
VAX 7000/10000
KA7AA CPU Technical Manual

Order Number EK—KA7AA—TM.001

The KA7AA is a VAX CPU module designed for the LSB platform. It is based on the NVAX+
microprocessor and is used in the VAX 7000 and VAX 10000 computer systems. It supports up to
seven MS7AA memory modules in a uniprocessor configuration and one IOP module per system.
Used in a single-processor system, the KA7AA module achieves a minimum scalar performance
equivalent to that of more than 20 VAX 11/780 systems. A multiprocessor system supports up to
six KA7AA CPU modules.

First Printing, December 1992

The information in this document is subject to change without notice and should not be construed as a com-
mitment by Digital Equipment Corporation.

Digital Equipment Corporation assumes no responsibility for any errors that may appear in this document.

The software, if any, described in this document is furnished under a license and may be used or copied only
in accordance with the terms of such license. No responsibility is assumed for the use or reliability of soft-
ware or equipment that is not supplied by Digital Equipment Corporation or its affiliated companies.

Copyright © 1992 by Digital Equipment Corporation.

All Rights Reserved.
Printed in U.S.A.

The following are trademarks of Digital Equipment Corporation:

Alpha AXP DECUS VAXBI
AXP DWMVA VAXELN
DEC OpenVMS VMScluster
DECchip ULTRIX XMI
DEC LANcontroller UNIBUS The AXP logo
DECnet VAX

OSF/1 is a registered trademark of the Open Software Foundation, Inc.

FCC NOTICE: The equipment described in this manual generates, uses, and may emit radio frequency en-
ergy. The equipment has been type tested and found to comply with the limits for a Class A computing de-
vice pursuant to Subpart J of Part 15 of FCC Rules, which are designed to provide reasonable protection
against such radio frequency interference when operated in a commercial environment. Operation of this
equipment in a residential area may cause interference, in which case the user at his own expense may be
required to take measures to correct the interference.

 iii

Contents

Preface ... xi

Chapter 1 CPU Module Overview
1.1 NVAX+ CPU Chip ... 1-3
1.2 Backup Cache (B-Cache).. 1-4
1.3 LSB Interface (LEVI) ... 1-4

Chapter 2 CPU Chip
2.1 Data Types... 2-2
2.2 Instruction Set .. 2-2
2.3 .. 2-2
2.4 Address Space ... 2-3
2.4.1 Virtual Address Space .. 2-3
2.4.2 Physical Address Space .. 2-3
2.5 Memory Management ... 2-4
2.5.1 System Space Address Translation ... 2-4
2.5.2 Process Space Address Translation ... 2-5
2.5.2.1 P0 Region Address Translation ... 2-5
2.5.2.2 P1 Region Address Translation ... 2-5
2.5.3 Page Table Entry Format... 2-6
2.5.4 Translation Buffer .. 2-7
2.5.5 Memory Management Control ... 2-7
2.6 Exceptions and Interrupts .. 2-9
2.6.1 Exceptions ... 2-10
2.6.1.1 Arithmetic Exceptions ... 2-11
2.6.1.2 Memory Management Exceptions ... 2-12
2.6.1.3 Emulated Instruction Exceptions ... 2-13
2.6.1.4 System Failure Exceptions .. 2-14
2.6.2 Interrupts .. 2-15
2.6.2.1 External Interrupt Requests .. 2-16
2.6.2.2 Internal Interrupt Requests .. 2-16
2.7 System Control Block.. 2-18
2.8 Process Structure .. 2-22
2.9 Functional Partitions .. 2-25
2.9.1 Ibox .. 2-26
2.9.2 Ebox and Microsequencer .. 2-27
2.9.3 Fbox ... 2-28
2.9.4 Mbox .. 2-28
2.9.5 Cbox ... 2-29
2.10 General Purpose Registers ... 2-30

iv

2.11 Internal Processor Registers .. 2-31
2.11.1 Identification Registers .. 2-35

CPUID—CPU Identification Register ... 2-36
SID—System Identification Register .. 2-37

2.11.2 Ibox Registers ... 2-38
VMAR—VIC Memory Address Register .. 2-39
VTAG—VIC Tag Register .. 2-40
VDATA—VIC Data Register .. 2-41
ICSR—Ibox Control and Status Register .. 2-42
BPCR—Branch Prediction Control Register .. 2-43

2.11.3 Ebox Registers .. 2-45
PCSCR—Patchable Control Store Control Register ... 2-46
ECR—Ebox Control Register ... 2-48

2.11.4 Mbox Registers ... 2-50
MP0BR—Mbox P0 Base Register .. 2-51
MP0LR—Mbox P0 Length Register .. 2-52
MP1BR—Mbox P1 Base Register .. 2-53
MP1LR—Mbox P1 Length Register .. 2-54
MSBR—Mbox System Base Register .. 2-55
MSLR—Mbox System Length Register ... 2-56
MMAPEN—Mbox Map Enable Register ... 2-57
PAMODE—Physical Address Mode Register ... 2-58
MMEADR—MME Address Register ... 2-59
MMEPTE—MME PTE Address Register .. 2-60
MMESTS—MME Status Register ... 2-61
TBADR—Translation Buffer Parity Address Register 2-63
TBSTS—Translation Buffer Parity Status Register .. 2-64
PCADR—P-Cache Parity Error Address Register.. 2-66
PCSTS—P-Cache Parity Status Register... 2-67
PCCTL—P-Cache Control Register... 2-68
PCTAG—P-Cache Tag Registers... 2-70
PCDAP—P-Cache Data Parity Registers.. 2-71

