
VAX 6000 Model 600
System Technical
User’s Guide

Order Number: EK–660EA–TM.001

This manual serves as a reference on how to write software to this machine
and covers the information needed to do field-level repair or programming
customized to the CPU. It includes information on interrupts, error handling,
and detailed theory of operation.

Digital Equipment Corporation

First Printing, January 1992

The information in this document is subject to change without notice and should not
be construed as a commitment by Digital Equipment Corporation.

Digital Equipment Corporation assumes no responsibility for any errors that may
appear in this document.

The software, if any, described in this document is furnished under a license and may
be used or copied only in accordance with the terms of such license. No responsibility
is assumed for the use or reliability of software or equipment that is not supplied by
Digital Equipment Corporation or its affiliated companies.

Copyright ©1992 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER’S COMMENTS form on the last page of this document
requests the user’s critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC PDP VAXcluster
DEC LANcontroller ULTRIX VAXELN
DECnet UNIBUS VMS
DECUS VAX XMI
DWMVA VAXBI

�

This document was prepared using VAX DOCUMENT, Version 1.2

Contents

PREFACE xv

CHAPTER 1 THE VAX 6000 MODEL 600 SYSTEM 1–1

1.1 SYSTEM ARCHITECTURE 1–2

1.2 SAMPLE SYSTEM 1–4

1.3 SYSTEM FRONT VIEW 1–6

1.4 SYSTEM REAR VIEW 1–8

1.5 SUPPORTED ADAPTERS 1–10

CHAPTER 2 KA66A CPU MODULE 2–1

2.1 OVERVIEW AND BLOCK DIAGRAM 2–2
2.1.1 NVAX CPU Chip 2–3

2.1.1.1 Ibox • 2–4
2.1.1.2 Ebox and Microsequencer • 2–5
2.1.1.3 Fbox • 2–5
2.1.1.4 Mbox • 2–5
2.1.1.5 Cbox • 2–6

2.1.2 Backup Cache 2–6
2.1.3 NEXMI Chip, System Support, and XMI Interface 2–7

2.2 CPU SECTION 2–8
2.2.1 Data Types 2–8
2.2.2 Instruction Set 2–9
2.2.3 Physical Address Space 2–10
2.2.4 Memory Management 2–11

2.2.4.1 Translation Buffer • 2–12
2.2.4.2 Memory Management Control Registers • 2–13

iii

Contents

2.2.5 Exceptions and Interrupts 2–14
2.2.5.1 Interrupts • 2–15
2.2.5.2 Exceptions • 2–17
2.2.5.3 Unique Exceptions • 2–18
2.2.5.4 Console Halt • 2–23

2.2.6 System Control Block 2–25
2.2.7 Process Structure 2–28

2.3 CACHE OVERVIEW 2–30
2.3.1 Writeback Cache and Ownership Concepts 2–30
2.3.2 Virtual Instruction Cache 2–31
2.3.3 Primary Cache 2–32
2.3.4 Backup Cache 2–32

2.3.4.1 Backup Cache Operating Modes • 2–33
2.3.4.2 Cbox Internal Processor Registers • 2–33
2.3.4.3 Tag Store and Data RAM Control • 2–36
2.3.4.4 Backup Cache Is OFF • 2–36
2.3.4.5 Backup Cache Is in Force Hit Mode • 2–37
2.3.4.6 Backup Cache Is in Error Transition Mode • 2–37
2.3.4.7 How to Turn the B-Cache Off • 2–38
2.3.4.8 How to Turn the B-Cache On • 2–39

2.3.5 Cache Initialization 2–40

2.4 NVAX BOX DESCRIPTIONS 2–42
2.4.1 Ibox 2–42

2.4.1.1 Effects of Ibox Pipelining • 2–42
2.4.1.2 Branch Prediction Unit • 2–43

2.4.2 Ebox 2–43
2.4.3 Fbox 2–44
2.4.4 Mbox 2–44

2.4.4.1 Translation Buffer Tag Fills • 2–45
2.4.4.2 Translation Buffer PTE Fills • 2–45
2.4.4.3 Recording Mbox Errors • 2–47

2.4.5 Cbox 2–47

2.5 KA66A TOY CLOCK AND INTERVAL TIMER 2–49
2.5.1 Time-of-Day Register (TODR) 2–49
2.5.2 Programmable Interval Clock 2–49
2.5.3 Time-of-Year Clock 2–50

2.6 XMI INTERFACE 2–54
2.6.1 XMI Address Space 2–54

2.6.1.1 XMI Memory Space • 2–54
2.6.1.2 XMI I/O Space • 2–54

iv

Contents

2.6.2 XMI Transaction Generation/Response Tables 2–56
2.6.3 Invalidates 2–57
2.6.4 Writeback Queues 2–58
2.6.5 Lockout Avoidance 2–58
2.6.6 Interrupts and IDENTs 2–59

2.6.6.1 Responding to XMI Interrupts • 2–59
2.6.6.2 Generating the IDENT • 2–59
2.6.6.3 XMI Device Interrupt Priority • 2–60
2.6.6.4 Implied Vector Interrupts (IVINTR) • 2–60
2.6.6.4.1 IVINTR Mask Generation • 2–60
2.6.6.4.2 Interprocessor IVINTR (IP IVINTR) Response • 2–60
2.6.6.4.3 Write Error IVINTR (WE IVINTR) Response • 2–61

2.6.7 XMI Registers 2–61

2.7 KA66A CPU MODULE REGISTERS 2–63
2.7.1 IPR and Cache Addressing 2–63
2.7.2 Internal Processor Registers 2–67

CPU IDENTIFICATION REGISTER (CPUID) 2–71
INTERVAL CLOCK CONTROL AND STATUS
REGISTER (ICCS) 2–72
NEXT INTERVAL COUNT REGISTER (NICR) 2–74
INTERVAL COUNT REGISTER (ICR) 2–75
CONSOLE RECEIVER CONTROL AND STATUS
REGISTER (RXCS) 2–76
CONSOLE RECEIVER DATA BUFFER REGISTER
(RXDB) 2–78
CONSOLE TRANSMITTER CONTROL AND STATUS
REGISTER (TXCS) 2–80
CONSOLE TRANSMITTER DATA BUFFER REGISTER
(TXDB) 2–82
MACHINE CHECK ERROR SUMMARY REGISTER
(MCESR) 2–83
CONSOLE SAVED PROGRAM COUNTER REGISTER
(SAVPC) 2–84
CONSOLE SAVED PROCESSOR STATUS
LONGWORD (SAVPSL) 2–85
I/O RESET REGISTER (IORESET) 2–90
SYSTEM IDENTIFICATION REGISTER (SID) 2–91
PATCHABLE CONTROL STORE CONTROL
REGISTER (PCSCR) 2–93
EBOX CONTROL REGISTER (ECR) 2–96
CBOX CONTROL REGISTER (CCTL) 2–99
BACKUP CACHE DATA ECC REGISTER (BCDECC) 2–103
BACKUP CACHE ERROR TAG STATUS REGISTER
(BCETSTS) 2–105
BACKUP CACHE ERROR TAG INDEX REGISTER
(BCETIDX) 2–108
BACKUP CACHE ERROR TAG REGISTER (BCETAG) 2–109
BACKUP CACHE ERROR DATA STATUS REGISTER
(BCEDSTS) 2–111
BACKUP CACHE ERROR DATA INDEX REGISTER
(BCEDIDX) 2–114

v

Contents

BACKUP CACHE ERROR DATA ECC REGISTER
(BCEDECC) 2–115
CBOX ERROR FILL ADDRESS REGISTER (CEFADR) 2–117
CBOX ERROR FILL STATUS REGISTER (CEFSTS) 2–118
NDAL ERROR STATUS REGISTER (NESTS) 2–123
NDAL ERROR OUTPUT ADDRESS REGISTER
(NEOADR) 2–126
NDAL ERROR OUTPUT COMMAND REGISTER
(NEOCMD) 2–127
NDAL ERROR DATA HIGH REGISTER (NEDATHI) 2–130
NDAL ERROR DATA LOW REGISTER (NEDATLO) 2–132
NDAL ERROR INPUT COMMAND REGISTER
(NEICMD) 2–133
VIC MEMORY ADDRESS REGISTER (VMAR) 2–135
VIC TAG REGISTER (VTAG) 2–137
VIC DATA REGISTER (VDATA) 2–139
IBOX CONTROL AND STATUS REGISTER (ICSR) 2–140
PHYSICAL ADDRESS MODE REGISTER (PAMODE) 2–142
MEMORY MANAGEMENT EXCEPTION ADDRESS
REGISTER (MMEADR) 2–143
MEMORY MANAGEMENT EXCEPTION PTE
ADDRESS REGISTER (MMEPTE) 2–144
MEMORY MANAGEMENT EXCEPTION STATUS
REGISTER (MMESTS) 2–145
TB PARITY ADDRESS REGISTER (TBADR) 2–148
TB PARITY STATUS REGISTER (TBSTS) 2–149
P-CACHE PARITY ADDRESS REGISTER (PCADR) 2–153
P-CACHE STATUS REGISTER (PCSTS) 2–154
P-CACHE CONTROL REGISTER (PCCTL) 2–157

2.7.3 XMI Registers 2–160
NDAL CONTROL AND STATUS REGISTER (NCSR) 2–162
NEXMI INPUT PORT REGISTER (IPORT) 2–168
NEXMI OUTPUT PORT0 REGISTER (OPORT0) 2–170
NEXMI OUTPUT PORT1 REGISTER (OPORT1) 2–172
DEVICE REGISTER (XDEV) 2–173
BUS ERROR REGISTER (XBER) 2–174
FAILING ADDRESS REGISTER (XFADR) 2–181
XMI GENERAL PURPOSE REGISTER (XGPR) 2–185
NODE-SPECIFIC CONTROL AND STATUS REGISTER
(NSCSR) 2–186
XMI CONTROL REGISTER (XCR) 2–188
FAILING ADDRESS EXTENSION REGISTER (XFAER) 2–194
BUS ERROR EXTENSION REGISTER (XBEER) 2–197
WRITEBACK 0 FAILING ADDRESS REGISTER
(WFADR0) 2–201
WRITEBACK 1 FAILING ADDRESS REGISTER
(WFADR1) 2–202

2.8 KA66A CPU MODULE INITIALIZATION, SELF-TEST, AND BOOTING 2–203
2.8.1 Initialization Overview 2–203

vi

Contents

2.8.2 Detailed Initialization Description 2–205
2.8.2.1 NVAX CPU Hardware/Microcode Initialization • 2–208
2.8.2.2 Console Initialization • 2–208
2.8.2.3 Unnecessary Explicit Initialization • 2–210
2.8.2.4 Warm Start Initialization • 2–210
2.8.2.5 Node Reset • 2–210
2.8.2.6 Boot Processor Determination • 2–211
2.8.2.7 Memory Configuration • 2–211
2.8.2.7.1 Selection of Interleave • 2–211
2.8.2.7.2 Memory Testing and the Bitmap • 2–212
2.8.2.8 DWMBB Configuration • 2–213
2.8.2.9 DWMVA Configuration • 2–213

2.8.3 Bootstrapping or Restarting the Operating System 2–214
2.8.3.1 Operating System Restart • 2–214
2.8.3.2 Failing Restart • 2–215
2.8.3.3 Restart Parameters • 2–216
2.8.3.4 Operating System Bootstrap • 2–216
2.8.3.5 Boot Algorithm • 2–217
2.8.3.6 Boot Parameters • 2–218
2.8.3.7 Bootstrap Software Sequence • 2–219

2.9 INTERPROCESSOR COMMUNICATION THROUGH THE CONSOLE
PROGRAM 2–220
2.9.1 Required Communications Paths 2–220
2.9.2 Console Communications Area 2–221
2.9.3 Sending a Message to Another Processor 2–229

2.10 ERROR HANDLING 2–231
2.10.1 Error State Collection 2–233
2.10.2 Error Analysis 2–236
2.10.3 Error Recovery 2–237

2.10.3.1 Special Considerations when Memory Management Is
Off • 2–238

2.10.3.2 Cache Coherence in Error Handling • 2–239
2.10.3.2.1 Disabling and Flushing the Caches (Leaving the B-Cache in

ETM) • 2–240
2.10.3.2.2 Enabling the Caches • 2–241
2.10.3.3 Special Writeback Cache Recovery • 2–241
2.10.3.3.1 B-Cache Uncorrectable Error During Writeback • 2–241
2.10.3.3.2 Memory State • 2–241
2.10.3.3.2.1 Accessing Memory State • 2–242
2.10.3.3.2.2 Repairing Memory State (Fill Errors) • 2–242
2.10.3.3.2.3 Repairing Memory State (Tagged-Bad Locations) • 2–243
2.10.3.3.3 Extracting Data from the B-Cache • 2–243
2.10.3.3.4 Address Determination Procedure for Recovery from

Uncorrectable B-Cache Data RAM Errors • 2–243
2.10.3.3.5 Special Address Determination Procedure for Recovery from

Uncorrectable B-Cache Tag Store Errors • 2–244
2.10.3.4 Cache and TB Test Procedures • 2–245

vii

Contents

2.10.3.5 NEXMI Error Handling • 2–245
2.10.4 Error Retry 2–246

2.10.4.1 General Multiple Error Handling Philosophy • 2–246
2.10.4.2 Retry Special Cases • 2–247

2.10.5 Console Halt and Halt Interrupt 2–247
2.10.6 Machine Check Exception 2–249

2.10.6.1 MCHK_UNKNOWN_MSTATUS • 2–259
2.10.6.2 MCHK_INT.ID_VALUE • 2–259
2.10.6.3 MCHK_CANT_GET_HERE • 2–259
2.10.6.4 MCHK_MOVC.STATUS • 2–259
2.10.6.5 MCHK_ASYNC_ERROR • 2–259
2.10.6.5.1 TB Parity Errors • 2–260
2.10.6.5.2 Ebox Stage 3 STALL Timeout Error • 2–260
2.10.6.6 MCHK_SYNC_ERROR • 2–260
2.10.6.6.1 VIC Parity Errors • 2–261
2.10.6.6.2 B-Cache Data RAM Uncorrectable ECC Errors and Addressing

Errors • 2–262
2.10.6.6.3 B-Cache Lost Data RAM Access Error • 2–263
2.10.6.6.4 NDAL I-Stream or D-Stream Read or D-Stream Ownership

Read Timeout Errors • 2–263
2.10.6.6.5 NDAL I-Stream or D-Stream Read or D-Stream Ownership

Read Data Errors • 2–265
2.10.6.6.6 Lost B-Cache Fill Error • 2–267
2.10.6.6.7 Unacknowledged NDAL I-Stream or D-Stream Read or

D-Stream Ownership Read • 2–268
2.10.6.6.8 Lost NDAL Output Error • 2–269
2.10.6.6.9 PTE Read Errors • 2–269
2.10.6.6.9.1 PTE Read Errors in Interruptable Instructions • 2–270
2.10.6.6.9.2 B-Cache Data RAM Uncorrectable ECC Errors and

Addressing Errors on PTE Reads • 2–271
2.10.6.6.9.3 NDAL PTE Read Timeout Errors • 2–272
2.10.6.6.9.4 NDAL PTE Read Data Errors • 2–273
2.10.6.6.9.5 Unacknowledged NDAL PTE Read • 2–274
2.10.6.6.9.6 Multiple Errors That interfere with Analysis of PTE Read

Errors • 2–274
2.10.6.7 Inconsistent Status in Machine Checks • 2–275

2.10.7 Power Fail Interrupt 2–276
2.10.8 Hard Error Interrupt 2–277

2.10.8.1 Uncorrectable Data Errors and Addressing Errors During Write
or Write Unlock Processing • 2–282

2.10.8.2 Lost B-Cache Data RAM Hard Errors • 2–283
2.10.8.3 Read Data Error in Quadword OREAD Fill After Write Data

Merged • 2–284
2.10.8.4 Timeout in Quadword OREAD Fill After Write Data

Merged • 2–285
2.10.8.4.1 Unexpected Fill Error • 2–286
2.10.8.4.2 Lost B-Cache Fill Error • 2–286
2.10.8.5 NDAL NO ACK During WRITE or WDISOWN • 2–287
2.10.8.6 Lost NDAL NO ACK Hard Errors • 2–287
2.10.8.7 Read Data Timeout with Potential Soft Error Cause • 2–288
2.10.8.8 Read Data Error with Potential Soft Error Cause • 2–288
2.10.8.9 NEXMI Hard Error Interrupts • 2–289

viii

Contents

2.10.8.10 Inconsistent Status in Hard Error Interrupts • 2–293
2.10.9 Soft Error Interrupt 2–294

2.10.9.1 VIC Parity Errors • 2–308
2.10.9.2 P-Cache Parity Errors • 2–308
2.10.9.3 B-Cache Tag Store Uncorrectable ECC Errors • 2–308
2.10.9.3.1 Case: BCETSTS<TS CMD>=W UNLOCK • 2–309
2.10.9.3.2 Case: BCETSTS<TS CMD>=DREAD, IREAD,

OREAD • 2–309
2.10.9.3.3 Case: BCETSTS<TS CMD>=R INVAL, O INVAL, IPR

DEALLOCATE • 2–309
2.10.9.4 Lost B-Cache Tag Store Errors • 2–310
2.10.9.5 B-Cache Tag Store Correctable ECC Errors • 2–310
2.10.9.6 Lost B-Cache Tag Store Correctable ECC Errors • 2–310
2.10.9.7 B-Cache Data RAM Correctable ECC Errors • 2–311
2.10.9.8 Lost B-Cache Data RAM Correctable ECC Errors • 2–311
2.10.9.9 B-Cache Data RAM Uncorrectable ECC Errors and Addressing

Errors on I-Stream or D-Stream Reads • 2–311
2.10.9.10 B-Cache Data RAM Uncorrectable ECC Errors and Addressing

Errors on Writebacks • 2–312
2.10.9.11 Lost B-Cache Data RAM Errors with Possible Lost

Writebacks • 2–313
2.10.9.12 Lost B-Cache Data RAM Errors Without Lost

Writebacks • 2–314
2.10.9.13 NDAL I-Stream or D-Stream Read or D-Stream Ownership

Read Timeout Errors • 2–314
2.10.9.14 NDAL I-Stream or D-Stream Read or D-Stream Ownership

Read Data Errors • 2–317
2.10.9.15 Lost B-Cache Fill Error • 2–319
2.10.9.16 Unacknowledged NDAL I-Stream or D-Stream Read or

D-Stream Ownership Read • 2–320
2.10.9.17 Lost NDAL Output Error • 2–321
2.10.9.18 PTE Read Errors • 2–321
2.10.9.18.1 B-Cache Data RAM Uncorrectable ECC Errors and Addressing

Errors on PTE Reads • 2–321
2.10.9.18.2 NDAL PTE Read Timeout Errors • 2–322
2.10.9.18.3 NDAL PTE Read Data Errors • 2–323
2.10.9.18.4 Unacknowledged NDAL PTE Read • 2–324
2.10.9.18.5 Multiple Errors That Interfere with Analysis of PTE Read

Errors • 2–325
2.10.9.19 NDAL Parity Errors • 2–325
2.10.9.20 Lost Parity Errors • 2–328
2.10.9.21 Inconsistent Parity Errors • 2–328
2.10.9.22 NEXMI Soft Error Interrupts • 2–328
2.10.9.23 Inconsistent Status in Soft Error Interrupts • 2–330

2.10.10 Note on Tagged-Bad Data Mechanisms 2–330
2.10.11 Kernel Stack Not Valid Exception 2–331

ix

Contents

CHAPTER 3 MS65A MEMORY MODULE 3–1

3.1 MODULE DESCRIPTION 3–2

3.2 SELF-TEST AND INITIALIZATION 3–4
3.2.1 Starting and Ending Addresses 3–5
3.2.2 Interleaving 3–5

3.3 CONTROL AND STATUS REGISTERS 3–6
DEVICE REGISTER (XDEV) 3–8
BUS ERROR REGISTER (XBER) 3–10
MEMORY CONTROL REGISTER 1 (MCTL1) 3–14
MEMORY ECC ERROR REGISTER (MECER) 3–17
MEMORY ECC ERROR ADDRESS REGISTER
(MECEA) 3–21
MEMORY CONTROL REGISTER 2 (MCTL2) 3–22
TCY TESTER REGISTER (TCY) 3–24
BLOCK STATE ECC ERROR REGISTER (BECER) 3–25
BLOCK STATE ECC ADDRESS REGISTER (BECEA) 3–26
STARTING ADDRESS REGISTER (STADR) 3–27
ENDING ADDRESS REGISTER (ENADR) 3–28
SEGMENT/INTERLEAVE REGISTER (INTLV) 3–30
MEMORY CONTROL REGISTER 3 (MCTL3) 3–32
MEMORY CONTROL REGISTER 4 (MCTL4) 3–34
BLOCK STATE CONTROL REGISTER (BSCTL) 3–37
BLOCK STATE ADDRESS REGISTER (BSADR) 3–39
EEPROM CONTROL REGISTER (EECTL) 3–40
TIMEOUT CONTROL/STATUS REGISTER (TMOER) 3–42

3.4 ERROR HANDLING 3–43

INDEX

EXAMPLES
2–1 Error State Collection 2–235
2–2 Backup Cache Flushing and Error State Collection 2–236

x

Contents

FIGURES
1–1 System Architecture 1–2
1–2 Sample System 1–4
1–3 System Front View 1–6
1–4 System Rear View 1–8
1–5 Adapters 1–10
2–1 KA66A CPU Module Block Diagram 2–2
2–2 Physical Address Space Layout 2–10
2–3 PTE Format (21-Bit PFN) 2–11
2–4 PTE Format (25-Bit PFN) 2–12
2–5 Minimum Stack Frame 2–14
2–6 Large Stack Frame 2–15
2–7 Arithmetic Exception Stack Frame 2–18
2–8 Memory Management Exception Stack Frame 2–19
2–9 Emulated Instruction Trap 2–20
2–10 Emulated Instruction Fault 2–21
2–11 Machine Check Stack Frame 2–22
2–12 System Control Block Vectors 2–25
2–13 Process Control Block 2–29
2–14 PTE Fills from MME Latch 2–46
2–15 PTE Fills from EM Latch 2–46
2–16 Cbox in the System 2–48
2–17 Watch Chip CSR A (E018 300A) 2–51
2–18 Watch Chip CSR B (E018 300B) 2–52
2–19 Watch Chip CSR D (E018 300D) 2–52
2–20 KA66A CPU Module Private I/O Address Space Map 2–55
2–21 Mask Generation Diagram 2–61
2–22 IPR Address Space Decoding 2–64
2–23 Initialization Flowchart 2–205
2–24 Restart Parameter Block Format 2–215
2–25 CCA Layout 2–223
2–26 Layout of XMI Node Buffers 2–227
2–27 Machine Check Exception Parse Tree 2–250
2–28 Hard Error Interrupt Parse Tree 2–277
2–29 Soft Error Interrupt Parse Tree 2–295
3–1 Error Bit Hierarchy 3–13

xi

Contents

TABLES
1 VAX 6000 Series Documentation xv
2 VAX 6000 Model Level Documentation xvi
3 Associated Documents xvi
1–1 System Components 1–5
1–2 Adapters 1–11
2–1 NVAX CPU Chip Functional Units 2–4
2–2 30-Bit Mapping of Program Addresses to 32-Bit Hardware

Addresses 2–10
2–3 KA66A CPU Module Interrupts 2–16
2–4 KA66A CPU Module Exceptions 2–17
2–5 Arithmetic Exceptions Type Codes 2–19
2–6 Memory Management Exceptions 2–19
2–7 Emulated Instruction Trap Stack Frame Parameters 2–21
2–8 Machine Check Stack Frame Fields 2–22
2–9 Machine Check Codes 2–23
2–10 CPU State Initialized on Console Halt 2–24
2–11 Console Halt Codes 2–25
2–12 System Control Block Layout 2–26
2–13 VIC Attributes 2–31
2–14 IPR Address Space Decoding 2–33
2–15 Backup Cache Behavior During ETM 2–38
2–16 Backup Cache State Changes During ETM 2–39
2–17 Interval Clock Register Addresses 2–49
2–18 Watch Chip Data 2–50
2–19 Watch Chip Example 2–51
2–20 Watch Chip Control Registers 2–51
2–21 NEXMI Transaction Generation/Response for NVAX Chip-to-XMI

Operations 2–56
2–22 NEXMI Transaction Generation/Response for XMI-to-NVAX Chip

Operations 2–57
2–23 Transaction Priority Table 2–58
2–24 IPR Address Space Decoding 2–65
2–25 I/O Space Registers 2–66
2–26 KA66A CPU Module Internal Processor Registers 2–67
2–27 Types of Registers and Bits 2–70
2–28 Interpretation of TS CMD 2–105
2–29 Interpretation of DR CMD 2–112
2–30 Data Length Code 2–127
2–31 CMD Definitions 2–150
2–32 KA66A CPU Module Registers in XMI Private Space 2–160
2–33 XMI Registers for the KA66A CPU Module 2–161
2–34 Boot Parameters Loaded into GPRs 2–218

xii

Contents

2–35 CCA Fields 2–224
2–36 Buffer Fields 2–227
2–37 Hardware-Detected Errors 2–231
2–38 NVAX Chip Internally Generated SCB Entry Points 2–232
2–39 Error Summary Notification by Entry Point 2–232
2–40 S_CEFSTS Cycle Type Decode 2–314
3–1 MS65A Memory Module Control and Status Registers 3–6

xiii

Preface

Intended Audience
This manual is written for Digital customer service engineers doing field-
level repairs or programming and for OEMs who are writing specialized
applications, such as their own operating systems. The VAX 6000 Platform
Technical User’s Guide is also useful for such purposes.

Document Structure
This manual has three chapters.

• Chapter 1 introduces the VAX 6000 Model 600 system and its parts.

• Chapter 2 explains the KA66A CPU module.

• Chapter 3 explains the MS65A memory module.

• The Index provides additional reference support.

VAX 6000 Series Documents
There are two sets of documentation: manuals that apply to all VAX 6000
series systems and manuals that are specific to one VAX 6000 model.
Table 1 lists the manuals in the VAX 6000 series documentation set.

Table 1 VAX 6000 Series Documentation

Title Order Number

Operation

VAX 6000 Series Owner’s Manual EK–600EB–OM

VAX 6000 Series Vector Processor Owner’s Manual EK–60VAA–OM

VAX 6000 Vector Processor Programmer’s Guide EK–60VAA–PG

Service and Installation

VAX 6000 Platform Technical User’s Guide EK–600EA–TM

VAX 6000 Series Installation Guide EK–600EB–IN

VAX 6000 Installationsanleitung EK–600GB–IN

VAX 6000 Guide d’installation EK–600FB–IN

VAX 6000 Guia de instalacion EK–600SB–IN

VAX 6000 Platform Service Manual EK–600EA–MG

xv

Preface

Table 1 (Cont.) VAX 6000 Series Documentation

Title Order Number

Options and Upgrades

VAX 6000: XMI Conversion Manual EK–650EB–UP

VAX 6000: Installing MS65A Memories EK–MS65A–UP

VAX 6000: Installing the H7236-A Battery Backup Option EK–60BBA–IN

VAX 6000: Installing the FV64A Vector Option EK–60VEA–IN

VAX 6000: Installing the VAXBI Option EK–60BIA–IN

Manuals specific to models are listed in Table 2.

Table 2 VAX 6000 Model Level Documentation

Title Order Number

Model 600

VAX 6000 Model 600 Mini-Reference EK–660EA–HR

VAX 6000 Model 600 Service Manual EK–660EA–MG

VAX 6000 Model 600 System Technical User’s Guide EK–660EA–TM

VAX 6000: Installing Model 600 Processors EK–660EA–UP

Model 500

VAX 6000 Model 500 Mini-Reference EK–650EA–HR

VAX 6000 Model 500 Service Manual EK–650EA–MG

VAX 6000 Model 500 System Technical User’s Guide EK–650EA–TM

VAX 6000: Installing Model 500 Processors EK–KA65A–UP

Models 200/300/400

VAX 6000 Model 300 and 400 Service Manual EK–624EA–MG

VAX 6000: Installing Model 200/300/400 Processors EK–6234A–UP

Associated Documents
Table 3 lists other documents that you may find useful.

Table 3 Associated Documents

Title Order Number

System Hardware Options

VAXBI Expander Cabinet Installation Guide EK–VBIEA–IN

VAXBI Options Handbook EB–32255–46

xvi

Preface

Table 3 (Cont.) Associated Documents

Title Order Number

System I/O Options

CIBCA User Guide EK–CIBCA–UG

CIXCD Interface User Guide EK–CIXCD–UG

DEC LANcontroller 200 Installation Guide EK–DEBNI–IN

DEC LANcontroller 400 Installation Guide EK–DEMNA–IN

DSSI VAXcluster Installation Guide EK–DVCLU–IN

InfoServer Installation Guide EK–DIS1K–IN

KDB50 Disk Controller User’s Guide EK–KDB50–UG

KDM70 Controller User Guide EK–KDM70–UG

KFMSA Module Installation and User Manual EK–KFMSA–IM

KFMSA Module Service Guide EK–KFMSA–SV

RRD42 Disc Drive Owner’s Manual EK–RRD42–OM

RA90/RA92 Disk Drive User Guide EK–ORA90–UG

RF31/RF72 Integrated Storage Element Installation Manual for
BA200-Series Enclosures

EK–RF72D–IM

RF31/RF72 Integrated Storage Element User Guide EK–RF72D–UF

RF31/RF72 Integrated Storage Element Service Guide EK–RF72D–SV

SA70 Enclosure User Guide EK–SA70E–UG

SF2xx Storage Array Installation Guide EK–SF200–IG

SF7x Storage Enclosure and SF2xx Storage Array Cabinet
Service Guide

EK–SF72S–SG

TF85 Cartridge Tape Subsystem Owner’s Manual EK–OTF85–OM

TF857 Magazine Tape Subsystem Service Manual EK–TF857–OM

VAX 6000/SF2xx Embedded Storage Installation Guide EK–EMBED–IN

Operating System Manuals

Guide to Maintaining a VMS System AA–LA34B–TE

Guide to Setting Up a VMS System AA–LA25A–TE

Introduction to VMS System Management AA–LA24A–TE

ULTRIX–32 Guide to System Exercisers AA–ME96B–TE

VMS Networking Manual AA–LA48A–TE

VMS System Manager’s Manual AA–LA00B–TE

VMS Upgrade and Installation Supplement: VAX 6000 Series AA–LB36C–TE

VMS Version 5.5 Upgrade and Installation Manual AA–NG61D–TE

xvii

Preface

Table 3 (Cont.) Associated Documents

Title Order Number

VAXclusters and Networking

DECbridge 500 Installation Guide EK–DEFEB–IN

DEMFA Installation Guide EK–DEMFA–IN

Fiber Distributed Data Interface Description EK–DFSLD–SD

Guidelines for VAXcluster System Configurations EK–VAXCS–CG

H4000 Digital Ethernet Transceiver Installation Manual EK–H4000–IN

HSC Installation Manual EK–HSCMN–IN

VAXcluster Principles EK–VAXCP–TM

VMS VAXcluster Manual AA–LA27B–TE

Peripherals

Installing and Using the VT420 Video Terminal EK–VT420–UG

RV20 Optical Disk Owner’s Manual EK–ORV20–OM

SC008 Star Coupler User’s Guide EK–SC008–UG

TA78 Magnetic Tape Drive User’s Guide EK–OTA78–UG

TA90 Magnetic Tape Subsystem Owner’s Manual EK–OTA90–OM

TK70 Streaming Tape Drive Owner’s Manual EK–OTK70–OM

TU81/TA81 and TU/81 PLUS Subsystem User’s Guide EK–TUA81–UG

VAX Manuals

VAX Architecture Reference Manual EY–3459E–DP

VAX Systems Hardware Handbook — VAXBI Systems EB–31692–46

VAX Vector Processing Handbook EC–H0739–46

xviii

1 The VAX 6000 Model 600 System

The VAX 6000 Model 600 computer system is designed for growth and can
be configured for many different applications. Like other VAX systems,
the VAX 6000 Model 600 system can support many users in a time-sharing
environment. This system does the following:

• Supports a full range of VAX applications and operating systems

• Supports writeback caching which enhances system performance

• Functions as a standalone system, a member of a VAXcluster, a boot
node of a local area VAXcluster, or as a VAX file server for workstations

• Allows for expansion of processors, memory, and I/O on the XMI bus

• Implements symmetric multiprocessing where all processors have
equal access to memory

• Uses a high-bandwidth system bus designed for multiprocessing

• Performs automatic self-test on power-up, reset, reboot, or system
initialization

• Supports I/O devices on the VAXBI bus and provides access to the
VME bus

This chapter describes the system packages and introduces the location of
components in the cabinet. Sections include:

• System Architecture

• Sample System

• System Front View

• System Rear View

• Supported Adapters

1–1

The VAX 6000 Model 600 System

1.1 System Architecture

The high-speed XMI bus is used to interconnect processors,
memory modules, and I/O adapters.

Figure 1–1 System Architecture

KDM70CIXCD

XMI

MEMORYPROCESSORS

msb-0310A-91

DEMNA KFMSADEMFA

DWMBB DWMVA

1–2

The VAX 6000 Model 600 System

The XMI is the 64-bit system bus that interconnects the processors,
memory modules, and I/O adapters.

The XMI bus uses the concept of a node. A node is a single functional
unit that consists of one or more modules. The XMI has three types of
nodes: processor nodes, memory nodes, and I/O adapters.

A processor node, called a KA66A CPU module, is a single-board
processor containing a central processor unit (CPU) that executes
instructions and manipulates data. A writeback cache subsystem improves
system performance.

The VAX 6000 Model 600 system supports multiprocessing with up to six
processors. Symmetric multiprocessing is supported, allowing a program
to execute on any processor. In a multiprocessing system one processor
becomes the boot processor during power-up, and that processor loads the
operating system and handles communication with the operator console.
The other processors become secondary processors and receive system
information from the boot processor.

A memory node is one memory module. Memory is a global resource
equally accessible by all processors on the XMI. A memory module
can have 32, 64, or 128 Mbytes of memory and associated ECC and
control logic. The memories are automatically interleaved. An optional
battery backup unit protects memory in case of power failure. The system
supports up to eight MS65A memories.

I/O adapters are installed on the XMI bus (see Section 1.5). If your
system has a VAXBI, then the DWMBB adapter is used to connect VAXBI
I/O adapters to the XMI bus. The DWMVA adapter provides an interface
to the VMEbus.

1–3

The VAX 6000 Model 600 System

1.2 Sample System

A sample system has a system cabinet, a console load device—
either a tape drive or a compact disk server on the Ethernet—
a console terminal and printer, an accessories kit, and a
documentation set. The system may have additional storage
devices and may be a member of a VAXcluster.

Figure 1–2 Sample System

SYSTEM
CABINET

MANUALS
msb-0251A-91

OPTIONAL
STORAGE

DEVICE

LA75
PRINTER

VT400 SERIES
TERMINAL

1–4

The VAX 6000 Model 600 System

Table 1–1 System Components

Component Function

System cabinet Houses system components and optional storage

Console load device Software distribution; stores and transfers data

Console terminal Manages system and its resources

Console printer Provides hardcopy of console transactions

Documentation See the Preface for a full list of documentation
related to VAX 6000 Model 600 systems

Storage cabinet Provides additional storage capacity

The VAX 6000 Model 600 components include:

• The system cabinet houses the XMI card cage (which contains the
processors, memories, and I/O adapters) and the control panel with
status indicators. Optional hardware in the cabinet includes a console
load device, a VAXBI backplane, disk drives, and a battery backup
unit.

• The console load device is used for installing operating systems,
software, and some diagnostics. The console load device can be a tape
drive, either in the cabinet or in the SF200 storage array, or it can be
an Ethernet-based compact disk server.

• A storage cabinet provides local storage and archiving capability.

• The console terminal is used for booting and for system
management operations.

• A system documentation kit

1–5

The VAX 6000 Model 600 System

1.3 System Front View

The control panel and optional console load device and disk
control panel are on the front of the system cabinet, accessible
with the doors closed. With the front door open, Digital customer
service engineers can access the power regulators, the XMI card
cage and optional VAXBI card cages, the cooling system, and the
optional battery backup unit.

Figure 1–3 System Front View

COOLING SYSTEM

VAXBI CARD
CAGES

CONTROL PANEL

CONSOLE LOAD
DEVICE XMI POWER REGULATORS

XMI CARD CAGE

BATTERY BACKUP UNIT
OR DISKS

msb-0311A-91

POWER AND
LOGIC BOX

TRANSFORMER
(50 Hz SYSTEMS)

DISKS

OPTIONAL*

*

*

*

VAXBI POWER REGULATORS *

*

1–6

The VAX 6000 Model 600 System

WARNING: The inside of the system cabinet is not designed to be accessed by
the customer. The cabinet doors are to be opened only by Digital
customer service engineers.

These components are visible from the inside front of the cabinet (see
Figure 1–3 for their location):

• Control panel

• XMI power regulators

• XMI card cage

• Cooling system
One of the two blowers is visible from the front of the cabinet.

• Power and logic box

• Transformer (on 50 Hz systems only)

Optional components:

• Console load device

• VAXBI power regulators

• Two VAXBI card cages configured as one 12-slot channel

• Battery backup unit

• Disks

1–7

The VAX 6000 Model 600 System

1.4 System Rear View

With the rear door open, Digital customer service engineers can
access the power sequencer module (XTC); the power regulators;
the I/O bulkhead space behind the card cages; Ethernet and
console terminal connectors; cooling system; power and logic
box; battery backup unit and disks, if present; and the AC power
controller.

Figure 1–4 System Rear View

COOLING
SYSTEM

XTC POWER
SEQUENCER MODULE

XMI
CARD CAGE

XMI POWER
 REGULATORS

ETHERNET AND
CONSOLE TERMINAL
CONNECTORS

POWER AND
LOGIC BOX

AC POWER
CONTROLLER

VAXBI
CARD CAGES

BATTERY
BACKUP UNIT

OR DISKS

msb-0312A-91

DISKS

OPTIONAL*

*
*

*

VAXBI POWER
REGULATORS *

1–8

The VAX 6000 Model 600 System

WARNING: The inside of the system cabinet is not designed to be accessed by
the customer. The cabinet doors are to be opened only by Digital
customer service engineers.

These components are visible from the rear of the cabinet (see Figure 1–4):

• Power sequencer module (XTC) located on the back of the system
control assembly

• XMI power regulators

• I/O bulkhead space
The panel covering the XMI and VAXBI areas is the I/O bulkhead
panel and provides space for additional I/O connections.

• XMI backplane and cables

• Ethernet and console terminal connectors

• Cooling system

• Power and logic box

• AC power controller

Optional components:

• VAXBI power regulators

• VAXBI backplane and cables

• Battery backup unit

• Disks

1–9

The VAX 6000 Model 600 System

1.5 Supported Adapters

VAX 6000 systems provide interfaces to other buses and to the
Ethernet. Systems can be clustered and storage can be added
and shared among systems. The system supports the following
adapters: CIXCD, DEC LANcontroller 400 (DEMNA), DEMFA,
DWMBB, DWMVA, KDM70, and KFMSA.

Figure 1–5 Adapters

CIXCD KFMSA

BUS
CONTROLLERS

DWMBB DWMVA

CI DSSI VAXBI VMEbus

DEMNA DEMFA

NETWORK
CONTROLLERS

MULTIPLE-HOST
CLUSTER ADAPTERS

CIXCD KFMSA

CI DSSI

KDM70

LOCAL TAPE/DISK CONTROL

DWMBB DWMVA

TA tapes
RA disks

To TK/TU tapes
& RA disks
on VAXBI

To VMEbus
devices

KFMSA

TF tapes
RF disks

msb-0759-92

DEMFA

FDDI

1–10

The VAX 6000 Model 600 System

Table 1–2 describes the adapters supported by the system. For more
information on adapters, see Digital’s Systems and Options Catalog or the
VAX 6000 Platform Service Manual.

Table 1–2 Adapters

Adapter
XMI
Slots Function

CIXCD 1 CI port interface; connects the system to a Star Coupler.

DEMFA 1 FDDI (fiber optic) port interface; connects a system to a local
area network.

DEMNA 1 Ethernet port interface; connects a system to a local area
network.

DWMBB 1 XMI-to-VAXBI interface, a two-module set. The DWMBB/A is
in the XMI card cage; the DWMBB/B is installed in the VAXBI
card cage.

DWMVA 1 XMI-to-VMEbus interface, a two-module set. The DWMVA/A
is in the XMI card cage; the DWMVA/B is installed in a
VMEbus expansion cabinet.

KDM70 2 Disk adapter; enables connection to RA disk drives.

KFMSA 1 DSSI adapter; enables connection to TF tape drives and to
RF disk drives.

1–11

The VAX 6000 Model 600 System

1–12

2 KA66A CPU Module

This chapter describes the KA66A CPU module, the processor for the VAX
6000 Model 600 system.

This chapter includes the following sections:

• Overview and Block Diagram

• CPU Section

• Cache Overview

• NVAX Box Descriptions

• KA66A Toy Clock and Interval Timer

• XMI Interface

• KA66A CPU Module Registers

• Initialization, Self-Test, and Booting

• Interprocessor Communication Through the Console Program

• Error Handling

2–1

KA66A CPU Module

2.1 Overview and Block Diagram

The KA66A CPU module consists of three major sections:

• NVAX CPU chip

• Backup cache

• NEXMI chip, system support, and XMI interface

Figure 2–1 shows the KA66A CPU module block diagram.

Figure 2–1 KA66A CPU Module Block Diagram

XMI BUS

NDAL

msb-0772A-92

XMI
CORNER

7 XLATCH
1 XCLOCK

XCI
NEXMI
CHIP

XMI SS
INTERFACE

Std Cells

NVAX CPU
CHIP

12 ns Cycle Time

2KB VI Cache
8KB P-Cache

ROM
384K X 8

EEPROM
32K X 8

RAM
8K X 8

IPORT
OPORT

UART TOY
CLOCK

ADRS

ROM BUS

2-Mbyte
BACKUP
CACHE

256K x 72

The NVAX and NEXMI chips implement a VAX with the following
features:

• Support for the 242-instruction VAX base instruction group, associated
data types, full VAX memory management, and a 4-Gbyte virtual
address space.

• Support for 3.5 Gbytes of physical memory and 512 Mbytes of I/O
space, when the system is in 32-bit addressing mode.

• A floating-point accelerator that improves the execution of the F_, D_,
and G_format floating-point instructions and the longword variants of
integer multiply.

2–2

KA66A CPU Module

• A three-level cache subsystem. A 2-Kbyte instruction cache and an
8-Kbyte I- and D-stream primary cache are in the NVAX chip. A
2-Mbyte backup cache is implemented in RAMs.

• A writeback cache system that allows multiple read and write
operations to be serviced which reduces XMI bus traffic.

• A VAX-compatible macrocoded console program.

• A set of processor clock registers that support the following:

— A VAX-standard time-of-year (TOY) clock with battery backup

— An interval timer with 10 millisecond interrupts

— A programmable timer

• A bootstrap and diagnostic facility that provides:

— Full microcode and macrocode power-up self-testing

— Node initialization

— Booting from various XMI and VAXBI devices

• An XMI interface that includes:

— A writeback buffer with four hexword entries

— Hexword cache fill logic that loads the backup cache with eight
longwords of data on each cache miss

— XMI read/write monitoring logic

— Full error recovery and logging capabilities

2.1.1 NVAX CPU Chip

The NVAX CPU chip is a single-chip CMOS-4 macropipelined
implementation of the VAX base instruction group. Included in the chip
are:

• CPU: Instruction fetch and decode, microsequencer, and execution unit

• Control store: 1600, 61-bit microwords

• Primary cache: 8-Kbyte, 2-way set associative, physically addressed,
write through, mixed instruction and data stream

• Virtual instruction cache: 2-Kbyte, direct-mapped, virtually addressed,
instruction stream only

• Translation buffer: 96 entries, fully associative

• Floating-point unit: four-stage, pipelined, integrated floating-point
unit

• Backup cache interface: supports a 2-Mbyte B-cache

2–3

KA66A CPU Module

The NVAX has a macroinstruction pipelined design. Pipelining allows
significant processing overlap not possible with other designs. The design
allows several macro instructions to be decoded and operands fetched
prior to their execution. The pipeline queues instruction information
and operand values for later use by the execution unit. Thus, when
the macropipeline is running smoothly, the instruction unit (Ibox),
which parses instructions and fetches operands, is running several
macroinstructions ahead of the execution unit (Ebox). Branch predictions
are made prior to knowing whether a particular branch will be taken
allowing quicker execution of loops in software. Outstanding writes to
registers or memory locations are kept in a scoreboard to ensure that data
is not read before it has been written.

The chip is partitioned into functional units or boxes. The boxes and their
functions are listed in Table 2–1.

Table 2–1 NVAX CPU Chip Functional Units

Ibox The instruction box prefetches, decodes, parses, and queues VAX
instructions for execution.

Ebox The execution box and the microsequencer execute instructions passed
to it by the Ibox.

Fbox The floating-point accelerator box executes floating-point and integer
multiply VAX instructions passed to it by the Ebox.

Mbox The memory management box handles all virtual to physical address
translation for both the Ibox and Ebox. It also handles Cbox requests
for cache fills and invalidates for the primary cache.

Cbox The cache control box initiates access to the the backup cache, or
B-cache, issues memory requests, and controls cache coherency by
handling invalidates.

2.1.1.1 Ibox
The Ibox supports four main functions:

• Instruction Stream Prefetching
The Ibox attempts to maintain sufficient instruction stream data to
decode instructions or operand specifiers prior to execution of the
previous instruction by the Ebox.

• Instruction Parsing
The Ibox identifies the instruction opcodes and operand specifiers, and
extracts the information necessary for further processing.

• Operand Specifier Processing
The Ibox processes the operand specifiers, initiates the required
memory references, and provides the Ebox with the information
necessary to access the instruction’s operands.

• Branch Prediction
Upon identification of a branch opcode, the Ibox hardware predicts the
direction of the branch. Should the prediction be incorrect, the Ibox
redirects the instruction prefetching and parsing logic to the correct
branch destination, where instruction processing resumes.

2–4

KA66A CPU Module

2.1.1.2 Ebox and Microsequencer
The Ebox is the instruction execution unit in the NVAX chip. It is a
three-stage pipeline that supports the following functions:

• Instruction Execution
The Ebox is responsible for carrying out the execution portion of each
VAX instruction under control of a microflow whose initial address is
provided by the Ibox.

• Instruction Coordination
The Ebox is a major source of control to coordinate instruction
processing in the Ibox, Mbox, and Fbox. It ensures that Ebox and Fbox
macroinstructions retire in the proper order, and it provides controls
to the Mbox and Ibox which help manage certain macroinstruction
interdependencies. The Ebox cooperates with the Ibox in handling
mispredicted branches.

• Trap, Fault, and Exception Handling
The Ebox coordinates trap, fault, and interrupt handling. It delays
the condition until all preceding macroinstructions complete properly.
It then collects information about the condition and ensures that the
correct architectural state is reached.

• CPU Control
Most CPU control is provided by the Ebox. Ebox control functions
include CPU initialization, controlling the Ibox, Fbox, and Mbox
activities, and setting control bits during major CPU state changes like
taking an interrupt or executing a change mode instruction.

2.1.1.3 Fbox
The Fbox executes floating-point and integer multiply instructions using
a four-stage pipeline. Up to 64-bit operands are supplied per cycle by the
Ebox on the A-bus and B-bus. Results are returned to the Ebox 32 bits per
cycle on the result bus. The Ebox sends the Fbox result to the Mbox.

2.1.1.4 Mbox
The Mbox performs three tasks:

• VAX Memory Management
The Mbox, in conjunction with the operating system memory
management software, is responsible for the allocation and use
of physical memory. It performs translations of virtual addresses
to physical addresses, checks for access violation on all memory
references, and calls upon software memory management code when
necessary.

• Reference Processing
The Ibox, Ebox, and Cbox can each access memory simultaneously.
Since the Mbox is responsible for acquiring data from memory, it must
prioritize, sequence, and process such references and then transfer the
data to its correct destination.

2–5

KA66A CPU Module

• Primary Cache Control
The Mbox maintains an 8-Kbyte physical address cache of I-stream
and D-stream data called the primary cache or P-cache. The P-cache
provides a two-cycle pipeline latency for most I- and D-stream data
requests. It is the fastest D-stream storage medium for NVAX and
represents the first level of D-stream memory hierarchy and the
second level of I-stream memory hierarchy.

2.1.1.5 Cbox
The Cbox is the interface to the backup cache, or B-cache. Both the tags
and data for the B-cache are stored in RAMs. In conjunction with the
Mbox, the Cbox is used for invalidates and writeback instructions.

The Cbox is also the interface to the memory subsystem. When a cache
miss is detected, the Cbox sends a read transaction onto the NDAL for
XMI conversion by the NEXMI. The NDAL is the bus containing the data
and address lines from the NVAX chip to the NEXMI chip.

The Cbox packs sequential writes to the same quadword to minimize B-
cache write accesses. This is a function of the write packer. Multiple write
commands are held in the 8-entry write queue.

2.1.2 Backup Cache

The backup cache is implemented in RAMs external to the NVAX chip.
The size of the cache is 2 Mbytes with a block and subblock size of 32
bytes. Since the data bus to the cache is 8 bytes wide, four accesses are
required to read out an entire block. ECC protection is provided on each
quadword in the cache and for the tag store.

Each block of data (hexword) has a tag, a valid bit, and an owned bit
associated with it. When set, the valid bit indicates that the data stored
in the B-cache is accurate data. When set, the owned bit indicates that
the data stored in the B-cache may be the only accurate data for this
particular address in the system.

2–6

KA66A CPU Module

2.1.3 NEXMI Chip, System Support, and XMI Interface

The NEXMI chip provides the interface between the NVAX chip and the
XMI. The NVAX data and address lines, the NDAL, is the bus between
the NEXMI chip and the NVAX chip, and the XMI is the system bus that
connects CPUs, main memory, and I/O adapters. In addition to providing
this interface, the NEXMI provides the interface for various system
support functions.

The NEXMI operates from two asynchronous clock sources, the XMI
six-phase 64-ns cycle clock and the NDAL four-phase 36-ns cycle clock.
Synchronization is done internally. Different NEXMI interface drivers and
receivers accommodate either 3.3V or 5V bus signal levels.

The NEXMI contains the system support for a common core of functions.
The chip provides an interface between the NDAL and a serial-line
interface that serves as console, and a ROM interface to support self-
test, console command parsing, and boot functions. The ROM bus (see
Figure 2–1) is a nonpended multiplexed address and data interconnect to
various slow-speed memory devices such as ROM, EEPROM, stack RAM,
I/O registers, and a battery-backed-up real time clock. The NEXMI also
contains an interval timer and support for I/O reset.

The NEXMI provides bus protocol translation between the NVAX NDAL
and the XMI system bus. The NDAL is a pended bus that operates at 3
times the system cycle time. To memory it supports hexword reads and
quadword and hexword writes; to I/O space it supports longword read and
write operations.

The NEXMI drives correct parity on the NDAL at all times to prevent
interrupts when the bus is idle. Multiple interrupts from the XMI and
system support functions are merged by the NEXMI and issued to the
NVAX on the four interrupt request lines. An interrupt acknowledge,
an IACK (I/O Read), from the NVAX is automatically converted to an
XMI IDENT command and sent to the highest priority interrupting node.
System support and interprocessor interrupts, however, are handled by the
NEXMI.

2–7

KA66A CPU Module

2.2 CPU Section

The CPU section of the KA66A CPU module executes the VAX base
instruction group and provides full VAX memory management. All
of these functions are carried out by the NVAX chip. For more
information, see the VAX Architecture Reference Manual.

The CPU description that follows includes the following topics:

• Data Types

• Instruction Set

• Physical Address Space

• Memory Management

• Exceptions and Interrupts

• System Control Block

• Process Structure

2.2.1 Data Types

The KA66A CPU module supports the following subset of VAX data types:

• Byte

• Word

• Longword

• Quadword

• Character string

• Variable-length bit field

• Absolute queues

• Self-relative queues

• D_floating

• F_floating

• G_floating

The remaining VAX data types are supported by macrocode emulation.

2–8

KA66A CPU Module

2.2.2 Instruction Set

The KA66A CPU module supports the following instruction classes:

• Integer arithmetic and logical

• Address

• Variable-length bit field

• Control

• Procedure call

• Miscellaneous

• Queue

• Character string

• Operating system support

• D_floating

• F_floating

• G_floating

The KA66A CPU module has special microcode to aid the macrocode
emulation of the following instruction groups:

• MATCHC, MOVTC, MOVTUC

• Decimal string

• CRC

• EDITPC

The following instruction groups are not implemented but are emulated by
macrocode:

• Octaword

• H_floating

• POLYF, POLYD, and POLYG

• EMODF, EMODD, and EMODG

• ACBF, ACBD, and ACBG

• Compatibility-mode instructions

2–9

KA66A CPU Module

2.2.3 Physical Address Space

The KA66A CPU generates a 32-bit address that corresponds to 4
gigabytes of physical address space. However, the CPU can run in 30-
bit mode as well. Figure 2–2 shows the layout of both memory and I/O
space. I/O space occupies the last one-eighth (512 Mbytes) of the physical
address space and can be distinguished from memory space by the fact
that bits <31:29> of the physical address are all ones.

Figure 2–2 Physical Address Space Layout

30−Bit
Byte Address

32−Bit
Byte Address

0000 0000 Physical Mem Physical 0000
Space Memory

(512 Mbytes) Space

/
/ Inaccessible

/
/

/
/

/
/

Region (3.5 Gbytes)

I/O Space

0000

1FFF FFFF

DFFF FFFF

0000

(512 Mbytes)

I/O Space 0000

msb−p501−91

(512 Mbytes)

DFFF FFFF

E000 E000

EFFF FFFF EFFF FFFF

The translation from a 30-bit address to a 32-bit address is accomplished
by sign-extending physical address <29> to physical address <31:29>.
In this mode the programmer sees a 1-Gbyte address space, split evenly
between memory and I/O space. A 30-bit address is mapped to the 32-bit
physical address as shown in Table 2–2.

Table 2–2 30-Bit Mapping of Program Addresses to 32-Bit Hardware
Addresses

Program Address Hardware Address

00000000–1FFFFFFF 00000000–1FFFFFFF

20000000–3FFFFFFF E0000000–FFFFFFFF

2–10

KA66A CPU Module

During power-up, microcode configures the KA66A CPU module to
generate 30-bit physical addresses. Operating system initialization code
can reconfigure the CPU to generate either 30-bit or 32-bit physical
addresses by writing to the MODE bit <0> in the Physical Address Mode
Register (IPR231). For full details on physical address space, see the VAX
6000 Platform Technical User’s Guide.

2.2.4 Memory Management

The KA66A CPU module implements full VAX memory management.
System space addresses are mapped through single-level page tables, and
process space addresses are mapped through two-level page tables. The
KA66A CPU module supports two physical addressing modes: a 30-bit
mode and a 32-bit mode. When the KA66A CPU module is in 30-bit mode,
page table entries (PTEs) are interpreted in a 21-bit page frame number
(PFN) format, and when the KA66A CPU module is in 32-bit mode, the
PTEs are interpreted in a 25-bit page frame number (PFN) format. See
Figure 2–3 and Figure 2–4. In the 32-bit mode, bits <24:23> of the 25-bit
PFN are ignored by the NVAX chip and may be used by the software.
Refer to the VAX Architecture Reference Manual for descriptions of the
virtual-to-physical address translation process and the format for VAX
page table entries (PTEs).

Figure 2–3 PTE Format (21-Bit PFN)

3
1

3
0

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0 0

PROT Page Frame Number

MBZ
MBZ
Ownership Access Mode
MBZ
Modify
Protection Code
Valid

msb−p507−91

V M Z OWN Z Z

2–11

KA66A CPU Module

Figure 2–4 PTE Format (25-Bit PFN)

3
1

3
0

2
7

2
6

2
5

2
3

2
2 0

PROT S Page Frame Number

Reserved for Software
Modify
Protection Code
Valid

msb−p508−91

V M

2.2.4.1 Translation Buffer
The NVAX chip includes a 96-entry, fully associative, translation buffer
to reduce the overhead associated with translating virtual addresses to
physical addresses. The translation buffer caches VAX PTEs. Each entry
stores a PTE for translating virtual addresses in either VAX process space
or VAX system space. Each entry is divided into two parts: a 26-bit tag
register and a 29-bit PTE register.

The tag register is used to store the virtual page number (VPN) of the
virtual page that the corresponding PTE register maps. The tag register
also stores a valid bit (TB.V) that indicates a valid VPN in the tag. The
PTE register stores bits <22:0> of the page frame number (PFN) field, a
parity bit for the PFN, the PTE.M bit, and the 4-bit protection (PROT)
field from the corresponding VAX PTE. The page table entry valid bit is
not stored in the TB because only valid PTEs are stored. Bits <24:23> of
the PFN are ignored and along with bit <25> are reserved for software.

During virtual-to-physical address translation, the contents of the 96
tag registers are compared with the VPN field (bits <31:9> of the virtual
address of the reference). If there is a match with one of the tag registers
and the TB.V bit indicates that the entry is valid, a translation buffer "hit"
has occurred, and the contents of the corresponding PTE register are used
for the translation.

If there is no match, the translation buffer does not contain the necessary
VAX PTE information to translate the address of the reference. The
PTE that maps the page is fetched from memory and the translation
buffer is updated by replacing the entry at the location indicated by
the replacement pointer. The replacement pointer points to the next
sequential location after the one last used during translation. The pointer
is called the not last used pointer or NLU.

2–12

KA66A CPU Module

2.2.4.2 Memory Management Control Registers
Four internal processor registers (IPRs) control memory management:

• IPR56, Memory Management Enable Register (MAPEN)

• IPR57, Translation Buffer Invalidate All Register (TBIA)

• IPR58, Translation Buffer Invalidate Single Register (TBIS)

• IPR63, Translation Buffer Check Register (TBCHK)

Three pairs of IPRs specify the base and length of P0, P1, and S0 space:

• IPR8, P0 Base Register (P0BR)

• IPR9, P0 Length Register (P0LR)

• IPR10, P1 Base Register (P1BR)

• IPR11, P1 Length Register (P1LR)

• IPR12, System Base Register (SBR)

• IPR13, System Length Register (SLR)

Memory management is enabled/disabled using MAPEN, IPR56. Writing
zero to MAPEN with a Move To Processor Register (MTPR) instruction
disables memory management; a one enables. MAPEN is read with a
Move From Processor Register (MFPR) instruction to determine if memory
management is enabled.

NOTE: The contents of the translation buffer are UNPREDICTABLE
whenever memory management is disabled. The entire translation
buffer contents should be flushed before memory management is
enabled. The console performs this function as the machine is
booted.

Translation buffer entries that map a particular virtual address are
invalidated by writing the virtual address to TBIS (IPR58) using the
MTPR instruction.

CAUTION: All affected process pages MUST be invalidated in the translation
buffer whenever software changes a valid PTE for the system
or the current process region, or whenever software changes a
system PTE that maps any part of the current process page table.
If the pages are not invalidated, the pages used will point to the
wrong locations in memory.

The entire translation buffer is invalidated by writing a zero to TBIA
(IPR57) using the MTPR instruction.

2–13

KA66A CPU Module

The base and length of the P0, P1, and S0 page tables are changed by
writing the appropriate address or length to P0BR, P0LR, P1BR, P1LR,
SBR, or SLR. The entire translation buffer is flushed whenever a change
is made to any of these six registers.

NOTE: A full invalidation of the translation buffer, whether performed as
the result of an explicit write to TBIA or as an implied clear due
to writes to MAPEN or any base/length register, resets the NLU
pointer to the first location in the translation buffer.

When a process context is loaded with the Load Process Context (LDPCTX)
instruction, all translation buffer entries that map process-space pages are
automatically invalidated. System-space mappings are preserved.

To determine if the translation buffer contains a valid translation for
a particular virtual page, write a virtual address within that page to
TBCHK using an MTPR instruction. If the translation buffer contains a
valid translation for the page, the condition code V bit (PSL<1>) would be
set.

2.2.5 Exceptions and Interrupts

Sometimes events require execution of software routines outside the
explicit flow of instructions.

An exception is an event caused by the currently executing process that
invokes a software routine in the context of the currently executing
process. Exception handlers are often system routines, not process
routines.

An interrupt is an event caused by some activity outside the current
process that invokes a software routine outside the context of the current
process.

The CPU chip reports exceptions and interrupts by constructing a frame
on the stack and then dispatching to the service routine through an event-
specific vector in the system control block (SCB). The minimum stack
frame for any interrupt and exception is a program counter/processor
status longword (PC/PSL) pair, as shown in Figure 2–5.

Figure 2–5 Minimum Stack Frame

3
1 0

Program Counter (PC) :SP

:SP + 4Processor Status Longword (PSL)

msb−p209−89

2–14

KA66A CPU Module

This minimum stack frame is used for all interrupts. Certain exceptions
expand the stack frame by pushing additional parameters on the stack
above the PC/PSL pair, as shown in Figure 2–6.

The parameters that are pushed on the stack above the PC/PSL pair, if
any, depend on the exception being reported.

Figure 2–6 Large Stack Frame

3
1 0

Parameter n :SP

:SP + [4(n−1)]

:SP + [4(n)]

:SP + [4(n+1)]

:

Program Counter (PC)

Processor Status Longword (PSL)

msb−p210−89

Parameter 1

2.2.5.1 Interrupts
A subset of the 31 VAX interrupt priority levels (IPLs) is implemented by
the NVAX chip. When an interrupt request is generated, the NVAX chip
compares the request with the current IPL of the CPU. If the new request
is of higher priority, an internal request is generated. At the completion
of the current instruction, or at selected points during the execution
of interruptable instructions, a microcode interrupt handler is invoked
to process the request. The microcode handler, determines the highest
priority interrupt, updates the IPL, pushes a PC/PSL pair on the stack,
and dispatches to a macrocode interrupt handler through the appropriate
location in the SCB.

The interrupt system is controlled by three IPRs:

• IPR18, Interrupt Priority Level (IPL) Register

• IPR20, Software Interrupt Request Register (SIRR)

• IPR21, Software Interrupt Summary Register (SISR)

The IPL register is used for loading the interrupt priority level field
(IPL<4:0> into PSL<20:16>). The SIRR is used for creating software
interrupt requests. The SISR records pending software interrupt requests
at levels 1 through 15.

Table 2–3 lists the IPLs implemented by the KA66A CPU module.

2–15

KA66A CPU Module

Table 2–3 KA66A CPU Module Interrupts

Interrupt Level (hex) Interrupt Condition SCB Vector (hex)

1F – Forced console entry or
machine check

CTRL/P typed at the console,
Node HALT bit (XBER<29>) set,
node reset, or system reset

None; the console is
entered using the console
halt procedure and is
nonmaskable.

1F – Machine check Machine check 04

1E – Power Fail XMI AC LO L assertion 0C

1D – "Hard" error notification Causes reported in XBER, XBEER,
NCSR, and NSCSR

60

1C – 1B Unused

1A – "Soft" error notification Causes reported in ECSR, PCSTS,
BCETSTS, BCEDSTS, NESTS,
CEFSTS, XBER, and NCSR

54

19 – 18 Unused

17 – Device interrupt XMI Level 7 interrupt (INTR) Supplied by the device

16 – Device or special interrupt XMI interprocessor interrupt (IVINTR)1 80

XMI level 6 interrupt (INTR) Supplied by the device

Interval timer interrupt C0

15 – Device or special interrupt Console terminal receive interrupt1 F8

Console terminal transmit interrupt FC

Programmable timer interrupt (timer 0
takes priority over timer 1)

Programmable by writing to
the ICCS register

XMI level 5 interrupt (INTR) Supplied by the device

14 – Device interrupt XMI level 4 interrupt (INTR) Supplied by the device

13 – 10 Unused

0F – 01 Software interrupt request 80 to 9C indexed by the level

1At this IPL, the priority of interrupts is shown in descending order.

2–16

KA66A CPU Module

2.2.5.2 Exceptions
Exceptions fall into one of three types:

• Traps

• Faults

• Aborts

A trap occurs at the end of an instruction. Therefore, the PC saved on the
stack is the address of the next instruction that would normally have been
executed had the trap not occurred.

A fault occurs during an instruction that leaves the registers and memory
in a consistent state so that eliminating the fault condition and restarting
the instruction gives correct results. After the instruction faults, the PC
saved on the stack points to the instruction that was executing when the
fault occurred.

An abort occurs during an instruction that leaves the value of the
registers and memory UNPREDICTABLE, so that the instruction cannot
be restarted, completed, simulated, or undone. In most cases the NVAX
microcode attempts to convert an abort into a fault by restoring the state
that was present at the start of the instruction that caused the abort.

Table 2–4 lists the KA66A CPU module-specific instances of the seven
classes of exceptions in the VAX.

Table 2–4 KA66A CPU Module Exceptions

Exception Class Instances

Arithmetic traps/faults Integer overflow trap

Integer divide-by-zero trap

Subscript range trap

Floating overflow fault

Floating divide by zero fault

Floating underflow fault

Memory management exceptions Access control violation fault

Translation not valid fault

Operand reference exceptions Reserved addressing mode fault

Reserved operand fault or abort

Instruction execution exceptions Reserved/privileged instruction fault

Emulated instruction fault

Extended function (XFC) fault

Change-mode trap

Breakpoint fault

Tracing exceptions Trace fault

System failure exceptions Kernel stack not valid abort

Interrupt stack not valid abort

2–17

KA66A CPU Module

Table 2–4 (Cont.) KA66A CPU Module Exceptions

Exception Class Instances

Console error halt

Machine-check exceptions (aborts) Unknown memory management fault

Illegal interrupt ID value

Illegal microcode dispatch

Illegal state during string instruction

Asynchronous hardware error

Synchronous hardware error

2.2.5.3 Unique Exceptions
The following exceptions are unique to the NVAX chip. The standard
exceptions are described in the VAX Architecture Reference Manual.

Arithmetic Exceptions

Arithmetic exceptions are detected during the execution of integer or
floating-point arithmetic instructions. The exception is reported as either
a trap or a fault, depending on the specific event. Figure 2–7 shows the
arithmetic exception stack frame.

The exceptions are reported in the manner shown in Table 2–5.

Figure 2–7 Arithmetic Exception Stack Frame

3
1 0

Type Code :SP

:SP + 4

:SP + 8

Program Counter (PC)

Processor Status Longword (PSL)

msb−p211−89

2–18

KA66A CPU Module

Table 2–5 Arithmetic Exceptions Type Codes

Code (hex) Type Exception

1 Trap Integer overflow

2 Trap Integer divide-by-zero

7 Trap Subscript range

8 Fault Floating overflow

9 Fault Floating divide-by-zero

A Fault Floating underflow

Memory Management Exceptions

Memory management exceptions are detected during a memory reference
and are always reported as faults. The memory management exceptions
are listed in Table 2–6.

Table 2–6 Memory Management Exceptions

SCB Vector (hex) Exception

20 Access control violation

24 Translation not valid

All memory management exceptions push the same frame on the stack, as
shown in Figure 2–8.

Figure 2–8 Memory Management Exception Stack Frame

3
1 2 1 0

MUST BE ZERO :SP

:SP + 4

:SP + 8

:SP + 12

Some virtual address in the faulting page

Program Counter (PC)

Processor Status Longword (PSL)

msb−p573−91

M P L

The M, P, and L bits (bits<2:0>) of the parameter pointed to by the stack
pointer are described in the VAX Architecture Reference Manual under
Memory Management Faults and Parameters.

2–19

KA66A CPU Module

Emulated Instruction Exceptions

The NVAX chip implements the VAX base instruction group and provides
microcode that supports the macrocode emulation of certain other
instructions. Two types of emulation exceptions depend on the state of
PSL<27> (First Part Done, FPD). If FPD is zero at the beginning of the
instruction, the instruction has no microcode assistance and the exception
is reported through SCB vector C8 (hex) as a trap with the stack frame
shown in Figure 2–9 and the stack frame’s parameters listed in
Table 2–7.

If PSL<FPD> is a one at the beginning of the instruction, the instruction
has microcode assistance and the exception is reported through SCB vector
CC (hex) as a fault with the stack frame shown in Figure 2–10. In this
case, PC is the opcode of the emulated instruction.

Figure 2–9 Emulated Instruction Trap

3
1 0

Opcode :SP

:SP + 4

:SP + 8

:SP + 12

:SP + 16

:SP + 20

:SP + 24

:SP + 28

:SP + 32

:SP + 36

:SP + 40

:SP + 44

Old Program Counter

Specifier #1

Processor Status Longword (PSL)

msb−p214−89

New Program Counter

Specifier #2

Specifier #3

Specifier #4

Specifier #5

Specifier #6

Specifier #7

Specifier #8

2–20

KA66A CPU Module

Table 2–7 Emulated Instruction Trap Stack Frame Parameters

Parameter Description

Opcode Zero-extended opcode of the emulated instruction.

Old PC Program counter of the opcode of the emulated instruction.

Specifiers Address of the specified operand for specifiers of either access
type write (.wx) or address (.ax).

Operand value for specifiers of access type read (.rx).

For read-type operands whose size is smaller than a longword,
the remaining bits are UNPREDICTABLE.

For those instructions that do not have eight specifiers, the
remaining specifier longwords contain UNPREDICTABLE values.

New PC Program counter of the instruction following the emulated
instruction.

PSL PSL saved at the time of the trap.

Figure 2–10 Emulated Instruction Fault

3
1 0

Program Counter (PC) :SP

:SP + 4Processor Status Longword (PSL)

msb−p215−89

Machine Check Exceptions

A machine check exception is reported through SCB vector 04 (hex) when
the NVAX chip detects an error condition. The frame pushed on the stack
for a machine check indicates the type of error and provides internal
state information that may help identify the cause of the error. The
machine check stack frame is shown in Figure 2–11 and its parameters
are described in Table 2–8. Table 2–9 lists and describes the machine
check codes.

Software must acknowledge machine checks by writing a zero to IPR38,
MCESR, as a second machine check causes a machine check during
machine check processing console halt.

2–21

KA66A CPU Module

Figure 2–11 Machine Check Stack Frame

3
1

2
4

2
3

1
6

1
5 8 7 0

Parameter Byte Count (18 hex) :SP

:SP + 4

:SP + 8

:SP + 12

:SP + 16

:SP + 20

:SP + 24

:SP + 28

:SP + 32

AST x MCHK Code x CPUID

INT.SYS Register

SAVEPC Register

VA Register

Q Register

Rn x Mod Opcode x

msb−p503−91

Vx

PC

PSL

Table 2–8 Machine Check Stack Frame Fields

Longword Bits Contents

SP+0 <31:0> Byte count— The size of the stack frame in bytes, not including the PC, PSL, or the byte
count longword. Stack frame PC and PSL values should always be referenced using this
count as an offset from the stack pointer.

SP+4 <31:29> AST LVL— The current value of the register.

<23:16> Machine check code— The reason for the machine check, as listed in Table 2–9.

<7:0> CPUID—This field contains the current value of the CPUID register.

SP+8 <31:0> INT.SYS register— The value of the INT.SYS register, which is read onto the A-bus by the
microcode.

SP+12 <31:0> SAVEPC register— The SAVEPC register which is loaded by microcode with the PC value
in certain circumstances. It is used in error handling for PTE read errors with PSL<FPD>
set in this stack frame.

SP+16 <31:0> VA register— The contents of the Ebox VA register, which may be loaded from the output
of the ALU.

SP+20 <31:0> Q register— The contents of the Ebox Q register, which may be loaded from the output of
the shifter.

SP+24 <31:28> Rn— The value of the Rn register, which is used to obtain the register number for the
CVTPL and EDIV instructions. In general, the value of this field is UNPREDICTABLE.

<25:24> Mod— A copy of the current mode field, PSL<CUR MOD>.

<23:16> Opcode— Bits <7:0> of the instruction opcode. The FD bit is not included.

<7> VR— The VAX Restart bit, which is used to communicate restart information between
the microcode and the operating system. If this bit is set, no architectural state has been
changed by the instruction that was executing when the error was detected. If this bit is not
set, architectural state was modified by the instruction.

SP+28 <31:0> PC— The value of the program counter at the time of the fault.

SP+32 <31:0> PSL— The value of the processor status longword at the time of the fault.

2–22

KA66A CPU Module

Table 2–9 Machine Check Codes

Code
(hex) Mnemonic Description Restart Condition

01 MCHK_UNKNOWN_MSTATUS Unknown memory management
fault parameter returned by
Mbox

(VR = 1) or (PSL<FPD> = 1)

02 MCHK_INIT.ID_VALUE Illegal interrupt ID value returned
in INT.SYS

(VR = 1) or (PSL<FPD> = 1)

03 MCHK_CANT_GET_HERE Illegal microcode dispatch
occurred

(VR = 1) or (PSL<FPD> = 1)

04 MCHK_MOVC.STATUS Illegal combination of state bits
detected during string instruction

(PSL<FPD> = 1)

05 MCHK_ASYNC_ERROR Asynchronous hardware error
occurred

Recovery generally not possible

06 MCHK_SYNC_ERROR Synchronous hardware error
occurred

See Section 2.10.6.6 for various
recovery conditions.

2.2.5.4 Console Halt
A console halt is a transfer of control by the NVAX CPU microcode directly
into console macrocode at the boot ROM address E004 0000 (hex). The
restart sequence begins at this location. Console halts occur:

• At power-up

• When the microcode detects certain double error conditions, specifically
when a second error occurs during error processing

• When XBER<NHALT> is set

• When CTRL/P is typed on the console

• When the system is reset

• When a kernel-mode HALT instruction is executed

No exception stack frame is associated with a console halt. Instead, the
SAVPC (IPR42) and SAVPSL (IPR43) processor registers provide the
necessary information.

NOTE: In certain error conditions detected during the execution of a
string instruction, the state packup sequence leaves the FPD bit
set in the SAVPSL register, but the SAVPC register pointing at
the instruction following the string instruction, rather than at the
string instruction itself.

If the FPD bit is not set in the SAVPSL register, SAVPC is correct. Since
error halts can normally be restarted, this is not a problem. For a console
halt due to the assertion of HALT L, normally the only console halt that
can be restarted, SAVPC is always correct, even if the halt interrupt was
detected during the execution of a string instruction.

2–23

KA66A CPU Module

The hardware restart sequence is as follows:

1 The NVAX microcode saves the current CPU state.

• The stack pointer is saved in the appropriate stack pointer IPR

— IPR0, Kernel Stack Pointer

— IPR1, Executive Stack Pointer

— IPR2, Supervisor Stack Pointer

— IPR3, User Stack Pointer

— IPR4, Interrupt Stack Pointer

2 The current PC is saved in IPR42, SAVPC.

3 The PSL, halt code, MAPEN<0>, and a validity bit are saved in IPR43,
SAVPSL.

• SAVPSL<31:16> and <7:0> are loaded from PSL<31:16> and <7:0>.

• SAVPSL<15> is set to MAPEN<0>.

• SAVPSL<14> is set to zero if the PSL is valid and is set to one
if the PSL is not valid. If the halt is due to a system reset,
SAVPSL<14> is undefined.

• SAVPSL<13:8> is set to the console halt code. The console halt
codes are listed in Table 2–11.

4 The NVAX microcode then initializes the following CPU state to the
values shown in Table 2–10. The remainder of the machine state is
undefined.

Table 2–10 CPU State Initialized on Console Halt

State Initialized Value

SP IPR4 (IS), Interrupt Stack Pointer

PSL 041F 0000 (hex)

PC E004 0000 (hex)

MAPEN 0

ICCS 0 (after reset, halt code = 3, only)

SISR 0 (after reset, halt code = 3, only)

ASTLVL 4 (after reset, halt code = 3, only)

PAMODE 0 (after reset, halt code = 3, only)

BPCR<31:16> FECA (hex) (after reset, code = 3, only)

CPUID 0 (after reset, halt code = 3, only)

5 Control passes to the console program code at E004 0000 (hex).

2–24

KA66A CPU Module

Table 2–11 Console Halt Codes

Code (Hex) Mnemonic Description

02 ERR_HLTPIN CTRL/P, break, or external halt

03 ERR_PWRUP Initial power-up

04 ERR_INTSTK Interrupt stack not valid during exception processing

05 ERR_DOUBLE Machine check during exception processing

06 ERR_HLTINS HALT instruction executed in kernel mode

07 ERR_ILLVEC Illegal SCB vector (bits <1:0> = 11)

08 ERR_WCSVEC Illegal WCS SCB vector (bits <1:0> = 10)

0A ERR_CHMFI CHMx while on interrupt stack

10 ERR_IE0 ACV/TNV during machine check processing

11 ERR_IE1 ACV/TNV during kernel-stack-not-valid processing

12 ERR_IE2 Machine check during machine check processing

13 ERR_IE3 Machine check during kernel-stack-not-valid processing

19 ERR_IE_PSL_26_24_101 PSL<26:24> = 101 during interrupt or exception

1A ERR_IE_PSL_26_24_110 PSL<26:24> = 110 during interrupt or exception

1B ERR_IE_PSL_26_24_111 PSL<26:24> = 111 during interrupt or exception

1D ERR_REI_PSL_26_24_101 PSL<26:24> = 101 during REI

1E ERR_REI_PSL_26_24_110 PSL<26:24> = 110 during REI

1F ERR_REI_PSL_26_24_111 PSL<26:24> = 111 during REI

2.2.6 System Control Block

The system control block (SCB) is a page containing vectors for servicing
traps, faults, software interrupts, and exceptions. IPR17, the System
Control Block Base Register (SCBB), points to the SCB.

Each SCB vector is longword aligned in the SCB. The NVAX chip
microcode dispatches interrupts and exceptions through the SCB vector, as
shown in Figure 2–12.

Figure 2–12 System Control Block Vectors

3
1 2 1 0

Longword address of service routine

Code

msb−p217−89

2–25

KA66A CPU Module

Bits <31:2> of each vector supply the virtual address of the service routine
for the interrupt or exception. The routine is longword aligned, as the
microcode forces the lower two bits of the address to 00 (hex).

Bits <1:0> of each vector are a code:

00 – The event is to be serviced on the kernel stack unless the CPU is
already on the interrupt stack. If the CPU is already on the interrupt
stack, the event is to be serviced on the interrupt stack.

01 – The event is to be serviced on the interrupt stack. If the event is
an exception, the IPL is raised to 1F (hex).

10 – Unimplemented; results in a console error halt.

11 – Unimplemented; results in a console error halt.

Table 2–12 shows the SCB layout.

