrast edges, and up to a 9-pixel wide
filter for the interior of objects. Even when used on Neon’s
lowest color resolution pixels, which have 4 bits for each
color channel, inverse dithering results are nearly indistin-
guishable from the original 8 bits per channel data. More
details can be found in [5] and [30].

5.7. Performance Counters

Modern CPUs include performance counters in order
to increase the efficiency of the code that compilers gener-
ate, to provide measurements that allow programmers to
tune their code, and to help the design of the next CPU.

WRL RESEARCH REPORT 98/1 NEON: A (BIG) (FAST) SINGLE-CHIP 3D WORKSTATION GRAPHICS ACCELERATOR

16

Neon includes the same sort of capability with greater
flexibility. Neon includes two 64-bit counters, each fully
programmable as to how conditions should be combined
before being counted. We can count multiple occurrences
of some events per cycle (e.g., events related to the eight
memory controllers or pixel processors). This allows us to
directly measure, in a single run, statistics that are ratios or
differences of different conditions.

5.8. “Sushi Boat” Register Management

Register state management in Neon is decentralized
and pipelined. This reduces wiring congestion—rather
than an explosion of signals between the Command Parser
and the rest of the chip, we use a single existing pathway
for both register reads and writes. This also reduces pipe-
line stalls needed to ensure a consistent view of the register
state. (The “sushi boat” name comes from Japanese restau-
rants that use small boats in a circular stream to deliver
sushi and return empty trays.)

Registers are physically located near logic that uses
them. Several copies of a register may exist to limit physi-
cal distances from a register to dependent logic, or to re-
duce the number of pipeline stages that are dependent upon
a register’s value. The different copies of a register may
contain different data at a given time.

Register writes are sent down the object
setup/fragment generation/fragment processing pipeline.
The new value is written into a local register at a point that
least impacts the logic that depends upon it. Ideally, a reg-
ister write occurs as soon as the value reaches a local reg-
ister. At worst, several pipe stages use the same copy of a
register, and thus a handful of cycles must be spent drain-
ing that portion of the pipeline before the write commits.

Register reads are also sent down the pipeline. Only
one copy of the register loads its current value into the read
command; other copies simply let the register read pass
unmodified. The end of the pipeline feeds the register back
to the Command Parser.

6. Physical Characteristics

Neon is a large chip. Its die is 17.3 x 17.3 mm, using
IBM's 0.35 µm CMOS 5S standard cell process with 5
metal layers [15]. (Their 0.25 µm 6S technology would
reduce this to about 12.5 x 12.5 mm, and 0.18 µm 7S
would further reduce this to about 9 x 9 mm.) The design
uses 6.8 million transistors and sample chips run at the 100
MHz design frequency.

The chip has 628 signal pins, packaged in an 824-pin
ceramic column grid array. The 8 memory controllers each
use 32 data pins and 24 address, control, and clock pins; an
additional two pins for SDRAM clock phase adjustment
make a total of 450 signal pins to memory. The 64-bit PCI
interface uses 88 pins. The video refresh portion of the
RAMDAC interface uses 65 pins. Another 15 pins provide
a general-purpose port—a small FPGA connects the port to
the RAMDAC, VGA, and programmable dot clock regis-

ters, as well as to board configuration switches. One pin is
for the core logic clock, and the remaining 9 pins are for
device testing.

Figure 14 shows a plot of the metal layers of the die.
Data flows in through the PCI interface, right to the Com-
mand Parser, up to the Fragment Generator setup logic, up
again to the stamp movement logic, right to the interpola-
tion of vertex data, right into Texel Central, and finally out
to the eight Pixel Processor/Memory Controllers on the
periphery of the. The Video Refresh block is small be-
cause it includes logic only for sending requests for pixel
data, and for inverse dithering; the line buffers are resident
in the memory controller blocks. The congested wiring
channels between blocks are a consequence of IBM’s sug-
gestion that interblock wiring flow through small areas on
the sides of each block.