2.11.5 Cbox Registers .. 2-72
ICCS—Interval Count Control and Status Register .. 2-73
NICR—Next Interval Count Register ... 2-75
ICR—Interval Count Register ... 2-76
TODR—Time-of-Day Register... 2-77
BIU_CTL—BIU Control Register .. 2-78
DIAG_CTL—Diagnostic Control Register ... 2-82
BC_TAG—B-Cache Error Tag Register.. 2-85
BIU_STAT—BIU Status Register ... 2-87
BIU_ADDR—BIU Address Register .. 2-91
FILL_SYND—Fill Syndrome Register .. 2-92
FILL_ADDR—Fill Address Register ... 2-94
BEDECC—Software ECC Register ... 2-95
CHALT—Console Halt Register .. 2-96

Chapter 3 Cache Subsystem
3.1 Virtual Instruction Cache ... 3-3
3.2 Primary Cache... 3-4
3.3 Backup Cache .. 3-5
3.3.1 B-Cache States.. 3-5
3.3.2 B-Cache State Changes.. 3-6
3.4 Cache Backmaps ... 3-8

v

3.4.1 P-Map.. 3-9
3.4.2 B-Map.. 3-9
3.5 Victim Buffer ... 3-9
3.6 Write Policy ... 3-10
3.7 B-Cache Operating Modes.. 3-11
3.8 Cache Initialization .. 3-11

Chapter 4 LSB Bus Interface
4.1 LEVI Address Path ... 4-2
4.2 LEVI Data Path .. 4-3
4.3 LEVI Controllers ... 4-4
4.3.1 LEVI Processor Controller ... 4-4
4.3.2 LEVI Data Controller ... 4-4
4.3.3 LSB Controller .. 4-5
4.4 Interfacing Rules ... 4-6
4.4.1 Dual-Ported Access Synchronization... 4-6
4.4.2 LSB Arbitration .. 4-6
4.5 Address Space Mapping .. 4-7
4.6 LEVI Transactions .. 4-7
4.6.1 Processor-Initiated Transactions... 4-7
4.6.2 LSB-Initiated Transactions... 4-8
4.6.3 Transaction Ordering ... 4-9

Chapter 5 Console Overview
5.1 CPU Console Hardware .. 5-1
5.1.1 Serial ROM ... 5-2
5.1.2 Serial Port ... 5-3
5.1.3 FEPROMs ... 5-3
5.1.4 EEPROM ... 5-3
5.1.5 UARTs ... 5-3
5.1.5.1 Ctrl/P Character Detection and Halt Protection .. 5-4
5.1.5.2 UART Register Addressing ... 5-4
5.1.6 Watch Chip ... 5-4
5.2 Console Program Invocation... 5-5
5.3 Console Registers .. 5-5

Gbus$WHAMI .. 5-8
Gbus$LEDs ... 5-10
Gbus$PMask .. 5-11
Gbus$Intr .. 5-13
Gbus$Halt ... 5-15
Gbus$LSBRST .. 5-17
Gbus$Misc ... 5-18
Gbus$RMode ... 5-20
Gbus$LTagRW.. 5-21

Chapter 6 I/O Operations
6.1 Mailbox Data Structure .. 6-1
6.2 Mailbox Operation .. 6-3
6.3 Device Interrupt Handling ... 6-4
6.4 I/O Operation Registers .. 6-4

vi

LMBOX—LSB Mailbox Register ... 6-5

Chapter 7 CPU Module Registers
7.1 Register Mapping .. 7-2
7.2 Register Descriptions ... 7-4

LDEV—Device Register .. 7-5
LBER—Bus Error Register .. 7-6
LCNR—Configuration Register ... 7-9
LMMR0–7—Memory Mapping Registers ... 7-10
LBESR0-3—Bus Error Syndrome Registers ... 7-12
LBECR0,1—Bus Error Command Registers .. 7-14
LIOINTR—I/O Interrupt Register .. 7-16
LIPINTR—Interprocessor Interrupt Register ... 7-18
LMODE—Mode Register ... 7-20
LMERR—Module Error Register ... 7-23
LLOCK—Lock Address Register ... 7-25
LDIAG—LSB Diagnostic Control Register ... 7-26
LTAGA—Tag Address Register .. 7-29
LTAGW—Tag Write Data Register .. 7-30
LCON0,1—Console Communication Registers .. 7-32
LPERF—Performance Counter Control Register .. 7-33
LCNTR0,1—Performance Counter Registers ... 7-37
LMISSADDR—Last Miss Address Register .. 7-38

Chapter 8 Initialization
8.1 Initialization Overview ... 8-1
8.2 Self-Test... 8-2
8.2.1 SROM Operation .. 8-2
8.2.2 CPU Module Self-Test.. 8-2
8.2.3 Additional Power-Up Testing.. 8-2
8.3 Console Entry ... 8-3
8.3.1 Boot Processor Arbitration ... 8-3
8.3.2 Boot Processor System Setup... 8-3
8.3.3 Operating System Startup ... 8-3

Chapter 9 Error Handling
9.1 Software Error Handling .. 9-1
9.1.1 Error State Collection .. 9-2
9.1.2 Error Analysis ... 9-4
9.1.3 Error Recovery .. 9-4
9.1.3.1 Cache Coherence in Error Handling ... 9-5
9.1.3.2 Cache Enable, Disable, and Flush Procedures ... 9-6
9.1.3.3 Extracting Data from the B-Cache... 9-6
9.1.3.4 Cache and TB Test Procedures ... 9-7
9.1.4 Error Retry .. 9-7
9.2 Error Reports .. 9-9
9.3 Console Halt and Halt Interrupt.. 9-10
9.4 Machine Checks .. 9-13
9.4.1 MCHK_UNKNOWN_MSTATUS... 9-23
9.4.2 MCHK_INT.ID_VALUE... 9-24

vii

9.4.3 MCHK_CANT_GET_HERE ... 9-24
9.4.4 MCHK_MOVC_STATUS ... 9-24
9.4.5 MCHK_ASYNC_ERROR.. 9-24
9.4.6 MCHK_SYNC_ERROR .. 9-25
9.4.7 Inconsistent Status in Machine Checks .. 9-31
9.5 Hard Error Interrupts .. 9-32
9.6 Soft Error Interrupts .. 9-40
9.7 Kernel Stack Not Valid Exception ... 9-43
9.8 System Environment Errors .. 9-44
9.8.1 Error Categories ... 9-44
9.8.1.1 Synchronous Errors .. 9-44
9.8.1.2 Asynchronous Errors ... 9-44
9.8.2 Environment Error Sources ... 9-45
9.8.2.1 LEVI Errors .. 9-45
9.8.2.2 LSB Errors ... 9-46