Table 2–12 System Control Block Layout

Vector (hex) Name Type
Number of
Parameters Notes

00 Passive release Interrupt None IPL is raised to requested IPL

04 Machine check Abort 6 Parameters reflect machine
state; must be serviced on the
interrupt stack

08 Kernel stack not valid Abort None Must be serviced on the
interrupt stack

0C Power fail Interrupt None IPL is raised to 1E (hex)

10 Reserved/privileged instruction Fault None

14 Customer reserved instruction Fault None XFC instruction

18 Reserved operand Fault
/abort

None Not always recoverable

1C Reserved addressing mode Fault None

20 Access control violation/vector
alignment fault

Fault 2 Parameters are virtual
address, status code

24 Translation not valid Fault 2 Parameters are virtual
address, status code

28 Trace pending (TP) Fault 0

2C Breakpoint instruction Fault 0

30 Unused – – Compatibility mode in other
VAXes

34 Arithmetic Trap/fault 1 Parameter is type code

38 – 3C Unused – –

2–26

KA66A CPU Module

Table 2–12 (Cont.) System Control Block Layout

Vector (hex) Name Type
Number of
Parameters Notes

40 CHMK Trap 1 Parameter is sign-extended
operand word

44 CHME Trap 1 Parameter is sign-extended
operand word

48 CHMS Trap 1 Parameter is sign-extended
operand word

4C CHMU Trap 1 Parameter is sign-extended
operand word

50 Unused – –

54 Soft error notification Interrupt None IPL is 1A (hex)

58 Reserved – –

59 – 5C Unused – –

60 Hard error notification Interrupt None IPL is 1D (hex)

64 – 7C Unused – –

80 Interprocessor interrupt Interrupt None IPL is 16 (hex)

84 Software level 1 Interrupt None

88 Software level 2 Interrupt None Usually used for AST delivery

8C Software level 3 Interrupt None Usually used for process
scheduling

90 – BC Software levels 4 through 15 Interrupt None

C0 Interval timer Interrupt None IPL is 16 (hex)

C4 Unused – –

C8 Emulation start Fault 10 Same mode exception,
FPD=0; parameters are
opcode, PC, specifiers

CC Emulation continue Fault None Same mode exception,
FPD=1; no parameters

D0 – F4 Unused – –

F8 Console receiver Interrupt None IPL is 15 (hex)

FC Console transmitter Interrupt None IPL is 15 (hex)

100 – FFFC Device vectors Interrupt None Device interrupt vectors

2–27

KA66A CPU Module

2.2.7 Process Structure

A process is a single thread of execution. The context of the current
process is contained in the process control block (PCB).

The physical address of the current PCB is changed by writing to the
Process Control Block Base Register (PCBB), IPR16. The PCB may be
located anywhere in memory space and is pointed to by the address
contained in the PCBB. The LDPCTX instruction loads a process context
from the PCB as described in the VAX Architecture Reference Manual.
LDPCTX flushes only the process-space entries from the translation
buffer; system-space entries are preserved. When the CPU is in 30-bit
addressing mode, PCBB<31:30> are ignored.

Figure 2–13 shows the PCB layout.

Other process structure functions are implemented as described in the
VAX Architecture Reference Manual.

2–28

KA66A CPU Module

Figure 2–13 Process Control Block

3
1 1

KSP :(PCBB)

+4

+8

+12

+16

+20

+24

+28

+32

+36

+40

+44

+48

+52

+56

+60

+64

+68

+72

+76

+80

+84

+88

+92

AP(R12)

MBZ AST MBZ P0LR

MBZ

Performance Monitor Enable (PME)
msb−p218−89

ESP

FP(R13)

P1LR

SSP

USP

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

PC

PSL

P0BR

P1BR

2–29

KA66A CPU Module

2.3 Cache Overview

The KA66A CPU module has three caches.

• A virtual instruction cache (VIC): 2 Kbytes, direct mapped,
virtually addressed, instruction stream only

• A primary cache: 8 Kbytes, 2-way set associative, physically
addressed, write through, mixed instruction and data

• A backup cache: 2 Mbytes, direct mapped, physically
addressed, writeback, mixed instruction and data

These three caches are designed to improve the performance of VAX 6000
Model 600 systems. Access to data in caches is much faster than access to
data in memory and therefore the speed with which work can be done is
much improved by cache designs.

KA66A caches are hierarchical. The VIC, which is virtually addressed,
holds I-stream data only. It is a subset of the primary cache, which is
a subset of the backup cache. Under such conditions cache coherency
becomes an issue, and the sequence of turning caches on and off is
important. The B-cache is a writeback cache, the P-cache is a write-
through cache, and the VIC is not written to memory at all.

Although the instruction caching is not necessarily hierarchical, fetching
instructions operates as if it were. If an instruction is not found in the
VIC, it is looked for first in the P-cache, then in the B-cache, and finally
in memory. Data is sought first from the P-cache, then the B-cache, and
finally from memory.

2.3.1 Writeback Cache and Ownership Concepts

The fundamental difference between a writeback cache and a write-
through cache is that in a write-through cache data is always written to
memory. In a writeback cache, data is always written into the cache but is
not necessarily forwarded to memory. The data is written back to memory
only if another device in the system needs that data, or if the block is
displaced (deallocated) from the cache.

A block of data in the NVAX writeback cache can be in one of three states:
invalid, valid-unowned, and valid-owned. A valid-unowned block is a
read-only copy of memory data. A valid-owned block may be written,
and if it has been written since being put into the cache, it is the only
up-to-date copy of the data in the system. The NVAX cache makes no
distinction between valid-owned blocks it has written and those that it
has not written. An invalid block is one that was once valid but has been
invalidated because some other device modified it in memory.

2–30

KA66A CPU Module

A valid-unowned copy of a given cache block may reside in one or more
backup caches in a multiprocessor system. No backup cache may contain
a valid cache block that is valid-owned by another backup cache in the
system.

Memory is implemented with an ownership bit associated with each
hexword of data. When memory receives an Ownership Read (OREAD)
for a hexword it owns, ownership and data is passed to the requesting
CPU. If another Ownership Read arrives for that hexword from a second
CPU, memory does not return the data since the hexword is not owned
by memory but by the first CPU. The first CPU recognizes the OREAD
as a cache coherence transaction and writes back the data from its cache,
using the Disown Write Mask command. The data is then available for the
second CPU from memory.

2.3.2 Virtual Instruction Cache

The virtual instruction cache (VIC) is a subsection of the Ibox which
supports instruction prefetching. This 2-Kbyte, direct-mapped, I-stream
cache becomes the primary source of instruction stream data for the Ibox.
The VIC attributes are summarized in Table 2–13.

Table 2–13 VIC Attributes

Characteristic Implementation

Cache size 2 Kbytes

Access type Direct-mapped

Block size 32 bytes

Subblock size 8 bytes

Valid bits 4 valid bits/cache block = 1 per subblock

Data parity bits 4 even parity bits/cache block = 1 per subblock

Number of tags 64 tags

Tag parity bit 1 even parity bit per tag

Fill algorithm Fill forward

Access size 8 bytes

Bus size 8 bytes

Prefetching None

Data stored I-stream only

Virtual/physical Virtual

The VIC contains four internal processor registers (IPRs) that provide
control and read/write access to the arrays. These registers are:

• VIC Memory Address Register, VMAR (IPR208). Used as an index
to the cache arrays.

• VIC Tag Register, VTAG (IPR209). Provides read/write access to
the cache tag array.

2–31

KA66A CPU Module

• VIC Data Register, VDATA (IPR210). Provides read/write access to
the cache data array.

• Ibox Control and Status Register, ICSR (IPR211). Provides
control and status functions of the Ibox.

2.3.3 Primary Cache

The primary cache (P-cache) is a two-way set associative, read allocate,
no-write allocate, write-through, physical address cache of I- and D-stream
data. With 256, 20-bit tags it stores 256 hexword blocks or 8 Kbytes of
data. Each tag corresponds to bits <31:12> of the physical address. There
are four quadword subblocks per block with a valid bit associated with
each subblock. The access size for both P-cache reads and writes is one
quadword. Byte parity is maintained for each byte of data (32 bits per
block). One bit of parity is maintained for every tag.

The P-cache represents the first level of D-stream memory hierarchy and
the second level of I-stream memory hierarchy. P-cache entries must be
invalidated to maintain cache coherency with higher levels of the memory
hierarchy.

The P-cache is used as the second source of I-stream data and the first
source of D-stream data for the CPU. If an instruction is not found in the
VIC, it is looked for first in the P-cache, then in the B-cache, and finally
in memory. Data is sought first from the P-cache, then the B-cache, and
finally from memory.

2.3.4 Backup Cache

The backup cache (B-cache) is implemented in RAMs external to the NVAX
chip and is controlled by the Cbox. The size of the cache is 2 Mbytes with
a block and subblock size of 32 bytes. Since the data bus to the cache is
8 bytes wide, four accesses are required to read out an entire block. ECC
protection is provided on each quadword in the cache and for the tag store.

Each block of data (hexword) has a tag, a valid bit, and an owned bit
associated with it. When set, the valid bit indicates that the data stored in
the B-cache is accurate. When set, the owned bit indicates that the data
stored in the B-cache may be the only accurate data for this particular
address in the system and control of the data belongs to this CPU. Data
may be valid and not owned. Data cannot be owned and not valid.

2–32

KA66A CPU Module

2.3.4.1 Backup Cache Operating Modes
The backup cache has four modes of operation:

• Cache On. Normal operation.

• Cache Off. Reset puts the backup cache into the Off state. The
backup cache may be enabled/disabled (turned on/off) by software
through the Cbox Control Register (CCTL). No data can be owned
before turning off the B-cache. Cache off mode is described in
Section 2.3.4.4.

• Force Hit. The Cbox forces all memory space reads and writes to hit
in the backup cache. This mode is used for testing and initialization.
Force hit mode is described in Section 2.3.4.5.

• Error Transition Mode. The Cbox enters error transition mode upon
recognition of some error conditions or when put into ETM explicitly
by an IPR write. Error transition mode is described in Section 2.3.4.6.

2.3.4.2 Cbox Internal Processor Registers
The Cbox controls the B-cache. The processor registers implemented by
the Cbox can be divided into three groups, as follows:

• Normal—Those IPRs that address registers in the NVAX chip or
system environment

• B-cache tag IPRs—Read/write IPRs that allow direct access to the
B-cache tags

• B-cache deallocate IPRs—Write-only IPRs by which a B-cache block
can be deallocated

The numeric range for each group is shown in Table 2–14.

Table 2–14 IPR Address Space Decoding

IPR Group Mnemonic
IPR Address Range
(hex) Contents

Normal None 00000000–000000FF 256 individual IPRs

B-Cache Tag BCTAG 01000000–011FFFE01 64K B-cache tag IPRs, each separated by 20 (hex)

B-Cache
Deallocate

BCFLUSH 01400000–015FFFE01 64K B-cache tag deallocate IPRs, each separated by 20
(hex)

1Unused fields in the IPR addresses for these groups should be zero. Neither hardware nor microcode detects and
faults on an address in which these bits are non-zero.

NOTE: The address ranges shown in Table 2–14 are those used by the
programmer. When processing normal IPRs, the microcode shifts
the IPR number left by 2 bits for use as an IPR command address.
This positions the IPR number to bits <9:2> and modifies the
address range as seen by the hardware to 0–3FC, with bits <1:0> =
00. No shifting is performed for the other groups of IPR addresses.

2–33

KA66A CPU Module

Since there are more addresses for the BCTAG group and the BCFLUSH
group than are needed, valid IPR addresses are separated by 20 (hex)
rather than by one as they are for the normal group. For example, the
IPR address for B-cache tag 0 is 0100 0000 (hex), and the IPR address
for B-cache tag 1 is 0100 0020 (hex). In this group, bits <4:0> of the IPR
address are ignored, so IPR numbers 0100 0001 through 0100 001F all
address B-cache tag 0.

Processor registers in all groups except the normal group are processed
by the NVAX chip and do not appear on the NDAL. This is also true for a
number of the IPRs in the normal group. IPRs in the normal group that
are not processed by the NVAX chip are converted into I/O space references
and passed to the system environment by a read or write command on the
NDAL.

IPRs in the system and in the Cbox are accessed through IPR reads and
IPR writes from the Mbox to the Cbox. IPR reads and IPR writes are
generated from MFPR and MTPR instructions. When the Cbox recognizes
a valid IPR read, it loads the read into the data read latch (DREAD latch)
to be processed. The Mbox allows only one data read (DREAD) or IPR
read to be outstanding at a time, so that the DREAD latch will not
be overwritten. A valid IPR write is loaded into the write packer and
proceeds immediately to the write queue.

All IPR reads and writes to the Cbox flush the write queue before
completing. Any IPR read sets conflict bits in all valid entries in the
write queue so that all preceding writes complete before the IPR read. An
IPR write is placed in the write queue after the preceding writes so that
the ordering takes place naturally.

If the IPR read addresses one of the Cbox registers, the Cbox returns the
data from the register the same way it would return data for a read hit
except it returns just one quadword or less of data, rather than the usual
four quadwords. The Cbox then signals the Mbox so it expects no more
fills.

If a write-only Cbox register is read, the Cbox returns unpredictable data.
Reading an unimplemented Cbox register returns unpredictable data. If
an unimplemented register is written, the write is discarded by the Cbox
and normal operation continues.

If the Cbox receives an IPR access to an address that is not within the
Cbox block of IPR addresses, it converts it to an I/O space read or write.
The Cbox merges the IPR address with E100 0000 (hex), effectively adding
the base I/O space address of the IPR block to the IPR address. This is
done in hardware by forcing bits <31:29> and bit <24> to one. (The other
upper bits are expected to be received as zero.)

From this point on, the transaction is treated as an I/O space transaction
by the Cbox. It sends the request to the NDAL through the non-writeback
queue. When the fill data returns, the data is returned to the Mbox but
is not cached by the Cbox. I/O space reads and writes are never cached in
the primary cache or the backup cache.

2–34

KA66A CPU Module

Eighteen registers are used for various purposes by the Cbox. Several are
used simultaneously to record errors or for testing purposes. The following
lists these registers and describes their interdependence.

• Cbox Control Register, CCTL (IPR160). Contains bits that control
the behavior of the Cbox.

• Backup Cache Data ECC Register, BCDECC (IPR162). Used by
diagnostics to test the Cbox error detection logic. Control bits for this
register are in the CCTL register.

• Backup Cache Tag Store Error Registers

These three registers record errors detected in the B-cache tag store.

— Backup Cache Error Tag Status Register, BCETSTS
(IPR163). Holds status information on the error.

— Backup Cache Error Tag Index Register, BCETIDX
(IPR164). Holds the address of the location accessed that resulted
in the error.

— Backup Cache Error Tag Register, BCETAG (IPR165). Holds
data read from the tag store that resulted in error.

• Backup Cache Data RAM Error Registers

These three registers record errors detected in the B-cache data
RAMs.

— Backup Cache Error Data Status Register, BCEDSTS
(IPR166). Holds the status of the error.

— Backup Cache Error Data Index Register, BCEDIDX
(IPR167). Holds the address of the location accessed that resulted
in the error.

— Backup Cache Error Data ECC Register, BCEDECC
(IPR168). Holds the ECC check bits calculated on the B-cache
data and check bits.

• Fill Error Registers

These two registers contain information about errors related to reads
to memory.

— Cbox Error Fill Address Register, CEFADR (IPR171). Holds
the address of the memory location that resulted in an error.

— Cbox Error Fill Status Register, CEFSTS (IPR172). Holds the
status of a read to memory.

• NDAL Error Registers

The NDAL error registers hold information related to NDAL errors.

— NDAL Error Status Register, NESTS (IPR174). Holds error
status relating to any problems encountered.

— NDAL Error Output Address Register, NEOADR (IPR176).
Holds the address corresponding to the cycle in error.

2–35

KA66A CPU Module

— NDAL Error Output Command Register, NEOCMD (IPR178).
Holds the command bits corresponding to the cycle in error.

— NDAL Error Data High Register, NEDATHI (IPR180) and
NDAL Error Data Low Register, NEDATLO (IPR182). Hold
the data from an NDAL cycle where the NVAX detected a parity
error on the bus.

— NDAL Error Input Command Register, NEICMD (IPR184).
Holds the command bits corresponding to a cycle with a parity
error.

• Backup Cache Tag Store Registers, BCTAG (01000000–
011FFFE0). Provide software direct access to the B-cache tag store to
aid in error recovery and for diagnostics.

• Backup Cache Flush Registers, BCFLUSH (01400000–
015FFFE0). Used to deallocate cache blocks.

2.3.4.3 Tag Store and Data RAM Control
The four operating states of the B-cache are controlled by four bits in the
Cbox Control (CCTL) Register: Enable, Force Hit, SW ETM, and HW
ETM. The four states — on, off, force hit, and error transition mode — are
determined as follows:

1 If the Enable bit is clear, the B-cache is off and cannot be accessed
regardless of the state of any other control bits.

2 When the Enable bit is set and Force Hit is set, the B-cache is in force
hit mode regardless of the state of any other control bits.

3 When the Enable bit is set and Force Hit is clear, and either SW ETM
or HW ETM is set, the cache is in ETM mode.

4 When the Enable bit is set and force hit, SW ETM, and HW ETM are
clear, the cache is on.

The On state is the normal operating condition of the cache. Off, force hit,
and ETM modes are described in the following sections.

2.3.4.4 Backup Cache Is OFF
The backup cache may be off for two reasons: the chip has just powered
up, or software has disabled the cache by clearing the Enable bit in the
Cbox Control Register (CCTL<0>).

When the cache is off, no accesses to the backup cache are done. Errors
are not detected and cache state is unchanged unless explicitly changed by
software through IPR reads and writes.

When the backup cache is off, all cache coherency requests that arrive
are forwarded as invalidates to the Mbox, as the data may be valid in the
P-cache. Fills that return are sent directly to the Mbox without incurring
the overhead of cache access.

When the cache is off, a DREAD Lock/Write Unlock pair from the Mbox
becomes hexword Ownership Read/quadword Disown Write on the NDAL.

Any writes issued when the B-cache is off are of quadword length.

2–36

KA66A CPU Module

A DREAD Modify command from the Mbox normally becomes an OREAD
on the NDAL when it misses in the cache. However, when the cache is off,
a normal DREAD is used on the NDAL.

2.3.4.5 Backup Cache Is in Force Hit Mode
Force hit mode is for testing purposes only.

When Force Hit and Enable are set, all memory space reads and writes
are forced to hit in the B-cache. Tag store state is not changed at all; the
data RAMs are accessed as if the tag store access produced an owned-valid
hit. Cache coherency transactions are treated as if the B-cache were off:
no lookups are done and the transactions are forwarded to the Mbox.

When the B-cache is in force hit mode, deallocates are not done. Even
if the tag matches and the valid and owned bits are set, the block is not
written back. The implication of this is that if force hit mode is used in a
multiprocessor environment, the B-cache must first be flushed of all owned
blocks.

Tag store and data RAM ECC errors are detected in force hit mode if the
Disable ECC Errors bit in the CCTL register is not set, resulting in the
usual error handling.

Force hit mode is used to test the ECC logic for the data RAMs, as follows:
Set SW ECC in the Cbox Control Register. Write the desired ECC into
BCDECC. Do a D-stream write to the desired location, and the location
will be written using ECC from BCDECC rather than from Cbox-generated
ECC. Assume the ECC value written is incorrect; an ECC error will be
flagged when the data is read. Perform a read of the location while Force
Hit is still set. The read will result in an ECC error, showing that the
logic is working correctly. The data RAM error registers may be read and
will correspond to the induced error.

2.3.4.6 Backup Cache Is in Error Transition Mode
When the Cbox detects certain errors, it puts itself into error transition
mode. The CPU remains in ETM until software explicitly disables
or enables the cache. To ensure cache coherency, the cache must be
completely flushed of valid blocks before it is reenabled because some data
can become stale while the cache is in ETM.

Table 2–15 describes how the backup cache behaves when in ETM.

Any reads or writes that do not hit valid-owned data during ETM are sent
to memory: read data is retrieved from memory, and writes are written to
memory, bypassing the cache entirely.

In ETM mode the cache behaves normally supplying data for IREADs,
DREADs, and Read Modifys that hit valid-owned data.

If a write hits a valid-owned block in the cache, the block is written back
to memory and the write is also sent to memory. If a Read Lock hits
valid-owned data in the cache, a writeback of the block is forced and the
Read Lock is sent to memory (as an OREAD on the NDAL). This behavior
enforces write ordering between previous writes that may have missed in
the cache and the Write Unlock that will follow the Read Lock.

2–37

KA66A CPU Module

Table 2–15 Backup Cache Behavior During ETM

Cache Response

Cache
Transaction Miss Valid Hit Owned Hit

IREAD, DREAD,
Read Modify

Read from memory Read from memory Read from cache

CPU Read Lock Read from memory Read from memory Force block writeback, read from memory

CPU Write Write to memory Write to memory Force block writeback, write to memory

CPU Write Unlock Write to memory Write to memory Write to cache

Fill (from read
started before ETM)

Normal cache behavior

Fill (from read
started during ETM)

Do not update backup cache; return data to Mbox

NDAL cache
coherency request

Normal cache behavior except that Inval always goes to P-cache

Table 2–15 shows that during ETM, cache coherency requests are treated
as they are during normal operation. Fills caused by any type of read
originating before the cache entered ETM are processed in the usual
fashion. If the fill is the result of a write miss, the write data is merged,
as usual, as the requested fill returns. Fills caused by any type of read
originating during ETM are not written into the cache or validated in the
tag store.

While the B-cache is in ETM mode, changes to the cache state are kept to
a minimum. Table 2–16 shows how each transaction modifies the state of
the cache.

2.3.4.7 How to Turn the B-Cache Off
Care must be taken to maintain cache coherency when turning the B-cache
off. If the cache is running normally and software wishes to turn it off, it
must do the following:

1 Put the B-cache in ETM by setting CCTL<SW ETM>. In this mode
the B-cache will not allocate any new blocks and will send all cache
coherency requests to the Mbox as invalidates.

2 Use the BCFLUSH register to flush all owned blocks from the cache.

3 Write CCTL to clear Enable and SW ETM simultaneously. If an error
was encountered during the deallocate process, HW ETM may be set
and if so, should be cleared as well.

If the B-cache encounters an uncorrectable ECC error, the Cbox sets HW
ETM in the CCTL register. If software wishes to turn off the cache, it
must do the following:

1 Use the BCFLUSH register to flush all owned blocks from the cache.

2–38

KA66A CPU Module

2 Write CCTL to clear Enable and HW ETM simultaneously.

Table 2–16 Backup Cache State Changes During ETM

Cache State Modified

Cache
Transaction Miss Valid Hit Owned Hit

IREAD, DREAD, Read
Modify

None None None

Read Lock None None Clear Valid & Owned;
change TS ECC
accordingly.

Write None None Clear Valid & Owned;
change TS ECC
accordingly.

Write Unlock None None Write new data, change
DR ECC accordingly.

Fill (from read started
before ETM)

Write new TS TAG, TS VALID, TS
OWNED, TS ECC, DR DATA, DR ECC

Fill (from read started
during ETM)

None

NDAL cache coherency
request

Clear Valid & Owned; change TS ECC accordingly

2.3.4.8 How to Turn the B-Cache On
On power-up, undefined data is stored in the B-cache tags and data.
Should the cache be turned on immediately, ECC errors would result.
Therefore, the cache must be initialized.

Through a series of IPR writes, every B-cache tag store entry must be
written with cleared owned and valid bits. The value written to the tag is
irrelevant, as long as correct ECC is written to the tag store.

Once the tag store has been initialized, the cache may be enabled by
setting B-Cache Enable in the CCTL register.

It is necessary to initialize the B-cache data RAMs with correct ECC on
power-up. ECC errors in the data RAMs are not ignored.

Force hit mode may be used to initialize the B-cache data RAMs with
correct ECC. If full quadword writes are used, no data RAM errors will be
detected during this process, since the RAMs are written without being
read first. If partial quadword writes are used, errors will be detected
because of the Read-Modify-Write that is necessary. If the programmer
sets the Disable ECC Errors bit in the CCTL register, the Cbox will ignore
these errors.

If the B-cache is in ETM, it may be incoherent with respect to other CPUs
and memory. (Table 2–15 shows how writes that hit valid but not owned
cached data are not written into the cache.) In addition, the P-cache, if
enabled, is no longer a subset of the B-cache.

2–39

KA66A CPU Module

The programmer must ensure that when the B-cache is reenabled, all the
owned and valid bits are cleared.

2.3.5 Cache Initialization

A combination of the console code and the operating system does the final
initialization.

1 Initialize the VIC.

; This code initializes the VIC by writing all 128
; tags with good parity and all valid bits clear.
;

movl #^x00000020, r0 ; tag index increment = 1 hexword
movl #0, r1 ; block tag init value
movl #0, r2 ; VIC tag starting address
movl #^x00000800, r3 ; VIC tag ending address + 1 block
movl #PR19$_VMAR, r4 ; VIC memory address register
movl #PR19$_VTAG, r5 ; VIC tag register (VTAG)

vic_loop:
mtpr r2, r4 ; write current index to VMAR
mtpr r1, r5 ; write the tag via VTAG
addl2 r0, r2 ; increment index by the block size
cmpl r3, r2 ; check if done
bneq vic_loop ;

2 Enable the VIC.

mtpr #<icsr$m_enable+icsr$m_lock>, #PR19$_ICSR

3 Initialize the B-cache.

; This code initializes the B-cache by writing all tags with good
; ECC and all valid and owned bits clear. This example initializes
; a 512Kb B-cache. This code can be changed to init the other legal
; B-cache sizes by changing the value in R3. SW_ECC in CCTL is clear,
; so the CBOX will generate correct ECC for the tag/valid/owned bits.

movl #^x00000020, r0 ; tag index increment = 1 hexword
movl #0, r1 ; block tag init value
movl #^x01000000, r2 ; B-cache tag starting address
movl #^x01080000, r3 ; B-cache tag ending address + 1 block

; for 512Kb B-cache
B-cache_loop:

mtpr r1, r2 ; write tag to current tag address
addl2 r0, r2 ; increment index by the block size
cmpl r3, r2 ; check if done
bneq B-cache_loop ;

4 Initialize the P-cache.

; This code initializes the P-cache by writing all 256 tags with
; good parity and all valid bits clear.

movl #^x00000020, r0 ; tag index increment = 1 hexword
movl #0, r1 ; block tag init value
movl #^x01800000, r2 ; P-cache tag starting address
movl #^x01802000, r3 ; P-cache tag ending address + 1 block

2–40

KA66A CPU Module

P-cache_loop:
mtpr r1, r2 ; write tag to current tag address
addl2 r0, r2 ; increment index by the block size
cmpl r3, r2 ; check if done
bneq P-cache_loop ;

5 Enable the B-cache and the P-cache.

Cache coherency requires that the P-cache is always a subset of the
B-cache. The code below enabling the caches ensures that this is true.
The B-cache is enabled first, and an REI is executed between the
B-cache enable and the P-cache enable. The purpose of the REI is to
synchronize data prefetching so that the P-cache will not perform any
fills to addresses that were not also filled in the B-cache.

mfpr #PR19$_CCTL, r6 ; get current value in Cbox CTL IPR
bisl2 #<cctl$m_enable>, r6 ; set the B-cache enable bit
mtpr r6, #PR19$_CCTL ; write the new Cbox CTL IPR

movpsl -(sp) ; push the psl
moval init_cont,-(sp) ; and the next PC
rei ; branch to the next PC

; flushing the VIC and aborting
; all previous IREADS

; Now that state is synchronized,
; enable the P-cache

init_cont:
mtpr #<pcctl$m_d_enable+pcctl$m_i_enable+pcctl$m_p_enable>,-

#PR19$_PCCTL

2–41

KA66A CPU Module

2.4 NVAX Box Descriptions

The macropipelined VAX design is implemented through a group
of tightly coupled pieces of logic, called boxes, that perform VAX
functions relatively independently of each other. This section
describes each of these boxes.

2.4.1 Ibox

The Ibox decodes VAX instructions and parses operand specifiers.
Instruction control, such as the control store dispatch address, is then
placed in the instruction queue for later use by the microsequencer and
Ebox. The Ibox processes the operand specifiers at a rate of one specifier
per cycle and, as necessary, initiates specifier memory read operations.
All the information needed to access the specifiers is queued in the source
queue and destination queue in the Ebox.

The Ibox prefetches instruction stream data and places it into the 16-byte
prefetch queue (PFQ). The Ibox has a dedicated instruction-stream-only
cache, called the virtual instruction cache (VIC). The VIC is a 2-Kbyte,
direct-mapped cache, with a block and fill size of 32 bytes.

The Ibox has both read and write ports to the general purpose register
(GPR) and memory data (MD) portions of the Ebox register file, which are
used to process the operand specifiers. The Ibox maintains a scoreboard
to ensure that reads and writes to the register file are always performed
in synchronization with the Ebox. The Ibox stops processing instructions
and operands upon issuing certain complex instructions, like CALL, RET,
or character string instructions, so that proper read/write ordering is
maintained while the Ebox alters large amounts of VAX state.

Since the Ibox is often parsing several macroinstructions ahead of the
Ebox, the correct value for the PSL condition codes is not known at the
time the Ibox executes a conditional branch instruction. Rather than
emptying the pipe, the Ibox predicts which direction the branch will take,
and passes this information on to the Ebox via the branch queue. The
Ebox later signals if there was a misprediction, and the hardware backs
out of the path. The branch prediction algorithm uses a 512-entry RAM,
which caches four bits of branch history per entry.

2.4.1.1 Effects of Ibox Pipelining
The instruction prefetching logic fetches several instructions ahead of the
instruction parsing logic which decodes part of the instruction, identifying
and pre-processing each of the instruction’s components. The instruction
opcodes and associated information are passed directly into the Ebox
instruction queue. Operand specifier information is passed on to the
operand specifier processing logic.

2–42

KA66A CPU Module

Instruction prefetching also provides a buffer 4 bytes wide by 4 elements
deep that isolates the instruction parser from the bursts of data coming
in from cache and memory. The result is that the instruction fetching and
instruction parsing can be done in parallel.

The operand specifier processing logic locates the operands in registers,
in memory, or in the instruction stream. This logic places operand
information in the Ebox source and destination queues, and makes the
required operand memory requests.

2.4.1.2 Branch Prediction Unit
The Ibox’s branch prediction unit (BPU) monitors each instruction opcode
as it is parsed, looking for a branch opcode. Upon identification of a
branch opcode, the BPU predicts whether the branch will be taken. If the
BPU predicts the branch will be taken, it adds the sign extended branch
displacement to the current PC and broadcasts the resulting new PC to
the rest of the Ibox. The BPU is controlled by the microcode.

Since branch direction relies on Ebox condition codes, the Ibox has no prior
knowledge of branch direction. Branch prediction logic makes a prediction
on which way the branch will go and forces the Ibox to take that path. The
program counter pointing to the alternate branch path is saved should the
prediction prove wrong. If the prediction was wrong, the Ibox is redirected
to the correct path.

2.4.2 Ebox

The Ebox and microsequencer work together to perform the actual
"work" of the VAX instructions. Together they implement a four-stage
micropipelined unit, which can both stall and microtrap. The Ebox and
microsequencer dequeue instruction and operand information provided
by the Ibox through the instruction queue, the source queue, and the
destination queue. For literal type operands, the source queue contains
the actual operand value. In the case of register, memory, and immediate
type operands, the source queue holds a pointer to the data in the Ebox
register file. The contents of memory operands are provided by the Mbox
based on earlier requests from the Ibox. GPR results are written directly
back to the register file. Memory results are sent to the Mbox, where the
data will be matched with the appropriate specifier address previously
sent by the Ibox. At times, the Ebox initiates its own memory reads and
writes.

The microsequencer determines the next microword to be fetched from the
control store. It then provides cycle-by-cycle control of the Ebox.

The Ebox contains a five-port register file, which holds the VAX GPRs, six
Memory Data Registers (MDs), six microcode working registers, and ten
miscellaneous CPU state registers. It also contains an ALU, a shifter, and
the VAX processor status longword. The Ebox controls the retire queue
to order the completion of Ebox and Fbox instructions. Since the Ebox
and the Fbox are distinct hardware resources, some execution overlap is
allowed between the two units.

2–43

KA66A CPU Module

The Ebox implements two IPRs. They are the Patchable Control Store
Control Register (PCSCR), used to patch the NVAX microcode and select
certain Ebox functions, and the Ebox Control Register (ECR), also used to
select certain Ebox functions.

2.4.3 Fbox

The Fbox is the floating-point unit in the NVAX CPU chip. The Fbox is
a four-stage pipelined floating-point processor, with an additional stage
devoted to assisting division. It interacts with three segments of the main
CPU pipeline; the microsequencer in stage 2 and the Ebox in stages 3 and
4. The Fbox supports the following operations:

• VAX Floating-Point Instructions and Data Types
The Fbox provides instruction and data support for VAX floating-
point instructions. VAX F_, D_, and G_ floating-point data types are
supported.

• VAX Integer Instructions
The Fbox implements longword integer multiply instructions.

• Pipelined Operation
Except for all the divide instructions, DIV{F,D,G}, the Fbox can start
a new single-precision floating-point instruction every cycle and a
double-precision floating-point or an integer multiply instruction every
two cycles. The Ebox can supply two 32-bit operands or one 64-bit
operand to the Fbox every cycle on two 32-bit input operand buses.
The Fbox drives the result operand to the Ebox on a 32-bit result bus.

• Conditional "Mini-Round" Operation
Result latency is conditionally reduced by one cycle for the most
frequently used instructions. Stage 3 can perform a "mini-round"
operation on the LSBs of the fraction for all ADD, SUB, and MUL
floating instructions. If the "mini-round" operation does not fail, then
stage 3 drives the result directly to the output, bypassing stage 4 and
saving a cycle of latency.

• Fault and Exception Handling
The Ebox coordinates the fault and exception handling with the Fbox.
Any fault or exception condition received from the Ebox is retired
in the proper order. If the Fbox receives or generates any fault or
exception condition, it does not change the flow of instructions in
progress within the Fbox pipe.

2.4.4 Mbox

The Mbox manages data coming in and going out of the NVAX chip. The
Mbox receives read requests from the Ibox (both instruction stream and
data stream) and from the Ebox (data stream only). It receives write
/store requests from the Ebox, and the Cbox sends the Mbox fill data and
invalidates for the P-cache. The Mbox arbitrates between these requesters,

2–44

KA66A CPU Module

and queues requests that cannot currently be handled. Once a request is
started, the Mbox performs address translation and cache lookup in two
cycles, assuming there are no misses or other delays. The two-cycle Mbox
operation is pipelined.

The Mbox uses the translation buffer (96 fully associative entries) to
map virtual to physical addresses. In the case of a TB miss, the memory
management hardware in the Mbox will read the page table entry and fill
the TB. The Mbox performs all access checks, TNV checks, and quadword
unaligned data processing.

The Mbox contains the primary cache (P-cache), which is described in
Section 2.3.3.

To prevent the Ibox from using data that the Ebox should have written
before use, the Mbox scoreboards physical addresses. This memory
"scoreboarding" is done using the physical address queue, a small list
of physical addresses that have a pending Ebox store.

2.4.4.1 Translation Buffer Tag Fills
The NVAX TB tag fill command is used with the TB PTE fill command to
cache a PTE in the translation buffer. The data associated with the TB tag
fill command corresponds to a virtual byte address in some virtual page.
The TB tag fill command causes the page address of the TB tag fill data
to be written into the tag field of the TB entry pointed to by the NLU TB
allocation pointer. The TB valid bit (TBV) of the entry is cleared.

There are two sources: the memory management exception latch (MME
latch) and the latch that holds commands from the Ebox, called the EM
latch, from which the virtual page number (VPN) is driven into the TB as
a tag. The formats of the two differ. Bit <0> is a zero when sourced from
the MME latch and is an even parity bit when sourced from the EM latch.

When sourced from the EM latch, even tag parity corresponding to the
VPN is specified in bit <0> of the data field for the TB tag fill. This
mechanism allows correct or incorrect parity to be written into the TB tag
array for testing purposes by invoking the TB tag fill operation through
the appropriate MTPR instruction.

2.4.4.2 Translation Buffer PTE Fills
The TB PTE fill operation drives the PTE data to be written into the data
array of the translation buffer. The data is written into the entry pointed
to by the NLU TB allocation pointer. The TB valid bit (TBV) of the entry
is set. (Note that a TB TAG fill command will not be issued by the Mbox
if PTE<31> is clear in order to guarantee that only validated PTEs are
cached in the TB.) The NLU TB allocation pointer is incremented after the
fill is done.

TB PTE fill operations can also be sourced from either the MME latch or
the EM latch. Their formats differ depending upon the source.

When TB PTE fills occur from the MME latch, the PTE data is driven
in the format shown in Figure 2–14. Only bits <30:26>, <22:0>, and
the corresponding PTE parity bit are written into the TB array during
a TB PTE fill. TB PTE fills from the MME latch will only be issued
for validated PTEs. Therefore, PTE<31> will always be set. The TB

2–45

KA66A CPU Module

logic will automatically generate even parity to be written during the
fill corresponding to PTE<31:0>. Note that the parity generator includes
PTE<31> in this calculation even though this bit is not written into the
TB. Since PTE<31> is always set during a TB PTE fill, the stored parity
can be thought of as odd parity on bits <30:0>.

Figure 2–14 PTE Fills from MME Latch

3
1

3
0

2
7

2
6

2
5

2
3

2
2 0

PROT MBZ PFN

PTE Modify
PTE Protection
PTE Valid

msb−p571−91

1 M

When TB PTE fills occur from the EM latch, the PTE data is in the format
shown in Figure 2–15. Bits <30:26> and <22:0> are written into the TB
array during a TB PTE fill. Bit <24> is interpreted as the corresponding
PTE parity and is directly written into the TB as such. This gives the
user the flexibility of writing correct or incorrect PTE parity for testing
purposes. Note, however, that while PTE<31> is not written into the TB,
it must be assumed that this bit is set when the user calculates even
parity on PTE<31:0>. Similarly, PTE<25> and PTE<23> must be cleared
for proper parity calculation.

Figure 2–15 PTE Fills from EM Latch

3
1

3
0

2
7

2
6

2
5

2
4

2
3

2
2 0

PROT PFN

User−settable even parity bit
PTE Modify
PTE Protection
PTE Valid

msb−p572−91

1 M 0 P 0

2–46

KA66A CPU Module

2.4.4.3 Recording Mbox Errors
The Mbox has four error registers. Two record TB parity errors, and two
record P-cache parity errors. They are as follows:

• TB Parity Address Register, TBADR (IPR236). Holds the virtual
address associated with a translation buffer parity error.

• TB Parity Status Register, TBSTS (IPR237). Holds the error
status associated with errors occurring in the Mbox.

• P-Cache Parity Address Register, PCADR (IPR242). Holds the
physical address associated with a P-cache parity error.

• P-Cache Status Register, PCSTS (IPR244). Holds the error status
of errors that occur in the P-cache.

When the operating system error handler routine is invoked from a
microtrap or interrupt, the handler determines what errors were present
by reading the state of all the error registers using IPR read operations.
IPR read operations are invoked by MFPR instructions.

2.4.5 Cbox

The Cbox is tightly coupled to the Mbox. It has three external buses that
communicate with the backup cache tag RAMs, the backup cache data
RAMs, and the NEXMI chip. Figure 2–16 is a block diagram of the Cbox.

The Cbox controls the backup cache and interfaces to the NDAL bus. The
backup cache is a writeback cache. Cache tags and cache data are stored
in static RAMs on the module. The Cbox implements the control for the
cache tags and data and control for the NDAL.

The Mbox sends read requests and writes to the Cbox; the Cbox sends
fills and invalidates to the Mbox. The Cbox ensures that the P-cache is a
subset of the backup cache through invalidates.

The Cbox communicates with the memory subsystem (everything beyond
the backup cache) through the NDAL. The Cbox generates reads and
receives fills; it receives cache coherence transactions from the NDAL to
which it responds with invalidates and writebacks, as appropriate.

2–47

KA66A CPU Module

Figure 2–16 Cbox in the System

MBOX

CBOX

NEXMI

TAG RAMs

DATA RAMs

P-CACHE

XMI BUS

BACKUP CACHENDAL

msb-0760-92

NVAX CHIP

2–48

KA66A CPU Module

2.5 KA66A TOY Clock and Interval Timer

The KA66A module includes a Time-of-Day Register (TODR), Time-
of-Year (TOY) watch chip, and an interval clock (ICCS, ICR, NICR).
The implementation of TODR and the interval clock are as defined
in the VAX Architecture Reference Manual.

2.5.1 Time-of-Day Register (TODR)

The KA66A Time-of-Day Register forms an unsigned 32-bit binary counter
that is driven from a 100-Hz oscillator, so that the least significant bit
of the clock represents a resolution of 10 milliseconds. The R/W register
counts only when it contains a non-zero value.

2.5.2 Programmable Interval Clock

The interval clock provides an interrupt at IPL 16 (hex) at programmed
intervals. To use the Programmable Interval Timer (PIT), the
ECR<ICCS EXT> bit must be set. The counter is incremented at 1
microsecond intervals, with at least .01% accuracy. References to the
ICCS must be made using the IPR address 18 (hex) and not to the I/O
address E100 0060 (hex), otherwise unpredictable results will occur. The
IPR addresses should be used for all three registers, the ICCS, NICR, and
ICR (see Table 2–17).

Table 2–17 Interval Clock Register Addresses

Register
IPR Address
Decimal (Hex)

I/O Address
(Hex)

Interval Clock Control and Status 24 (18) E100 0060

Next Interval Count 25 (19) E100 0064

Interval Count 26 (1A) E100 0068

The interval clock consists of three registers:

• Interval Count Register, ICR (IPR26). The interval count register
is a read-only register incremented every microsecond. Upon a carry
out (overflow) from bit <31>, it is automatically loaded from NICR, and
an interrupt is generated if the interrupt is enabled.

• Next Interval Count Register, NICR (IPR25). This reload register
is a write-only register that holds the value to be loaded into ICR when
ICR overflows. The value is retained when ICR is loaded.

2–49

KA66A CPU Module

• Interval Clock Control and Status Register, ICCS (IPR24). The
ICCS register contains control and status information for the interval
clock.

To use the interval clock, load the negative (2’s complement) of the desired
interval into the Next Interval Count Register. Then, writing 51 (hex) to
the ICCS will enable interrupts, load the next interval into the Interval
Count Register, and set ICCS<0>. An interrupt will then occur every
"interval count" microseconds. The interrupt routine should write C1 (hex)
to the ICCS to clear the interrupt. If Interrupt has not been cleared (the
interrupt has not been handled) by the time of the next ICR overflow,
ICCS<ERR> will be set.

If NICR is written while the clock is running, the clock may lose or add
a few ticks. If the interval clock interrupt is enabled, this may cause the
loss of an interrupt.

The interrupt bit (ICCS<INT>) sets, and an interrupt is posted if
ICCS<IE> is set, when the interval counter overflows. The Interval
Count Register is then loaded from the Next Interval Count Register and
continues incrementing.

2.5.3 Time-of-Year Clock

The time-of-year (TOY) clock consists of a "watch" chip located on the
ROM bus. The watch chip enables the KA66A to keep time through a
power outage or system shutdown that lasts up to 100 hours. Three
byte-wide control and status registers (CSRA, CSRB, and CSRD) on the
watch chip allow software to write the time in the watch chip registers
during installation. Then, in normal operation, software reads the watch
chip during the bootstrap operation. Because the watch chip stores time
information in units of seconds, minutes, hours, days, and months, the
operating system must convert this data to a 32-bit format before using it.

The TOY clock is maintained during power-fail conditions by supplying
battery backup to the watch chip and to the low frequency external
oscillator which the watch uses for this purpose.

Table 2–18 gives addresses of registers containing watch chip data.

Table 2–18 Watch Chip Data

Address Units Decimal Range Hex Range

E018 3000 Seconds 0–59 00–3B

E018 3002 Minutes 0–59 00–3B

E018 3004 Hours 0–23 00–17

E018 3007 Day of Month 1–31 01–1F

E018 3008 Month 1–12 01–0C

E018 3009 Year 0–99 00–63

2–50

KA66A CPU Module

NOTE: Bits <6:0> of the watch chip’s Seconds Register (E018 3000) are
read/write, making it possible to write a value greater than 59
(dec). Writing a value outside the acceptable range (0–59) gives
unpredictable results.

Table 2–19 shows examples of how data stored in registers is converted to
time. Table 2–20 gives the addresses of watch chip control registers.

Table 2–19 Watch Chip Example

Time Output (bin) Output (hex)

21 seconds 00010101 15

58 minutes 00111010 3A

5 hours 00000101 05

15th day 00001111 0F

February 00000010 02

92nd year 01011100 5C

Table 2–20 Watch Chip Control Registers

Address Function

E018 300A CSR A–Busy bit

E018 300B CSR B–Off bit

E018 300C CSR C–Reserved

E018 300D CSR D–Valid bit

E018 300E–E018 303F 50 bytes RAM

The control and status registers on the watch chip allow software to:

1 Check the validity of the date and time registers.

2 Set the time.

3 Stop and start the chip.

Figure 2–17 Watch Chip CSR A (E018 300A)

7 6 5 4 3 2 1 0

0 1 0 0 0 0 0

Busy

msb−p564−91

• Bit<7>, Busy (read only)

Busy = 1: The watch chip is busy with an update cycle; date and time
registers are undefined.

2–51

KA66A CPU Module

Busy = 0: The watch chip is not busy; date and time registers are
valid.

Software should check Busy before reading the date and time registers.

The watch chip sets Busy for 2 milliseconds every second. If software
finds Busy set, it should try again in 2 milliseconds.

If Busy is cleared, software has at least 244 microseconds to read the
date and time registers before the next update cycle.

• Bits <6:0>, Miscellaneous setup bits (read/write) - Software must write
these bits as shown in Figure 2–17 before it sets the time in the watch
chip.

Figure 2–18 Watch Chip CSR B (E018 300B)

7 6 5 4 3 2 1 0

0 0 0 0 1 1 0

Off
msb−p565−91

• Bit <7>, Off (read/write)

Software must stop the watch chip by setting Off before it loads the
date and time registers.

Software can start the watch chip after setting the time by clearing
Off.

• Bits <6:0>, Miscellaneous setup bits (read/write) - Software must write
these bits as shown in Figure 2–18, when it sets the Off bit and before
loading the date and time registers.

Figure 2–19 Watch Chip CSR D (E018 300D)

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0

Valid
msb−p566−91

• Bit<7>, Valid (Read only)

The Valid bit indicates that the time in the watch chip registers is
correct. If the battery backup voltage falls below the required level, a
sensing circuit clears the Valid bit.

2–52

KA66A CPU Module

Valid = 1: Watch chip registers are valid.

Valid = 0: Watch chip registers are invalid.

NOTE: The watch chip sets Valid to one after software reads CSR
D. Therefore, when software reads Valid as zero, it should
immediately update the date and time registers in the watch
chip. Otherwise, the state of the Valid bit will be misleading.

To read time from the watch chip, code should:

1 Check the Busy bit.

2 If Busy is clear, perform the read data operations.

3 If Busy is set, wait for Busy to clear and then perform read operations.

To write time into the watch chip, code should:

1 Set the Off bit.

2 Check the Busy bit.

3 If Busy is clear, perform the write operations.

4 If Busy is set, wait for Busy to clear and then perform the write
operations.

5 Clear the Off bit.

2–53

KA66A CPU Module

2.6 XMI Interface

The KA66A CPU module uses the NEXMI chip to interface between
the XCI bus and the CPU module’s NDAL bus. The XCI bus is the
interface between the NEXMI and the XMI Corner.

The XMI is the interconnect for the VAX 6000 family of machines.
There are two XMI protocols; one that supports writeback cache
designs and one that does not. The VAX 6000 Model 600 uses the
XMI that supports the writeback cache design.

The primary tasks of the XMI interface are to:

• Translate NVAX memory and I/O space references to the appropriate
XMI transactions.

• Implement a writeback buffer to handle writeback requests from the
NVAX Cbox.

• Support control of cache fills and cache invalidates.

• Support XMI-required interrupt logic.

• Implement all XMI-required registers.

• Provide ROM bus and system support.

2.6.1 XMI Address Space

Although the XMI has a 40-bit address space divided equally between
memory and I/O space, the KA66A CPU module implements a 30-bit and
a 32-bit (4 Gbytes) address space. See the VAX 6000 Platform Technical
User’s Guide for full details on memory space.

2.6.1.1 XMI Memory Space
XMI memory space covers addresses 0000 0000 to DFFF FFFF (hex).
NVAX references in this range are initially accessed in XMI memory.
However, since read references that miss both caches normally result in a
cache fill of both caches, future references may be serviced by the caches.
All XMI writes and reads to memory are monitored by the KA66A CPU
module for "hits" in the NVAX caches. If a hit occurs, then an invalidate
or writeback request is posted by the NVAX Cbox.

2.6.1.2 XMI I/O Space
XMI I/O space covers addresses E000 0000 to FFFF FFFF. Data in this
range is never cached by the KA66A CPU module. All I/O addresses with
the exception of the first 24 Mbytes are transmitted on the XMI. The first
24 Mbytes of I/O space (called XMI private space) are for implementation
of registers that are not accessible from the XMI.

2–54

KA66A CPU Module

Figure 2–20 KA66A CPU Module Private I/O Address Space Map

Byte Address
0000

0004

NCSR

RESERVED 256 Kbytes

384 Kbytes

128 Kbytes

32 Kbytes

96 Kbytes

384 Kbytes

128 Kbytes

32 Kbytes

96 Kbytes

40 Kbytes

14.8 Mbytes

1 Kbyte

63 Kbytes

64 Kbytes

64 Kbytes

~7.75 Mbytes

msb−p550−91

Self−Test/Console/Boot Code
(halt protected)

three (3) 128 Kbytes X 8 PROMs

one (1) 128 Kbytes X 8 PROM (Expansion)

one (1) 32 Kbytes X 8 EEPROM

(not halt protected, PROM)

(Expansion)

IPort,OPort,UART

Interprocessor
IVINTR Generation "Virtual" Registers

E000

E000

0000

RESERVED

Self−Test/Console/Boot Code
(halt protected)

Write Error

IPR Address Space

IVINTR Generation "Virtual" Registers

E003 FFFF

0000

RESERVED

Self−Test/Console/Boot Code
(halt protected)

E004

0000

7FFF

8000

RESERVED

Self−Test/Console/Boot Code

E009 FFFF

E00A 0000

E00B FFFF

E00C 0000

E00C 7FFF

E00C 8000
E00D FFFF

E00E 0000

E013 FFFF

0000

9FFF

RESERVED

Self−Test/Console/Boot Code
(not halt protected, PROM)

E014

0000
03FF

0400

RESERVED

Self−Test/Console/Boot Code
(not halt protected, EEPROM)

E015 FFFF

0000

System Support Address Space
Watch Chip,BBU RAM,Stack RAM

E016

E016

E016

0000

E017 FFFF

0000

E018

E018

E018 A000
E0FF FFFF

E100
E100

E100
E100 FFFF

E101
E101 FFFF

E102
E102 FFFF

E103
E17F FFFF

2–55

KA66A CPU Module

2.6.2 XMI Transaction Generation/Response Tables

The NEXMI can generate the following XMI transaction types:

• Hexword memory Reads

• Hexword memory Ownership Reads

• Hexword memory Disown Write Masks

• Quadword memory Write Masks

• Quadword memory Disown Write Masks

• Longword I/O Reads

• Longword I/O Write Masks

• Write Error IVINTRs

• Interprocessor IVINTRs

• IDENTs (in response to NVAX Interrupt Acknowledge)

The NEXMI responds to the following XMI transaction types:

• Longword nodespace Reads

• Longword nodespace Write Masks

• Interrupts

• Memory Reads and Writes for cache invalidates

Table 2–21 NEXMI Transaction Generation/Response for NVAX Chip-to-XMI Operations

NVAX Chip Operation Resulting XMI Operation

Memory Space References

I-stream Read (hexword) Hexword Read

D-stream Read (hexword) Hexword Read

D-stream Read Ownership (hexword) Hexword Ownership Read

Write Disown (hexword) Hexword Disown Write Mask

Write Mask (quadword) cache off Quadword Write Mask

Write Disown (quadword) cache off Quadword Disown Write Mask

I/O Space References (outside XMI Private
Space)

I-stream Read (quadword) Longword Read

D-stream Read (quadword) Longword Read

Write Mask (quadword) Longword Write Mask

Miscellaneous References

I/O space Read to Interrupt
Acknowledge space

XMI IDENT (assuming that an XMI interrupt is pending and no
NEXMI or IP IVINTR interrupts are pending)

2–56

KA66A CPU Module

Table 2–21 (Cont.) NEXMI Transaction Generation/Response for NVAX Chip-to-XMI Operations

NVAX Chip Operation Resulting XMI Operation

I/O space write to IVINTR generation
space

XMI IVINTR

Clear write buffer On a read, return null data with a read data response (RDR). On a
write, ACK the transaction.

Table 2–22 NEXMI Transaction Generation/Response for XMI-to-NVAX Chip Operations

XMI Transaction Resulting NVAX Chip Operation

XMI memory Writes (all types except
Disown Writes) from other nodes

Load responder queue, perform NDAL transaction.

XMI memory Reads (all types) from
other nodes

Load responder queue, perform NDAL transaction.

XMI Writes to XMI nodespace Write the appropriate CSR.

XMI Read to XMI nodespace Respond with appropriate CSR data.

XMI INTR When this processor is the destination, set the appropriate interrupt-
pending bit and post interrupt request to NVAX chip.

XMI interprocessor IVINTR When this processor is the destination, set the IP IVINTR pending bit and
post IPL 16 (hex) interrupt request.

XMI write error IVINTR Set XBER<WEI> and post a hard error interrupt.

XMI parity error detected Set XBER<PE> and post a soft error interrupt. If inconsistent, also set
XBER<IPE> and assert H ERR L signal (hard error).

XMI IDENT Clear the appropriate interrupt-pending bit.

2.6.3 Invalidates

The NEXMI monitors all read and write traffic by other nodes to memory
space to maintain cache coherency between the KA66A CPU module
caches and main memory and to allow other XMI nodes access to memory
locations owned by the KA66A CPU module. The NEXMI forwards these
addresses over the NDAL to the NVAX Cbox. The Cbox "looks up" the
address in the tag store and determines if the corresponding cache
subblock needs to be invalidated or written back. There is no filtering
mechanism for invalidates forcing the NDAL to be used for every potential
invalidate.

When the NEXMI detects a memory reference by another node on the
XMI, it places the address into the responder queue. This address is
driven onto the NDAL, and the NEXMI requests the NVAX Cbox to do a
cache lookup.

The NEXMI’s responder queue is 12 entries deep. The NEXMI uses the
XMI suppress line (XMI SUP L) to suppress XMI transactions to keep the
responder queue from overflowing. If four or more entries in the responder
queue are valid, the NEXMI asserts the suppress line. At most, one
more XMI write or two XMI reads can occur once the NEXMI asserts the

2–57

KA66A CPU Module

suppress signal. The suppression of XMI commands allows the NEXMI
and NVAX Cbox to catch up on invalidate processing and to open up queue
entries for future invalidate addresses. This also ensures that four entries
remain available for an outstanding hexword read transaction. When
the number of valid entries drops below three, the NEXMI deasserts the
suppress line.

A potential problem exists if an invalidate address is received that is in
the same cache subblock as an outstanding cacheable memory read. The
Cbox tag lookup will produce a cache miss since that subblock has not
yet been validated. Since the XMI request that generated this invalidate
request may have occurred after the KA66A’s command went out on the
XMI, this invalidate must be processed. The Cbox maintains an internal
state that will force this cache subblock to be invalidated or written back
to memory once the cache fill completes. The Cbox will process further
invalidates normally while waiting for the cache fill to complete.

2.6.4 Writeback Queues

The NEXMI contains two two-entry writeback queues to hold cache
subblocks that need to be written back from cache to memory. It is
separated into queue 0 and queue 1.

The NEXMI processes the following types of requests and issues the
associated XMI transactions based upon the internal priority shown in
Table 2–23. These priorities apply if these transactions are pending
internally in the NEXMI.

Table 2–23 Transaction Priority Table

Transaction Type Priority

CSR read response 1

Writebacks 2

NVAX chip requests 3

2.6.5 Lockout Avoidance

The NEXMI supports a lockout avoidance function that prevents it from
being denied access to an owned or interlocked location on the XMI. The
NEXMI commander asserts LOCKOUT when either:

• Its Ownership Read has received at least one LOC response and this
transaction’s LOCKOUT assertion time has expired.

• Its I/O space access or IDENT has received at least one NO ACK
response and this transaction’s LOCKOUT assertion time has expired.

2–58

KA66A CPU Module

2.6.6 Interrupts and IDENTs

The XMI supports an interrupt response protocol using INTR and IDENT
commands. The device interrupts are INTRs and implied vector interrupts
(IVINTRs). Any I/O device is permitted to generate interrupts (INTRs) to
one or more CPU nodes, as designated by a destination mask. IVINTRs
are either interprocessor interrupts or write error interrupts. The NEXMI
has a set of 56 interrupt-pending bits, four wide for IPL<17:14> and
fourteen deep for each I/O device possible.

2.6.6.1 Responding to XMI Interrupts
The XMI receiver logic monitors each XMI bus cycle. If it detects an
Interrupt command targeted to its node ID, it sets the interrupt-pending
bit corresponding to the interrupt level (IPL 17, 16, 15, or 14) and the
interrupting node’s node ID. The interrupt logic then posts an interrupt
request at the appropriate level. Since the CPU only has four interrupt
request lines (one for each level), multiple interrupts from the XMI and
system support are merged by the NEXMI. The 14 interrupt-pending
bits at each level, plus the system support and the IVINTRs, are ORed
together to form a set of four composite interrupt requests (one for each
level). VAX 6000 Model 600 systems support ten interrupting I/O nodes
(nodes 1–4 and 9–14), even though the NEXMI can support more (nodes
5–8 are reserved for memory).

2.6.6.2 Generating the IDENT
When the NVAX drops its IPL low enough to recognize the interrupt, it
issues an interrupt acknowledge (I/O Read) to the I/O address associated
with the interrupt at the given IPL. The I/O read is converted to an XMI
IDENT and sent to the highest priority interrupting node. Exceptions to
this are system support and interprocessor (IP IVINTR) interrupts which
are handled by the NEXMI. If multiple interrupts are pending at the same
level, the NEXMI gives the following priority to the read interrupt vector
command:

• System support interrupts (console terminal), only if the read interrupt
vector is at IPL 15 (hex)

• Interprocessor (IP IVINTR) interrupts (IPL 16 (hex) only)

• XMI interrupts

• Interval timer

Should there be more than one interrupt pending at a given IPL the
NEXMI gives priority to the node with the highest ID.

Each CPU in the system monitors the XMI for IDENT transactions. When
an IDENT is detected, the interrupt-pending bit at the corresponding level
and node ID is cleared. This assures that several CPUs in multiprocessing
systems will not attempt to service the same interrupt.

Sometime after the transmission of the IDENT, the interrupting device
returns an interrupt vector to the CPU. The CPU then executes the
appropriate interrupt service routine.

2–59

KA66A CPU Module

2.6.6.3 XMI Device Interrupt Priority
The KA66A CPU module has a fixed priority scheme for XMI devices
within the same interrupt level. If more than one XMI device interrupt is
outstanding at a given interrupt level, then the interrupts are serviced in
node ID order (from highest to lowest node ID).

2.6.6.4 Implied Vector Interrupts (IVINTR)
The Implied Vector Interrupt (IVINTR) is a single-cycle XMI transaction
used to implement VAX Interprocessor Interrupts (IP) and Write Error
(WE) Interrupts. For both types of interrupt the interrupt priority and
interrupt vector are implied.

The KA66A CPU module can generate and respond to IP and WE
IVINTRs. WE IVINTRs are issued by I/O nodes that are unable to
complete an I/O write transaction (these are "disconnected" transfers
on the XMI).

2.6.6.4.1 IVINTR Mask Generation
Since the VAX instruction set does not include a primitive for IVINTR
generation, the NEXMI has defined a fixed range of I/O space addresses
(XMI private space) that when written will cause the generation of an XMI
IVINTR transaction. During error reporting, the NEXMI handles such a
transaction as if it were a write.

NOTE: The generation of an IVINTR instruction must be done with a byte-
type macro instruction. MOVB is the recommended instruction.

For both types of IVINTRs, the lower 16 bits of the address are used
as the XMI destination mask (the destination mask is used to select
which node(s) will be targeted by the IVINTR). The addresses for these
IVINTR-generation registers are:

• E101 0000 to E101 FFFF for IP IVINTRs

• E102 0000 to E102 FFFF for WEIs

See Figure 2–21 for a diagram showing how to generate the mask.

2.6.6.4.2 Interprocessor IVINTR (IP IVINTR) Response
The receipt of an IP IVINTR with a destination mask that has a
corresponding node ID bit set, causes the NEXMI logic to set an internal
"IP IVINTR pending" bit and generate an IPL 16 device interrupt to the
NVAX. When the NVAX acknowledges an interrupt at IPL 16, the NEXMI
checks for a pending IP IVINTR and returns a vector of 80 (hex) and
resets the IP IVINTR pending bit.

2–60

KA66A CPU Module

Figure 2–21 Mask Generation Diagram

Destination Mask

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

E101

E101

E101

2 0 9 0

2090 (I/O Address for IP IVINTR that targets Nodes

0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0

13, 7, and 4)

msb−p552−91

2.6.6.4.3 Write Error IVINTR (WE IVINTR) Response
The receipt of a WE IVINTR with a destination mask that has
corresponding node ID bit set causes the NEXMI logic to set the
XBER<WEI> bit and generate a hard error interrupt to the NVAX. The
NVAX does not issue an interrupt acknowledge for hard error interrupts
but instead vectors directly to 60 (hex) in the SCB. The XBER<WEI>
bit should be cleared by the hard error interrupt service routine prior to
servicing the write error interrupt. Software then polls all XMI devices to
determine which device sent the WE IVINTR.

2.6.7 XMI Registers
The NEXMI has two sets of registers, one set located in XMI nodespace
and another in XMI private space. The NEXMI registers located within
the KA66A’s nodespace are directly accessible by all XMI nodes, while the
private space registers are not.

The NEXMI can initiate an XMI transaction while another transaction
is still outstanding. To identify the transaction that causes an error, the
NEXMI implements separate failing registers for each writeback queue.

Addresses of XMI registers in the NEXMI are as follows:

• Device Register, XDEV (BB + 00)

• Bus Error Register, XBER (BB + 04)

• Failing Address Register, XFADR (BB + 08)

• General Purpose Register, XGPR (BB + 0C)

• Node-Specific Control and Status Register, NSCSR (BB + 1C)

• XMI Control Register, XCR (BB + 24)

• Failing Address Extension Register, XFAER (BB + 2C)

• Bus Error Extension Register, XBEER (BB + 34)

2–61

KA66A CPU Module

• Writeback 0 Failing Address Register, WFADR0 (BB + 40)

• Writeback 1 Failing Address Register, WFADR1 (BB + 44)

The NEXMI’s registers have the following characteristics:

• The mask bits are ignored on writes to the NEXMI’s control and status
registers. A full longword write is always performed.

• Interlocks are not supported. Interlock Read and Unlock Write
Mask commands are treated like Read and Write Mask commands,
respectively.

• The XMI responder queue is only one deep so the NEXMI NO ACKs
subsequent CSR references until the read data for the queued CSR
read has been returned.

• Write transactions directed at read-only registers will be accepted and
acknowledged, but no action will be taken and the value of the register
will not be affected.

• Access to the registers is strictly on a longword basis; word and byte
addresses are ignored and the full longword is returned on any register
read.

In addition to the required XMI registers listed here, the KA66A module
also has several registers in XMI private space. See Table 2–32.

2–62

KA66A CPU Module

2.7 KA66A CPU Module Registers

The KA66A CPU module registers consist of internal processor
registers, KA66A CPU module registers in XMI private space, and
XMI required registers.

2.7.1 IPR and Cache Addressing

The processor registers in the NVAX chip, and those required of the
system environment, are divided into five groups and are distinguished by
particular bit patterns in the IPR address, as shown in Figure 2–22.

The five groups are:

1 Normal — IPRs that address individual registers in the NVAX chip or
system environment.

2 B-cache tag IPRs — The read/write block of IPRs that allow direct
access to the B-cache tags.

3 B-cache deallocate IPRs — The write-only block of IPRs used to
deallocate a B-cache block.

4 P-cache tag IPRs — The read/write block of IPRs that allow direct
access to the P-cache tags.

5 P-cache data parity IPRs — The read/write block of IPRs that allow
direct access to the P-cache data parity bits.

2–63

KA66A CPU Module

Figure 2–22 IPR Address Space Decoding

Normal IPR Address

3
1

2
5

2
4

2
3 8 7 0

SBZ SBZ IPR Number

2
2

2
1

2
0 6 5

B−Cache Tag Index SBZ

B−Cache Tag Deallocate Index

1
3

1
2

1
1 4

SBZ

2

SBZ

B−Cache Tag IPR Address

3
1

2
5

0

2
3 0

SBZ 0 x

2
0 6 5

SBZ

SBZ

1
3

1
2

P−Cac tag ind

4

B−Cache Deallocate IPR Address

3
1

2
5

2
4

0

0

SBZ

2
2

2
1

5

SBZ

3
1
1

P−Cache Tag IPR Address

3
1

2
5

1

2
3

0

SBZ

1 x

5

P−Cac tag ind

P−Cache Data Parity IPR Address

P−Cache Set Select (0=left, 1=right)

2
5

2
4

0

0

SBZ

2
2

2
1

msb−p506−91

Subblock Sel

3
1

1

2
3

0

2
1

P−Cache Set Select (0=left, 1=right)

2
4

1

2
2

1

2
3

1

2
4

11

2–64

KA66A CPU Module

The numeric range for each of the five groups is shown in Table 2–24.

Table 2–24 IPR Address Space Decoding

IPR Group Mnemonic
IPR Address
Range1(hex) Contents

Normal None 00000000–000000FF 256 individual IPRs

B-Cache Tag BCTAG 01000000–011FFFE0 64K B-cache tag IPRs, each separated by 20 (hex)

B-Cache
Deallocate

BCFLUSH 01400000–015FFFE0 64K B-cache tag deallocate IPRs, each separated by 20
(hex)

P-Cache Tag PCTAG 01800000–01801FE0 256 P-cache tag IPRs, 128 for each P-cache set, each
separated by 20 (hex)

P-Cache Data
Parity

PCDAP 01C00000–01C01FF8 1024 P-cache data parity IPRs, 512 for each P-cache
set, each separated by 8 (hex)

1Unused fields in the IPR addresses for these groups should be zero. However, if these bits are not zero, neither
hardware nor microcode detects and faults on the address. Although noncontiguous address ranges are shown
for these groups, the entire IPR address space maps into one of these groups. If these fields are non-zero, the
operation of the CPU is UNDEFINED.

NOTE: The address ranges shown in Table 2–24 are those used by the
programmer. When processing normal IPRs, the microcode shifts
the IPR number left by two bits for use as an IPR command
address. This positions the IPR number to bits <9:2> and modifies
the address range as seen by the hardware to 0–3FC, with bits
<1:0> = 00. No shifting is performed for the other groups of IPR
addresses.

Because of the sparse addressing used for IPRs in groups other than the
normal group, valid IPR addresses are not separated by one. Rather, valid
IPR addresses are separated by either 8 or 20 (hex). For example, the
IPR address for B-cache tag 0 is 0100 0000 (hex), and the IPR address
for B-cache tag 1 is 0100 0020 (hex). In this group, bits <4:0> of the IPR
address are ignored, so IPR numbers 0100 0001 through 0100 001F all
address B-cache tag 0. Similarly, the IPR address for the first subblock of
P-cache data parity is 01C0 0000 (hex), and the IPR address for the second
subblock of P-cache data parity is 01C0 0008 (hex).

Processor registers in all groups except the normal group are processed
entirely by the NVAX chip and never appear on the NDAL. This is also
true for a number of the IPRs in the normal group. IPRs in the normal
group that are not processed by the NVAX chip are converted into I/O
space references and passed to the system environment by a read or write
command on the NDAL.

Each of the IPRs in the normal group is of longword length, so a 1-Kbyte
block of I/O space is required to convert each possible IPR to a unique I/O
space longword. This block starts at address E100 0000 (hex). Conversion
of an IPR address to an I/O space address in this block is done by shifting
the IPR address left into bits <9:2>, filling bits <1:0> with zeros, and

2–65

KA66A CPU Module

merging in the base address of the block. This can be expressed by the
equation

���������	��
������
�������������������������� ��!#"$
%�'&)(+*

The actual hardware implementation of this is different in that the IPR
number is shifted left by 2 bits, and bits <31:30,24> are set. No multiply
or add is done as one might conclude from the equation.

Because many of the IPRs in the normal group are processed entirely by
the NVAX chip, the corresponding I/O space location in the 1-Kbyte block
should not be referenced. A programmer can reference these locations
by an explicit I/O space reference using a MOVL instruction. However,
referencing these registers with instructions other than MTPR/MFPR
instructions can result in UNDEFINED behavior.

NOTE: Many of the internal processor registers are used internally
by the microcode during normal operation of the CPU and are
not intended to be referenced by software except during test or
diagnosis of the system.

Processor registers not implemented in the NVAX chip are converted to I/O
space reads or writes. The I/O space registers that are implemented by the
system environment on the KA66A CPU module are shown in Table 2–25.

Table 2–25 I/O Space Registers

I/O Space
Address
(Hex) Type Definition

E100 0100 RO Interrupt acknowledge for IPL 14 (hex) interrupt
requested on IRQ L<0> (BR4)

E100 0104 RO Interrupt acknowledge for an IPL 15 (hex) interrupt
requested on IRQ L<1> (BR5)

E100 0108 RO Interrupt acknowledge for an IPL 16 (hex) interrupt
requested on IRQ L<2> (BR6)

E100 010C RO Interrupt acknowledge for an IPL 17 (hex) interrupt
requested on IRQ L<3> (BR7)

E100 0110 R/W Location that invokes a write buffer flush in the NVAX
Cbox. When this location is read, the CPU is waiting for
confirmation that the flush has completed. The NEXMI
responds to a Cbox write buffer read on the NDAL by
returning an RDR with null data. A Cbox write buffer
write is ACKed.

2–66

KA66A CPU Module

2.7.2 Internal Processor Registers

The processor state is stored in internal processor registers rather than in
memory. See Table 2–26 and Table 2–27. The processor state is composed
of 16 general purpose registers (GPRs), the processor status longword
(PSL), and internal processor registers (IPRs).

Nonprivileged software can access the GPRs and the lower half of the
processor status longword (PSL<15:0>). The IPRs and PSL<31:16> can
only be accessed by privileged software. The IPRs are explicitly accessible
by the Move To Processor Register (MTPR) and Move From Processor
Register (MFPR) instructions, which require kernel mode privileges. The
console operator can read an IPR with the EXAMINE/I command and
write an IPR with the DEPOSIT/I command.

Table 2–26 KA66A CPU Module Internal Processor Registers

Address
Decimal (Hex) Register Mnemonic Type1 Class2 I/O Address

0 (0) Kernel Stack Pointer KSP R/W 1

1 (1) Executive Stack Pointer ESP R/W 1

2 (2) Supervisor Stack Pointer SSP R/W 1

3 (3) User Stack Pointer USP R/W 1

4 (4) Interrupt Stack Pointer ISP R/W 1

8 (8) P0 Base P0BR R/W 1

9 (9) P0 Length P0LR R/W 1

10 (A) P1 Base P1BR R/W 1

11 (B) P1 Length P1LR R/W 1

12 (C) System Base SBR R/W 1

13 (D) System Length SLR R/W 1

14 (E) CPU Identification CPUID R/W 2 Init

16 (10) Process Control Block Base PCBB R/W 1

17 (11) System Control Block Base SCBB R/W 1

18 (12) Interrupt Priority Level IPL R/W 1 Init

19 (13) AST Level ASTLVL R/W 1 Init

20 (14) Software Interrupt Request SIRR WO 1

1See Table 2–27.
2Key to Classes:

1 = Implemented by the KA66A CPU module as specified in the VAX Architecture Reference Manual.
2 = Implemented uniquely by the KA66A CPU module.
3 = Accessible, but not fully implemented; accesses when the system is in console mode are appropriate,
accesses when the system is in user mode yield UNPREDICTABLE results.
n Init = The register is initialized on a KA66A CPU module reset (power-up, system reset, and node reset).

NOTE: Per-process registers, loaded by LDPCTX (load process context instruction), are the following IPRs (in
decimal): 0, 1, 2, 3, 8, 9, 10, 11, 19, and 61. The remainder of the registers are not affected by LDPCTX.

2–67

KA66A CPU Module

Table 2–26 (Cont.) KA66A CPU Module Internal Processor Registers

Address
Decimal (Hex) Register Mnemonic Type1 Class2 I/O Address

21 (15) Software Interrupt Summary SISR R/W 1 Init

24 (18) Interval Clock Control and Status3 ICCS R/W 1 Init E100 0060

25 (19) Next Interval Count3 NICR WO 2 E100 0064

26 (1A) Interval Count3 ICR RO 2 E100 0068

27 (1B) Time-of-Day4 TODR R/W 1 E100 006C

28 (1C) Console Storage Receiver Status CSRS R/W 3 Init E100 0070

29 (1D) Console Storage Receiver Data CSRD RO 3 Init E100 0074

30 (1E) Console Storage Transmitter Status CSTS R/W 3 Init E100 0078

31 (1F) Console Storage Transmitter Data CSTD WO 3 Init E100 007C

32 (20) Console Receiver Control and Status RXCS R/W 2 Init E100 0080

33 (21) Console Receiver Data Buffer RXDB RO 2 Init E100 0084

34 (22) Console Transmitter Control and Status TXCS R/W 2 Init E100 0088

35 (23) Console Transmitter Data Buffer TXDB WO 2 Init E100 008C

38 (26) Machine Check Error Summary MCESR WO 2

42 (2A) Console Saved Program Counter SAVPC RO 2

43 (2B) Console Saved Processor Status
Longword

SAVPSL RO 2

55 (37) I/O Reset IORESET WO 2 E100 00DC

56 (38) Memory Management Enable MAPEN R/W 1 Init

57 (39) Translation Buffer Invalidate All TBIA WO 1

58 (3A) Translation Buffer Invalidate Single TBIS WO 1

62 (3E) System Identification SID RO 2

63 (3F) Translation Buffer Check TBCHK WO 1

64 (40) IPL 14 Interrupt ACK IAK14 RO 1 E100 0100

65 (41) IPL 15 Interrupt ACK IAK15 RO 1 E100 0104

66 (42) IPL 16 Interrupt ACK IAK16 RO 1 E100 0108

67 (43) IPL 17 Interrupt ACK IAK17 RO 1 E100 010C

68 (44) Clear Write Buffer CWB R/W 1 E100 0110

122 (7A) Interrupt System Status INTSYS R/W 2

1See Table 2–27.
2Key to Classes:

1 = Implemented by the KA66A CPU module as specified in the VAX Architecture Reference Manual.
2 = Implemented uniquely by the KA66A CPU module.
3 = Accessible, but not fully implemented; accesses when the system is in console mode are appropriate,
accesses when the system is in user mode yield UNPREDICTABLE results.
n Init = The register is initialized on a KA66A CPU module reset (power-up, system reset, and node reset).

3Interval timer requests are posted at IPL 16 with a vector of C0 (hex). The interval timer is the lowest priority
device at the IPL. A subset of ICCS is implemented in the NVAX chip. NICR and ICR can be used, depending on
the settings in the Ebox Control Register.
4TODR is maintained during power failure by the XMI TOY BBU PWR line on the XMI backplane.

2–68

KA66A CPU Module

Table 2–26 (Cont.) KA66A CPU Module Internal Processor Registers

Address
Decimal (Hex) Register Mnemonic Type1 Class2 I/O Address

124 (7C) Patchable Control Store Control PCSCR R/W 2

125 (7D) Ebox Control Register ECR R/W 2

160 (A0) Cbox Control CCTL R/W 2 Init

162 (A2) Backup Cache Data ECC BCDECC WO 2 Init

163 (A3) Backup Cache Error Tag Status BCETSTS R/W 2

164 (A4) Backup Cache Error Tag Index BCETIDX RO 2

165 (A5) Backup Cache Error Tag BCETAG RO 2

166 (A6) Backup Cache Error Data Status BCEDSTS R/W 2

167 (A7) Backup Cache Error Data Index BCEDIDX RO 2

168 (A8) Backup Cache Error Data ECC BCEDECC RO 2

171 (AB) Cbox Error Fill Address CEFADR RO 2

172 (AC) Cbox Error Fill Status CEFSTS R/W 2

174 (AE) NDAL Error Status NESTS R/W 2

176 (B0) NDAL Error Output Address NEOADR RO 2

178 (B2) NDAL Error Output Command NEOCMD RO 2

180 (B4) NDAL Error Data High NEDATHI RO 2

182 (B6) NDAL Error Data Low NEDATLO RO 2

184 (B8) NDAL Error Input Command NEICMD RO 2

208 (D0) VIC Memory Address VMAR R/W 2

209 (D1) VIC Tag VTAG R/W 2

210 (D2) VIC Data VDATA R/W 2

211 (D3) Ibox Control and Status ICSR R/W 2

212 (D4) Ibox Branch Prediction Control BPCR R/W 2

214 (D6) Ibox Backup PC BPC RO 2

215 (D7) Ibox Backup PC with RLOG Unwind BPCUNW RO 2

231 (E7) Physical Address Mode PAMODE R/W 2

232 (E8) Memory Management Exception Address MMEADR RO 2

233 (E9) Memory Management Exception PTE
Address

MMEPTE RO 2

234 (EA) Memory Management Exception Status MMESTS RO 2

236 (EC) TB Parity Address TBADR RO 2

237 (ED) TB Parity Status TBSTS R/W 2

1See Table 2–27.
2Key to Classes:

1 = Implemented by the KA66A CPU module as specified in the VAX Architecture Reference Manual.
2 = Implemented uniquely by the KA66A CPU module.
3 = Accessible, but not fully implemented; accesses when the system is in console mode are appropriate,
accesses when the system is in user mode yield UNPREDICTABLE results.
n Init = The register is initialized on a KA66A CPU module reset (power-up, system reset, and node reset).