7. CAD and Verification Environment

We designed Neon using the C programming lan-
guage, rather than Verilog or VHSIC Hardware Description
Language (VHDL). This section discusses the advantages
of using C, our simulator, the C to Verilog compiler, spe-
cial-purpose gate generators, and our custom verification
software.

7.1. C vs. Verilog and VHDL

The C language has several advantages over Verilog.
In particular, C supports signed numbers and record struc-
tures, which we used extensively in Neon. On the other
hand, C has no way of specifying bit lengths. We solved

���� ���� ���� ����

�	
��

�
�����	

�	
��

��	��

P
�

�

�
��

�
��

�
���� ����

�
�
�

�
���

�

��	���

�� �

	���

��	���

�� ��

���	�
�

��

!

��

"

��

#
���$

Figure 14: Neon die plot

WRL RESEARCH REPORT 98/1 NEON: A (BIG) (FAST) SINGLE-CHIP 3D WORKSTATION GRAPHICS ACCELERATOR

17

this deficiency by using a C++ compiler, and added two
new types with C++ templates. Bits[n] is an unsigned
number of n bits; Signed[n] is a 2’s complement number of
n bits, including the sign bit. In retrospect, we should also
have added the type constructor Range[lower, upper], in
order to further enhance the range-checking in c2v, de-
scribed below in Section 7.3.

VHDL has all of these language features. We still saw
C as a better choice. In addition to the advantages dis-
cussed below, coding in C gave us the entire C environ-
ment while developing, debugging, and verifying Neon.
For example, early, high-level models of the chip used li-
brary calls to mathematical functions.

7.2. Native C Simulator

We’ve used our own 2-state event-driven simulator for
years. It directly calls the C procedures used to describe
the hardware, so we can use standard C debugging tools. It
topologically sorts the procedures, so that the event flag
scanning proceeds from top to bottom. (Apparent “loops”
caused by data flowing back and forth between two mod-
ules with multiple input/output ports are handled specially.)
Evaluating just the modules whose input changes invokes
on average 40% to 50% of Neon’s presynthesis high level
behavioral code. (This could have been smaller, as many
designers were sloppy about importing large wire structures
in toto, rather than the few signals that they needed.) The
simulator evaluated only 7% to 15% of the synthesized
gate-level wirelist each cycle.

The simulator runs about twice as fast as the best
commercial simulator we benchmarked. We believe this is
due to directly compiling C code, especially the arithmetic
operations in high-level behavioral code; and to the low
percentage of procedures that must be called each cycle,
especially in the gate-level structural code. Even better, we
have no per-copy licensing fee. During Neon’s develop-
ment, we simulated over 289 billion cycles using 22 Alpha
CPUs. We simulated 2 billion cycles with the final full-
chip structural model.

7.3. C to Verilog Translation

We substantially modified lcc [9], a portable C com-
piler, to create c2v, a C to Verilog translator. This transla-
tor confers a few more advantages to using C. In particu-
lar, c2v evaluates the numeric ranges of expressions, and
expands their widths in the Verilog output to avoid over-
flow. For example:

Bits[2] a, b, c, d;
if (a+b) < (c+d) …

is evaluated in Verilog or VHDL using the maximum pre-
cision of the variables—two bits—and so can yield the
wrong answer. The c2v translator forces the expression to
be computed with three bits. c2v computes the tightest
possible bounds for expressions, including those that use

Boolean operators, in order to minimize the gates required
to evaluate the expression correctly.

In addition, c2v checks assignments to ensure that the
right-hand side of an expression fits into the left-hand side.
This simple check statically caught numerous examples of
code trying to assign, for example, three bits of state infor-
mation into a 2-bit field.