Examples
2-1 BIU_CTL Read .. 2-81
2-2 BIU_CTL Write ... 2-81
2-3 DIAG_CTL Read ... 2-84
2-4 DIAG_CTL Write .. 2-84
9-1 Memory Storage Allocation to the Error State .. 9-3
9-2 Collection Error State .. 9-3

Figures
Figure 1-1Block Diagram of a VAX 7000 or VAX 10000 System ... 1-1
Figure 1-2KA7AA CPU Module Block Diagram ... 1-2
Figure 2-1Virtual Address Space Layout .. 2-3
Figure 2-2Physical Address Space Layouts .. 2-4
Figure 2-3SBR and SLR Registers .. 2-5
Figure 2-4P0BR and P0LR Registers .. 2-5
Figure 2-5P1BR and P1LR Registers .. 2-6
Figure 2-6PTE Format (21-Bit PFN)... 2-6
Figure 2-7PTE Format (25-Bit PFN)... 2-7
Figure 2-8Memory Management Control Registers ... 2-8
Figure 2-9Minimum Stack Frame .. 2-9
Figure 2-10Expanded Stack Frame ... 2-10
Figure 2-11Arithmetic Exception Stack Frame .. 2-11
Figure 2-12Memory Management Exception Stack Frame ... 2-12
Figure 2-13Emulated Instruction Trap Stack Frame ... 2-13
Figure 2-14Emulated Instruction Fault Stack Frame ... 2-14
Figure 2-15Interrupt Control Registers .. 2-15
Figure 2-16System Control Block Base Register .. 2-18
Figure 2-17System Control Block Vector .. 2-18
Figure 2-18Process Control Block .. 2-23
Figure 2-19Processor Status Longword... 2-24
Figure 2-20NVAX+ Logic Boxes .. 2-25
Figure 2-21IPR Address Formats .. 2-31
Figure 2-22Console Dispatch Data Structure ... 2-97
Figure 2-23SYS_TYPE Parameters ... 2-97
Figure 3-1KA7AA CPU Module Cache Organization. .. 3-2
Figure 4-1LEVI Block Diagram ... 4-2
Figure 6-1Mailbox Data Structure .. 6-2

viii

Figure 6-2Mailbox Pointer Structure .. 6-3
Figure 9-1Console Saved PC .. 9-11
Figure 9-2Console Saved PSL .. 9-11
Figure 9-3Machine Check Exception Stack Frame .. 9-14
Figure 9-4Machine Check Exception Parse Tree .. 9-17
Figure 9-5Hard Error Interrupt Parse Tree ... 9-32
Figure 9-6Soft Error Interrupt Parse Tree ... 9-41

Tables
 1 DEC 7000/10000 and VAX 7000/10000 Documentation ... xiii
1-1 NVAX+ CPU Chip Functional Units.. 1-3
2-1 KA7AA Module Exceptions ... 2-11
2-2 Arithmetic Exception Codes ... 2-12
2-3 Memory Management Exceptions .. 2-12
2-4 Emulated Instruction Trap Stack Frame Parameters .. 2-14
2-5 External Interrupt Requests .. 2-16
2-6 Internal Interrupt Requests ... 2-17
2-7 Software Interrupt Requests .. 2-17
2-8 System Control Block Vector Bit Functions .. 2-19
2-9 System Control Block Layout ... 2-20
2-10 Processor Status Longword Bits .. 2-24
2-11 General Purpose Register Usage.. 2-30
2-12 IPR Address Space Decoding .. 2-32
2-13 KA7AA Internal Processor Registers ... 2-33
2-14 Identification Registers ... 2-35
2-15 CPUID Register Bit Definitions ... 2-36
2-16 SID Register Bit Definitions ... 2-37
2-17 Ibox Registers .. 2-38
2-18 VMAR Register Bit Definitions .. 2-39
2-19 VTAG Register Bit Definitions ... 2-40
2-20 VDATA Register Bit Definitions ... 2-41
2-21 ICSR Register Bit Definitions .. 2-42
2-22 BPCR Register Bit Definitions ... 2-43
2-23 BPCR Write Actions .. 2-44
2-24 Ebox Registers ... 2-45
2-25 PCSCR Register Bit Definitions ... 2-46
2-26 Ebox Control Register Bit Definitions ... 2-48
2-27 Mbox Registers .. 2-50
2-28 MP0BR Register Bit Definitions .. 2-51
2-29 MP0LR Register Bit Definitions .. 2-52
2-30 MP1BR Register Bit Definitions .. 2-53
2-31 MP1LR Register Bit Definitions .. 2-54
2-32 MSBR Register Bit Definitions ... 2-55
2-33 MSLR Register Bit Definitions .. 2-56
2-34 MMAPEN Register Bit Definition ... 2-57
2-35 PAMODE Register Bit Definition .. 2-58
2-36 MMEADR Register Bit Definitions .. 2-59
2-37 MMEPTE Address Register Bit Definitions .. 2-60
2-38 MMESTS Register Bit Definitions .. 2-61
2-39 TBADR Register Bit Definitions ... 2-63
2-40 TBSTS Register Bit Definitions ... 2-64
2-41 PCADR Register Bit Definitions ... 2-66
2-42 PCSTS Register Bit Definitions ... 2-67
2-43 PCCTL Register Bit Definitions ... 2-68