2–69

KA66A CPU Module

Table 2–26 (Cont.) KA66A CPU Module Internal Processor Registers

Address
Decimal (Hex) Register Mnemonic Type1 Class2 I/O Address

242 (F2) P-Cache Parity Address PCADR RO 2

244 (F4) P-Cache Status PCSTS R/W 2

248 (F8) P-Cache Control PCCTL R/W 2

1See Table 2–27.
2Key to Classes:

1 = Implemented by the KA66A CPU module as specified in the VAX Architecture Reference Manual.
2 = Implemented uniquely by the KA66A CPU module.
3 = Accessible, but not fully implemented; accesses when the system is in console mode are appropriate,
accesses when the system is in user mode yield UNPREDICTABLE results.
n Init = The register is initialized on a KA66A CPU module reset (power-up, system reset, and node reset).

Table 2–27 Types of Registers and Bits

Type Description

0 Initialized to logic level zero

1 Initialized to logic level one

X Initialized to either logic level

RO Read only

R/W Read/write

R/W1C Read/cleared by writing a one

WO Write only

MBZ Must be zero

SBZ Should be zero

2–70

KA66A CPU Module Internal Processor Registers
CPU Identification Register (CPUID)

CPU Identification Register (CPUID)

CPUID contains the node identification number of the KA66A CPU module.
Software can determine which CPU it is operating on by reading this register.
The console initializes this register.

ADDRESS IPR14 (NVAX chip)

3
1 8 7 0

MUST BE ZERO CPU ID

msb−p504−91

bits<31:8>
Name: Reserved

Mnemonic: None

Type: –

Reserved; must be zero.

bits<7:0>
Name: CPU Identification

Mnemonic: CPU ID

Type: R/W

During power-up the console writes this register with the node ID
number.

2–71

KA66A CPU Module Internal Processor Registers
Interval Clock Control and Status Register (ICCS)

Interval Clock Control and Status Register (ICCS)

ICCS contains control information for the interval clock. The interval clock
is used for accounting, for time-dependent events, and for maintaining the
software date and time. Interval timer requests are posted at IPL 16 (hex)
through SCB vector C0 (hex). The interval timer is the lowest priority device
at IPL 16.

ADDRESS IPR24 (NVAX chip)

3
1

3
0 8 7 6 5 4 3 1 0

MUST BE ZERO MBZ

Missed Overflow (ERR)
Run

msb−p561−91

Interrupt (INT)
Interrupt Enable (IE)
Increment by One (SGL)
Copy Next Interval Count (XFR)

bit<31>
Name: Missed Overflow

Mnemonic: ERR

Type: R/W1C, 0

When set, ERR indicates that the Interval Count Register (ICR)
overflowed while INT was set. Thus an overflow was missed.

bit<30:8>
Name: Reserved

Mnemonic: None

Type: –

Reserved; must be zero.

bit<7>
Name: Interrupt

Mnemonic: INT

Type: R/W1C, 0

When set, INT indicates that the Interval Count Register (ICR)
overflowed. If IE is also set, an interrupt is posted.

2–72

KA66A CPU Module Internal Processor Registers
Interval Clock Control and Status Register (ICCS)

bit<6>
Name: Interrupt Enable

Mnemonic: IE

Type: R/W, 0

IE enables and disables interval timer interrupts. When IE is set, an
interval timer interrupt is requested every 10 milliseconds. When IE
is clear, interval timer interrupts are disabled.

bit<5>
Name: Increment by One

Mnemonic: SGL

Type: WO, 0

When Run is set, writing a one to SGL causes the Interval Count
Register to increment by one.

bit<4>
Name: Copy Next Interval Count

Mnemonic: XFR

Type: WO, 0

When XFR is set, the contents of the Next Interval Count Register is
transferred into the Interval Count Register.

bits<3:1>
Name: Reserved

Mnemonic: None

Type: –

Reserved; must be zero.

bit<0>
Name: Run

Mnemonic: –

Type: R/W, 0

When Run is set, the Interval Count Register is incremented once per
microsecond. When Run is clear, the Interval Count Register does not
increment automatically.

2–73

KA66A CPU Module Internal Processor Registers
Next Interval Count Register (NICR)

Next Interval Count Register (NICR)

NICR contains the negative or 2’s complement to the desired interval to be
measured. NICR can be accessed through its IPR address or the I/O address
E100 0064. When using the clock, addressing the register by its I/O address
should NOT be done.

ADDRESS IPR25 (NEXMI chip)

3
1 0

Next Interval Count Register

msb−p563−91

bits<31:0>
Name: Next Interval Count

Mnemonic: None

Type: WO, 0

This register contains the value loaded into the Interval Count
Register after an overflow, or in response to a one written to
ICCS<XFR>.

2–74

KA66A CPU Module Internal Processor Registers
Interval Count Register (ICR)

Interval Count Register (ICR)

ICR contains the interval count. When ICCS<Run> is zero, writing a one to
ICCS<SGL> increments the register. When ICCS<Run> is a one, the register
is incremented once per microsecond.

ADDRESS IPR26 (NEXMI chip)

3
1 0

Interval Count Register

msb−p562−91

bits<31:0>
Name: Interval Count

Mnemonic: None

Type: RO

Contains the interval count.

2–75

KA66A CPU Module Internal Processor Registers
Console Receiver Control and Status Register (RXCS)

Console Receiver Control and Status Register
(RXCS)

RXCS controls and reports the status of incoming data on the console serial
line.

ADDRESS IPR32 (NEXMI chip) I/O Address E100 0080

3
1 8 7 6 5 0

MUST BE ZERO MUST BE ZERO

Receiver Done (RX DONE)
Receiver Interrupt Enable (RX IE)

msb−p266−90

bits<31:8>
Name: Reserved

Mnemonic: None

Type: –

Reserved; must be zero.

bit<7>
Name: Receiver Done

Mnemonic: RX DONE

Type: RO, 0

RX DONE is set when an entire character has been received and
is ready to be read from RXDB<7:0> (Received Data). RX DONE is
automatically cleared when RXDB<7:0> is read.

bit<6>
Name: Receiver Interrupt Enable

Mnemonic: RX IE

Type: R/W, 0

RX IE enables receiver interrupts. If RX IE is set and a character is
received, as indicated by the setting of RX DONE, a receiver interrupt
is requested. If RX DONE is set and software then sets RX IE, a
receiver interrupt is requested. The interrupt request is cleared
when it is serviced, when RXBD is read, or when RX IE is cleared by
software.

2–76

KA66A CPU Module Internal Processor Registers
Console Receiver Control and Status Register (RXCS)

bits<5:0>
Name: Reserved

Mnemonic: None

Type: –

Reserved; must be zero.

2–77

KA66A CPU Module Internal Processor Registers
Console Receiver Data Buffer Register (RXDB)

Console Receiver Data Buffer Register (RXDB)

RXDB buffers incoming serial-line data and captures error information. Error
conditions remain until the next character is received, at which point the error
bits are updated.

ADDRESS IPR33 (NEXMI chip) I/O Address E100 0084

3
1

1
6

1
5

1
4

1
3

1
2

1
1

1
0 8 7 0

MUST BE ZERO MBZ

Error (ERR)
Overrun Error (OVR ERR)
Framing Error (FRM ERR)

Received Break (RCV BRK)
Received Data

msb−p267−90

0

bits<31:16>
Name: Reserved

Mnemonic: None

Type: –

Reserved; must be zero.

bit<15>
Name: Error

Mnemonic: ERR

Type: RO, 0

ERR is set if either bit <14> or <13> is set. ERR is clear if both bits
are clear.

bit<14>
Name: Overrun Error

Mnemonic: OVR ERR

Type: RO, 0

OVR ERR is set if a previously received character was not read before
being overwritten by the present character and remains set until the
register is read.

2–78

KA66A CPU Module Internal Processor Registers
Console Receiver Data Buffer Register (RXDB)

bit<13>
Name: Framing Error

Mnemonic: FRM ERR

Type: RO, 0

FRM ERR is set if the present character did not have a valid stop bit
and remains set until the register is read.

bit<12>
Name: Reserved

Mnemonic: None

Type: –

Reserved; must be zero.

bit<11>
Name: Received Break

Mnemonic: RCV BRK

Type: RO, 0

RCV BRK is set following the receipt of a CTRL/P character and
remains set until the register is read.

bits<10:8>
Name: Reserved

Mnemonic: None

Type: –

Reserved; must be zero.

bits<7:0>
Name: Received Data

Mnemonic: None

Type: RO

Received Data contains the last character received from the console.

2–79

KA66A CPU Module Internal Processor Registers
Console Transmitter Control and Status Register (TXCS)

Console Transmitter Control and Status Register
(TXCS)

TXCS controls and reports the status of outgoing data on the console serial
line.

ADDRESS IPR34 (NEXMI chip) I/O Address E100 0088

3
1 8 7 6 5 0

MUST BE ZERO MBZ

Transmitter Ready (TX RDY)
Transmitter Interrupt Enable (TX IE)

msb−p549−91

bits<31:8>
Name: Reserved

Mnemonic: None

Type: –

Reserved; must be zero.

bit<7>
Name: Transmitter Ready

Mnemonic: TX RDY

Type: RO, 1

TX RDY sets when TXDB<7:0> (Transmit Data) can receive a
character. It clears when TXDB<7:0> is loaded with a character, and
it remains clear until the character is transferred to the serialization
buffer.

bit<6>
Name: Transmitter Interrupt Enable

Mnemonic: TX IE

Type: R/W, 0

TX IE enables transmitter interrupts. If TX IE is set and the
transmitter interrupt becomes ready (that is, TX RDY sets), then a
transmitter interrupt is requested. If TX RDY is set and software
sets TX IE, then a transmitter interrupt is requested. The interrupt
request is cleared when it is serviced or if TX IE is cleared by software.

2–80

KA66A CPU Module Internal Processor Registers
Console Transmitter Control and Status Register (TXCS)

bits<5:0>
Name: Reserved

Mnemonic: None

Type: –

Reserved; must be zero.

2–81

KA66A CPU Module Internal Processor Registers
Console Transmitter Data Buffer Register (TXDB)

Console Transmitter Data Buffer Register (TXDB)

TXDB buffers outgoing data on the console serial line.

ADDRESS IPR35 (NEXMI chip) I/O Address E100 008C
3
1 8 7 0

MUST BE ZERO

Transmit Data

msb−p269−90

bits<31:8>
Name: Reserved

Mnemonic: None

Type: –

Reserved; must be zero.

bits<7:0>
Name: Transmit Data

Mnemonic: None

Type: WO

Transmit Data contains the character to be transmitted on the console
serial line.

2–82

KA66A CPU Module Internal Processor Registers
Machine Check Error Summary Register (MCESR)

Machine Check Error Summary Register (MCESR)

Software acknowledges the receipt of a machine check from the hardware by
clearing this register.

ADDRESS IPR38 (NVAX chip)

3
1 0

Machine Check Error Summary Register (MCESR)

msb−p270−90

bits<31:0>
Name: Machine Check Error Summary Register

Mnemonic: MCESR

Type: WO

MCESR allows software to acknowledge receipt of a machine check.
When the microcode invokes the software machine check handler, it
sets a "machine check in progress" flag. If a machine check or memory
management exception occurs when this flag is set, the microcode
initiates a console double error halt. Machine check handler software
needs to clear the "machine check in progress" flag as soon as possible
by writing a zero to MCESR to reenable normal machine check and
memory management exception reporting.

2–83

KA66A CPU Module Internal Processor Registers
Console Saved Program Counter Register (SAVPC)

Console Saved Program Counter Register (SAVPC)

During a hardware restart sequence, the current program counter (PC) is
saved in SAVPC.

ADDRESS IPR42 (NVAX chip)

3
1 0

Console Saved Program Counter (SAVPC)

msb−p272−90

bits<31:0>
Name: Console Saved Program Counter

Mnemonic: SAVPC

Type: RO

If the NVAX microcode detects an inconsistent internal state, an
incorrectly terminated NDAL transaction, a kernel-mode HALT, a
system reset, a node halt, a node reset, or the detection of CTRL/P,
the microcode initiates a console halt (a hardware restart sequence
which passes control to the console code). During the hardware restart
sequence, the current program counter (PC) is saved in SAVPC.

2–84

KA66A CPU Module Internal Processor Registers
Console Saved Processor Status Longword (SAVPSL)

Console Saved Processor Status Longword
(SAVPSL)

If the NVAX microcode detects an inconsistent internal state, an incorrectly
terminated NDAL transaction, a kernel-mode HALT, a node halt, a node
reset, a CTRL/P, or a system reset, the microcode initiates a console halt (a
hardware restart sequence which passes control to the console code). During
the hardware restart sequence, the processor status longword (PSL), halt
code, MAPEN<0>, and an invalid bit are saved in SAVPSL.

ADDRESS IPR43 (NVAX chip)
3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
6

1
5

1
4

1
3 8 7 6 5 4 3 2 1 0

Condition Codes

Previous Mode
Current Mode

Interrupt Stack (IS)
First Part Done (FPD)

Virtual Machine Mode (VM)
Trace Pending (TP)
Compatibility Mode (CM)

msb−p575−91

0 0

Float Underflow Fault (FU)
Decimal Overflow Trap (DV)
Halt Code
Invalid
Memory Management Enable <0>
Interrupt Priority Level

Integer Overflow Trap (IV)
Trace Trap (T)

Enables

Carry (C)
Overflow (V)
Zero (Z)
Negative (N)

bit<31>
Name: Compatibility Mode

Mnemonic: CM

Type: RO

When CM is set, the processor is in PDP–11 compatibility mode.

2–85

KA66A CPU Module Internal Processor Registers
Console Saved Processor Status Longword (SAVPSL)

bit<30>
Name: Trace Pending

Mnemonic: TP

Type: RO

Forces a trace fault when set at the beginning of any instruction. Set
by the processor if T is set at the beginning of an instruction.

bit<29>
Name: Virtual Machine Mode

Mnemonic: VM

Type: RO

When set, the processor is executing a virtual machine, and the
VMPSL register contains parts of the PSL of the virtual machine.
When clear, the processor is running a real machine.

bit<28>
Name: Reserved

Mnemonic: None

Type: RO, 0

Reserved; must be zero.

bit<27>
Name: First Part Done

Mnemonic: FPD

Type: RO

When set, execution of the instruction addressed by PC cannot simply
be started at the beginning but must be restarted at some other
implementation-dependent point in its operation.

bit<26>
Name: Interrupt Stack

Mnemonic: IS

Type: RO

When set, the processor in executing on the interrupt stack. Any
mechanism that sets IS also clears current mode and raises IPL above
zero. When IS is clear, the processor is executing on the stack specified
by current mode.

2–86

KA66A CPU Module Internal Processor Registers
Console Saved Processor Status Longword (SAVPSL)

bits<25:24>
Name: Current Mode

Mnemonic: CUR MOD

Type: RO

The access mode of the currently executing process.
0—Kernel
1—Executive
2—Supervisor
3—User

bits<23:22>
Name: Previous Access Mode

Mnemonic: PRV MOD

Type: RO

Loaded from current mode by exceptions and change mode x
instructions, cleared by interrupts, and restored by the REI
instruction.

bit<21>
Name: Reserved

Mnemonic: None

Type: RO, 0

Reserved; must be zero.

bits<20:16>
Name: Interrupt Priority Level

Mnemonic: IPL

Type: RO

The current processor priority, in the range 0 to F (hex). The processor
will accept interrupts only on levels greater than the current level.

bit<15>
Name: Memory Management Enable<0>

Mnemonic: MAPEN<0>

Type: RO

At the time of a console halt, MAPEN<0> is loaded into SAVPSL<15>.

2–87

KA66A CPU Module Internal Processor Registers
Console Saved Processor Status Longword (SAVPSL)

bit<14>
Name: Invalid

Mnemonic: None

Type: RO

At the time of a console halt, a zero is loaded into the Invalid bit if the
PSL is valid and a one is loaded if it is not valid. The Invalid bit is
undefined after a halt due to a system reset.

bits<13:8>
Name: Halt Code

Mnemonic: None

Type: RO

At the time of a console halt, console halt code is loaded into
SAVPSL<13:8>.

bit<7>
Name: Decimal Overflow Enable

Mnemonic: DV

Type: RO

When set, forces a decimal overflow trap after execution of an
instruction that produced an overflowed decimal result or had a
conversion error. When DV is clear, no trap occurs (however, the
condition code V bit is set).

bit<6>
Name: Floating Underflow Enable

Mnemonic: FU

Type: RO

When set, FU forces a floating underflow exception after execution
of an instruction that produced an underflowed result. (That is, FU
forces an exception when a result exponent, after normalization and
rounding, is less than the smallest representable exponent for the data
type.) When FU is clear, no exception occurs.

bit<5>
Name: Integer Overflow Enable

Mnemonic: IV

Type: RO

When set, IV forces an integer overflow trap after execution of an
instruction that produced an integer result that overflowed or had a
conversion error. When IV is clear, no integer overflow trap occurs
(however, the condition code V bit is set).

2–88

KA66A CPU Module Internal Processor Registers
Console Saved Processor Status Longword (SAVPSL)

bit<4>
Name: Trace

Mnemonic: T

Type: RO

When T is set at the beginning of an instruction, TP gets set. Most
programs should treat T as UNPREDICTABLE because it is set by
debuggers and trace programs for tracing and for proceeding from a
breakpoint.

bit<3>
Name: Negative

Mnemonic: N

Type: RO

When set, indicates that the last instruction that affected N produced
a result that was negative. When N is clear, the result was positive or
zero.

bit<2>
Name: Zero

Mnemonic: Z

Type: RO

When set, indicates that the last instruction that affected Z produced
a result that was zero. When Z is clear, the result was non-zero.

bit<1>
Name: Overflow

Mnemonic: V

Type: RO

When set, indicates that the last instruction that affected V produced
a result that was too large to be properly represented in the operand
that received the result if there was a conversion error. When V is
clear, there was no overflow or conversion error.

bit<0>
Name: Carry

Mnemonic: C

Type: RO

When set, indicates that the last instruction that affected C had a
carry out of the most significant bit of the result or a borrow into the
most significant bit. When C is clear, there was no carry or borrow.

2–89

KA66A CPU Module Internal Processor Registers
I/O Reset Register (IORESET)

I/O Reset Register (IORESET)

IORESET forces a system reset.

ADDRESS IPR55 (NEXMI chip)

3
1 0

IORESET

msb−p275−90

bits<31:0>
Name: IORESET

Mnemonic: None

Type: WO

A KA66A CPU module can force a system reset by writing to IORESET
with an MTPR (Move To Processor Register) instruction.

2–90

KA66A CPU Module Internal Processor Registers
System Identification Register (SID)

System Identification Register (SID)

SID specifies the processor type and its microcode revision level. It can only
be accessed locally. Other devices on the XMI determine the nature of a node
by reading its XMI Device Register (XDEV).

ADDRESS IPR62 (NVAX chip)

3
1

2
4

2
3

1
4

1
3 9 8 7 0

MUST BE ZERO

CPU Type Patch Revision
Nonstandard Microcode (NS)

msb−p505−91

Microcode Revision

bits<31:24>
Name: CPU Type

Mnemonic: None

Type: RO

This field is always 13 (hex), indicating the KA66A CPU module’s
NVAX chip.

bits<23:14>
Name: Reserved

Mnemonic: None

Type: –

Reserved; must be zero.

bits<13:9>
Name: Patch Revision

Mnemonic: None

Type: RO, 0

This field specifies the microcode patch revision of the NVAX chip. If
the field is zero, no microcode patch is loaded. The data comes from
the Patchable Control Store Control Register (PCSCR).

2–91

KA66A CPU Module Internal Processor Registers
System Identification Register (SID)

bit<8>
Name: Nonstandard Microcode

Mnemonic: NS

Type: RO, 0

This bit specifies whether a microcode patch revision is standard. If
the bit is clear (0) and the Patch Revision field is nonzero, then the
microcode patch is standard. If the bit is set (1), then a nonstandard
microcode patch is loaded. The data comes from the Patchable Control
Store Control Register (PCSCR).

bits<7:0>
Name: Microcode Revision

Mnemonic: None

Type: RO

This field specifies the microcode revision of the NVAX chip and is
hardwired in the NVAX chip.

2–92

KA66A CPU Module Internal Processor Registers
Patchable Control Store Control Register (PCSCR)

Patchable Control Store Control Register (PCSCR)

PCSCR is used to load control store patches and to enable the patchable
control store. It is not used by software in normal operation.

ADDRESS IPR124 (NVAX chip)
3
1

2
9

2
8

2
4

2
3

2
2

1
3

1
2

1
1

1
0 9 8 7 0

MBZ MBZ MBZ

Parallel Port
Disable
(PAR PORT DIS)
PCS Enable
(PCS ENB)

Data

msb−p513−91

Patch Revision (PATCH REV)

Shift (RWL SHIFT)
Write (PCS WRITE)

Nonstandard Microcode (NS)

bits<31:29>
Name: Reserved

Mnemonic: None

Type: –

Reserved; must be zero.

bits<28:24>
Name: Patch Revision

Mnemonic: PATCH REV

Type: R/W

This field is set by software after loading a microcode patch. It
indicates the revision of the standard microcode patch that has been
loaded. The field is returned as bits <13:9> in a read from the SID
processor register unless PCSCR<PCS ENB> is clear, in which case
zero is returned.

bit<23>
Name: Nonstandard Microcode (NS)

Mnemonic: NS

Type: R/W

This bit is set by software after loading a microcode patch. When set,
it indicates a nonstandard microcode patch that has been loaded. The
bit is returned as bit <8> in a read from the SID processor register
unless PCSCR<PCS ENB> is clear, in which case zero is returned.

2–93

KA66A CPU Module Internal Processor Registers
Patchable Control Store Control Register (PCSCR)

bit<12>
Name: Data

Mnemonic: None

Type: R/W

Data to be shifted into the PCS shift scan chain. The data bit is
shifted into the PCS chain whenever the RWL SHIFT bit is set. By
repeatedly setting or clearing the data bit and setting the RWL SHIFT
bit, any data pattern can be written into the PCS scan chain.

bit<11>
Name: Read/Write Shift

Mnemonic: RWL SHIFT

Type: WO

Writing a one to RWL SHIFT causes the PCS scan chain to shift by
one, picking up the Data bit in the process. The control signal that
enables the shift returns to the inactive state automatically; software
need not clear this bit. RWL SHIFT always reads as zero.

bit<10>
Name: PCS Write

Mnemonic: None

Type: WO, 0

Writing a one to PCS Write causes the contents of the PCS scan chain
to be written into the patchable control store. The control signal that
enables the write returns to the inactive state automatically; software
need not clear this bit. PCS Write always reads as zero.

bit<9>
Name: PCS Enable

Mnemonic: PCS ENB

Type: R/W, 0

When set, this bit enables the patchable control store outputs so that
patches supersede the control store ROM.

bit<8>
Name: Parallel Port Disable

Mnemonic: PAR PORT DIS

Type: R/W, 0

Writing a one to PAR PORT DIS disables control by the test section
of the parallel port used in loading the control store. When using
this register to load the control store, disabling the parallel port is
necessary.

2–94

KA66A CPU Module Internal Processor Registers
Patchable Control Store Control Register (PCSCR)

bits<7:0>
Name: Reserved

Mnemonic: None

Type: –

Reserved; must be zero.

2–95

KA66A CPU Module Internal Processor Registers
Ebox Control Register (ECR)

Ebox Control Register (ECR)

ECR is used to configure certain Ebox functions.

ADDRESS IPR125 (NVAX chip)
3
1 8 7 6 5 4 3 2 1 0

Must Be Zero

ICCS External
Timeout Clock
Timeout Test

msb−p514−91

0

Timeout Occurred
Fbox ST4 Bypass Enable
Timeout External
Fbox Enable

bits<31:8>
Name: Reserved

Mnemonic: None

Type: –

Reserved; Must be zero.

bit<7>
Name: ICCS External

Mnemonic: ICCS EXT

Type: R/W, 0

ICCS EXT selects the interval timer. When clear, the CPU implements
a subset interval timer maintained on the chip. When set, the CPU
implements a full interval timer with ICCS, NICR, and ICR processor
registers implemented off chip. The KA66A CPU module uses an
off-chip interval timer.

2–96

KA66A CPU Module Internal Processor Registers
Ebox Control Register (ECR)

bit<6>
Name: Timeout Clock

Mnemonic: None

Type: RO, 0

This is the most significant bit of the timeout base counter. It is used
as an indication that the TIMEOUT ENABLE H signal is functioning.
It should be clear half the time and set half the time. The period of
oscillation is 65536 times the cycle time of the chip or of the external
clock depending upon the condition of the ECR<Timeout External> bit.
If ECR<Timeout External> is clear, this period is approximately 786
microseconds.

bit<5>
Name: Timeout Test

Mnemonic: None

Type: RW, 0

When set, the stage 3 pipe stall circuit counts every cycle instead of
only those when the TIMEOUT ENABLE H signal is asserted. In this
test mode the STALL timeout time is approximately 50 microseconds
instead of 3 seconds.

bit<4>
Name: Timeout Occurred

Mnemonic: None

Type: R/W1C, 0

When set, this bit indicates that a STALL timeout occurred. The read
timeout is approximately 200 ms. Writing Timeout Occurred with a
one clears it.

bit<3>
Name: Fbox ST4 Bypass Enable

Mnemonic: None

Type: R/W, 0

When set, this bit enables the Fbox stage 4 bypass.

bit<2>
Name: Timeout External

Mnemonic: None

Type: R/W, 0

This bit is set by configuration code to select an external clock for the
STALL timeout timer.

2–97

KA66A CPU Module Internal Processor Registers
Ebox Control Register (ECR)

bit<1>
Name: Fbox Enable

Mnemonic: None

Type: R/W, 0

When set, the Fbox is enabled.

bit<0>
Name: Reserved

Mnemonic: None

Type: –

Reserved; must be zero.

2–98

KA66A CPU Module Internal Processor Registers
Cbox Control Register (CCTL)

Cbox Control Register (CCTL)

CCTL controls the behavior of the Cbox.

ADDRESS IPR160 (NVAX chip)
3
1

3
0

2
9

1
7

1
6

1
5

1
1

1
0 9 8 7 6 5 4 3 2 1 0

MUST BE ZERO MBZ

Software ETM (SW ETM)
Hardware ETM (HW ETM)

Force NDAL Parity Error
(FORCE NDAL PERR)

Disable Pack
Timeout Test

B−Cache Size

msb−p532−91

0 1 1

Software ECC Enable
Disable ECC Errors

Reserved (set 01)
Reserved (set 1)

Force Hit

B−Cache Enable

bit<31>
Name: Hardware ETM

Mnemonic: HW ETM

Type: R/W1C

When HW ETM is set, an uncorrectable error has been detected in
the backup cache tag store or data RAMs, unless Disable ECC Errors
is set. Hardware sets the bit to put the B-cache into error transition
mode.

bit<30>
Name: Software ETM

Mnemonic: SW ETM

Type: R/W, 0

By setting SW ETM, software can put the backup cache into error
transition mode. When the cache is on and software determines
that the cache is producing errors, it can set this bit to turn off the
cache while ensuring cache coherency. Software can then flush owned
data through use of the B-cache deallocate IPRs, BCFLUSH. In this
manner, the unique data can be written back to memory before the
cache is turned off completely. See Section 2.3.4.7 and Section 2.3.4.8.
Reset clears this bit.

2–99

KA66A CPU Module Internal Processor Registers
Cbox Control Register (CCTL)

bits<29:17>
Name: Reserved

Mnemonic: None

Type: –

Reserved; must be zero.

bit<16>
Name: Force NDAL Parity Error

Mnemonic: FORCE NDAL PERR

Type: R/W, 0

When set, the Force NDAL Parity Error bit causes a single NDAL
parity error.

Software uses this bit as follows: Setting the bit causes one NDAL
parity error. The parity error does not occur until the NVAX is granted
the NDAL for its next outgoing transaction. If software sets FORCE
NDAL PERR and clears it before the NVAX is granted the bus, the
NVAX will still force a parity error on the next transaction. The bit
must be cleared and then set again to cause another NDAL parity
error.

bits<15:11>
Name: Reserved

Mnemonic: None

Type: –

Reserved; must be zero.

bit<10>
Name: Disable Pack

Mnemonic: None

Type: R/W, 0

When Disable Pack is set, the Cbox does not pack quadword writes
together. Instead, the write packer passes every write it receives
directly into the write queue. When the bit is clear, the Cbox write
packer operates normally. Disable Pack is for testing purposes only.
Reset clears this bit.

bit<9>
Name: Timeout Test

Mnemonic: None

Type: R/W, 0

When Timeout Test is set, the Cbox uses the internal clock to clock its
read timeout counter. When Timeout Test is clear, the Cbox uses the
external base clock to clock its timeout counters. Reset clears this bit.

2–100

KA66A CPU Module Internal Processor Registers
Cbox Control Register (CCTL)

bit<8>
Name: Software ECC Enable

Mnemonic: SW ECC

Type: R/W, 0

When SW ECC is clear, the Cbox generates correct ECC check bits
for all writes to the tag store and data RAMs. When SW ECC is set,
the Cbox does not generate the check bits when the backup cache is
written with data, but uses the check bit values specified by software
and written in the BCDECC register. Note that if a read or write
reference misses in the B-cache when SW ECC is set, all four fills will
be written with the ECC given in BCDECC when they return.

When SW ECC is set and the tag store is written using an IPR write
to BCTAG, the Cbox uses the check bits for the tag store as given
through the IPR write. The value of SW ECC does not affect tag store
transactions other than IPR writes.

Reset clears this bit.

bit<7>
Name: Disable ECC Errors

Mnemonic: None

Type: R/W, 0

When Disable ECC Errors is set, all ECC errors from the B-cache
are ignored. The B-cache data syndrome is loaded into BCEDECC on
every cache access; the behavior of BCETSTS, BCETIDX, BCETAG,
BCEDSTS, and BCEDIDX is UNPREDICTABLE. This feature allows
operation of the B-cache even if the error detection and correction
logic is faulty. It also allows access to the B-cache syndrome for the
purposes of testing the ECC logic. Reset clears this bit.

bit<6>
Name: Force Hit

Mnemonic: None

Type: R/W, 0

When Force Hit is set, all memory references, both D-stream and I-
stream reads and writes, are forced to hit in the backup cache. The tag
store state is not changed, but data is always read or written. Reset
clears this bit.

The backup cache must be enabled when the cache is used in force hit
mode. This mode is for testing purposes only.

2–101

KA66A CPU Module Internal Processor Registers
Cbox Control Register (CCTL)

bits<5:4>
Name: B-Cache Size

Mnemonic: –

Type: R/W, 0

Four backup cache sizes are possible using the NVAX chip. In the
KA66A CPU module the backup cache size is 2 Mbytes and both bits
are set.

bits<3:2>
Name: Reserved

Mnemonic: None

Type: R, 01

Reserved; default is 01.

bit<1>
Name: Reserved

Mnemonic: None

Type: R, 1

Reserved; default is 1.

bit<0>
Name: B-Cache Enable

Mnemonic: None

Type: R/W, 0

When B-Cache Enable is set, the backup cache is enabled for
operation. When B-Cache Enable is clear, the B-cache is off and all
references are treated as misses. When the B-cache is off, CCTL<Force
Hit>, CCTL<SW ETM>, and CCTL<HW ETM> are ignored. Reset
clears this bit so that the B-cache is off when the chip is reset.

2–102

KA66A CPU Module Internal Processor Registers
Backup Cache Data ECC Register (BCDECC)

Backup Cache Data ECC Register (BCDECC)

BCDECC is used for testing. Software writes bad ECC into the data RAMs
to test Cbox error detection logic. BCDECC will be used as the source of
the ECC syndrome bits during any write to the backup cache data RAMs,
including those done for fills from memory.

The hardware will use data in this register only if the CCTL<SW ECC> bit is
set; otherwise, it will generate the ECC check bits.

Cache transactions must be carefully controlled while this register is being
used. BCDECC will probably be most useful when used in force hit mode, so
that no fills are generated.

Reset does not affect this register.

ADDRESS IPR162 (NVAX chip)

3
1

2
6

2
5

2
2

2
1

1
0 9 6 5 0

MBZ MBZ MBZ

ECC High (ECCHI)
ECC Low (ECCLO)

msb−p559−91

bits<31:26>
Name: Reserved

Mnemonic: None

Type: –

Reserved; must be zero.

bits<25:22>
Name: ECC High

Mnemonic: ECCHI

Type: WO

The ECCHI field corresponds to ECC syndrome bits <7:4> and to the
upper longword of B-cache data.

bits<21:10>
Name: Reserved

Mnemonic: None

Type: –

Reserved; must be zero.

2–103

KA66A CPU Module Internal Processor Registers
Backup Cache Data ECC Register (BCDECC)

bits<9:6>
Name: ECC Low

Mnemonic: ECCLO

Type: WO

The ECCLO field corresponds to ECC syndrome bits <3:0> and to the
lower longword of B-cache data.

bits<5:0>
Name: Reserved

Mnemonic: None

Type: –

Reserved; must be zero.

2–104

KA66A CPU Module Internal Processor Registers
Backup Cache Error Tag Status Register (BCETSTS)

Backup Cache Error Tag Status Register (BCETSTS)

BCETSTS gives the status of an error in the B-cache tag store. For a given
error the hardware writes the register, the software reads the register and
must clear the error bits by using a write-one-to-clear write to the lowest five
bits of the register.

ADDRESS IPR163 (NVAX chip)
3
1

1
0 9 5 4 3 2 1 0

x

Lost Error (LOST ERR)
Bad Address (BAD ADDR)

Correctable ECC Error (CORR)
Lock

msb−p533−91

Tag Store Command (TS CMD)

Uncorrectable ECC Error (UNCORR)

bits<31:10>
Name: Reserved

Mnemonic: None

Type: –

Reserved; initialized to either logic level.

bits<9:5>
Name: Tag Store Command

Mnemonic: TS CMD

Type: RO

The TS CMD field indicates the operation of the tag store when the
error was detected. Its values are listed in Table 2–28.

Table 2–28 Interpretation of TS CMD

TS CMD NAME Tag Store Operation

00111 DREAD Data-stream tag lookup

00011 IREAD Instruction-stream tag lookup

00010 OREAD Ownership-Read tag lookup for a write or a Read
Lock

01000 WUNLOCK Ownership-Read tag lookup for a Write Unlock
(lookup done only in ETM)

2–105

KA66A CPU Module Internal Processor Registers
Backup Cache Error Tag Status Register (BCETSTS)

Table 2–28 (Cont.) Interpretation of TS CMD

TS CMD NAME Tag Store Operation

01101 R_INVAL Cache coherency tag lookup as the result of NDAL
DREAD or IREAD

01001 O_INVAL Cache coherency tag lookup as the result of NDAL
OREAD or WRITE

01010 IPR_
DEALLOC

Tag lookup for an explicit IPR deallocate operation

Three tag store operations do not cause any sort of errors: tag store
update after a fill, IPR write of the tag store, and IPR read of the tag
store. These commands will not appear in BCETSTS.

bit<4>
Name: Lost Error

Mnemonic: LOST ERR

Type: R/W1C

LOST ERR indicates that after the first uncorrectable error was
recorded in the tag store error registers, an additional uncorrectable
error occurred for which state was not saved. LOST ERR is set by
hardware and cleared by software.

bit<3>
Name: Bad Address

Mnemonic: BAD ADDR

Type: R/W1C

BAD ADDR is set when the tag store ECC decoder detects an error in
the address bit, indicating some problem with the address lines going
to the tag RAMs. This is an uncorrectable error, and the B-cache tag
store error registers are loaded and locked when it occurs.

The UNCORR bit and the BAD ADDR bit are exclusive: only one of
them is set for a given error which sets the Lock bit. If the other type
of error occurs later, the related bit is not set since the register is
already locked.

BAD ADDR is set by hardware and cleared by software.

2–106

KA66A CPU Module Internal Processor Registers
Backup Cache Error Tag Status Register (BCETSTS)

bit<2>
Name: Uncorrectable ECC Error

Mnemonic: UNCORR

Type: R/W1C

UNCORR is set when the tag store ECC decoder detects an
uncorrectable error. When this occurs, the B-cache tag store error
registers are loaded and locked.

The UNCORR bit and the BAD ADDR bit are exclusive: only one of
them is set for a given error which sets the Lock bit. If the other type
of error occurs later, the related bit is not set since the register is
already locked.

The UNCORR bit is set by hardware and cleared by software.

bit<1>
Name: Correctable ECC Error

Mnemonic: CORR

Type: R/W1C

CORR is set when the tag store ECC decoder detects a correctable
error. When this occurs, the B-cache tag store error registers are
loaded and locked against further correctable errors. They are not
locked against an uncorrectable error.

If a correctable error is followed by an uncorrectable error, the CORR
bit remains set.

The CORR bit is set by hardware and cleared by software.

bit<0>
Name: Lock

Mnemonic: None

Type: R/W1C

The Lock bit is set when an uncorrectable error is detected.
Either UNCORR or BAD ADDR is also set to indicate the type of
uncorrectable error. When the Lock bit is set, all three tag store error
registers, the BCETSTS, BCETIDX, and BCETAG registers are also
locked. Clearing the Lock bit unlocks all three registers. The Lock bit
is set by hardware and cleared by software.

2–107

KA66A CPU Module Internal Processor Registers
Backup Cache Error Tag Index Register (BCETIDX)

Backup Cache Error Tag Index Register (BCETIDX)

BCETIDX is loaded and locked when a B-cache tag store error occurs. If a
correctable error is followed by an uncorrectable error, the register is loaded
with information from the second, more serious error. Except for this case,
once the register is locked, it is not changed until software explicitly unlocks
the register. This register is written by hardware and read by software.

BCETIDX contains the complete hexword address pointed to by the tag store
request that resulted in the error. Since the full address is saved, both the
cache index and the cache tag of the request are known. Thus, this register
shows both the index accessed and the tag of the request that was in error.
Software can compare this tag with the actual tag read from the RAMs, which
is saved in BCETAG.

ADDRESS IPR164 (NVAX chip)

3
1 0

Backup Cache Tag Store Address

msb−p534−91

bits<31:0>
Name: Backup Cache Tag Store Address

Mnemonic: None

Type: RO

BCETIDX contains the hexword address pointed to by the tag store
request that resulted in the error. The last five bits of the address are
forced to zero.

2–108

KA66A CPU Module Internal Processor Registers
Backup Cache Error Tag Register (BCETAG)

Backup Cache Error Tag Register (BCETAG)

BCETAG is loaded when a tag store error occurs. It is locked when an
uncorrectable error occurs on a tag store access. Once locked, it is not
overwritten until unlocked by software. BCETAG is written by hardware and
read by software.

The register holds the data that was read from the tag store and which
produced the error.

ADDRESS IPR165 (NVAX chip)

3
1

2
1

2
0

1
7

1
6

1
1

1
0 9 8 0

TAG MBZ ECC MBZ

Valid
Owned

msb−p535−91

bits<31:21>
Name: Tag

Mnemonic: None

Type: RO

The TAG field is the cache tag as read from the tag RAMs.

bits<20:17>
Name: Reserved

Mnemonic: None

Type: –

Reserved; must be zero.

bits<16:11>
Name: ECC

Mnemonic: None

Type: –

The ECC field contains the check bits as read from the tag RAMs
during the tag access that produced the error.

2–109

KA66A CPU Module Internal Processor Registers
Backup Cache Error Tag Register (BCETAG)

bit<10>
Name: Owned

Mnemonic: None

Type: RO

The Owned bit read from the tag RAMs indicates whether the B-cache
owns the block in question.

bit<9>
Name: Valid

Mnemonic: None

Type: RO

The Valid bit read from the tag RAMs indicates whether the block is
valid in the B-cache.

bits<8:0>
Name: Reserved

Mnemonic: None

Type: –

Reserved; must be zero.

2–110

KA66A CPU Module Internal Processor Registers
Backup Cache Error Data Status Register (BCEDSTS)

Backup Cache Error Data Status Register
(BCEDSTS)

The data RAM error registers hold data relevant to errors in the backup cache
data RAMs, so that software can understand the errror.

BCEDSTS holds the general status of the problem.

ADDRESS IPR166 (NVAX chip)

3
1

1
2

1
1 8 7 5 4 3 2 1 0

x MBZ

Data RAM Command (DR CMD)
Lost Error (LOST ERR)
Bad Address (BAD ADDR)

Lock

msb−p536−91

Uncorrectable Error (UNCORR)
Correctable Data Error (CORR)

bits<31:12>
Name: Reserved

Mnemonic: None

Type: –

Reserved; initialized to either logic level.

bits<11:8>
Name: Data RAM Command

Mnemonic: DR CMD

Type: R/W1C

The DR CMD field indicates what command the data RAMs were
executing when the error was detected. Its values are listed in
Table 2–29.

Two data RAM operations do not cause any sort of errors: full
quadword writes and fills. These commands will not appear in
BCEDSTS.

DR CMD is written by hardware and read by software.

2–111

KA66A CPU Module Internal Processor Registers
Backup Cache Error Data Status Register (BCEDSTS)

Table 2–29 Interpretation of DR CMD

DR CMD
<11:8> Name Data RAM Operation

0111 DREAD Data lookup for a D-stream Read

0011 IREAD Data lookup for an I-stream Read

0100 WBACK Data lookup for a Writeback

0010 RMW Data lookup for a Read-Modify-Write (done for
normal Writes and Write Unlock)

bits<7:5>
Name: Reserved

Mnemonic: None

Type: –

Reserved; must be zero.

bit<4>
Name: Lost Error

Mnemonic: LOST ERR

Type: R/W1C

LOST ERR indicates that after the first uncorrectable error was
recorded in the data error registers, an additional uncorrectable error
occurred for which state was not saved. LOST ERR is set by hardware
and cleared by software.

bit<3>
Name: Bad Address

Mnemonic: BAD ADDR

Type: R/W1C

BAD ADDR is set when the data ECC decoder detects an error in the
address bit, indicating some problem with the address lines going to
the data RAMs. This is an uncorrectable error, and when it occurs, the
B-cache data error registers are loaded and locked. The BAD ADDR
bit is set by hardware and cleared by software.

2–112

KA66A CPU Module Internal Processor Registers
Backup Cache Error Data Status Register (BCEDSTS)

bit<2>
Name: Uncorrectable Error

Mnemonic: UNCORR

Type: R/W1C

UNCORR is set when the data ECC decoder detects an uncorrectable
error. When this occurs, the B-cache data error registers are loaded
and locked. The UNCORR bit is set by hardware and cleared by
software.

bit<1>
Name: Correctable Data Error

Mnemonic: CORR

Type: R/W1C

CORR is set when the data ECC decoder detects a correctable error.
When this occurs, the B-cache data error registers are loaded and
locked. The CORR bit is set by hardware and cleared by software.

bit<0>
Name: Lock

Mnemonic: None

Type: R/W1C

The Lock bit is set when an uncorrectable error occurs. Either
UNCORR or BAD ADDR is also set to indicate the type of
uncorrectable error. When the Lock bit is set, the BCEDSTS,
BCEDIDX, and BCEDECC registers are all locked. Clearing the
Lock bit unlocks all three registers. The Lock bit is set by hardware
and cleared by software.

If the CORR bit is set, the data RAM error registers are locked unless
an uncorrectable error occurs.

2–113

KA66A CPU Module Internal Processor Registers
Backup Cache Error Data Index Register (BCEDIDX)

Backup Cache Error Data Index Register (BCEDIDX)

BCEDIDX holds the index of a data RAM transaction. It is loaded when
an error is detected on a data RAM access. The index loaded due to a
correctable error is not overwritten unless an uncorrectable error occurs. If
an uncorrectable error occurs, BCEDIDX is loaded and locked. BCEDIDX is
unlocked by software; the Lock bit is in BCEDSTS.

BCEDIDX is read only from software’s point of view.

ADDRESS IPR167 (NVAX chip)

3
1

2
1

2
0 0

MBZ Data RAM Index

msb−p537−92

bits<31:21>
Name: Reserved

Mnemonic: None

Type: –

Reserved; must be zero.

bits<20:0>
Name: Data RAM Index

Mnemonic: None

Type: RO

The index of the data RAM transaction. The last three bits are forced
to zero.

2–114

KA66A CPU Module Internal Processor Registers
Backup Cache Error Data ECC Register (BCEDECC)

Backup Cache Error Data ECC Register (BCEDECC)

BCEDECC holds the syndrome as calculated on the backup cache data and
check bits. It is loaded when an error occurs on a data RAM access. Then it
follows the same lock rules that the other B-cache data error registers follow.
It is unlocked by software. The Lock bit is in BCEDSTS. The contents of
BCEDECC are not affected by reset.

When Disable ECC Errors is set, BCEDECC is loaded on every quadword
read from the cache. This provides a way of testing the ECC logic by reading
the results of the syndrome calculation. Software can use BCEDECC to write
known check bits to the data RAM. When the RAMs are read, the syndrome
is captured by BCEDECC. Once the syndrome is known, the check bits that
were calculated by the ECC logic can be deduced, because the check bits
read from the RAMs are known. The syndrome is the XOR of the calculated
bits and those read from RAM.

BCEDECC is read only from software’s point of view.

ADDRESS IPR168 (NVAX chip)

3
1

2
6

2
5

2
2

2
1

1
0 9 6 5 0

MBZ MBZ MBZ

ECC High (ECCHI)
ECC Low (ECCLO)

msb−p574−91

bits<31:26>
Name: Reserved

Mnemonic: None

Type: –

Reserved; must be zero.

bits<25:22>
Name: ECC High

Mnemonic: ECCHI

Type: RO

The ECCHI field corresponds to syndrome bits <7:4> and to the high
order longword.

2–115

KA66A CPU Module Internal Processor Registers
Backup Cache Error Data ECC Register (BCEDECC)

bits<21:10>
Name: Reserved

Mnemonic: None

Type: –

Reserved; must be zero.

bits<9:6>
Name: ECC Low

Mnemonic: ECCLO

Type: RO

The ECCLO field corresponds to syndrome bits <3:0> and to the low
order longword.

bits<5:0>
Name: Reserved

Mnemonic: None

Type: –

Reserved; must be zero.

2–116

KA66A CPU Module Internal Processor Registers
Cbox Error Fill Address Register (CEFADR)

Cbox Error Fill Address Register (CEFADR)

CEFADR contains the address of a read operation that resulted in an error. It
is loaded when an error is detected on a fill.

CEFADR is locked when CEFSTS is locked.

ADDRESS IPR171 (NVAX chip)

3
1 0

Fill Error Address

msb−p539−91

bits<31:0>
Name: Fill Error Address

Mnemonic: None

Type: RO

Contains the address of a fill read operation that resulted in an error.
The last three bits of the address are forced to zero.

2–117

KA66A CPU Module Internal Processor Registers
Cbox Error Fill Status Register (CEFSTS)

Cbox Error Fill Status Register (CEFSTS)

CEFSTS contains information related to a problem on a read sent to memory.
If a read request to memory times out or is terminated with RDE, the CEFSTS
and CEFADR registers are loaded and locked.

Only bit <21> and the lowest five bits may be written, and then only to clear
them after an error.

ADDRESS IPR172 (NVAX chip)
3
1

2
2

2
1

2
0

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

x x

Unexpected Fill Count

Do Not Fill (DNF)

Data Sent to Mbox (TO MBOX)

msb−p538−92

Requested Fill Done (REQ FILL DONE)
Read Lock Fill Done (RDLK FILL DONE)

Lost Error (LOST ERR)
Read Data Error (RDE)

OREAD Invalidate Pending (OIP)
READ Invalidate Pending (RIP)

Read Done for a Write (WRITE)

Timeout

Ownership Read (OREAD)
I−stream Read (IREAD)

Lock

NDAL ID (ID0)

Read Lock (RDLK)

bits<31:22>
Name: Reserved

Mnemonic: None

Type: –

Reserved; initialized to either logic level.

bit<21>
Name: Unexpected Fill

Mnemonic: None

Type: R/W1C

Unexpected Fill is set to indicate that an RDE or RDR cycle was
received with a transaction ID for a request that was not made. When
Unexpected Fill is set, CEFSTS and CEFADR are loaded and locked.

Unexpected Fill is set by hardware and cleared by software.

2–118

KA66A CPU Module Internal Processor Registers
Cbox Error Fill Status Register (CEFSTS)

bits<20:17>
Name: Reserved

Mnemonic: None

Type: –

Reserved; initialized to either logic level.

bits<16:15>
Name: Count

Mnemonic: None

Type: RO

These two bits indicate how many of the expected four quadwords
have been returned successfully from memory for this read. The bits
are a binary count of the quadwords returned. If the entry was for a
quadword read, the count bits are set to 11 (binary) when the reference
is sent out.

bit<14>
Name: Requested Fill Done

Mnemonic: REQ FILL DONE

Type: RO

REQ FILL DONE is set when the requested quadword of data was
successfully received from the NDAL. By examining REQ FILL DONE
software can determine whether the error occurred before or after the
fill completed.

bit<13>
Name: Read Lock Fill Done

Mnemonic: RDLK FILL DONE

Type: RO

RDLK FILL DONE is set when a Read Lock hits in the B-cache or the
last fill arrives for a Read Lock. Once RDLK FILL DONE is set, the
corresponding Write Unlock is allowed to proceed overriding the lock
on the address.

bit<12>
Name: Do Not Fill

Mnemonic: DNF

Type: RO

DNF is set when data for a read is not to be written into the B-cache.
This is the case when the cache is off, in ETM, or when the read is
to I/O space. The assertion of this bit prevents the block from being
validated in the cache.

2–119

KA66A CPU Module Internal Processor Registers
Cbox Error Fill Status Register (CEFSTS)

bit<11>
Name: OREAD Invalidate Pending

Mnemonic: OIP

Type: RO

OIP is set when a cache coherency transaction due to an OREAD or
a Write on the NDAL is requested for a block that has OREAD fills
outstanding at the time. This triggers a writeback and invalidate of
the block when the fill data arrives.

bit<10>
Name: Read Invalidate Pending

Mnemonic: RIP

Type: RO

RIP is set when a cache coherency transaction due to a Read on the
NDAL is requested for a block that has OREAD fills outstanding at the
time. This triggers a writeback of the block when the fill data arrives;
a valid copy of the data is kept in the cache.

bit<9>
Name: Data Sent to Mbox

Mnemonic: TO MBOX

Type: RO

TO MBOX indicates that data returning for the Read was to be sent to
the Mbox.

bit<8>
Name: Read Done for a Write

Mnemonic: WRITE

Type: RO

WRITE indicates that the transaction in error was an OREAD done
because of a write request.

bit<7>
Name: Ownership Read

Mnemonic: OREAD

Type: RO

OREAD indicates that the transaction in error was an OREAD. The
OREAD may have been done for a Write, a Read Lock, or a Read
Modify.

2–120

KA66A CPU Module Internal Processor Registers
Cbox Error Fill Status Register (CEFSTS)

bit<6>
Name: I-stream Read

Mnemonic: IREAD

Type: RO

IREAD indicates that the transaction in error was an IREAD.

bit<5>
Name: NDAL ID

Mnemonic: ID0

Type: RO

ID0 indicates which one of two entries was used to save information
about the failed transaction. Corresponds to XMI ID0 and NDAL ID0.

bit<4>
Name: Lost Error

Mnemonic: LOST ERR

Type: R/W1C, 0

LOST ERR is set when CEFSTS is already locked and another RDE or
timeout error occurs. This indicates to software that multiple errors
have happened and state has not been saved for every error.

bit<3>
Name: Read Data Error

Mnemonic: RDE

Type: R/W1C, 0

RDE is set when a memory read transaction terminates in RDE. When
the RDE bit is set, the Lock bit is also set.

bit<2>
Name: Timeout

Mnemonic: None

Type: R/W1C, 0

Timeout is set when a memory read transaction times out. When
Timeout is set, the Lock bit is also set.

2–121

KA66A CPU Module Internal Processor Registers
Cbox Error Fill Status Register (CEFSTS)

bit<1>
Name: Lock

Mnemonic: None

Type: R/W1C, 0

The Lock bit is set when a read transaction sent to memory terminates
in a Read Data Error or in a timeout. At the same time, all
information about the read is loaded into the CEFSTS register. When
the Lock bit is set, either Timeout or RDE is also set. Once the Lock
bit is set, only the LOST ERR bit can be modified in either CEFSTS or
CEFADR until the Lock bit is cleared.

bit<0>
Name: Read Lock

Mnemonic: RDLK

Type: R/W1C, 0

RDLK is set to show that a Read Lock is in progress. When performing
a write-one-to-clear to this bit, the Valid bit for an entry that had its
RDLK bit set is also cleared. The same action is taken when a Write
Unlock is received.

This bit is normally not read as a one by software, because the
microcode ensures that the Read Lock–Write Unlock sequence is
an indivisible operation. If, however, the first quadword of a Read
Lock is returned successfully and then the transaction either times out
or is terminated in RDE, CEFSTS is loaded with the RDLK bit set.

2–122

KA66A CPU Module Internal Processor Registers
NDAL Error Status Register (NESTS)

NDAL Error Status Register (NESTS)

NESTS holds information about errors on the NDAL. All six bits in this register
are write-one-to-clear. Reset does not affect this register. Power-up does not
initialize the register.

ADDRESS IPR174 (NVAX chip)
3
1 6 5 4 3 2 1 0

x

Lost Parity Error (LOST PERR)

Parity Error (PERR)

NO ACK

msb−p540−91

Inconsistent Parity Error (INCON PERR)

Lost Outgoing Error (LOST OERR)
Bad Write Data (BADWDATA)

bits<31:6>
Name: Reserved

Mnemonic: None

Type: –

Reserved; initialized to either logic level.

bit<5>
Name: Lost Parity Error

Mnemonic: LOST PERR

Type: R/W1C

LOST PERR is set when PERR is already set and another NVAX
transfer fails the parity check. LOST PERR notifies software that
multiple NVAX transfers have failed the parity check; state is saved
for the first.

bit<4>
Name: Inconsistent Parity Error

Mnemonic: INCON PERR

Type: R/W1C

INCON PERR is set when an NDAL parity error is detected on a cycle
which is also acknowledged. This means that the NVAX detected a
parity error but some other device acknowledged the transfer. INCON
PERR is set in conjunction with PERR.

2–123

KA66A CPU Module Internal Processor Registers
NDAL Error Status Register (NESTS)

bit<3>
Name: Parity Error

Mnemonic: PERR

Type: R/W1C

PERR is set when NVAX detects a parity error on the NDAL. When
PERR is set, NEDATHI, NEDATLO, and NEICMD are locked so
that software can determine what was on the NDAL when the error
occurred.

Since the NVAX calculates parity on every cycle, PERR will be set on
both outgoing and incoming transfers that fail the parity check.

bit<2>
Name: Lost Outgoing Error

Mnemonic: LOST OERR

Type: R/W1C

LOST OERR is set when NO ACK or BADWDATA are already set and
another one of those errors occurs. Only the state of the first outgoing
error is saved. Subsequent error state is lost.

bit<1>
Name: Bad Write Data

Mnemonic: BADWDATA

Type: R/W1C

BADWDATA is set when a writeback from the cache had an
uncorrectable ECC error. Therefore, the data is issued on the NDAL
with the BADWDATA command. When BADWDATA is set, both
NEOADR and NEOCMD are locked so that software can determine
both the address and command associated with the failure.

BADWDATA is not set if there was a previous NO ACK. If a
BADWDATA cycle is NO ACKed, both BADWDATA and NO ACK
are set.

2–124

KA66A CPU Module Internal Processor Registers
NDAL Error Status Register (NESTS)

bit<0>
Name: NO ACK

Mnemonic: None

Type: R/W1C

NO ACK is set when NVAX detects that ACK was not asserted on the
NDAL for an outgoing NVAX cycle. When NO ACK is set, NEOADR
and NEOCMD are locked so that software can determine both the
address and the command of the transaction when the error occurred.

NO ACK is not set if there was a previous BADWDATA. If a
BADWDATA cycle is NO ACKed, both BADWDATA and NO ACK
are set.

2–125

KA66A CPU Module Internal Processor Registers
NDAL Error Output Address Register (NEOADR)

NDAL Error Output Address Register (NEOADR)

NEOADR contains the address driven by the Cbox onto the NDAL. Unless
NEOADR is locked, it is loaded for every address cycle. It is loaded during
the cycle when the corresponding ACK should be asserted on the NDAL.

It is locked when the NO ACK bit in the NESTS register is set.

When NEOADR is locked, it contains the address information for the first
transaction that failed. If it is read when it is not locked, it contains information
from the last address cycle that was acknowledged on the NDAL.

The format of NEOADR matches the low longword of the NDAL during an
address cycle.

NEOADR is not affected by reset.

ADDRESS IPR176 (NVAX chip)
3
1 0

NDAL Address

msb−p541−91

bits<31:0>
Name: NDAL Address

Mnemonic: None

Type: RO

This register contains the address of a failing NDAL transaction.

2–126

KA66A CPU Module Internal Processor Registers
NDAL Error Output Command Register (NEOCMD)

NDAL Error Output Command Register (NEOCMD)

NEOCMD contains data similar to that of the high longword of the NDAL
during an address cycle and is loaded on every address cycle the Cbox drives
onto the NDAL, unless the NEOCMD is locked. The high quadword byte
enable positions are NOT included, since NVAX only uses quadword byte-
enabled transactions. The NDAL ID and command are added in the lower
seven bits of the longword.

NEOCMD is not affected by reset.

ADDRESS IPR178 (NVAX chip)

3
1

3
0

2
9

1
6

1
5 8 7 6 4 3 0

x

Length (LEN)
Byte Enable (BYTE EN)

Commander ID (ID)
Command (CMD)

msb−p542−91

0

bits<31:30>
Name: Length

Mnemonic: LEN

Type: RO

LEN gives the length of the NDAL transaction. Table 2–30 shows the
value of LEN and the corresponding data type.

Table 2–30 Data Length Code

LEN Data Type

00 Hexword

01 Unused

10 Quadword

11 Unused

bits<29:16>
Name: Reserved

Mnemonic: None

Type: –

Reserved; initialized to either logic state.

2–127

KA66A CPU Module Internal Processor Registers
NDAL Error Output Command Register (NEOCMD)

bits<15:8>
Name: Byte Enable

Mnemonic: BYTE EN

Type: RO

BYTE EN is a mask field driven by the NVAX during the transaction.

bit<7>
Name: Reserved

Mnemonic: None

Type: –

Reserved; must be zero.

bits<6:4>
Name: Commander ID

Mnemonic: ID

Type: RO

The ID defines the node ID of the device on the NDAL and is driven
by the NVAX during the transaction. The values are as follows:

ID Node Name

0 NVAX Cmd 0

1 NVAX Cmd 1

2 NEXMI

bits<3:0>
Name: Command

Mnemonic: CMD

Type: RO

CMD is the NDAL command driven by the NVAX during the
transaction and is defined below.

CMD NDAL Function

0 NOP

1 Reserved

2 WRITE (Write)

3 WDISOWN (Write-Disown; Writeback)

4 IREAD (Instruction-Stream Read)

5 DREAD (Data-Stream Read)

6 OREAD (Ownership Read)

2–128

KA66A CPU Module Internal Processor Registers
NDAL Error Output Command Register (NEOCMD)

CMD NDAL Function

7 Reserved

8 Reserved

9 RDE (Read Data Error)

A WDATA (Write Data Cycle)

B BADWDATA (Bad Write Data)

C RDR0 (Read Data0 Return/fill)

D RDR1 (Read Data1 Return/fill)

E RDR2 (Read Data2 Return/fill)

F RDR3 (Read Data3 Return/fill)

2–129

KA66A CPU Module Internal Processor Registers
NDAL Error Data High Register (NEDATHI)

NDAL Error Data High Register (NEDATHI)

NEDATHI captures the high longword on the NDAL during an NDAL parity
error.

The format of NEDATHI is dependent on the command found in NEICMD. If
the command shows a data cycle, NEDATHI contains the high longword of
data. If the command shows an address cycle, NEDATHI contains data.

NEDATHI is not affected by reset.

ADDRESS IPR180 (NVAX chip)

3
1

3
0

2
9

2
4

2
3 8 7 0

X Byte Enable X

Length (LEN)

msb−p544−91

NOTE: The format shown here is for an address command cycle. During a
data cycle this register contains the high longword of data on the
NDAL during a parity error.

bits<31:30>
Name: Length

Mnemonic: None

Type: RO

Length contains a code for the length of the transaction that contains
the parity error.

Length
Code Size

00 Hexword

01 Unused

10 Quadword

11 Octaword

bits<29:24>
Name: Reserved

Mnemonic: None

Type: –

Reserved; initialized to either logic level.

2–130

KA66A CPU Module Internal Processor Registers
NDAL Error Data High Register (NEDATHI)

bits<23:8>
Name: Byte Enable

Mnemonic: BYTE EN

Type: RO

BYTE EN is a mask field driven by the NVAX during the transaction.

bits<7:0>
Name: Reserved

Mnemonic: None

Type: –

Reserved; initialized to either logic level.

2–131

KA66A CPU Module Internal Processor Registers
NDAL Error Data Low Register (NEDATLO)

NDAL Error Data Low Register (NEDATLO)

NEDATLO captures the low longword on the NDAL, during an NDAL parity
error.

The format of NEDATLO is dependent on the command found in NEICMD.
If the command shows a data cycle, NEDATLO contains the low longword of
data. If the command shows an address cycle, NEDATLO contains data.

NEDATLO is not affected by reset.

ADDRESS IPR182 (NVAX chip)
3
1 0

Address

msb−p545−91

bits<31:0>
Name: Address

Mnemonic: None

Type: RO

NEDATLO contains either the address or the low data longword
associated with an NDAL parity error.

2–132

KA66A CPU Module Internal Processor Registers
NDAL Error Input Command Register (NEICMD)

NDAL Error Input Command Register (NEICMD)

NEICMD, NEDATHI, and NEDATLO are loaded and locked simultaneously
when a parity error occurs. At this time the PERR bit, which locks the three
registers, is set in NESTS. If a second NDAL parity error occurs, the registers
are not loaded. Software must clear the PERR bit before these registers are
available for use again.

NEICMD is not affected by reset.

ADDRESS IPR184 (NVAX chip)

3
1

1
0 9 7 6 4 3 0

X

Parity
Commander ID (ID)

Command (CMD)

msb−p543−91

bits<31:10>
Name: Reserved

Mnemonic: None

Type: –

Reserved; initialized to either logic level.

bits<9:7>
Name: Parity

Mnemonic: PAR

Type: RO

PAR corresponds to the NDAL lines PARITY H<2:0>.

2–133

KA66A CPU Module Internal Processor Registers
NDAL Error Input Command Register (NEICMD)

bits<6:4>
Name: Commander ID

Mnemonic: ID

Type: RO

The ID defines the node ID of the device on the NDAL and is driven
during the transaction. The values are as follows:

ID Node Name

0 NVAX Cmd 0

1 NVAX Cmd 1

2 NEXMI

bits<3:0>
Name: Command

Mnemonic: CMD

Type: RO

CMD is the NDAL command driven by the NVAX during the
transaction and is defined below.

CMD NDAL Function

0 NOP

1 Reserved

2 WRITE (Write)

3 WDISOWN (Write-Disown; Writeback)

4 IREAD (Instruction-Stream Read)

5 DREAD (Data-Stream Read)

6 OREAD (Ownership Read)

7 Reserved

8 Reserved

9 RDE (Read Data Error)

A WDATA (Write Data Cycle)

B BADWDATA (Bad Write Data)

C RDR0 (Read Data0 Return/fill)

D RDR1 (Read Data1 Return/fill)

E RDR2 (Read Data2 Return/fill)

F RDR3 (Read Data3 Return/fill)

2–134

KA66A CPU Module Internal Processor Registers
VIC Memory Address Register (VMAR)

VIC Memory Address Register (VMAR)

VMAR supplies cache row index, cache subblock, and quadword pointer for
accessing the virtual instruction cache (VIC). When the VIC is disabled, this
register is used as an index for direct IPR access to the cache arrays.

On VIC parity errors, the VMAR latches and holds VIBA <31:3>.

Macrocode Restriction:
ICSR<VIC Enable> must be cleared before writing to the VIC IPRs:
VMAR, VDATA, or VTAG. ICSR<VIC Enable> must be cleared
before reading from VIC IPRs: VDATA, VTAG. In functional
operation, an REI must precede the MTPR that enables the VIC.

ADDRESS IPR208 (NVAX chip)

3
2

1
1

1
0 5 4 3 2 1 0

Address (ADDR) 0

Row Index
Subblock

msb−p509−92

Longword (LW)

bits<31:11>
Name: Address

Mnemonic: ADDR

Type: RO

ADDR latches the tag portion of the virtual instruction buffer address
(VIBA) on VIC parity errors.

bits<10:5>
Name: Row Index

Mnemonic: None

Type: R/W

During read and write access to the VIC, this field is used to select a
cache row. On a VIC parity error, these bits latch VIBA <10:5>.

2–135

KA66A CPU Module Internal Processor Registers
VIC Memory Address Register (VMAR)

bits<4:3>
Name: Subblock

Mnemonic: None

Type: R/W

During read and write access to the VIC, this field is used to select the
subblock of data being accessed. On VIC parity errors these bits latch
VIBA <4:3>.

bit<2>
Name: Longword

Mnemonic: LW

Type: WO

LW indicates which longword in the subblock to access in the cache
array. 1 = upper LW, 0 = lower LW.

bits<1:0>
Name: Reserved

Mnemonic: None

Type: –

Reserved; must be zero.

2–136

KA66A CPU Module Internal Processor Registers
VIC Tag Register (VTAG)

VIC Tag Register (VTAG)

VTAG provides read and write access to the VIC tag array. An IPR write
to VTAG writes the tag, parity, and valid bits for the row indexed by VMAR
<10:5>. VTAG <31:11> are written to the cache tag. VTAG <8> is written
to the associated tag parity bit. VTAG <7:4> are used to write the four data
parity bits associated with the indexed cache row. Similarly, VTAG <3:0>
writes the four data valid bits associated with the cache row.

Bits <7:4> and <3:0> are the Data Parity and Valid Data bits, respectively, for
the four quadwords of data in the same row.

Macrocode Restriction:
ICSR<VIC Enable> must be cleared before writing to the VIC IPRs:
VMAR, VDATA, or VTAG. ICSR<VIC Enable> must be cleared
before reading from VIC IPRs: VDATA, VTAG. In functional
operation, an REI must precede the MTPR that enables the VIC.

ADDRESS IPR209 (NVAX chip)

3
1

1
1

1
0 9 8 7 4 3 0

Tag

Tag Parity (TP)
Data Parity (DP)

msb−p510−91

0 0

Valid Data (V)

bits<31:11>
Name: Tag

Mnemonic: None

Type: R/W

Supplies the cache tag on tag array read/writes.

bits<10:9>
Name: Reserved

Mnemonic: None

Type: –

Reserved; must be zero.

2–137

KA66A CPU Module Internal Processor Registers
VIC Tag Register (VTAG)

bit<8>
Name: Tag Parity

Mnemonic: TP

Type: R/W

TP supplies parity on the tag of tag array read/writes.

bits<7:4>
Name: Data Parity

Mnemonic: DP

Type: R/W

DP supplies parity on the four corresponding quadwords of data in
the same row. DP <0> corresponds to the quadword of data addressed
when address bits <4:3> = 00, DP <1> corresponds to the quadword of
data addressed when address bits <4:3> = 01, and so forth.

bits<3:0>
Name: Valid Data

Mnemonic: V

Type: R/W

V supplies valid bits on the four corresponding quadwords of data in
the same row. V <0> corresponds to the quadword of data addressed
when address bits <4:3> = 00, V <1> corresponds to the quadword of
data addressed when address bits <4:3> = 01, and so forth.

2–138

KA66A CPU Module Internal Processor Registers
VIC Data Register (VDATA)

VIC Data Register (VDATA)

VDATA provides read and write access to the VIC data array. When VDATA
is written, the cache data array entry indexed by VMAR is written with the IPR
data. Since the IPR data is a longword, two accesses to VDATA are required
to read or write a quadword cache subblock.

Writes to VDATA with VMAR <2> = 0 places the IPR data destined for the low
longword of a subblock in FILL DATA <31:0>. A subsequent write to VDATA
with VMAR <2> = 1 directs the the IPR data to FILL DATA <63:32>, and
triggers a cache write sequence to the subblock indexed by VMAR.

Reads to VDATA with VMAR <2> = 0 trigger a cache read sequence to the
subblock indexed by VMAR. The low longword of the subblock is returned
as IPR read data. A read of VDATA with VMAR <2> = 1 returns the high
longword of the subblock as IPR data.

Macrocode Restriction:
ICSR<VIC Enable> must be cleared before writing to the VIC IPRs:
VMAR, VDATA, or VTAG. ICSR<VIC Enable> must be cleared
before reading from VIC IPRs: VDATA, VTAG. In functional
operation, an REI must precede the MTPR that enables the VIC.

ADDRESS IPR210 (NVAX chip)

3
1 0

Data

msb−p511−91

bits<31:0>
Name: Data

Mnemonic: None

Type: R/W

Data for data array reads and writes.

2–139

KA66A CPU Module Internal Processor Registers
Ibox Control and Status Register (ICSR)

Ibox Control and Status Register (ICSR)

ICSR provides control and status functions for the Ibox. VIC tag and data
parity errors are latched in bits <4> and <3> respectively. Bit <2> is set when
a tag or data parity error occurs and keeps the error status bits and the VMAR
register from being modified further. Writing a one to ICSR <2> clears the
Lock bit and allows the error status to be updated. Bit <0> provides IPR
control of the VIC enable. It is cleared on reset.

When ICSR<2> is clear, the values in ICSR<4:3> are meaningless. When
ICSR<2> is set, a VIC parity error has occurred, and either ICSR<4> or
ICSR<3> will be set indicating a tag parity error or a data parity error. Bits
<4:3> cannot be cleared by software.

ADDRESS IPR211 (NVAX chip)
3
1 5 4 3 2 1 0

MUST BE ZERO

Tag Parity Error (TPERR)
Data Parity Error (DPERR)

Lock

msb−p512−91

0

VIC Enable

bits<31:5>
Name: Reserved

Mnemonic: None

Type: –

Reserved; must be zero.

bit<4>
Name: Tag Parity Error

Mnemonic: TPERR

Type: RO

When TPERR and Lock are set, a tag parity error occurred in the tag
array.

2–140

KA66A CPU Module Internal Processor Registers
Ibox Control and Status Register (ICSR)

bit<3>
Name: Data Parity Error

Mnemonic: DPERR

Type: RO

When DPERR and Lock are set, a data parity error occurred in the
data array.

bit<2>
Name: Lock

Mnemonic: None

Type: R/W1C

When Lock is set, the error status bits in ICSR and the error address
in the VMAR are valid and cannot be modified. When the Lock bit is
clear, no VIC parity error has been recorded and ICSR and VMAR can
be written.

bit<1>
Name: Reserved

Mnemonic: None

Type: RO, 0

Reserved; must be zero.

bit<0>
Name: VIC Enable

Mnemonic: None

Type: R/W, 0

When VIC Enable is set, the virtual instruction cache can be accessed.
Reset clears this bit.

2–141

KA66A CPU Module Internal Processor Registers
Physical Address Mode Register (PAMODE)

Physical Address Mode Register (PAMODE)

PAMODE controls whether the system is in 30-bit or 32-bit physical address
mode. During power-up, microcode configures the CPU to generate 30-
bit physical addresses. The operating system can reconfigure the CPU to
generate 32-bit physical addresses by writing to the MODE bit in the PAMODE
register.

ADDRESS IPR231 (NVAX chip)

3
1 1 0

MUST BE ZERO

Address Mode (MODE)

msb−p502−92

bits<31:1>
Name: Reserved

Mnemonic: None

Type: –

Reserved; must be zero.

bit<0>
Name: Address Mode

Mnemonic: MODE

Type: R/W, 0

When MODE is clear, addresses are mapped from 30-bit physical
address space. When MODE is set, addresses are mapped from 32-bit
physical address space.

2–142

KA66A CPU Module Internal Processor Registers
Memory Management Exception Address Register (MMEADR)

Memory Management Exception Address Register
(MMEADR)

MMEADR records the address associated with a memory management
exception fault.

ADDRESS IPR232 (NVAX chip)

3
1 0

Address Associated with Recorded MME Fault

msb−p522−91

bits<31:0>
Name: Address

Mnemonic: None

Type: RO

Contains the address of a memory management exception fault.

2–143

KA66A CPU Module Internal Processor Registers
Memory Management Exception PTE Address Register (MMEPTE)

Memory Management Exception PTE Address
Register (MMEPTE)

MMEPTE contains the page table entry associated with an address
corresponding to a modify fault.

ADDRESS IPR233 (NVAX chip)

3
1 0

PTE Address Associated with a Corresponding Modify Fault

msb−p523−91

bits<31:0>
Name: Page Table Entry

Mnemonic: PTE

Type: RO

Contains the PTE of an address associated with a memory
management exception fault.

2–144

KA66A CPU Module Internal Processor Registers
Memory Management Exception Status Register (MMESTS)

Memory Management Exception Status Register
(MMESTS)

MMESTS contains information about a memory management exception fault.

ADDRESS IPR234 (NVAX chip)
3
1

2
9

2
8

2
6

2
5

1
6

1
5

1
4

1
3 3 2 1 0

MBZ MBZ

Fault
Shadow Lock Copy (SRC)
Lock

msb−p524−91

PTE Reference (PTE REF)
Modify Intent (MOD)

Length Violation (LV)

bits<31:29>
Name: Lock

Mnemonic: None

Type: RO

The Lock field indicates the lock status of MMESTS and is decoded as
follows:

Lock
Values Definitions

000 MMESTS, MMEADR, and MMEPTE are unlocked.

001 Valid IREAD fault stored. MMESTS, MMEADR, and MMEPTE are
locked to other IREAD faults.

011 Valid Ibox specifier fault stored. Only Ebox reference fault can
overwrite MMESTS, MMEADR, and MMEPTE.

111 Valid Ebox fault is stored. MMESTS, MMEADR, and MMEPTE are
completely locked.

bits<28:26>
Name: Shadow Lock Copy

Mnemonic: SRC

Type: RO

The SRC field is a complemented copy of the Lock field. However, the
SRC bits do not get cleared when the Lock field is cleared.

The value of SRC for the most severe MME is 000.

2–145

KA66A CPU Module Internal Processor Registers
Memory Management Exception Status Register (MMESTS)

bits<25:16>
Name: Reserved

Mnemonic: None

Type: –

Reserved; must be zero.

bits<15:14>
Name: Fault

Mnemonic: None

Type: RO

The Fault bits indicate the nature of a memory management exception,
the priority given simultaneous faults, and are decoded as follows:

Fault Code Priority Definitions

01 Highest ACV fault

10 Lowest TNV fault

bits<13:3>
Name: Reserved

Mnemonic: None

Type: –

Reserved; must be zero.

bit<2>
Name: Modify Intent

Mnemonic: MOD

Type: RO

When set, the Modify bit indicates a corresponding reference had write
or modify intent.

bit<1>
Name: PTE Reference

Mnemonic: PTE REF

Type: RO

When set, PTE REF indicates either an access violation or translation
not valid (ACV/TNV) fault occurred on a page table entry reference
corresponding to MMEADR.

2–146

KA66A CPU Module Internal Processor Registers
Memory Management Exception Status Register (MMESTS)

bit<0>
Name: Length Violation

Mnemonic: LV

Type: RO, 0

When set, LV indicates an access violation fault occurred due to a
length violation.

2–147

KA66A CPU Module Internal Processor Registers
TB Parity Address Register (TBADR)

TB Parity Address Register (TBADR)

TBADR contains the virtual address associated with a translation buffer parity
error.

ADDRESS IPR236 (NVAX chip)

3
1 0

Virtual Address Associated with a TB Parity Error

msb−p525−91

bits<31:0>
Name: Virtual Address

Mnemonic: None

Type: RO

Contains the virtual address associated with a translation buffer
parity error.

2–148

KA66A CPU Module Internal Processor Registers
TB Parity Status Register (TBSTS)

TB Parity Status Register (TBSTS)

TBSTS contains the error status of translation buffer parity errors and records
hard error state associated with fatal errors occurring on Mbox PTE DREAD
operations. These errors have nothing to do with TB parity errors, but are
recorded here.

ADDRESS IPR237 (NVAX chip)

3
1

2
9

2
8 9 8 4 3 2 1 0

MUST BE ZERO

Command (CMD)

EM Latch Valid (EM VAL)
Tag Parity Error (TPERR)
Data Parity Error (DPERR)

msb−p526−91

Source (SRC)

Lock

bits<31:29>
Name: Source

Mnemonic: SRC

Type: RO

The SRC field indicates the original source of the reference causing the
translation buffer parity error. The source field is decoded as follows:

SRC Values Definition

110 Valid IREAD error is stored.

100 Valid Ibox specifier reference error is stored.

000 Valid Ebox reference error is stored.

bits<28:9>
Name: Reserved

Mnemonic: None

Type: –

Reserved; must be zero.

2–149

KA66A CPU Module Internal Processor Registers
TB Parity Status Register (TBSTS)

bits<8:4>
Name: Command

Mnemonic: CMD

Type: RO

The CMD field indicates the command corresponding to the TB parity
error.

Table 2–31 CMD Definitions

Name
Value
(hex)

Reference
Source Description

IREAD 0E Ibox Aligned quadword I-stream read

DREAD 1C Ibox, Ebox, Mbox Variable-length D-stream read

DREAD Modify 1D Ibox Variable-length D-stream read
with modify intent as a result of
Ibox-decoded modify specifiers

DREAD Lock 1F Ebox Variable-length D-stream read with
atomic memory lock

Write Unlock 1A Ebox Variable-length write with atomic
memory unlock

WRITE 1B Ebox Variable-length write

DEST ADDR 0D Ibox Supplies address of a write-only
destination specifier

STORE 19 Ebox Supplies write data corresponding
to a previously translated
destination specifier address

IPR WR 06 Ebox IPR Write

IPR RD 07 Ebox IPR Read

IPR DATA 04 Mbox Transfers Mbox IPR data to Ebox

LOAD PC 05 Ebox Transfers a PC value to Ibox

PROBE 09 Ebox Mbox returns ACV/TNV status of
specified address to Ebox.

MME CHK 08 Ebox, Mbox Performs ACV/TNV check on
specified address and invokes the
appropriate memory management
exception

TB TAG FILL 0C Ebox, Mbox Writes a TB tag into a TB entry

TB PTE FILL 14 Ebox, Mbox Writes PTE data into a TB entry

TBIS 10 Ebox Invalidates a specific PTE entry in
the TB

TBIA 18 Ebox, Mbox Invalidates all entries in TB

TBIP 11 Ebox Invalidates all PTE entries in TB
corresponding to process-space
translations.