7.4. Synthesis vs. Gate Generators

Initial benchmarks using Synopsys to generate adders
and multipliers yielded structures that were larger and
slower than we expected. IBM’s parameterized libraries
weren’t any better. These results, coupled with our non-
standard arithmetic requirements (base 255 arithmetic,
a*(1-c) + b*c multiplier/adders, etc.) led us to design a
library of gate generators for addition, multiplication, and
division. We later added a priority encoder generator, as
Synopsys was incapable of efficiently handling chained
if…then…else if… statements. We also explicitly wired
multiplexers for Texel Central’s memory controller cross-
bar and format conversion: Synopsys took a day to synthe-
size a structure that was twice as large, and much slower,
than the one we created by hand.

From our experiences, we view Synopsys as a weak
tool for synthesizing data paths. However, the only alter-
native seems to be wiring data paths by hand.

7.5. Hardware Verification

We have traditionally tested graphics accelerators with
gigabytes of traces from the X11 server. Designers gener-
ate traces from the high-level behavioral model by running
and visually verifying graphics applications. With Neon,
we expected the behavioral model to simulate so slowly
that it would be impossible to obtain enough data.

A number of projects at Digital, including all Alpha
processors, have used a language called Segue for creating
test suites. Segue allows the pseudo-random selection of
weighed elements within a set. For example, the expres-
sion X = {1:5, 2:15, 3:80} randomly selects the value 1, 2
or 3 with a probabilities of 5%, 15% or 80%. Segue is well
suited for generating stimulus files that require a straight-
forward selection of random data, such as corner-case tests
or random traffic on a PCI bus. Unfortunately, Segue is a
rudimentary language with no support for complex data
processing capabilities. It lacks multidimensional arrays,
pointers, file input, and floating-point variables, as well as
symbolic debugging of source code. C supports the desired
programming features, but lacks the test generation fea-
tures. Because we use C and C++ extensively for the Neon
design and the CAD suite, we decided to enhance C++ to
support the Segue sets. We call this enhanced language
Segue++.

Segue++ is an environment consisting of C++ class
definitions with behavior like Segue sets, and a preproces-
sor to translate the Segue++ code to C++. We could have
used the new C++ classes without preprocessing, but the

WRL RESEARCH REPORT 98/1 NEON: A (BIG) (FAST) SINGLE-CHIP 3D WORKSTATION GRAPHICS ACCELERATOR

18

limitations of C++ operator overloading makes the code
difficult to read and write. Furthermore, the preprocessor
allows us to define and select set members inside C++
code, and we can imbed C++ expressions in the expres-
sions for set members. The users of Segue++ have all the
features of the C++ language as well as the development
environment, including symbolic debugging linked back to
the original Segue++ code.

Segue++ proved invaluable for our system tests, which
tested the complete Neon chip attached to a number of dif-
ferent PCI transactors. The system tests generate a number
of subtests, with each subtest using different functionality
in the Neon chip to render the same image in the frame
buffer. For example, a test may render a solid-colored
rectangle in the frame buffer. One subtest may download
the rectangle from memory using DMA, another may draw
the rectangle using triangles, etc. Each subtest can vary
global attributes such as the page layout of the frame
buffer, or the background traffic on the PCI bus. We dis-
covered a surprisingly rich set of possible variations for
each subtest. The set manipulation features of Segue++
allowed us to generate demanding test kernels, while the
general programming features of Segue++ allowed us to
manipulate the test data structure to create the subtests.
The system tests found many unforeseen interaction-effect
bugs in the Neon design.

8. Performance

In this section, we discuss some performance results,
based on cycle-accurate simulations of a 100 MHz part.
(Power-on has proceeded very slowly. Neon was cancelled
shortly before tape-out, so any work occurs in people’s
spare time. The chip does run at speed, and the few real
benchmarks we have performed validate the simulations.)

We achieved our goal of using memory efficiently.
When painting 50-pixel triangles to a 1280 x 1024 screen
refreshed at 76 Hz, screen refresh consumes about 25% of
memory bandwidth, rendering consumes another 45%, and
overhead cycles that do not transfer data (read latencies,
high-impedance cycles, and page precharging and row ad-
dressing) consume the remaining 30%. When filling large
areas, rendering consumes 60% of bandwidth.