ix

2-44 PCTAG Register Bit Definitions .. 2-70
2-45 PCDAP Register Bit Definitions .. 2-71
2-46 Cbox Registers ... 2-72
2-47 ICCS Register Bit Definitions .. 2-73
2-48 NICR Register Bit Definitions.. 2-75
2-49 ICR Register Bit Definitions .. 2-76
2-50 TODR Register Bit Definitions... 2-77
2-51 BIU_CTL Register Bit Definitions ... 2-78
2-52 DIAG_CTL Register Bit Definitions .. 2-82
2-53 BC_TAG Register Bit Definitions .. 2-85
2-54 BIU_STAT Register Bit Definitions ... 2-87
2-55 BIU_ADDR Register Bit Definitions .. 2-91
2-56 FILL_SYND Register Bit Definitions .. 2-92
2-57 Syndromes for Single-Bit Errors.. 2-93
2-58 FILL_ADDR Register Bit Definitions .. 2-94
2-59 BEDECC Register Bit Definitions ... 2-95
2-60 CHALT Register Bit Definitions .. 2-96
2-61 SYS_TYPE Parameter Definitions ... 2-98
3-1 Virtual Instruction Cache Attributes ... 3-3
3-2 Primary Cache Attributes .. 3-4
3-3 B-Cache States.. 3-6
3-4 Effect of Processor Action on B-Cache Line... 3-7
3-5 Effect of LSB Bus Action on B-Cache Line.. 3-8
3-6 KA7AA CPU Module Response to Incoming Addresses.. 3-8
3-7 Selection of the B-Cache Operating Mode... 3-11
4-1 LSB Command Field Encodings ... 4-7
4-2 Processor-LEVI Actions During Transactions... 4-9
5-1 Gbus Components ... 5-2
5-2 Console Registers ... 5-5
5-3 Gbus$WHAMI Register Bit Definitions ... 5-8
5-4 Gbus$LEDs Register Bit Definitions .. 5-10
5-5 Gbus$PMask Register Bit Definitions .. 5-11
5-6 Gbus$Intr Register Bit Definitions ... 5-13
5-7 Gbus$Halt Register Bit Definitions .. 5-15
5-8 Gbus$Misc Register Bit Definitions .. 5-18
6-1 Mailbox Data Structure .. 6-2
6-2 Mailbox Pointer Structure .. 6-3
6-3 KA7AA CPU Interrupts .. 6-4
6-4 LMBOX Register Bit Definitions ... 6-5
7-1 LSB Node Space Base Addresses ... 7-2
7-2 CPU Module Registers .. 7-3
7-3 LDEV Register Bit Definitions ... 7-5
7-4 LBER Register Bit Definitions ... 7-7
7-5 LCNR Register Bit Definitions ... 7-9
7-6 LMMR Register Bit Definitions ... 7-10
7-7 LBESR Register Bit Definitions ... 7-12
7-8 Syndromes for Single-Bit Errors.. 7-13
7-9 LBECR Register Bit Definitions .. 7-14
7-10 LIOINTR Register Bit Definitions ... 7-16
7-11 LSB Interrupt Mapping .. 7-17
7-12 LIPINTR Register Bit Definitions ... 7-18
7-13 LMODE Register Bit Definitions ... 7-20
7-14 LMERR Register Bit Definitions.. 7-23
7-15 LLock Register Bit Definitions ... 7-25
7-16 LDIAG Register Bit Definitions ... 7-26
7-17 LTAGA Register Bit Definitions .. 7-29

x

7-18 LTAGW Register Bit Definitions ... 7-30
7-19 LCON Register Bit Definitions .. 7-32
7-20 LPERF Register Bit Definitions ... 7-33
7-21 LCNTR Register Bit Definitions .. 7-37
7-22 LMISSADDR Register Bit Definitions ... 7-38
9-1 Error Categories by SCB Entry Points .. 9-10
9-2 Console Halt Codes ... 9-12
9-3 CPU State Initialized on Console Halt .. 9-13
9-4 Machine Check Stack Frame Fields .. 9-15
9-5 Machine Check Codes in the Stack Frame .. 9-16

 xi

Preface

Intended Audience
This manual is written for developers of system and application software
based on the LSB platform of VAX computer systems. It assumes ma-
chine level programming knowledge and familiarity with the OpenVMS
VAX operating system.

Document Structure
The material is presented in nine chapters.

• Chapter 1, CPU Module Overview, presents an overall introduction
to the KA7AA CPU module.

• Chapter 2, CPU Chip, describes the functions and operations of the
central processor of the KA7AA CPU module. It discusses such topics
as addressing, memory management, exceptions and interrupts, func-
tional partitions of the CPU chip, and internal processor registers.

• Chapter 3, Cache Subsystem, describes the elements and operations
of the cache hierarchy, which includes the virtual instruction cache,
the primary cache, and the backup cache.

• Chapter 4, LSB Bus Interface, describes the functions and operations
of the LEVI gate arrays that provide the CPU module interface to the
LSB bus. It discusses processor-initiated and LSB bus-initiated trans-
actions, LEVI address and data paths, and the LEVI controllers.

• Chapter 5, Console Overview, gives a brief description of the various
elements that comprise the console. It also describes the Gbus regis-
ters, which perform console control, diagnostic, and interrupt-related
functions.

• Chapter 6, I/O Operations, describes the mailbox data structure, the
operation of the mailbox, interrupt handling, and the I/O registers.