D CF 03 Cbox D-stream quadword P-cache fill

2–150

KA66A CPU Module Internal Processor Registers
TB Parity Status Register (TBSTS)

Table 2–31 (Cont.) CMD Definitions

Name
Value
(hex)

Reference
Source Description

I CF 02 Cbox I-stream quadword P-cache fill

INVAL 01 Cbox Hexword invalidate of a P-cache
entry

STOP SPEC Q 0F Ibox Stops processing of specifier
references.

NOP 00 Ibox, Ebox, Mbox No operation

bit<3>
Name: EM Latch Valid

Mnemonic: EM VAL

Type: RO

When set, EM VAL indicates that the EM latch was valid at the
time the TB parity error was detected. This information is helpful in
determining whether a write operation was lost due to the TB parity
error.

bit<2>
Name: Tag Parity Error

Mnemonic: TPERR

Type: RO

When set, TPERR indicates that a TB tag parity error occurred.

bit<1>
Name: Data Parity Error

Mnemonic: DPERR

Type: RO

When set, DPERR indicates that a TB data parity error occurred.

2–151

KA66A CPU Module Internal Processor Registers
TB Parity Status Register (TBSTS)

bit<0>
Name: Lock

Mnemonic: None

Type: R/W1C, 0

When set, Lock validates TBSTS contents and prevents any other field
from further modification. When clear, the Lock bit indicates that no
TB parity error or PTE error has been recorded and allows TBSTS and
TBADR to be updated.

When a TB parity error is detected with Lock = 0, TBADR is loaded
with the virtual address that caused the TB parity error, and all fields
of TBSTS are updated to record the nature of the TB parity error.
TPERR and DPERR can be set at the same time if these two error
conditions occurred during the same cycle.

When a PTE read error is detected with Lock = 0, all fields of TBSTS
are updated to record the nature of the error. Note that the contents
of TBADR is invalid when TBSTS records a PTE read error. Also note
that it is impossible to record a simultaneous TB parity error with
a PTE read error. When an error is recorded, the Lock bit is set to
validate the contents of TBSTS. When Lock is set, all bits of TBSTS
are frozen and cannot be changed until the Lock bit is cleared.

Once the error handler has read these registers, it reenables TBSTS to
record any new errors by clearing the Lock bit.

2–152

KA66A CPU Module Internal Processor Registers
P-Cache Parity Address Register (PCADR)

P-Cache Parity Address Register (PCADR)

PCADR contains the physical address of a location causing a parity error.

ADDRESS IPR242 (NVAX chip)

3
1 0

Physical Address of Quadword

msb−p527−91

bits<31:0>
Name: Physical Address

Mnemonic: None

Type: –

PCADR is latched with the quadword physical address of the location
that caused a parity error. Bits <2:0> are forced to zero.

2–153

KA66A CPU Module Internal Processor Registers
P-Cache Status Register (PCSTS)

P-Cache Status Register (PCSTS)

PCSTS and PCADR both record P-Cache tag and data parity errors. The
function and operation of these registers is identical to the TBSTS and TBADR
registers except that the PCADR stores physical quadword addresses rather
than virtual byte addresses. Note that when PCSTS <0> is set, P-Cache
memory reads, writes, and invalidates are disabled.

ADDRESS IPR244 (NVAX chip)

3
1

1
1

1
0 9 8 4 3 2 1 0

All Ones

PTE Hard Error (PTE ER)
PTE Hard Error on TB
Write Miss (PTE ER WR)

Command (CMD)

Data Parity Error (DPERR)
Lock

msb−p528−91

Left Bank Tag Error (LEFT BANK)
Right Bank Tag Error (RIGHT BANK)

bits<31:11>
Name: Reserved

Mnemonic: None

Type: –

Reserved; initialized to all ones.

bit<10>
Name: PTE Hard Error

Mnemonic: PTE ER

Type: R/W1C, 0

When set, PTE ER indicates a hard error on a PTE data read.

bit<9>
Name: PTE Hard Error on a TB Write Miss

Mnemonic: PTE ER WR

Type: R/W1C

When set, PTE ER WR indicates a hard error on a PTE data read
caused by a TB miss on a write.

2–154

KA66A CPU Module Internal Processor Registers
P-Cache Status Register (PCSTS)

bits<8:4>
Name: Command

Mnemonic: CMD

Type: RO

The CMD field contains the command corresponding to a P-cache
parity error and is defined as follows:

CMD NDAL Function

0 NOP

1 Reserved

2 WRITE (Write)

3 WDISOWN (Write-Disown; Writeback)

4 IREAD (Instruction-Stream Read)

5 DREAD (Data-Stream Read)

6 OREAD (Ownership Read)

7 Reserved

8 Reserved

9 RDE (Read Data Error)

A WDATA (Write Data Cycle)

B BADWDATA (Bad Write Data)

C RDR0 (Read Data0 Return/fill)

D RDR1 (Read Data1 Return/fill)

E RDR2 (Read Data2 Return/fill)

F RDR3 (Read Data3 Return/fill)

bit<3>
Name: Left Bank Tag Error

Mnemonic: LEFT BANK

Type: RO

When set, LEFT BANK indicates that a P-cache tag parity error
occurred on the left bank of the P-cache.

bit<2>
Name: Right Bank Tag Error

Mnemonic: RIGHT BANK

Type: RO

When set, RIGHT BANK indicates that a P-cache tag parity error
occurred on the right bank of the P-cache.

2–155

KA66A CPU Module Internal Processor Registers
P-Cache Status Register (PCSTS)

bit<1>
Name: Data Parity Error

Mnemonic: DPERR

Type: RO

When set, DPERR indicates a P-cache data parity error.

bit<0>
Name: Lock

Mnemonic: None

Type: R

When set, Lock validates PCSTS contents and prevents modification
of any other field. When clear, Lock indicates that no P-cache parity
error has been recorded and allows PCSTS and PCADR to be updated.

2–156

KA66A CPU Module Internal Processor Registers
P-Cache Control Register (PCCTL)

P-Cache Control Register (PCCTL)

PCCTL controls functions of the primary cache.

ADDRESS IPR248 (NVAX chip)
3
1

1
0 9 8 7 5 4 3 2 1 0

All Ones MBZ

msb−p529−92

Electrically Disable P−Cache (ELEC DISABLE)

x

Parity Enable (P ENABLE)
Bank Select (BANK SEL)
Force Hit (FORCE HIT)
P−Cache Invalidate Enable (I ENABLE)
D−Stream Read/Write Fill Enable (D ENABLE)

bits<31:10>
Name: Reserved

Mnemonic: None

Type: –

Reserved; initialized to ones.

bit<9>
Name: Reserved

Mnemonic: None

Type: –

Reserved; initialized to either logic level.

bit<8>
Name: Electrically Disable the P-Cache

Mnemonic: ELEC DISABLE

Type: R/W, 0

When set, the P-cache is disabled electrically to reduce power
dissipation. This bit should only be set when the P-cache is turned off
by clearing both I ENABLE and D ENABLE; unpredictable operation
results if either bit is set. P-cache tag and parity IPRs will not function
properly when this bit is set.

2–157

KA66A CPU Module Internal Processor Registers
P-Cache Control Register (PCCTL)

bits<7:5>
Name: Reserved

Mnemonic: None

Type: –

Reserved; must be zero.

bit<4>
Name: Parity Enable

Mnemonic: P ENABLE

Type: R/W, 0

When set, P ENABLE enables detection of P-cache tag and data parity
errors.

bit<3>
Name: Bank Select

Mnemonic: BANK SEL

Type: R/W, 0

When set with Force Hit set, selects the "right bank" of the addressed
P-cache index. When clear with Force Hit set, selects the "left bank"
of the addressed P-cache index. BANK SEL is a do not care when
Force Hit is clear. BANK SEL never affects bank selection during IPR
reads and IPR writes to the P-cache tags or P-cache data parity bits;
bank selection for these commands is determined by the specified IPR
address.

bit<2>
Name: Force Hit

Mnemonic: None

Type: R/W, 0

When set, Force Hit causes a P-cache hit on all reads and writes when
P-cache is enabled for I- or D-stream operation.

bit<1>
Name: P-Cache Invalidate Enable

Mnemonic: I ENABLE

Type: R/W, 0

When set, enables P-cache processing of INVAL, IREAD, and I CF
commands. When clear, forces a P-cache miss on IREAD operations
and prevents state modification due to an I CF operation. An ACV
/TNV condition overrides a clear I ENABLE and a hit is forced in the
P-cache.

2–158

KA66A CPU Module Internal Processor Registers
P-Cache Control Register (PCCTL)

bit<0>
Name: D-Stream Read/Write Fill Enable

Mnemonic: D ENABLE

Type: R/W, 0

When set, D ENABLE enables the P-cache for INVAL and D-stream
read/write/fill operations, qualified by other control bits. When clear,
forces a P-cache miss on all P-cache D-stream read/write/fill operations.
An ACV/TNV condition overrides a clear D ENABLE and a hit is
forced in the P-cache.

2–159

KA66A CPU Module

2.7.3 XMI Registers

In addition to the internal processor registers, the KA66A CPU module
contains registers in XMI private space and XMI required registers in XMI
nodespace. These registers are listed in Table 2–32 and Table 2–33.

The KA66A CPU module’s XMI registers have the following
characteristics:

• The mask bits are ignored on writes to the KA66A CPU module’s
control and status registers. The CPU always performs a full longword
write.

• Interlocks are not supported. Interlock Read and Unlock Write
Mask transactions are treated as Read and Write Mask transactions,
respectively.

• The XMI responder queue is only one deep so the KA66A CPU module
will NO ACK subsequent CSR references until the read data for the
queued CSR read has been returned.

• Write transactions directed at read-only registers are accepted and
acknowledged but no action is taken and the register’s value is not
changed.

Attempts to read or write unimplemented nodespace regions result in a
NO ACK for the XMI transaction

Table 2–32 KA66A CPU Module Registers in XMI Private Space

Register Mnemonic Address Location

NDAL Control and Status NCSR E000 0000 NEXMI chip

TOY Clock Registers E018 3000 – E018 300D Watch chip

BBU RAM E018 300E – E018 303F Watch chip

NEXMI Input Port IPORT E018 4000 NEXMI chip

NEXMI Output Port0 OPORT0 E018 5000 NEXMI chip

NEXMI Output Port1 OPORT1 E018 6000 NEXMI chip

UART Registers E018 7000 – E018 700F UART chip

IPR Address Space E100 0000 – E100 03FF

IP IVINTR Generation IPINTR E101 0000 – E101 FFFF NEXMI chip

WE IVINTR Generation WEINTR E102 0000 – E102 FFFF NEXMI chip

2–160

KA66A CPU Module

Table 2–33 XMI Registers for the KA66A CPU Module

Register Mnemonic Address Location

Device Register XDEV BB1 + 0000 0000 NEXMI chip

Bus Error XBER BB + 0000 0004 NEXMI chip

Failing Address XFADR BB + 0000 0008 NEXMI chip

XMI General Purpose XGPR BB + 0000 000C NEXMI chip

Node-Specific Control and
Status

NSCSR BB + 0000 001C NEXMI chip

XMI Control Register XCR BB + 0000 0024 NEXMI chip

Failing Address Extension XFAER BB + 0000 002C NEXMI chip

Bus Error Extension XBEER BB + 0000 0034 NEXMI chip

Writeback 0 Failing Address WFADR0 BB + 0000 0040 NEXMI chip

Writeback 1 Failing Address WFADR1 BB + 0000 0044 NEXMI chip

1BB = base address of a node, which is the address of the first location in nodespace.

2–161

KA65A CPU Module XMI Private Space Registers
NDAL Control and Status Register (NCSR)

NDAL Control and Status Register (NCSR)

NCSR holds information used to test or control various NDAL functions.

ADDRESS E000 0000 (NEXMI chip)

3
1

3
0

2
9

2
8

2
7

2
6

1
9

1
8

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

MBZ

Secure Console (SECCON)
Non−Writeback Queue Full (NWQFL)
Writeback Queue Full (WBQFL)
Force Full (FRCFL)

En Force XMI non−WDAT Parity (EFXMIP)
En Force XMI WDAT Parity (EFXMIDP)
Write to ROM (WTR)
ROM Bus Access Time (RBAT)

NDAL Write Sequence Error (NWSE)

NDAL Read Transmit ACK Error (NRTAE)
NDAL Inconsistent PE (NDIPE)
NDAL Parity Error (NDPE)

msb−p558−91

0 0 0

SSC Illegal Read (SSCIR)
SSC Illegal Write (SSCIW)

CTRL/P Enable (CTP)
Count TODR (CNT)
Test Mode (TM)

Enable Force NDAL Parity (EFNDALP)
NDAL Force Parity <2:0> (NDALFP)

bit<31>
Name: NDAL Parity Error

Mnemonic: NDPE

Type: R/W1C, 0

During every NDAL cycle, the NEXMI computes and checks NDAL
parity. If a parity error is detected, NDAL Parity Error is set.

bit<30>
Name: NDAL Inconsistent Parity Error

Mnemonic: NDIPE

Type: R/W1C, 0

NDAL Inconsistent Parity Error is set when an NDAL parity error is
detected, and the cycle is ACKed by another node. This indicates that
another node detected good parity while this node detected a parity
error. Parity checking is performed for all NDAL transactions, and not
just for those generated by this node.

2–162

KA65A CPU Module XMI Private Space Registers
NDAL Control and Status Register (NCSR)

bit<29>
Name: NDAL Read Transmit ACK Error

Mnemonic: NRTAE

Type: R/W1C, 0

The NEXMI verifies that all its NDAL read transmissions are ACKed.
NDAL Read Transmit ACK Error is set if ACK is not returned after
NEXMI has driven read data onto the NDAL.

bit<28>
Name: Reserved

Mnemonic: None

Type: –

Reserved; must be zero.

bit<27>
Name: NDAL Write Sequence Error

Mnemonic: NWSE

Type: R/W1C, 0

When set, the NDAL Write Sequence Error indicates that a WRITE or
WDISOWN command was received and was not followed by WDATA
or BADWDATA command.

bits<26:19>
Name: Reserved

Mnemonic: None

Type: RO, 0

Reserved; must be zero.

bits<18:16>
Name: NDAL Force Parity <2:0>

Mnemonic: NDALFP

Type: R/W, 0

The bits in this field correspond to the NDAL parity bits PARITY<2:0>
which will be driven with bad parity when set. Bad parity will be
transmitted on command/address cycles and data cycles from this
node in place of generated parity when the NCSR<EFNDALP> Enable
Force NDAL Parity bit is set.

2–163

KA65A CPU Module XMI Private Space Registers
NDAL Control and Status Register (NCSR)

bit<15>
Name: Enable Force NDAL Parity

Mnemonic: EFNDALP

Type: R/W, 0

If Enable Force NDAL Parity is written with a one, NEXMI uses the
bit field NDALFP<2:0> to selectively enable bad parity on the NDAL
PARITY<2:0> lines. For example, if NCSR<18:16> = 010, then
NDAL P<2> = good parity
NDAL P<1> = bad parity
NDAL P<0> = good parity

bit<14>
Name: Reserved

Mnemonic: None

Type: RO. 0

Reserved; must be zero.

bit<13>
Name: Test Mode

Mnemonic: TM

Type: R/W, 0

When the Test Mode (TM) bit is set, the Time-of-Day Register (TODR)
is clocked by writing one to the CNT field. This bit is for diagnostic
purposes only.

bit<12>
Name: Count TODR

Mnemonic: CNT

Type: WO, 0

Writing a one to this bit causes the TODR to increment by one. This
bit is for diagnostic purposes only.

bit<11>
Name: CTRL/P Enable

Mnemonic: CTP

Type: R/W, 0

Setting CTRL/P Enable to a one causes CTRL/P to be recognized as
a break in the console terminal UART. When CTP is a zero, only the
break character is recognized as give me a break. CTP is cleared when
the chip is reset. The console program sets this bit.

2–164

KA65A CPU Module XMI Private Space Registers
NDAL Control and Status Register (NCSR)

bit<10>
Name: Reserved

Mnemonic: None

Type: –

Reserved; must be zero.

bit<9>
Name: SSC Illegal Write

Mnemonic: SSCIW

Type: R/W1C, 0

When the SSC Illegal Write bit is set, an illegal write was attempted to
SSC space. Both nonexistent address errors and illegal SSC commands
will cause this bit to set. The write attempt results in a hard error
interrupt.

bit<8>
Name: SSC Illegal Read

Mnemonic: SSCIR

Type: R/W1C, 0

When the SSC Illegal Read bit is set, an illegal read was attempted to
SSC space. Both nonexistent address errors and illegal SSC commands
will cause this bit to set. The read attempt results in a soft error
interrupt and an RDE.

bit<7>
Name: ROM Bus Access Time

Mnemonic: RBAT

Type: R/W, 0

Access times on the ROM bus are based on the NDAL clock cycle time.
Setting this bit increases the number of NDAL cycles to wait on a
ROM bus access. This ensures that the minimum ROM bus access
time is sufficient.

bit<6>
Name: Write to ROM

Mnemonic: WRT

Type: R/W1C, 0

When set, WRT indicates that an attempt to write the ROM has
occurred.

2–165

KA65A CPU Module XMI Private Space Registers
NDAL Control and Status Register (NCSR)

bit<5>
Name: Enable Force XMI WDAT Parity

Mnemonic: EFXMIDP

Type: R/W, 0

If Enable Force XMI WDAT Parity is set, NEXMI uses the bit field
XCR:XMIFP<2:0> to selectively enable bad parity on the XMI P<2:0>
lines during WDAT cycles only. For example, if XCR<21:19> = 101,
then
XMI P<2> = bad parity
XMI P<1> = good parity
XMI P<0> = bad parity

bit<4>
Name: Enable Force XMI non-WDAT Parity

Mnemonic: EFXMIP

Type: R/W, 0

If Enable Force XMI non-WDAT Parity is set, NEXMI uses the bit field
XCR:XMIFP<2:0> to selectively enable bad parity on the XMI P<2:0>
lines during non-WDAT cycles only. For example, if XCR0<21:19> =
101, then
XMI P<2> = bad parity
XMI P<1> = good parity
XMI P<0> = bad parity

bit<3>
Name: Force Full

Mnemonic: FRCFL

Type: R/W, 0

If Force Full is set, the NEXMI will not be granted the NDAL. This
forces the Responder Queue to back up with invalidate writes. This
bit is for diagnostic purposes only, to test the XMI Suppress logic and
should be cleared during normal operation.

bit<2>
Name: Writeback Queue Full

Mnemonic: WBQFL

Type: R/W1C, 0

The Writeback Queue Full bit is set when a legal NDAL Writeback
cycle occurs but the WBQ is full and cannot accept additional data.

2–166

KA65A CPU Module XMI Private Space Registers
NDAL Control and Status Register (NCSR)

bit<1>
Name: Non-Writeback Queue Full

Mnemonic: NWQFL

Type: R/W1C, 0

The Non-Writeback Queue Full bit is set when a legal NDAL Non-
Writeback cycle occurs but the NWQ is full and cannot accept
additional data.

bit<0>
Name: Secure Console

Mnemonic: SECCON

Type: RO

This bit indicates the state of the front-panel console enable switch.
The input to this bit is XMI CON SECURE L, which is fed directly
into the NEXMI chip. A zero indicates that console halts are disabled
and the console is secure, and a one indicates that console halts are
enabled.

2–167

KA65A CPU Module XMI Private Space Registers
NEXMI Input Port Register (IPORT)

NEXMI Input Port Register (IPORT)

The NEXMI chip reads eight input signals (IPORT H<7:0>) from the ROM bus.
The IPORT gives KA66A CPU module state information.

ADDRESS E018 4000 (NEXMI chip)

3
1 8 7 6 5 4 3 0

MUST BE ZERO

Self−Test Loop Disable (STL DISABLE)

(FP EEPROM ENABLE)

msb−p569−91

XMI AC LO State (XACLO)
Front Panel EEPROM Enable

Front Panel Boot Disable (FP BOOT DISABLE)
Node Identification (NODE ID)

bits<30:8>
Name: Reserved

Mnemonic: None

Type: –

Reserved; must be zero.

bit<7>
Name: Self-Test Loop Disable

Mnemonic: STL DISABLE

Type: RO, 1

STL DISABLE indicates the state of the IO SELF-TEST LOOP L
signal. A zero indicates that the console loops on self-test, and a one,
the default value, indicates that the console performs self-test only
once.

bit<6>
Name: XMI AC LO

Mnemonic: XACLO

Type: RO

XACLO shows the state of the XMI AC LO L signal. A zero indicates
that XMI AC LO L is asserted, and a one indicates that the line is
deasserted. The console does not attempt to reference memory until
XACLO is a one.

2–168

KA65A CPU Module XMI Private Space Registers
NEXMI Input Port Register (IPORT)

bit<5>
Name: Front Panel EEPROM Enable

Mnemonic: FP EEPROM ENABLE

Type: RO

FP EEPROM ENABLE shows the state of the control (front) panel
lower key switch as a reflection of the XMI UPDATE EN H signal.
When FP EEPROM ENABLE is a zero, the EEPROM cannot be
written or is disabled; a one indicates that the EEPROM is enabled;
that is, the lower key switch is in the Update position and the
EEPROM can be written.

bit<4>
Name: Front Panel Boot Disable

Mnemonic: FP BOOT DISABLE

Type: RO

FP BOOT DISABLE indicates the state of the control (front) panel
lower key switch. The input to the bit is the XMI BOOT EN L signal.
A zero indicates that booting is enabled (that is, the lower key switch
is in the Auto Start position), and a one indicates that booting is
disabled.

bits<3:0>
Name: Node Identification

Mnemonic: NODE ID

Type: RO

NODE ID contains the node identification of the XMI backplane slot.

2–169

KA65A CPU Module XMI Private Space Registers
NEXMI Output Port0 Register (OPORT0)

NEXMI Output Port0 Register (OPORT0)

OPORT0 is used by diagnostics and for controlling an auxiliary console.

ADDRESS E018 5000 (NEXMI chip)

3
1 7 6 5 4 3 2 1 0

MUST BE ZERO

Error Strobe
Test Strobe

LED On

msb−p570−91

0

Terminal Enable (TERM ENA)
Terminal Select (TERM SEL)

bits<31:7>
Name: Reserved

Mnemonic: None

Type: –

Reserved; must be zero.

bit<6>
Name: Error Strobe

Mnemonic: None

Type: R/W, 0

Error Strobe is used by dianostics to provide a trigger signal to the
backplane whenever an error is detected.

bit<5>
Name: Test Strobe

Mnemonic: None

Type: R/W, 0

Test Strobe is used by diagnostics to provide a trigger signal to the
backplane at the beginning of each test.

bit<4>
Name: Reserved

Mnemonic: None

Type: –

Reserved; must be zero.

2–170

KA65A CPU Module XMI Private Space Registers
NEXMI Output Port0 Register (OPORT0)

bit<3>
Name: LED On

Mnemonic: None

Type: R/W, 0

This bit drives the self-test-passed LED and when set indicates that
self-test was successful.

bit<2>
Name: Terminal Enable

Mnemonic: TERM ENA

Type: R/W, 0

This bit enables the KA66A CPU module to drive the XMI console
line on the backplane. If TERM ENA is set, console output will be
transmitted both to the auxiliary console line and to the XMI console
line on the backplane. If TERM ENA is clear, console output will be
transmitted only to the auxiliary console line.

bit<1:0>
Name: Terminal Select

Mnemonic: TERM SEL

Type: R/W, 0

This field selects the console terminal mode and is encoded as follows:

<1:0> Console Terminal Mode

00 Auxiliary Console Mode. The auxiliary console line is connected to
the NEXMI console terminal input.

01 System Console Mode. The XMI backplane console line is
connected to the NEXMI console terminal input.

10 Auxiliary Console Loopback Mode. The auxiliary console output is
connected back to the NEXMI console terminal input.

11 System Console Loopback Mode. The XMI console output is
connected back to the NEXMI console terminal input. Note,
however, that if TERM ENA is clear, the transmitted character is
not transmitted on the XMI backplane console line.

2–171

KA65A CPU Module XMI Private Space Registers
NEXMI Output Port1 Register (OPORT1)

NEXMI Output Port1 Register (OPORT1)

OPORT1 is used to light the self-test LEDs on the KA66A module.

ADDRESS E018 6000 (NEXMI chip)

3
1 8 7 6 0

MUST BE ZERO

Self−Test Valid (STV LED)

msb−p577−91

Self−Test LEDs 1−7 (ST LED7−ST LED1)

bits<31:8>
Name: Reserved

Mnemonic: None

Type: –

Reserved; must be zero.

bit<7>
Name: Self-Test Valid

Mnemonic: STV LED

Type: R/W

When set, the STV LED validates the state of ST LED7 throuth ST
LED1. It also indicates that the power-up sequence was sufficient to
start the console code.

bit<6:0>
Name: Self-Test LED 7 through Self-Test LED 1

Mnemonic: ST LEDn

Type: R/W

These seven bits drive the seven module LEDs that indicate the
current state of the self-test or extended test. Writing a one to these
bits lights the corresponding LEDs.

2–172

KA66A CPU Module XMI Nodespace Registers
Device Register (XDEV)

Device Register (XDEV)

XDEV contains information to identify the node. Both fields are loaded during
node initialization. A zero value indicates an uninitialized node.

ADDRESS Nodespace base address + 0000 0000 (NEXMI chip)

3
1

1
6

1
5 0

Device Revision Device Type (8087)

msb−p553−91

bits<31:16>
Name: Device Revision

Mnemonic: DREV

Type: R/W, 0

Identifies the revision level of the module in hexadecimal. The DREV
field always reflects the letter revision of the module as follows:

KA66A CPU Module Revision DREV (decimal) DREV (hex)

A0 1 0001

A1 1 0001

B0 2 0002

B1 2 0002

.

.

.

Z0 26 001A

bits<15:0>
Name: Device Type

Mnemonic: DTYPE

Type: R/W, 0

Identifies the type of node. The Device Type field is broken into two
subfields: Class and ID. The Class field indicates the major category
of the node. The ID field uniquely identifies a particular device within
a specified class. DTYPE contains 8087 (hex) for the KA66A CPU
module.

2–173

KA66A CPU Module XMI Nodespace Registers
Bus Error Register (XBER)

Bus Error Register (XBER)

XBER contains error status on a failed XMI transaction. This status includes
the failed commander ID and an error bit that indicates the type of error that
occurred. This status remains locked up until software resets the error bit(s).

ADDRESS Nodespace base address + 0000 0004 (NEXMI chip)
3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 4 3 0

FCID MBZ

Failing Commander ID
Self−Test Fail (STF)
Extended Test Fail (ETF)
Node−Specific Error Summary
(NSES)

Read/IDENT Data NO ACK (RIDNAK)
Write Sequence Error (WSE)
Parity Error (PE)
Inconsistent Parity Error (IPE)

Miscellaneous

Write Error Interrupt (WEI)

Corrected Confirmation (CC)
XMI BAD (XBAD)
Node Halt (NHALT)
Node Reset (NRST)
Error Summary (ES)

msbp−576−91

1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

Commander Errors

The bit values shown are initialized settings.

Responder Errors

Transaction Timeout (TTO)

Command NO ACK (CNAK)
Read Error Response (RER)
Read Sequence Error (RSE)
No Read Response (NRR)
Corrected Read Data (CRD)
Write Data NO ACK (WDNAK)

2–174

KA66A CPU Module XMI Nodespace Registers
Bus Error Register (XBER)

bit<31>
Name: Error Summary

Mnemonic: ES

Type: RO, 1

The state of ES represents the logical OR of the error bits STF, ETF,
NSES, TTO, CNAK, RER, RSE, NRR, CRD, WDNAK, RIDNAK, WSE,
PE, IPE, WEI, and CC in this register. Therefore, ES is asserted if any
error bit is asserted. ES clears when all error bits are cleared.

bit<30>
Name: Node Reset

Mnemonic: NRST

Type: R/W, 0

Writing a one to NRST initiates, FOR THIS NODE ONLY, a complete
power-up reset similar to the assertion and deassertion of XMI DC LO
L (see note below); the node performs self-test and asserts XMI BAD
L until self-test is successfully completed. Like power-up reset, nodes
are precluded from accessing the node from the time it is node reset
until it completes self-test (or the maximum self-test time is exceeded).

NOTE: During the time that a node is responding to node reset, the
node does not access other nodes on the XMI and it asserts the
XMI BAD L signal. In response to a real power-up sequence
(caused by XMI DC LO L), the NRST bit resets. Following a
node reset sequence, NRST remains set, allowing the processor
to recognize that it should not attempt to go through the
normal boot process.

bit<29>
Name: Node Halt

Mnemonic: NHALT

Type: R/W, 0

Writing a one to NHALT while halts are enabled, forces the node to
go into a "quiet" state while retaining as much state as possible. The
KA66A CPU module will force the CPU to halt at the next instruction
boundary and go into console mode waiting for console commands.
The console code clears NHALT before exit to prevent an immediate
reentry.

2–175

KA66A CPU Module XMI Nodespace Registers
Bus Error Register (XBER)

bit<28>
Name: XMI BAD

Mnemonic: XBAD

Type: R/W, 1

XBAD indicates the state of the XMI BAD L signal. A one indicates
that XMI BAD L is asserted. XMI BAD L is asserted when any one (or
more) nodes assert the line and deasserts only when no node asserts
it.

Writes to XBAD cause the state to be driven on the wired-OR XMI
BAD L line by this node; writing a one asserts XMI BAD L, while
writing a zero releases this node’s contribution to XMI BAD L.

XBAD asserts on reset, causing XMI BAD L to assert. XMI BAD L
remains asserted until all nodes stop asserting it.

bit<27>
Name: Corrected Confirmation

Mnemonic: CC

Type: R/W1C, 0

CC sets when the KA66A CPU module detects a single-bit CNF error.
Single-bit CNF errors are automatically corrected by the XCLOCK
chip in the XMI Corner. When CC sets, Error Summary (ES) also sets.

bit<26>
Name: Reserved

Mnemonic: None

Type: –

Reserved; must be zero.

bit<25>
Name: Write Error Interrupt

Mnemonic: WEI

Type: R/W1C, 0

When set, WEI indicates that the KA66A CPU module received a write
error interrupt IVINTR transaction. When WEI sets, a hard error
interrupt is sent to the CPU and Error Summary (ES) sets.

2–176

KA66A CPU Module XMI Nodespace Registers
Bus Error Register (XBER)

bit<24>
Name: Inconsistent Parity Error

Mnemonic: IPE

Type: R/W1C, 0

When set, IPE indicates that the KA66A CPU module detected a
parity error on an XMI cycle and the confirmation for the erroneous
cycle was ACK. This indicates that at least one node (the responder)
detected good parity during the cycle time that this KA66A CPU
module detected a parity error. If the write to memory was successful,
it could leave the cache incoherent. The KA66A CPU module checks
all XMI transactions, not just those it generates. When IPE sets, both
Parity Error (PE) and Error Summary (ES) set.

bit<23>
Name: Parity Error

Mnemonic: PE

Type: R/W1C, 0

When set, PE indicates that the NEXMI detected a parity error on
an XMI cycle. When PE sets, Error Summary (ES) also sets, and
Inconsistent Parity Error (IPE) may also set, if appropriate.

bit<22>
Name: Write Sequence Error

Mnemonic: WSE

Type: R/W1C, 0

When set, indicates that a write transaction directed to one of the
NEXMI’s CSRs was aborted due to missing data cycles. If WSE is set,
Error Summary (ES) also sets.

bit<21>
Name: READ/IDENT Data NO ACK

Mnemonic: RIDNAK

Type: R/W1C, 0

If the NEXMI transmits data in response to a CSR read, and the read
data cycle is not acknowledged (receives a NO ACK), RIDNAK and
Error Summary (ES) are set.

2–177

KA66A CPU Module XMI Nodespace Registers
Bus Error Register (XBER)

bit<20>
Name: Write Data NO ACK

Mnemonic: WDNAK

Type: R/W1C, 0

When set, WDNAK indicates that a write data cycle transmitted by
the KA66A CPU module received a NO ACK confirmation. WDNACK
sets only if the reattempt fails or is disabled. When WDNAK sets,
Error Summary sets. If error retry is enabled, Transaction Timeout
(TTO) also sets.

bit<19>
Name: Corrected Read Data

Mnemonic: CRD

Type: R/W1C, 0

When set, CRD indicates that this KA66A CPU module received a
CRD read response, meaning that memory saw a parity error when
reading data out of memory and corrected it. When CRD sets, Error
Summary (ES) also sets.

bit<18>
Name: No Read Response

Mnemonic: NRR

Type: R/W1C, 0

When set, NRR indicates that a transaction initiated by this KA66A
CPU module failed due to a read response timeout (no LOC, RER,
CRD, or GRD). When NNR sets, Error Summary (ES) and Transaction
Timeout (TTO) also set.

bit<17>
Name: Read Sequence Error

Mnemonic: RSE

Type: R/W1C, 0

When set, RSE indicates that data has been returned out of sequence.
When data is returned in response to a read operation, the NEXMI
checks the received sequence number against the one that it expects.
If the two do not match, the returned data cycles are out of sequence
and RSE is set along with Error Summary (ES).

2–178

KA66A CPU Module XMI Nodespace Registers
Bus Error Register (XBER)

bit<16>
Name: Read Error Response

Mnemonic: RER

Type: R/W1C, 0

When set, RER indicates that a node on the XMI received a Read
Error Response, meaning that the result of a read transaction or an
interrupt vector returned in an IDENT transaction is in error. When
RER sets, Error Summary (ES) also sets.

bit<15>
Name: Command NO ACK

Mnemonic: CNAK

Type: R/W1C, 0

When set, CNAK indicates that a command cycle transmitted by the
KA66A CPU module received a NO ACK confirmation, usually caused
by a reference either to a nonexistent memory location or to an I/O
space location. This bit is set only if the error recovery reattempts fail
or are disabled. When CNAK sets, Error Summary (ES) also sets.

bit<14>
Name: Reserved

Mnemonic: None

Type: –

Reserved; must be zero.

bit<13>
Name: Transaction Timeout

Mnemonic: TTO

Type: R/W1C, 0

When set, TTO indicates that a transaction initiated by this KA66A
CPU module failed due to a transaction timeout. The timeout counter
is started when the NEXMI requests the XMI for a transaction. This
bit is set only if retries fail. Write Data NO ACK (WDNAK), No Read
Response (NRR), Command NO ACK (CNAK), and XBEER<OLR>
indicate the cause of the timeout. If none of the bits are set, the
NEXMI was never granted the XMI bus for the transaction. When
TTO sets, Error Summary (ES) also sets.

2–179

KA66A CPU Module XMI Nodespace Registers
Bus Error Register (XBER)

bit<12>
Name: Node-Specific Error Summary

Mnemonic: NSES

Type: RO, 0

When set, NSES indicates that a node-specific error condition was
detected. NSES is the logical OR of the implemented bits in XBEER.
When NSES sets, Error Summary (ES) also sets. NSES clears when
all error bits clear.

bit<11>
Name: Extended Test Fail

Mnemonic: ETF

Type: R/W1C, 1

When set, ETF indicates that the KA66A CPU module has not yet
passed its extended test. This bit is cleared by console code when the
KA66A CPU module passes its extended test. When ETF sets, Error
Summary (ES) also sets.

bit<10>
Name: Self-Test Fail

Mnemonic: STF

Type: R/W1C, 1

When set, STF indicates that the KA66A CPU module has not yet
passed its self-test. This bit is cleared by console code when the
KA66A CPU module passes its self-test. When STF sets, Error
Summary (ES) also sets.

bits<9:4>
Name: Failing Commander ID

Mnemonic: FCID

Type: RO

FCID holds the commander ID of a failing transaction and is
equivalent to the XMI node number of the CPU logging the error.
These bits are hard wired to the XMI backplane and are not effected
by the lock.

bits<3:0>
Name: Reserved

Mnemonic: None

Type: –

Reserved; must be zero.

2–180

KA66A CPU Module XMI Nodespace Registers
Failing Address Register (XFADR)

Failing Address Register (XFADR)

XFADR logs address and length information associated with a failing
transaction. An associated register, XFAER, logs address extension bits,
mask and command information associated with a failing transaction.
XFADR and XFAER are latched at the start of every XMI transaction unless
the registers are locked because one or more of XBER<20> (WDNAK),
XBER<18> (NRR), XBER<17> (RSE), XBER<16> (RER), XBER<15> (CNAK),
XBER<13> (TTO), or XBEER<1> (SEO) are set at the beginning of the
transaction.

There are three interpretations of XFADR, depending on the XMI command.
XFAER<31:28> determine the hex value of the XMI command.

ADDRESS Nodespace base address + 0000 0008 (NEXMI chip)

XFADR, when the XMI command is neither an IDENT transaction
nor an IVINTR transaction:

3
1

3
0

2
9 0

Failing Address

msb−p345−90

Failing Length (FLN)

bits<31:30>
Name: Failing Length

Mnemonic: FLN

Type: RO

FLN logs the value of XMI D<31:30> during the command cycle of a
failing transaction.

2–181

KA66A CPU Module XMI Nodespace Registers
Failing Address Register (XFADR)

bits<29:0>
Name: Failing Address

Mnemonic: None

Type: RO

The Failing Address field logs the value of XMI D<29:0> during the
command cycle of a failing transaction.

NOTE: When XFADR contains a read or write address, the bit map for
a 32-bit NDAL address is as follows:

If XFADR<29> = 0 (memory space), then 32-bit NDAL address is:

XFADR<29> + XFAER<17:16> + XFADR<28:0>

If XFADR<29> = 1 (I/O space), then 32-bit NDAL address is:

111 + XFADR<28:0>

2–182

KA66A CPU Module XMI Nodespace Registers
Failing Address Register (XFADR)

�

XFADR, when the XMI command is 9 (hex), an IDENT transaction:
3
1

2
0

1
9

1
6

1
5 0

MUST BE ZERO

(IPL)
Interrupt Source

msb−p346−90

Interrupt Priority Level

bits<31:20>
Name: Reserved

Mnemonic: None

Type: –

Reserved; must be zero.

bits<19:16>
Name: Interrupt Priority Level

Mnemonic: IPL

Type: RO

IPL is a bit mask that specifies the interrupt priority level for the
IDENT command as shown below:

Bit IPL (hex)

19 17

18 16

17 15

16 14

bits<15:0>
Name: Interrupt Source

Mnemonic: None

Type: RO

The Interrupt Source field is a bit mask that specifies the IDENT
command target-node ID. Bit<14> corresponds to node E, bit<13>
corresponds to node D, . . . bit<1> corresponds to node 1.

2–183

KA66A CPU Module XMI Nodespace Registers
Failing Address Register (XFADR)

�

XFADR, when the XMI command is F (hex), an IVINTR transaction:

3
1

1
8

1
7

1
6

1
5 0

MUST BE ZERO

Write Error

Interprocessor

Interrupt Destination

msb−p347−90

Interrupt (WEI IVINTR)

Interrupt (IP IVINTR)

bits<31:18>
Name: Reserved

Mnemonic: None

Type: –

Reserved; must be zero.

bit<17>
Name: Write Error Interrupt

Mnemonic: WEI IVINTR

Type: RO

WEI IVINTR sets if the implied vector interrupt request was for a
write error interrupt.

bit<16>
Name: Interprocessor Interrupt

Mnemonic: IP IVINTR

Type: RO

IP IVINTR sets if the implied vector interrupt request was for an
interprocessor interrupt.

bits<15:0>
Name: Interrupt Destination

Mnemonic: None

Type: RO

The Interrupt Destination field is a bit mask that specifies the IVINTR
command target-node ID. Bit<14> corresponds to node E, bit<13>
corresponds to node D, . . . bit<1> corresponds to node 1.

2–184

KA66A CPU Module XMI Nodespace Registers
XMI General Purpose Register (XGPR)

XMI General Purpose Register (XGPR)

XGPR is a general purpose register that is visible to the XMI bus. This
register is used during self-test and by the ROM-based diagnostics.

ADDRESS Nodespace base address + 0000 000C (NEXMI chip)

3
1 0

XMI General Purpose Register (XGPR)

msb−p201−89

bits<31:0>
Name: XMI General Purpose Register

Mnemonic: XGPR

Type: R/W, 0

The general purpose register is used by self-test and during ROM-
based diagnostics.

2–185

KA66A CPU Module XMI Nodespace Registers
Node-Specific Control and Status Register (NSCSR)

Node-Specific Control and Status Register (NSCSR)

NSCSR provides the KA66A CPU module control and status to the XMI bus.

ADDRESS Nodespace base address + 0000 001C (NEXMI chip)

3
1 8 7 6 5 4 3 0

MUST BE ZERO

Responder Queue Overflow (RQOVFL)

msb−p554−91

Boot Processor Disable (BPD)
Boot Processor (BP)
Warm Start (WS)
NEXMI Revision (NREV)

bits<31:8>
Name: Reserved

Mnemonic: None

Type: –

Reserved; must be zero.

bit<7>
Name: Responder Queue Overflow

Mnemonic: RQOVFL

Type: R/W, 0

RQOVFL is set when the responder queue is full and an attempt is
made to load another entry. The entry is inhibited and a hard error
occurs.

bit<6>
Name: Boot Processor Disable

Mnemonic: BPD

Type: R/W, 0

BPD is set by console code on power-up to indicate that this node
is not eligible to become the boot processor. Following self-test, all
KA66A CPU modules examine the BPD and XBER<0> (Self-Test Fail)
of each processor node to determine which processor will become the
boot processor. A processor node must be initialized before STF clears
if its BPD is to take part in the selection of a boot processor.

2–186

KA66A CPU Module XMI Nodespace Registers
Node-Specific Control and Status Register (NSCSR)

bit<5>
Name: Boot Processor

Mnemonic: BP

Type: R/W, 0

BP is set by console code to indicate that this node is the boot
processor.

bit<4>
Name: Warm Start

Mnemonic: WS

Type: RO, 0

WS sets to indicate that battery-backed-up power was maintained
during a power failure and that the console code should attempt a
"warm start." WS is loaded with the state of the XMI RESET L signal
when the XMI DC LO L signal is deasserted. WS is not used after a
node reset.

bits<3:0>
Name: NEXMI Revision

Mnemonic: NREV

Type: RO, 0

NREV contains the revision of the NEXMI chip.

2–187

KA66A CPU Module XMI Nodespace Registers
XMI Control Register (XCR)

XMI Control Register (XCR)

XCR contains toggles for various XMI and processor functions.

ADDRESS XMI nodespace base address + 0000 0024 (NEXMI chip)

3
1

3
0

2
9

2
8

2
7

2
6

2
4

2
3

2
2

2
1

1
9

1
8

1
7

1
6

1
5

1
3

1
2

1
1 7 6 5 4 3 2 1 0

0 MBZ MBZ

Required

Lockout Mode (LOCMOD)
XMI BAD Drive (XBADD)
Trigger Control (TRIGC)

Lockout Debug Timeout Enable (LDTE)

Timeout Select (TOS)
Enable Self−Invalidates Only (ESIO)
XMI Force Bad Parity<2:0> (XMIFP)

msb−p555−91

XMI−Related

Corrected Read Data

Corrected Confirmation Interrupt
Interrupt Disable (CRDID)

XMI Counter Tests

Disable (CCID)

Counter Select (CNTSEL)
Serial Shift (SFT)
Count (CNT)
Data Out (DO)
Data In (DI)
Test Mode (TM)

bit<31>
Name: Test Mode

Mnemonic: TM

Type: R/W, 0

When set, the counter specified by the CNTSEL field becomes the
counter under test.

bit<30>
Name: Data In

Mnemonic: DI

Type: R/W, 0

The DI bit is the value shifted into the LSB of the counter under test.

2–188

KA66A CPU Module XMI Nodespace Registers
XMI Control Register (XCR)

bit<29>
Name: Data Out

Mnemonic: DO

Type: RO, 0

The DO bit is the value shifted out of the MSB of the counter under
test.

bit<28>
Name: Count

Mnemonic: CNT

Type: WO, 0

Writing a one to this bit causes the counter under test to increment by
one.

bit<27>
Name: Serial Shift

Mnemonic: SHF

Type: WO, 0

Writing a one to this bit causes the counter under test to serial shift
by one from LSB toward MSB. The XCR<DI> is shifted into the LSB
of the counter, and the MSB is shifted into the XCR<DO>.

bits<26:24>
Name: Counter Select

Mnemonic: CNTSEL

Type: R/W, 0

CNTSEL is used to select a particular counter to test. It is encoded as
follows:

<26:24> Counter

000 XCC TTO counter (20 bits)

001 XWC0 TTO counter (20 bits)

010 XWC1 TTO counter (20 bits)

011 Lockout assertion timer (16 bits)

100 Lockout deassertion timer (16 bits)

bits<23:22>
Name: Reserved

Mnemonic: None

Type: –

Reserved; must be zero.

2–189

KA66A CPU Module XMI Nodespace Registers
XMI Control Register (XCR)

bits<21:19>
Name: XMI Force Bad Parity<2:1>

Mnemonic: XMIFP

Type: R/W, 0

Each bit of XMIFP corresponds to the XMI P<2:0> parity bits. When
an XMIFP bit is set, it forces a bad parity on the XMI. Bad parity can
be transmitted on XMI P<2:0>, during command/address cycles, and
on XMI P<2> only, during data cycles.

bit<18>
Name: Enable Self-Invalidates Only

Mnemonic: ESIO

Type: R/W, 0

ESIO, when clear, causes the NEXMI to process invalidates from other
nodes. ESIO, when set, causes the NEXMI to process invalidates for
memory reads and writes generated by this node only. This allows a
single CPU node to verify the operation of the invalidate logic. ESIO
is set for diagnostic purposes only and must be clear during normal
operation.

bits<17:16>
Name: Timeout Select

Mnemonic: TOS

Type: R/W, 0

TOS selects one of four timeout values used to detect both response
and reattempt timeout conditions for commands and writebacks. TOS
is for debug and diagnostic purposes only and must be cleared during
normal operation. The timeout values are as follows:

TOS<1:0> Timeout (Time/XMI Cycles)

00 16 ms/250K

01 16.38 � sec/256

10 4.01 � sec/64

11 1.92 � sec/32

bits<15:13>
Name: Reserved

Mnemonic: None

Type: –

Reserved; must be zero.

2–190

KA66A CPU Module XMI Nodespace Registers
XMI Control Register (XCR)

bit<12>
Name: Lockout Debug Timeout Enable

Mnemonic: LDTE

Type: R/W, 0

When LDTE is set and lockout is enabled (XCR<LOCMODE> = 00, 01,
or 10 (binary)), both the lockout assertion timer (LAT) and the lockout
deassertion timer (LDT) are forced to one microsecond. When lockout
is disabled (XCR<LOCMODE> = 11 (binary)), LDTE has no effect.

bits<11:7>
Name: Reserved

Mnemonic: None

Type: –

Reserved; must be zero.

bit<6>
Name: Corrected Confirmation Interrupt Disable

Mnemonic: CCID

Type: R/W, 0

CCID controls the generation of interrupts caused by corrected
confirmations. A zero enables interrupts; a one disables interrupts.
XBER<CC> is still set if a corrected confirmation error is detected
regardless of the state of CCID. If interrupts are disabled, the
soft error interrupt request to the NVAX chip is inhibited. If CC
interrrupts are disabled, software should clear XBER<CC> before
reenabling interrupts to ensure that only new CC errors cause
interrupts.

bit<5>
Name: Corrected Read Data Interrupt Disable

Mnemonic: CRDID

Type: R/W, 0

CRDID controls the generation of interrupts caused by corrected
read data. A zero enables interrupts; a one disables interrupts.
XBER<CRD> is still set if a corrected confirmation error is detected
regardless of the state of CRDID. If interrupts are disabled, the
soft error interrupt request to the NVAX chip is inhibited. If CRD
interrrupts are disabled, software should clear XBER<CRD> before
reenabling interrupts to ensure that only new CRD errors cause
interrupts.

2–191

KA66A CPU Module XMI Nodespace Registers
XMI Control Register (XCR)

bits<4:3>)

Name: Trigger Control

Mnemonic: TRIGC

Type: R/W, 0

These bits control four XMI trigger conditions.

<4:3> Trigger Conditions

00 Trigger disable: The trigger line will not be driven.

01 XMI trigger will be driven when soft error is asserted by NEXMI.

10 XMI trigger will be driven when hard error is asserted by NEXMI.

11 XMI trigger will be driven when error summary bit (XBER<ES>) is
set.

bit<2>
Name: XMI BAD Drive

Mnemonic: XBADD

Type: R/W, 1

When XBADD is written with a one, the XMI BAD line is
asserted on the backplane. If this bit is written with a zero, this
node’s contribution to the assertion of XMI BAD is removed, and
XBER<XBAD>, XBER<25>, is deasserted if no other node is asserting
it. Reads show the current state of the driver from this node. To
determine the state of the XMI BAD signal, the proper bit to read is
XBER<XBAD>.

bits<1:0>
Name: Lockout Mode

Mnemonic: LOCMOD

Type: R/W, 0

LOCMOD determines the lockout assertion timer (LAT) and lockout
deassertion timer (LDT) values. These values are as follows:

<1:0> Name LAT LDT

00 Default 256 us 2 ms

01 256 us 512 us

10 64 us 2 ms

11 Lockout Disable

Recommended use of the XMI counter test features:

Test Mode Setup:

1 Select counter under test by writing to the CNTSEL<2:0> field.

2–192

KA66A CPU Module XMI Nodespace Registers
XMI Control Register (XCR)

2 Write a one to the <TM> bit (forces counter under test into test mode).

1 and 2 can be done in the same Write operation.

To shift a value into the counter:

3 Write the DI bit with the value to be shifted into the LSB.

4 Write a one to the <SHF> bit to activate the shift.

3 and 4 can be done in the same Write operation. The MSB is shifted into
the <DO> bit.

To increment the counter:

5 Write a one to the <CNT> bit to increment by one.

2–193

KA66A CPU Module XMI Nodespace Registers
Failing Address Extension Register (XFAER)

Failing Address Extension Register (XFAER)

XFAER logs command, address, and write mask information associated with
a failing transaction.

XFAER is the higher 32-bits of a 64-bit register formed by concatenating
XFADR and XFAER. The 64-bit register is used to log command, address,
length, and write mask information associated with a failing transaction.

XFADR and XFAER latch at the start of an XMI transaction unless the register
is locked.

The following rules govern the overwriting of the information in the registers:

• If no error information is in the registers, they are written on the first hard
or soft error.

• If soft error information is being latched, the registers are not changed on
subsequent soft errors.

• If soft error information is being latched, the registers are overwritten by a
hard error.

• If hard error information is being latched, the information is not changed
on subsequent errors.

Setting of one or more of the following hard error bits in XBER and XBEER
locks XFADR and XFAER: XBER<20> (WDNAK), XBER<18> (NRR),
XBER<17> (RSE), XBER<16> (RER), XBER<15> (CNAK), XBER<13> (TTO),
and XBEER<1> (SEO).

ADDRESS Nodespace base address + 0000 002C (NEXMI chip)

3
1

2
8

2
7

2
6

2
5

1
6

1
5 0

CMD Address Extension Mask

msb−p556−91

MBZ

bits<31:28>
Name: Command

Mnemonic: CMD

Type: RO

CMD logs the value of XMI D<63:60> during the command cycle of
a failing transaction. The field contains the command code of the
transactions during the command cycle and can be decoded as follows:

2–194

KA66A CPU Module XMI Nodespace Registers
Failing Address Extension Register (XFAER)

Hex Command

0 Reserved

1 READ

2 IREAD

3 OREAD

4 DWMASK

5 Reserved

6 UWMASK

7 WMASK

8 INTR

9 IDENT

A Reserved

B TBDATA

C Reserved

D Reserved

E Reserved

F IVINTR

NOTE: When the command field <31:28> indicates an IDENT or an
IVINTR, all other XFAER fields are zero and the format of XFADR
is unique. See the XFADR register description.

bits<27:26>
Name: Reserved

Mnemonic: None

Type: –

Reserved; must be zero.

bits<25:16>
Name: Address Extension

Mnemonic: None

Type: RO

The Address Extension field logs the value of XMI D<57:48> during
the command cycle of a failing transaction. Address Extension
contains address bits<38:29> of the specified address in read and
write transactions.

2–195

KA66A CPU Module XMI Nodespace Registers
Failing Address Extension Register (XFAER)

bits<15:0>
Name: Mask

Mnemonic: None

Type: RO

The Mask field logs the value of XMI D<47:32> during the command
cycle of a failing transaction. It contains the write mask for write
transactions and is undefined for other transactions.

2–196

KA66A CPU Module XMI Nodespace Registers
Bus Error Extension Register (XBEER)

Bus Error Extension Register (XBEER)

XBEER contains error status on XMI-related, writeback-related, and NDAL-
related transactions. This status includes parity errors, NO ACKs, and
timeouts.

ADDRESS Nodespace base address + 0000 0034 (NEXMI chip)

3
1

2
5

2
4

2
3

2
2

2
1

2
0

1
7

1
6

1
5

1
4

1
3

1
2 3 2 1 0

MBZ MBZ MBZ

XMI−Related

Response (OLR)

Writeback−Related

WBack0 Second Error Occurred (WSEO0)
WBack0 Command NO ACK (WCNAK0)
WBack0 Write Data NO ACK (WWDNAK0)
WBack0 Transaction Timeout (WTTO0)

WBack1 Second Error Occurred (WSEO1)
WBack1 Command NO ACK (WCNAK1)
WBack1 Write Data NO ACK (WWDNAK1)
WBack1 Transaction Timeout (WTTO1)

msb−p557−91

Second Error
Occurred (SEO)
Only LOC

Unexpected Read
Response (URR)

bits<31:25>
Name: Reserved

Mnemonic: None

Type: –

Reserved; must be zero.

2–197

KA66A CPU Module XMI Nodespace Registers
Bus Error Extension Register (XBEER)

bit<24>
Name: Writeback1 Transaction Timeout

Mnemonic: WTTO1

Type: R/W1C, 0

When a writeback transaction is initiated from writeback queue 1 by
the NEXMI, a timeout counter is started. If the transaction does not
complete before the timeout interval expires, this bit is set. WCNAK1
and WWDNAK1 indicate the cause of the timeout. If neither bit is
set, the NEXMI was never granted the XMI bus for the transaction. If
XBEER <WTTO1> is set, XBER <NSES> is also set.

bit<23>
Name: Writeback1 Write Data NO ACK

Mnemonic: WWDNAK1

Type: R/W1C, 0

If the transaction timeout period (WTTO1) expires while the NEXMI
is issuing the Disown Write command and is receiving a NO ACK in
response to the transmission of any data cycles, this bit is set. XBEER
<WTTO1> should also be set. If WWDNAK1 is set, XBER <NSES> is
also set.

bit<22>
Name: Writeback1 Command NO ACK

Mnemonic: WCNAK1

Type: R/W1C, 0

This bit is set if the transaction timeout period (WTTO1) expires while
the NEXMI is receiving a NO ACK in response to transmission of the
Disown Write command cycle. XBEER <WTTO1> should also be set.
If WCNAK1 is set, XBER <NSES> is also set.

bit<21>
Name: Writeback1 Second Error Occurred

Mnemonic: WSEO1

Type: R/W1C, 0

When set, this bit indicates that a second writeback hard error
occurred while another one was being reported.

bits<20:17>
Name: Reserved

Mnemonic: None

Type: –

Reserved; must be zero.

2–198

KA66A CPU Module XMI Nodespace Registers
Bus Error Extension Register (XBEER)

bit<16>
Name: Writeback0 Transaction Timeout

Mnemonic: WTTO0

Type: R/W1C, 0

When a writeback transaction is initiated from writeback queue 0 by
the NEXMI, a timeout counter is started. If the transaction does not
complete before the timeout interval expires, this bit is set. WCNAK0
and WWDNAK0 indicate the cause of the timeout. If neither bit is
set, the NEXMI was never granted the XMI bus for the transaction. If
XBEER <WTTO0> is set, XBER <NSES> is also set.

bit<15>
Name: Writeback0 Write Data NO ACK

Mnemonic: WWDNAK0

Type: R/W1C, 0

When set, this bit indicates that Disown Write data cycles were
continually NO ACKed and the transaction eventually timed out
(causing WTT0 <16> to be set). If WWDNAK0 is set, XBER <NSES>
is also set.

bit<14>
Name: Writeback0 Command NO ACK

Mnemonic: WCNAK0

Type: R/W1C, 0

This bit is set if the transaction timeout period (WTTO0) expires
while the NEXMI is receiving NO ACKs during transmission of the
Disown Write command cycle. XBEER <WTTO0> should also be set.
If WCNAK0 is set, XBER <NSES> is also set.

bit<13>
Name: Writeback0 Second Error Occurred

Mnemonic: WSEO0

Type: R/W1C, 0

When set, this bit indicates that a second writeback hard error
occurred while another one was being reported.

bits<12:3>
Name: Reserved

Mnemonic: None

Type: –

Reserved; must be zero.

2–199

KA66A CPU Module XMI Nodespace Registers
Bus Error Extension Register (XBEER)

bit<2>
Name: Unexpected Read Response

Mnemonic: URR

Type: R/W1C, 0

When set, this bit indicates that the KA66A CPU module received
a read response when it was not expecting one. A node is defined
as not expecting a response when there are no outstanding reads or
identifiers for that particular commander ID.

bit<1>
Name: Only LOC Response

Mnemonic: OLR

Type: R/W1C, 0

When set, this bit indicates that the CPU received only LOC responses
while attempting a read-type transaction. This identifies the timeout
case due to failure of the lockout mechanism to provide timely access
to a resource such as interlock or ownership of a memory location. If
OLR is set, XBER <TTO> is also set.

bit<0>
Name: Second Error Occurred

Mnemonic: SEO

Type: R/W1C, 0

When set, this bit indicates that a second non-writeback error occurred
before the first one had been cleared. SEO is set whenever an error
that normally locks the XFADR occurs a second time. Information of
the second error is lost.

2–200

KA66A CPU Module XMI Nodespace Registers
Writeback 0 Failing Address Register (WFADR0)

Writeback 0 Failing Address Register (WFADR0)

WFADR0 is loaded at the start of every XMI writeback transaction when
writeback queue 0 is used. WFADR0 re-creates the NDAL address. It is
locked as a result of a writeback transaction timeout (XBEER<WTTO0>), and
is unlocked once the error bits are cleared.

ADDRESS Nodespace base address + 0000 0040 (NEXMI chip)

3
1

2
9

2
8 0

Failing Writeback Address

msb−p351−90

Failing Writeback Address Extension

bits<31:29>
Name: Failing Writeback Address Extension

Mnemonic: None

Type: RO, 0

The Failing Writeback Address Extension field logs the value of XMI D
<50:48>.

bits<28:0>
Name: Failing Writeback Address

Mnemonic: None

Type: RO, 0

The Failing Writeback Address field logs the writeback queue 0 XMI
D<28:0> during the command cycle of a failing writeback transaction.

2–201

KA66A CPU Module XMI Nodespace Registers
Writeback 1 Failing Address Register (WFADR1)

Writeback 1 Failing Address Register (WFADR1)

WFADR1 is loaded at the start of every XMI writeback transaction when
writeback queue 1 is used. WFADR1 re-creates the NDAL address. It is
locked as a result of a writeback transaction timeout (XBEER<WTTO1>), and
is unlocked once the error bits are cleared.

ADDRESS Nodespace base address + 0000 0044 (NEXMI chip)

3
1

2
9

2
8 0

Failing Writeback Address

msb−p351−90

Failing Writeback Address Extension

bits<31:29>
Name: Failing Writeback Address Extension

Mnemonic: None

Type: RO, 0

The Failing Writeback Address Extension field logs the value of XMI D
<50:48>.

bits<28:0>
Name: Failing Writeback Address

Mnemonic: None

Type: RO, 0

The Failing Writeback Address field logs the writeback queue 1 XMI
D<28:0> during the command cycle of a failing writeback transaction.

2–202

KA66A CPU Module

2.8 KA66A CPU Module Initialization, Self-Test, and Booting

This section gives the KA66A CPU module initialization
overview, describes the results of initialization, and discusses
the bootstrapping or restarting of the operating system.

2.8.1 Initialization Overview

The three ways to reset the KA66A CPU module are:

• Power-Up Sequence—When the VAX 6000 Model 600 is powered up,
XMI AC LO L and XMI DC LO L are sequenced so that all XMI nodes
are reset.

• System Reset—The XMI emulates a power-up sequence by asserting
the XMI RESET L line, causing the power supply to sequence XMI AC
LO L and XMI DC LO L as in a "real" power-up. The XMI does not
differentiate between a "real" power-up and a system reset. A system
reset is caused by:

— Software that asserts XMI RESET L by writing to IPR55,
IORESET, with an MTPR instruction. For example, the console
INITIALIZE command generates a system reset if no argument is
given by using this mechanism.

— The XTC power sequencer asserts the XMI RESET L line when
the control panel Restart button is pushed.

• Node Reset—Any CPU can be "node reset" by setting its XBER<30>
(NRST) bit. The console INITIALIZE command generates a node reset
if a node ID argument is provided. The difference between the node
reset and a system reset is that XMI AC LO L is not sequenced during
a node reset.

2–203

KA66A CPU Module

Typing CTRL/P at the console terminal or certain errors also cause
initialization. Refer to Section 2.10 for a discussion of error handling.
The VAX 6000 Series Owner’s Manual discusses the operation of the
system console.

In response to a power-up or system reset, the KA66A CPU module(s)
perform the following sequence:

1 Reset(s) to a known state. (Refer to the individual registers and their
bits for their state on reset, after microcode self-test completes.)

2 All CPUs start executing the console program at E004 0000 in ROM.
The console program initializes the registers and executes a complete
ROM-based diagnostic (RBD) self-test and extended tests.

3 The operating system initialization code performs the final system
initialization.

2–204

KA66A CPU Module

2.8.2 Detailed Initialization Description

The following is a flowchart and summary of the initialization
process.

Figure 2–23 Initialization Flowchart

Power−up or System Reset (Cold)

CPU 1 CPU 2 ...

...

CPU n
Self−Test Self−Test Self−Test

Determine Determine
Boot Processor Boot Processor Boot Processor

(See NOTE)

Boot Processor prints self−
test results

CPU 1 CPU/MEM/MP CPU 2 CPU/MEM/MP .. CPU n CPU/MEM/MP

A

NOTE:

tests tests

...

tests

Determine

Determine Determine
Boot Processor Boot Processor Boot Processor

(See NOTE)

All CPUs start CPU/MEM tests

The second determination of the Boot Processor occurs
even if the original Boot Processor passes all memory
tests.

msb−p352A−90

Determine

Figure 2–23 Cont’d on next page

2–205

KA66A CPU Module

Figure 2–23 (Cont.) Initialization Flowchart

A

Boot Processor prints extended
test results. Other CPUs
start to wait.

Boot Processor sizes and con−
figures memory, prints the mem−
ory configuration, and set its
BP bit. Other CPUs end their
wait and enter console mode.

CPU 1 CPU 2 ... CPU n
running running running

Boot Processor executes DWMBB
tests. Other CPUs continue to
wait.

Boot Processor halts in console
mode or boots operating system

msb−p353−90

Boot Processor prints DWMBB
test results. Other CPUs con−
tinue to wait.

If BP is booting operating sys−
tem, it starts all attached
CPUs after it has booted

2–206

KA66A CPU Module

The console program transfers control to the RBDs, which run a more
extensive CPU self-test. After the RBDs complete, control is returned
to the console program. Nodes do not access other nodes on the XMI
during CPU self-test, limiting CPU self-test to intramodule operations and
loopback transactions on the XMI to check their interface to the XMI.

If the CPU self-test is successful, the Self-Test Passed (STP) LED is lit,
XBER<STF> is cleared, and the XMI BAD L signal is cleared.

After CPU self-test completes, a boot processor (BP) is selected from those
CPU nodes that passed self-test. This is the first of two BP selections
before the operating system starts. The BP prints the results of the
self-test.

The BP then controls an additional test that requires all CPU nodes to
access memory. This test is called the CPU/MEM/MP test and allows CPU
nodes to check additional logic that could not be tested during the CPU
self-test.

Each processor extinguishes its STP LED when the CPU/MEM tests are
initiated. During the CPU/MEM tests, the CPU nodes continue testing
themselves and access preallocated blocks in memory. These tests verify
CPU logic that requires memory for testing.

The KA66A multiprocessing diagnostic is run automatically on power-
up following the execution of CPU/memory interaction tests. The boot
processor loads the multiprocessing test code from ROM into main memory
at address 200(x) and then instructs all processors that passed CPU/MEM
tests to jump to address 200(x) to begin testing. Testing verifies that CPUs
can interrupt each other, perform appropriate invalidates, arbitrate for the
bus, and handle memory locks correctly.

If these tests complete successfully, each CPU node lights its STP LED
and clears its XBER<ETF> bit.

The second BP selection now occurs. If the original boot processor
completes all of its CPU tests successfully, it remains the BP. Otherwise,
another processor node is chosen to be the BP.

The BP then tests all the DWMBAs and DWMBBs (DWMBx) in the
system. If the DWMBx tests are successful, the BP lights the DWMBx/A’s
yellow LED and the DWMBx/B’s yellow LED.

Finally, the BP configures the memory nodes with correct interleave and
address parameters, and initializes the console communications area
(CCA).

During a warm restart ST0 and DWMBB tests are performed.

On node reset, the CPU initializes its state and runs self-test. The console
program performs an additional CPU initialization before the operating
system starts the processor running.

When the console initialization is completed, the boot processor either
restarts the operating system (if a warm restart), boots the operating
system, or halts in console mode. The secondary processors enter console
mode and wait for the operating system to issue console commands that
start them running.

2–207

KA66A CPU Module

2.8.2.1 NVAX CPU Hardware/Microcode Initialization
The NVAX chip initializes to the following state on power-up or the
assertion of reset:

1 The VIC, P-cache, and B-cache are disabled.

2 The register log (RLOG) used in scoreboarding is cleared.

3 The Fbox is disabled.

4 The microstack is cleared.

5 The Mbox and Cbox are reset, and all previous operations are flushed.

6 The Fbox is reset.

7 The Ibox is stopped; it waits for a LOAD PC.

8 All instruction and operand queues are flushed.

9 The Ebox registers are cleared.

10 A power-up microtrap that starts the Ebox is initiated.

The NVAX chip microcode then does the following:

1 Hardware interrupt requests are cleared.

2 ICCS<6> is set to 0.

3 SISR<15:1> is set to 0.

4 ASTLVL is set to 4.

5 The Mbox PAMODE IPR is set to 30-bit physical address mode.

6 CPUID is set to 0.

7 The BPCR branch history algorithm is reset to the default value.

8 The backup PC is retrieved from the Ibox and saved in SAVPC.

9 PME is cleared.

10 The current PSL, halt code, and value of MAPEN are saved in
SAVPSL.

11 MAPEN is cleared (memory management is disabled).

12 All state flags are cleared.

13 PSL is loaded with 041F 0000.

14 PC is loaded with E004 0000 (the address of the start of the console
code).

2.8.2.2 Console Initialization
The console macrocode has the job of filling the gap between the initialized
state described above and the initial state needed for the operating system.
Entry to the initialization sequence starts at physical address E004 0000
(hex), the entry point of the console program. Housekeeping chores, such
as establishing a scratch area and stack happen first.

2–208

KA66A CPU Module

The console program next turns on the Self-Test Passed (STP) LED, the
first visible indication that the console program has begun executing. The
console program then determines the type of reset as more initialization is
performed for power-up starts than for warm starts.

Significant events of a power-up initialization include the following:

1 CPUID to the correct value from the system environment.

2 ECR (Ebox Control Register) as follows:

a. Fbox Enable is set to enable the Fbox.

b. Timeout External is cleared.

c. FBOX ST4 Bypass Enable is set to enable Fbox stage 4 bypass.

d. Write one to Timeout Occurred to clear any error.

e. Timeout Test is cleared.

f. ICCS EXT is set.

3 ICSR (Ibox Control Status Register) as follows:

a. Set VIC Enable to leave the VIC enabled.

b. Write one to Lock to clear any error.

4 Clear the PAMODE register MODE bit putting the system into 30-bit
mode.

5 Write one to clear the Lock bit in TBSTS (TB Parity Status Register).

6 Initialize PCSTS (P-Cache Status) Register:

a. Write one to clear the Lock bit.

b. Write one to clear PTE ER WR.

c. Write one to clear PTE ER.

7 Set CCTL (Cbox Control) as follows:

a. Clear B-Cache Enable to disable the B-cache.

b. Set B-Cache Size to 2 Mbytes (11 binary).

c. Set <3:2> to a default setting of 01 (binary).

d. Set <1> to a default setting of 1 (binary).

e. Clear Force Hit.

f. Clear Disable ECC Errors.

g. Clear SW ECC.

h. Clear Timeout Test.

i. Clear Disable Pack to allow the write packing feature.

j. Clear SW ETM.

k. Write one to clear HW ETM.

2–209

KA66A CPU Module

8 Clear the various Cbox error registers:

a. BCETSTS (Backup Cache Error Tag Status): Write one to Lock,
CORR, UNCORR, BAD ADDR, and LOST ERR to clear any errors.

b. BCEDSTS (Backup Cache Error Data Status): Write one to Lock,
CORR, UNCORR, BAD ADDR, and LOST ERR to clear any errors.

c. CEFSTS (Cbox Error Fill Status): Write one to RDLK, Lock,
Timeout, RDE, and LOST ERR to clear any errors.

d. NESTS (NDAL Error Status): Write one to NO ACK, BADWDATA,
LOST OERR, PERR, INCON PERR, and LOST PERR to clear any
errors.

2.8.2.3 Unnecessary Explicit Initialization
There is no need to explictly initialize the translation buffer since the
NVAX microcode performs an internal TBIA on any MTPR to the MAPEN
IPR.

There is no need to explictly initialize the data portions of the VIC, P-
cache, or B-cache as long as the tags are initialized with all valid bits
clear.

2.8.2.4 Warm Start Initialization
Some of the cold start and initialization steps are inappropriate with a
warm start because the contents of memory are preserved. The sequence
is modified by:

• Running a minimal set of tests for the memory interface and DWMBB
that do not disturb the memory configuration or contents.

• No memory configuration is performed. Instead, each CPU searches
memory for the CCA. If a nonboot processor fails to find the CCA, it
displays an error code in its LEDs and hangs. If the BP fails to find
the CCA, it reconfigures memory as if a cold start had occurred.

2.8.2.5 Node Reset
A node reset is a modified full system reset since some testing and
initialization is inappropriate when the remainder of the system continues
to function. The modifications are:

• Self-test results are not displayed.

• Additional tests are not run. Instead, the XBER<ETF> and
XBER<XBAD> bits are cleared. Additional test results are not
printed.

• DWMBB self-test is not run. No initialization of the DWMBB is
performed and, therefore, no test results are printed.

• No memory configuration is performed and no revision banner is
printed.

• The XBER<NRST> has its initial value stored in the console scratch
memory and is then cleared by self-test. This stored value is used by
the console program to determine if the entry resulted from a node
reset or a system reset.

2–210

KA66A CPU Module

2.8.2.6 Boot Processor Determination
Each processor examines all other CPU XBER<STF> (Self-Test Fail),
XBER<ETF> (Extended Test Fail), and NSCSR<BPD> (Boot Processor
Disable) bits. Any processor with these bits clear is a candidate for BP.
The candidate with the lowest XMI node ID is expected to become the BP
and set its NSCSR<BP>. All nonboot processors wait for the designated
BP to set its NSCSR<BP> bit. If there is a failure, failure codes are
displayed on each processor’s LEDs.

If no processor is eligible to become BP (any combination of the
NRSCR<BPD> bit being set or all CPUs failing self-test), the system
appears totally unresponsive. The system operator can then intervene
to designate one of the processors as BP by typing ">>n" on the console
terminal. Processor n then becomes the BP. This method of selecting the
BP does not change the state of the BP’s STF or BPD bits.

2.8.2.7 Memory Configuration
The console program configures memory by setting the interleave, starting,
and ending address for each array. The console program completely
controls the memory configuration because the console uses a portion of
the main memory to hold the console communications area (CCA). The
console also builds a physical memory bitmap showing all usable and
unusable pages. The results of the CPU/MEM test are used to determine
the defective pages.

The memory configuration process verifies that a minimum of 256 Kbytes
of usable memory per processor is available plus the space used by the
CCA and bitmap. The location of the CCA is determined and marked as
unusable in the bitmap.

If the boot processor (BP) is unable to find the minimum required memory,
it displays an error code on the LEDs and hangs. The BP also sets its
NSCSR<Boot Processor Disable> bit, causing the nonboot processors, if
any, to determine a new BP. The new BP repeats the memory configuration
attempt.

2.8.2.7.1 Selection of Interleave
The interleave is specified by parameters stored in the EEPROM. These
parameters are set with the SET MEMORY command. There are three
types of interleave:

• DEFAULT – The console program makes all interleave decisions.

• EXPLICIT – The user supplies configuration data.

• NONE – No arrays will be interleaved.

The VAX 6000 Model 600 supports interleave sets of mixed densities.
Interleave sets are built from like-sized memory modules or memory
modules whose cumulative value is equal to the largest memory module in
the set. For example, a 64-Mbyte memory module can be combined with
another 64-Mbyte memory module to form a two-way interleave set. If
another 64-Mbyte memory module is not present, two 32-Mybte memory
modules can be used to complete the interleave set.

2–211

KA66A CPU Module

Any array containing unrecoverable errors is not included in a default
interleave set. Instead, it is configured as uninterleaved. The remaining
arrays that would have formed the set are freed up for inclusion in another
interleave set, if one can be formed.

If the EEPROM specifies EXPLICIT interleave sets, the console program
interleaves and configures the arrays in the order specified. When an
array in the set has unrecoverable errors, all arrays in the set are
configured without interleaving. If a set specifies a nonexistent array
or is otherwise inconsistent, all arrays in the set are configured without
interleaving.

If the EEPROM specifies NO interleave, the console configures arrays in
order by node ID, with the lowest numbered array at the lowest physical
address.

2.8.2.7.2 Memory Testing and the Bitmap
Memory self-test indicates that an array has no unrecoverable (hard)
errors, one hard error, or multiple hard errors. Self-test executes on all
arrays in parallel and is faster than software testing of memory. An
attempt is made to use the results of self-test and avoid performing
software testing of memory.

A hard (unrecoverable) error is called an RDS error and is defined as
one that is an uncorrectable double-bit error by memory hardware.
A correctable (CRD) error is not considered a hard error, and pages
containing CRD errors are marked as usable.

If self-test indicates that an interleave set contains no hard errors, the set
never undergoes software testing. If an array in an interleave set contains
one or more hard errors, that set is uninterleaved and the failing array is
software tested.

Software testing is performed, one page at a time, beginning with the
lowest addressed page in the array. If required, this testing takes about 7
seconds per megabyte. All locations in the page are written with patterns.
The locations are then read. If the value read from any location does not
match the pattern, or if a machine check occurs reading any location, that
page is marked as unusable, and testing resumes with the next page. The
testing patterns are in this order:

• All ones

• All zeros

• Alternating one/zero/one

• Alternating one/zero/one with ECC bits complemented

• The address of each longword

• The complement of the address of each longword

The memory bitmap is initially built in the first block of memory large
enough to hold it. When the bitmap has been configured, it is then moved
to a page-aligned location below the CCA.

2–212

KA66A CPU Module

If pages must be marked as bad before enough memory has been found to
hold the bitmap, some pages are retested after the bitmap has been built.
The bitmap shows, in addition to pages marked with hard errors, pages
marked as unusable because they are either the bitmap’s own pages or
are CCA pages. A page is marked as unavailable when its corresponding
bitmap bit is cleared.

2.8.2.8 DWMBB Configuration
The console program performs minimal initialization of the DWMBBs
following self-test. The initialization performed for each DWMBB is:

1 The BI Starting Address Register (bb+20) and the BI Ending Address
Register (bb+24) are initialized to the starting and ending limits of
XMI memory (under 512 Mbytes).

2 The BICSR (bb+04) has its BI Broke bit cleared.

3 The DMA-B Transmit Buffer is disabled under these conditions:

• The DWMBB/A module Device Register shows less than 10
(decimal).

• The system contains five or more XMI commanders and the
DWMBB/B module Device Register shows a revision of less than
0A (hex).

If a DWMBB/A module fails its self-test, as indicated by its XBER<STF>
being set, the BP asserts its own XBER<XBAD> bit to drive the XMI BAD
L line.

2.8.2.9 DWMVA Configuration
The console program performs minimal initialization of the DWMVAs
following self-test.

If a DWMVA/A module fails its self-test, as indicated by its XBER<STF>
being set, the BP asserts its own XBER<XBAD> bit to drive the XMI BAD
L line.

2–213

KA66A CPU Module

2.8.3 Bootstrapping or Restarting the Operating System

A VAX processor can be in one of these five major states:

• Powered off.

• Bootstrapping (which is attempting to load and start) the operating
system. If the memory has lost power before bootstrapping starts, it is
a "cold start." If the memory’s contents are valid because of the battery
backup option, it is a "warm start."

• Halted.

• Restarting a halted operating system.

• Running.

It is the console program that bootstraps a copy of the operating system
from a tape, disk device, or CD server, and can attempt to restart an
existing memory-resident copy of the halted operating system.

Only the boot processor (BP, also called the primary processor) can execute
a BOOT command or perform the automatic bootstrap sequence. Nonboot
processors (also called secondary processors) remain in console mode
awaiting further commands.

Only the BP attempts a bootstrap following a power-up. If the control
panel lower key switch is set to Auto Start, the BP restarts and attempts a
bootstrap. Any nonboot processors are in a halt until the operating system
starts the nonboot processors by passing START commands through the
console communications area (CCA). The nonboot processors do not restart
system software unless the control panel lower key switch is set to Auto
Start.

2.8.3.1 Operating System Restart
The boot processor console program attempts to start/restart the operating
system whenever one of the following events occurs:

• Power is restored to the processor. If the memory was kept valid by
the optional battery backup, it is a warm start; otherwise, it is a cold
start.

• A system reset occurs. This is treated as a cold start.

• The running processor halts due to an error halt. This is a restart. A
CTRL/P from the console terminal is not considered an error halt.

Restart is suppressed if the control panel key switches are set to Enable
and Halt.

A nonboot processor console program attempts a restart following an
error halt only if the control panel lower key switch is in the Auto Start
position. For all other halt conditions, the BP is responsible for restarting
the nonboot processor.

2–214

KA66A CPU Module

Restart of the operating system is controlled by a memory data structure
called the restart parameter block (RPB), constructed by the operating
system. The RPB is a page-aligned structure. The console program’s
warm start code searches memory for an RPB and, if a valid RPB is
found, restarts the operating system at an address stored in the RPB.
Figure 2–24 shows the RPD format.