As a worst-case acid test, we painted randomly placed
triangles with screen refresh as described above. Each ob-
ject requires at least one page fetch. Half of these page

fetches cannot be prefetched at all, and there is often insuf-
ficient work to completely hide the prefetching in the other
half. The results are shown in the “Random triangles” col-
umn of Table 1. (Texels are 32 bits.)

We also painted random strips of 10 objects; each list
begins in a random location. This test more closely resem-
bles the locality of rendering found in actual applications,
though probably suffers more non-prefetchable page tran-
sitions than a well-written application. Triangle results are
shown in the “Random strips” column of Table 1, line re-
sults are shown in Table 2.

The only fill rates we’ve measured are not Z-tested, in
which case Neon achieves 240 million 64-bit frag-
ments/second. However, the “Aligned strip” column in
Table 1 shows triangle strips that were aligned to paint
mostly on one page or a pair of pages, which should pro-
vide a lower bound on Z-tested fill rates. Note that 50-
pixel triangles paint 140 million Z-buffered, shaded pix-
els/second, and 70 million trilinear textured, Z-buffered,
shaded pixels/second. In the special case of bilinearly
magnifying an image, such as scaling video frames, we
believe Neon will run extremely close to the peak texture
fill rate of 100 million textured pixels/second.

The “Peak generation” column in Table 1 shows the
maximum rate at which fragments can be delivered to the
memory controllers. For 10-pixel triangles, the limiting
factor is setup. For larger triangles, the limiting factor is
object traversal: the 2 x 2 stamp generates on average 1.9
fragments/cycle for 25-pixel triangles, and 2.3 frag-
ments/cycle for 50-pixel triangles. For textured triangles,
the stamp generates one fragment/cycle.

Neon’s efficient use of memory bandwidth is impres-
sive, especially when compared to other systems for which
we have enough data to compute peak and obtained band-

Triangle size Random triangles Random strips Aligned strips Peak generation

10-pixel N/A N/A 7.8 7.8

25-pixel 2.6 4.2 5.4 7.5

50-pixel 1.6 2.3 2.8 4.5

25-pixel, trilinear textured N/A 2.0 2.3 4.0

50-pixel, trilinear textured 0.75 1.3 1.4 2.0

Table 1: Shaded, Z-buffered triangles, millions of triangles/second

Type of line Random strips

10-pixel, constant color, no Z 11.0

10-pixel, shaded, no Z 10.6

10-pixel, shaded, Z-buffered 7.8

10-pixel, shaded, Z-buffered,
antialiased

 4.7

Table 2: Random line strips, millions of lines/second

WRL RESEARCH REPORT 98/1 NEON: A (BIG) (FAST) SINGLE-CHIP 3D WORKSTATION GRAPHICS ACCELERATOR

19

width. For example, we estimate that the SGI Octane
MXE, using RAMBUS RDRAM, has over twice the peak
bandwidth of Neon—yet paints 50-pixel Z-buffered trian-
gles about as fast as Neon. Even accounting for the MXE’s
48-bit colors, Neon extracts about twice the performance
per unit of bandwidth. The MXE uses special texture-
mapping RAMs, and quotes a “texture fill rate” 38% higher
than Neon’s peak texture fill rate. Neon uses SDRAM and
steals texture mapping bandwidth from other rendering
operations. Yet their measured texture mapped perform-
ance is equivalent. Tuning of the memory controller heu-
ristics might further improve Neon’s efficiency.

We have also achieved our goals of outstanding
price/performance. When compared to other workstation
accelerators, Neon is either a lot faster, a lot cheaper, or
both. For example, HP’s fx6 accelerator is about 20% to
80% faster than Neon—at about eight times our anticipated
list price.