• Chapter 7, CPU Module Registers, lists the LSB required and CPU-
specific registers, and provides bit-level functional descriptions of each
register.

• Chapter 8, Initialization, gives an overview of the CPU module in-
itialization, describes the methods and process of initialization, system
configuration, and bootstrapping of the operating system.

• Chapter 9, Error Handling, describes how the KA7AA module han-
dles various types of errors. It discusses error analysis and recovery,
machine check exceptions, and sources of error interrupts. Parse trees
included in this chapter help isolate errors to particular causes.

xii

Conventions Used in This Document

Results and Operations

Results of operations termed UNPREDICTABLE must not be used by soft-
ware.

Operations termed UNDEFINED do not cause the processor to hang, that
is, reach a state from which there is no transition to a normal state of in-
struction execution. Nonprivileged software cannot invoke UNDEFINED
operations.

Register and Bit Designations

Certain conventions are followed in register descriptions and in references
to bits and bit fields:

• Registers are referred to with their mnemonics, such as VMAR regis-
ter. The full name of a register (for example, VIC Memory Address
Register) is spelled out only at the top of the register description
page, or when the register is first introduced.

• Acronyms are used in register description tables to indicate the access
type of the bit(s).

• Bits and fields are enclosed in angle brackets. For example, bit <31>;
bits <31:16>. For clarity of reference, bits are usually specified by
their numbers or names enclosed in angle brackets adjacent to the reg-
ister mnemonic, such as VMAR<31:11> or VMAR<ADDR>, which are
equivalent designations.

Acronym Access Type

RC

RO

R/W

R0

WO

W1C

W1S

Read to clear. The value is written by hardware and
remains unchanged until read by software or
microcode.

Read only. May be read by software, microcode, or
hardware. Written by hardware. Software or
microcode writes are ignored.

Read/write. May be read and written by software,
microcode, or hardware.

Reads as zero. Read only. Writes are ignored.

Write only. May be written by software or microcode.
It is read by hardware. Reads by software or
microcode return an unpredictable value.

Write 1 to clear. The value may be read by software
or microcode. Software or microcode writes of 1 to
the position cause hardware to clear the bit. Software
or microcode writes of 0 do not modify the state of the
bit.

Write 1 to set. May be read and written by software,
microcode, or hardware. Set by software or
microcode with a write of 1.

xiii

• When the value of a bit position is given explicitly in a register dia-
gram, the information conveyed is as follows:

• Fields (in registers or data structures) noted as must be zero (MBZ)
must never be filled by software with a nonzero value. If the processor
encounters a nonzero value in an MBZ field, a Reserved Operand Ex-
ception occurs.

• Fields (in registers or data structures) noted as should be zero (SBZ)
should be filled by software with a zero value. A nonzero value in an
SBZ field produces UNPREDICTABLE results.

• The entry in the Type column of a register description table may in-
clude the initialization values of the bits. For example, entry “R/W, 0”
indicates a read/write bit that is initialized to zero.

Documentation Titles

Table 1 lists the books in the DEC 7000/10000 and VAX 7000/10000 docu-
mentation sets.

Table 1 DEC 7000/10000 and VAX 7000/10000 Documentation

Bit Value Meaning

0

1

X

Reads as zero; ignored on writes.

Reads as one; ignored on writes.

Does not exist in hardware. The value of the bit is
UNPREDICTABLE on reads and ignored on writes.

Title

 7000 Systems
Order Number

10000 Systems
Order Number

Installation Kit EK–7000B–DK EK–1000B–DK

Site Preparation Guide EK–7000B–SP EK–1000B–SP

Installation Guide EK–700EB–IN EK–100EB–IN

Hardware User Information Kit EK–7001B–DK EK–1001B–DK

Operations Manual EK–7000B–OP EK–1000B–OP

Basic Troubleshooting EK–7000B–TS EK–1000B–TS

Service Information Kit—VAX 7000 EK–7002A–DK EK–1002A–DK

Platform Service Manual EK–7000A–SV EK–1000A–SV

System Service Manual EK–7002B–SV EK–1002A–SV

Pocket Service Guide EK–7000A–PG EK–1000A–PG

Advanced Troubleshooting EK–7001A–TS EK–1001A–TS

xiv

Table 1 DEC 7000/10000 and VAX 7000/10000 Documentation (Continued)

Title

 7000 Systems
Order Number

10000 Systems
Order Number

Reference Manuals
Console Reference Manual EK–70C0B–TM

KA7AA CPU Technical Manual EK–KA7AA–TM

KN7AA CPU Technical Manual EK–KN7AA–TM

MS7AA Memory Technical Manual EK–MS7AA–TM

I/O System Technical Manual EK–70I0A–TM

Platform Technical Manual EK–7000A–TM

Upgrade Manuals
KA7AA CPU Installation Card EK–KA7AA–IN

KN7AA CPU Installation Card EK–KN7AA–IN

MS7AA Memory Installation Card EK–MS7AA–IN

KZMSA Adapter Installation Guide EK–KXMSX–IN

DWLMA XMI PIU Installation Guide EK–DWLMA–IN

DWMBB VAXBI PIU Installation Guide EK–DWMBB–IN

H7237 Battery PIU Installation Guide EK–H7237–IN

H7263 Power Regulator Installation Card EK–H7263–IN

Futurebus+ PIU Installation Guide EK–DWLAA–IN

BA654 DSSI Disk PIU Installation Guide EK–BA654–IN

BA655 SCSI Disk and Tape PIU Installation
Guide

EK–BA655–IN

Removable Media Installation Guide EK–TFRRD–IN

 CPU Module Overview 1-1

Chapter 1

CPU Module Overview

The KA7AA CPU module is designed around the NVAX+ microprocessor
chip (P/N DC262) and communicates with main memory and I/O subsys-
tems by way of the LSB bus. Figure 1-1 shows how the KA7AA CPU
module fits in a VAX computer system based on the LSB bus.