Figure 2–24 Restart Parameter Block Format

PHYSICAL ADDRESS OF RPB

PHYSICAL ADDRESS OF RESTART ROUTINE

CHECKSUM OF THE FIRST 31 LONGWORDS OF RESTART ROUTINE

SOFTWARE RESTART IN PROGRESS FLAG BIT<0>

msb−p354−90

The algorithm used to locate the RPB is:

1 Examine the first longword of each page of memory for a location that
contains its own physical address. If none is found, the search fails.

2 Test that the second longword of the page contains a valid non-zero
physical address. If this test fails, resume Step 1.

3 Obtain the restart address from the second longword. Calculate the
signed longword sum of the first 31 longwords of the restart routine,
ignoring overflows. If this value does not match the contents of the
third longword of the page, resume Step 1.

If all the above tests pass, a valid RPB has been found.

The console program also keeps internal flags to indicate that a restart
is in progress. There is one flag for each processor, located at CCA$Q_
RESTARTIP, in the CCA. These flags allow the console to avoid repeated
attempts to restart a failing system. The operating system clears these
flags following the successful restart of a processor.

2.8.3.2 Failing Restart
If the restart of a boot processor fails, a message is displayed on the
console terminal and a bootstrap is attempted. A failed restart is a serious
condition and causes the other processors to abandon whatever is still
running.

If a nonboot processor’s restart fails, the console program examines
the CCA$_SECSTART field of the CCA. The console program forces a
bootstrap in the same manner as for a BP if the bit corresponding to the
failing processor is clear. If this bit is set, the console program does not
force a bootstrap and the failing processor enters console mode.

2–215

KA66A CPU Module

The CCA$Q_SECSTART bits are set by the operating system when it
attempts to start a nonboot processor. The operating system clears these
bits when it is satisfied that the nonboot processor has successfully started
executing.

The following scenario, which is peculiar to multiprocessors, is prevented
by the CCA$Q_SECSTART bits:

1 A nonboot processor encounters an error halt and then fails to restart.

2 The console program forces a bootstrap.

3 The BP boots and begins running the operating system.

4 The boot processor starts the defective nonboot processor if the nonboot
processor passed CPU self-test.

5 The nonboot processor repeats its error halt and fails to restart.

6 The console program again forces a bootstrap and the sequence
repeats.

NOTE: A nonboot processor cannot directly perform a reboot because
it cannot notify the other nonboot processors that an expected
console entry is planned. If the location of the BP changed during
the system reset, the fact that a boot was in progress could be
lost. To avoid this problem, a nonboot processor forces the boot
processor into console mode (via NHALT) and then signals through
the CCA that a bootstrap is needed.

2.8.3.3 Restart Parameters
The console program transfers control to the restart address when a valid
RPB is found. The console program then passes these restart parameters
in the GPRs, as specified by the VAX Architecture Reference Manual:

GPR10 – Halt PC

GPR11 – Halt PSL

GPR12, Argument Pointer – Halt code

GPR14, Stack Pointer – Address of the RPB + 512

2.8.3.4 Operating System Bootstrap
The console program causes the BP to attempt to bootstrap the operating
system whenever one of the following events occurs:

• The control panel is Enabled and the BOOT command is typed on the
console terminal.

• A restart is attempted and fails.

• A power-up occurs when the lower key switch is in the Auto Start
position.

Bootstrap attempts to load the primary system bootstrap program, VMB,
into memory and begin its execution. VMB is loaded from the device
specified by the BOOT command or from a default device recorded in the
EEPROM. The VAX 6000 Model 600 uses a set of minimal device handler

2–216

KA66A CPU Module

routines, called boot primitives, to read VMB from the boot device, a
technique called "bootblock" booting.

The console program saves the target device information in system control
RAM as the first phase of bootstrap. The target device information is
propagated to all CPUs in the system since the location of the BP can
change after a system reset. This causes all processors, memories, and
I/O adapters to perform self-test, with the memories being tested as fast
as possible. When the console program is reentered, following the reset,
it determines that there was an "expected entry," and continues with the
bootstrap.

The second phase of bootstrap begins as the console program searches
tables in the EEPROM and then the ROM to locate a boot primitive that
matches the specified device as the first phase of bootstrap. If a suitable
primitive is found, the target device information is saved in GPRs and
control transfers to the primitive.

If the boot device is a disk, the primitive loads logical block zero (the
"bootblock") into memory and transfers control to it. The bootblock
contains code giving the location and size of the VMB image on disk.
The bootblock code uses a service routine in the boot primitive to read
each block of VMB into memory. If the target device is not a disk, the boot
primitive must know how to ask for VMB from the device.

Once VMB is loaded, the console program or the boot block passes control
to it. The boot primitive preserves the boot parameters stored in the
GPRs.

A bootstrap can also be triggered by the operating system, via the CCA$V_
REBOOT flag in the CCA. This bit is only recognized by the BP.

2.8.3.5 Boot Algorithm
The console maintains a "bootstrap in progress" flag, stored at CCA$V_
BOOTIP. This "cold start" flag is used to prevent repeated attempts to
automatically bootstrap a failed system.

This algorithm is used to perform the system bootstrap:

1 If this boot attempt is a result of a console BOOT command, skip to
Step 3.

2 If the CCA$V_BOOTIP flag is set, the boot fails.

3 Set the CCA$V_BOOTIP flag.

4 Store the boot device and parameters in system control RAM on all
processors in the system and force a system reset.

5 When the console program is reentered on the BP, resume the
bootstrap at this point.

6 Starting at location zero, search for the first page-aligned block of 256
Kbytes of good memory. If such a block cannot be found, the boot fails.
This search is performed by scanning the bitmap built during memory
configuration.

2–217

KA66A CPU Module

7 Search the boot primitive tables in the EEPROM and ROM, in that
order, for a primitive that matches the specified boot device. If none is
found, the bootstrap fails.

8 Load the GPRs with the boot parameters in the primitive.

9 The console initializes the registers, as described in Section 2.8.2.2.

10 Transfer control to the boot primitive.

11 Transfer control to the memory image of VMB or the boot block at the
address loaded in the SP.

If the bootstrap fails, the console program displays a message on the
console terminal and then displays the console prompt. If the bootstrap
succeeds, the operating system clears CCA$V_BOOTIP.

2.8.3.6 Boot Parameters
The console program loads parameters into the GPRs before passing
control to VMB. These parameters describe the boot device and any
bootstrap options that are to be used. Table 2–34 shows how the registers
are used.

Table 2–34 Boot Parameters Loaded into GPRs

Register Bits Description

GPR0 <7:0> VMB device type code, supplied by the boot primitive

GPR1 <7:4> XMI node number of the boot adapter

<3:0> VAXBI node number (if necessary)

GPR2 <15:0> Remote (HSC) node numbers, if the Boot/Node qualifier
was specified

GPR3 Boot device unit number

GPR4 Reserved

GPR5 Software boot control flags

GPR6 Used by the boot primitive to pass information to the
bootblock program

GRP7 Physical address of the CCA

GPR8 Reserved

GPR9 Reserved

GPR10 The halt PC

GPR11 The halt PSL

AP The halt code

FP Reserved

SP Address of the 256-Kbyte block of good memory + 512

2–218

KA66A CPU Module

2.8.3.7 Bootstrap Software Sequence
To determine whether the system time is accurate, the following sequence
needs to be followed. See Section 2.5.3 for details on the watch chip.

1 Read the Valid bit in CSR D to determine whether the contents of the
watch chip are correct.

2 If Valid is read as one, read the Busy bit in CSR A. If Valid is read as
zero, go to Step 5.

3 If Busy is zero, read the watch chip date and time registers and
convert the time to the 32-bit format.

4 If Busy is one, wait until it is zero and then go to Step 3.

5 If Valid is read as zero, prompt the operator for the date and time.
Then convert the date and time to the watch chip register formats and
load the watch chip as follows:

— Write one to CSR B, bit <7> (Off). Write bits <6:0> as shown in
Figure 2–18 at the same time.

— Initialize CSR A as shown in Figure 2–17.

— Write the date and time in the appropriate registers.

— Start the watch chip by writing zero to CSR B, bit <7> Off. Write
bits <6:0> as shown in Figure 2–18 at the same time.

2–219

KA66A CPU Module

2.9 Interprocessor Communication Through the Console Program

Each CPU of a multiprocessor system must communicate with the
other CPUs and the operating system. This section describes the
interprocessor communication for a VAX 6000 Model 600 system.

The console program runs on each processor of a multiprocessor VAX 6000
Model 600 system. These copies of the console program must be able to
communicate with each other and with the operating system.

When two processors needing to communicate are running, that is, not in
console mode, the communications take place using mechanisms provided
by the operating system. When one, or both, of the processors is in console
mode, communications take place using a shared data structure called the
console communications area (CCA).

The boot processor (BP) controls the console terminal and, therefore,
most of the communication in the VAX 6000 Model 600. There is no
communication between secondary (nonboot) processors.

2.9.1 Required Communications Paths

A processor can be in one of four communication states: a running BP, a
BP in console mode, a running nonboot processor, or a nonboot processor
in console mode. The following are the communication paths:

1 Running processor to running processor, independent of boot or
nonboot.

The console program is not involved. The processors are supported by
the communications mechanisms within the operating system. These
paths are used even when the communication is related to the console
program. For example, when the system time is modified, the new
time must be stored in the time-of-year clock on each processor. The
operating system uses its own method to examine or propagate this
information.

A special case of communications on these paths involves the XDELTA
system debugger when it is entered on a nonboot processor. The
operating system is responsible for passing characters to and from the
boot processor and, thus, to the console terminal.

2 Running boot processor console program to/from nonboot processor
console program.

The operating system on the BP must send complete console
commands to the nonboot console, such as to start or stop the
nonboot processor. The nonboot console program must be able to
send responses (human readable messages) to the operating system
on the boot processor, such as when the nonboot processor encounters

2–220

KA66A CPU Module

an error halt. The nonboot processor can send these responses at any
time.

The nonboot processor does not send commands to the boot processor,
and the BP does not send responses to the nonboot processor.

3 Console mode BP to/from running nonboot processor.

Whenever the boot processor halts, the nonboot processors eventually
wait for resources locked by the BP. The boot processor console
supports receiving complete responses from the running nonboot
processor. If the halted BP attempts to send a command other than a
STOP to a running processor, that command will time out.

4 Boot processor console to/from nonboot processor console—two different
types of communication.

In the first type, the boot console sends complete commands to the
nonboot processor, allowing the BP console to update the copy of
a parameter stored on each processor. An example of this type of
communication is to synchronize the console terminal baud rate
whenever it is changed on the BP. The nonboot consoles send complete
responses to the BP console to report, for example, a processor halt.
Since responses arrive complete, there are no interleaving messages on
the console terminal.

The nonboot processor does not send commands, and the boot processor
does not send responses.

In the second type, the "Z" command allows the boot processor to
communicate with VAXBI devices and with other XMI nodes. The
consoles support character-at-a-time communications to implement the
"Z" command, which transfers characters to and from another node
so that the other node appears to be directly connected to the console
terminal. The boot processor sends single characters of a command
to the nonboot processor. The receiving nonboot processor performs
all the processing of the input characters, including echoing and line
editing. The nonboot processor sends single characters of a response to
the BP for immediate display on the console terminal.

2.9.2 Console Communications Area

The console communications area (CCA) is the shared data structure in
high physical memory used for communications between console programs.
It consists of a one-page header followed by a variable number of pages
containing buffers for each node. The header contains status information
that must be visible systemwide. The buffers, one pair for each XMI node,
are used for passing messages between processors.

The CCA is initialized by the boot (primary) processor at system reset. It
is allocated beginning on a page boundary from the highest addressed page
of system memory that can be located by the boot processor. The header
lies in the lowest addressed page of the CCA, followed by buffers.

2–221

KA66A CPU Module

The CCA is not initialized under any other console entry conditions (node
reset or halts). The address of the CCA is obtained from the console state
remaining in system support RAM.

Diagnostic tests that must test or reconfigure memory could overwrite
the CCA. If this should happen, the diagnostic tests must observe the
following conventions:

• The diagnostic tests can only be run from the BP.

• The diagnostic tests must force the nonboot processors to stop polling
the CCA.

• The diagnostic tests must rebuild the CCA after completing testing.

• The nonboot processors must wait for a signal passed through the
XGPR register before locating the new CCA.

The location of the CCA is passed to the operating system at bootstrap
time through GPR7. During system initialization, each processor is
triggered to search for the CCA. This search starts at the highest
addressed memory that can be located by each processor and then works
backward. If a processor cannot locate the CCA, it enters an endless loop
and cannot participate in the system. The algorithm used by the console
program to the existing CCA is as follows:

1 Next = highest memory address in the system + 1 – 512.

2 If next <> 0, then "Failed to find CCA," and Exit.

3 If the contents of (next + CCA$L_BASE) <> next, then goto Step 7.

4 If the contents of (next + CCA$W_IDENT) <> "CC," then goto Step 7.

5 Compute sum of bytes at (next) through
the contents of (next + CCA$B_CHKSUM – 1) ignoring overflow.

6 If sum = the contents of (next + CCA$B_CHKSUM), then "Exit with
CCA found at next."

7 Next = next – 512.

8 Goto Step 2.

The overall layout of the CCA is shown in Figure 2–25. The contents of
the fields are described in Table 2–35.

2–222

KA66A CPU Module

Figure 2–25 CCA Layout

Offset (hex)

CCA$L_BASE 00

04

08

0C

14

1C

24

28

2C

30

34

3C

44

48

4C

50

58

60

E0

E8

F0

130

170

CCA$W_IDENT CCA$W_SIZE

CCA$B_REV CCA$B_HFLAG CCA$B_CHKSUM CCA$B_NPROC

CCA$Q_CONSOLE

CCA$L_BITMAP_SZ

CCA$L_BITMAP_CKSUM

CCA$R_RESERVED0 CCA$B_TK_NODE

CCA$W_SSN_EXTENSION

CCA$Q_USER_HALTED

msb−p568−91

CCA$Q_READY

CCA$B_POWER

CCA$Q_ENABLED

CCA$Q_SECSTART

CCA$L_CONSOLE_XGPR

CCA$B_PRIMARY

CCA$Q_HW_REVISION

CCA$L_BITMAP

CCA$Q_RESTARTIP

CCA$L_ENTRY_XGPR

CCA$L_RESERVED1

CCA$L_RESERVED2

CCA$Q_SERIALNUM

CCA$Q_RESERVED3

CCA$Q_RESERVED4

CCA$L_RESERVED5

2–223

KA66A CPU Module

Table 2–35 CCA Fields

Field Description

CCA$L_BASE Physical address of the base of the CCA.

CCA$W_IDENT The ASCII characters "CC".

CCA$W_SIZE The size, in bytes, of the CCA.

CCA$B_REVISION The revision number for the CCA.

CCA$B_HFLAG Systemwide status flags:

7 0

CCA$V_BOOTIP

Reserved

CCA$V_REBOOT
CCA$V_REPROMPT
CCA$V_DISABLE_MSG_2NDARY
Reserved

msb−p567−91

CCA$V_DISABLE_
MSG_2NDARY

This bit is used by the console when the primary is
broadcasting the BOOT command to the secondaries and
cannot process messages from the secondaries. The
bit signals to the secondaries not to issue any console
messages.

CCA$V_REPROMPT This bit is used by the console program to support the SET
CPU command.

CCA$V_REBOOT This bit is tested whenever the console is entered as a result
of a CTRL/P or a node halt. If the bit is set, the operating
system is requesting a reboot. The system is rebooted from
the default boot device. The front panel lower key switch
does not inhibit such a reboot. This bit is ignored if the key
switch is in the Secure position.

CCA$V_BOOTIP When set, a bootstrap is being attempted. This prevents
repeated attempts to bootstrap after a failure.

CCA$B_CHKSUM Checksum of the first CCA$B_CHKSUM-1 bytes of the CCA. Computed by doing
signed, byte addition, ignoring any overflow.

CCA$B_NPROC The number of processors supported by the CCA. The normal value is 16. The
maximum value is 64, limited by the bitmasks in the other fields.

CCA$Q_READY A bitmask of the processors that have data posted in their transmit buffer for
processing by the boot processor. This field allows the operating system to use a
Find First Set (FFS) instruction to locate any pending messages. The bits and nodes
are numbered, starting with zero.

CCA$Q_CONSOLE A bitmask indicating the processors known to be in console mode. The appropriate bit
is set and cleared by each processor as it enters and leaves console mode.

2–224

KA66A CPU Module

Table 2–35 (Cont.) CCA Fields

Field Description

CCA$Q_ENABLED A bitmask indicating which processors are enabled to leave console mode. A
processor sets or clears its bit during console initialization, based on a bit stored
in the EEPROM. The EEPROM bit is set with the SET CPU command.

CCA$L_BITMAP_SZ The size, in bytes, of the physical memory bitmap. The bitmap is always an even
number of longwords in length.

CCA$L_BITMAP The physical address of the physical memory bitmap. The bitmap contains one bit
for each page of physical memory present on the system. The bit is clear if the page
contains a hard error or if the page is in use by the bitmap or CCA. The bitmap is
always page aligned.

CCA$L_BITMAP_
CKSUM

Reserved; not used.

CCA$R_RESERVED0 Reserved; not used.

CCA$B_TK_NODE This field is used to pass to the operating system the XMI (in bits <7:4>) and VAXBI
(in bits <3:0>) node numbers of the adapter that controls the TK tape drive. This field
is set initially from a value stored in the EEPROM. If the initially specified node does
not contain a TK tape drive adapter, the console program searches each VAXBI for a
suitable adapter. The search starts with the highest XMI and from the highest VAXBI
node ID on each VAXBI. The field sets to the location of the adapter, or zero if no
adapter is found.

CCA$Q_SECSTART A bitmask indicating which processors are currently being started by the boot
processor. The console program uses this information to avoid repeatedly forcing
a bootstrap. This field is set and cleared by the operating system.

CCA$Q_RESTARTIP A bitmask indicating which processors are currently attempting restarts. Multiple flags
are maintained to allow simultaneous error restarts to be performed. The operating
system clears these fields if restart or boot succeeds.

CCA$W_SSN_
EXTENSION

The highest two bytes of the serial number.

CCA$B_POWER An ASCII character representing the type of power system.

CCA$B_PRIMARY The XMI node number of the primary processor. The console selects a primary or boot
processor. If a reboot occurs, the console references these bits to determine which
processor is the primary.

CCA$L_RESERVED1 Reserved; not used.

CCA$L_RESERVED2 Reserved; not used.

CCA$Q_USER_HALTED A bitmask indicating which processors entered console mode as a result of user
intervention (CTRL/P or STOP command). This information allows the operating
system to make decisions about timeouts in a symmetric multiprocessing configuration.

CCA$Q_SERIALNUM The system serial number. This field contains the least significant eight characters of
the serial number string stored in the EEPROM.

CCA$Q_HW_REVISION Consists of a 16-quadword array containing compatibility and module revision
information for the processors. Module revisions are an ASCII string. The quadword is
zero for nonprocessor nodes. The layout of each quadword is:

Compat MUST BE ZERO

Module Revision

2–225

KA66A CPU Module

Table 2–35 (Cont.) CCA Fields

Field Description

The layout of the Compat field is:

7 4 3 0

MBZ

COM_GRP

COM_GRP Compatibility Group. This binary field is used by the operating
system to determine if all processors in the system are
hardware compatible. Any processors not in the same group
as the boot processor are not started.

Module Revision A four-character ASCII representation of the module revision.
If the revision is only a single alphabetic character, the
string begins with a leading blank. The alphabetic part of
the revision is used to set the revision field of the CPU’s
XDEV<DREV> field. This field is set based on values stored
in the EEPROM. If the EEPROM is unusable, the Module
Revision is zero and the chip revision is set to 0 (hex).

CCA$Q_RESERVED3 Reserved; not used.

CCA$Q_RESERVED4 Reserved; not used.

CCA$L_RESERVED5 Reserved; not used.

CCA$L_CONSOLE_
XGPR

An array of 16 longwords containing the XGPR value used while the console is
operating.

CCA$L_ENTRY_XGPR The XGPR value used by the system software before console entry.

The CCA contains a buffer area for each possible XMI node. Each buffer
area contains fields to support both message-oriented and character-at-a-
time communications.

The address of the buffer area for XMI node n is given by:

Buffern = Base address of CCA + 512 + (n * 168)

The layout of the buffer area is shown in Figure 2–26, and the buffer fields
are described in Table 2–36.

2–226

KA66A CPU Module

Figure 2–26 Layout of XMI Node Buffers

Offset (hex)

msb−p356−90

200
CCA$R_BUFFER0

16−entry table of communication buffers indexed
by XMI node.

BASE = physical address of each buffer =
CCA$L_BASE + CCA$R_BUFFER0 + (XMI Node *

CCA$S_BUFFER0)

CCA$B_ZSRC CCA$B_ZDEST CCA$B_FLAGS BASE + 00

BASE + 04

BASE + 08

BASE + 58

CCA$W_ZRXCD CCA$B_RXLEN

CCA$T_TX
(80 bytes)

.

.

.

CCA$B_ZNID

CCA$B_TXLEN

CCA$T_RX
(80 bytes)

.

.

.

Table 2–36 Buffer Fields

Field Description

CCA$R_BUFFER0 A 16-entry table of communication buffers indexed by the XMI node. See Figure 2–26 for
more information.

CCA$B_ZNID If CCA$B_ZNID is non-zero, this field contains the XMI node number of the originator of
the Z connection.

CCA$B_ZSRC If CCA$B_ZSRC is non-zero, this field contains the XMI node number of the node
transmitting "Z" command data to this node.

CCA$B_ZDEST When CCA$V_ZDEST is non-zero, this field contains the XMI node number of the node
receiving the "Z" command data that this node is sending. If the low four bits of this field
identify a node that is a DWMBB, the high order four bits contain the destination VAXBI
node number.

CCA$B_FLAGS Status flags:

7 0

CCA$V_RXRDY
CCA$V_ZDEST
CCA$V_ZSRC
CCA$V_ZALT
Reserved

msb−p388−91

2–227

KA66A CPU Module

Table 2–36 (Cont.) Buffer Fields

Field Description

CCA$V_ZALT When set, the target of the current "Z" command cannot
communicate through the CCA. The target is either a non-
processor XMI node or a VAXBI node and must be accessed
using alternate RXCD protocol, as described in the VAXBI
System Reference Manual.

CCA$V_ZSRC When set, this node is receiving "Z" command data from the
node listed in CCA$B_ZSRC. This bit is always set or cleared
by the node originating the "Z" command.

CCA$V_ZDEST When set, this node is sending "Z" command data to the node
listed in CCA$B_ZDEST.

CCA$V_RXRDY When set, there is a complete message in the CCA$T_RX
buffer. The equivalent bit for CCA$T_TX is in CCA$Q_READY
of the CCA header.

CCA$W_ZRXCD This field is used for character-at-a-time communication in the same manner as a VAXBI
RXCD Register. The layout is:

1
5

1
4

1
2

1
1 8 7 0

MBZ

CCA$B_ZDATA
CCA$V_ZNODE
CCA$V_ZRDY

msb−p389−91

CCA$V_ZRDY When this bit is set, there is valid data in the other CCA$W_
ZRXCD fields.

CCA$V_ZNODE When CCA$V_ZRDY is set, this four-bit field contains the XMI
node number of the node that transmitted the data in CCA$B_
ZDATA.

CCA$B_ZDATA When CCA$V_ZRDY is set, this field contains one byte of "Z"
command data being sent to this node.

CCA$B_RXLEN If CCA$V_RXRDY is set in CCA$B_FLAGS, then this field contains the length, in bytes,
of the message in CCA$T_RX.

CCA$B_TXLEN If the bit corresponding to this node is set in CCA$Q_READY, then this field contains the
length, in bytes, of the message in CCA$T_TX.

CCA$T_TX This buffer is used by the node to transmit a response to the BP. Only response data is
passed through this buffer since a nonboot processor does not send commands to the
boot processor.

CCA$T_RX This buffer is used by the node to receive a command from the boot processor. Only
command data is passed through this buffer since a nonboot processor does not receive
responses from the BP. Commands must end with a carriage return.

2–228

KA66A CPU Module

2.9.3 Sending a Message to Another Processor

The following two examples show how the CCA is manipulated when a
complete message is sent between two processors.

For the first example, the boot processor, located at XMI node 1, sends a
START command to the nonboot processor, located at XMI node 4.

1 Node 1 examines the CCA$V_RXRDY bit in the CCA buffer area for
node 4. If the bit is clear, then go to Step 3.

2 Node 1 polls the bit until it clears or until a timeout of 12 seconds is
reached. If a timeout occurs, an error is reported.

3 Node 1 moves the text of the START command into the CCA$T_RX
buffer for node 4.

4 Node 1 sets the length of the command into the CCA$B_RXLEN field
for node 4.

5 Node 1 sets the CCA$V_RXRDY bit for node 4 to indicate that a
command is waiting.

6 Whenever node 4 enters its main console loop, it will eventually check
for commands to execute. It will examine its local command buffer and
then check its CCA$V_RXRDY bit for a command from another node.

7 Node 4 will now process the command contained in its CCA$T_RX
buffer.

8 After reading the command, node 4 then clears its CCA$V_RXRDY bit,
indicating that the buffer is again available.

2–229

KA66A CPU Module

For the second example, the nonboot processor, which is located at XMI
node 4, halts, enters console mode, and sends a "halted" message to the
boot processor, located at XMI node 1.

1 Node 4 examines bit 4 of the CCA$Q_READY field. If the bit is clear,
then go to Step 3.

2 Node 4 polls this bit until it clears.

3 Node 4 moves the text of its response into its CCA$T_TX buffer.

4 Node 4 sets the length of the response in its CCA$B_TXLEN field.

5 Node 4 sets bit 4 in CCA$Q_READY to indicates that a response is
waiting.

6 Node 4 issues an IVINTR interrupt to node 1. If node 1 is running,
this alerts the operating system that a response is waiting. Node
4 polls CCA$Q_READY until bit 4 clears, preventing the nonboot
processor from performing any action that might cause the response to
be lost before the BP can display it.

7 If node 1 is running, it responds to the IVINTR and eventually checks
for console responses, using an FFS instruction to check CCA$Q_
READY. If node 1 was in console mode, it would be polling CCA$Q_
READY and discover bit 4 set.

8 Node 1 (either the operating system or the console program) processes
the response from the CCA$T_TX buffer for node 4. If the console
program is running, it displays the response on the console terminal.

9 Node 1 clears bit 4 in CCA$Q_READY, indicating that the buffer is
again available.

2–230

KA66A CPU Module

2.10 Error Handling

This section describes the system-specific error exceptions and
interrupts. It is organized with respect to the SCB vectors through
which the event is dispatched. The SCB layout and SCB vector
formats, as well as the exceptions and interrupts that result
from normal system operation, are described in Section 2.2.5
and Section 2.2.6.

Table 2–37 describes the levels of hardware-detected errors by level of
severity. Table 2–38 lists the internally generated system control block
(SCB) entry points. The complete list of supported SCB vectors is in
Section 2.2.6. Table 2–39 lists the categories of errors, organized by entry
point.

Refer to these sections:

• Section 2.2.6 for an explanation of the SCB.

• Section 2.2.5 for an explanation of exceptions and interrupts.

Table 2–37 Hardware-Detected Errors

Error Description

Console halt A halt to console mode is caused by one of the errors listed in
Section 2.10.5. For some halt conditions, the console prompts for a
command and waits for operator input. For other halt conditions, the
console attempts a system restart or a system bootstrap.

Machine
check

A hardware error occurred synchronously with the execution of
instructions. The error can only occur for the instruction currently
executing in the Ebox. Instruction-level recovery and retry may be
possible.

Kernel stack
not valid

During exception processing, a memory management exception
occurred while trying to push information on the kernel stack.

Power fail The power supply asserted the power fail signal XMI AC LO L.

Soft error
interrupt

A hardware error occurred that was not fatal to the process or
system. System error software should be able to recover and
continue.

Hard error
interrupt

A hardware error occurred asynchronously with respect to the
execution of instructions. In most cases, a hard error interrupt
signifies a serious system error, where data is lost or state is
corrupted, and instruction-level recovery may not be possible.
However, there are some recoverable system errors that are flagged
by a hard error interrupt.

2–231

KA66A CPU Module

Table 2–38 NVAX Chip Internally Generated SCB Entry Points

SCB Index
Mnemonic (hex) Description

SCB_MACHCHK1 04 Machine check

SCB_KSNV1 08 Kernel stack not valid

SCB_PWRFL1 0C Power fail

SCB_RESPRIV 10 Reserved/privileged instruction

SCB_XFC 14 Extended function call (XFC) instruction

SCB_RESOP 18 Reserved operand

SCB_RESADD 1C Reserved addressing mode

SCB_ACV 20 Access control violation

SCB_TNV 24 Translation not valid

SCB_TP 28 Trace pending

SCB_BPT 2C Breakpoint trace fault

SCB_ARITH 34 Arithmetic fault

SCB_CHMK 40 Change mode to kernel

SCB_CHME 44 Change mode to executive

SCB_CHMS 48 Change mode to supervisor

SCB_CHMU 4C Change mode to user

SCB_SMERR1 54 Soft error interrupt

SCB_HMERR1 60 Hard error interrupt

SCB_IPLSOFT 80 – BC Software interrupt levels

SCB_INTTIM C0 Interval timer interrupt

SCB_EMULATE C8 Emulated instruction trap (PSL<FPD>=0)

SCB_EMULFPD CC Emulated instruction trap (PSL<FPD>=1)

1This section describes the entry-point vector in detail.

Table 2–39 Error Summary Notification by Entry Point

SCB
Index Entry Point Error Categories

N/A Console halt Interrupt stack not valid, kernel-mode halt, double error halt, illegal SCB vector, node
halt, system reset, initial power-up, HALT L assertion

04 Machine
check

Memory management interrupt
Microcode/CPU errors
CPU stall timeout
TB parity errors
VIC tag or data parity errors
B-cache uncorrectable data read errors
Memory/NDAL read errors (NO ACK, timeout, or RDE from system)

08 Kernel stack
not valid

2–232

KA66A CPU Module

Table 2–39 (Cont.) Error Summary Notification by Entry Point

SCB
Index Entry Point Error Categories

0C Power fail Power fail notification by XMI AC LO L

54 Soft error
interrupt

VIC tag or data parity errors
P-cache tag or data parity errors
B-cache uncorrectable tag errors
B-cache uncorrectable data read errors
B-cache uncorrectable data errors in writebacks
B-cache correctable tag and data errors
Memory/NDAL read errors (NO ACK, timeout, or RDE on reads)
NDAL parity errors
NEXMI and XMI "soft" error notification by S ERR L

60 Hard error
interrupt

B-cache uncorrectable data errors on write operations
NDAL NO ACK on writes
B-cache fill errors in NDAL ownership reads after merging write data in the cache data
RAMs
NEXMI and XMI "hard" error notification by H ERR L

All errors (except those leading to a console halt) go through SCB vector
entry points and are handled by service routines provided by the operating
system. A console halt, on the other hand, transfers control to a hardware-
prescribed I/O-space address. Software driven recovery or retry is not
recommended for errors resulting in console halt.

System error handling can be logically divided into these steps:

1 State collection

2 Analysis

3 Recovery

4 Retry

2.10.1 Error State Collection

All relevant state must be collected before error analysis can begin. The
stack frame provides the PC/PSL pair for all exceptions and interrupts.
For machine checks, the stack frame also provides details about the error.

Besides the stack frame, machine checks and hard and soft error
interrupts usually require analysis of other registers. The state of
some registers should be saved prior to analysis so that analysis is not
complicated by changes in state in the registers as the analysis progresses.
Errors incurred during analysis and recovery can be processed within that
context.

The state of the following registers should be read and saved:

Ibox
ICSR: Ibox Control and Status Register
VMAR: VIC Memory Address Register

2–233

KA66A CPU Module

Ebox
ECR: Ebox Control Register

Mbox
TBSTS: TB Parity Status Register
TBADR: TB Parity Address Register
PCSTS: P-Cache Status Register
PCADR: P-Cache Parity Address Register

Cbox
CCTL: Cbox Control Register
BCEDSTS: Backup Cache Error Data Status Register
BCEDIDX: Backup Cache Error Data Index Register
BCEDECC: Backup Cache Error Data ECC Register
BCETSTS: Backup Cache Error Tag Status Register
BCETIDX: Backup Cache Error Tag Index Register
BCETAG: Backup Cache Error Tag Register
CEFSTS: Cbox Error Fill Status Register
CEFADR: Cbox Error Fill Address Register
NESTS: NDAL Error Status Register
NEOADR: NDAL Error Output Address Register
NEOCMD: NDAL Error Output Command Register
NEICMD: NDAL Error Input Command Register
NEDATHI: NDAL Error Data High Register
NEDATLO: NDAL Error Data Low Register

NEXMI
XBER: Bus Error Register
XBEER: Bus Error Extension Register
XFADR: Failing Address Register
XFAER: Failing Address Extension Register
NSCSR: Node-Specific Control and Status Register
WFADR0: Writeback 0 Failing Address Register
WFADR1: Writeback 1 Failing Address Register
NCSR: NDAL Control and Status Register

For the purposes of the rest of this section, it is assumed that each of these
states is saved in a variable whose name is constructed by prepending "S_"
to the register name. For example, the ICSR would be saved in the
variable S_ICSR.

Memory allocation for each saved register should be .LONG, and in some
cases registers may need to be saved twice since the state may change due
to a more severe error.

Example 2–1 shows the collection of error state. Note the handling of
error registers that might be overwritten in the event of a more severe
error. For example, after a correctable B-cache data RAM error, BCEDIDX
would hold the index of the correctable error. If an uncorrectable B-cache
data RAM error occurs, BCEDIDX would be reloaded with the index of
the more severe uncorrectable error. To ensure the data in BCEDIDX
and BCEDECC matches the report in BCEDSTS, a conditional test is
performed and these two registers are recaptured if both an uncorrectable

2–234

KA66A CPU Module

and correctable error are reported in BCEDSTS. Otherwise, BCEDIDX
and BCEDECC could reflect a previous correctable error even though
BCEDSTS reports a more severe error.

Example 2–1 Error State Collection

;Save all error state upon entry to error handling routine

SAVE_STATE:

MFPR #PR19$_ICSR,S_ICSR ;IBOX
MFPR #PR19$_VMAR,S_VMAR

MFPR #PR19$_ECR,S_ECR ;EBOX

MFPR #PR19$_TBSTS,S_TBSTS ;MBOX
MFPR #PR19$_TBADR,S_TBADR
MFPR #PR19$_PCSTS,S_PCSTS
MFPR #PR19$_PCADR,S_PCADR

MFPR #PR19$_CCTL,S_CCTL ;CBOX
MFPR #PR19$_BCEDIDX,S_BCEDIDX
MFPR #PR19$_BCEDECC,S_BCEDECC
MFPR #PR19$_BCEDSTS,S_BCEDSTS
BICL3 #^C<BCEDSTS$M_CORR ! BCEDSTS$M_LOCK>,S_BCEDSTS,R0
CMPL R0,#BCEDSTS$M_CORR ! BCEDSTS$M_LOCK
BNEQ 10$
MFPR #PR19$_BCEDIDX,S_BCEDIDX
MFPR #PR19$_BCEDECC,S_BCEDECC

10$: MFPR #PR19$_BCETIDX,S_BCETIDX
MFPR #PR19$_BCETAG,S_BCETAG
MFPR #PR19$_BCETSTS,S_BCETSTS
BICL3 #^C<BCETSTS$M_CORR ! BCETSTS$M_LOCK>,S_BCETSTS,R0
CMPL R0,#BCETSTS$M_CORR ! BCETSTS$M_LOCK
BNEQ 20$
MFPR #PR19$_BCETIDX,S_BCETIDX
MFPR #PR19$_BCETAG,S_BCETAG

20$: MFPR #PR19$_CEFSTS,S_CEFSTS
MFPR #PR19$_CEFADR,S_CEFADR
MFPR #PR19$_NESTS,S_NESTS
MFPR #PR19$_NEOADR,S_NEOADR
MFPR #PR19$_NEOCMD,S_NEOCMD
MFPR #PR19$_NEICMD,S_NEICMD
MFPR #PR19$_NEDATHI,S_NEDATHI
MFPR #PR19$_NEDATLO,S_NEDATLO

; Collection of system environment error registers goes here

Flushing the B-cache can cause certain errors to occur. Therefore, it is
recommeneded that the following state be collected:

From the Cbox
CCTL: Cbox Control Register
BCEDSTS: Backup Cache Error Data Status Register
BCEDIDX: Backup Cache Error Data Index Register
BCEDECC: Backup Cache Error Data ECC Register
BCETSTS: Backup Cache Error Tag Status Register
BCETIDX: Backup Cache Error Tag Index Register
BCETAG: Backup Cache Error Tag Register
NESTS: NDAL Error Status Register
NEOADR: NDAL Error Output Address Register
NEOCMD: NDAL Error Output Command Register

2–235

KA66A CPU Module

From the System Environment
All events that report an NVAX event sending a BADWDATA cycle on
the NDAL are translated to an XMI TBDATA cycle, and causes the
hexword block in the memory to be tagged as bad. Any subsequent
read of that block will result in an XMI RER (which becomes an NDAL
RDE).

For the purposes of the rest of this section, it is assumed that each of these
states is saved in a variable whose name is constructed by prepending
"SS_" to the register name. For example, the BCEDSTS register would be
saved in the variable SS_BCEDSTS. (Note that some registers are saved
immediately after the error occurred and again after the flush. These two
saved states are distinguished by the prepended "S_" in the first case and
the prepended "SS_" for the second.)

Memory allocation for each saved register should be .LONG.

Example 2–2 shows the collection of error state that would normally be
performed during, and just after, flushing the B-cache.

Example 2–2 Backup Cache Flushing and Error State Collection

AFTER_BCFLUSH:
;CBOX

MFPR #PR19$_CCTL,SS_CCTL
MFPR #PR19$_BCEDIDX,SS_BCEDIDX
MFPR #PR19$_BCEDECC,SS_BCEDECC
MFPR #PR19$_BCEDSTS,SS_BCEDSTS
BICL3 #^C<BCEDSTS$M_CORR ! BCEDSTS$M_LOCK>,SS_BCEDSTS,R0
CMPL R0,#BCEDSTS$M_CORR ! BCEDSTS$M_LOCK
BNEQ 30$
MFPR #PR19$_BCEDIDX,SS_BCEDIDX
MFPR #PR19$_BCEDECC,SS_BCEDECC

;
30$: MFPR #PR19$_BCETIDX,SS_BCETIDX

MFPR #PR19$_BCETAG,SS_BCETAG
MFPR #PR19$_BCETSTS,SS_BCETSTS
BICL3 #^C<BCETSTS$M_CORR ! BCETSTS$M_LOCK>,SS_BCETSTS,R0
CMPL R0,#BCETSTS$M_CORR ! BCETSTS$M_LOCK
BNEQ 40$
MFPR #PR19$_BCETIDX,SS_BCETIDX
MFPR #PR19$_BCETAG,SS_BCETAG

;
40$: MFPR #PR19$_NESTS,SS_NESTS

MFPR #PR19$_NEOADR,SS_NEOADR
MFPR #PR19$_NEOCMD,SS_NEOCMD

; System environment:
; collection of system environment error registers affected by a BADWDATA
: cycle from NVAX goes here

2.10.2 Error Analysis

The error condition is analyzed with the error state obtained during the
collection process. The purpose is to determine, if possible, what error
event caused the error notification, and what other errors may also have
occurred. See Section 2.10.6, Section 2.10.8, and Section 2.10.9 for guides

2–236

KA66A CPU Module

to analyze machine checks, hard error interrupts, and soft error interrupts,
respectively.

NOTE: Errors detected in or by one of the caches usually result in the
cache being automatically disabled. To minimize the possibility of
nested errors, error analysis and recovery for memory or cache-
related errors should be performed with the P-cache disabled and
the B-cache in ETM.

In some cases a notification for a single error occurs in two ways. For
example, an uncorrectable error in the B-cache data RAMs will cause a
soft error interrupt and may also cause a machine check. Software needs
to handle cases where a machine check handler clears error bits and then
the soft error handler is entered with no error bits set.

In other cases one error event results in two related reports. For example,
a B-cache uncorrectable data error during a writeback will be reported
in NESTS as a BADWDATA event and as an uncorrectable data error in
BCEDSTS. In this case, the BADWDATA event captures the full address
of the data in error. Cases like this are handled as single error events.

In general, an error reporting register can report events that lead to
machine checks, soft errors, or hard errors. A given error can result in
either a machine check or a soft error interrupt, or both. Events that lead
to hard error interrupts generally cannot also cause a machine check or
soft error interrupt. Sometimes an error event that leads to a machine
check or a soft error interrupt is closely related to an event that leads to a
hard error interrupt (for example, a B-cache fill error on the first quadword
of a fill for an OREAD done for a write causes a soft error interrupt, but
the same error on a later quadword causes a hard error interrupt).

Analysis of simultaneous errors may be impossible. However, in cases
where no single error register is used to report two errors, analysis of
multiple errors is possible. Recovery from the set of errors is accomplished
by recovering from all of them. For example, recovery from a P-cache
tag parity error and a B-cache correctable data error which are reported
together, is possible by following the recovery procedures for each error in
sequence.

2.10.3 Error Recovery

Error recovery consists of clearing any latched error state and restoring
the system to normal operation. Analysis and recovery from cache and
memory errors require special care and are discussed separately.

Recovery from multiple errors is possible when analysis is possible (the
errors are independantly reported), and when the recovery procedures
are not in conflict. All recovery procedures in this section assume only
one error is present. None of the procedures are valid in multiple error
cases without further analysis. However, in cases where no conflict exists
in the reporting of multiple errors (that is, no single error register is
used to report two errors) and recovery from each error is possible, then
recovery from the set of errors is accomplished by recovering from all of

2–237

KA66A CPU Module

them. For example, recovery from a P-cache tag parity error and a B-cache
correctable data error being reported together is possible by following the
recovery procedures for each error in sequence.

In some instances, it may be desirable to stop using the hardware that is
the source of a large number of errors. Software should maintain error
counts that can be compared against error thresholds on every error
report. If the count (per unit time) exceeds the threshold, the hardware
should be disabled.

NOTE: Hard failures of one bit in the tag store can lead to unrecoverable
errors requiring a full system crash. It would be appropriate to
have an extremely low threshold for tag store correctable errors,
especially if they recur in the same location or bit position.

NVAX use of the NDAL and XMI memory fetches is extremely
high if the B-cache is disabled. In multiprocessor systems a CPU
probably should be removed from the system rather than proceed
with the B-cache off. In a single-processor system where the NDAL
and memory are used a great deal, the performance of the I/O
subsystem may decrease when the B-cache is off.

2.10.3.1 Special Considerations when Memory Management Is Off
When memory management is turned off, a mispredicted Ibox prefetch can
cause an erroneous interrupt. If the Ibox branch prediction unit chooses
the wrong direction for a branch, and if the address of the mispredicted
fetch operand points to a nonexistent physical memory location, several
error bits will remain set in the NEXMI and Cbox error registers. There
will be a pending hard error interrupt and soft error interrupt as well.

The XBER<TTO> and XBER<CNAK> bits will show that the address
was nonexistent, and will force a hard error interrupt. The NEXMI
will have sent back an RDE to the NVAX, and thus CEFSTS<RDE>
and CEFSTS<Lock> will also be set. The Cbox will signal a soft error
interrupt for this error. The following code example shows how the error
can happen.

MOVL #^X7FFF0000, R2
...
CLRL R0

1$: TSTL R0
2$: BEQL 4$
3$: MOVL (R2), R1

...
4$: MOVL #^X1, R0

BRB 1$

In this example, R2 is first loaded with some value, then the program
continues. This could be stale data from a previous code section, or it
could be an incremented value that was legal until some final increment.
Some time later, R0 is cleared and tested. The programmer might know
that until R0 is non-zero, R2 will not be used. If R0 is equal to zero, the
Ebox will execute the code starting at the label 4$. In this example, R0 is
obviously equal to zero, and the programmer might feel confident that the
code at label 3$ will not be executed at this time.

2–238

KA66A CPU Module

The Ibox, however, might guess that the branch will not be taken, and
would then start to fetch the operand at label 3$. If we assume that the
address 7FFF 0000 is not in physical memory, the problem can be seen.
Even though the Ebox would signify a branch mispredict, the Cbox would
have sent out the nonexistent memory onto the XMI.

This error can only occur if the prefetched operand points to memory
space, and only if the instruction causes a memory read. I/O space
references are prevented from going ahead until the Ebox is actually
executing the instruction that references them, and memory writes will
not progress until the Ebox has the data to send.

When memory management is turned on, this error should not occur at
all. The memory management software should prevent any virtual address
from being mapped to a nonexistent physical address. A prefetch might
cause an erroneous access violation, but that would be cleared out when
the branch mispredict is sensed by the Ebox.

Anyone writing code with memory management off should check for this
condition, and service the erroneous interrupts (clearing the error bits)
whenever appropriate. For example, if the code is running at an elevated
IPL with memory management off, the IPL should be dropped just before
returning to the main line code. The hard error interrupt can then be
taken, the footprint analyzed, and the error bits cleared. The soft error
interrupt will be taken after returning from the hard error interrupt, and
a flag can be used to signal that there should not be any error bits left.

In those cases where it is impossible to recognize and service the error,
some methods are available to prevent the error from happening at all.

• There will be no erroneous prefetches in code that has no conditional
branches. Therefore, to prevent the error, use only in-line code or
unconditional branches during critical sequences.

• A prefetched address that is legal (not a nonexistent memory location)
and is error-free (no uncorrectable errors) will not cause a problem.
Therefore, a default value can be loaded in any register that might
be taken as an erroneous branch. It is not important what data is in
the register, only that it is an error-free memory location (or a safe I/O
location).

2.10.3.2 Cache Coherence in Error Handling
To maintain cache coherence while enabling NVAX caches, certain
procedures must be followed. Since many errors cause caches to be
disabled, and since cache and memory error recovery is normally done
with the P-cache and VIC (virtual instruction cache) off and the B-cache
in ETM, the complete cache enable procedure is done as part of recovery
from all cache and memory errors.

Once the B-cache is in ETM mode, it may not be coherent with memory
if it is reenabled before being flushed. Therefore, a B-cache flush must be
done before reenabling the B-cache after it has been in ETM.

While the B-cache is in ETM (or off), the P-cache will stay coherent with
memory. However, before the B-cache is reenabled, the P-cache must be
disabled. After the B-cache is reenabled, the P-cache must be flushed
before it is reenabled.

2–239

KA66A CPU Module

The VIC is not automatically kept coherent with memory. It is flushed as
a side effect of the REI instruction (as required by the VAX architecture).
Normally, in error recovery there is no need to flush the VIC. For
consistency and for the sake of beginning error retry in a known state,
flushing the VIC during error recovery is recommended. However, in the
event of VIC tag parity errors, a complete VIC flush procedure must be
done.

The translation buffer is not automatically kept coherent with memory.
Software uses the TBIS and TBIA functions to maintain coherence, and
the LDPCTX instruction clears the process PTEs in the TB. Normally, in
error recovery there is no need to flush the TB. For consistency and for
the sake of beginning error retry in a known state, flushing the TB during
error recovery is recommended. When a TB parity error occurs, Mbox
hardware flushes the TB by itself (via an internally generated TBIA), but
it would be appropriate for software to test the TB after a parity error.

The caches are flushed and enabled in a specific order. The ordering
is necessary for coherence between the B-cache, P-cache, and memory.
Disabling the caches should be done in the following order: first the
B-cache, then the VIC, and finally the P-cache.

In error handling, the VIC and P-cache are disabled while the B-cache is
placed in ETM. The B-cache flush from ETM procedure is done to turn off
the B-cache altogether.

2.10.3.2.1 Disabling and Flushing the Caches (Leaving the B-Cache in ETM)
The order for disabling the NVAX caches (placing the B-cache in ETM) is:

• Disable the VIC (MTPR to ICSR)

• Disable the P-cache (MTPR to PCCTL)

• Put the B-cache in ETM (MTPR to CCTL)

The order for flushing the B-cache and disabling it is:

• Flush the B-cache (loop on MTPR to BCFLUSH IPRs)

• Clear the tags (loop on MTPR to BCTAG IPRs)

• Disable the B-cache (MTPR to clear ETM bits in CCTL)

Errors can occur as a result of flushing the B-cache. Before carrying out
the procedure, BCEDSTS and BCETSTS should be clear of unrecoverable
errors, and NESTS should be clear of unrecoverable outgoing errors. The
MTPRs to BCFLUSH IPRs should be done one block at a time, checking
the BCEDSTS and BCETSTS error registers after each block. If checking
is not done, any unrecoverable error that occurs during the flush may
become a lost unrecoverable error and the system will fail.

Errors that occur while flushing the B-cache are separate errors and
should be handled independently of the initial error. However, certain
errors may be expected during the flush procedure, based on the initial
error. Also, the successful outcome of the B-cache flush procedure is
important in determining whether to retry or restart the interrupted or
machine checked instruction stream.

2–240

KA66A CPU Module

2.10.3.2.2 Enabling the Caches
The procedure for enabling the caches after an error is the same as is used
to initialize the caches after power-up. This procedure ensures that error
retry/restart occurs with the caches in a known state. The procedure is as
follows:

• Disable the VIC, the P-cache, and the B-cache.

• Clear the B-cache (loop on MTPR to BCTAG IPRs).

• Enable the B-cache (MTPR to CCTL).

• Clear the P-cache (loop on MTPR to PCTAG IPRs).

• Enable the P-cache (MTPR to PCCTL).

• Flush the TB (TBIA).

• Clear the VIC (loop on MTPRs to VMAR and VTAG, writing an initial
value).

• Enable the VIC (MTPR to ICSR).

2.10.3.3 Special Writeback Cache Recovery
Writeback caching can lead to special error cases. Some of them can be
recovered.

2.10.3.3.1 B-Cache Uncorrectable Error During Writeback
When a B-cache uncorrectable data RAM error occurs in a writeback,
the status, cache index, and error syndrome are captured in BCEDSTS,
BCEDIDX, and BCEDECC. As it is written back, the data is tagged-bad by
the BADWDATA NDAL command. However, the address of the lost data is
not captured in the B-cache error registers. But sending BADWDATA on
the NDAL is treated as if it were an error, and the full address is captured
in NEOADR while the status is captured in NESTS. The writeback can
be held in the writeback queue for an indefinite amount of time. If a B-
cache uncorrectable error on a writeback is detected, but NESTS does not
show any outgoing error status, the writeback queue must be drained to
continue the analysis and recovery. This is most easily accomplished by
the following IPR write:

MFPR #PR19$_CWB,R0

S_NESTS should be reloaded from NESTS after this operation. If S_
NESTS does not show the BADWDATA error status after draining the
writeback queue, and it shows no other outgoing error, then there is a
serious inconsistency and the system should be crashed.

2.10.3.3.2 Memory State
Memory supports the writeback cache by maintaining some amount of
state for each hexword (each cacheable block) in memory. An ownership
bit, an interlock bit, and an owner ID is stored for each hexword.

It is always assumed that an Ownership Read command NO ACKed on the
NDAL does not affect the ownership bit in memory. If the command was
ACKed, and at least one data word was returned (even if it was an RDE),
then the ownership bit is assumed to be set in memory. If the command

2–241

KA66A CPU Module

was ACKed but no data was returned, then a serious system error has
occurred and the ownership bit is indeterminate.

2.10.3.3.2.1 Accessing Memory State
In recovering from certain errors it is necessary to read the state memory
has stored with each hexword. This section assumes there is a routine,
called Memory State, that returns this state, given a block address.

Memory State can have side effects. This routine could cause a read
timeout error in the memory module and a corresponding machine check.
Software must be prepared to handle this possibility. Before calling
Memory State, software should confirm that all registers that may report
expected errors are clear of errors. In an XMI system, CEFSTS is the
register to check because a memory read timeout is the only error that is
expected as a side effect of Memory State.

2.10.3.3.2.2 Repairing Memory State (Fill Errors)
In recovering from various B-cache fill errors, it is necessary to reset the
ownership state in memory. This can be accomplished by sending a Write
Disown (WDISOWN) command to that memory.

In cases where the fill error resulted from "lost"1 data that cannot be
recovered, the ownership bit may still be set in memory while no cache
owns the block. If the data is private to one process, then the system may
be able to continue operating after stopping that one job. The system-
dependent procedure is then used to reset the ownership bit.

For certain B-cache fill errors, an attempt is made to reset the ownership
bit in memory, while maintaining or restoring the correct data to the
memory block.

All the data is in memory. One or more quadwords of data are also in
the cache, and one quadword has been altered by the Cbox in processing a
write to that block from the Mbox. Memory’s ownership bit is set (meaning
it "thinks" a cache owns the block). The owner ID stored with the block in
memory indicates this CPU. The cache tag for the block does not indicate
that the block is owned. In general, if no writes to this block time out, and
the block is private to one process, then the repair can be done.

To recover from the first situation listed above, one of the correct
quadwords in the B-cache is accessed and used in the XMI procedure for
resetting memory’s ownership bit. The side effect of this procedure is that
the data extracted from the B-cache is written to memory. Given that the
block is private to one process and no writes have timed out in memory,
this data is still correct. (Note that software must somehow ensure that
no writes to this block are pending in the memory before beginning the
repair. This can be done by waiting an amount of time equal to an MS65A
write timeout time.)

1 In this case the more general sense of "lost" is implied. That is, memory’s ownership bit is set, but no cache writes the
data back when a read is done to that location. It may be possible to identify which CPU memory "thinks" it owns the
data, but it is often not possible to determine which error caused this situation to arise.

2–242

KA66A CPU Module

To recover from the second situation listed above in an XMI system, the
same procedure is followed, but the data written back is part of the altered
quadword. The remainder of the altered quadword is written to the block
after the repair.

2.10.3.3.2.3 Repairing Memory State (Tagged-Bad Locations)
In recovering from B-cache uncorrectable data RAM errors on writebacks,
it is necessary to reset the tagged-bad data state for a block in memory.
In general, before clearing the tagged-bad data state of memory, software
must first ensure that no more accesses to the block can occur. Otherwise
there is a danger that some process on some other processor or a DMA I/O
device will see incorrect data and not detect an error.

On the XMI, a sequence of operations involving writes to registers in a
memory module followed by a write to the memory block in question is
required. To do this, the B-cache should be off, because a KA66A CPU
module will not issue a write to memory when the B-cache enable bit is
set.

2.10.3.3.3 Extracting Data from the B-Cache
Prior to extracting data from the B-cache, it must be flushed and disabled.
The B-cache is then placed in force hit mode and the data is extracted.

NOTE: The code that executes this procedure and its local data must be
in I/O space. The TB entries (PTEs) that map this code and local
data must be fixed in the TB. (This is most easily done by flushing
the TB by an MTPR to TBIA and then accessing all the relevant
pages in sequence.) Otherwise, B-cache Force Hit will interfere
with instruction fetch, operand access, and PTE fetches in TB miss
sequences.

With the B-cache in force hit mode, a read in memory space of any address
whose index portion matches the index of the cache data will return the
data (provided there is no uncorrectable data RAM error). This is most
easily accomplished by reading from the true address of the data.

NOTE: In force hit mode, B-cache data RAM ECC errors are detected
(unless CCTL<Disable Errors> is set). Software should prepare for
an ECC error (BCEDSTS unrecoverable error bits should be clear).

2.10.3.3.4 Address Determination Procedure for Recovery from Uncorrectable
B-Cache Data RAM Errors
After an uncorrectable data RAM error in the B-cache, only the index of
the block is stored, not the complete physical address. The procedure for
constructing the physical address of the error is given here. It is assumed
that the block has not been replaced.

To construct a physical address from the contents of S_BCEDIDX and
the tag indicated by that register, first read the tag with an MFPR from
BCTAG IPRs. Check that the tag data and check bits are correct or
correctable. Extract the address tag portion of the corrected result and
combine with S_BCEDIDX.

NOTE: The above procedure is used in the event of a B-cache data RAM
error. If it fails because the tag also has an uncorrectable error,

2–243

KA66A CPU Module

then the error should be considered unrecoverable. However, the
search procedure described in the next section could be used to
obtain useful information for the error log (specifically, which
blocks this CPU has marked owned in memory for this cache
index).

2.10.3.3.5 Special Address Determination Procedure for Recovery from
Uncorrectable B-Cache Tag Store Errors
An uncorrectable tag store error in the B-cache can cause certain
interesting error cases. In some of these cases data may be lost (the
copy in the B-cache was overwritten). In other cases, the data is still
good in the cache. In all cases, the address of the lost data is not directly
known. A special procedure must be used to determine this address.

This section describes the generic address determination procedure for
use in recovering from uncorrectable tag store errors. Specific error event
descriptions in Section 2.10.6, Section 2.10.8, and Section 2.10.9 refer to
this procedure for address determination. The possible outcomes of this
procedure are as follows:

• The single address of a lost data block is found. Retry and recovery
information for the error is found in the specific error event description
that referred to this address determination procedure.

• No address is found. It can be assumed that no block was owned
by the B-cache (or the error was transient). Retry and recovery
information for the error is found in the specific error event description
that referred to this address determination procedure.

• Multiple addresses are found. This is a multiple unrecoverable error
situation, and the system should be crashed.

The procedure for determining the address of a lost data block follows.
Note that this procedure assumes the relevant tag in the B-cache is not
valid/owned. This procedure is for analyzing the result of errors in that
tag.

This procedure assumes that Memory State will return the ownership
state and the physical ID of the CPU which memory "thinks" owns the
block. The B-cache should be in ETM. Search all memory block addresses
whose index portion matches the index of the B-cache tag with the error.
cHECK memory state for the block. If this CPU is the owner of that block,
then the block is lost. Continue the search even if one lost block is found.
Zero, one, or multiple lost blocks could be present.

NOTE: This procedure is specific to recovering from tag store errors in
one CPU. So when the memory state for a block indicates another
cache in the system owns a particular block, that block is not
counted as lost. That block may be "lost" in the more general sense
(if the cache indicated as the owner no longer "knows" that it owns
the block or is somehow unable to write it back). The purpose
here is only to find blocks that are definitely lost as a result of
errors involving this CPU.

2–244

KA66A CPU Module

2.10.3.4 Cache and TB Test Procedures
Testing is generally done using the force hit mode of a cache. The code and
data of the test procedure must reside in I/O space. Assuming memory
management is enabled during this procedure, the needed PTEs must be
in the TB before entering force hit mode in the P-cache or B-cache. For
the B-cache, testing should be done with errors disabled. The ECC logic
should be tested thoroughly on one location by forcing various check bit
patterns and examining the syndrome latched on the read (BCEDECC is
loaded on every read in B-cache disable-errors mode). P-cache and VIC
parity checking should be tested by writing bad parity into the arrays.
TB testing may be accomplished by writing to MTBTAG and MTBPTE
(with care not to change any TB entry necessary for the test code and data
and not to cause two TB entries to exist for one address). PROBER and
PROBEW (setting PSL<PRV MOD>) are then used to verify the protection
bits. Testing the modify bit would be difficult, although approaches exist.

2.10.3.5 NEXMI Error Handling
The NEXMI has the following error handling attributes:

• All XMI read transactions are reattempted until either:

1 The command is acknowledged and completed successfully, or

2 A transaction timout (XBER<TTO>) or error condition (for
example, RER) occurs

• When a CPU requests data from memory, it waits for the data to be
returned. If the data is not delivered from the XMI, the NEXMI will
eventually time out and return an RDE to the NDAL. XBER<TTO>
will also be signaled in this case.

• All XMI write transactions are reattempted until successfully
acknowledged or until a transaction timout occurs, whichever happens
first.

• The XMI interface maintains complete error status on a failed XMI
transaction that was initiated by this node. The status includes
the failed command, commander ID, address, and an error bit that
indicates the type of error that occurred. The status remains locked
until software resets the error bit(s).

• NEXMI errors are signaled by posting an interrupt with either the
S ERR L (soft error) or H ERR L (hard error) lines on the NDAL. In
general, an error that is accompanied by some positive action (such as
an RDE being returned to the NVAX) will be reported as a soft error,
while a serious error that has no other reporting mechanism will be
reported as a hard error. Errors that are generally recoverable (such
as a bus parity error) are always reported as a soft error.

Some errors (such as certain TTO errors) can be caused by either a
read or a write, depending upon the nature of the command. Such
errors are reported as hard errors. Software needs to determine how
serious the error really is. In these cases, a "second error occurred" bit
is available to help in this determination.

2–245

KA66A CPU Module

• The NEXMI provides parity generation and checking on the XMI and
NDAL buses. All transactions except XMI invalidates on the XMI or
NDAL containing parity errors are ignored by the NEXMI.

2.10.4 Error Retry

Error retry is a function of the error notification (machine check or error
interrupt), error type, and error state. The sections below specify the
conditions under which the instruction stream may be restarted.

If retry is to be attempted, the stack must be trimmed of all parameters
except the PC/PSL pair. An REI will then restart the instruction stream
and retry the error. Some form of software loop control should be provided
to limit the possibility of an error loop. Note that pending error interrupts
may be taken before the retry occurs, depending on the IPL of the
interrupted or machine checked code.

Strictly speaking, an REI from a hard or soft error interrupt handler is not
a retry since these interrupts are recognized between macroinstructions.
A machine check exception is an instruction abort, and an REI from the
handler will cause the failing instruction to be retried.

If complete recovery from one or more errors is not possible, software must
determine if the error is fatal to the current process, to the processor, or to
the entire system, and take the appropriate action.

It is expected that software handles machine checks, soft error interrupts,
and hard error interrupts independently. For example, after handling
a machine check from which retry is to occur, software does not check
for errors that might cause a pending hard or soft error interrupt. The
machine check handler is exited by REI (after trimming the machine check
information off the stack). If the IPL of the machine checked instruction
stream is low enough, any pending hard or soft error interrupt is taken
before the retry occurs. However, if the interrupted instruction stream
was running at a high IPL, the system will continue without dealing with
the remaining errors.

2.10.4.1 General Multiple Error Handling Philosophy
Multiple errors can be reported at the same time. In some cases the NVAX
pipeline will contain multiple operand prefetches to the same memory
block. This can cause multiple errors from a single nontransient failure.
Two separate errors could also occur at nearly the same time and be
reported simultaneously.

Multiple error scenarios can be grouped into the following classes:

• Class 1 errors are multiple distinct errors for which no error report
interferes with the analysis of any other (for example, no lost error bits
set).

• Class 2 errors are multiple errors, which could have been caused by
the NVAX CPU pipeline issuing more than one reference to a given
block before the error interrupt or machine check forced a pipeline
flush.

2–246

KA66A CPU Module

• Class 3 errors are multiple errors for which analysis is complicated
because the reports interfere with each other.

Class 1 errors should be treated as separate errors, each with its own
recovery. Retry or restart evaluation is based on the cumulative result of
the recovery and repair procedures for each error.

Specific cases of class 2 errors are identified in which lost errors are
tolerated. These cases are selected because the NVAX pipeline can easily
cause them (given one error), and because sufficient safeguards exist to
ensure that correct operation is maintained. Section 2.10.4.2 lists these
cases.

Class 3 errors are generally not considered recoverable and the system is
crashed.

Lost correctable errors are not considered serious problems, since
hardware recovers from these automatically.

2.10.4.2 Retry Special Cases
Some multiple error scenarios of class 2 are listed below. They are
likely made by the NVAX pipeline’s tendency to prefetch operands. The
safeguard that exists in all cases is that errors inconsistent with correct
operation after the error (such as lost data) will invariably cause a hard
error interrupt or be detectable by the analysis accompanying the machine
check or soft error interrupt.

• Lost B-cache data RAM uncorrectable ECC errors and addressing
errors (BCEDSTS<LOST ERR>)

• Lost B-cache fill errors (timeouts and RDEs) (CEFSTS<LOST ERR>)

• Lost NDAL output errors (NO ACKs) (NESTS<LOST OERR>)

NOTE: Retry from a machine check is done even when a hard error
interrupt might be pending. If the machine checked I-stream
were running at a high enough IPL, it would not be interrupted
immediately. Typical hard errors are write errors that cannot
cause a machine check. So the fact that a serious error is ignored
in the machine check retry equation is not considered a problem.
The other error would probably have occurred anyway, and
it would not have interrupted the I-stream until the IPL was
lowered.

2.10.5 Console Halt and Halt Interrupt

A console halt is not an exception but is a transfer of control by the NVAX
CPU microcode directly into the console program in the boot ROM at
address E004 0000 (hex). Console halts are initiated at power-up, by
certain microcode-detected double-error conditions, and by assertion of the
external halt interrupt, HALT L.

A halt interrupt is gernerated by either of two conditions:

• CTRL/P is typed on the (unsecured) console terminal

2–247

KA66A CPU Module

• XBER<NHALT> (Node Halt) is asserted

No exception stack frame is associated with a console halt, but the SAVPC
(IPR42) and SAVPSL (IPR43) provide the necessary information for
continuation.

The PSL, halt code, MAPEN<0>, and a validity bit are saved in SAVPSL.

Table 2–11 lists and describes the console halt codes.

NOTE: In certain error conditions detected during the execution of a
string instruction, the state packup sequence leaves the FPD
bit set in the SAVPSL register, but the SAVPC register pointing
at the instruction following the string instruction, rather than
at the string instruction itself. If the FPD bit is not set in the
SAVPSL register, SAVPC is correct. As error halts are not normally
restartable, this is not a problem. For a console halt due to
the assertion of HALT L, which is the only normally restartable
console halt, SAVPC is always correct, even if the halt interrupt
was detected during the execution of a string instruction.

At the time of the halt, the current stack pointer is saved in the
appropriate IPR (0 to 4), and SAVPSL<31:16,7:0> are loaded from
PSL<31:16,7:0>. SAVPSL<15> is set to MAPEN<0>. SAVPSL<14> is
clear if the PSL is valid and set if it is not (SAVPSL<14> is undefined
after a halt due to a system reset). SAVPSL<13:8> is set to the console
halt code.

To complete the hardware restart sequence and thereby pass control to the
console macrocode, the CPU is initialized.

2–248

KA66A CPU Module

2.10.6 Machine Check Exception

A machine check exception indicates a serious system error that is
sometimes recoverable by restarting the instruction.

The recoverability is a function of the:

• Machine check code

• VAX Restart bit (VR) in the machine check stack frame

• Opcode

• State of PSL<FPD>

• State of certain second error bits in internal error registers

• External error state

A machine check results from an internally detected consistency error,
such as the microcode reaches an "impossible" state, or from an externally
detected hardware error, such as a memory parity error.

A machine check is technically an aborted macro instruction. The NVAX
chip’s microcode attempts to convert the condition to a fault by unwinding
the current instruction, with no guarantee that the instruction can be
properly restarted. As much information as possible is pushed on the
machine check stack frame, and the rest of the error parsing is left to the
operating system.

When the software machine check handler routine receives control, it must
explicitly acknowledge receipt of the machine check early in the routine
to clear the internal machine-check-in-progress flag with the following
instruction:

MTPR #0, #PR$_MCESR ; PR$_MCESR=38

The machine check stack frame is shown in Figure 2–11, and its
parameters are described in Table 2–8. These parameters are parsed
by the error handling macrocode to determine what caused the machine
check.

Figure 2–27 contains the machine check parse tree, which indicates
the causes of each machine check. For those machine checks that have
multiple causes, the registers and bits that isolate the cause are listed.
The sections following the parse tree provide a description of the machine
check, the procedure to recover, and the conditions for restarting the
operation.

2–249

KA66A CPU Module

Figure 2–27 Machine Check Exception Parse Tree

(select one)

MCHK_UNKNOWN_MSTATUS (01 hex)
Unknown memory management

(Section 2.10.6.1)

(Section 2.10.6.3)

(select all, at least one)

(select all, at least one)S_TBSTS<Lock> <0>

S_TBSTS<DPERR> <1>

(06 hex)

S_ICSR<DPERR>
VIC (virtual instruction cache)

(Section 2.10.6.6.1)

(Section 2.10.6.7)

1 msb−p618−92

MCHK_INT.ID_VALUE (02 hex)
status error

(Section 2.10.6.7)

(select all, at least one)

(select all, at least one)

S_ECR<Timeout Occurred> <4>

S_TBSTS<TPERR> <2>

<2>

S_ICSR<TPERR>
data parity error

MCHK_CANT_GET_HERE (03 hex)

Illegal interrupt ID value
(Section 2.10.6.2)

Presumed impossible microcode

none of the above

none of the above

<3>

none of the above

VIC tag parity error (Section 2.10.6.6.1)

Inconsistent status (no ICSR

MCHK_MOVC.STATUS (04 hex)
address reached

S_ICSR<Lock>

<4>

error bits set)

MCHK_ASYNC_ERROR (05 hex)

MOVCx status encoding error
(Section 2.10.6.4)

TB PTE data parity error
(Section 2.10.6.5.1)

TB tag parity error
(Section 2.10.6.5.1)

Inconsistent status (no TBSTS

MCHK_SYNC_ERROR

error bits set)

2

Stage 3 STALL timeout error
(Section 2.10.6.5.2)

Inconsistent status (no asynchro−
nous machine check error bit set)
(Section 2.10.6.7)

Figure 2–27 Cont’d on next page

2–250

KA66A CPU Module

Figure 2–27 (Cont.) Machine Check Exception Parse Tree

1 2

1
S_BCEDSTS<Lock> <0> and not S_PCSTS<PTE ER> <10>

(select one)

S_BCEDSTS<BAD ADDR> <3>
(select one)

S_BCEDSTS<DR CMD> <11:8> = DREAD (0111)
B−cache data RAM addressing error
on D−stream read or read lock
(Section 2.10.6.6.2)

(Section 2.10.6.6.2)

B−cache data RAM uncorrectable
ECC error on D−stream read

(Section 2.10.6.6.2)

and not S_PCSTS<PTE ER> <10>

(Section 2.10.6.6.3)

msb−p619−92

At least one potential PTE cause must be found or the status is inconsistent

1 2

S_BCEDSTS<LOST ERR> <4>

S_BCEDSTS<UNCORR> <2>
(select one)

S_BCEDSTS<DR CMD> <11:8> = IREAD (0011)
B−cache data RAM addressing error

or read lock

1

(see Section 2.10.6.6). Some outcomes indicate a potential synchronous
machine check cause, not a potential PTE read error cause. These errors
should be treated separately.

none of the above

otherwise

on I−stream read

B−cache data RAM uncorrectable
ECC error on I−stream read
(Section 2.10.6.6.2)

Not a synchronous machine check
cause (see soft and hard error
interrupt events)

Inconsistent status (no BCEDSTS
unrecoverable error bits set)
(Section 2.10.6.7)

S_BCEDSTS<DR CMD> <11:8> = DREAD (0111)

Not a synchronous machine check
cause (see soft and hard error
interrupt events)

Lost unrecoverable B−cache data

S_BCEDSTS<DR CMD> <11:8> = IREAD (0011)

RAM error

otherwise

Figure 2–27 Cont’d on next page

2–251

KA66A CPU Module

Figure 2–27 (Cont.) Machine Check Exception Parse Tree

1 2

S_CEFSTS<Lock> <1> and not S_PCSTS<PTE ER> <10>
(select one)

S_CEFSTS<Timeout> <2> (select one)

(S_NESTS<PERR> <3>
S_NCSR<NRTAE> <29>

and
and

and

S_CEFSTS<TO MBOX> <9> and
not S_CEFSTS<REQ FILL DONE> <14>

S_CEFSTS<IREAD> <6>
I−stream NDAL read timeout error
(Section 2.10.6.6.4)

(Section 2.10.6.6.4)

msb−p620−921 2 3

(select one)

(select one)

S_NEICMD<CMD> <3:0> = (RDRx or RDE)
S_NEICMD<ID> <6:4> = (000 or 001))
or S_NSCSR<RQOVFL> <7>

otherwise

S_CEFSTS<OREAD> <7>
D−stream NDAL ownership read
timeout error
(Section 2.10.6.6.4)

D−stream NDAL read timeout error

otherwise

otherwise

(read only operand)

Inconsistent status (no legitimate
cause for timeout) (Section 2.10.9.19)

Not a synchronous machine check
cause (see soft and hard error
interrupt events)

Figure 2–27 Cont’d on next page

2–252

KA66A CPU Module

Figure 2–27 (Cont.) Machine Check Exception Parse Tree

1 2 3

S_CEFSTS<RDE> <3> (select one)

[S_XBER<TTO> <13> and S_XBER<CNAK> <15>] or
or

S_CEFSTS<TO MBOX> <9> and
and

S_CEFSTS<IREAD> <6>
I−stream NDAL read data error
(Section 2.10.6.6.5)

D−stream NDAL ownership read
data error (modify operand or
read lock) (Section 2.10.6.6.5)

D−stream NDAL read data error
(read only operand) (Section 2.10.6.6.5)

Not a synchronous machine check
cause (see soft and hard error
interrupt events)

Inconsistent status (no legitimate
RDE reason) (Section 2.10.6.6.5)

otherwise

1 2 3

(select one)

(select one)

[S_NCSR<SSCIR> <8> and
and
and

S_CEFSTS<Count> <16:15> = 11]
S_XBEER<OLR> <1>] or
S_XBER<NRR> <18>] or

[not S_CEFSTS<REQ FILL DONE> <14>]

msb−p621−92

S_CEFSTS<OREAD> <7>

[S_XBER<TTO> <13>
[S_XBER<TTO> <13>
[S_XBER<RER> <16>]

S_CEFSTS<Count> <16:15> = 00

otherwise

otherwise

Figure 2–27 Cont’d on next page

2–253

KA66A CPU Module

Figure 2–27 (Cont.) Machine Check Exception Parse Tree

1 2 3

S_CEFSTS<Unexpected Fill> <21>
Not a synchronous machine check
cause (see soft error interrupt
events)

Inconsistent status (either
CEFSTS<RDE> <3>, CEFSTS<Timeout> <2>,
or CEFSTS<Unexpected Fill> <21>

(Section 2.10.6.7)

and not S_PCSTS<PTE ER> <10>

(select one)

(select one)or

S_NEOCMD<CMD> <3:0> = IREAD

(Section 2.10.6.6.7)

1 2

S_CEFSTS<LOST ERR> <4>

otherwise

should be set)

and not S_PCSTS<PTE ER> <10>

msb−p622−92

S_NEOCMD<CMD> <3:0> = DREAD

S_NESTS<NO ACK> <0>
and not S_PCSTS <PTE ER> <10>

S_NCSR<NDPE> <31>

Lost B−cache fill error
(Section 2.10.6.6.6)

S_NEOCMD<CMD> <3:0> = OREAD

S_NESTS<LOST OERR> <2>

otherwise

S_NCSR<NWQFL> <1>

S_NEOCMD<CMD> <3:0> = WRITE OR WDISOWN

Unacknowledged I−stream NDAL

otherwise

read

Unacknowledged D−stream NDAL
read (read only operand) (Section 2.10.6.6.7)

Unacknowledged D−stream NDAL ownership
read (modify operand or read lock)
(Section 2.10.6.6.7)

Not a synchronous machine check
cause (see hard error interrupt
events)

Inconsistent status (invalid
command in NEOCMD<CMD>) (Section 2.10.6.7)

Inconsistent status (no legitimate
reason for NO ACK) (Section 2.10.6.7)

Lost unrecoverable NDAL output
error (Section 2.10.6.6.8)

Figure 2–27 Cont’d on next page

2–254

KA66A CPU Module

Figure 2–27 (Cont.) Machine Check Exception Parse Tree

1 2

1
S_BCEDSTS<Lock> <0> and S_PCSTS<PTE ER> <10> (select one)

(select one)S_BCEDSTS<BAD ADDR> <3>

S_BCEDSTS<DR CMD> <11:8> = DREAD (0111)
B−cache data RAM addressing

S_BCEDSTS<LOST ERR> <4>

(select one)

At least one potential PTE cause must be found or the status is inconsistent

1 2

(Section 2.10.6.6.9.6)

(Section 2.10.6.6.9.2)

S_BCEDSTS<UNCORR> <2>

S_BCEDSTS<DR CMD> <11:8> = IREAD (0011) (select one)

error on PTE read

otherwise

msb−p623−92

1

(see Section 2.10.6.7). Some outcomes indicate a potential synchronous
machine check cause, not a potential PTE read error cause. These errors
should be treated separately.

(Section 2.10.6.6.9.6)

none of the above

S_BCEDSTS<LOST ERR> <4>

Multiple errors in context

S_BCEDSTS<LOST ERR> <4>

otherwise

of PTE read error

otherwise

S_BCEDSTS<DR CMD> <11:8> = DREAD (0111)

B−cache data RAM addressing error
on I−stream read (Section 2.10.6.6.2)

S_BCEDSTS<DR CMD> <11:8> = IREAD (0011)

Multiple errors in context of

S_BCEDSTS<LOST ERR> <4>

PTE read error

otherwise

Not a synchronous machine check
cause (see soft and hard error
interrupt events)

(select one)

B−cache data RAM uncorrectable
ECC error on PTE read (Section 2.10.6.6.9.2)

Multiple errors in context
of PTE read error (Section 2.10.6.6.9.6)

B−cache data RAM uncorrectable ECC
error on I−stream read (Section 2.10.6.6.2)

Multiple errors in context of
PTE read error (Section 2.10.6.6.9.6)

Not a synchronous machine check
cause (see soft and hard error
interrupt events)

Inconsistent status (no BCEDSTS
unrecoverable error bits set)
(Section 2.10.6.7)

Figure 2–27 Cont’d on next page

2–255

KA66A CPU Module

Figure 2–27 (Cont.) Machine Check Exception Parse Tree

1 2

1
S_CEFSTS<Lock> <1> and S_PCSTS<PTE ER> <10> (select one)

S_CEFSTS<Timeout> <2> (select one)

[S_NESTS<PERR> <3> S_NCSR<NRTAE> <29> and
and
or

(select one)

S_CEFSTS<TO MBOX> <9> and not
S_CEFSTS<REQ FILL DONE> <14> (select one)

S_CEFSTS<IREAD> <6> (select one)

S_CEFSTS<LOST ERR> <4>
Multiple errors in context of
PTE read error (Section 2.10.6.6.9.6)

I−stream NDAL read timeout error
(Section 2.10.6.6.4)

otherwise

msb−p624−92

At least one potential PTE cause must be found or the status is inconsistent.
(see Section 2.10.6.7). Some outcomes indicate a potential synchronous machine
check cause, not a potential PTE read error cause. These errors should be
treated separately.