Good data on PC accelerators is hard to come by
(many PC vendors tend to quote peak numbers without
supporting details, others quote performance for small
screens using 16-bit pixels and texels, etc.). Nonetheless,
when compared to PC accelerators in the same price range,
Neon has a clear performance advantage. It appears to be
about twice as fast, in general, as Evans & Sutherland’s
REALimage technology (as embodied in the Mitsubishi
3DPro chip set), and the 3Dlabs GLINT chips.

9. Conclusions

Historically, fast workstation graphics accelerators
have used multiple chips and multiple memory systems to
deliver high levels of graphics performance. Low-end
workstation and PC accelerators use single chips connected
to a single memory system to reduce costs, but their per-
formance consequently suffers.

The advent of 0.35 µm technology coupled with ball or
column grid arrays means that a single ASIC can contain
enough logic and connect to enough memory bandwidth to
compete with multichip 3D graphics accelerators. Neon
extracts competitive performance from a limited memory
bandwidth by using a greater percentage of peak memory
bandwidth than competing chip sets, and by reducing
bandwidth requirements wherever possible. Neon fits on
one die, because we extensively share real estate among
similar functions—which had the nice side effect of mak-
ing performance tuning efforts more effective. Newer 0.25
µm technology would reduce the die size to about 160 mm2

and increase performance by 20-30%. Emerging 0.18 µm
technology would reduce the die to about 80 mm2 and in-
crease performance another 20-30%. This small die size,
coupled with the availability of SDRAM at less that a dol-
lar a megabyte, would make a very low-cost, high-
performance accelerator.

10. Acknowledgements

Hardware Design & Implementation: Bart Berko-
witz, Shiufun Cheung, Jim Claffey, Ken Correll, Todd
Dutton, Dan Eggleston, Chris Gianos, Tracey Gustafson,
Tom Hart, Frank Hering, Andy Hoar, Giri Iyengar, Jim
Knittel, Norm Jouppi, Joel McCormack, Bob McNamara,
Laura Mendyke, Jay Nair, Larry Seiler, Manoo Vohra,
Robert Ulichney, Larry Wasko, Jay Wilkinson.

Hardware Verification: Chris Brennan, John Ep-
pling, Tyrone Hallums, Thom Harp, Peter Morrison,
Julianne Romero, Ben Sum, George Valaitis, Rajesh
Viswanathan, Michael Wright, John Zurawski.

CAD Tools: Paul Janson, Canh Le, Ben Marshall,
Rajen Ramchandani.

Software: Monty Brandenberg, Martin Buckley, Dick
Coulter, Ben Crocker, Peter Doyle, Al Gallotta, Ed Gregg,
Teresa Hughey, Faith Lin, Mary Narbutavicius, Pete Ni-
shimoto, Ron Perry, Mark Quinlan, Jim Rees, Shobana
Sampath, Shuhua Shen, Martine Silbermann, Andy Vesper,
Bing Xu, Mark Yeager.

Keith Farkas commented extensively on far too many
drafts of this paper.

Many of the techniques described in this paper are pat-
ent pending.

References

[1] Kurt Akeley. RealityEngine Graphics. SIGGRAPH
93 Conference Proceedings, ACM Press, New York,
August 1993, pp. 109-116.

[2] Anthony C. Barkans. Color Recovery: True-Color 8-
Bit Interactive Graphics. IEEE Computer Graphics
and Applications, IEEE Computer Society, New
York, volume 17, number 1, January/February 1997,
pp. 193-198.

[3] Anthony C. Barkans. High Quality Rendering Using
the Talisman Architecture. Proceedings of the 1997
SIGGRAPH/Eurographics Workshop on Graphics
Hardware, ACM Press, NY, August 1997, pp. 79-88.

[4] Jim Blinn. Jim Blinn’s Corner: Three Wrongs Make
a Right. IEEE Computer Graphics and Applications,
volume 15, number 6, November 1995, pp. 90-93.