Figure 1-1 Block Diagram of a VAX 7000 or VAX 10000 System

The CPU module supports the VAX base instruction group of 242 instruc-
tions and associated data types, an address space of 4 gigabytes, and pro-
vides full memory management.

A floating-point accelerator and a three-level hierarchical instruction and
data cache structure allow the CPU module to achieve a minimum scalar
single-CPU performance of more than 20 times that of a VAX 11/780 on
an average workload.

The CPU module includes VAX-compatible macrocoded console firm-
ware. Microcode and on-board ROMs permit booting from supported de-
vices and provide self-test diagnostics on power-up.

A multiprocessor VAX 7000 or VAX 10000 system can be configured with
up to six CPU modules. All backplane slots except slot 8, which is dedi-
cated to the IOP module, can be used interchangeably with memory mod-
ules, allowing an array of configurations tailored to specific application
requirements. It is strongly recommended, however, that the first CPU
module be placed in slot 0.

BXB-0054C-92

MemoryProcessors

IOP

LSB

I/O Bus
Adapter

1-2 CPU Module Overview

 The KA7AA CPU module is comprised of three major sections:

• CPU chip (NVAX+)

• Backup cache (B-cache)

• LSB interface (LEVI)

Figure 1-2 shows the major sections of the CPU module.

Figure 1-2 KA7AA CPU Module Block Diagram

LSB Bus

LEVI

B-Stat

B-Tag

B-Data

B-Map

D
ata

T
ag

S
tat

NVAX+
BXB-0372-92

SROM

A
ddr

ROM

Watch

EEROM

UART

Bus Addr

H
andshake

G
bus <

7:0>

EDAL Interface

 CPU Module Overview 1-3

1.1 NVAX+ CPU Chip

The NVAX+ processor is a single-chip macropipelined implementation of
the VAX architecture and the VAX base instruction group. It is parti-
tioned into five functional units, or boxes, as listed in Table 1-1.

Table 1-1 NVAX+ CPU Chip Functional Units

The NVAX+ CPU chip includes:

• Translation buffer: 96 entries, fully associative

• Virtual instruction cache (VIC): Two Kbytes, direct-mapped, virtually
addressed, I-stream only

• Primary cache (P-cache): Eight Kbytes, 2-way set associative, physi-
cally addressed, write through, mixed I-stream and D-stream, 32-byte
block and fill size

• Control store: 1600 61-bit microwords

• EDAL interface: Cache and memory subsystem interface

The macroinstruction pipelined design of the NVAX+ CPU chip allows sig-
nificant parallel processing. NVAX+ pipelines macroinstruction decode
and operand fetch with macroinstruction execution. Pipeline efficiency is
increased by queuing up instruction information and operand values for
later use by the execution unit. Thus, when the macropipeline is operating
smoothly, the instruction unit (Ibox), which parses instructions and fetches
operands, is running several macroinstructions ahead of the execution
unit (Ebox). Branch predictions allow quicker execution of loops in soft-
ware. Outstanding writes to registers or memory locations are kept in a
scoreboard to ensure that data is not read before it has been written.

NVAX+ Unit Functional Description

Ibox

Ebox

Fbox

Mbox

Cbox

Instruction box. Prefetches, decodes, parses, and
queues VAX instructions for execution.

Execution box. Executes, together with the
microsequencer, instructions received from the Ibox.

Floating-point accelerator box. Executes
floating-point and integer multiply VAX instructions
received from the Ebox.

Memory management box. Performs all virtual
to physical address translations, for the Ibox and
Ebox. The Mbox also handles Cbox requests for
cache fills and invalidates for the primary cache.

Cache control box. Initiates access to the backup
cache (B-cache) and issues memory requests.

1-4 CPU Module Overview

1.2 Backup Cache (B-Cache)

The external backup cache (B-cache) is a 4-Mbyte superset of the P-cache.
It is a physically addressed, direct mapped, write back, mixed I-stream and
D-stream cache with a block and fill size of 64 bytes. It consists of three
sets of RAMs:

B-data
B-tag
B-stat

Each block of data (B-data) has a tag (B-tag) and three status bits (B-stat)
associated with it. The status bits are Valid, Dirty, and Shared.

The B-cache has controllable data RAM access time. The CPU module sup-
ports cache access times of 2, 3, and 4 times the NVAX+ chip cycle time.

1.3 LSB Interface (LEVI)

The interface to the LSB bus is called LEVI, which consists of two chips:
LEVI-A and LEVI-B. LEVI-A contains most LSB required registers, im-
plements all command execution, LSB arbitration, and B-cache manipula-
tion functions. It also contains a P-cache backmap (P-map) to allow the
CPU to do invalidate filtering and to make intelligent update vs. invalidate
decisions in response to LSB write traffic. LEVI-A uses an external RAM
structure to implement a backmap of the B-cache to filter bus traffic from
the B-cache while still maintaining cache coherence.

LEVI-B completes the 128-bit data path between the NVAX+ and the LSB
bus. An 8-bit communication bus between LEVI-A and LEVI-B provides a
path that allows LEVI-B to perform look-aside ECC checking on incoming
memory traffic.

 CPU Chip 2-1

Chapter 2

CPU Chip

The NVAX+ CPU chip is the central processor of the KA7AA CPU mod-
ule. It executes the VAX base instruction group and provides full VAX
memory management. This chapter provides a summary of the architec-
tural features and functional elements of the NVAX+ CPU chip. Sections
include:

• Data types

• Instruction set

• Address space

• Memory management

• Exceptions and interrupts

• System control block

• Process structure

• Functional partitions

• General purpose registers

• Internal processor registers

For more information on some of these topics, consult the VAX Architec-
ture Reference Manual.