1 2 3

and
S_NEICMD<CMD> <3:0> = (RDRx or RDE)
S_NEICMD<ID> <6:4> = (000 or 001)]

S_CEFSTS<LOST ERR> <4>

S_CEFSTS<OREAD> <7> (select one)

otherwise

Multiple errors in context of PTE
read error (Section 2.10.6.6.9.6)

D−stream NDAL ownership read
timeout error (Section 2.10.6.6.4)

D−stream NDAL read timeout error
(PTE read) (Section 2.10.6.6.9.3)

Multiple errors in context of
PTE read error (Section 2.10.6.6.9.6)

Not a synchronous machine check
cause (see soft and hard error
interrupt events)

Inconsistent status (no legitimate
timeout reason) (Section 2.10.6.6.9.3)

1

S_NSCSR<RQOVFL> <7>

otherwise

otherwise

S_CEFSTS<LOST ERR> <4>

otherwise

Figure 2–27 Cont’d on next page

2–256

KA66A CPU Module

Figure 2–27 (Cont.) Machine Check Exception Parse Tree

1 2 3

S_CEFSTS<RDE> <3> (select one)

[S_XBER<TTO> <13>
[S_XBER<TTO> <13>
[S_XBER<TTO> <13>

and S_XBER<CNAK> <15>] or
<1>] or

<18>] or

(select one)

(select one)

(select one)

S_CEFSTS<TO MBOX> <9> and not
S_CEFSTS<REQ FILL DONE> <14>

S_CEFSTS<IREAD> <6>

S_CEFSTS<LOST ERR> <4>
Multiple errors in context of

Multiple errors in context of
PTE read error (Section 2.10.6.6.9.6)

D−stream NDAL ownership read
data error (Section 2.10.6.6.5)

D−stream NDAL read timeout
error (PTE read) (Section 2.10.6.6.9.3)

Multiple errors in context of
PTE read error (Section 2.10.6.6.9.6)

Not a synchronous machine check
cause (see soft and hard error
interrupt events)

Inconsistent status (no legitimate
reason for RDE) (Section 2.10.6.6.9.4)

(select one)

msb−p625−921 2

S_CEFSTS<Unexpected Fill> <21>

[S_NCSR<SSCIR> <8> and S_CEFSTS<Count> <16:15> = 11] or

and S_XBEER<OLR>
and S_XBER>NRR>

(Section 2.10.6.6.9.6)

(select one)

S_CEFSTS<LOST ERR> <4>

S_CEFSTS<OREAD> <7>

otherwise
PTE read error

Multiple errors in context of PTE
read error (Section 2.10.6.6.9.6)

Not a synchronous machine check
cause (see hard error interrupts)

Inconsistent status (either
CEFSTS<RDE> <3>, CEFSTS<Timeout> <2>,
or CEFSTS<Unexpected Fill> <21>
should be set) (Section 2.10.6.7)

otherwise

[S_XBER<RER> <16>]

otherwise

otherwise

S_CEFSTS<LOST ERR> <4>

I−stream NDAL read data error
(Section 2.10.6.6.5)

otherwise

otherwise

S_CEFSTS<LOST ERR> <4>

otherwise

Figure 2–27 Cont’d on next page

2–257

KA66A CPU Module

Figure 2–27 (Cont.) Machine Check Exception Parse Tree

1 2

1
S_NESTS<NO ACK> <0> AND S_PCSTS<PTE ER> <10> (select one)

S_NCSR<NDPE> <31> or S_NCSR<NWQFL> <1> (select one)

S_NEOCMD<CMD> <3:0> = IREAD (select one)

S_NESTS<LOST OERR> <2>
Multiple errors in context
of PTE read error (Section 2.10.6.6.9.6)

Unacknowledged I−stream NDAL read
(Section 2.10.6.6.7)

Unacknowledged D−stream NDAL

(Section 2.10.6.6.9.6)

msb−p628−92

At least one potential PTE cause must be found or the status is inconsistent
(see Section 2.10.6.7). Some outcomes indicate a potential synchronous machine
check cause, not a potential PTE read error cause. These errors should be
treated separately.

1

otherwise

none of the above

(select one)

otherwise

(Section 2.10.6.6.9.5)

S_NEOCMD<CMD> <3:0> = DREAD

otherwise

read (PTE read)

(select one)

S_NEOCMD<CMD> <3:0> = OREAD

S_NESTS<LOST OERR> <2>
Multiple errors in context of

S_NEOCMD<CMD> <3:0> = (WRITE or DISOWN)

otherwise
PTE read error

otherwise

S_NESTS<LOST OERR> <2>

Unacknowledged D−stream NDAL
read (modify operand or read lock)
(Section 2.10.6.6.7)

Multiple errors in context of
PTE read error (Section 2.10.6.6.9.6)

Not a synchronous machine check
cause (see hard error interrupts)

Inconsistent status (invalid
command in NEOCMD<CMD>) (Section 2.10.6.7)

Inconsistent status (no legitimate
reason for NO ACK) (Section 2.10.6.6.9.5)

Inconsistent status (no cause found
for synchronous machine check)
(Section 2.10.6.7)

Inconsistent status (unknown
machine check code) (Section 2.10.6.7)

otherwise

2–258

KA66A CPU Module

2.10.6.1 MCHK_UNKNOWN_MSTATUS
Description: An unknown memory management status was returned from
the Mbox in response to a microcode memory management probe. This
error is caused by an internal error in the Mbox, Ebox, or microsequencer.

Recovery procedure: No explicit error recovery is required.

Retry condition: This error only happens in microcode processing of
memory management faults for a virtual memory reference. Retry if:

(VR = 1) OR (PSL<FPD> = 1)

2.10.6.2 MCHK_INT.ID_VALUE
Description: An illegal interrupt ID was returned during interrupt
processing in microcode. This error is probably caused by an internal
error in the interrupt hardware, Ebox, or microsequencer.

Recovery procedure: No explicit error recovery is required.

Retry condition: This error only happens in microcode processing of
interrupts that occur between instructions or the middle of interruptable
instructions. Retry if:

(VR = 1) OR (PSL<FPD> = 1)

2.10.6.3 MCHK_CANT_GET_HERE
Description: Microcode execution reached a presumably impossible
address. This error is probably caused by an internal error in the Ebox or
microsequencer.

Recovery procedure: No explicit error recovery is required.

Retry condition: Retry if:

(VR = 1) OR (PSL<FPD> = 1)

2.10.6.4 MCHK_MOVC.STATUS
Description: During execution of MOVCx, the two state bits that encode
the state of the move (forward, backward, fill) were set to the fourth
(illegal) combination. This error is probably caused by an internal error in
the Ebox or microsequencer.

Recovery procedure: No explicit error recovery is required.

Retry condition: Because the state bits encode the operation, the
instruction cannot be restarted in the middle of the MOVCx. If software
can determine that no specifiers have been overwritten (MOVCx destroys
R0–R5 and memory due to string writes), the instruction may be restarted
from the beginning by clearing PSL<FPD>. Retry should be done only if
the source and destination strings do not overlap and if:

(PSL<FPD> = 1)

2.10.6.5 MCHK_ASYNC_ERROR
MCHK_ASYNC_ERROR reports serious errors that interrupt the
microcode at an arbitrary point. Many internal machine states are
questionable and recovery is typically not possible.

2–259

KA66A CPU Module

2.10.6.5.1 TB Parity Errors
Description: Parity errors in tags and PTE data in the TB cause an
asynchronous machine check by directly forcing a microtrap in the
microsequencer.

• TB PTE data parity error
A parity error in the PTE data portion of a TB entry had a parity
error.

• TB tag parity error
A parity error in the tag portion of a TB entry had a parity error.

Recovery procedure: Clear TBSTS<Lock>.

Retry condition: Since the Ibox is nearly always able to issue instruction
prefetches, TB parity errors could occur at any time, making it impossible
to determine what machine state is incorrect. There is no guarantee
that all writes with a different PSL<CUR MOD> completed successfully.
Therefore, even the stack frame PSL<CUR MOD> cannot be used to
determine whether system data is uncorrupted.

Retry is not possible. Crash the system.

2.10.6.5.2 Ebox Stage 3 STALL Timeout Error
Description: Stage 3 STALL timeout errors occur when the Ebox microcode
is stalled waiting for some result or action that will probably never occur.
The timeout can occur for any number of reasons that are impossible to
determine. This error should never happen, but it would indicate a serious
failure in the NVAX CPU chip.

Recovery procedure: Clear ECR<Timeout Occurred>.

Retry condition: Should this error occur, it is not possible to determine
what machine state is incorrect. Retry is not possible. Crash the system.

2.10.6.6 MCHK_SYNC_ERROR
MCHK_SYNC_ERROR reports errors that occur in memory or I/O space
instruction fetches or data reads. Except in the case of PTE read errors,
NVAX state should be consistent since microcode has to explicitly access
an operand or instruction in order to incur this error. Microcode does not
access memory results or dispatch for a new instruction execution with the
NVAX in an inconsistent state.

PTE read errors on write transactions can cause a microtrap at an
arbitrary time, and so the NVAX state may be inconsistent.

Many of the error events described below for synchronous machine checks
are possible causes. If more than one is present, there is no way to
determine which actually caused the machine check. If only one cause is
discovered, then the machine check may be attributed to that cause. The
reason multiple causes may be present is that the NVAX CPU prefetches
instructions and data. If the CPU branches or takes an exception before
using data it has requested, then the pending machine check is taken as a
soft error interrupt (although it might not be recoverable).

2–260

KA66A CPU Module

If multiple errors occur, recovery and retry may be possible. It is
recommended that retry from multiple errors be done only if one error
report does not interfere with analysis of, and recovery from, another
error.

For example, consider the following two errors:

• A B-cache data RAM uncorrectable error on a writeback gets reported
in BCEDSTS and in NESTS.

• An NDAL command NO ACK gets reported in NESTS.

The NO ACK error makes recovery from the writeback error much more
difficult. It is unlikely that these two errors would occur together, since
they are unrelated events. This case is considered unrecoverable.

If two errors are entirely separate, neither interfering with the analysis
and recovery of the other, then it is acceptable to retry from these errors
provided all the error analysis and recovery procedures result in a retry
indication.

In several cases, lost errors are tolerated. See Section 2.10.4.2 for a list
of these special cases. In each case, the strong tendency to prefetch data
exhibited by the NVAX pipeline makes the particular lost error likely,
given that one error of that kind occurred. Also, in each case, if data is
lost in the lost error, a hard error interrupt is posted. So these errors are
tolerated as long as they do not cause a hard error interrupt.

Errors in opcode or operand specifier fetching are always detected before
architecturally visible state within the CPU is modified. This means the
VR bit from the machine check stack frame should be one. This error
handling analysis attempts to recover from multiple errors, so the retry
condition for each error is made as general as possible. If the machine
check handler finds only errors of the kind listed here, then VR should be
one and it is an inconsistent report if it is not (see Section 2.10.6.7).

• VIC parity errors

• B-cache data RAM uncorrectable ECC and addressing errors in I-
stream reads

• B-cache timeout errors and fill read data errors in I-stream reads

• Unacknowledged NDAL I-stream reads

2.10.6.6.1 VIC Parity Errors
Description: A parity error was detected in the VIC tag or data store in
the Ibox.

• VIC data parity error
A parity error occurred in the data portion of the VIC.

• VIC tag parity error
A parity error occurred in the tag portion of the VIC.

The quadword virtual address of the error is in VMAR.

Pending interrupts: A soft error interrupt should be pending.

2–261

KA66A CPU Module

Recovery procedure: Disable and flush the VIC by rewriting all the tags.
See Section 2.10.3.2. Clear ICSR<Lock>.

Retry condition: Retry if:

(VR = 1) OR (PSL<FPD> = 1)

2.10.6.6.2 B-Cache Data RAM Uncorrectable ECC Errors and Addressing Errors
Description (addressing errors): A B-cache addressing error was detected
by the Cbox in an I-stream or D-stream read during a B-cache hit.
Addressing errors are the result of a mismatch between the address the
Cbox drives to the RAMs for a read access and the address used to write
that location. A multiple-bit data error can appear to be an addressing
error, although it is extremely unlikely.

Description (uncorrectable ECC errors): A B-cache uncorrectable data error
was detected by the Cbox in an I-stream or D-stream read during a B-
cache hit. Uncorrectable data errors are the result of a multiple-bit error
in the data read from the B-cache. An addressing error with a single-bit
data error will appear as an uncorrectable data error.

Description (all cases): The B-cache is in ETM. S_BCEDIDX contains
the cache index of the error, and S_BCEDECC contains the syndrome
calculated by the ECC logic.

The physical address of the reference can be found by reading the tag for
the data block (using the procedure in Section 2.10.3.3.4). If the block’s tag
is found to contain an uncorrectable ECC error, then the address cannot
be determined.

The address should not be in I/O space. If it is, it is an inconsistent status
(see Section 2.10.6.7).

Pending interrupts: A soft error interrupt should be pending.

Recovery procedure (addressing errors): Clear BCEDSTS<Lock, BAD
ADDR>.

Recovery procedure (uncorrectable ECC errors): Clear BCEDSTS<Lock,
UNCORR>.

Recovery procedure (both cases): Flush the B-cache and then clear
CCTL<HW ETM>. If the data is owned by the B-cache and if the error
repeats itself (is not transient), a writeback error will result from the flush
procedure. Software should prepare for this possibility by clearing NESTS
and BCEDSTS errors.

Retry condition: If no writeback error occurs in the B-cache flush, retry if:

(VR = 1) OR (PSL<FPD> = 1)

If a writeback error occurs in the B-cache flush, then the data is presumed
to be unrecoverable. See Section 2.10.9.10 for a description of handling an
error in a writeback. Given that the address is available (no error in the
tag store), software should determine if the error is fatal to one process or
the whole system and take appropriate action.

2–262

KA66A CPU Module

2.10.6.6.3 B-Cache Lost Data RAM Access Error
Description: A lost B-cache data RAM error may or may not have been a
machine check cause. Lost B-cache data RAM errors that cause machine
checks are always read errors and can be retried unless the aborted
instruction has altered essential state. Whether or not it is a machine
check cause, the error causes either a soft or hard error interrupt.

Lost B-cache data RAM errors may be caused by more than one operand
prefetch to the same cache block.

Recovery from lost B-cache data RAM errors depends on whether the
pending interrupt is hard or soft. The machine check error handling
software should defer recovery until the expected hard or soft error
interrupt occurs. Once the interrupt is taken, the error recovery and
restart instructions found in the hard error interrupt and soft error
interrupt sections should be referenced. See Section 2.10.8.4.2 and
Section 2.10.9.15.

Software should employ some mechanism to record that an interrupt for
a lost B-cache data RAM error is pending. This mechanism should allow
detection of a case in which an expected interrupt does not occur (once the
IPL is lowered). If the expected interrupt does not occur when the IPL
is lowered, then a serious inconsistency exists and the system should be
crashed.

The B-cache is in ETM.

Pending interrupts: It is possible that both or either hard or soft error
interrupts are pending.

Recovery procedure: No specific recovery action is required. The
BCEDSTS<LOST ERR> should be cleared by the hard or soft error
interrupt handler, and the B-cache must remain in ETM until the error
interrupt occurs.

Retry condition: Retry only if:

(VR = 1) OR (PSL<FPD> = 1)

2.10.6.6.4 NDAL I-Stream or D-Stream Read or D-Stream Ownership Read Timeout
Errors
Description: An I-stream or D-stream read or D-stream Ownership Read
timed out in the Cbox before all the fill quadwords were received. This
is not the method by which the NEXMI will notify the NVAX CPU that a
location is inaccessible. All outstanding NDAL read-type cycles (IREAD,
DREAD, OREAD) are normally terminated by at least one return data
cycle, either RDRx or RDE.

The most likely reasons for a Cbox read timeout are an NDAL parity error
(S_NESTS<PERR> and S_NCSR<NRTAE> set) and an XMI responder
queue overflow (S_NSCSR<RQOVFL> set). S_CEFSTS<Count> indicates
the number of quadwords received before the error, and should always be
11 (binary). The physical address is in S_CEFADR.

2–263

KA66A CPU Module

Table 2–40 shows the cycle type that timed out, based upon the error
bits in S_CEFSTS during error analysis. See Section 2.10.8.4 and
Section 2.10.9.13 for more details about the possible underlying system
environment errors, and Section 2.10.9.19 for details on NDAL parity
errors.

CEFSTS<Write> should not be set. If it is, it is an inconsistent status (see
Section 2.10.6.7).

• I-stream read
The B-cache may be in ETM, depending upon the related error bits.

• D-stream read
The B-cache may be in ETM, depending upon the related error bits.

• D-stream ownership read
The B-cache is in ETM. No write data has been merged with the
returning fills.

The address should not be in I/O space. If it is, it is an inconsistent status
(see Section 2.10.6.7).

Pending interrupts (all cases): A soft error interrupt will always be
pending. If S_NSCSR<RQOVFL> is set, a hard error interrupt is also
pending.

Recovery procedure (all cases): Clear CEFSTS<Lock, Timeout>, and either
S_NESTS<PERR> and S_NCSR<NRTAE>, or S_NSCSR<RQOVFL>.

See Section 2.10.9.13 for more details on recovery.

Additional recovery procedures for D-stream ownership read: Flush the
B-cache and then clear CCTL<HW ETM>.

Retry condition (I-stream or D-stream read): Retry if the address is not in
I/O space and:

(VR = 1) OR (PSL<FPD> = 1)

Retry condition (D-stream ownership read): Given that no data is lost,
retry if the memory state repair procedure is successful or not called for
and if:

(VR = 1) OR (PSL<FPD> = 1)

If the hexword block could not be repaired or data is lost, software must
determine if the error is fatal to one process or the whole system and take
appropriate action.

Post retry recovery: If the same fill error recurs on retry, then the block
is probably "lost." 1 Software must determine if the error is fatal to one
process or the whole system and take appropriate action.

NOTE: It may be appropriate to cause each CPU in the system to flush its
B-cache, and then retry.

1 In this case the more general sense of "lost" is implied. That is, memory’s ownership bit is set, but no cache writes the
data back when a read is done to that location. It is possible to identify which CPU actually owns the block (or rather,
which CPU is thought to own it according to the memory), but it is often not possible to determine which error caused
the situation to arise.

2–264

KA66A CPU Module

It may be that another error (such as an uncorrectable tag store
error on a coherence request) will be repaired by the soft error
interrupt handler before the retry actually occurs, fortuitously
repairing the cause of the fill error.

2.10.6.6.5 NDAL I-Stream or D-Stream Read or D-Stream Ownership Read Data
Errors
Description: An I-stream or D-stream read or D-stream ownership read
terminated with an RDE (read data error) NDAL cycle before all the fill
quadwords were received. S_CEFSTS<Count> indicates the number of
quadwords received before the error. (S_CEFSTS<Count> should always
be 11 (binary) if the address is in I/O space.) If S_CEFSTS<Count> is 0
or the address is an I/O space address (in which case S_CEFSTS<Count>
would equal 11), then the first data word returned was an RDE.

CEFSTS<Write> should not be set. If it is, it is an inconsistent status (see
Section 2.10.6.7).

There are several reasons why the NEXMI might send back an RDE in
response to a read command.

• The NVAX attempted a read command to a nonexistent memory
location (NXM) in either XMI or system support space. In the case
of the XMI, the read command will be retried until the NEXMI
timeout is reached, at which point the command will be aborted,
S_XBER<CNAK> and S_XBER<TTO> will be set, and an RDE will be
returned to the NVAX. This will cause a hard error interrupt.

If a system support space NXM read is performed, an RDE will also
be returned (though much faster, since no retry is performed), and
S_NCSR<SSCIR> will be set. A soft error interrupt is posted. In both
cases (XMI and system support), the RDE will be the first (and only)
data word returned. So S_CEFSTS<Count> will equal 00 (or 11 if the
read is to I/O space).

• A read command was ACKed by an XMI node, but for some reason the
data was not able to be returned. An example of this is an Ownership
Read to a memory location that is currently owned by another node.
If the memory "thinks" that a CPU owns the block, but no CPU really
does (due to a previous error in one of the caches), then no writeback
(disown) will be performed, and the memory will continually return
a locked response for every NEXMI retry. Eventually, the NEXMI
will time out and send back an RDE with the S_XBER<TTO> and
S_XBEER<OLR> set. This will produce a hard error interrupt.

Another example of this is if the memory ACKed the transaction, but
never sent back any read data at all. This could happen if the CPU
node did a read to an owned memory location, and the disown never
happened. The memory would eventually time out and purge the read
from its input queue, and the NEXMI would time out and send back
an RDE to the NVAX with S_XBER<TTO> and S_XBER<NRR> set.
This will also produce a hard error interrupt. In both the above cases,
the RDE would be the first return data word, and S_CEFSTS<Count>
would equal 00.

2–265

KA66A CPU Module

• A previous BADWDATA was written to that block in memory, tagging
it bad for all future reads (until it is cleared by the system). This
would return an XMI RER as the first (and only) data word, and this
would be translated to an NDAL RDE. S_XBER<RER> would be set
for this type of error, and a soft error interrupt would be posted. The
RDE would be the first data word returned in this case, too.

• A previous system error, such as a memory location being corrupted
and causing an ECC syndrome miscompare, could return an RDE on
any of the words. If the S_CEFSTS<Count> shows that the RDE was
not the first word returned, then only a memory error could be the
cause. If the count shows that it was the first word, then a corrupted
data word in the memory is only one possibility. S_XBER<RER> would
be set and a soft error interrupt would be posted.

• An RDE in response to an XMI IDENT command has some special
properties, and is included here as a separate list item even though it
is, in fact, a D-stream read. There are several different XMI adapters,
and two error return possibilities depending upon the adapter. In each
case, the adapter realizes after it has interrupted the CPU that there
is no data to be returned.

The first IDENT error return scenario is a simple S_XBER<RER>,
where the adapter returns data within the NVAX timeout period,
and tags the return data as wrong and uncorrectable. In the second
IDENT error scenario, the adapter simply fails to return any data in
response to the IDENT, and the NEXMI eventually times out and sets
the S_XBER<TTO> and S_XBER<NRR> bits.

See Table 2–40 for a listing of the cycle types and their error bit decode
meaning, based upon the bits set in S_CEFSTS. For all the cases above,
the physical address is in S_CEFADR.

• I-stream read
The B-cache may be in ETM, depending upon the related error bits.

• D-stream read
The B-cache may be in ETM, depending upon the related error bits.

• D-stream ownership read
The B-cache is in ETM. No write data has been merged with the
returning fills.

The address should not be in I/O space. If it is, it is an inconsistent status
(see Section 2.10.6.7).

Pending interrupts (all cases): A soft error interrupt will always be
pending. A hard error interrupt may also be pending, depending upon
the reason for the read error. The discussion above explains when a hard
error interrupt should be expected.

Recovery procedure (all cases): Clear CEFSTS<Lock, RDE>, and whichever
of the bits XBER<TTO>, XBER<CNAK>, XBEER<OLR>, XBER<NRR>,
NCSR<SSCIR>, or XBER<RER> is appropriate (based upon the reason for
the error).

See Section 2.10.9.14 for more details on recovery.

2–266

KA66A CPU Module

Retry condition (I-stream or D-stream read): Retry if the address is not in
I/O space and:

(VR = 1) OR (PSL<FPD> = 1)

Retry condition (D-stream ownership read): Given that no data is lost,
retry if the memory state repair procedure is successful or not called for
and if:

(VR = 1) OR (PSL<FPD> = 1)

If the hexword block could not be repaired or data is lost, software must
determine if the error is fatal to one process or the whole system and take
appropriate action.

Post retry recovery: If the same fill error recurs on retry, then the block is
probably "lost." 1

NOTE: It may be appropriate to cause each CPU in the system to flush its
B-cache, and then retry.

It may be that another error (such as an uncorrectable tag store
error on a coherence request) will be repaired by the soft error
interrupt handler before the retry actually occurs, fortuitously
repairing the cause of the fill error.

2.10.6.6.6 Lost B-Cache Fill Error
Description: Some number of fill errors occurred and were not latched
because CEFSTS and CEFADR already contained a report of an
unrecoverable error. There is no guarantee this error could have caused
a machine check, though it may be a cause. Lost B-cache fill errors that
cause machine checks are always read errors, and can be retried unless
the aborted instruction has altered essential state. If it is a machine check
cause, the error will have caused a soft error interrupt. Lost B-cache
fill errors that could have caused a machine check are dealt with in the
sections on hard and soft error interrupts.

Lost B-cache fill errors may be caused by more than one operand prefetch
to the same cache block.

Recovery for lost B-cache fill errors depends on whether the pending
interrupt is hard or soft. The machine check error handling software
should defer recovery until the expected hard or soft error interrupt occurs.
Once the interrupt is taken, the error recovery and restart instructions
found in the hard error interrupt and soft error interrupt sections should
be referenced. See Section 2.10.8.4.2 and Section 2.10.9.15.

Software should employ some mechanism to record that an interrupt for a
lost B-cache fill error is pending. This mechanism should allow detection
of a case in which an expected interrupt does not occur (once the IPL is
lowered). If the expected interrupt does not occur when the IPL is lowered,
then a serious inconsistency exists and the system should be crashed.

The B-cache may be in ETM and, if it is, S_CCTL<HW ETM> will be set.

1 In this case the more general sense of "lost" is implied. That is, memory’s ownership bit is set, but no cache writes the
data back when a read is done to that location. It is possible to identify which CPU actually owns the block (or rather,
which CPU is thought to own it according to the memory), but it is often not possible to determine which error caused
the situation to arise.

2–267

KA66A CPU Module

Pending interrupts: Both or either a hard or soft error interrupt should be
pending.

Recovery procedure: No specific recovery action is required. The
BCEDSTS<LOST ERR> should be cleared by the hard or soft error
interrupt handler, and the B-cache must remain in ETM until the error
interrupt occurs.

Retry condition: Retry only if:

(VR = 1) OR (PSL<FPD> = 1)

2.10.6.6.7 Unacknowledged NDAL I-Stream or D-Stream Read or D-Stream
Ownership Read
Description: An I-stream or D-stream read or D-stream ownership read
was NO ACKed by the NEXMI. The physical address is in S_CEFADR.
The NEXMI will generally ACK any legal command on the NDAL, without
regard to the address. If the address later turns out to be nonexistent, or
if some other error prevents return read data, an RDE will be returned to
the NVAX long before the Cbox times out. Potential reasons for an NDAL
bus NO ACK are as follows:

• An NDAL parity error was sensed by the NEXMI during NVAX
command transfer cycle. S_NESTS<NO ACK> should be set, S_
NEOCMD will contain the command that was refused, and S_
NEOADR will contain the address. S_NCSR<NDPE> should also
be set, since the NEXMI is assumed to have NO ACKed the cycle
due to a parity error. If the NVAX also sensed the parity error
(S_NESTS<PERR> is set), then more information is available in
the S_NEICMD and S_NEDATLO registers. This is discussed in
Section 2.10.9.19.

• The NEXMI refused the command because the non-writeback queue
was full. This should be prevented by the NEXMI’s control of CPU
GRANT L, but if it does happen, S_NCSR<NWQFL> will be set.

For I-stream or D-stream reads the B-cache may be in ETM. For D-stream
ownership reads the B-cache is in ETM.

The address should not be in I/O space. If it is, it is an inconsistent status
(see Section 2.10.6.7).

Pending interrupts (all cases): A soft error interrupt should be pending.

Recovery procedure (all cases): Clear NESTS<NO ACK> and either
NCSR<NDPE> or NCSR<NWQFL>.

Additional recovery procedure for D-stream ownership read: Flush the
B-cache and then clear CCTL<HW ETM>.

Retry condition: Retry if:

(VR = 1) OR (PSL<FPD> = 1)

2–268

KA66A CPU Module

2.10.6.6.8 Lost NDAL Output Error
Description: Some number of NDAL output errors occurred and were not
latched because NESTS, NEOADR, NEDATHI, and NEDATLO already
contained a report of an unrecoverable error. Although this error could
be the cause of the machine check, it might not be. Lost NDAL output
errors that cause machine checks are always read errors, and can be
retried unless the aborted instruction has altered essential state. If it is
a machine check cause, the error will have caused a soft error interrupt.
Lost NDAL output errors that do not cause a machine check are dealt with
in the sections on hard and soft error interrupts.

Recovery for lost NDAL output errors depends on whether the pending
interrupt is a hard or soft. The machine check error handling software
should defer recovery until the expected hard or soft error interrupt occurs.
Once the interrupt is taken, the error recovery and restart instructions
found in the hard and soft error interrupt sections should be referenced.
See Section 2.10.8.6 and Section 2.10.9.17.

Software should employ some mechanism to record that an interrupt
for a lost NDAL output error is pending. This mechanism should allow
detection of a case in which an expected interrupt does not occur. If the
expected interrupt does not occur once the IPL is lowered, then a serious
inconsistency exists and the system should be crashed.

The B-cache may be in ETM and, if it is, S_CCTL<HW ETM> will be set.

Pending interrupts: Both or either a hard or soft error interrupt should be
pending.

Recovery procedure: No specific recovery action is required. The
BCEDSTS<LOST ERR> should be cleared by the hard or soft error
interrupt handler, and the B-cache must remain in ETM until the error
interrupt occurs.

Retry condition: Retry only if:

(VR = 1) OR (PSL<FPD> = 1)

2.10.6.6.9 PTE Read Errors
PTE read errors happen in reads issued by the Mbox in handling a TB
miss. Handling of these errors differs from handling the same underlying
error (B-cache data RAM error, B-cache fill error, or NDAL NO ACK error)
when PTE read is not the cause.

If S_PCSTS<PTE ER> is set, then a PTE read issued by the Mbox in
processing a TB miss had an unrecoverable error. The TB miss sequence
was aborted because of the error. The original reference can be any I-
stream or D-stream read or write. If the original reference was issued by
the Ebox, then the PTE read that incurred the error will have been retried
once because of a special hardware/microcode mechanism for handling
PTE read errors on Ebox references.

PTE read errors are difficult to analyze, partly because the read error
report in the Cbox does not directly indicate that the failing read was a
PTE read. Because of this and because PTE read errors should be rare
(a very small percentage of the reads issued by the Mbox are PTE reads),

2–269

KA66A CPU Module

multiple errors that interfere with the analysis of the PTE error are not
considered recoverable.

The mechanism for reporting PTE read errors on Ebox references involves
the Mbox forcing the Ebox into the microcode routine which normally
handles memory management faults. This routine probes the address of
the original reference, effectively retrying the failing PTE read. Assuming
the error is not transient, the probe by microcode will cause a machine
check. If the error does not occur on the probe, microcode restarts the
current instruction stream. So machine checks caused by PTE read errors
can easily occur with the particular PTE read error having occurred twice
(with a lost error bit set in the relevant Cbox error register).

The analysis here tolerates these particular multiple error reports and
allows retry in those cases, provided the remainder of the error analysis
indicates retry is appropriate.

If the reference that incurs the PTE read error is a write, S_PCSTS<PTE
ER WR> will be set. In this case the original write is lost. No retry is
possible partly because the instruction that took the machine check may
be subsequent to the one that issued the failing write. Also, PTE read
errors on write transactions can cause a machine check at an arbitrary
time in a microcode flow, and core machine state may not be consistent.

2.10.6.6.9.1 PTE Read Errors in Interruptable Instructions
Another special case associated with PTE read errors exists for
interruptable instructions (specifically CMPC3, CMPC5, LOCC, MOVC3,
MOVC5, SCANC, SKPC, and SPANC). For these instructions, if the PTE
read error occurred for an Ebox reference, the PC in the machine check
stack frame points to the instruction following the interrupted instruction.
In this case, the SAVEPC element in the machine check stack frame is the
PC of the interrupted instruction.

However, in all other cases SAVEPC is UNPREDICTABLE. This case
is not considered recoverable because analysis of the error information
cannot unambiguously conclude that this case is present. To see if this
case is present, the error handler examines the FPD bit in the PSL in the
machine check stack frame. If FPD is set in the stack frame in the case of
a PTE read error, then one of the following is true:

• One of the interruptable instructions listed above incurred the PTE
read error. In this case, SAVEPC from the machine check stack frame
points to the interrupted instruction, and PC in the stack frame points
to the next instruction.

• An REI instruction loaded a PSL with FPD set and a certain PC.
The Ibox incurred the PTE read error in fetching the opcode pointed
to by that PC. In this case, the PC in the stack frame points to the
instruction that was the target of the REI, and SAVEPC from the
stack frame is unpredictable.

It is not possible to determine which of the two above cases is the cause of
a machine check with S_PCSTS<PTE ER> set and stack frame PSL<FPD>
set. Retry is not possible since software cannot tell which PC to restart
with.

2–270

KA66A CPU Module

2.10.6.6.9.2 B-Cache Data RAM Uncorrectable ECC Errors and Addressing Errors on
PTE Reads
Description (addressing errors): A B-cache addressing error was detected
by the Cbox in a PTE read during a B-cache hit. Addressing errors are the
result of a mismatch between the address the Cbox drives to the RAMs for
a read access and the address used to write that location. A multiple-bit
data error can appear to be an addressing error, although it is extremely
unlikely.

Description (uncorrectable ECC errors): A B-cache uncorrectable data
error was detected by the Cbox in a PTE read during a B-cache hit.
Uncorrectable data errors are the result of a multiple-bit error in the data
read from the B-cache. An addressing error with a single-bit data error
will appear as an uncorrectable data error.

Description (all cases): The B-cache is in ETM. S_BCEDIDX contains
the cache index of the error, and BCEDECC contains the syndrome
calculated by the ECC logic. The physical address of the PTE read can
be found by reading the tag for the data block (using the procedure
in Section 2.10.3.3.4). If the physical address is in I/O space, it is an
inconsistent status. See Section 2.10.6.7.

If the block’s tag contains an ECC error, the address cannot be determined.

S_BCEDSTS<LOST ERR> may be set. This error is probably due to
the same PTE error occurring more than once. This is an acceptable
assumption unless a hard error interrupt occurs after handling this error.

It should never be the case that both S_BCEDSTS<BAD ADDR> and
S_BCEDSTS<UNCORR> are set. If they are, the state is inconsistent (see
Section 2.10.6.7).

Pending interrupts: A soft error interrupt should be pending.

Recovery procedure (addressing errors): Clear BCEDSTS<Lock, BAD
ADDR>.

Recovery procedure (uncorrectable ECC errors): Clear BCEDSTS<Lock,
UNCORR>.

Recovery procedure (both cases): Flush the B-cache and then clear
CCTL<HW ETM>. Clear PCSTS<PTE ER>. If the data is owned by the
B-cache and if the error repeats itself (is not transient), then a writeback
error will result from the flush procedure. Software should prepare for
this by clearing NESTS and BCEDSTS errors.

Retry condition: If no writeback error occurs in the B-cache flush, retry if:

(VR = 1) AND (PSL<FPD> = 0) AND (S_PCSTS<PTE ER WR> = 0)

Crash the system if:

(PSL<FPD> = 1) OR (S_PCSTS<PTE ER WR> = 1)

If a writeback error occurs in the B-cache flush, then the data is presumed
to be unrecoverable. See Section 2.10.9.10 for a description of handling an
error in a writeback. Software must determine if the error is fatal to one
process or the whole system and take appropriate action.

2–271

KA66A CPU Module

2.10.6.6.9.3 NDAL PTE Read Timeout Errors
Description: A PTE read timed out in the Cbox before any fill quadword
was received. This is not the method by which the NEXMI will notify
the NVAX CPU that a location is inaccessible. All outstanding NDAL
read-type cycles are normally terminated by at least one return data cycle,
either RDRx or RDE.

The only recoverable reasons for a Cbox timeout are an NDAL parity
error that strikes the return data or an XMI responder queue overflow.
S_CEFSTS<Count> indicates the number of quadwords received before the
error. The physical address of the PTE is in S_CEFADR.

Section 2.10.6.6.4 discusses Cbox timeout errors in the context of non-
PTE machine check errors, but some of that general discussion applies
here as well. The system environment analysis for this kind of timeout
is the same, since there is no distinction outside the NVAX between a fill
read and a PTE read. Section 2.10.9.19 has a more complete discussion of
NDAL parity errors and how they should be analyzed. Table 2–40 contains
information about decoding the S_CEFSTS bits and determining what was
in progress during the error.

CEFSTS<Write> should not be set. If it is, it is an inconsistent status (see
Section 2.10.6.7).

The B-cache is not in ETM. The read was not an ownership read, so this
error could not have caused the ownership bits in memory to be left in the
wrong state.

S_CEFSTS<LOST ERR> may be set. This error is probably due to
the same PTE error occurring more than once. This is an acceptable
assumption unless a hard error interrupt occurs after handling this error.

Pending interrupts: A soft error interrupt should be pending. If S_
NSCSR<RQOVFL> is set, a hard error interrupt should also be pending.

Recovery procedure: Clear CEFSTS<Lock, Timeout>, PCSTS<PTE ER>,
and either NCSR<NDPE, NTRAE> or NSCSR<RQOVFL>.

Retry condition: Retry if:

(VR = 1) AND (PSL<FPD> = 0) AND (S_PCSTS<PTE ER WR> = 0)

Otherwise, crash the system.

Post retry recovery: If the same fill error recurs on retry, then the block
is probably "lost." 1 Software must determine if the error is fatal to one
process or the whole system and take appropriate action.

NOTE: It may be appropriate to cause each CPU in the system to flush its
B-cache, and then retry.

1 In this case the more general sense of "lost" is implied. That is, memory’s ownership bit is set, but no cache writes the
data back when a read is done to that location. It is possible to identify which CPU actually owns the block (or rather,
which CPU is thought to own it according to the memory), but it is often not possible to determine which error caused
the situation to arise.

2–272

KA66A CPU Module

It may be that another error (such as an uncorrectable tag store
error on a coherence request) will be repaired by the soft error
interrupt handler before the retry actually occurs, fortuitously
repairing the cause of the fill error.

2.10.6.6.9.4 NDAL PTE Read Data Errors
Description: A PTE read ended with an RDE (read data error) NDAL
cycle before any of the fill quadwords were received. S_CEFSTS<Count>
indicates the number of quadwords received before the error. S_
CEFSTS<Count> should be 00 (binary) for a memory space address, or
11 for an I/O space address, since the first word returned was an RDE.
The physical address of the PTE is in S_CEFADR. Section 2.10.6.6.5
contains a more complete discussion about this type of error in a non-PTE
context. The system environment analysis for an RDE is almost identical.
Briefly, here are the reasons that the first return data word could be an
RDE.

• The NVAX attempted a read command to a nonexistent memory
location (NXM) in system support or XMI space. A system support
NXM sets S_NCSR<SSCIR>, and an XMI NXM sets S_XBER<CNAK>
and S_XBER<TTO>.

• A read command was ACKed, but the data was not able to be returned.
S_XBER<TTO> is set along with either S_XBEER<OLR> or S_
XBER<NRR>.

• A previous BADWDATA was written to that block in memory, tagging
it bad for all future reads. S_XBER<RER> is set.

• A previous system error, such as a memory location being corrupted
and causing an ECC syndrome miscompare, was sensed on the first
quadword requested. This could be any quadword within the hexword,
since the requested quadword is always returned first. S_XBER<RER>
is set.

CEFSTS<Write> should not be set. If it is, it is an inconsistent status (see
Section 2.10.6.7).

The B-cache is not in ETM. The read could not have been an ownership
read, so this error could not have caused the ownership bits in memory to
be left in the wrong state.

S_CEFSTS<LOST ERR> may be set. This error is probably due to
the same PTE error occurring more than once. This is an acceptable
assumption unless a hard error interrupt occurs after handling this error.

Pending interrupts: A soft error and/or a hard error interrupt should be
pending.

Recovery procedure: Clear CEFSTS<Lock, RDE>, PCSTS<PTE ER>, and
whatever appropriate NEXMI bits are set (see Section 2.10.6.6.5).

Retry condition: Retry if:

(VR = 1) AND (PSL<FPD> = 0) AND (S_PCSTS<PTE ER WR> = 0)

Otherwise, crash the system.

2–273

KA66A CPU Module

Post retry recovery: If the same fill error recurs on retry, then the block
is probably "lost." 1 Software must determine if the error is fatal to one
process or the whole system and take appropriate action.

NOTE: It may be appropriate to cause each CPU in the system to flush its
B-cache, and then retry.

It may be that another error (such as an uncorrectable tag store
error on a coherence request) will be repaired by the soft error
interrupt handler before the retry actually occurs, fortuitously
repairing the cause of the fill error.

2.10.6.6.9.5 Unacknowledged NDAL PTE Read
Description: A PTE read was NO ACKed by the NEXMI. The NEXMI will
generally ACK any legal command on the NDAL, without regard to the
address. If the address later turns out to be nonexistent, or if some other
error prevents return read data, an RDE will be returned to the NVAX
long before the Cbox times out. So, the most likely reason for this error is
an NDAL parity error.

The physical address of the PTE is in S_NEOADR. The B-cache is not in
ETM.

Refer to Section 2.10.6.6.7 for a more general discussion of an
unacknowledged read, and Section 2.10.9.19 for a more complete analysis
of an NDAL parity error. The system environment response to a PTE read
is a subset of the response to the more general I-stream or D-stream read
command.

S_CEFSTS<LOST OERR> may be set. This error is probably due to
the same PTE error occurring more than once. This is an acceptable
assumption unless a hard error interrupt occurs after handling this error.

Pending interrupts: A soft error interrupt should be pending.

Recovery procedure: Clear NESTS<NO ACK>, PCSTS<PTE ER>, and the
appropriate NEXMI error bits as per Section 2.10.6.6.7.

Retry condition: Retry if:

(VR = 1) AND (PSL<FPD> = 0) AND (S_PCSTS<PTE ER WR> = 0)

Otherwise, crash the system.

2.10.6.6.9.6 Multiple Errors That interfere with Analysis of PTE Read Errors
Because PTE read errors lead to several unusual cases, retry is not
recommended.

Pending interrupts: Both or either a hard or soft error interrupt should be
pending.

Recovery procedure: No specific recovery action is required.

Retry condition: No retry is possible. Crash the system.

1 In this case the more general sense of "lost" is implied. That is, memory’s ownership bit is set, but no cache writes the
data back when a read is done to that location. It is possible to identify which CPU actually owns the block (or rather,
which CPU is thought to own it according to the memory), but it is often not possible to determine which error caused
the situation to arise.

2–274

KA66A CPU Module

2.10.6.7 Inconsistent Status in Machine Checks
Description: A presumed impossible error report was found in the error
registers. This could be due to a hardware failure.

Pending interrupts: Both or either a hard or soft error interrupt should be
pending.

Recovery procedure: No specific recovery action is called for.

Retry condition: No retry is possible. Crash the system.

2–275

KA66A CPU Module

2.10.7 Power Fail Interrupt

Power fail interrupts are requested by the XTC power sequencer to report
an imminent loss of power to the CPU module.

Power fail interrupts are requested at IPL 1E (hex) and are dispatched
through SCB vector 0C (hex). The stack frame for a power fail interrupt is
shown in Figure 2–5.

The VAX 6000 Model 600 supports the standard XMI time of 4
milliseconds to execute the software necessary to save processor state
for systems without a battery backup unit; software has 500 milliseconds
to save processor state in systems with battery backup.

Software must flush the cache to memory in the power fail service routine
since backup cache state is not saved across a power fail. This routine
must do the following:

1 Save the current contents of the CCTL register.

2 Put the B-cache in software ETM mode by modifying the CCTL
register.

3 Write to each BCFLUSH register from address 0140 0000 to 0200 0000
in increments of 20 (hex).

4 Restore the CCTL to its original state.

In a system without a battery backup unit, software may not have time to
flush the entire cache to memory.

2–276

KA66A CPU Module

2.10.8 Hard Error Interrupt

A hard error interrupt reports an error that was detected asynchronously
with instruction execution.

A hard error interrupt results in an interrupt at IPL 1D (hex) being
dispatched through SCB vector 60 (hex). Typically, these errors indicate
that machine state has been corrupted and that a retry is not possible.
The stack frame for a hard error interrupt is shown in Figure 2–5.

Figure 2–28 contains the hard error interrupt parse tree, which indicates
the causes of each hard error interrupt. For those hard error interrupts
that have multiple causes, the registers and bits that isolate the cause are
listed. The sections following the parse tree provide a description of the
hard error, the procedure to recover, and the conditions for restarting the
operation.

Figure 2–28 Hard Error Interrupt Parse Tree

(select all, at least one)

(select one)

S_BCEDSTS<BAD ADDR> <3>

S_BCEDSTS<DR CMD> <11:8> = RMW (0010)
B−cache data RAM addressing
error on a write or write

(Section 2.10.8.1)

1 msb−p629−92

S_BCEDSTS<Lock> <0>

S_BCEDSTS<UNCORR> <2>

otherwise

unlock from Mbox

S_BCEDSTS<LOST ERR> <4>

none of the above

S_BCEDSTS<DR CMD> <11:8> = RMW (0010)

Not a hard error interrupt
cause (see soft error interrupt
events)

B−cache data RAM uncorrectable
ECC error on a write or write
unlock from Mbox (Section 2.10.8.1)

Not a hard error interrupt cause
(see soft error interrupt events)

Inconsistent status (no BCEDSTS
unrecoverable error bits set)
(Section 2.10.8.10)

Lost unrecoverable B−cache data
(Section 2.10.8.2)

otherwise

Figure 2–28 Cont’d on next page

2–277

KA66A CPU Module

Figure 2–28 (Cont.) Hard Error Interrupt Parse Tree

1

S_CEFSTS<Lock> <1> (select one)

(select one)S_CEFSTS<Timeout> <2>

[S_NESTS<PERR> <3> and
<29> and

<6:4> = (000 or 001)]

[S_CEFSTS<REQ FILL DONE> <14> and
S_CEFSTS<WRITE> <8> and
S_CEFSTS<OREAD> <7> and
S_CEFSTS<Count> <16:15> not 00]

NDAL timeout on OREAD for
write from Mbox after write
data merged with fill data
in cache (Section 2.10.8.4)

S_PCSTS<PTE ER> <10>

(Section 2.10.8.7)

2 msb−p630−921

(select one)

S_NCSR<NRTAE>

S_NSCSR<RQOVFL> <7>

PTE fill data timeout error
[Enter soft error parse tree at
point C.] (Section 2.10.8.7)

Read fill timeout error
[Enter soft error parse tree at

otherwise

(select one)

S_NEICMD<CMD> <3:0> = (RDRx or RDE) and

otherwise

point A.]

S_NEICMD<ID>

Inconsistent status (no hard
error reason for timeout)
(Section 2.10.8.10)

Inconsistent status (no
legitimate cause for timeout)
(Section 2.10.8.10)

or [S_NSCSR<RQOVFL> <7>]

otherwise

Figure 2–28 Cont’d on next page

2–278

KA66A CPU Module

Figure 2–28 (Cont.) Hard Error Interrupt Parse Tree

1 2

S_CEFSTS<RDE> <3> (select one)

(select one)

[S_XBER<RER> <16>] or
<23>] or

[S_CEFSTS<REQ FILL DONE> <14> and
S_CEFSTS<WRITE> <8> and
S_CEFSTS<OREAD> <7> and
S_CEFSTS<Count> <16:15> not 00]

NDAL read data error on OREAD
for write from Mbox after write
data merged with fill data in

(Section 2.10.8.3)

<23>] or
(select one)

S_PCSTS<PTE ER> <10>
PTE fill read data error
[Enter soft error parse tree at

(Section 2.10.8.8)

S_CEFSTS<LOST ERR> <4>

msb−p631−921

S_CEFSTS<Unexpected Fill> <21>

[S_XBER<PE>

[S_XBER<PE>

cache

otherwise

point D.]

(Section 2.10.8.8)

otherwise

[S_XBER<TTO> <13>]

[S_XBER<TTO> <13>]

Read fill read data error
[Enter soft error parse tree at

otherwise

otherwise

point B.]

Inconsistent status (no hard error
reason for RDE) (Section 2.10.8.10)

Inconsistent status (no legitimate
cause for RDE) (Section 2.10.8.10)

Unexpected NDAL fill received
(Section 2.10.8.4.1)

Not a hard error interrupt cause
(See soft error interrupt events.)

Lost B−cache fill error
(Section 2.10.8.4.2)

Figure 2–28 Cont’d on next page

2–279

KA66A CPU Module

Figure 2–28 (Cont.) Hard Error Interrupt Parse Tree

1

S_NESTS<NO ACK> <0> (select one)

(select one)

[S_NCSR<NDPE> <31>] or
[S_NCSR<WBQFL> <2>] or
[S_NCSR<NWQFL> <1>]

S_NEOCMD<CMD> <3:0> = WRITE

msb−p632−921

S_NESTS<LOST OERR> <2>

NO ACK on WRITE command or
data cycle (Section 2.10.8.5)

otherwise

S_NEOCMD<CMD> <3:0> = WDISOWN
NO ACK on WDISOWN command or
data cycle (Section 2.10.8.5)

Not a hard error interrupt cause
(see soft error interrupt events)

Inconsistent status (no legal
reason for NO ACK) (Section 2.10.8.5)

Lost NO ACK error (Section 2.10.8.6)

otherwise

Figure 2–28 Cont’d on next page

2–280

KA66A CPU Module

Figure 2–28 (Cont.) Hard Error Interrupt Parse Tree

1

S_XBER<WEI> <25>
Write error interrupt
(Section 2.10.8.9)

XMI inconsistent parity error
(Section 2.10.8.9)

1
n=1, <24>;

n=0, <13>

[S_XBER<PE> <23> and
S_XBER<RSE> <17> and S_CEFSTS<RDE> <3> and
S_CEFSTS<Count> <16:15> not 11]

msb−p633−92

Where "n" is either 0 or 1, depending upon which half of the
writeback queue incurred the error.

1

S_XBER<IPE> <24>

XMI write sequence error
(Section 2.10.8.9)

XMI transaction timeout
(Section 2.10.8.9)

n= 0, <16>
XMI writeback transaction
timeout (Section 2.10.8.9)

1
n=1, <21>;

otherwise

S_XBER<WSE> <22> and S_XBER<PE> <23>

XMI second writeback error
occurred (Section 2.10.8.9)

(select one)

S_XBER<TTO> <13>

Recoverable unexpected read
response (Section 2.10.8.9)

Inconsistent unexpected read
response (Section 2.10.8.9)

XMI second error occurred
(Section 2.10.8.9)

NDAL inconsistent parity error
(Section 2.10.8.9)

NDAL write sequence error
(Section 2.10.8.9)

System support illegal write
(Section 2.10.8.9)

Inconsistent status
(Section 2.10.8.10)

S_XBEER<WTTOn>

S_XBEER<WSEOn>

S_XBEER<URR> <2>

S_XBEER<SEO> <0>

S_NCSR<NDIPE> <30>

S_NCSR<NWSE> <27>

S_NCSR<SSCIW> <9>

otherwise

2–281

KA66A CPU Module

2.10.8.1 Uncorrectable Data Errors and Addressing Errors During Write or Write
Unlock Processing
Description: In processing a write or write unlock, the Cbox detected an
addressing error or an uncorrectable ECC error on the data read from the
B-cache data RAMs. The write data has already been merged with the
corrupted B-cache data, and the write of the merged ("bad") data occurred.
Data from the write is lost.

There are two types of uncorrectable B-cache data RAM errors: addressing
errors and uncorrectable ECC errors. Both are detected through the ECC
check logic. Uncorrectable ECC errors indicate that two or more bits of the
stored data quadword have changed, and the error correcting code cannot
correct the data. A multiple-bit data error can appear to be an addressing
error, though it is extremely unlikely. A single-bit error combined with an
addressing error appears as an uncorrectable error.

Addressing errors indicate that the location read from the data RAM was
probably written using a different address than the one used to read it
back. The actual hardware failure could have occurred in the previous
data RAM write or the current read. Addressing errors are more serious
than uncorrectable ECC errors since they indicate the integrity of the
entire B-cache is questionable. Also, there is less than a 100% chance that
a given addressing error will result in recognition of an addressing error.
This is because addressing errors are recognized by encoding the parity
of the address with the data and checking it on read back. All single-bit
addressing errors are detectable. Note that addressing errors on writes
are never detected if that data is never read out again.

The Cbox inverts three of the check bits being written back into the data
RAMs to ensure that if the data is read again an uncorrectable error
will be detected. If a subsequent read occurs, S_BCEDSTS<LOST ERR>
should be set, and the instruction which issued the read will machine
check. However this mechanism is not fully reliable at ensuring that
a subsequent read will detect the error (see Section 2.10.10, Note on
Tagged-Bad Data Mechanisms).

For either case, the physical address is determined from the contents of
S_BCEDIDX using the procedure in Section 2.10.3.3.4. (If the physical
address is found to be in I/O space, it is an inconsistent status. See
Section 2.10.8.10.) S_BCEDECC contains the syndrome calculated by the
ECC logic. The B-cache is in ETM.

If the block’s tag is found to contain an ECC error, then the address cannot
be determined.

It should never be the case that both S_BCEDSTS<BAD ADDR> and
S_BCEDSTS<UNCORR> are set. If they are, it is an inconsistent status
(see Section 2.10.8.10).

Recovery procedure (addressing error): Clear BCEDSTS<BAD ADDR,
Lock>.

Recovery procedure (uncorrectable ECC error): Clear BCEDSTS<UNCORR,
Lock>.

2–282

KA66A CPU Module

Recovery procedure (both cases): The data in this block is lost. Flush the
B-cache and then clear CCTL<HW ETM>. Flushing the B-cache should
cause a writeback error (in which BADWDATA will be sent on the NDAL),
so BCEDSTS and NESTS should be cleared beforehand. Then use the
system-specific procedure to clear the tagged-bad state from this block in
memory.

It is possible that no writeback error will occur, or that it will happen at
the wrong address. This would occur if an error in the data RAMs caused
the data to appear as correctable, or without error, even though it was
written with three ECC bits inverted. Also, this could occur if the data
was written to a different location than intended (addressing error). If this
happens, then the block in memory will incorrectly appear to be good data.

NOTE: When clearing the tagged-bad data state of memory, software must
ensure that no more accesses to the block can occur. Otherwise,
a process on another processor or a DMA I/O device could see
incorrect data and not detect an error.

Restart condition (addressing error): Addressing errors occur on data
RAM reads and writes. Because the Cbox writes "bad" data back into
the location, there is no way to distinguish transient read errors from
transient write errors. Therefore, the worst case has to be assumed:
some previous data was written to the wrong place in the B-cache or the
failing data has been written to the wrong location in the B-cache. In
other words, not only is the block whose address is known corrupted, but
another block is as well. No restart is possible. Crash the system.

Restart condition (uncorrectable ECC error): If the address of the data is
available and no unexpected writeback errors occurred during the B-cache
flush, software must determine if the lost data is fatal to one process or
the whole system and take the appropriate action.

If the address of the data could not be determined or unexpected errors
occurred during the B-cache flush, crash the system.

2.10.8.2 Lost B-Cache Data RAM Hard Errors
Description: Some number of unrecoverable B-cache data RAM errors
occurred and were not latched because BCEDSTS already contained a
report of an unrecoverable error. There is no guarantee this error could
have caused a hard error interrupt, though it may be a cause.

Lost B-cache data RAM errors may be caused by more than one operand
prefetch to the same cache block.

B-cache data RAM errors that cause a hard error interrupt indicate that
write data has been lost. Specifically, a read-modify-write operation for a
write or write unlock had an uncorrectable ECC error or an addressing
error. The data was written back into the RAMs with three check bits
inverted.

The B-cache is in ETM.

Pending interrupts: A soft error interrupt may be pending.

Recovery procedure: Clear BCEDSTS<LOST ERR>. Flush the B-cache and
then clear CCTL<HW ETM>.

2–283

KA66A CPU Module

Restart condition: No restart is possible since the errors which were not
recorded could potentially have caused lost write data and no indication of
what data is lost exists (based on the fact that this error was reported by a
hard error interrupt). Also, the possibility exists that a subsequent read to
any location that had this error could receive incorrect data with no error
indication. Crash the system.

2.10.8.3 Read Data Error in Quadword OREAD Fill After Write Data Merged
Description: A D-stream ownership read for a write or write unlock
terminated by receiving an RDE fill response after the requested quadword
was received. In the XMI environment, the requested quadword is always
returned first. Thus, this error implies that at least one data word was
returned by the NEXMI. There are several reasons why a read cycle might
be terminated with an RDE some time after the first data word has been
returned.

• An uncorrectable memory error occurred within the MS65A memory
adapter. This could happen on any word, but within the context of this
analysis the error must have happened on the second, third, or fourth
return data word. S_XBER<RER> is set, and S_CEFSTS<Count> is a
value other than 00.

• An XMI parity error caused one of the read return data words to be
missed by the NEXMI. S_CEFSTS<RDE> and S_XBER<PE> are set.
The exact footprint for this type of error will be different, depending
upon which data word was affected by the parity error. The error could
not have happened on the first data word, since this analysis assumes
that the initial data word was returned correctly and merged with
the write data. Here are the other possibilities, in addition to the bits
described above. See Section 2.10.8.9 for more details.

• A parity error strikes the second return data word. S_XBER<RSE>
and S_XBEER<URR> are set. S_CEFSTS<Count> = 01 (binary).

• A parity error strikes the third return data word. S_XBER<RSE>
is set. S_CEFSTS<Count> = 10.

• A parity error strikes the last return data word. S_XBER<TTO>
and S_XBER<NRR> are set. S_CEFSTS<Count> = 11.

The quadword physical address is in S_CEFADR. The address should not
be in I/O space. If it is, it is an inconsistent status (see Section 2.10.8.10).
The merged data is in the B-cache in the quadword indicated in S_
CEFADR. The ownership and valid bits in the B-cache are not set.

Pending interrupts: A soft error interrupt will be pending.

Recovery procedure: Clear CEFSTS<Lock>, CEFSTS<RDE>, and
XBER<RER> or XBER<PE> (whichever is appropriate). Flush the B-
cache, then clear CCTL<HW ETM>.

Since at least one quadword of data was received successfully, the MS65A
memory will have set its ownership bit. Thus, subsequent reads and
writes to the same location may fail while this error is being handled.

The data in memory should be unchanged. The quadword containing the
merged data is in the B-cache.

2–284

KA66A CPU Module

In general, the memory block cannot be repaired. However, we know that
the memory block is left owned. So, if no writes to the block have timed
out in memory, and the block is private to the interrupted job, it can be
repaired by the following procedure:

• Extract the addressed quadword from the B-cache (see
Section 2.10.3.3.3).

• Reset memory’s ownership state (see Section 2.10.3.3.2.2) and write
the extracted quadword to memory.

NOTE: Software must ensure that no writes to this block are pending
in the memory before beginning the repair. This can be done by
waiting an amount of time equal to a memory subsystem write
timeout time.

Restart condition: If memory state repair is successful, restart. Otherwise,
software must determine if the lost data is fatal to one process or the
whole system and take the appropriate action.

2.10.8.4 Timeout in Quadword OREAD Fill After Write Data Merged
Description: A D-stream ownership read for a write or write unlock timed
out after the requested quadword was received. Since the requested
quadword is returned first, this error implies that at least one data
word was returned by the NEXMI. There are several reasons why an
OREAD can time out in the Cbox before all the return data words
have been returned. In each case, S_CEFSTS<Timeout> is set, and S_
CEFSTS<Count> is a value other than 00.

• An NDAL parity error caused one of the return data words to be
missed. S_NESTS<PERR> and S_NCSR<NRTAE> are set. See
Section 2.10.9.19 for more details. A soft error interrupt will be
pending.

• The XMI responder queue is full when one of the data words is
returned from the MS65A memory. S_NSCSR<RQOVFL> is set.
See Section 2.10.8.9 for more details.

The quadword physical address is in S_CEFADR. The address should not
be in I/O space. If it is, it is an inconsistent status (see Section 2.10.8.10).
The merged data is in the B-cache in the quadword indicated in S_
CEFADR. The ownership and valid bits in the B-cache are not set.

Pending interrupts: A soft error interrupt may be pending.

Recovery procedure: Clear CEFSTS<Lock>, CEFSTS<Timeout>, and either
S_NESTS<PERR> and S_NCSR<NRTAE>, or S_NSCSR<RQOVFL>.
Flush the B-cache and then clear CCTL<HW ETM>.

Since at least one quadword of data was received successfully, the MS65A
memory will have set its ownership bit. Thus, subsequent reads and
writes to the same location may fail while this error is being handled.

The data in memory should be unchanged. The quadword containing the
merged data is in the B-cache.

2–285

KA66A CPU Module

In general, the memory block cannot be repaired. However, the memory
block is left owned. So, if no writes to the block have timed out in memory,
and the block is private to the interrupted job, it can be repaired by the
following procedure:

• Extract the addressed quadword from the B-cache (see
Section 2.10.3.3.3).

• Reset memory’s ownership state (see Section 2.10.3.3.2.2) and write
the extracted quadword to memory.

NOTE: Software must ensure that no writes to this block are pending
in the memory before beginning the repair. This can be done by
waiting an amount of time equal to a memory subsystem write
timeout time.

Restart condition: If memory state repair is successful, restart. Otherwise,
software must determine if the lost data is fatal to one process or the
whole system and take the appropriate action.

2.10.8.4.1 Unexpected Fill Error
Description: At least one fill was received when none for that transaction
ID was expected by the NVAX CPU. This can only occur if a serious
NDAL error has occurred. Reads previous to this event may have received
incorrect data.

If S_CEFSTS<RDE> is set, the unexpected fill was an RDE NDAL
transaction.

The B-cache is in ETM. S_CEFADR is UNPREDICTABLE.

Recovery procedure: Clear CEFSTS<Lock, Unexpected Fill>. Flush the
B-cache and then clear CCTL<HW ETM>.

Restart condition: Data may have been corrupted in memory because of
incorrect read data being processed. Crash the system.

2.10.8.4.2 Lost B-Cache Fill Error
Description: At least one fill error occurred in an OREAD after write data
was merged, or an unexpected fill was received. The error was not latched
because CEFSTS and associated registers already contained a report of an
unrecoverable error. There is no guarantee that this error caused a hard
error interrupt, although it may be a cause.

The B-cache may be in ETM. Read S_CCTL<HW ETM> to find out.

Pending interrupts: A soft error interrupt may be pending.

Recovery procedure: Clear CEFSTS<LOST ERR>. If the B-cache is in
ETM, flush it and then clear CCTL<HW ETM>.

Restart condition: Data has been corrupted but the address is unknown.
Crash the system.

2–286

KA66A CPU Module

2.10.8.5 NDAL NO ACK During WRITE or WDISOWN
Description: When the Cbox issues a WRITE or WDISOWN on the NDAL
and it is not acknowledged, the Cbox requests a hard error interrupt. The
transaction is not retried by hardware, so the data is lost. Typically, for
writebacks, the B-cache location is overwritten soon after this error, so
there is no way to recover the data from the B-cache.

Although the reason for the error does not help the analysis of whether
the system can be continued safely, it is interesting from an error logging
standpoint to determine exactly what went wrong. There are two major
reasons why the NEXMI might NO ACK a cycle:

• An NDAL parity error might have caused the NEXMI to refuse the
cycle. S_NCSR<NDPE> is set. See Section 2.10.9.19 for more details
on NDAL parity errors and their footprints.

• Either the writeback queue (for WDISOWN) or the non-writeback
queue (for WRITE) is full when the command appears on the NDAL.
The use of CPU GRANT L is supposed to make this impossible, and as
such it is considered a serious error. If this is the reason, then either
S_NCSR<WBQFL> or S_NCSR<NWQFL> is set (depending upon what
kind of command was refused).

The B-cache is in ETM. S_NEOADR contains the physical address. S_
NEOCMD contains the byte mask and NDAL command.

Pending interrupts: A soft error interrupt will be pending.

Recovery procedure: Clear NCSR<NDPE, WBQFL, NWQFL> (whichever is
appropriate). Clear NESTS<NO ACK>. First flush the B-cache and then
clear CCTL<HW ETM>.

Retry condition: Software must determine if the lost data is fatal to one
process or the whole system and take the appropriate action.

2.10.8.6 Lost NDAL NO ACK Hard Errors
Description: Some number of outgoing NDAL WRITE or WDISOWN
commands were not acknowledged and were not latched because NESTS,
NEOCMD, and NEOADR already contained a report of an NDAL output
error. There is no guarantee that this error caused the hard error
interrupt, although it may be a cause.

Pending interrupts: A soft error interrupt may be pending.

Recovery procedure: Clear NESTS<LOST NO ACK>.

Restart condition: No restart is possible since the errors which were not
recorded could potentially have caused lost write data. No indication of
what data is lost exists. Crash the system.

2–287

KA66A CPU Module

2.10.8.7 Read Data Timeout with Potential Soft Error Cause
Description: The S_NSCSR<RQOVFL> bit may signify that at least
one return data word was missed when it came across the XMI. This
is a serious error, but still potentially recoverable. The overflow bit
itself will cause a hard error interrupt, even though the underlying
analysis is exactly the same as if an NDAL parity error had caused S_
CEFSTS<Timeout> to be set (except, of course, for the parity error bit
being set).

As such, the hard error parse tree can use the soft error tree at
selected entry points. If the hard error interrupt analysis follows the
S_NSCSR<RQOVFL> to the point where this cause is likely, the soft error
parse tree should be entered at the specified place. The analysis should
still be done in the context of the hard error, and if the final analysis shows
that the cause is indeed nothing more than a simple soft and recoverable
error, then the recovery can take place. A flag should be set so that the
pending soft error interrupt will be correctly handled when the hard error
analysis is done.

Pending interrupts: A soft error interrupt will be pending.

Recovery procedure: If a legitimate soft error is found, then clear
NSCSR<RQOVFL> along with the error bits specified in the soft error
recovery procedure. Otherwise, crash the system.

2.10.8.8 Read Data Error with Potential Soft Error Cause
Description: A read data error was detected that caused a hard error
interrupt, but the actual error cause may be more appropriate for analysis
using the soft error interrupt parse tree. Enter the soft error parse tree
at the specified point, and look for consistent status in that context.
This analysis is still carried out in the hard error interrupt domain, so
if a legitimate error is found, the pending soft error interrupt must be
prepared for.

There are two major footprints which imply that a soft error analysis
might be correct:

• S_XBER<TTO> is set, which implies that a read was unable to
complete within the NEXMI timeout period. An RDE was sent back to
the NVAX to signify this fact. S_XFADR contains the failing address
and length; S_XFAER contains the command, mask, and extended
address.

Depending upon the reason for the timeout, different associated
timeout error bits may also be set. See Section 2.10.8.9 for more
details.

• If no other timeout-related error bits are set, then the node giving
the command was never granted the XMI bus.

• If S_XBER<CNAK> is set, the command was continually NO
ACKed on the XMI bus after receiving grant.

• If S_XBER<NRR> is set, the command was ACKed, but not enough
data was returned. This might be caused by a parity error striking
the last return data word, in which case it would be accompanied
by S_XBER<PE>.

2–288

KA66A CPU Module

• If S_XBEER<OLR> is set, the command was ACKed, but an XMI
LOC response was continually returned.

• S_XBER<PE> and S_XBER<RSE> are set, which means that a
return data word was missed due to a parity error. The return
data word after the one that had the parity error was sensed
as being out of sequence. This might also be accompanied by S_
XBEER<URR>, depending upon which return data word was affected.
See Section 2.10.8.9 for more details. The following combinations of
error bits are possible:

• A parity error strikes the first or second return data word. S_
XBER<RSE> and S_XBEER<URR> are set. S_CEFSTS<Count> =
(00 or 01) (binary).

• A parity error strikes the third return data word. S_XBER<RSE>
is set. S_CEFSTS<Count> = 10.

Pending interrupts: A soft error interrupt will be pending.

Recovery procedure: If a legitimate soft error is found, then clear
NSCSR<TTO>, XBER<PE>, XBER<RSE> and/or XBEER<URR> along
with the error bits specified in the soft error recovery procedure.
Otherwise, crash the system.

2.10.8.9 NEXMI Hard Error Interrupts
Description: Errors which occur in the system environment that result in
loss of data or cannot notify the NVAX CPU by returning RDE notify the
CPU of the error by asserting H ERR L. The following register bits are
consistent with a NEXMI hard error interrupt:

• XBER<WEI>

• XBER<IPE>

• XBER<WSE>

• XBER<TTO>

• XBEER<WTTO0>

• XBEER<WTTO1>

• XBEER<WSEO0>

• XBEER<WSEO1>

• XBEER<URR>

• XBEER<SEO>

• NCSR<NDIPE>

• NCSR<NWSE>

• NCSR<SSCIW>

• NSCSR<RQOVFL>

2–289

KA66A CPU Module

Some NEXMI error bits will be set as a byproduct of an error that also
sets an NVAX error register bit (usually in the Cbox). Those error bits
are described in the sections that deal with the NVAX-detected error. This
section describes NEXMI error bits that are seen without an accompanying
NVAX error, or which would normally cause a soft error interrupt in the
NVAX, but are hard errors due to the NEXMI error bit.

• S_XBER<WEI>: If the NEXMI receives a write error IVINTR
transaction on the XMI bus, it will set this bit and post a hard error
interrupt. The recovery procedure depends upon why the other node
signaled the error.

• S_XBER<IPE>: If the NEXMI senses a parity error on the XMI
bus, but some other node ACKs the transaction, then an inconsistent
parity error has occurred. This is very serious, since another node has
probably used information that was in error. Crash the system.

• S_XBER<WSE>: A write transaction that was directed to one of the
XMI CSR registers had a command cycle that was followed by a non-
WDAT cycle. This means that a CSR write was supposed to happen
and did not. The most likely reason for this error is an XMI parity
error.

The KA66A reads and writes its own nodespace (public) XMI CSRs by
going out of the module, across the XMI, and back into the module.
As such, the CSR write could have come from any occupied node, even
the same node that has the WSE bit set. XMI nodes will generally
retry a failed write transaction until it is either successful, or the XMI
timeout counter expires. If the retry is successful, then there will be
no indication in any commander error register that the cycle was ever
refused.

So, if S_XBER<WSE> is set, then S_XBER<PE> should also be set. If
no other node has an indication that a write command was NO ACKed,
then it can be assumed that a transient parity error caused the failure,
but the transaction was successfully retried. If S_XBER<PE> is not
set, then crash the system.

• S_XBER<TTO>: A transaction was unable to be completed within
the NEXMI timeout period and was aborted. S_XFADR contains the
failing address and length; S_XFAER contains the command, mask,
and extended address. There are many different types of XMI timeout
errors. Since most command types are retried automatically on the
XMI bus by the NEXMI controller, each one indicates a nontransient
error on the bus.

If the TTO was due to a read-type command, the NEXMI would have
returned an RDE to the NVAX when the timeout finally occurred. So
S_CEFSTS<RDE> should also be set. In that case, analysis of the
TTO will be done through Cbox error registers.

If the TTO was due to a write-type command, no RDE would be sent,
so the NEXMI registers will contain the only failing error indication
and the NVAX will not detect the error.

2–290

KA66A CPU Module

In the case of a read timeout, it is likely that a hard error interrupt
and a soft error interrupt will be pending. If the initial hard error
analysis finds no matching error, it is still legitimate to follow the
appropriate soft error interrupt tree until a cause is found. If all the
evidence points to the soft error interrupt cause, and if the only hard
error cause is the TTO bit itself, then recovery can proceed based upon
the assumption that the error is, indeed, a normal soft error type.

The following timeout conditions are possible:

• The command is continually NO ACKed on the XMI bus. S_
XBER<CNAK> is set. This is likely caused by a read (or write) to
a nonexistent address. If the command was a read, it is probably
recoverable. The address information is latched in the S_XFADR
and S_CEFADR registers.

• A read command is ACKed, but no data (or not enough data) is
returned from the responder device. S_XBER<NRR> is set. The
error recovery procedure for this is device specific.

• A read command is ACKed, but each time it is retried an XMI
LOC response is returned from the responder. S_XBEER<OLR>
is set. The XMI LOCKOUT signal is supposed to prevent this
from occurring, so this is a serious error. Recovery might be
possible, depending upon the context of the NVAX instruction
being executed.

• The command is a write, and it is ACKed, but each retry finds
the data word NO ACKed. S_XBER<WDNAK> is set. There is no
reason that this should occur, and it is unrecoverable.

• The node was never granted the XMI bus. S_XBER<CNAK>, S_
XBER<NRR>, and S_XBEER<OLR> are clear. There should be no
occasion where the bus is so busy that a node never gets onto the
bus.

• S_XBEER<WTTO0,WTTO1>: A writeback transaction was unable
to complete within the NEXMI timeout period. There are two write
timeout bits, one for each half of the writeback buffer. Each bit
independently shows whether that half had an error. The failing
address is latched in S_WFADRn (where "n" is either 0 or 1, depending
upon which WTTOn bit is set). If both S_WTTO0 and S_WTTO1 are
set, then the contents of S_WFADRn are invalid. There are several
reasons why a timeout might occur on a writeback:

• The DWMASK command was NO ACKed on the XMI until the
NEXMI timeout was reached. S_XBEER<WCNAKn> is set (where
n is either 0 or 1, depending upon which WTTOn was set). Since
the NEXMI automatically retries WDISOWN instructions, a
transient failure (such as a parity error or a filled memory queue)
would not be likely to cause this error. The target address could be
nonexistent.

• The DWMASK was ACKed, but one of the data words was
continually NO ACKed until timeout. S_XBEER<WWDNAKn>
is set. Since the command was ACKed, the address in memory
must have been legitimate. The MS65A memory has separate

2–291

KA66A CPU Module

input queues for the command and data information, and if the
data queue was full it would NO ACK a data cycle. However, the
command retry would likely be successful long before timeout.

• The node was never granted the XMI bus. S_XBEER<WCNAKn>
and S_XBEER<WWDNAKn> are both clear. There should be no
occasion where the bus is so busy that a node never gets onto the
bus.

• S_XBEER<WSEO0,WSEO1>: A second writeback hard error occurred
before the first one was analyzed and cleared. Information is definitely
lost. Crash the system.

• S_XBEER<URR>: The NEXMI received an XMI read response cycle
directed at its node ID when it was not expecting any read data. The
NEXMI will not ACK the transfer on the XMI, and it will not pass
this unexpected data onto the NDAL. As such, this would not be a
potential cause of the similar (but unrelated) error signaled by S_
CEFSTS<Unexpected Fill>.

There are two likely (and potentially recoverable) reasons for an
unexpected read response (URR) to happen:

• A parity error occurred on the XMI bus just as a legitimate read
return data word was being delivered to the KA66A CPU.

• A device on the XMI took too long to return the data word, and
the KA66A CPU had timed out and was no longer expecting the
response.

The following sequence of events shows how a parity error could cause
a URR:

• The XMI read return data cycle with the parity error will be
ignored by the NEXMI, and S_XBER<PE> will be set.

• The next return data word will be out of sequence, aborting the
NEXMI XMI read data transaction and setting S_XBER<RSE>.

• The next legitimate return data words will then be unexpected,
and S_XBEER<URR> will be set.

A URR will only be sensed if the parity error happens on a return
data word other than the last word. If the parity error causes the last
return data word to be lost, then S_XBER<NRR> will be set instead.
The conditions that set the no read response (NRR) are discussed in
the S_XBER<TTO> discussion above.

The NEXMI will send an RDE back to the NVAX when it senses
the read sequence error (RSE), and the error information should
also be logged in the Cbox error registers. S_CEFSTS<RDE> and
S_CEFSTS<Lock> should be set, and S_CEFSTS<Count> should show
that a data word other than the last one was expected when the RDE
arrived.

A URR that is not accompanied by any other error bits does not abide
by the above analysis. Since there is no obvious reason for the URR,
it must be assumed that a system inconsistency exists, and the user

2–292

KA66A CPU Module

should take whatever steps are appropriate to correct the situation.
Further guidance involves device-specific error analysis.

• S_XBEER<SEO>: A second hard error occurred before the first one
had been analyzed and cleared. Since there is no way to determine
what happened, and since hard errors are by their nature serious,
recovery is not possible. Crash the system.

• S_NCSR<NDIPE>: The NEXMI sensed that an NDAL parity error
occurred, yet the cycle was ACKed by a node. This means that one
of the two NDAL nodes went ahead with bad information. Crash the
system.

• S_NCSR<NWSE>: A WRITE or WDISOWN command was sent
by the NVAX without the proper number of WDATA cycles. This
would be sensed by the NVAX as a NO ACK on a write cycle, and is
unrecoverable. Crash the system.

• S_NCSR<SSCIW>: A write directed at system support space was
ACKed on the NDAL by the NEXMI, but the cycle turned out to be
invalid once it was inspected more closely. This should never happen,
and no register holds the address of the failing transaction. Crash the
system.

• S_NSCSR<RQOVFL>: The XMI responder queue in the NEXMI
was full, yet at least one more word was available from the XMI bus
with no place to put it. This should be prevented by the use of XMI
SUPPRESS L. Although this is a serious error, it is recoverable.

It is most likely that the data word that arrived after the XMI input
queue was full was a read return data word, since return data will
not be stopped by the suppression signal. As such, an invalidate
transaction was probably not missed, and the system is still coherent.
S_CEFSTS<Timeout> should be set.

This error would cause a hard error interrupt. However, if no other
hard error is found in the parse tree that matches the saved error
bits, it might still be a legitimate error for soft error interrupt
analysis. In that case, the normal soft error analysis can be done,
and NSCSR<RQOVFL> can be cleared at the end of the soft error
recovery.

Recovery procedure: Clear the error status bits in the system registers and
perform any necessary system-dependent recovery procedure.

Restart condition: Depends on the error. If the system environment
reports the address of the lost data, software may be able to determine
if the lost data is fatal to one process or to the whole system and take
appropriate action.

2.10.8.10 Inconsistent Status in Hard Error Interrupts
Description: A presumed impossible error report was found in the error
registers. This could be due to a hardware failure.

Recovery procedure: No specific recovery action is called for.

Restart condition: No retry is possible. Crash the system.

2–293

KA66A CPU Module

2.10.9 Soft Error Interrupt

Soft error interrupts are requested to report errors which were detected,
but did not affect instruction execution. This results in an interrupt at
IPL 1A (hex) to be dispatched through SCB vector 54 (hex).

This section describes errors that can cause a soft error interrupt. The
parse tree (Figure 2–29) shows how to determine the cause of a given soft
error. Each error is then described and a recovery procedure is given.
Where appropriate, the conditions for restart are given. See Section 2.10.3
and Section 2.10.4 for more on error recovery and error retry.

Many errors that cause a soft error interrupt can also lead to a machine
check exception. For this reason, a soft error interrupt with no apparent
cause is not an inconsistent state unless the CPU has executed an
instruction while the IPL was lower than 1A (hex) since the most recent
machine check exception.