[5] Shiufun Cheung & Robert Ulichney. Window-Extent
Tradeoffs in Inverse Dithering. Proceedings of Soci-
ety for the Imaging Science and Technology (IS&T)
6th Color Imaging Conference, IS&T, Springfield,
VA, Nov. 1998, available at
http://www.crl.research.digital.com/who/people/
ulichney/bib.htm.

[6] Michael F. Deering, Stephen A. Schlapp, Michael G.
Lavelle. FBRAM: A New Form of Memory Opti-
mized for 3D Graphics. SIGGRAPH 94 Conference
Proceedings, ACM Press, New York, July 1994, pp.
167-174.

WRL RESEARCH REPORT 98/1 NEON: A (BIG) (FAST) SINGLE-CHIP 3D WORKSTATION GRAPHICS ACCELERATOR

20

[7] John H Edmondson, et. al. Internal Organization of
the Alpha 21164, a 300-MHz 64-bit Quad-issue
CMOS RISC Microprocessor. Digital Technical
Journal, Digital Press, volume 7, number 1, 1995.

[8] Jon P. Ewins, Marcus D. Waller, Martin White &
Paul F. Lister. MIP-Map Level Selection for Texture
Mapping. IEEE Transactions on Visualization and
Computer Graphics, IEEE Computer Society, New
York, volume 4, number 4, October-December 1998,
pp. 317-328.

[9] Christopher Fraser & David Hanson. A Retargettable
C Compiler: Design and Implementation, Benja-
min/Cummings Publishing, Redwood City, CA, 1995.

[10] Henry Fuchs, et. al. Fast Spheres, Shadows, Textures,
Transparencies, and Image Enhancements in Pixel-
Planes. SIGGRAPH 85 Conference Proceedings,
ACM Press, New York, July 1985, pp. 111-120.

[11] David Goldberg. Computer Arithmetic. In John L.
Hennessy & David A. Patterson’s Computer Archi-
tecture: A Quantitative Approach, Morgan Kaufmann
Publishers, 1990, pp. A50-A53.

[12] Lynn Gwennap. Digital 21264 Sets New Standard.
Microprocessor Report, volume 10, issue 14, October
28, 1996.

[13] Siyad S. Hakura & Anoop Gupta. The Design and
Analysis of a Cache Architecture for Texture Map-
ping. Proceedings of the 24th International Sympo-
sium on Computer Architecture (ISCA), ACM Press,
New York, June 1997, pp. 108-120.

[14] Paul S. Heckbert & Henry P. Morton. Interpolation
for Polygon Texture Mapping and Shading. In State
of the Art in Computer Graphics: Visualization and
Modeling, Springer-Verlag, 1991, available at
http://www.cs.cmu.edu/~ph/.

[15] IBM CMOS 5S ASIC Products Databook, IBM Mi-
croelectronics Division, Hopewell Junction, NY,
1995, available at http://www.chips.ibm.com/
techlib.products/asics/databooks.html.

[16] Brian Kelleher. PixelVision Architecture, Technical
Note 1998-013, System Research Center, Compaq
Computer Corporation, October 1998, available at
http://www.research.digital.com/SRC/publications/
src-tn.html

[17] Jim Keller. The 21264: A Superscalar Alpha Proces-
sor with Out-of-Order Execution. Presentation at Mi-
croprocessor Forum, October 22-23 1996, slides
available at http://www.digital.com/info/
semiconductor/a264up1/index.html.

[18] Mark J. Kilgard, David Blythe & Deanna Hohn.
System Support for OpenGL Direct Rendering. Pro-
ceedings of Graphics Interface 1995, available at

http://www.sgi.com/software/opengl/
whitepapers.html.

[19] Mark J. Kilgard. D11: A High-Performance, Proto-
col-Optional, Transport-Optional Window System
with X11 Compatibility and Semantics. The X Re-
source, issue 13, Proceedings of the 9th Annual X
Technical Conference, 1995, available at
http://reality.sgi.com/opengl/d11/d11.html.