2-2 CPU Chip

2.1 Data Types

The NVAX+ CPU chip supports the following subset of VAX data types:

Byte
Word
Longword
Quadword
Variable-length bit field
Character string
Absolute queues
Self-relative queues
D_floating
F_floating
G_floating

The remaining VAX data types (octaword, H_floating, trailing numeric
string, leading separate numeric string, and packed decimal string) are
supported by macrocode emulation.

2.2 Instruction Set

The NVAX+ hardware supports the following instruction classes:

Integer arithmetic and logical
Address
Variable-length bit field
Control
Procedure call
Miscellaneous
Queue
Character string
Operating system support
D_floating
F_floating
G_floating

A subset of the VAX instruction group is emulated by NVAX+ microcode.
See the VAX Architecture Reference Manual for detailed descriptions of the
VAX instruction set.

2.3

 CPU Chip 2-3

2.4 Address Space

The memory space that a programmer uses is a single logical structure of
contiguous pages. It is called “virtual memory” and is referenced in virtual
address space. The memory space that the operating system allocates to a
process is a structure of noncontiguous pages called “physical memory” and
is referenced in the physical address space. The operating system uses
the page mapping scheme because in a multiuser and multitasking envi-
ronment no available block in physical memory may be large enough to ac-
commodate a block of contiguous pages generated in virtual memory.

2.4.1 Virtual Address Space

Software can reference a 32-bit virtual address. This address width allows
access to a virtual address space of 4 gigabytes (2**32 locations). The vir-
tual address space is divided into two sections, process space and system
space. The process space is further partitioned into two regions, P0 and
P1. All the virtual address space except a reserved region in the system
space is accessible to software. Figure 2-1 shows the virtual address space
layout.

NOTE: NVAX+ implements the VAX extended system region address space. The ex-
tension allows the chip to address 222-1 pages of system space.

Figure 2-1 Virtual Address Space Layout

2.4.2 Physical Address Space

The NVAX+ CPU generates 32-bit physical addresses. This address width
can access 4 gigabytes of physical address space. Memory space occupies
the first seven-eighths (3.5 Gbytes) of the physical address space. I/O
space occupies the last one-eighth (512 Mbytes) of the physical address
space and can be distinguished from memory space by the fact that bits
<31:29> of the physical address are all ones.

The NVAX+ CPU chip can also run in a 30-bit address mode if selected by
the programmer. In this mode the NVAX+ CPU chip can reference only

 0000 0000

3FFF FFFF
4000 0000

7FFF FFFF
8000 0000

P0
Region

P1
Region

System
Region

Reserved Region

BXB-0199A-92

Length of P0 Region in pages (P0LR)

P0 Region growth direction

P1 Region growth direction

Length of P1 Region in pages (2**21-P1LR)
Length of System Region in pages (SLR)

System Region growth direction

FFFF FDFE
FFFF FDFF

FFFF FFFF

2-4 CPU Chip

one gigabyte of total address space, evenly divided into memory space and
I/O space. Figure 2-2 shows the physical address space layouts.

Figure 2-2 Physical Address Space Layouts

During power-up, microcode configures the NVAX+ CPU chip to generate
30-bit physical addresses. Operating system initialization code can
reconfigure the CPU module to generate either 30-bit or 32-bit physical ad-
dresses by writing to the Mode bit (<0>) in the PAMODE register
(IPR231).

2.5 Memory Management

Memory management is the translation of virtual addresses (contiguous
page addresses used by the programmer) into physical addresses (noncon-
tiguous page addresses in physical memory space). The central processor
extracts the virtual page number (VPN) from the virtual address (bits
<29:9>) and generates a page frame number (PFN), which makes up bits
<31:9> of the physical address. The physical address is then formed by ap-
pending bits <8:0> of the virtual address (address of the byte within the
page) to the PFN.

2.5.1 System Space Address Translation

A virtual address in system space is mapped by the system page table
(SPT), which is defined by the System Base Register (SBR) and the System
Length Register (SLR). The SBR register contains the page-aligned physi-
cal address of the SPT. The SLR contains the size of the SPT in longwords,
that is, the number of page table entries (PTE). The PTE addressed by the
SBR register maps the first page of the system virtual address space, that
is, virtual byte address 8000 0000 (hex). Figure 2-3 shows the SBR and
SLR registers.

NOTE: When the CPU module is configured to generate 30-bit physical addresses,
SBR<31:30> are ignored.

 0000 0000

1FFF FFFF

DFFF FFFF
E000 0000

FFFF FFFF

Physical Memory
Space

(3.5 Gbytes)

I/O Space
(512 Mbytes)

 0000 0000

DFFF FFFF
E000 0000

FFFF FFFF

Physical Memory
Space

(512 Mbytes)

Inaccessible
Region

I/O Space
(512 Mbytes)

BXB-0198-92

32-Bit Address30-Bit Address

 CPU Chip 2-5

Figure 2-3 SBR and SLR Registers

2.5.2 Process Space Address Translation

A virtual address with bit <31> = 0 is an address in the process virtual ad-
dress space. Process space is divided into two equal sized, separately
mapped regions. If virtual address bit <30> = 0, the address is in region
P0. If virtual address bit <30> = 1, the address is in region P1.

2.5.2.1 P0 Region Address Translation

The P0 region of the address space is mapped by the P0 page table (P0PT),
which is defined by the P0 Base Register (P0BR) and the P0 Length Reg-
ister (P0LR). The P0BR register contains the system page-aligned virtual
address of the P0 page table. The P0LR register contains the size of the
P0PT in longwords, that is, the number of PTEs. The PTE addressed by
the P0BR register maps the first page of the P0 region of the virtual ad-
dress space, that is, the virtual byte address 0. Figure 2-4 shows the P0BR
and P0LR registers.