When a soft error interrupt is the only notification for any memory read
error that could cause a machine check, the error did not cause a machine
check for one of the following reasons:

• The error, a P-cache fill error, did not occur on the quadword requested
by the Ebox or Ibox.

• The Ebox took an interrupt before accessing an instruction or operand
that was prefetched by the Ibox.

• A prefetched instruction or operand belonged to an instruction
following a mispredicted branch, so the Ebox never executed the
instruction and it was flushed from the pipeline when the branch
mispredict was recognized.

• The Ebox took an exception for a different reason before attempting to
use an instruction execution dispatch or access an operand prefetched
by the Ibox. (The pipeline was flushed because of the exception.)

2–294

KA66A CPU Module

Figure 2–29 Soft Error Interrupt Parse Tree

(select all, at least one)

S_ICSR<Lock> <2> (select all, at least one)

VIC (virtual instruction cache)
data parity error (Section 2.10.9.1)

VIC tag parity error
(Section 2.10.9.1)

Inconsistent status (no ICSR
error bits set) (Section 2.10.9.23)

(select all, at least one)

P−cache data parity error
(Section 2.10.9.2)

P−cache tag parity error in
right bank (Section 2.10.9.2)

P−cache tag parity error in

S_ICSR<DPERR> <3>

<3>

(Section 2.10.9.2)

S_BCETSTS<TS CMD> <9:5> = DREAD (00111)

(01001)

(Section 2.10.9.3)

1 2 msb−p634−92

S_PCSTS<Lock> <0>

left bank

S_ICSR<TPERR> <4>

S_BCETSTS<TS CMD> <9:5> = IREAD (00011)

S_BCETSTS<Lock> <0>

Inconsistent status (no
PCSTS error bits set) (Section 2.10.9.23)

(select one)

(select one)

none of the above

S_BCETSTS<TS CMD> <9:5> = OREAD (00010)

B−cache tag store uncorrectable
ECC error on D−stream read (Section 2.10.9.3)

S_PCSTS<DPERR> <1>

S_BCETSTS<TS CMD> <9:5> = WUNLOCK (01000)

B−cache tag store uncorrectable
ECC error on I−stream read (Section 2.10.9.3)

S_PCSTS<Right Bank> <2>

S_BCETSTS<TS CMD> <9:5> = R_INVAL (01101)

B−cache tag store uncorrectable ECC
error on write or read lock (Section 2.10.9.3)

S_PCSTS<Left Bank>

S_BCETSTS<TS CMD> <9:5> = O_INVAL

B−cache tag store uncorrectable
ECC error on write unlock
(done only in ETM) (Section 2.10.9.3)

otherwise

S_BCETSTS<TS CMD> <9:5> = IPR_DEALLOCATE (01010)

B−cache tag store uncorrectable
ECC error on writeback request
type of NDAL operation (Section 2.10.9.3)

S_BCETSTS<UNCORR> <2>

otherwise

B−cache tag store uncorrectable
ECC error on writeback−and−
invalidate type of NDAL operation
(Section 2.10.9.3)

B−cache tag store uncorrectable
ECC error on software forced
deallocate)

Inconsistent status (invalid
command) (Section 2.10.9.23)

Figure 2–29 Cont’d on next page

2–295

KA66A CPU Module

Figure 2–29 (Cont.) Soft Error Interrupt Parse Tree

1 2

S_BCETSTS<BAD ADDR> <3> (select one)

B−cache tag store addressing error
S_BCETSTS<TS CMD> <9:5> = DREAD (00111)

(Section 2.10.9.3)

(Section 2.10.9.3.3)

(Section 2.10.9.3.3)

msb−p635−921

S_BCETSTS<LOST ERR> <4>

otherwise

on D−stream read

S_BCETSTS<TS CMD> <9:5> = IREAD (00011)

(Section 2.10.9.3)
B−cache tag store addressing error

S_BCETSTS<TS CMD> <9:5> = OREAD (00010)

on I−stream read

S_BCETSTS<TS CMD> <9:5> = WUNLOCK (01000)

B−cache tag store addressing error
on write or read lock (Section 2.10.9.3)

B−cache tag store addressing error
on write unlock (done only in ETM)
(Section 2.10.9.3.1)

B−cache tag store addressing error
on writeback request type of NDAL

S_BCETSTS<TS CMD> <9:5> = R INVAL (01101)

operation

S_BCETSTS<TS CMD> <9:5> = O INVAL (01001)
B−cache tag store addressing error
writeback−and−invalidate type of

S_BCETSTS<TS CMD> <9:5> = IPR DEALLOCATE (01010)

NDAL operation

otherwise

B−cache tag store addressing error
on software forced deallocate
(Section 2.10.9.3.3)

Inconsistent status (invalid command)
(Section 2.10.9.23)

Inconsistent status (no BCETSTS
error bits set) (Section 2.10.9.23)

Lost unrecoverable B−cache tag
(Section 2.10.9.4)

Figure 2–29 Cont’d on next page

2–296

KA66A CPU Module

Figure 2–29 (Cont.) Soft Error Interrupt Parse Tree

1

S_BCETSTS<CORR> <1> (select one)

Lost B−cache tag store
correctable ECC error

S_BCETSTS<Lock> <0>

(Section 2.10.9.6)

(00111)

(Section 2.10.9.5)

msb−p636−921

B−cache tag store correctable
ECC error on D−stream read
(Section 2.10.9.5)

S_BCETSTS<TS CMD> <9:5> = DREAD

(00011)
B−cache tag store correctable
ECC error on I−stream read
(Section 2.10.9.5)

S_BCETSTS<TS CMD> <9:5> = IREAD

(00010)
B−cache tag store correctable
ECC error on write or read lock
(Section 2.10.9.5)

S_BCETSTS<TS CMD> <9:5> = OREAD

(01000)
B−cache tag store correctable
ECC error on write unlock
(done only in ETM) (Section 2.10.9.5)

B−cache tag store correctable
ECC error on writeback request

S_BCETSTS<TS CMD> <9:5> = WUNLOCK

(01101)

type of NDAL operation

S_BCETSTS<TS CMD> <9:5> = R INVAL

(01001)
B−cache tag store correctable
ECC error on writeback−and−
invalidate NDAL operation (Section 2.10.9.5)

S_BCETSTS<TS CMD> <9:5> = O INVAL

B−cache tag store correctable
ECC error on software forced
deallocate (Section 2.10.9.5)

Inconsistent status (invalid command)
(Section 2.10.9.23)

S_BCETSTS<TS CMD> <9:5> = IPR DEALLOCATE (01010)

otherwise

Figure 2–29 Cont’d on next page

2–297

KA66A CPU Module

Figure 2–29 (Cont.) Soft Error Interrupt Parse Tree

1

S_BCEDSTS<CORR> <1> (select one)

Lost B−cache data RAM correctable
S_BCEDSTS<Lock> <0>

(Section 2.10.9.8)

(0111)

<0> and not S_PCSTS<PTE ER> <10> (select one)

S_BCEDSTS<DR CMD> <11:8> = DREAD

2 msb−p637−921

S_BCEDSTS<Lock>

ECC error

S_BCEDSTS<DR CMD> <11:8> = DREAD

(0100)

(0011)

S_BCEDSTS<DR CMD> <11:8> = IREAD

B−cache data RAM correctable ECC error
on D−stream read (Section 2.10.9.7)

S_BCEDSTS<DR CMD> <11:8> = IREAD

(0010)

S_BCEDSTS<DR CMD> <11:8> = WBACK

B−cache data RAM correctable ECC error
on I−stream read (Section 2.10.9.7)

S_BCEDSTS<DR CMD> <11:8> = WRITEBACK

(0111)

otherwise

B−cache data RAM correctable ECC error
on writeback (Section 2.10.9.7)

S_BCEDSTS<DR CMD> <11:8> = RMW

(0011)

B−cache data RAM correctable ECC error
on read−modify−write for write or
write unlock (Section 2.10.9.7)

Inconsistent status (invalid command)
(Section 2.10.9.23)

otherwise

(0100)

(select one)

B−cache data RAM uncorrectable
ECC error on D−stream read
(or P−cache fill for read lock)
(Section 2.10.9.9)

B−cache data RAM uncorrectable
ECC error on I−stream read
(Section 2.10.9.9)

B−cache data RAM uncorrectable
ECC error on writeback
(Section 2.10.9.10)

Inconsistent status (all other
cases cause hard error interrupt)
(Section 2.10.9.23)

S_BCEDSTS<UNCORR> <2>

Figure 2–29 Cont’d on next page

2–298

KA66A CPU Module

Figure 2–29 (Cont.) Soft Error Interrupt Parse Tree

1 2

S_BCEDSTS<BAD ADDR> <3> (select one)

S_BCEDSTS<DR CMD> <11:8> = DREAD (0111)
B−cache data RAM addressing error
on D−stream read (or P−cache fill

(Section 2.10.9.9)

(Section 2.10.9.10)

S_NESTS<BADWDATA> <1> or S_NESTS<LOST OERR> <2>

msb−p638−921

S_BCEDSTS<LOST ERR> <4> and not S_PCSTS<PTE ER> <10>

otherwise

S_BCEDSTS<DR CMD> <11:8> = IREAD (0011)

for read lock)

otherwise

S_BCEDSTS<DR CMD> <11:8> = WBACK (0100)

B−cache data RAM addressing error
on I−stream read (Section 2.10.9.9)

B−cache data RAM addressing error

otherwise

on writeback

Inconsistent status (all other
cases cause hard error interrupt)
(Section 2.10.9.23)

Inconsistent status (no error
bits set in BCEDSTS) (Section 2.10.9.23)

Lost unrecoverable B−cache data
RAM error with possible lost
writeback error (Section 2.10.9.11)

Lost unrecoverable B−cache data
RAM error (Section 2.10.9.12)

Figure 2–29 Cont’d on next page

2–299

KA66A CPU Module

Figure 2–29 (Cont.) Soft Error Interrupt Parse Tree

1

S_CEFSTS<Lock> <1> and not S_PCSTS<PTE ER> <10> (select one)

S_CEFSTS<Timeout> <2> (select one)

(select one)

(select one)

S_NESTS<PERR> <3> and
S_NCSR<NRTAE> <29> and
S_NEICMD<CMD> <3:0> = (RDRx or RDE) and
S_NEICMD<ID> <6:4> = (000 or 001)

S_CEFSTS<OREAD> <7>

[A]
S_CEFSTS<WRITE> <8> and
not S_CEFSTS<TO MBOX> <9>

S_CEFSTS<REQ FILL DONE> <14>
Inconsistent status (should cause hard
hard error interrupt) (Section 2.10.9.23)

D−stream NDAL ownership read for Mbox
write timeout error before write data
merged with fill data (Section 2.10.9.13)

2 msb−p639−921

(select one)

otherwise

S_CEFSTS<IREAD> <6>

S_CEFSTS<TO MBOX> <9>

otherwise

D−stream NDAL ownership read timeout
error (modify operand or read lock)
(Section 2.10.9.13)

Inconsistent status (either WRITE or
TO MBOX, but not both, should be set)
(Section 2.10.9.23)

I−stream NDAL read timeout error
(Section 2.10.9.13)

D−stream NDAL read timeout error
(read only operand) (Section 2.10.9.13)

Inconsistent status (TO MBOX should be
set) (Section 2.10.9.23)

Inconsistent status (no legitimate
reason for timeout) (Section 2.10.9.23)

S_CEFSTS<TO MBOX> <9>

otherwise

otherwise

Figure 2–29 Cont’d on next page

2–300

KA66A CPU Module

Figure 2–29 (Cont.) Soft Error Interrupt Parse Tree

1 2

S_CEFSTS<RDE> <3> (select one)

(select one)NOT S_XBER<TTO> <13>

[B]
S_CEFSTS<OREAD> <7> and
[S_XBER<RER> <16> or
(S_XBER<RSE> <17> and
S_XBER<PE> <23>

S_CEFSTS<Write> <8>
and not S_CEFSTS<TO MBOX> <9> (select one)

S_CEFSTS<REQ FILL DONE> <14>
Inconsistent status (should cause hard
error interrupt) (Section 2.10.9.23)

D−stream NDAL ownership read for Mbox
write read data error before write data
merged with fill data (Section 2.10.9.14)

(Section 2.10.9.23)

otherwise

otherwise

(Section 2.10.9.23)

msb−p640−92

If this path is entered from the hard error parse tree, then add
S_XBER<PE> or S_XBER<TTO> as other legal qualifiers.

1

1

[S_NCSR<SSCIR> <8> and S_CEFSTS<Count> <16:15> = 11] or
[S_XBER<RSE> <17> and S_XBER<PE><23> and
S_CEFSTS<Count> <16:15> = 11] or S_XBER<RER> <16> (select one)

and S_CEFSTS<Count> <16:15> = 11)] (select one)

S_CEFSTS<TO MBOX> <9>

otherwise

D−stream NDAL ownership read data error
(modify operand or read lock)
(Section 2.10.9.14)

Inconsistent status (either WRITE or
TO MBOX, but not both, should be set)
(Section 2.10.9.23)

1

otherwise

otherwise

I−stream NDAL RDE (Section 2.10.9.14)
S_CEFSTS<IREAD> <6>

D−stream NDAL read data error
(read only operand) (Section 2.10.9.14)

Inconsistent status (TO MBOX should be

S_CEFSTS<TO MBOX> <9>

set)

otherwise

Inconsistent status (should be hard error
interrupt) (Section 2.10.9.14)

Inconsistent status (should be hard error
interrupt) (Section 2.10.9.23)

Inconsistent status (either CEFSTS<RDE> <3>
or CEFSTS<Timeout> <2> should be set or, if
CEFSTS<Unexpected Fill> <21> is set, it
should cause a hard error interrupt)

Figure 2–29 Cont’d on next page

2–301

KA66A CPU Module

Figure 2–29 (Cont.) Soft Error Interrupt Parse Tree

1

S_CEFSTS<LOST ERR> <4> and not S_PCSTS<PTE ER> <10>
Lost B−cache fill error (Section 2.10.9.15)

(select one)

(select one)S_NCSR<NDPE> <31> or S_NCSR<NWQFL> <1>

S_NEOCMD<CMD> <3:0> = IREAD

(Section 2.10.9.23)

1

(0111)

S_BCEDSTS<LOST ERR>

2 3
msb−p641−92

At least one potential PTE cause must be found or the status is inconsistent
(see Section 2.10.9.23). Some outcomes indicate a potential soft error interrupt
cause, not a potential PTE read error cause. These errors should be
treated separately.

1

S_NESTS<NO ACK> <0> and not S_PCSTS<PTE ER> <10>

Unacknowledged I−stream NDAL read
(Section 2.10.9.16)

(select one)

(select one)

otherwise

S_NEOCMD<CMD> <3:0> = DREAD

(0011)

otherwise

1

S_NESTS<LOST OERR> <2> and not S_PCSTS<PTE ER> <10>

Unacknowledged D−stream NDAL read
(read only operand) (Section 2.10.9.16)

(select one)

S_BCEDSTS<UNCORR> <2>

S_NEOCMD<CMD> <3:0> = OREAD

S_BCEDSTS<Lock> <0> and S_PCSTS<PTE ER> <10>

Unacknowledged D−stream NDAL read
(modify operand or read lock)
(Section 2.10.9.16)

S_NEOCMD<CMD> <3:0> = WRITE or WDISOWN
Inconsistent status (should cause hard
error interrupt) (Section 2.10.9.23)

Inconsistent status (invalid command in
otherwise

NEOCMD<CMD>)

S_BCEDSTS<DR CMD> <11:8> = DREAD

Inconsistent status (no legitimate reason
for NO ACK) (Section 2.10.9.16)

Lost NDAL output error (Section 2.10.9.17)

S_BCEDSTS<DR CMD> <11:8> = IREAD

B−cache data RAM uncorrectable
ECC error on PTE read (Section 2.10.9.18.1)

<4>
Multiple errors in context
of PTE read error (Section 2.10.9.18.5)

B−cache data RAM uncorrectable ECC
error on I−stream read (Section 2.10.9.9)

Figure 2–29 Cont’d on next page

2–302

KA66A CPU Module

Figure 2–29 (Cont.) Soft Error Interrupt Parse Tree

1 2 3

S_BCEDSTS<DR CMD> <11:8> = WBACK (0100) (select one)

S_BCEDSTS<LOST ERR> <4>
Multiple errors in context
of PTE read error (Section 2.10.9.18.5)

B−cache data RAM uncorrectable
(Section 2.10.9.10)

S_BCEDSTS<BAD ADDR> <3>

DREAD

(0011) (select one)

S_BCEDSTS<LOST ERR> <4>

otherwise

(select one)

(select one)

msb−p642−921

S_CEFSTS<Lock> <1> and S_PCSTS<PTE ER>

otherwise

(0111)

(select one)

otherwise

ECC error on writeback

otherwise

(0100) (select one)

otherwise

1
At least one potential PTE cause must be found or the status is
inconsistent (see Section 2.10.9.23). Some outcomes indicate a potential
soft error interrupt cause, not a potential PTE read error cause.
These errors should be treated separately.

2

S_BCEDSTS<DR CMD> <11:8> =

<10>

S_BCEDSTS<LOST ERR> <4>

Inconsistent status (all other cases
cause hard error interrupt) (Section 2.10.9.23)

B−cache data RAM addressing error
on PTE read (Section 2.10.9.18.1)

S_CEFSTS<Timeout> <2>

S_BCEDSTS<DR CMD> <11:8> = IREAD

otherwise

Multiple errors in context of
PTE read error (Section 2.10.9.18.5)

B−cache data RAM addressing error
on I−stream read (Section 2.10.9.9)

S_BCEDSTS<DR CMD> <11:8> = WBACK

Multiple errors in context of PTE
read error (Section 2.10.9.18.5)

B−cache data RAM addressing error
on writeback (Section 2.10.9.10)

Inconsistent status (all other cases cause
hard error interrupt) (Section 2.10.9.23)

Inconsistent status (no error bits set in
BCEDSTS) (Section 2.10.9.23)

Figure 2–29 Cont’d on next page

2–303

KA66A CPU Module

Figure 2–29 (Cont.) Soft Error Interrupt Parse Tree

1 2

S_NESTS<PERR> <3> and S_NCSR<NRTAE> <29> and
S_NEICMD<CMD> <3:0> = (RDRx or RDE) and
S_NEICMD<ID> <6:4> = (000 or 001) (select one)

[C]
S_CEFSTS<OREAD> <7>

S_CEFSTS<Write> <8> and not
S_CEFSTS<TO MBOX> <9>

S_CEFSTS<REQ FILL DONE> <14>
Inconsistent status (should cause hard
error interrupt) (Section 2.10.9.23)

(Section 2.10.9.18.5)

<9> (select one)

msbp−643−921 2

otherwise

(select one)

(select one)

S_CEFSTS<IREAD> <6>

S_CEFSTS<TO MBOX>

S_CEFSTS<LOST ERR> <4>
Multiple errors in context of PTE read

(select one)

S_CEFSTS<TO MBOX> <9>

otherwise

otherwise
error

otherwise

S_CEFSTS<LOST ERR> <4>

S_CEFSTS<LOST ERR> <4>

D−stream NDAL ownership read for Mbox
write timeout error before write data
merged with fill data (Section 2.10.9.13)

otherwise

otherwise

Multiple errors in context of PTE read
error (Section 2.10.9.18.5)

D−stream NDAL ownership read timeout
error (modify operand or read lock)
(Section 2.10.9.13)

Inconsistent status (either WRITE or
TO MBOX, but not both, should be set)
(Section 2.10.9.23)

Multiple errors in context of PTE
read error (Section 2.10.9.18.5)

I−stream NDAL read timeout error
(Section 2.10.9.13)

D−stream NDAL read timeout error
(PTE read) (Section 2.10.9.18.2)

Inconsistent status (TO MBOX should be
set) (Section 2.10.9.23)

Inconsistent status (no evidence of
recoverable Cbox timeout)
(Section 2.10.9.18.2)

Figure 2–29 Cont’d on next page

2–304

KA66A CPU Module

Figure 2–29 (Cont.) Soft Error Interrupt Parse Tree

1 2

S_CEFSTS<RDE> <3> (select one)

(select one)not S_XBER<TTO> <13>

[D]
S_CEFSTS<OREAD> <7> and S_XBER<RER> <16>

S_CEFSTS<Write> <8>

S_CEFSTS<REQ FILL DONE> <14>
Inconsistent status (should cause
hard error interrupt) (Section 2.10.9.23)

(select one)

(Section 2.10.9.23)

(S_NCSR<SSCIR> <8> and S_CEFSTS<Count> <16:15> = 11)

(select one)

(select one)

S_CEFSTS<LOST ERR> <4>
Multiple errors in context of
PTE read error (Section 2.10.9.18.5)

I−stream NDAL read data (Section 2.10.9.14)

3 4 msb−p644−92

If this path is entered from the hard error parse tree, then add
S_XBER<PE> or S_XBER<TTO> as other legal qualifiers.

1 2

(select one)

(select one)

or (S_XBER<RER> <16> and S_CEFSTS<Count> <16:15> = 00)

and not S_CEFSTS<TO MBOX> <9>

S_CEFSTS<LOST ERR> <4>
Multiple errors in context of
PTE read error (Section 2.10.9.18.5)

Read data error on a D−stream NDAL
ownership read for Mbox write
before write data merged with
fill data (Section 2.10.9.14)

otherwise

D−stream NDAL read data error
(PTE read) (Section 2.10.9.18.3)

Inconsistent status (TO MBOX should
be set) (Section 2.10.9.23)

1

S_CEFSTS<TO MBOX> <9>

otherwise

Multiple errors in context of
PTE read error (Section 2.10.9.18.5)

D−stream NDAL ownership read
data error (modify operand
or read lock) (Section 2.10.9.14)

Inconsistent status (either WRITE
or TO MBOX, but not both, should

otherwise

S_CEFSTS<LOST ERR> <4>

be set)

S_CEFSTS<IREAD> <6>

otherwise

S_CEFSTS<TO MBOX> <9>

otherwise

Figure 2–29 Cont’d on next page

2–305

KA66A CPU Module

Figure 2–29 (Cont.) Soft Error Interrupt Parse Tree

1 2 3 4

otherwise
Inconsistent status (hard error
interrupt) (Section 2.10.9.18.5)

Inconsistent status (hard error
interrupt) (Section 2.10.9.23)

Inconsistent status (either
CEFSTS<RDE> <3> or CEFSTS<Timeout>
<2> should be set or, if
CEFSTS<Unexpected Fill> <21>
is set, it should cause a hard

otherwise

otherwise

(Section 2.10.9.23)

S_NESTS<NO ACK> <0> and S_PCSTS<PTE ER> <10> and

<3:0>

<3:0>

(Section 2.10.9.23)

(select one)

msb−p645−92

At least one potential PTE cause must be found or the status is inconsistent

1

S_NESTS<PERR> <3>

S_NESTS<INCON PERR> <4>

error interrupt)

S_NESTS<LOST OERR> <2>

S_NEOCMD<CMD> = IREAD

(select one)

(select one)

[S_NCSR<NDPE> <31> or S_NCSR<NWQFL> <1>]

<3:0>

(see Section 2.10.9.23). Some outcomes indicate a potential soft error
interrupt cause, not a potential PTE read error cause. These errors should
be treated separately.

1

otherwise

Multiple errors in context
of PTE read error (Section 2.10.9.18.5)

Unacknowledged I−stream
NDAL read (Section 2.10.9.16)

otherwise

S_NEOCMD<CMD> = DREAD

(select one)<3:0>

Unacknowledged D−stream NDAL
read (PTE read) (Section 2.10.9.18.4)

S_NESTS<LOST OERR> <2>

S_NEOCMD<CMD> = OREAD

Multiple errors in context
of PTE read error (Section 2.10.9.18.5)

Unacknowledged D−stream NDAL read
(modify operand or read lock)(Section 2.10.9.16)

otherwise

S_NEOCMD<CMD> = WRITE or WDISOWN
Inconsistent status (should cause hard
error interrupt) (Section 2.10.9.23)

Inconsistent status (invalid command
otherwise

in NEOCMD<CMD>)

NDAL inconsistent parity error
(Section 2.10.9.21)

NDAL parity error (Section 2.10.9.19)

Figure 2–29 Cont’d on next page

2–306

KA66A CPU Module

Figure 2–29 (Cont.) Soft Error Interrupt Parse Tree

1

S_NESTS<LOST PERR> <5>
Lost NDAL parity error or
inconsistent parity error
(Section 2.10.9.20)

Corrected XMI confirmation
(Section 2.10.9.22)

XMI parity error (Section 2.10.9.22)

XMI corrected read data
(Section 2.10.9.22)

XMI read sequence error
(Section 2.10.9.22)

NDAL parity error (Section 2.10.9.22,
Section 2.10.9.19, and Section 2.10.9.14)

Inconsistent status (hard error
interrupt) (Section 2.10.9.23)

Inconsistent status (possible
machine check or hard error
interrupt during soft error
interrupt processing)
(Section 2.10.9.23)

msb−p646−92

S_XBER<CC> <27> and
not S_XCR<CCID> <6>

S_XBER<PE> <23>

S_XBER<CRD> <19> and
not S_XCR<CRDID> <5>

S_XBER<RSE> <17>

S_NCSR<NDPE> <31>

S_NCSR<WBQFL> <2>

none of the above

2–307

KA66A CPU Module

2.10.9.1 VIC Parity Errors
Description: A parity error was detected in the VIC tag or data store in
the Ibox.

The quadword virtual address of the error is in S_VMAR.

Recovery procedure: Disable and flush the VIC by rewriting all the tags
(see Section 2.10.3.2) and clear ICSR<Lock>.

2.10.9.2 P-Cache Parity Errors
Description: A parity error was detected in the P-cache. Either a tag
parity error or a data parity error is reported, although tag parity errors
in both the left and right banks may be reported simultaneously. The
reference, whether it was a read or write, was passed to the Cbox as if
the P-cache had missed. No data is lost. The P-cache is disabled because
PCSTS<Lock> is set.

S_PCADR contains the physical address of operation incurring the error.
The address should not be in I/O space. If it is, it is an inconsistent status
(see Section 2.10.9.23).

Recovery procedure: Clear PCSTS<Lock>. Flush the P-cache and initialize
the P-cache tag store.

2.10.9.3 B-Cache Tag Store Uncorrectable ECC Errors
Description: An uncorrectable ECC error or an addressing error resulted
from reading the B-cache tag store. The B-cache is in ETM. The hexword
physical address of the transaction incurring the error is in S_BCETIDX.
(If the physical address is in I/O space, it is an inconsistent status. See
Section 2.10.9.23.) S_BCETAG contains the actual tag data and check
bits read during the failing access. Check the tag data and determine the
syndrome. The result of this check should give the result expected from
S_BCETSTS<UNCORR> and S_BCETSTS<BAD ADDR>.

If both S_BCETSTS<BAD ADDR> and S_BCETSTS<UNCORR> are set,
the status is inconsistent (see Section 2.10.9.23).

For any normal Mbox command (that is, not BCFLUSH), this error
leads to a fill of the block whose tag had the error. This is because the
Cbox converts uncorrectable tag store errors into misses and sends the
associated reference to memory. For reads, the reference sent out is a
Read or an Ownership Read, and when the data returns it is loaded in
the B-cache. For writes, an Ownership Read is sent, and when the data
returns the write is merged with it and is loaded in the B-cache. When
the fill finishes successfully, the tag is updated (overwriting the bad tag).
If the fill times out, the tag is not overwritten.

In some cases, this error leads to an NVAX CPU read timeout and/or a
write timeout in memory. This occurs when the block was valid-owned
in the B-cache and is the same block that is being accessed by the failing
operation. Errors resulting from these lost blocks are handled separately.

Write unlocks are a special case. No tag lookup is done for write unlocks
unless the B-cache is in ETM. If the B-cache is in ETM, and the tag store
error occurs for that transaction, the write unlock is sent to memory.

2–308

KA66A CPU Module

Recovery procedure (all cases): Clear BCETSTS<Lock>. If it is an
addressing error, clear BCETSTS<BAD ADDR>. Otherwise, clear
BCETSTS<UNCORR>.

2.10.9.3.1 Case: BCETSTS<TS CMD>=W UNLOCK
Recovery procedure: Write an invalid tag with good ECC to the tag with
the error (using the BCTAG access path). Then flush the B-cache and
clear CCTL<HW ETM>. Software should prepare for another tag error
during the B-cache flush by clearing BCETSTS of unrecoverable errors.

Restart condition: The B-cache was in ETM at the time the write unlock
arrived. The data in memory may be corrupt and memory’s ownership
bit was cleared. Memory is corrupted at the location indicated by S_
BCETIDX. Software must determine if the error is fatal to one process or
the whole system and take appropriate action.

2.10.9.3.2 Case: BCETSTS<TS CMD>=DREAD, IREAD, OREAD
Recovery procedure: First flush the B-cache and then clear CCTL<HW
ETM>. Software should prepare for another tag error during the B-cache
flush by clearing BCETSTS of unrecoverable errors. After flushing the B-
cache, it is necessary to determine if any block is "lost." If a block’s memory
ownership bit is set and no writeback cache in the system has it owned,
then the block is said to be lost. Use the procedure in Section 2.10.3.3.5.
This procedure can result in finding no lost blocks, one lost block, or
multiple lost blocks.

Restart condition: One lost block is not recoverable. Software must
determine if the lost data is fatal to one process or the whole system and
take appropriate action.

If multiple blocks are lost, crash the system.

2.10.9.3.3 Case: BCETSTS<TS CMD>=R INVAL, O INVAL, IPR DEALLOCATE
Recovery procedure: First flush the B-cache and then clear CCTL<HW
ETM>. Software should prepare for another tag error during the B-cache
flush by clearing BCETSTS of unrecoverable errors. After flushing the B-
cache, it is necessary to determine if any block is "lost." If a block’s memory
ownership bit is set and no writeback cache in the system has it owned,
then the block is said to be lost. Use the procedure in Section 2.10.3.3.5.
This procedure can result in finding no lost blocks, one lost block, or
multiple lost blocks.

If only one block is lost, memory’s owner ID information indicates this
CPU, write a valid-owned tag with the address of the lost block into the
tag that had the error (using the BCTAG access means). Then flush this
location to memory. An error could occur with this flush, in which case the
data is not recoverable.

Restart conditions: If one block is lost, and the repair procedure did not
incur an error, restart.

If the repair procedure was not successful, the data is not recoverable.
Software must determine if the lost data was fatal to one process or the
whole system and take appropriate action.

If multiple blocks are lost, crash the system.

2–309

KA66A CPU Module

2.10.9.4 Lost B-Cache Tag Store Errors
Some number of unrecoverable B-cache tag store errors occurred and
were not latched because BCETSTS already contained a report of an
unrecoverable error. All unrecoverable tag store errors cause soft error
interrupts, so this is definitely a cause of the soft error interrupt.

Lost B-cache tag store errors may be caused by more than one operand
prefetch to the same cache block.

The B-cache is in ETM.

Unrecoverable tag store errors can cause lost data by overwriting blocks in
the B-cache.

Unrecoverable tag store errors in ETM on write unlocks can cause
corrupted memory data.

Recovery procedure: Clear BCETSTS<LOST ERR>. Flush the B-cache
and then clear CCTL<HW ETM>. Software should prepare for another
tag error during the B-cache flush by clearing BCETSTS of unrecoverable
errors.

Restart condition: Lost write unlock errors may have corrupted memory.
Crash the system.

2.10.9.5 B-Cache Tag Store Correctable ECC Errors
Description: A correctable error occurred in accessing the B-cache tag
store. The B-cache is not in ETM. S_BCETIDX contains the physical
address of the error. (If the physical address is in I/O space, it is an
inconsistent status. See Section 2.10.9.23.) The index portion of S_
BCETIDX indicates which tag store entry had the error. S_BCETAG
contains the actual tag data and check bits read during the failing access.
Check the tag data and determine the syndrome. The result of this check
should be a correctable single-bit error.

Recovery procedure: Clear BCETSTS<CORR>.

If the operation was anything but a tag lookup for an explicit IPR
deallocate operation (that is, BCFLUSH), software should flush that one
location by writing the BCFLUSH IPR. Flushing the location invalidates it
and forces the data to be written back to memory if it is owned. This can
be done without putting the B-cache into ETM mode.

2.10.9.6 Lost B-Cache Tag Store Correctable ECC Errors
Description: A correctable error occurred in accessing the B-cache tag
store, but it is lost because of an uncorrectable tag store error.

Recovery procedure: Clear BCETSTS<CORR>.

The B-cache should be flushed (and it would be because of the
uncorrectable error in any case).

2–310

KA66A CPU Module

2.10.9.7 B-Cache Data RAM Correctable ECC Errors
Description: A correctable error occurred in accessing the B-cache data
RAM. The B-cache is not in ETM. S_BCEDIDX contains the cache index of
the error, and S_BCEDECC contains the syndrome calculated by the ECC
logic. It is not possible to reliably determine the physical address of the
error, since the B-cache is not in ETM and the block can be overwritten at
any time after the error.

Recovery procedure: Clear BCEDSTS<CORR>.

If the operation was a read (S_BCEDSTS<DR CMD>=DREAD or IREAD),
software should flush that one location using the BCFLUSH IPR. Flushing
the location invalidates it and forces the data to be written back to memory
if it is owned. This can be done without putting the B-cache into ETM
mode.

2.10.9.8 Lost B-Cache Data RAM Correctable ECC Errors
Description: A correctable error occurred in accessing the B-cache data
RAM, but it is lost because of an uncorrectable data RAM error. The
address and syndrome of the error are not known.

Recovery procedure: Clear BCEDSTS<CORR>.

The B-cache should be flushed. This effectively scrubs the B-cache data
RAM location by invalidating it and forcing it to be written back if it is
owned.

2.10.9.9 B-Cache Data RAM Uncorrectable ECC Errors and Addressing Errors on
I-Stream or D-Stream Reads
Description (addressing error): A B-cache addressing error was detected
by the Cbox in an I-stream or D-stream read during a B-cache hit.
Addressing errors are the result of a mismatch between the address the
Cbox drives to the RAMs for a read access and the address used to write
that location. A multiple-bit data error can appear to be an addressing
error, although it is extremely unlikely.

Description (uncorrectable ECC error): A B-cache uncorrectable ECC error
was detected by the Cbox in an I-stream or D-stream read during a B-
cache hit. Uncorrectable data errors are the result of a multiple-bit error
in the data read from the B-cache. An addressing error with a single-bit
data error will appear as an uncorrectable data error.

Description (both cases): The B-cache is in ETM. S_BCEDIDX contains
the cache index of the error, and S_BCEDECC contains the syndrome
calculated by the ECC logic. The physical address of the reference can be
found by reading the tag for the data block. See Section 2.10.3.3.4 for a
procedure to read the tag. (If the physical address is in I/O space, it is an
inconsistent status. See Section 2.10.9.23.)

If the block’s tag is found to contain an ECC error, then the address cannot
be determined.

If both S_BCEDSTS<BAD ADDR> and S_BCEDSTS<UNCORR> are set,
the status is inconsistent (see Section 2.10.9.23).

Recovery procedure: Clear BCEDSTS<Lock> and BCEDSTS<BAD ADDR>
or BCEDSTS<UNCORR>.

2–311

KA66A CPU Module

Flush the B-cache and then clear CCTL<HW ETM>. If the data is owned
by the B-cache and if the error repeats itself (is not transient), then a
writeback error will result from the flush procedure. Software should
prepare for this by clearing NESTS and BCEDSTS errors.

Restart condition: If a writeback error occurs in the B-cache flush,
then the data is presumed to be unrecoverable. See the next section
for a description of handling an error in a writeback. Software must
determine if the error is fatal to one process or the whole system and take
appropriate action.

If the address of the error in the flush is not the same as that of the
original error, a multiple error exists in the data RAMs and is a serious
failure. Crash the system.

2.10.9.10 B-Cache Data RAM Uncorrectable ECC Errors and Addressing Errors on
Writebacks
Description (addressing error): A B-cache addressing error was detected by
the Cbox in a writeback. Addressing errors are the result of a mismatch
between the address the Cbox drives to the RAMs for a read access and
the address used to write that location. A multiple-bit data error can
appear to be an addressing error, although it is extremely unlikely. The
NDAL WDATA cycle was converted to a BADWDATA cycle. Memory
should have tagged the location as bad and unreadable.

Description (uncorrectable ECC error): A B-cache uncorrectable ECC
error was detected by the Cbox in a writeback. Uncorrectable data
errors are the result of a multiple-bit error in the data read from the
B-cache. An addressing error with a single-bit data error will appear as
an uncorrectable data error. The NDAL WDATA cycle was converted to a
BADWDATA cycle. Memory should have tagged the location as bad and
unreadable.

Description (both cases): The B-cache is in ETM. S_NESTS<BADWDATA>
should be set. If it is not, and S_NESTS<LOST OERR> and S_NESTS<NO
ACK> are not set, then the writeback that incurred the error is still in the
writeback queue. Software should force the writeback queue to be drained
(causing the second error event to occur) by reading from the Clear Write
Buffer Register.

MFPR #PR19$_CWB,R0

After this, NESTS, NEOADR, and NEOCMD should be captured again.

If S_NESTS<BADWDATA> is set, then S_NEOADR contains the physical
address of the lost writeback data. (If the physical address is found to be
in I/O space, status is inconsistent. See Section 2.10.9.23.)

If S_NESTS<BADWDATA> is not set but S_NESTS<LOST OERR> is,
then the address of the lost writeback data is not available.

If after draining the writeback queue, S_NESTS<BADWDATA> is not set,
then an inconsistency exists (see Section 2.10.9.23).

If both S_BCEDSTS<BAD ADDR> and S_BCEDSTS<UNCORR> are set,
status is inconsistent (see Section 2.10.9.23).

2–312

KA66A CPU Module

Recovery procedure: Clear BCEDSTS<Lock> and NESTS<BADWDATA>,
if it is set. If it is an addressing error, clear BCEDSTS<BAD ADDR>;
otherwise clear BCEDSTS<UNCORR>. Flush the B-cache, then clear
CCTL<HW ETM>. Then use the memory repair procedure to undo the
tagged-bad data in memory (see Section 2.10.3.3.2.2).

NOTE: When clearing the tagged-bad data state of memory, software must
ensure that no more accesses to the block can occur. Otherwise,
a process on another processor or a DMA I/O device could see
incorrect data and not detect an error.

Restart conditions: If the data is lost, software must determine if the error
is fatal to one process or the whole system and take appropriate action. If
the address of the lost data cannot be determined, crash the system.

2.10.9.11 Lost B-Cache Data RAM Errors with Possible Lost Writebacks
Description: Lost B-cache data RAM errors that cause a soft error
interrupt (when S_NESTS indicates the possibility of a lost writeback
error) indicate that data errors occurred on reads or writebacks, but no
new write data was lost. S_NESTS reports the writeback error, unless
multiple NDAL output errors have occurred.

The B-cache is in ETM.

Lost B-cache data RAM errors of this kind can be caused by an operand
prefetch from a B-cache block followed by a write to the same block.

If S_NESTS<BADWDATA> is set, then S_NEOADR contains the physical
address of a writeback. (If the physical address is in I/O space, it is an
inconsistent status. See Section 2.10.9.23.)

Recovery procedure: Clear BCEDSTS<LOST OERR>. Flush the B-cache
and then clear CCTL<HW ETM>. Writeback errors can occur during the
flush. Software should prepare for this by clearing NESTS and BCEDSTS
errors.

If S_NESTS<BADWDATA> is set, clear NESTS<BADWDATA>. Use the
memory repair procedure to undo the tagged-bad data in memory (see
Section 2.10.3.3.2.2). The B-cache must be flushed before this repair
procedure.

NOTE: When clearing the tagged-bad data state of memory, software must
ensure that no more accesses to the block can occur. Otherwise,
a process on another processor or a DMA I/O device could see
incorrect data and not detect an error.

Restart condition (S_NESTS<LOST OERR> set): There is no way to
determine how many writebacks failed. They all should have gone to
memory with BADWDATA cycles, where memory would have them marked
as tagged-bad data. So an unknown block may be tagged-bad in memory.
If so, the next access to that block could come from the system itself, even
if it "belonged" only to one process. This will cause the system to crash.
But there is a chance that the next access will come from a user process.
This would allow the system to stay up, although that process would have
to be stopped.

2–313

KA66A CPU Module

If the system’s implementation of tagged-bad data is not reliable (see
Section 2.10.10, Note on Tagged-Bad Data Mechanisms), software should
crash the system. If it is reliable, restart.

Restart condition (S_NESTS<LOST OERR> not set): The writeback data
is lost but the address is known. Software must determine if the error is
fatal to one process or the whole system and take appropriate action.

2.10.9.12 Lost B-Cache Data RAM Errors Without Lost Writebacks
Description: Lost B-cache data RAM errors that cause only a soft error
interrupt (when S_NESTS indicates no possibility of writeback error)
indicate that data errors occurred on reads. No write data was lost.

Lost B-cache data RAM errors may be caused by more than one operand
prefetch to the same cache block.

The B-cache is in ETM.

Recovery procedure: Clear BCEDSTS<LOST OERR>. Flush the B-cache
and then clear CCTL<HW ETM>. Writeback errors may occur during the
flush. Software should prepare for this by clearing NESTS and BCEDSTS
errors.

Restart condition: Only reads from the B-cache failed. Restart is possible
unless any error encountered during a B-cache flush is fatal.

2.10.9.13 NDAL I-Stream or D-Stream Read or D-Stream Ownership Read Timeout
Errors
Description: An I-stream or D-stream read or D-stream ownership read
timed out in the Cbox before all the fill quadwords were received. This
is not the method by which the system interface (NEXMI) will notify the
NVAX CPU that a location is inaccessible. All outstanding NDAL read-
type cycles (IREAD, DREAD, OREAD) are normally terminated by at least
one return data cycle, either RDRx or RDE.

Thus, the Cbox timeout error can only be caused by a serious system
error, or an NDAL parity error on the returned data. S_CEFSTS<Count>
indicates the number of quadwords received before the error and should
always be 11 (binary) if the address is in I/O space. The physical address
is in S_CEFADR. Table 2–40 shows the cycle type that timed out, based
upon the error bits in S_CEFSTS during error analysis.

Table 2–40 S_CEFSTS Cycle Type Decode

Command Type <IREAD> <OREAD> <WRITE> <TO MBOX>

IREAD 1 0 0 1

IREAD (aborted) 1 0 0 0

DREAD 0 0 0 1

OREAD (for read-modify
or read lock)

0 1 0 1

OREAD (for write) 0 1 1 0

2–314

KA66A CPU Module

• I-stream or D-stream read
The B-cache is in ETM, since the parity error is assumed to have been
sensed by the NVAX.

• D-stream ownership read
The B-cache is in ETM. No write data has been merged with the
returning fills.

The address should not be in I/O space. If it is, it is an inconsistent status
(see Section 2.10.9.23).

If the ownership read was for an Mbox write, the write was sent on the
NDAL after the OREAD timed out.

If the ownership read was for a read lock, the corresponding write unlock
should have been received from the Ebox. The write unlock is sent as a
quadword WDISOWN by the Cbox, so no memory location is left owned.
(If the error was on the requested quadword, a machine check would
have resulted. If a separate error prevents the write unlock, that will be
reported in other error registers.)

Recovery procedure (all cases): Clear CEFSTS<Lock, Timeout>,
NESTS<PERR>, and NCSR<NRTAE>.

Since the NEXMI always returns the requested data word first,
S_CEFSTS<REQ FILL DONE> should be set if and only if S_
CEFSTS<Count> shows that at least one data word has been returned.
If the status of the two is inconsistent, no recovery is possible. Crash the
system.

In terms of a soft error interrupt, an NDAL parity error is the only
potentially recoverable reason for the Cbox timeout to occur (there is one
hard error interrupt scenario that would lead to a timeout of this kind, but
this analysis assumes that only a soft error has occurred).

Other error registers must be inspected to ensure that they are consistent
with the assumption that a parity error has occurred during one of the
return data words. See Section 2.10.9.19 for more information on what
to look for when attempting diagnosis of a parity error that could cause
this timeout. The following error indications show that the status is
inconsistent, and they imply that the parity error might not be the cause
of the problem. If any of these are true, crash the system.

• The command in progress was not a read.

• The parity error was not the type that would cause a timeout.

• No parity error was logged in S_NESTS<PERR>.

• S_NESTS<INCON PERR>, S_NESTS<LOST PERR>, or S_
NCSR<NDIPE> is set.

• S_NCSR<NRTAE> is not set.

• The returned data count does not match S_CEFSTS<REQ FILL
DONE>.

2–315

KA66A CPU Module

The ownership bit in the XMI memory will be set if the transaction was
ACKed on the XMI. A continued NO ACK response from the memory
causes the NEXMI to time out and send back an RDE to the NVAX long
before the Cbox timeout has occurred. But if the RDE was sent back as a
nonexistent memory response, a hard error interrupt would be generated,
and a soft interrupt analysis would then imply inconsistent status. In that
case, crash the system.

Assuming that the analysis passes this consistency check, the response
that was lost due to the parity error must have been a legitimate return
data word: RDRx or RDE. An RDE would represent a word in memory
that was uncorrected, rather than a NEXMI timeout. This further implies
that the memory, having ACKed the transaction, set the ownership bit for
an NDAL/XMI OREAD command.

Additional recovery procedures for D-stream ownership read (S_
CEFSTS<Write> set): First flush the B-cache and then clear CCTL<HW
ETM>.

The memory is assumed to have set the ownership bit for this read, since
it originally ACKed the read command. This means that the write data
must have been lost, and a hard error interrupt is expected. Use the
system procedure for resetting the ownership bit in memory.

Additional recovery procedures for D-stream ownership read (S_
CEFSTS<Write> not set): First flush the B-cache and then clear
CCTL<HW ETM>.

Memory will have set the ownership bit, but the data is presumably
still good. The B-cache block is marked invalid in the B-cache tag store.
However, if the error occurred on a read lock, the corresponding write
unlock should have occurred and it will have cleared the ownership bit for
this block in memory.

If S_CEFSTS<Count> is greater than 0, then part of the data is in the
B-cache. If S_CEFSTS<REQ FILL DONE> is set, then the quadword in
the B-cache block pointed to by S_CEFADR is valid (except in the case of
a read lock, but the data should not be needed for memory repair in that
case).

If S_CEFSTS<Count> is greater than 0, and if the address in S_CEFADR
is not in I/O space, then the block was not owned before the operation
began. In that case, use the system procedures (see Section 2.10.3.3.2.1) to
determine if memory’s ownership bit is set, and this CPU owns the block.
If so, use the procedure in Section 2.10.3.3.2.2 to reset it.

Restart condition: Restart if the memory state repair procedure is
successful (or no repair is necessary), no data is lost, and the address
is not in I/O space. If the hexword block could not be repaired or data is
lost, software must determine if the error is fatal to one process or the
whole system and take appropriate action.

2–316

KA66A CPU Module

Post restart recovery: If the same fill error recurs on restart, then the block
is probably "lost." 1 Software must determine if the error is fatal to one
process or the whole system and take appropriate action. If it is fatal to
only one process, use the system procedure for resetting the ownership bit
in memory.

NOTE: It may be appropriate to cause each CPU in the system to flush its
B-cache, and then restart. It may also be that another error (such
as an uncorrectable tag store error on a coherence request) will
be repaired by the soft error interrupt handler before the restart
actually occurs, thus repairing the cause of the fill error.

2.10.9.14 NDAL I-Stream or D-Stream Read or D-Stream Ownership Read Data
Errors
Description: An I-stream or D-stream read or D-stream ownership read
terminated with an RDE (read data error) NDAL cycle before all the fill
quadwords were received. S_CEFSTS<Count> indicates the number of
quadwords received before the error. (S_CEFSTS<Count> should always
be 11 (binary) if the address is in I/O space.) If S_CEFSTS<Count> is 0 or
the address is an I/O space address, then the first data word returned was
an RDE.

There are several reasons why the NEXMI might send back an RDE in
response to an NVAX read command, and for this to be consistent state in
the analysis of a soft error interrupt:

• The NVAX attempted a read command to a nonexistent memory
location (NXM) in system support space. The RDE will be returned
as the first data word. S_NCSR<SSCIR> is set. S_CEFSTS<Count>
equals 11, and the S_CEFADR shows an address in I/O space.

• A previous BADWDATA was written to that block in memory, tagging
it bad for all future reads (until it is cleared by the system). This
would return an XMI RER as the first (and only) data word, and this
would be translated to an NDAL RDE. S_XBER<RER> is set for this
type of error. S_CEFSTS<Count> equals 00, since this is in memory
space.

• A previous system error, such as a memory location being corrupted
and causing an ECC syndrome miscompare, could return an RDE on
any of the words. If the S_CEFSTS<Count> shows that the RDE was
not the first word returned, then only a memory error could be the
cause. If the count shows that it was the first word, then a corrupted
data word in the memory is only one possibility.

• The data returned by a responder (such as an MS65A memory) was
not in the correct sequence. An XMI parity error could cause this
bit to be set, since a data word would then be missed. In that case,
S_XBER<RSE> and S_XBER<PE> are set.

1 In this case the more general sense of "lost" is implied. That is, memory’s ownership bit is set, but no cache writes the
data back when a read is done to that location. It is possible to identify which CPU owns the block (or rather, which CPU
is thought to own it according to the memory), but it is often not possible to determine which error caused the situation
to arise.

2–317

KA66A CPU Module

For the RSE error to be consistent with a soft error interrupt, the
parity error must have struck the third return data word. Any
other missed return data word would cause a hard error interrupt
due to other error bits. So, for the RSE to be analyzed here, S_
CEFSTS<Count> must equal 11 (waiting for the last word).

See Table 2–40 for a listing of the cycle types and their error bit decode
meaning, based upon the bits set in S_CEFSTS. For all the cases above,
the physical address is in S_CEFADR.

• I-stream or D-stream read
The B-cache is not in ETM.

• D-stream ownership read
The B-cache is in ETM. No write data has been merged with the
returning fills.

If the address is in I/O space, status is inconsistent (see Section 2.10.9.23).

If the Ownership Read was for an Mbox write, the write was sent on the
NDAL after the OREAD was aborted.

If the Ownership Read was for a read lock, the corresponding write unlock
should have been received from the Ebox. The write unlock is sent as a
quadword WDISOWN by the Cbox, so no memory location is left owned.
(If the error was on the requested quadword, a machine check would
have resulted. If a separate error prevents the write unlock, that will be
reported in other error registers.)

Recovery procedure (all cases): Clear CEFSTS<Lock, RDE>, and
either XBER<RER>, NCSR<SSCIR>, XBER<RSE> and/or XBER<PE>
(whichever is appropriate).

Additional recovery procedures for D-stream ownership read (S_
CEFSTS<Write> set): Flush the B-cache and then clear CCTL<HW ETM>.

It is assumed that the memory ACKed the transaction, since a NO ACK
command would result in a hard error interrupt, not a soft error interrupt.
Thus, the ownership bit for this block will remain set in memory. In that
case, the write data must have been lost, and a hard error interrupt is
expected anyway. This analysis is thus inconsistent. Crash the system.

Additional recovery procedures for D-stream ownership read (S_
CEFSTS<Write> not set): Flush the B-cache and then clear CCTL<HW
ETM>.

Again, the memory must have ACKed the transaction for this analysis to
be consistent. As such, the ownership bit for this block will remain set
in memory. The data in memory could still be good. The B-cache block is
marked invalid in the B-cache tag store. However, if the error occurred on
a read lock, the corresponding write unlock should have occurred and it
will have cleared the ownership bit for this block.

If S_CEFSTS<Count> is greater than 0 (and S_CEFADR is not in I/O
space), then part of the data is in the B-cache. The XMI memory always
returns the requested word first. So, if S_CEFSTS<REQ FILL DONE> is
also set, then the quadword in the B-cache block pointed to by S_CEFADR
is valid (except in the case of a read lock, but the data should not be

2–318

KA66A CPU Module

needed for memory repair in that case). If S_CEFSTS<REQ FILL DONE>
is not set, then the status is inconsistent. Crash the system.

If S_CEFSTS<Count> is greater than 0 (and S_CEFADR is not in I/O
space), then it is also known that the block was not owned before the
operation began. In this case, use the procedures in Section 2.10.3.3.2 to
determine if memory’s ownership bit is set, and if it is, use the system
procedure (see Section 2.10.3.3.2.2) to reset it. The easiest way to do this
is to write a quadword of correct data back to the memory in the process
of resetting the ownership bit. Section 2.10.3.3.3 describes procedures for
extracting data from the B-cache data RAMs in this case.

If memory’s ownership bit was left set as a result of this error and no
nondestructive procedure exists for restoring it, then the hexword block is
lost.

Restart condition: Restart if the memory state is not in error or if the
repair procedure is successful, no data is lost, and the address is not in I/O
space. If the hexword block could not be repaired or data is lost, software
must determine if the error is fatal to one process or the whole system and
take appropriate action.

Post restart recovery: If the same fill error recurs on restart, then the block
is probably "lost." 1 Software must determine if the error is fatal to one
process or the whole system and take appropriate action. (If it is fatal to
only one process, use the system procedure for resetting the ownership bit
in memory.)

NOTE: It may be appropriate to cause each CPU in the system to flush its
B-cache, and then restart. It may also be that another error (such
as an uncorrectable tag store error on a coherence request) will
be repaired by the soft error interrupt handler before the restart
actually occurs, thus repairing the cause of the fill error.

2.10.9.15 Lost B-Cache Fill Error
Description: Some number of fill errors occurred and were not latched
because CEFSTS and CEFADR already contained a report of an
unrecoverable error. Lost B-cache fill errors that do not cause hard error
interrupts are always read errors.

Lost B-cache fill errors may be caused by more than one operand prefetch
to the same cache block.

Lost B-cache fill errors may leave blocks marked owned by this CPU in
memory without the B-cache actually owning the block.

The B-cache may be in ETM. Read S_CCTL<HW ETM> to find out.

Recovery procedure: Clear CEFSTS<LOST ERR>. If the B-cache is in
ETM, flush the B-cache and then clear CCTL<HW ETM>.

1 In this case the more general sense of "lost" is implied. That is, memory’s ownership bit is set, but no cache writes the
data back when a read is done to that location. It is possible to identify which CPU owns the block (or rather, which CPU
is thought to own it according to the memory), but it is often not possible to determine which error caused the situation
to arise.

2–319

KA66A CPU Module

Restart condition: Although lost B-cache fill errors may leave blocks
marked owned by this CPU in memory without the B-cache actually
owning the block, XMI systems maintain reliable ownership bits and it is
safe to restart.

In the absence of additional errors, the memory/cache ownership
mechanism ensures that no other process can access the block whose
ownership bit is set in memory and is not owned by any cache. Cache
coherence in the system depends on this mechanism.

2.10.9.16 Unacknowledged NDAL I-Stream or D-Stream Read or D-Stream
Ownership Read
Description: An I-stream or D-stream read or D-stream ownership read
was NO ACKed by the NEXMI. The physical address is in S_CEFADR.
The NEXMI will generally ACK any legal command on the NDAL, without
regard to the address. If the address turns out to be nonexistent, or if
some other error prevents return read data, an RDE will be returned to
the NVAX long before the Cbox times out. Potential reasons for an NDAL
bus NO ACK are:

• An NDAL parity error was sensed by the NEXMI during an NVAX
command transfer cycle. S_NESTS<NO ACK> should be set, S_
NEOCMD will contain the command that was refused, and S_
NEOADR will contain the address. S_NCSR<NDPE> should also
be set, since the NEXMI is assumed to have NO ACKed the cycle
due to a parity error. If the NVAX also sensed the parity error
(S_NESTS<PERR> is set), then more information is available
in the S_NEICMD, S_NEDATLO registers. This is discussed in
Section 2.10.9.19.

• The NEXMI refused the command because the non-writeback queue
was full. This should be prevented by the NEXMI’s control of CPU
GRANT L, but if it does happen, S_NCSR<NWQFL> will be set. If the
command is a read, recovery is possible.

For I-stream and D-stream reads the B-cache is not in ETM. For D-stream
ownership reads the B-cache is in ETM.

If the address is in I/O space, status is inconsistent (see Section 2.10.9.23).

If the ownership read was for an Mbox write, the write was sent on the
NDAL after the OREAD timed out. If the write was also NO ACKed,
a hard error interrupt would have been posted. That is handled as a
separate error.

Recovery procedure (all cases): Clear NESTS<NO ACK> and either S_
NCSR<NDPE> or S_NCSR<NWQFL>.

Additional recovery procedure for D-stream ownership read: Flush the
B-cache and then clear CCTL<HW ETM>. No error is expected during the
B-cache flush.

2–320

KA66A CPU Module

2.10.9.17 Lost NDAL Output Error
Description: Some number of NDAL output errors occurred. Some
number of read NO ACKs and/or BADWDATAs were missed. A hard error
interrupt would have occurred if a write or writeback was NO ACKed.

Lost NDAL output errors may be caused by more than one operand
prefetch to the same cache block.

The B-cache may be in ETM. Read S_CCTL<HW ETM> to find out.

Recovery procedure: Clear NESTS<LOST OERR>. If CCTL<HW ETM> is
set, flush the B-cache and then clear CCTL<HW ETM>.

Restart conditions: Lost NDAL output errors may leave tagged bad
locations in memory. Restart (see Section 2.10.10, Note on Tagged-Bad
Data Mechanisms).

2.10.9.18 PTE Read Errors
PTE read errors are read errors that happen in reads issued by the Mbox
in handling a TB miss. Handling of these errors differs from handling
the same underlying error (B-cache data RAM error, B-cache fill error, or
NDAL NO ACK error) when PTE read is not the cause.

If S_PCSTS<PTE ER> is set, then a PTE read issued by the Mbox in
processing a TB miss had an unrecoverable error. The TB miss sequence
was aborted because of the error. The original reference can be any
I-stream or D-stream read or write.

PTE read errors are difficult to analyze, partly because the read error
report in the Cbox does not directly indicate that the failing read was a
PTE read. Because of this and because PTE read errors should be rare
(a very small percentage of the reads issued by the Mbox are PTE reads),
multiple errors that interfere with the analysis of the PTE error are not
considered recoverable.

If the reference that incurs the PTE read error is a write, S_PCSTS<PTE
ER WR> will be set and the original write is lost. No retry is possible,
partly because the instruction that had the machine check may be
subsequent to the one that issued the failing write. Also, PTE read errors
on write transactions can cause a machine check at an arbitrary time in a
microcode flow, and core machine state may not be consistent.

2.10.9.18.1 B-Cache Data RAM Uncorrectable ECC Errors and Addressing Errors on
PTE Reads
Description (addressing errors): A B-cache addressing error was detected
by the Cbox in a PTE read during a B-cache hit. Addressing errors are the
result of a mismatch between the address the Cbox drives to the RAMs for
a read access and the address used to write that location. A multiple-bit
data error can appear to be an addressing error, although it is extremely
unlikely.

Description (uncorrectable ECC errors): A B-cache uncorrectable data
error was detected by the Cbox in a PTE read during a B-cache hit.
Uncorrectable data errors are the result of a multiple-bit error in the data
read from the B-cache. An addressing error with a single-bit data error
will appear as an uncorrectable data error.

2–321

KA66A CPU Module

Description (all cases): The B-cache is in ETM. S_BCEDIDX contains
the cache index of the error, and S_BCEDECC contains the syndrome
calculated by the ECC logic. The physical address of the PTE read can
be found by reading the tag for the data block (using the procedure in
Section 2.10.3.3.4). (If the physical address is in I/O space, status is
inconsistent. See Section 2.10.9.23.)

If the block’s tag contains an ECC error, the address cannot be determined.

S_BCEDSTS<LOST ERR> may be set. This lost error is probably due
to the same PTE error occurring more than once. This is an acceptable
assumption unless a hard error interrupt occurs after handling this error.

If both S_BCEDSTS<BAD ADDR> and S_BCEDSTS<UNCORR> are set,
the status is inconsistent (Section 2.10.9.23).

Recovery procedure (addressing errors): Clear BCEDSTS<Lock, BAD
ADDR>.

Recovery procedure (uncorrectable ECC errors): Clear BCEDSTS<Lock,
UNCORR>.

Recovery procedure (both cases): Flush the B-cache and then clear
CCTL<HW ETM>. Clear PCSTS<PTE ER>. If the data is owned by
the B-cache and if the error repeats itself (is not transient), a writeback
error will result from the flush procedure. Software should prepare for
this by clearing NESTS and BCEDSTS errors.

Restart condition: If no writeback error occurs in the B-cache flush, restart
if:

(S_PCSTS<PTE ER WR> = 0)

The system should be reset if:

(S_PCSTS<PTE ER WR> = 1)

If a writeback error occurs in the B-cache flush, the data is presumed to
be unrecoverable. See Section 2.10.9.10 for a description of handling an
error in a writeback. Software must determine if the error is fatal to one
process or the whole system and take appropriate action.

2.10.9.18.2 NDAL PTE Read Timeout Errors
Description: A PTE read timed out in the Cbox before any fill quadword
was received. This is not the method by which the NEXMI will notify
the NVAX CPU that a location is inaccessible. All outstanding NDAL
read-type cycles are normally terminated by at least one return data
cycle, either RDRx or RDE. The only cause of a Cbox timeout that is
both consistent with a soft error interrupt analysis and recoverable is an
NDAL parity error on the returned data. S_CEFSTS<Count> indicates the
number of quadwords received before the error (and should always be 11
(binary) if the address is in I/O space).

Section 2.10.9.13 discusses Cbox timeout errors in the context of non-PTE
errors, but some of that general discussion applies here as well. The
system environment analysis for this kind of timeout is the same, since
there is no distinction outside the NVAX between a fill read and a PTE
read. Section 2.10.9.19 has a more complete discussion of NDAL parity
errors and how they should be analyzed. Table 2–40 contains information

2–322

KA66A CPU Module

about decoding the S_CEFSTS bits and determining what was in progress
during the error.

If CEFSTS<Write> is set, status is inconsistent (see Section 2.10.6.7).

The physical address of the PTE is in S_CEFADR. The B-cache is not in
ETM. The read could not have been an Ownership Read, so this error did
not cause the ownership bits in memory to be left in the wrong state.

S_CEFSTS<LOST ERR> may be set. This error is probably due to
the same PTE error occurring more than once. This is an acceptable
assumption unless a hard error interrupt occurs after handling this error.

Recovery procedure: Clear CEFSTS<Lock, Timeout>, PCSTS<PTE ER>,
NESTS<PERR>, and NCSR<NRTAE>.

Restart condition: Restart if:

(S_PCSTS<PTE ER WR> = 0).

Otherwise, reset the system.

Post restart recovery: If the same fill error recurs on restart, then the
block is probably "lost." 1 Software must determine if the error is fatal
to one process or the whole system and take appropriate action. If it is
fatal to only one process, use the system procedure for resetting memory’s
ownership bit.

NOTE: It may be appropriate to cause each CPU in the system to flush its
B-cache, and then restart. It may also be that another error (such
as an uncorrectable tag store error on a coherence request) will
be repaired by the soft error interrupt handler before the restart
actually occurs, thus repairing the cause of the fill error.

2.10.9.18.3 NDAL PTE Read Data Errors
Description: A PTE read ended with an RDE (read data error) NDAL
cycle before any of the fill quadwords were received. S_CEFSTS<Count>
indicates the number of quadwords received before the error. S_
CEFSTS<Count> should be 0 (binary) for a memory space address, or
11 for an I/O space address, since the first word returned was an RDE.
The physical address is in S_CEFADR. Section 2.10.9.14 contains a more
complete discussion about this type of error in a non-PTE context. The
system environment analysis for an RDE is almost identical, except only
those cases that return an RDE as the first word apply here. The reasons
that the first return data word could be an RDE, and still be a soft error
interrupt are:

• The NVAX attempted a read command to a nonexistent memory
location in system support space. S_NCSR<SSCIR> will be set.

• A previous BADWDATA was written to that block in memory, tagging
it bad for all future reads.

1 In this case the more general sense of "lost" is implied. That is, memory’s ownership bit is set, but no cache writes the
data back when a read is done to that location. It is possible to identify which CPU actually owns the block (or rather,
which CPU is thought to own it according to the memory), but it is often not possible to determine which error caused
the situation to arise.

2–323

KA66A CPU Module

• A previous system error, such as a memory location being corrupted
and causing an ECC syndrome miscompare, was sensed on the first
quadword requested. This could be any quadword within the hexword,
since the requested quadword is always returned first.

If CEFSTS<Write> is set, status is inconsistent (see Section 2.10.6.7).

The physical address of the PTE is in S_CEFADR. The B-cache is not in
ETM. The read could not have been an Ownership Read, so this error did
not cause the ownership bits in memory to be left in the wrong state.

S_CEFSTS<LOST ERR> may be set. This error is probably due to
the same PTE error occurring more than once. This is an acceptable
assumption unless a hard error interrupt occurs after handling this error.

Recovery procedure: Clear CEFSTS<Lock, RDE>, PCSTS<PTE ER>, and
either XBER<RER> or NCSR<SSCIR> (whichever is appropriate).

Restart condition: Restart if:

(S_PCSTS<PTE ER WR> = 0).

Otherwise, reset the system.

Post restart recovery: If the same fill error recurs on restart, then the
block is probably "lost." 1 Software must determine if the error is fatal
to one process or the whole system and take appropriate action. (If it is
fatal to only one process, use the system procedure for resetting memory’s
ownership bit.)

NOTE: It may be appropriate to cause each CPU in the system to flush its
B-cache, and then restart. It may also be that another error (such
as an uncorrectable tag store error on a coherence request) will
be repaired by the soft error interrupt handler before the restart
actually occurs, thus repairing the cause of the fill error.

2.10.9.18.4 Unacknowledged NDAL PTE Read
Description: A PTE read was NO ACKed by the NEXMI. The NEXMI will
generally ACK any legal command on the NDAL, without regard to the
address. If the address turns out to be nonexistent, or if some other error
prevents return read data, an RDE will be returned to the NVAX long
before the Cbox times out. So, the most likely reason for this error is an
NDAL parity error.

The physical address of the PTE is in S_NEOADR. The B-cache is not in
ETM.

Refer to Section 2.10.9.16 for a more general discussion of an
unacknowledged read, and Section 2.10.9.19 for a more complete analysis
of an NDAL parity error. The system environment response to a PTE read
is a subset of the response to the more general I-stream or D-stream read
command.

1 In this case the more general sense of "lost" is implied. That is, memory’s ownership bit is set, but no cache writes the
data back when a read is done to that location. It is possible to identify which CPU actually owns the block (or rather,
which CPU is thought to own it according to the memory), but it is often not possible to determine which error caused
the situation to arise.

2–324

KA66A CPU Module

S_CEFSTS<LOST OERR> may be set. This error is probably due to
the same PTE error occurring more than once. This is an acceptable
assumption unless a hard error interrupt occurs after handling this error.

Recovery procedure: Clear NESTS<NO ACK>, PCSTS<PTE ER>, and
either NCSR<NDPE> or NCSR<NWQFL> (whichever is appropriate).

Restart condition: Restart if:

(PCSTS<PTE ER WR> = 0).

Otherwise, reset the system.

2.10.9.18.5 Multiple Errors That Interfere with Analysis of PTE Read Errors
Because PTE read errors lead to several unusual cases, restart is not
recommended in the event that other errors cloud the analysis of the PTE
read error.

Recovery procedure: No specific recovery action is called for.

Restart condition: Restart is not possible. Reset the system.

2.10.9.19 NDAL Parity Errors
Description: An NDAL cycle with a parity error was detected by the NVAX
CPU or the NEXMI. This discussion applies whenever S_NESTS<PERR>
or S_NCSR<NDPE> is set. If S_NESTS<PERR> is set, then S_NEICMD,
S_NEDATHI, and S_NEDATLO will contain the information captured
from the cycle. The B-cache will be in ETM if the NVAX detected the
parity error. It might be in ETM if the parity error was not detected and
another error bit set (either due to the parity error or otherwise).

There are several possible cycle "types" that could have been on the bus at
the time the parity error occurred:

• A NULL cycle could have been driven onto the bus by the NEXMI.
This happens when no other node requests the bus, and prevents
floating bus levels. Since state is not changed, recovery from such an
error is possible.

• The NEXMI could have been returning data to the NVAX. This is also
potentially recoverable, although it is more difficult than a NULL.

• The NEXMI could have been sending an invalidate to the NVAX. This
is recoverable only if the invalidate was of a DREAD type. WRITE and
OREAD invalidates cannot be recovered, since the P-cache might be
incoherent long enough to cause a problem.

• The NVAX could have been sending a command or write data to the
NEXMI. Recovery is possible, since the NEXMI refused the command
and no action was taken.

General recovery procedure: Before analysis is begun, ensure that all the
error information has reached the appropriate register. For example, the
error recovery code should first clear out all the outstanding commands,
and make sure that all pertinent timeouts have been registered. This can
be accomplished by the following steps:

1 Place the B-cache into ETM if it is not already in that state.

2–325

KA66A CPU Module

2 Clear out the Write Buffer (MFPR from CWB).

3 Flush the VIC and P-cache.

At the end of the analysis, if recovery is possible, all the significant and
related error bits should be cleared, the B-cache flushed, and then enabled.

Recovery guidelines: Parity provides minimum protection. Parity detects
only single-bit failures, double-bit failures will not be detected. This
makes any recovery attempt somewhat risky, and recovery should only be
attempted if all indications show exactly the same error scenario. Several
error bits make this decision easier.

• If S_NESTS<INCON PERR> or S_NCSR<NDIPE> is set, then one
NDAL node saw the parity error and the other did not. Furthermore,
the node that did not see the parity error ACKed the transaction and
might have taken the wrong action. Recovery is difficult and risky.
Reset the system.

• If S_NESTS<LOST PERR> is set, then a further parity error was
detected, but no information was captured in the command and data
registers. Analysis is impossible. Reset the system.

In general, it is better if both nodes see the parity error. So if S_
NESTS<PERR> and S_NCSR<NDPE> are both set, the failure is solid
and the chances of recovery are favorable. There are, however, certain
situations that allow for only one node to see the error, and in those cases
recovery is still possible.

If the NVAX detected the parity error, and S_NESTS<PERR> is set,
the error analysis is made easier. The S_NEICMD, S_NEDATHI, and
S_NEDATLO registers should first be analyzed to determine where the
parity error occurred. If correct parity is shown for all three parity-
protected fields after the initial analysis, then the status is inconsistent
and no recovery is possible. Reset the system.

If at least one of the parity-protected fields shows a parity error, then
determine which field(s) are likely to be accurate. Based upon that data,
other evidence of this cycle type should be searched for. If the parity error
is indicated in the CMD/ID field, then no information is available about
the likely error. Further analysis without this crucial information is risky,
and a parity error in either the CMD or ID field is so damaging that the
system should be reset.

If the parity is calculated to be good for the CMD and ID fields, then error
analysis uses that information for further recovery decisions. The four
cycle types of interest are:

• The S_NEICMD<CMD> field shows a NULL, and the S_NEICMD<ID>
field shows the NEXMI node (010). None of the error bits S_
CEFSTS<Timeout>, S_NESTS<NO ACK>, or S_NCSR<NRTAE>
should be set. This all points to a benign NULL cycle on the bus at the
time of the parity error, and no special recovery is necessary.

2–326

KA66A CPU Module

• The S_NEICMD<CMD> field shows a return data cycle (RDRx or
RDE), and the S_NEICMD<ID> field shows one of the NVAX nodes
(000,001). S_NCSR<NRTAE> should be set to indicate that a return
data word was NO ACKed by the NVAX, and S_CEFSTS<Timeout>
should be set to indicate that the NVAX waited for the Cbox timeout
and did not receive the data. S_NESTS<NO ACK> should be clear.

In this case, it is not a problem that the NVAX saw the parity error
(S_NESTS<PERR> is set), but the NEXMI did not (S_NCSR<NDPE>
is clear). Since a signal is more likely to be degraded at the far end of
the transmission line, the NEXMI may not have sensed the problem.
If the rest of the evidence points to a missed return data word, then
it is still reasonable to assume that the NVAX missed the return word
and can recover.

This is potentially recoverable. The failing address is stored in S_
CEFADR. For more information about recovering from this error, see
Section 2.10.9.13 or Section 2.10.9.18.2, depending upon what further
analysis shows.

• The S_NEICMD<CMD> field shows an invalidate cycle (WRITE,
DREAD, or OREAD), and the S_NEICMD<ID> field shows the NEXMI
node. None of the error bits S_CEFSTS<Timeout>, S_NESTS<NO
ACK>, or S_NCSR<NRTAE> should be set. This is recoverable only
if the invalidate type can be identified to be a DREAD, since that
would not have required the cached word to be invalidated. Either
the original XMI node would have retried the read (in which case
the second invalidate would be sensed and a writeback would be
performed), or the error procedure would flush the B-cache and write
the data back. If the invalidate is of type WRITE or OREAD, then the
P-cache could become incoherent, and the system should be reset.

This is another case where the S_NCSR<NDPE> can be clear (NEXMI
did not sense the parity error), yet recovery still be possible, if the
invalidate type is a DREAD.

• The S_NEICMD<CMD> field shows an NVAX command cycle (WRITE,
WDISOWN, IREAD, DREAD, OREAD), and the S_NEICMD<ID>
shows one of the NVAX nodes. If the S_NEDATHI register is shown
to have good parity, then the length can also be checked to ensure
consistency. S_NESTS<NO ACK> should be set, which means that
S_NEOCMD and S_NEOADR contain the information about the
outbound cycle. This should be compared to the S_NEICMD and S_
NEDATLO registers to ensure consistency. In this case, even a parity
error in the S_NEDATLO register should be visible, since we are
assuming single-bit errors, and the S_NEOADR register provides the
correct data. S_NCSR<NRTAE> should be clear.

If the NVAX did not see the parity error (S_NESTS<PERR> is
clear), but the NEXMI did (S_NCSR<NDPE> is set), then recovery
is possible. Since the NVAX is the transmission device, it is possible
that only the receiving device (NEXMI) senses a problem. In that
case, S_NESTS<NO ACK> would be set, and the pertinent command
information would be stored in the S_NEOCMD and S_NEOADR
registers. If the rest of the evidence points to a parity error on an
NVAX generated command, then recovery can be attempted.

2–327

KA66A CPU Module

For more information regarding recovery from this type of error, see
Section 2.10.9.16 or Section 2.10.9.18.4, depending upon what further
analysis shows.

Restart condition: If the cycle can be identified specifically, then restart.
Otherwise, reset the system.

2.10.9.20 Lost Parity Errors
Description: S_NESTS<LOST PERR> indicates that several NDAL cycles
with a parity error were detected by the NVAX, before the first parity
error had been serviced, the latched information saved, and the latching
registers cleared for a new value. This means that at least one cycle with
a parity error has no saved information about it. The B-cache is in ETM.
If an invalidate cycle was missed that would have hit in the B-cache, the
P-cache may now be incoherent. Since there is no way to even guess what
the offending cycle was, recovery is not possible.

Recovery procedure: It is impossible to determine whether the interrupted
instruction stream may give the effect of out of order writes (because the
P-cache may have missed an invalidate). Reset the system.

2.10.9.21 Inconsistent Parity Errors
Description: S_NESTS<INCON PERR> or S_NCSR<NDIPE> indicates
that an inconsistent parity error was detected. This describes a condition
where one node on the NDAL detected a parity error, yet that same cycle
was ACKed by another. Since a node will not ACK a cycle with a parity
error, there is an inconsistency between what the nodes sensed.

Recovery procedure: Since the error information is inconsistent, no error
recovery is possible. Reset the system.

2.10.9.22 NEXMI Soft Error Interrupts
Description: Errors that do not result in loss of data, or can notify the
CPU by returning RDE, are corrected automatically by the hardware.

These errors normally notify the CPU of the error by asserting ERR L.
The following saved error register bits are consistent with a NEXMI soft
error interrupt.

• XBER<CC>

• XBER<PE>

• XBER<CRD>

• XBER<RSE>

• XBER<RER>

• NCSR<NDPE>

• NCSR<NRTAE>

• NCSR<SSCIR>

• NCSR<WBQFL>

• NCSR<NWQFL>

2–328

KA66A CPU Module

Most NEXMI soft errors are caused by some problem that also signals
the NVAX CPU of the event through some Cbox error. Those bits are
discussed in the sections that pertain to the associated Cbox errors. The
NEXMI soft error bits that can occur alone are discussed here.

• S_XBER<CC>: This causes a soft error if S_XCR<CCID> is clear. It
means that a correctable error has been identified by the XMI interface
on the XMI ACK lines. If only a single bit has been corrupted, the
ACK indication is still correct, and system recovery is possible with no
special actions (other than logging the error).

• S_XBER<PE>: An XMI parity error was sensed by the NEXMI.
This error, when unaccompanied by any other error, is generally
recoverable. Either the cycle was a NULL cycle, or the command was
retried successfully and no special recovery is necessary.

Other errors can be caused by an NDAL parity error such as RSE
(read sequence error), NRR (no read return), and URR (unexpected
read response). These cases are discussed in the sections that pertain
to those other errors.

• S_XBER<CRD>: This error causes a soft error interrupt if S_
XCR<CRDID> is clear. It indicates that a device has returned
good data, but that correction was necessary to provide the data
accurately. The most common reason for this error is a single-bit
failure in the MS65A memory. No special recovery is necessary,
although the operating system might want to see if the error was hard
(reproducible) or soft (transient). A soft single-bit error can be repaired
by performing a read-modify-write operation on that data word.

• S_XBER<RSE>: This error bit signifies that a read sequence error
occurred on the XMI. A normal return data sequence from a memory
or I/O adapter has the words come back in a particular order. If
one data word is missed for some reason, the next data word that is
returned (after the one that was missed) will be out of sequence, and
the XMI commander will know that something went wrong. This error
bit can get set if an XMI parity error causes the returned data word
to be missed, in which case S_XBER<PE> will also be set. This is
discussed in those sections where a recoverable RSE is likely.

An unexpected RSE is a different matter. It means that an adapter
sent back an out-of-order return data packet for no obvious reason.
This is a very serious system error. The error source is elsewhere in
the system. Unless the error source can be determined and the error
repaired, reset the system.

• S_NCSR<NDPE>: An NDAL parity error was sensed by the NEXMI.
This indication is discussed in Section 2.10.9.19.

• S_NCSR<WBQFL>: An NDAL DISOWN command was refused (and
NO ACKed) because the internal NEXMI writeback queue was full.
However, the NDAL NO ACK will be sensed immediately by the NVAX
and analyzed on that basis. Because of this, it is considered a soft
error from the NEXMI perspective. Recovery is unlikely, since the
writeback will not be retried and the data will be overwritten soon.
The situation that would cause this bit to be set will flag a hard error
from within the NVAX, so this bit would be analyzed and cleared

2–329

KA66A CPU Module

before ever seeing it as part of a soft error interrupt. If this bit is
set without a hard error also being posted, then the system status is
inconsistent and the system should be reset. See Section 2.10.8.5 for a
discussion of possible recovery from this error.