[20] Mark J. Kilgard. Realizing OpenGL: Two Imple-
mentations of One Architecture. Proceedings of the
1997 SIGGRAPH/Eurographics Workshop on
Graphics Hardware, pp. 45-55, available at
http://reality.sgi.com/mjk/twoimps/twoimps.html.

[21] Joel McCormack & Robert McNamara. A Smart
Frame Buffer, Research Report 93/1, Western Re-
search Laboratory, Compaq Computer Corporation,
January 1993, available at
http://www.research.digital.com/wrl/techreports/
pubslist.html.

[22] Joel McCormack, Ronald Perry, Keith I. Farkas &
Norman P. Jouppi. Simple and Table Feline: Fast
Elliptical Lines for Anisotropic Texture Mapping, Re-
search Report 99/1, Western Research Laboratory,
Compaq Computer Corporation, July 1999, available
at http://www.research.digital.com/wrl/techreports/
pubslist.html

[23] Robert McNamara, Joel McCormack & Norman
Jouppi. Prefiltered Antialiased Lines Using Distance
Functions, Research Report 98/2, Western Research
Laboratory, Compaq Computer Corporation, October
1999, available at http://www.research.digital.com/
wrl/techreports/pubslist.html.

[24] John S. Montrym, Daniel R. Baum, David L. Dignam
& Christopher J. Migdal. InfiniteReality: A Real-
Time Graphics System. SIGGRAPH 97 Conference
Proceedings, ACM Press, New York, August 1997,
pp. 293-302.

[25] Juan Pineda. A Parallel Algorithm for Polygon
Rasterization. SIGGRAPH 88 Conference Proceed-
ings, ACM Press, New York, August 1988, pp. 17-20.

[26] Mark Segal & Kurt Akeley. The OpenGL Graphics
System: A Specification (Version 1.2), 1998, available
at http://www.sgi.com/software/ opengl/manual.html.

[27] Robert W. Scheifler & James Gettys. X Window Sys-
tem, Second Edition, Digital Press, 1990.

[28] Jay Torborg & James Kajiya. Talisman: Commodity
Realtime 3D Graphics for the PC. SIGGRAPH 96
Conference Proceedings, ACM Press, New York,
August 1996, pp. 353-363.

[29] Robert Ulichney. The Void-and-Cluster Method for
Dither Array Generation. IS&T/SPIE Symposium on
Electronic Imaging Science & Technology, volume

WRL RESEARCH REPORT 98/1 NEON: A (BIG) (FAST) SINGLE-CHIP 3D WORKSTATION GRAPHICS ACCELERATOR

21

1913, pp. 332-343, 1993, available at
http://www.crl.research.digital.com/who/people/
ulichney/bib.htm.

[30] Robert Ulichney, One-Dimensional Dithering. Pro-
ceedings of International Symposium on Electronic
Image Capture and Publishing (EICP 98), SPIE
Press, Bellingham, WA, SPIE volume 3409, May,
1998, available at
http://www.crl.research.digital.com/who/people/
ulichney/bib.htm.

[31] Robert Ulichney and Shiufun Cheung, Pixel Bit-
Depth Increase by Bit Replication. Color Imaging:
Device-Independent Color, Color Hardcopy, and
Graphic Arts III, Proceedings of SPIE vol. 3300, Jan.
1998, pp. 232-241, available at
http://www.crl.research.digital.com/who/people/
ulichney/bib.htm.

[32] Lance Williams. Pyramidal Parametrics. SIGGRAPH
83 Conference Proceedings, ACM Press, New York,
July 1983, pp 1-11.

[33] Stephanie Winner, Mike Kelley, Brent Pease, Bill
Rivard & Alex Yen. Hardware Accelerated Render-
ing of Antialiasing Using a Modified A-buffer Algo-
rithm. SIGGRAPH 97 Conference Proceedings,
ACM Press, New York, August 1997, pp. 307-316.