Recovery procedure: Clear the error status bits in the NEXMI registers
and perform any necessary system recovery procedure. This might include
clearing memory or I/O registers.

Restart condition: Typically, restart is possible, although in cases where
data is lost software may have to kill one process or crash the system.

2.10.9.23 Inconsistent Status in Soft Error Interrupts
Description: A presumed impossible error report was found in the error
registers. This could be due to a hardware failure.

Recovery procedure: No specific recovery action is called for.

Restart condition: No restart is possible. Reset the system.

2.10.10 Note on Tagged-Bad Data Mechanisms

Writebacks sent as BADWDATA are supposed to be tagged-bad data in
memory, and further reads to that block should fail. In VAX 6000 Model
600 systems, the "tagged-bad data" storage mechanism identifies bad data
as reliably as it does good data. Thus, system operation can continue after
such an error because any process that accesses that data will see an RDE
error for that block and will machine check before it uses the bad data.

The B-cache data RAMs use a relatively unreliable mechanism for tagged-
bad data. Three ECC check bits are flipped in the stored value. This
mechanism would often prevent a subsequent read from succeeding, but
it is not sufficiently reliable to allow missing tagged-bad blocks in the
B-cache to be tolerated. As a result, all errors that may have left a tagged-
bad block in the B-cache without some error address register pointing it
out are cause to reset the system.

2–330

KA66A CPU Module

2.10.11 Kernel Stack Not Valid Exception

A kernel stack not valid exception occurs when a memory management
exception is detected during an attempt to push information on the kernel
stack during microcode processing of another exception. A console halt
with an error code of ERR_INTSTK is taken if a memory management
exception is encountered while attempting to push information on the
interrupt stack.

The kernel stack not valid exception is dispatched through SCB vector 08
(hex).

2–331

3 MS65A Memory Module

The MS65A memory module is a metal-oxide semiconductor (MOS),
dynamic random access memory (DRAM), that provides up to 128 Mbytes
of data storage. The memory array can be used in any VAX 6000 system
and communicates over the XMI bus.

This chapter contains the following sections:

• Module Description

• Self-Test and Initialization

• Control and Status Registers

• Error Handling

3–1

MS65A Memory Module

3.1 Module Description

The MS65A memory module is a dynamic random access memory
(DRAM) that communicates through the XMI bus to provide system
memory.

The MS65A memory module consists of the following major components:

• XMI Corner

• Memory control gate array

• Memory storage array

The MS65A memory module has the following features:

• The memory module contains MOS dynamic RAM (DRAM) arrays, a
CMOS memory control gate array (that contains error correction code
(ECC) logic and control logic), an EEPROM storage element, and an
XMI interface (the XMI Corner).

• Storage arrays are made up of two or four banks with 155 or 299
DRAMs.

• ECC logic detects single-bit and double-bit errors and corrects single-
bit errors.

• Memory self-test checks all DRAMs, the data path, and control logic
on power-up.

• Quadwords, octawords, and hexwords can be read from memory.

• Quadwords, octawords, and hexwords can be written to memory.

• The memory can be configured by the system for 2-, 4-, 8-way or no
interleaving.

3–2

MS65A Memory Module

The XMI Corner is the module’s interface to the XMI bus and contains
CMOS memory control gate arrays and interface logic. Its primary
purpose is to transfer data between the MS65A memory module and
the XMI bus.

The memory control gate array controls the MS65A memory module
and transfers data between the XMI Corner and the DRAMs. The memory
control gate array also controls address multiplexing, command decoding,
arbitration, CSR logic functions, and the EEPROM.

The memory storage array within the memory control gate array
includes address and control logic to modify address bits received from the
XMI Corner. These modified address bits are used to control the selection
of the DRAMs during reading and writing.

A block is defined as a contiguous 32-byte quantity of data, also known as
a hexword. The MS65A memory module uses an indicator to represent the
state of each block. This indicator is known as the block state. The block
state is used to determine the proper read or write response on commands.

All power for the XMI memory array is supplied from the +5V rail. If the
optional battery backup unit (BBU) is not installed and system power is
lost, memory is lost as well.

If the optional BBU is installed, it supplies power to the system regulators
in the event of a power failure, ensuring that no data is lost. The BBU
supplies power to the XMI for up to 10 minutes.

3–3

MS65A Memory Module

3.2 Self-Test and Initialization

The MS65A memory module performs an initialization and self-test
sequence on a cold power-up or when the sequence is requested by
a console command. On power-up the console firmware loads the
Starting Address Register (STADR) with the starting address,
the Segment/Interleave Register (INTLV) with the interleave
mode, and the Ending Address Register (ENADR) with the ending
address.

During a cold power-up the memory control gate array is initialized, all
memory locations are tested, and the control and status registers are
initialized.

A warm power-up occurs when the system (excluding memory if a battery
backup unit (BBU) is present) loses power. During a warm power-up,
self-test is not run and memory contents are not modified.

Memory self-test takes about 5 seconds for a 32-Mbyte memory module, 10
seconds for a 64-Mbyte memory module, and 20 seconds for a 128-Mbyte
module. While self-test runs, the fault light on the system front panel
is on. When self-test completes, the fault light goes off and the console
printout of self-test begins. For details on the self-test console printout,
refer to Chapter 6 in the VAX 6000 Series Owner’s Manual.

3–4

MS65A Memory Module

3.2.1 Starting and Ending Addresses

The memory responds to starting addresses on any 16-Mbyte boundary.
The ending address is also on any 16-Mbyte boundary. The ending address
must be greater than the starting address, otherwise commands are not
acknowledged. The ending address minus the starting address must be
equal to or less than the memory size multiplied by the number of ways
interleaved.

EA – SA = Memory Size * (# of ways interleaved)

Starting addresses for memory can be in the range from 0 to
7F FF00 0000 (16 Mbytes to 512 Gbytes in 16-Mbyte multiples). Ending
addresses can range from 0 to 80 0000 0000 (0 to 512 Gbytes in 16-Mbyte
multiples). Ending addresses greater than 80 0000 0000 are not permitted.
The area above 80 0180 0000 is reserved for CSR addresses.

3.2.2 Interleaving

Interleaving achieves greater throughput to memory by optimizing
memory access time and increasing the effective memory transfer rate.
This is done by operating memory modules in parallel.

The memory array supports 2-way, 4-way, 8-way or no interleaving at
the system level. Up to eight memory array modules can be interleaved.
Interleaving is done on hexword boundaries.

3–5

MS65A Memory Module

3.3 Control and Status Registers

The CSR names and their relative addresses are shown in
Table 3–1. Detailed descriptions of the CSRs are also included
in this section.

Table 3–1 MS65A Memory Module Control and Status Registers

CSR Name Mnemonic Address

Device Register XDEV BB1 + 0000 0000

Bus Error Register XBER BB + 0000 0004

Memory Control Register 1 MCTL1 BB + 0000 0014

Memory ECC Error Register MECER BB + 0000 0018

Memory ECC Error Address Register MECEA BB + 0000 001C

Memory Control Register 2 MCTL2 BB + 0000 0030

TCY Tester Register TCY BB + 0000 0034

Block State ECC Error Register BECER BB + 0000 0038

Block State ECC Address Register BECEA BB + 0000 003C

Starting Address Register STADR BB + 0000 0050

Ending Address Register ENADR BB + 0000 0054

Segment/Interleave Control Register INTLV BB + 0000 0058

Memory Control Register 3 MCTL3 BB + 0000 005C

Memory Control Register 4 MCTL4 BB + 0000 0060

Block State Control Register BSCTL BB + 0000 0068

Block State Address Register BSADR BB + 0000 006C

EEPROM Control Register EECTL BB + 0000 0070

Timeout Control/Status Register TMOER BB + 0000 0074

1"BB" refers to the base address of an XMI node (E180 0000 + (node ID x 8000)).

The memory contains 19 control and status registers (CSRs) to control
the memory and log errors. All CSRs are 32 bits long and respond only
to longword read and write transactions. Only full writes are performed.
If a parity error occurs during a write, the operation is aborted and the
contents of the CSRs are unchanged.

Some bits in the registers are cleared on power-up, while others need a
one written to them to clear.

The CSRs start at an address dependent upon the node ID. All CSR
addresses are designated as BB + n, where n is the relative offset of the
register.

3–6

MS65A Memory Module

The following definitions apply to the descriptions of the control and status
registers.

CRD error – A correctable single-bit error.

RER error – A general uncorrectable multiple-bit error indicator that
includes an RDS error (a hard unrecoverable error), a row parity error, a
column parity error, or a byte write error.

RO – Indicates a read-only register.

RO, 0 – Indicates a read-only register, cleared on power-up.

R/CW, 0 – Indicates a read conditional write register, cleared on power-up.

R/W – Indicates a read and write register.

R/W, 0 – Indicates a read and write register, cleared on power-up.

R/W1C – Indicates a read and write register, write a one to clear.

R/W1C, 0 – Indicates a read and write register, write a one to clear, and
cleared on power-up.

R/W1C, 1 – Indicates a read and write register, write a one to clear, and
set on power-up.

WO, 0 – Indicates a write-only register, cleared on power-up.

3–7

MS65A Memory Module Registers
Device Register (XDEV)

Device Register (XDEV)

The Device Register contains information to identify the MS65A memory
module. The fields are loaded during node initialization. A zero value
indicates an uninitialized node. The device class and device ID fields match
those of the device type code of the MS62A memory module.

ADDRESS Nodespace base address + 0000 0000

3
1

2
4

2
3

1
6

1
5 8 7 0

MUST BE ZERO

Device Revision (DREV)

msb−p245−90

Device Class (DCLS)
Device ID (DEVID)

bits<31:24>
Name: Reserved

Mnemonic: None

Type: RO, 0

Reserved; must be zero.

bits<23:16>
Name: Device Revision

Mnemonic: DREV

Type: R/W

Identifies the revision level of the MS65A memory module. The use of
the Device Revision field is implementation dependent. The field does
not indicate the hardware revison level, only the functional level.

bits<15:8>
Name: Device Class

Mnemonic: DCLS

Type: RO

Identifies the type of node. The device type for an MS65A memory
module is 40 (hex) and 4001 (hex) for an MS62A memory module. This
value is set permanently in the Device Register.

3–8

MS65A Memory Module Registers
Device Register (XDEV)

bits<7:0>
Name: Device ID

Mnemonic: DEVID

Type: R/W

Identifies the ID of node. The ID for an MS65A memory module is
0000 0001 (binary) or 01 (hex).

3–9

MS65A Memory Module Registers
Bus Error Register (XBER)

Bus Error Register (XBER)

The Bus Error Register records error and status information about the XMI
bus.

ADDRESS Nodespace base address + 0000 0004
3
1

3
0

2
9

2
8

2
7

2
6

2
2

2
3

2
2

2
1

2
0

1
3

1
2

1
1

1
0 9 0

MBZ MUST BE ZERO MUST BE ZERO

Self−Test Fail (STF)

Node−Specific
Error Summary
(NSES)

Read Data NO ACK (RDNAK)
Write Sequence Error (WSE)
Bus Parity Error (BPE)
Corrected Confirmation Received (CCR)

msb−p244−90

0 0

Node Reset (NRST)
Error Summary (ES)

0

bit<31>
Name: Error Summary

Mnemonic: ES

Type: RO, 0

This bit state represents the logical OR of the error bits in this
register.

bit<30>
Name: Node Reset

Mnemonic: NRST

Type: WO, 0

When set, this bit initiates a complete node reset, including self-test.

bits<29:28>
Name: Reserved

Mnemonic: None

Type: RO

Reserved; must be zero.

3–10

MS65A Memory Module Registers
Bus Error Register (XBER)

bit<27>
Name: Corrected Confirmation Received

Mnemonic: CCR

Type: R/W1C, 0

When set, the XMI Corner Interface (XCI) bus detected a single-bit
error on any of the three XMI confirmation lines. This error is always
logged, whether the MS65A memory module is responsible for the
faulty bus cycle or not.

bits<26:24>
Name: Reserved

Mnemonic: None

Type: RO

Reserved; must be zero.

bit<23>
Name: Bus Parity Error

Mnemonic: BPE

Type: R/W1C, 0

When set, the memory detected a parity error on the XMI data, ID,
fault, or parity lines. The MS65A does not acknowledge any cycle that
contains a bus parity error. Once the cycle is not acknowledged,
all other bus cycles associated with the transaction are flushed
from memory. No log is kept of which parity fields had the errors.
This error is always logged, whether the MS65A memory module is
responsible for the faulty bus cycle or not.

bit<22>
Name: Write Sequence Error

Mnemonic: WSE

Type: R/W1C, 0

When set, indicates that the memory aborted a write transaction,
due to one or more missing data cycles. All command and write data
entries associated with this error are flushed from queues.

3–11

MS65A Memory Module Registers
Bus Error Register (XBER)

bit<21>
Name: Read Data NO ACK

Mnemonic: RDNAK

Type: R/W1C, 0

When set, indicates that the memory failed to receive a response
for a LOC, RER, CRD, or GRD data response cycle. Any remaining
quadwords of the data packet being transmitted are sent normally.

bits<20:13>
Name: Reserved

Mnemonic: None

Type: RO

Reserved; must be zero.

bit<12>
Name: Node-Specific Error Summary

Mnemonic: NSES

Type: RO, 0

When set, this bit indicates that a node-specific error condition has
been detected. The exact nature of the error is located in the memory
error status registers. A hierarchy of these registers is shown in
Figure 3–1.

bit<11>
Name: Reserved

Mnemonic: None

Type: RO

Reserved; must be zero.

bit<10>
Name: Self-Test Fail

Mnemonic: STF

Type: R/W1C, 1

This bit is set when self-test starts and is cleared when self-test
successfully completes.

3–12

MS65A Memory Module Registers
Bus Error Register (XBER)

bits<9:0>
Name: Reserved

Mnemonic: None

Type: RO

Reserved; must be zero.

Figure 3–1 Error Bit Hierarchy

XBER<31>
NODE ERROR SUMMARY

XBER<27>
XMI CNF

XBER<23> XBER<22>
XMI WDAT

XBER<21> XBER<10>
XMI PARITY XMI RD DATA

NO ACK ERROR
SELF−TEST

ERROR ERROR SEQ ERROR FAIL

NODE−SPECIFIC
ERROR SUMMARY

MCTL1<31>
DATA DRAM
ERR SUMMARY

MCTL3<31> MCTL4<31>
DC7190 CONSISTENCY BLOCK STATE DRAM

CHECK SUMMARY ERROR SUMMARY

MCTL3<29>

MCTL3<22:16>

MCTL4<14>

MCTL4<11>

DATA RMW ERR EEPROM WRITE ERR

ROW PARITY ERROR

ACCESSED

msb−p385−91

XBER<12>

OWN PROTOCOL ERR

MCTL1<11>

MCTL1<10>

MCTL2<16>

MECER<31>

MECER<30>

MECER<29>

MECER<27>

MECER<26>

MECER<25>

BLOCK RMW ERR

BECER<31>

BECER<30>

BECER<29>

BECER<27>

BECER<26>

BECER<25>

BECER<24>

LOCK PROTOCOL INCONSISTENCY
ERROR

RER SUMMARY BITREFRESH ERROR

2ND RER OCCURREDRER SUMMARY BIT

CRD ERRORSECOND RER

BYTE WRITE ERRORCRD ERROR

ROW PARITY ERRORBYTE WRITE ERROR

COLUMN PARITY
ERROR

COL PARITY ERROR TAGGED BAD BLOCK

3–13

MS65A Memory Module Registers
Memory Control Register 1 (MCTL1)

Memory Control Register 1 (MCTL1)

The Memory Control Register 1 contains memory-specific control, status, and
error bits. The MCTL1 Register also controls the diagnostic modes of the
memory module.

ADDRESS Nodespace base address + 0000 0014

3
1

3
0

2
9

2
8

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Data Read/Modify/Write
Error (DRMWER)
Interlock Sequence
Error (INSEQ)

Enable 2−Mbyte Data
Protection Mode (EPM)
On−Board Memory
Valid (MEMVAL)
Inhibit CRD Status
Generation (ICRD)
RAM Type (RAMTYP)

Memory Size (MEMSIZ)
Data ECC Disable (DECCD)
Data ECC Diagnostic Mode (DECCM)
Memory Register Error Summary (ERRSUM)

0 MBZ

| | | | | | | |
C C C C C C C C

6 5 4 3 2 1 07

msb−p231−90

Diagnostic Check
(DCK)

bit<31>
Name: Memory Register Error Summary

Mnemonic: ERRSUM

Type: RO

This bit contains the ORed sum of error bits in MCTL1, MCTL2, and
Memory ECC Error Registers.

bit<30>
Name: Data ECC Diagnostic Mode

Mnemonic: DECCM

Type: R/W, 0

This bit is used for diagnostic purposes.

3–14

MS65A Memory Module Registers
Memory Control Register 1 (MCTL1)

bit<29>
Name: Data ECC Disable

Mnemonic: DECCD

Type: R/W, 0

This bit is used for diagnostic purposes.

bits<28:18>
Name: Memory Size

Mnemonic: MEMSIZ

Type: R/W

These bits specify the memory module size in 256-Kbyte increments.
An upper extension of these bits is located in the MCTL4 Memory Size
<28:18> field.

bits<17:16>
Name: RAM Type

Mnemonic: RAMTYP

Type: R/W

These bits show the DRAM type used. They are used in conjunction
with <28:18> and Memory Control Register 4 (MCTL4) <17:16>.

bit<15>
Name: Inhibit CRD Status Generation

Mnemonic: ICRD

Type: R/W, 0

This bit inhibits the reporting of CRD status to the commander on
read cycles. When this bit is set, any CRD response is changed to a
GRD response. CRD errors are still logged, and RER errors are logged
and reported.

bit<14>
Name: On-Board Memory Valid

Mnemonic: MEMVAL

Type: RO, 0

This bit indicates that valid data is stored in memory. The bit is set on
the first write to the module memory space.

3–15

MS65A Memory Module Registers
Memory Control Register 1 (MCTL1)

bit<13>
Name: Enable 2-Mbyte Protection Mode

Mnemonic: EPM

Type: R/W, 0

When set, the operation of the MCTL1 ECC Diagnostic<30> MCTL1
ECC Disable <29>, MCTL4 Block State Diagnostic Mode <30>, and
MCTL4 Block State ECC Disable <29> bits are inhibited in the first 2
Mbytes of memory space.

bit<12>
Name: Reserved

Mnemonic: None

Type: RO

Reserved; must be zero.

bit<11>
Name: Interlock Sequence Error

Mnemonic: INSEQ

Type: R/W1C, 0

When set, this bit indicates that a system protocol violation has been
observed around an executed UWMASK to the on-board memory.

bit<10>
Name: Data Read Modify Write Error

Mnemonic: DRMWER

Type: R/W1C, 0

When set, an uncorrectable error was detected in the data DRAM field
during a Read Modify Write cycle.

bits<9:8>
Name: Reserved

Mnemonic: None

Type: RO

Reserved; must be zero.

bits<7:0>
Name: Diagnostic Check

Mnemonic: DCK

Type: R/W, 0

These bits are used in ECC diagnostic mode as substitute check bits.

3–16

MS65A Memory Module Registers
Memory ECC Error Register (MECER)

Memory ECC Error Register (MECER)

The Memory ECC Error Register logs ECC error status and syndrome
information for the data DRAMs. The MECER logs ECC error information
during read cycles only. If an RER error occurs during a Write Mask cycle,
DRMWER bit<10> in the MCTL1 Register is set. Errors associated with block
state DRAMs are logged in MCTL4.

This register logs ECC error type and error syndrome information when
correctable and uncorrectable errors occur during Read transactions. During
a Write Mask transaction, only DRMWER bit<10> in the MCTL1 Register logs
the fact that the ECC error occurred.

For read accesses, the register logs the first correctable error and holds it
until either an uncorrectable error occurs or the error is cleared. Additional
correctable errors are only reported and are not logged. An uncorrectable
error will overwrite a logged correctable error. A correctable error will not
overwrite a logged uncorrectable error or a previously logged correctable error
until the error has been cleared.

This register logs errors during module self-test.

ADDRESS Nodespace base address + 0000 0018
3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
2

2
1

1
6

1
5

1
2

1
1 8 7 0

MBZ MBZ

Data
Syndrome
(DTSYN)

msb−p236−90

0

Commander
Code (COMCD)
Commander ID (COMID)

Column Parity Error (Data Address) (CPER)
Row Parity Error (Data Address) (RPER)
Byte Write Error (Data Address) (BWERR)
Data CRD Error (DCRDE)
Second Data Error Occurred (SDEO)
Data RER Error (DRER)

bit<31>
Name: Data RER Error

Mnemonic: DRER

Type: R/W1C, 0

When set, an uncorrectable error occurred during a read transaction.

3–17

MS65A Memory Module Registers
Memory ECC Error Register (MECER)

bit<30>
Name: Second Data Error Occurred

Mnemonic: SDEO

Type: R/W1C, 0

When set, an RER or CRD error occurred before the previous one was
cleared from the register. The error information is logged only if the
second error is an RER type error and the first error was a CRD. A
second CRD error after the initial CRD error will set this bit.

bit<29>
Name: Data CRD Error

Mnemonic: DCRDE

Type: R/W1C, 0

When set, a CRD error occurred during a read transaction. This
includes a single-bit error in the check bits, even though no correction
is done on the data bits. The error address and error syndrome are
valid if no RER error log exists.

bit<28>
Name: Reserved

Mnemonic: None

Type: RO

Reserved; must be zero.

bit<27>
Name: Byte Write Error (Data Address)

Mnemonic: BWERR

Type: RO, 0

When set, an RER error was due to reading a location that was
marked bad during a partial write cycle that had previously detected
an RER error. Cleared when MECER<31> is cleared. The setting of
this bit also sets MECER<31>.

bit<26>
Name: Row Parity Error (Data Address)

Mnemonic: RPER

Type: RO, 0

When set, an RER error occurs due to a row address parity error.
Cleared when MECER<31> is cleared. The setting of this bit also sets
MECER<31>.

3–18

MS65A Memory Module Registers
Memory ECC Error Register (MECER)

bit<25>
Name: Column Parity Error (Data Address)

Mnemonic: CPER

Type: RO, 0

When set, an RER error occurs due to a column address parity error.
Cleared when MECER<31> is cleared. The setting of this bit also sets
MECER<31>.

bits<24:21>
Name: Reserved

Mnemonic: None

Type: RO

Reserved; must be zero.

bits<21:16>
Name: Commander ID

Mnemonic: COMID

Type: RO, 0

This field logs the 6-bit commander ID (ID <5:0>) that was involved
in the transaction that caused the logging of MECER errors. A CRD
response is sent back to the commander and the CRD occurrence is
logged in the MECER. The MECER error log shows which CPU or I/O
module encountered the error. These bits are not cleared when the
error status bits are reset by a system commander. Therefore, they
hold the ID of the last MECER error logged (or a zero if no errors
occurred since the last cold start).

bits<15:12>
Name: Commander Code

Mnemonic: COMCD

Type: RO, 0

This field logs the 4-bit command code associated with the logged
failure. The commander code identifies the command type associated
with the error that occurred. Knowing the type of command helps the
user to determine why the memory error occurred. These bits are not
cleared when the error status bits are reset. Therefore, they hold the
command code of the last MECER error logged (or a zero if no errors
occurred since the last cold start).

3–19

MS65A Memory Module Registers
Memory ECC Error Register (MECER)

bits<7:0>
Name: Data Syndrome

Mnemonic: DTSYN

Type: RO, 0

These bits are the syndrome bits of the location in an RER or CRD
error, when the memory module is not in diagnostic mode.

3–20

MS65A Memory Module Registers
Memory ECC Error Address Register (MECEA)

Memory ECC Error Address Register (MECEA)

The Memory ECC Error Address Register logs the address of correctable and
uncorrectable errors logged in the Memory ECC Error Register.

For read accesses, this register logs the address of the first corrected read
data (CRD) error and holds it until a double-bit uncorrectable error (RER)
occurs or the error is cleared. An RER error causes a logged CRD error
address to be overwritten. A CRD will not overwrite a logged RER error
address. If multiple RER errors occur, only the first error address is logged.

This register logs errors during self-test.

ADDRESS Nodespace base address + 0000 001C

3
1 3 2 0

DATA ERROR ADDRESS (DERA) MBZ

msb−p235−90

bits<31:3>
Name: Data Error Address

Mnemonic: DERA

Type: RO, 0

The error address of the RER or CRD error logged in the Memory ECC
Error Register. This register is valid only if the RER or CRD error log
bits are set in the Memory ECC Error Register. This address is the
bus address of the cycle that was being performed at the time of the
error.

bits<2:0>
Name: Reserved

Mnemonic: None

Type: RO

Reserved; must be zero.

3–21

MS65A Memory Module Registers
Memory Control Register 2 (MCTL2)

Memory Control Register 2 (MCTL2)

The second memory control register contains additional control and error
status information.

ADDRESS Nodespace base address + 0000 0030

3
1

1
8

1
7

1
6

1
5 6 5 4 2 1 0

MUST BE ZERO MUST BE ZER0

Force Memory Refresh (FMRE)

msb−p232−90

Refresh Error (RERR)
Hold Mode (HLDM)
Refresh Rate (RRB)
Arbitration Suppression Mode (ARBSC)

bits<31:18>
Name: Reserved

Mnemonic: None

Type: RO

Reserved; must be zero.

bit<17>
Name: Force Memory Refresh

Mnemonic: FMRE

Type: WO, 0

When set by a commander, the gate array initiates a single memory
refresh operation. This causes a refresh cycle to be generated for all
on-board DRAMs.

bit<16>
Name: Refresh Error

Mnemonic: RERR

Type: R/W1C, 0

When set, a second refresh request was asserted before the first one
was implemented, meaning that a refresh was missed.

3–22

MS65A Memory Module Registers
Memory Control Register 2 (MCTL2)

bits<15:6>
Name: Reserved

Mnemonic: None

Type: RO

Reserved; must be zero.

bit<5>
Name: Hold Mode

Mnemonic: HLDM

Type: RO, 0

This bit informs the gate array which hold mode is needed for read-
data response transfers.

bits<4:2>
Name: Refresh Rate

Mnemonic: RRB

Type: R/W

This field controls the module’s DRAM refresh rate.

bits<1:0>
Name: Arbitration Supression Mode

Mnemonic: ARBSC

Type: R/W, 0

These field controls the Arbitration Supression mode.

3–23

MS65A Memory Module Registers
TCY Tester Register (TCY)

TCY Tester Register (TCY)

The TCY Tester Register contains control bits to implement manufacturing
tests.

ADDRESS Nodespace base address + 0000 0034

3
1

3
0 4 3 2 1 0

MUST BE ZERO

Ignore Data ECC Check Bits (IDEC)
Ignore Block State ECC Check Bits (IBEC)

TCY Mode (Refresh Enabled) (TCYE)
TCY Mode (XMA Compatible, Refresh Disabled) (TCYD)

msb−p242−90

Block State ECC Test (BSET)
Data ECC Test (ECCT)
Refresh Request (TRR)

3–24

MS65A Memory Module Registers
Block State ECC Error Register (BECER)

Block State ECC Error Register (BECER)

The Block State ECC Error Register is used to log ECC error status and
syndrome information, as well as tagged bad accesses, for the block state
DRAMs. This register logs errors during self-test and normal operation.
Diagnostic information is provided if self-test fails and Bus Error Register
(XBER) bit <10> is set.

Bits in this register are used for logging block state errors, byte write errors,
parity bit errors, commander IDs, commander codes, block state codes, block
state IDs, and block syndrome bits.

ADDRESS Nodespace base address + 0000 0038

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

1
6

1
5

1
2

1
1

1
0 9 8 5 4 0

Block
Syndrome

(BSYN)

Commander ID (COMID)
Tagged Bad Block Accessed (TBBA)
Column Parity Error (CPER)
Row Parity Error (RPER)
Byte Write Error (BWERR)
Block State Correctable Error (BSCE)
Second Block State Error Occurred (SBSEO)
Block State Uncorrectable Error (BSUE)

0 MBZ 0

Block State
ID (BSID)
Block State
Code (BLSC)

Commander Code (COMCD)

msb−p224−90

3–25

MS65A Memory Module Registers
Block State ECC Address Register (BECEA)

Block State ECC Address Register (BECEA)

The Block State ECC Address Register is used to log a block state ECC
error-related address. This register logs any relevant error addresses during
self-test as well as during normal operations. It provides diagnostic bit
information if self-test fails and Bus Error Register (XBER) bit <10> is set.
The contents of this register are valid only if Block State ECC Error Register
(BECER) <31>, <29>, or <24> is set.

Bits in this register are used for logging error addresses during self-test and
normal memory operations. This register provides diagnostic error information
if self-test fails.

ADDRESS Nodespace base address + 0000 003C

3
1 3 2 0

BLOCK ERROR ADDRESS (BERA) MBZ

msb−p223−90

3–26

MS65A Memory Module Registers
Starting Address Register (STADR)

Starting Address Register (STADR)

The Starting Address Register configures the starting memory address of
the MS65A memory module with a total memory address space less than or
equal to 512 Mbytes. It is used to place an MS65A memory module above
the 512-Mbyte limit in the address space. It can also be used for configuring
systems with less than 512 Mbytes of total memory.

ADDRESS Nodespace base address + 0000 0050
3
1

1
6

1
5 6 5 0

MUST BE ZERO MBZ

Starting Address (STADD)

msb−p241−90

bits<31:16>
Name: Reserved

Mnemonic: None

Type: RO

Reserved; must be zero.

bits<15:6>
Name: Starting Address

Mnemonic: STADD

Type: R/W, 0

This field contains the 10-bit memory starting address.

bits<5:0>
Name: Reserved

Mnemonic: None

Type: RO

Reserved; must be zero.

3–27

MS65A Memory Module Registers
Ending Address Register (ENADR)

Ending Address Register (ENADR)

The Ending Address Register configures the ending memory address of an
MS65A memory module with a total memory address space less than or
equal to 512 Mbytes. It is also used to place an MS65A memory module
above the 512-Mbyte limit in the address space. MS65A memory modules
use this register along with the Starting Address Register (STADR) and the
Segment/Interleave Register (INTLV) to configure memory addresses.

ADDRESS Nodespace base address + 0000 0054

3
1

1
7

1
6

1
5 6 5 0

MUST BE ZERO MBZ

Top Segment Memory Ending Address
(ENADD)Ending Address (TSMEA)

msb−p228−90

bits<31:17>
Name: Reserved

Mnemonic: None

Type: RO

Reserved; must be zero.

bit<16>
Name: Top Segment Memory Ending Address

Mnemonic: TSMEA

Type: R/W, 0

This bit configures the ending address as the top byte of the 16-Gbyte
memory address segment.

3–28

MS65A Memory Module Registers
Ending Address Register (ENADR)

bits<15:6>
Name: Ending Address

Mnemonic: ENADD

Type: R/W, 0

This field contains the 10-bit memory ending address.

bits<5:0>
Name: Reserved

Mnemonic: None

Type: RO

Reserved; must be zero.

3–29

MS65A Memory Module Registers
Segment/Interleave Register (INTLV)

Segment/Interleave Register (INTLV)

The Segment/Interleave Register gives memory interleave information. This
register is used to establish the interleave mode and allows the system
to program in a non-zero segment value. It sets up an optional segment
comparison address for the upper bits of the memory bus address.

ADDRESS Nodespace base address + 0000 0058
3
1

2
1

2
0

1
6

1
5 8 7 5 4 2 1 0

MUST BE ZERO MUST BE ZERO MBZ

Interleave

msb−p230−91

Segment Address (SEGADR)

Interleave Address (INAD)
Mode (INMD)

bits<31:21>
Name: Reserved

Mnemonic: None

Type: RO

Reserved; must be zero.

bits<20:16>
Name: Segment Address

Mnemonic: SEGADR

Type: R/W, 0

This field is optionally configured to place memory address space at a
16-Gbyte offset in the memory bus address space. Reading these bits
tells the user the address of the failure. A zero in the field leaves the
memory segment based in the lowest 16-Gbyte memory address space.

bits<15:8>
Name: Reserved

Mnemonic: None

Type: RO

Reserved; must be zero.

3–30

MS65A Memory Module Registers
Segment/Interleave Register (INTLV)

bits<7:5>
Name: Interleave Address

Mnemonic: INAD

Type: R/W, 0

This field contains the address used for interleaving. The interleaving
address determines the address in which the memory module will
respond.

bits<4:2>
Name: Reserved

Mnemonic: None

Type: RO

Reserved; must be zero.

bits<1:0>
Name: Interleave Mode

Mnemonic: INMD

Type: R/W, 0

This field shows how many ways the module is interleaved (none,
1-way, 2-way, 4-way, or 8-way interleaving). The Interleave Mode bits
are also used to determine the address in which the memory module
will respond.

3–31

MS65A Memory Module Registers
Memory Control Register 3 (MCTL3)

Memory Control Register 3 (MCTL3)

The third memory control register contains control and error status information.

ADDRESS Nodespace base address + 0000 005C

3
1

3
0

2
9

2
8

2
7

2
6

1
6

1
5

1
4 0

Trigger
Configuration Mode (TRCM)

Trigger Enable (TREN)

msb−p233−90

0 0

Inconsistency Errors (INCE)
Attempted Invalid EEPROM Update (AIEU)
EEPROM Update Enable (EEUE)
MCTL3 Error Summary (ERRSM)

bit<31>
Name: MCTL3 Error Summary

Mnemonic: ERRSM

Type: RO, 0

This bit represents the error summary status for Memory Control
Register 3. When clear, all contributing error bits have been reset.

bit<30>
Name: EEPROM Update Enable

Mnemonic: EEUE

Type: R/W, 0

This bit enables EEPROM updates. When it is set, selected locations
of the EEPROM can be updated.

bit<29>
Name: Attempted Invalid EEPROM Update

Mnemonic: AIEU

Type: R/W1C, 0

This status bit is set if an invalid EEPROM update was attempted.

3–32

MS65A Memory Module Registers
Memory Control Register 3 (MCTL3)

bits<28:23>
Name: Reserved

Mnemonic: None

Type: RO

Reserved; must be zero.

bits<22:16>
Name: Inconsistency Errors

Mnemonic: INCE

Type: R/W1C, 0

This field is used to report internal consistency errors. Set bits usually
indicate that the gate array has a fault.

bit<15>
Name: Trigger Enable

Mnemonic: TREN

Type: R/W, 0

This bit controls trigger enabling. It is dependent on the state of
TRCM bit <14>.

bits<14:0>
Name: Trigger Configuration Mode

Mnemonic: TRCM

Type: R/W

This field is used to enable or disable trigger generation.

3–33

MS65A Memory Module Registers
Memory Control Register 4 (MCTL4)

Memory Control Register 4 (MCTL4)

The fourth memory control register contains additional control and error status
information.

ADDRESS Nodespace base address + 0000 0060

3
1

3
0

2
9

2
8

2
3

2
2

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 5 4 0

MBZ

Block

Ownership Sequence
Error (OSQE)
Block RMW Error (BRME)
Module Population (MODP)

RAM Type (RAMTYP)
Memory Size (MEMSIZ)

Block State ECC Disable (BSED)
Block State Diagnostic Mode (BSDM)
MCTL4 and BECER Error Summary (ERSUM)

msb−p234−90

MBZ

Block State
ID (BSID)
Block State
Code (BSCD)

ECC Check
Bits (BSEC)

bit<31>
Name: MCTL4 Error Summary

Mnemonic: ERSUM

Type: RO, 0

This bit represents the error summary bit for Memory Control Register
4 and the Block State ECC Error Register. When clear, all contributing
error bits have been reset.

bit<30>
Name: Block State Diagnostic Mode

Mnemonic: BSDM

Type: R/W, 0

This bit is used for diagnostic purposes.

3–34

MS65A Memory Module Registers
Memory Control Register 4 (MCTL4)

bit<29>
Name: Block State ECC Disable

Mnemonic: BSED

Type: R/W, 0

This bit is used for diagnostic purposes.

bits<28:23>
Name: Reserved

Mnemonic: None

Type: RO

Reserved; must be zero.

bits<22:18>
Name: Memory Size

Mnemonic: MEMSIZ

Type: R/W, 0

This field provides an upper extension to the MCTL1 Memory Size
<28:18> field.

bits<17:16>
Name: RAM Type

Mnemonic: RAMTYP

Type: R/W, 0

This field shows the type of DRAM used.

bit<15>
Name: Module Population

Mnemonic: MODP

Type: R/W, 0

This bit shows the DRAM population status of the MS65A memory
module.

bit<14>
Name: Block Read Modify Write Error

Mnemonic: BRME

Type: R/W1C, 0

This bit is set if an error is found on the block state DRAM field.

3–35

MS65A Memory Module Registers
Memory Control Register 4 (MCTL4)

bits<13:12>
Name: Reserved

Mnemonic: None

Type: RO

Reserved; must be zero.

bit<11>
Name: Ownership Sequence Error

Mnemonic: OSQE

Type: R/W 1C

This bit is set when a bus protocol violation has occurred.

bits<10:9>
Name: Block State Code

Mnemonic: BSCD

Type: R/W, 0

This bit is used for diagnostic purposes.

bits<8:5>
Name: Block State ID

Mnemonic: BSID

Type: R/W, 0

This field is used for diagnostic purposes.

bits<4:0>
Name: Block ECC Check Bits

Mnemonic: BSEC

Type: R/W, 0

This field is used for diagnostic purposes.

3–36

MS65A Memory Module Registers
Block State Control Register (BSCTL)

Block State Control Register (BSCTL)

The Block State Control Register is used to access a block state DRAM field
directly in diagnostic or error recovery modes of operation. This register is
used with the Block State Address Register (BSADR).

ADDRESS Nodespace base address + 0000 0068

3
1

3
0

2
9

2
8

1
1

1
0 9 8 5 4 0

MUST BE ZERO

Block State Access Mode (BSAM)

Block State Port Enable (BSPE)

Block
State
(BSTA)

Block Commander ID (BSID)

msb−p226−90

Block State ECC Check Bits (BSEC)

bit<31>
Name: Block State Port Enable

Mnemonic: BSPE

Type: R/CW, 0

bits<30:29>
Name: Block State Access Mode

Mnemonic: BSAM

Type: R/CW, 0

bits<28:11>
Name: Reserved

Mnemonic: None

Type: RO

Reserved; must be zero.

3–37

MS65A Memory Module Registers
Block State Control Register (BSCTL)

bits<10:9>
Name: Block State

Mnemonic: BSTA

Type: RO, 0

bits<8:5>
Name: Block Commander ID

Mnemonic: BCID

Type: RO, 0

bits<4:0>
Name: Block State ECC Check Bits

Mnemonic: BSECB

Type: RO, 0

3–38

MS65A Memory Module Registers
Block State Address Register (BSADR)

Block State Address Register (BSADR)

The Block State Address Register is used to set up a block address for
commander access to the block state DRAM field. This register is used with
the Block State Control Register (BSCTL).

ADDRESS Nodespace base address + 0000 006C

3
1 5 4 0

BLOCK ADDRESS (BLA) MBZ

msb−p225−90

bits<31:5>
Name: Block Address

Mnemonic: BLA

Type: R/W, 0

These bits contain the block address.

bits<4:0>
Name: Reserved

Mnemonic: None

Type: RO

Reserved; must be zero.

3–39

MS65A Memory Module Registers
EEPROM Control Register (EECTL)

EEPROM Control Register (EECTL)

The EEPROM Control Register is used to control EEPROM access nodes.
This register holds the address and data associated with EEPROM operations.
It also contains the read/write operation initiation control bits. EEPROM
update enable and status bits are located in Memory Control Register 3
(MCTL3). This register is used for diagnostic purposes only.

ADDRESS Nodespace base address + 0000 0070
3
1

3
0

2
9

2
7

2
6

1
6

1
5 8 7 0

MBZ MUST BE ZERO

msb−p227−90

EEPROM Operation Command (EEOC)
Initiate EEPROM Operation (IEEO)

EEPROM Data (EEDAT)
EEPROM Address (EEADD)

bit<31>
Name: Initiate EEPROM Operation

Mnemonic: IEEO

Type: R/CW, 0

This bit is used to initiate an EEPROM operation.

bit<30>
Name: EEPROM Operation Command

Mnemonic: EEOC

Type: R/W1C, 0

This bit is used to specify an EEPROM operation.

3–40

MS65A Memory Module Registers
EEPROM Control Register (EECTL)

bits<29:27>
Name: Reserved

Mnemonic: None

Type: RO

Reserved; must be zero.

bits<26:16>
Name: EEPROM Address

Mnemonic: EEADD

Type: R/W1C, 0

This field contains the EEPROM address.

bits<15:8>
Name: Reserved

Mnemonic: None

Type: RO

Reserved; must be zero.

bits<7:0>
Name: EEPROM Data

Mnemonic: EEDAT

Type: R/CW, 0

This field contains the EEPROM data.

3–41

MS65A Memory Module Registers
Timeout Control/Status Register (TMOER)

Timeout Control/Status Register (TMOER)

The Timeout Control/Status Register is used with timeout counters and to log
the status of timed out commands.

ADDRESS Nodespace base address + 0000 0074

3
1

3
0

2
9

2
8

1
6

1
5

1
4 1 0

MUST BE ZERO MUST BE ZERO

Deferred Write Time−
out Occurred (DWTO)
Deferred Read Time−
out Occurred (DRTO)

Timeout Counter
Mode (TOCM)

Timeout Disable (TOCD)

msb−p243−90

Second Timeout Occurred (STOC)
Timeout Occurred (TOOC)

3–42

MS65A Memory Module

3.4 Error Handling

The memory module performs single-bit correction and double-bit
detection on the data stored. Two error schemes are used: one for
the data DRAMs and another for the block state DRAMs.

Memory logic detects and corrects single-bit DRAM errors. Double-bit
errors are detected, but not corrected. All ones or all zeros are considered
to be uncorrectable errors. For more information, refer to the Bus Error
Register (XBER) bit descriptions.

Block state DRAM ECC errors are handled in the following way. Each
6-bit block state/commander ID location of the block state field has a 5-bit
ECC check field. Each block state access operation uses an 11-bit pattern
that is transferred between the memory control gate array and the block
state DRAM array. The ECC check bit pattern is a function of the 6-bit
block state commander ID pattern and the hexword block address.

3–43

MS65A Memory Module

3–44

Index

A
ABORT instruction • 2–249
Aborts • 2–17
AC LO L

See XMI AC LO L signal
Address Extension field • 2–195
AIEU (Attempted Invalid EEPROM Update) bit • 3–32
Arbitration Supression Mode (ARBSM) bit • 3–23
ARBSM (Arbitration Supression Mode) • 3–23
Architecture • 1–2
Arithmetic exceptions • 2–18
Attempted Invalid EEPROM Update (AIEU) bit • 3–32

B
Backup Cache box (Cbox) • 2–47
Backup Cache Data ECC Register (BCDECC) •

2–103
Backup Cache Error Data ECC Register (BCEDECC)

• 2–115
Backup Cache Error Data Index Register (BCEDIDX)

• 2–114
Backup Cache Error Data Status Register

(BCEDSTS) • 2–111
Backup Cache Error Tag Index Register (BCETIDX) •

2–108
Backup Cache Error Tag Register (BCETAG) • 2–109
Backup Cache Error Tag Status Register (BCETSTS)

• 2–105
Battery backup unit

location • 1–6, 1–8
B-cache data extraction • 2–243
BCDECC (Backup Cache Data ECC) register • 2–103
BCEDECC (B-Cache Error Data ECC) register •

2–115
BCEDIDX (Backup Cache Error Data Index) register •

2–114
BCEDSTS (Backup Cache Error Data Status) register

• 2–111
BCETAG (Backup Cache Error Tag) register • 2–109
BCETIDX (Backup Cache Error Tag Index) register •

2–108
BCETSTS (Backup Cache Error Tag Status) register •

2–105

BCID (Block Commander ID) bits • 3–38
BECEA (Block State ECC Address Register) • 3–26
BECER (Block State ECC Error Register) • 3–25
BLA (Block Address) bits • 3–39
Block Address (BLA) bits • 3–39
Block Commander ID (BCID) bits • 3–38
Block ECC Check (BSEC) bits • 3–36
Block Read Modify Write Error (BRME) bit • 3–35
Block state • 3–3
Block State (BSTA) bits • 3–38
Block State Access Mode (BSAM) bits • 3–37
Block State Address Register (BSADR) • 3–39
Block State Code (BSCD) bit • 3–36
Block State Control Register (BSCTL) • 3–37
Block State Diagnostic Mode (BSDM) bit • 3–34
Block State ECC Address Register (BECEA) • 3–26
Block State ECC Check (BSECB) bits • 3–38
Block State ECC Disable (BSED) bit • 3–35
Block State ECC Error Register (BECER) • 3–25
Block State ID (BSID) bits • 3–36
Block State Port Enable (BSPE) bit • 3–37
Bootblock booting • 2–217
Boot processor

See BP
Boot Processor (BP) bit • 2–187
Boot Processor Disable (BPD) bit • 2–186
Bootstrap in progress flag • 2–217
Bootstrapping • 2–214
BP • 2–207, 2–211, 2–214
BP (Boot Processor) bit • 2–187
BPD (Boot Processor Disable) bit • 2–186
BPD bit • 2–211
Branch prediction • 2–43
BRME (Block Read Modify Write Error) bit • 3–35
BSADR (Block State Address Register) • 3–39
BSAM (Block State Access Mode) bits • 3–37
BSCD (Block State Code) bit • 3–36
BSCTL (Block State Control Register) • 3–37
BSDM (Block State Diagnostic Mode) bit • 3–34
BSEC (Block ECC Check) bits • 3–36
BSECB (Block State ECC Check) bits • 3–38
BSED (Block State ECC Disable) bit • 3–35
BSID (Block State ID) bits • 3–36
BSPE (Block State Port Enable) bit • 3–37
BSTA (Block State) bits • 3–38
Bus Error Extension Register (XBEER) • 2–197
Bus Error Register (XBER) • 2–174, 3–10

Index–1

Index

Bus Parity Error (PE) bit • 3–11
BWERR (Byte Write Error (Data Address) bit) • 3–18
Byte Write Error (Data Address) (BWERR) bit • 3–18

C
Cache coherence in error handling • 2–239
Cache test procedures • 2–245
Cbox • 2–6, 2–47
Cbox (Backup Cache box) • 2–47
Cbox Control Register (CCTL) • 2–99
Cbox Error Fill Address Register (CEFADR) • 2–117
Cbox Error Fill Status Register (CEFSTS) • 2–118
CC (Corrected Confirmation) bit • 2–176
CCA • 2–207, 2–210, 2–211, 2–214, 2–220, 2–221 to

2–228
CCA$B_CHKSUM • 2–224
CCA$B_FLAGS • 2–227
CCA$B_HFLAGS • 2–224
CCA$B_NPROC • 2–224
CCA$B_POWER • 2–225
CCA$B_PRIMARY • 2–225
CCA$B_REVISION • 2–224
CCA$B_RXLEN • 2–228
CCA$B_TK_NODE • 2–225
CCA$B_TXLEN • 2–228
CCA$B_ZDATA • 2–228
CCA$B_ZDEST • 2–227, 2–228
CCA$B_ZIND • 2–227
CCA$B_ZSRC • 2–227
CCA$L_BASE • 2–224
CCA$L_BITMAP • 2–225
CCA$L_BITMAP_CKSUM • 2–225
CCA$L_BITMAP_SZ • 2–225
CCA$L_CONSOLE_XGPR • 2–226
CCA$L_ENTRY_XGPR • 2–226
CCA$L_RESERVED1 • 2–225
CCA$L_RESERVED2 • 2–225
CCA$Q_CONSOLE • 2–224
CCA$Q_ENABLED • 2–225
CCA$Q_HW_REVISION • 2–225
CCA$Q_READY • 2–224
CCA$Q_RESERVED3 • 2–226
CCA$Q_RESERVED4 • 2–226
CCA$Q_RESERVED5 • 2–226
CCA$Q_RESTARTIP • 2–215, 2–225
CCA$Q_SECSTART • 2–225
CCA$Q_SERIALNUM • 2–225
CCA$Q_USER_HALTED • 2–225

CCA$R_RESERVED0 • 2–225
CCA$T_RX • 2–228
CCA$T_TX • 2–228
CCA$V_BOOTIP • 2–217, 2–224
CCA$V_DISABLE_MSG_2NDARY • 2–224
CCA$V_REBOOT • 2–224
CCA$V_REBOOT flag • 2–217
CCA$V_REPROMPT • 2–224
CCA$V_RXRDY • 2–228
CCA$V_ZALT • 2–228
CCA$V_ZNODE • 2–228
CCA$V_ZSRC • 2–228
CCA$W_IDENT • 2–224
CCA$W_SIZE • 2–224
CCA$W_SSN_EXTENSION • 2–225
CCA$W_ZRXCD • 2–228
CCA$_SECSTART • 2–215
CCID bit

See Corrected Confirmation Interrupt Disable bit
CCR (Corrected Confirmation Received) bit • 3–11
CCTL (Cbox Control) register • 2–99
CEFADR (Cbox Error Fill Address) register • 2–117
CEFSTS (Cbox Error Fill Status) register • 2–118
CMD (Command) field • 2–194
CNAK (Command NO ACK) bit • 2–179
CNT (Count) bit • 2–189
CNT (TODR increment) bit • 2–164
CNTSEL (Counter Select) field • 2–189
Column Parity Error (Data Address) (CPER) bit •

3–19
COMCD (Commander Code) bit • 3–19
COMID (Commander ID) bits • 3–19
Command (CMD) field • 2–194
Commander Code (COMCD) bit • 3–19
Commander ID (COMID) bits • 3–19
Command NO ACK (CNAK) bit • 2–179
Console communications area

See CCA
Console halt • 2–23 to 2–25
Console program • 2–220
Console Receiver Control and Status (RXCS)

Register • 2–76
Console Receiver Data Buffer (RXDB) Register •

2–78
Console Saved Processor Status Longword

(SAVPSL) • 2–85
Console Saved Program Counter Register (SAVPC) •

2–84
Console Transmitter Control and Status (TXCS)

Register • 2–80
Console Transmitter Data Buffer (TXDB) Register •

2–82

Index–2

Index

Control panel
location • 1–6

Cooling system
location • 1–6, 1–8

Corrected Confirmation (CC) bit • 2–176
Corrected Confirmation Interrupt Disable bit • 2–191
Corrected Confirmation Received (CCR) bit • 3–11
Corrected Read Data (CRD) bit • 2–178
Corrected Read Data Interrupt Disable bit • 2–191
Count (CNT) bit • 2–189
Counter Select (CNTSEL) field • 2–189
CPER (Column Parity Error (Data Address)) bit •

3–19
CPUID (CPU Identification) register • 2–71
CPU Identification Register (CPUID) • 2–71
CPU Type field • 2–91
CRD (Corrected Read Data) bit • 2–178
CRD bit • 2–212
CRDID bit

See Corrected Read Data Interrupt Disable bit
CSR (Control and Status Registers) • 3–6
CTP (CTRL/P Enable) bit • 2–164
CTRL/P Enable (CTP) bit • 2–164

D
Data CRD Error (DCRDE) bit • 3–18
Data ECC Diagnostic Mode (DECCM) bit • 3–14
Data ECC Disable (DECCD) bit • 3–15
Data Error Address (DERA) bit • 3–21
Data In (DI) bit • 2–188
Data Out (DO) bit • 2–189
Data Read Modify Write Error (DRMWER) bit • 3–16
Data RER Error (DRER) bit • 3–17
Data Syndrome (DTSYN) bits • 3–20
Data types supported by the KA66A CPU module •

2–8
DCK (Diagnostic Check) • 3–16
DC LO L

See XMI DC LO L signal
DCLS (Device Class) bits • 3–8
DCRDE (Data CRD Error) bit • 3–18
DECCD (Data ECC Disable) bit • 3–15
DECCM (Data ECC Diagnostic Mode) bit • 3–14
DERA (Data Error Address) bit • 3–21
Device Class (DCLS) bits • 3–8
Device ID (DEVID) bits • 3–9
Device Register (XDEV) • 2–173, 3–8
Device Revision (DREV) bits • 3–8

Device Revision (DREV) field • 2–173
Device Type (DTYPE) field • 2–173
DEVID (Device ID) bits • 3–9
DI (Data In) bit • 2–188
Diagnostic Check (DCK) • 3–16
Disabling caches • 2–240
DO (Data Out) bit • 2–189
DRER (Data RER Error) bit • 3–17
DREV (Device Revision) bits • 3–8
DREV (Device Revision) field • 2–173
DREV field • 2–226
DRMWER (Data Read Modify Write Error) bit • 3–16
DTSYN (Data Syndrome) bits • 3–20
DTYPE (Device Type) field • 2–173
DWMBA • 2–210
DWMVA adapter • 1–3

E
Ebox • 2–5, 2–43
Ebox Control Register (ECR) • 2–96
ECR (Ebox Control) register • 2–96
EEADD (EEPROM Address) bits • 3–41
EECTL (EEPROM Control Register) • 3–40
EEDAT (EEPROM Data) bits • 3–41
EEOC (EEPROM Operation Command) bit • 3–40
EEPROM Address (EEADD) bits • 3–41
EEPROM Control Register (EECTL) • 3–40
EEPROM Data (EEDAT) bits • 3–41
EEPROM Operation Command (EEOC) bit • 3–40
EEPROM Update Enable (EEUE) bit • 3–32
EEUE (EEPROM Update Enable) bit • 3–32
EFNDALP (Enable Force NDAL Parity) bit • 2–164
EFSMIDP (Enable Force XMI WDAT Parity) bit •

2–166
EFSMIP (Enable Force XMI non-WDAT Parity) bit •

2–166
Emulated instruction exceptions • 2–20
Enable 2-Mbyte Protection Mode (EPM) bit • 3–16
Enable Force NDAL Parity (EFNDALP) bit • 2–164
Enable Force XMI non-WDAT Parity (EFSMIP) bit •

2–166
Enable Force XMI WDAT Parity (EFSMIDP) bit •

2–166
Enable Self-Invalidates Only (ESIO) bit • 2–190
Enabling caches • 2–241
ENADD (Ending Address) bits • 3–29
ENADR (Ending Address Register) • 3–28
Ending Address (ENADD) bits • 3–29
Ending Address Register (ENADR) • 3–28

Index–3

Index

EPM (Enable 2-Mbyte Protection Mode) bit • 3–16
ERR (Error) bit • 2–78
Error (ERR) bit • 2–78
Error analysis (general) • 2–236
Error handling • 2–231 to 2–330, 3–43
Error recovery (general) • 2–237
Error Retry • 2–246
Error Summary (ES) bit • 2–175, 3–10
ERRSM (MCTL3 Error Summary) bit • 3–32
ERRSUM (Memory Register Error Summary) bits •

3–14
ERSUM (MCTL4 Error Summary) bit • 3–34
ES (Error Summary) bit • 2–175, 3–10
ESIO (Enable Self-Invalidates Only) bit • 2–190
ETF (Extended Test Fail) bit • 2–180, 2–207, 2–210
Exceptions

arithmetic • 2–18
console halt • 2–23
emulated instruction • 2–20
machine check • 2–21
memory management • 2–19

Extended Test Fail (ETF) bit • 2–180

F
Failing Address Extension Register • 2–194
Failing Address field • 2–182
Failing Commander ID (FCID) field • 2–180
Failing Length (FLN) field • 2–181
Failing Writeback Address Extension field • 2–201,

2–202
Failing Writeback Address field • 2–201, 2–202
Faults • 2–17
Fbox • 2–5
FCID (Failing Commander ID) field • 2–180
First Part Done (FPD) bit • 2–20, 2–21
FLN (Failing Length) field • 2–181
FMRE (Force Memory Refresh) bit • 3–22
Force Full (FRCFL) bit • 2–166
Force Memory Refresh (FMRE) bit • 3–22
FP BOOT DISABLE (Front Panel Boot Disable) bit •

2–169
FPD (First Part Done) bit • 2–20, 2–21
FPD bit • 2–249
FP EEPROM ENABLE (Front Panel EEPROM

Enable) bit • 2–169
Framing Error (FRM ERR) bit • 2–79
FRCFL (Force Full) bit • 2–166
FRM ERR (Framing Error) bit • 2–79

Front Panel Boot Disable (FP BOOT DISABLE) bit •
2–169

Front Panel EEPROM Enable (FP EEPROM
ENABLE) bit • 2–169

H
Halts

console • 2–23
Hard error interrupts • 2–277
HLDM (Hold Mode Refresh Error) bit • 3–23
Hold Mode Refresh Error (HLDM) bit • 3–23

I
I/O Reset (IORESET) Register • 2–90
Ibox (Instruction Box) • 2–4, 2–42 to 2–43
Ibox Control and Status Register (ICSR) • 2–140
ICCS (Interval Clock Control and Status) register •

2–72
ICR (Interval Count) register • 2–75
ICRD (Inhibit CRD Status Generation) bit • 3–15
ICSR (Ibox Control and Status) register • 2–140
IE (Interrupt Enable) bit • 2–73
IEEO (Initiate EEPROM Operation) bit • 3–40
Implied Vector Interrupts (IVINTR) • 2–60 to 2–61
INAD (Interleave Address) bits • 3–31
INCE (Inconistency Error) bits • 3–33
Inconistency Error (INCE) bits • 3–33
Inconsistent Parity Error (IPE) bit • 2–57, 2–177
Inhibit CRD Status Generation (ICRD) bit • 3–15
Initialization • 2–203 to 2–213, 3–4
Initiate EEPROM Operation (IEEO) bit • 3–40
INMD (Interleave Mode) bits • 3–31
INSEQ (Interlock Sequence Error) bit • 3–16
Instruction Box (Ibox) • 2–42 to 2–43
Instruction set supported by the KA66A CPU module

• 2–9
Interleave Address (INAD) bits • 3–31
Interleave Mode (INMD) bits • 3–31
Interleaving • 3–5
Interlock Sequence Error (INSEQ) bit • 3–16
Interprocessor communication • 2–220 to 2–230
Interprocessor Interrupt (IP IVINTR) bit • 2–184
Interprocessor IVINTR (IP IVINTR) Response • 2–60
Interrupt Destination field • 2–184
Interrupt Enable (IE) bit • 2–73
Interrupt Priority Level (IPL) field • 2–183

Index–4

Index

Interrupt Priority Level (IPL) register • 2–15
Interrupts

hard error • 2–277
Interrupt Source field • 2–183
Interval Clock • 2–49
Interval Clock Control and Status Register (ICCS) •

2–72
Interval Count Register (ICR) • 2–75
INTLV (Segment/Interleave Register) • 3–30
Invalid bit • 2–88
IORESET (I/O Reset) register • 2–90
IPE (Inconsistent Parity Error) bit • 2–57, 2–177
IP IVINTR (Interprocessor Interrupt) bit • 2–184
IPL (Interrupt Priority Level) field • 2–183
IPL (Interrupt Priority Level) register • 2–15
IPORT (NEXMI Input Port) register • 2–168
IVINTR mask generation • 2–60

L
LDPCTX (Load Process Context) instruction • 2–14
LDTE (Lockout Debug Timeout Enable) bit • 2–191
Load Process Context (LDPCTX) instruction • 2–14
Lockout Debug Timeout Enable (LDTE) bit • 2–191
Lockout Mode field • 2–192
LOCMOD field

See Lockout Mode field

M
Machine check codes • 2–23
Machine Check Error Summary Register (MCESR) •

2–83
Machine check exceptions • 2–21
Machine checks • 2–249
Machine check stack frame • 2–21 to 2–23
MAPEN (Memory Management Enable) register •

2–13, 2–14
MAPEN<0> bit • 2–87
Mask field • 2–196
Mbox (Memory Management box) • 2–5, 2–44 to

2–47
MCESR (Machine Check Error Summary) register •

2–83
MCTL1 (Memory Control Register 1) • 3–14
MCTL2 (Memory Control Register 2) • 3–22
MCTL3 (Memory Control Register 3) • 3–32
MCTL3 Error Summary (ERRSM) bit • 3–32

MCTL4 (Memory Control Register 4) • 3–34
MCTL4 Error Summary (ERSUM) bit • 3–34
MECEA (Memory ECC Error Address Register) •

3–21
MECER (Memory ECC Error Register) • 3–17
Memory • 1–3
Memory configuration • 2–211
Memory Control Register 1 (MCTL1) • 3–14
Memory Control Register 2 (MCTL2) • 3–22
Memory Control Register 3 (MCTL3) • 3–32
Memory Control Register 4 (MCTL4) • 3–34
Memory ECC Error Address Register (MECEA) •

3–21
Memory ECC Error Register (MECER) • 3–17
Memory interleave • 2–211
Memory management • 2–11 to 2–14
Memory Management box (Mbox) • 2–44 to 2–47
Memory Management Enable (MAPEN) register •

2–13, 2–14
Memory Management Exception Address Register

(MMEADR) • 2–143
Memory Management Exception PTE Address

(MMEPTE) Register • 2–144
Memory management exceptions • 2–19
Memory Management Exception Status Register

(MMESTS) • 2–145
Memory module

description • 3–2
Memory Register Error Summary (ERRSUM) bits •

3–14
Memory registers • 3–8 to 3–43
Memory Size (MEMSIZ) bits • 3–15, 3–35
Memory state access • 2–242
MEMSIZ (Memory Size) bits • 3–15, 3–35
MFPR (Move From Processor Register) instruction •

2–13
Microcode Patch Revision field • 2–91
Microcode Revision field • 2–92
MMEADR (Memory Management Exception Address)

register • 2–143
MMEPTE (Memory Management Exception PTE

Address) register • 2–144
MMESTS (Memory Management Exception Status)

register • 2–145
MODP (Module Population) bit • 3–35
Module Population (MODP) bit • 3–35
Module Revision field • 2–226
Move From Processor Register (MFPR) instruction •

2–13
Move To Processor Register (MTPR) instruction •

2–13

Index–5

Index

MTPR (Move To Processor Register) instruction •
2–13

MVAL (On-Board Memory Valid) bit • 3–15

N
NCSR (NDAL Control and Status) register • 2–162
NDAL Control and Status Register (NCSR) • 2–162
NDAL Error Data High Register (NEDATHI) • 2–130
NDAL Error Data Low Register (NEDATLO) • 2–132
NDAL Error Input Command Register (NEICMD) •

2–133
NDAL Error Output Address Register (NEOADR) •

2–126
NDAL Error Output Command Register (NEOCMD) •

2–127
NDAL Error Status Register (NESTS) • 2–123
NDALFP (NDAL Parity) field • 2–163
NDAL Inconsistent Parity Error (NIDPE) bit • 2–162
NDAL Parity (NDALFP) Field • 2–163
NDAL Parity Error (NDPE) bit • 2–162
NDAL Read Transmit ACK Error (NRTAE) bit • 2–163
NDAL Write Sequence Error (NWSE) bit • 2–163
NDPE (NDAL Parity Error) bit • 2–162
NEDATHI (NDAL Error Data High) register • 2–130
NEDATLO (NDAL Error Data) register • 2–132
NEICMD (NDAL Error Input Command) register •

2–133
NEOADR (NDAL Error Output Address) register •

2–126
NEOCMD (NDAL Error Output Command) register •

2–127
NESTS (NDAL Error Status) register • 2–123
NEXMI error handling • 2–245
NEXMI Input Port Register (IPORT) • 2–168
NEXMI Output Port0 Register (OPORT0) • 2–170
NEXMI Output Port1 Register (OPORT1) • 2–172
NEXMI Revision (NREV) field • 2–187
Next Interval Count Register (NICR) • 2–74
NHALT • 2–214
NHALT (Node Halt) bit • 2–175
NICR (Next Interval Count) register • 2–74
NIDPE (NDAL Inconsistent Parity Error) bit • 2–162
NLU (Not last used) pointer • 2–12, 2–14
Node halt

See NHALT
Node halt (NHALT) bit • 2–175
NODE ID (Node Identification) field • 2–169
Node Identification (NODE ID) field • 2–169
Node Reset (NRST) bit • 2–175, 3–10

Node-Specific Control and Status Register (NSCSR) •
2–186

Node-Specific Error Summary (NSES) bit • 2–180,
3–12

Nonboot processor • 2–214
Nonstandard Microcode bit • 2–92
Non-Writeback Queue Full (NWQFL) bit • 2–167
No Read Response (NRR) bit • 2–178
Not last used (NLU) pointer • 2–12, 2–14
NREV (NEXMI Revision) field • 2–187
NRR (No Read Response) bit • 2–178
NRST (Node Reset) bit • 2–175, 2–203, 2–210, 3–10
NRTAE (NDAL Read Transmit ACK Error) bit • 2–163
NSCSR (Node-Specific Control and Status) register •

2–186
NSES (Node-Specific Error Summary) bit • 2–180,

3–12
NVAX chip overview • 2–3 to 2–6
NWQFL (Non-Writeback Queue Full) bit • 2–167
NWSE (NDAL Write Sequence Error) bit • 2–163

O
OLR (Only Lockout Response) bit • 2–200
On-Board Memory Valid (MVAL) bit • 3–15
Only Lockout Response (OLR) bit • 2–200
OPORT0 (NEXMI Output Port0) register • 2–170
OPORT1 (NEXMI Output Port1) register • 2–172
OSQE (Ownership Sequence Error) bit • 3–36
Overrun Error (OVR ERR) bit • 2–78
OVR ERR (Overrun Error) bit • 2–78
Ownership Sequence Error (OSQE) bit • 3–36

P
P0 Base Register (P0BR) • 2–13, 2–14
P0BR (P0 Base Register) • 2–14
P0BR register (P0 Base Register) • 2–13
P0 Length Register (P0LR) • 2–13, 2–14
P0LR (P0 Length Register) • 2–13, 2–14
P1 Base Register (P1BR) • 2–13, 2–14
P1BR (P1 Base Register) • 2–14
P1BR register (P1 Base Register) • 2–13
P1 Length Register (P1LR) • 2–13, 2–14
P1LR (P1 Length Register) • 2–13, 2–14
Page frame number (PFN) • 2–12
Page frame numbers • 2–11
Page table entries • 2–11

Index–6

Index

Page table entry (PTE) • 2–12
PAMODE (Physical Address Control) register • 2–11
PAMODE (Physical Address Mode) register • 2–11,

2–142
Parity Error (PE) bit • 2–57, 2–177
Patchable Control Store Control Register (PCSCR) •

2–93
P-Cache Control Register (PCCTL) • 2–157
P-Cache Parity Address Register (PCADR) • 2–153
P-Cache Parity Status Register (PCSTS) • 2–154
PCADR (P-Cache Parity Address) register • 2–153
PCB (process control block) • 2–28
PCBB (Process Control Block Base) register • 2–28
PCCTL (P-Cache Control) register • 2–157
PCSCR (Patchable Control Store Control) register •

2–93
PCSTS (P-Cache Status) register • 2–154
PE (Bus Parity Error) bit • 3–11
PE (Parity Error) bit • 2–57, 2–177
PFN (page frame number) • 2–12
Physical Address Control (PAMODE) register • 2–11
Physical Address Mode Register (PAMODE) • 2–11,

2–142
Physical address space • 2–10 to 2–11
Power fail interrupt • 2–276
Power regulators

location • 1–6, 1–8
Primary processor

See BP
Primary system bootstrap program

See VMB
Process context • 2–14
Process control block (PCB) • 2–28
Process Control Block Base (PCBB) register • 2–28
Processor • 1–3
Processor status longword (PSL) • 2–15
PROT (Protection) field • 2–12
Protection (PROT) field • 2–12
PSL (processor status longword) • 2–15
PTE (page table entry) • 2–12

R
RAMTYP (RAM Type) bits • 3–15, 3–35
RAM Type (RAMTYP) bits • 3–15, 3–35
RBAT (ROM Bus Access Time) bit • 2–165
R bit • 2–249
RCV BRK (Received Break) bit • 2–79
RDNAK (Read Data NO ACK) bit • 3–12

RDS errors • 2–212
Read Data NO ACK (RDNAK) bit • 3–12
Read Error Response (RER) bit • 2–179
Read/IDENT Data NO ACK (RIDNAK) bit • 2–177
Read Sequence Error (RSE) bit • 2–178
Received Break (RCV BRK) bit • 2–79
Received Data bits • 2–79
Receiver Done (RX DONE) bit • 2–76
Receiver Interrupt Enable (RX IE) bit • 2–76
Refresh Error (RERR) bit • 3–22
Refresh Rate (RRB) bits • 3–23
Registers, KA66A CPU module • 2–63 to 2–159
Repairing Memory State • 2–242, 2–243
RER (Read Error Response) bit • 2–179
RERR (Refresh Error) bit • 3–22
Responder Queue Overflow bit • 2–186
Restarting • 2–214
Restart parameter block

See RPB
RIDNAK (Read/IDENT Data NO ACK) bit • 2–177
ROM Bus Access Time (RBAT) bit • 2–165
Row Parity Error (Data Address) (RPER) bit • 3–18
RPB • 2–215
RPER (Row Parity Error (Data Address)) bit • 3–18
RRB (Refresh Rate) bits • 3–23
RSE (Read Sequence Error) bit • 2–178
RXCS (Console Receiver Control and Status) register

• 2–76
RXDB (Console Receiver Data Buffer) register • 2–78
RX DONE (Receiver Done) bit • 2–76
RX IE (Receiver Interrupt Enable) bit • 2–76

S
SAVPC (Console Saved Program Counter) register •

2–84
SAVPSL (Console Saved Processor Status

Longword) • 2–85
SBR (System Base Register) • 2–13, 2–14
SCB (System control block) • 2–25
SCBB (System Control Block Base) register • 2–25
SCB entry points • 2–231
SDEO (Second Data Error Occurred) bit • 3–18
SECCON (Secure Console) bit • 2–167
Secondary processor

See Nonboot processor
Second Data Error Occurred (SDEO) bit • 3–18
Second Error Occurred (SEO) bit • 2–200
Secure Console (SECCON) bit • 2–167

Index–7

Index

SEGADR (Segment Address) bits • 3–30
Segment Address (SEGADR) bits • 3–30
Segment/Interleave Register (INTLV) • 3–30
Self-test • 3–4
Self-Test Fail (STF) bit • 2–180, 3–12
Self-Test Loop Disable (STL DISABLE) bit • 2–168
SEO (Second Error Occurred) bit • 2–200
SID (System Identification) register • 2–91
SIRR (Software Interrupt Request Register) • 2–15
SISR (Software Interrupt Summary Register) • 2–15
SLR (System Length Register) • 2–13, 2–14
Software Interrupt Request Register (SIRR) • 2–15
Software Interrupt Summary Register (SISR) • 2–15
SSC Illegal Read (SSCIR) bit • 2–165
SSC Illegal Write (SSCIW) bit • 2–165
SSCIR (SSC Illegal Read) bit • 2–165
SSCIW (SSC Illegal Write) bit • 2–165
STADD (Starting Address) bits • 3–27
STADR (Starting Address Register) • 3–27
Starting Address (STADD) bits • 3–27
Starting Address Register (STADR) • 3–27
STF (Self-Test Fail) bit • 2–180, 3–12
STF bit • 2–207, 2–211
STL DISABLE (Self-Test Loop Disable) bit • 2–168
STP LED (Self-Test Passed LED) bit • 2–207
System

architecture • 1–2
front view • 1–6
rear view • 1–8
typical • 1–5

System Base Register (SBR) • 2–13, 2–14
System control block • 2–25
System Control Block Base (SCBB) register • 2–25
System Identification (SID) Register • 2–91
System Length Register (SLR) • 2–13, 2–14

T
TB (translation buffer) • 2–12
TB.V (Translation Buffer Valid) bit • 2–12
TBADR (TB Parity Address) register • 2–148
TBCHK (Translation Buffer Check) register • 2–13,

2–14
TBIA (Translation Buffer Invalidate All) register • 2–13
TBIS (Translation Buffer Invalidate Single) register •

2–13
TB Parity Address Register (TBADR) • 2–148
TB Parity Status Register (TBSTS) • 2–149
TBSTS (TB Parity Status) register • 2–149

TB test procedures • 2–245
TCY (TCY Tester Register) • 3–24
TCY Tester Register (TCY) • 3–24
Test Mode (TM) bit • 2–164, 2–188
TF tape drive

location • 1–6
Time-of-Day Register (TODR) • 2–49
Time-of-Year Clock (TOY) • 2–50
Timeout Control/Status Register (TMOER) • 3–42
Timeout Select (TOS) bit • 2–190
TK tape drive

location • 1–6
TM (Test Mode) bit • 2–164, 2–188
TMOER (Timeout Control/Status Register) • 3–42
TODR (Time-of-Day Register) • 2–49
TODR increment (CNT) bit • 2–164
Top Segment Memory Ending Address (TSMEA) bit •

3–28
TOS (Timeout Select) bit • 2–190
TOY (Time-of-Year Clock) • 2–50
Transaction Timeout (TTO) bit • 2–179
Translation buffer (TB) • 2–12
Translation Buffer Check (TBCHK) register • 2–13,

2–14
Translation Buffer Invalidate All (TBIA) register • 2–13
Translation Buffer Invalidate Single (TBIS) register •

2–13
Translation Buffer Valid (TB.V) bit • 2–12, 2–14
Transmit Data field • 2–82
Transmitter Interrupt Enable (TX IE) bit • 2–80
Transmitter Ready (TX RDY) bit • 2–80
Trap2 bit • 2–249
Traps • 2–17
TREN (Trigger Enable) bit • 3–33
TRGM (Trigger Configuration Mode) bits • 3–33
TRIGC field

See Trigger Control field
Trigger Configuration Mode (TRGM) bits • 3–33
Trigger Control field • 2–192
Trigger Enable (TREN) bit • 3–33
TSMEA (Top Segment Memory Ending Address) bit •

3–28
TTO (Transaction Timeout) bit • 2–179
TXCS register • 2–80
TXDB (Console Transmitter Data Buffer) register •

2–82
TX IE (Transmitter Interrupt Enable) bit • 2–80
TX RDY (Transmitter Ready) bit • 2–80

Index–8

Index

U
Unexpected Read Response (URR) bit • 2–200
URR (Unexpected Read Response) bit • 2–200
UWP bit • 2–249

V
VAXBI bus • 1–3
VAXBI card cages

location • 1–6, 1–8
VDATA (VIC Data) register • 2–139
VIC (virtual instruction cache) • 2–31
VIC Data Register (VDATA) • 2–139
VIC Memory Address Register (VMAR) • 2–135
VIC Tag Register (VTAG) • 2–137
Virtual instruction cache (VIC) • 2–31
Virtual page number (VPN) field • 2–12
VMAR (VIC Memory Address) register • 2–135
VMB • 2–217
VMEbus • 1–3
VPN (Virtual page number) field • 2–12
VTAG (VIC Tag) register • 2–137

W
Warm Start (WS) bit • 2–187
WBQFL (Writeback Queue Full) bit • 2–166
WCNAK0 (Writeback0 Command NO ACK) bit •

2–199
WCNAK1 (Writeback1 Command NO ACK) bit •

2–198
WDNAK (Write Data NO ACK) bit • 2–178
WEI (Write Error Interrupt) bit • 2–176
WEI INVINTR (Write Error Interrupt) bit • 2–184
WEI mask generation • 2–60
WFADR0 (Writeback 0 Failing Address Register) •

2–201
WFADR1 (Writeback 1 Failing Address Register) •

2–202
Writeback0 Command NO ACK (WCNAK0) bit •

2–199
Writeback 0 Failing Address Register (WFADR0) •

2–201
Writeback0 Second Error Occurred (WSEO0) bit •

2–199
Writeback0 Transaction Timeout (WTTO0) bit • 2–199

Writeback0 Write Data NO ACK (WWDNAK0) bit •
2–199

Writeback1 Command NO ACK (WCNAK1) bit •
2–198

Writeback 1 Failing Address Register (WFADR1) •
2–202

Writeback1 Second Error Occurred (WSEO1) bit •
2–198

Writeback1 Transaction Timeout (WTTO1) bit • 2–198
Writeback1 Write Data NO ACK (WWDNAK1) bit •

2–198
Writeback queue • 2–58
Writeback Queue Full (WBQFL) bit • 2–166
Write Data NO ACK (WDNAK) bit • 2–178
Write Error Interrupt (WEI) bit • 2–176
Write Error Interrupt (WEI INVINTR) bit • 2–184
Write Error IVINTR (WE IVINTR) Response • 2–61
Write packer • 2–6
Write ROM Error (WRT) bit • 2–165
Write Sequence Error (WSE) bit • 2–177, 3–11
WRT (Write ROM Error) bit • 2–165
WS (Warm Start) bit • 2–187
WSE (Write Sequence Error) bit • 2–177, 3–11
WSEO0 (Writeback0 Second Error Occurred) bit •

2–199
WSEO1 (Writeback1 Second Error Occurred) bit •

2–198
WTTO0 (Writeback0 Transaction Timeout) bit • 2–199
WTTO1 (Writeback1 Transaction Timeout) bit • 2–198
WWDNAK0 (Writeback0 Write Data NO ACK) bit •

2–199
WWDNAK1 (Writeback1 Write Data NO ACK) bit •

2–198

X
XACLO (XMI AC LO) bit • 2–168
XBAD (XMI BAD) bit • 2–176
XBAD bit • 2–210
XBADD bit

See XMI BAD Drive bit
XBEER (Bus Error Extension) register • 2–197
XBER (Bus Error Register) • 2–174, 3–10
XCR register

See XMI Control Register
XDEV (Device Register) • 2–173, 3–8
XFADR (Failing Address Register) • 2–181
XFAER register (Failing Address Extension Register)

• 2–194
XGPR (XMI General Purpose Register) • 2–185

Index–9

Index

XMI AC LO (XACLO) bit • 2–168
XMI AC LO L signal • 2–203
XMI adapters • 1–10 to 1–11
XMI BAD (XBAD) bit • 2–176
XMI BAD Drive bit • 2–192
XMI BAD L signal • 2–176, 2–207
XMI bus • 1–3

XMI card cage
location • 1–6, 1–8

XMI Control Register • 2–188
XMI DC LO L signal • 2–203
XMI Device Interrupt Priority • 2–60
XMI Failing Address Register (XFADR) • 2–181
XMI Force Bad Parity<2:0> (XMIFP) field • 2–190
XMIFP (XMI Force Bad Parity<2:0>) field • 2–190
XMI General Purpose Register (XGPR) • 2–185
XMI RESET L signal • 2–203
XTC module

location • 1–8
XTC power sequencer • 2–203

Index–10