Figure 2-4 P0BR and P0LR Registers

2.5.2.2 P1 Region Address Translation

The P1 region of the address space is mapped by the P1 page table (P1PT),
which is defined by the P1 Base Register (P1BR) and the P1 Length Regis-
ter (P1LR). Because P1 space grows toward smaller addresses, and be-
cause a consistent hardware interpretation of the base and length register-

31 9 4 3 08 7 6 5 12

Physical Page Address of SPT 0 0 0 0 0 0 0 0 0

31 22 21 0

0 0 0 0 0 0 0 0 0 0 Length of SPT in Longwords

BXB-0178-92

SBR Register

SLR Register

31 22 21 0

0 0 0 0 0 0 0 0 0 0 Length of P0PT in Longwords

BXB-0195-92

31 30 29 08

1 0 System Virtual Page Address of P0PT 0 0 0 0 0 0 0 0 0

P0BR Register

P0LR Register

2-6 CPU Chip

sis desirable, the P1BR register and the P1LR register describe the portion
of P1 space that is not accessible. Note that the P1LR register contains the
number of nonexistent PTEs. The P1BR contains the page-aligned virtual
address of what would be the PTE for the first page of P1, that is, virtual
byte address 4000 0000 (hex). The address in the P1BR register is not nec-
essarily an address in system space, but all the addresses of PTEs are in
system space. Figure 2-5 shows the P1BR and P1LR registers.

Figure 2-5 P1BR and P1LR Registers

2.5.3 Page Table Entry Format

When the CPU module is configured to generate 30-bit physical addresses,
it interprets PTEs in the 21-bit PFN format shown in Figure 2-6.

Figure 2-6 PTE Format (21-Bit PFN)

If the CPU module is configured to generate 32-bit physical addresses, it
interprets PTEs in the 25-bit PFN format shown in Figure 2-7.

31 22 21 0

0 0 0 0 0 0 0 0 0 0 Length of P1PT in Longwords

BXB-0195A-92

31 30 29 08

1 0 System Virtual Page Address of P1PT 0 0 0 0 0 0 0 0 0

P1BR Register

P1LR Register

31 30 27 26 25 24 23 22 21 20 0

Page Frame Number

BXB-0193-92

MBZ
MBZ
Ownership Access Code
MBZ

Modify
Protection Code
Valid

 CPU Chip 2-7

Figure 2-7 PTE Format (25-Bit PFN)

Note that bits <24:23> of the 25-bit PFN format are ignored by the NVAX+
CPU chip.

2.5.4 Translation Buffer

The NVAX + CPU chip implements a 96-entry, fully associative, fast access
translation buffer to minimize memory accesses when repeatedly referenc-
ing the same memory pages. Each entry stores a PTE for translating vir-
tual addresses to physical addresses in either process space or system
space. The translation buffer caches the PTEs of recent virtual address
translations. It is accessed in parallel with each memory reference.

Each translation buffer entry is divided into two parts: a 26-bit tag register
and a 29-bit PTE register. The tag register is used to store the VPN of
the virtual page that the corresponding PTE register maps. The tag regis-
ter also contains a valid bit (TBV) that indicates a valid VPN in the tag.

During virtual-to-physical address translation, the contents of the 96 tag
registers are compared with the VPN field (bits <31:9>) of the virtual ad-
dress of the reference. If there is a match with one of the tag registers and
the TBV bit indicates a valid entry, the translation buffer sends the correct
physical address contained in the corresponding PTE register to the cache.
If no match occurs, the PTE that maps the page is fetched from memory
through the normal memory access stages (P-cache, B-cache, and then
main memory) and the translation buffer is updated by replacing the entry
at the location indicated by the replacement pointer.

Translation buffer entries are replaced using a not-last-used (NLU) algo-
rithm. This algorithm guarantees that the replacement pointer is not
pointing at the last translation buffer entry to be used. This is accom-
plished by rotating the replacement pointer to the next sequential transla-
tion buffer entry. Both D-stream and I-stream references can cause the
NLU algorithm to execute.

2.5.5 Memory Management Control

Three processor registers control memory management:

• Memory Management Enable Register (MAPEN), IPR56

• Translation Buffer Invalidate Single Register (TBIS), IPR58

• Translation Buffer Invalidate All Register (TBIA), IPR57

31 30 27 26 25 23 22 0

Page Frame Number

BXB-0194-92

RSVD
Modify
Protection Code
Valid

2-8 CPU Chip

Bit <0> of the MAPEN register enables memory management if set to a
one and disables memory management if written with a zero. The
MAPEN register is written to with a Move To Processor Register (MTPR)
instruction. It is read with a Move From Processor Register (MFPR) in-
struction.

The TBIS register controls single-entry invalidation in the translation
buffer. Entries that map a particular virtual address are invalidated by
writing the virtual address to the TBIS register using the MTPR instruc-
tion.

The TBIA register controls total translation buffer invalidation. Writing a
zero into the TBIA register invalidates the entire translation buffer. Fig-
ure 2-8 shows the three memory control registers.

CAUTION: All affected process pages must be invalidated in the translation buffer
whenever software changes one of the following:

• A valid PTE for the system or the current process region

• A system PTE that maps any part of the current process page table

Otherwise, address translations point to wrong locations in memory.

Figure 2-8 Memory Management Control Registers

The base and length of the P0, P1, and S0 page tables are changed by writ-
ing the appropriate address or length to the P0BR, P0LR, P1BR, P1LR,
SBR, or SLR register. The entire translation buffer is flushed when a
change is made to any of these six registers.

When a process context is loaded with the Load Process Context (LDPCTX)
instruction, all translation buffer entries that map process space pages are
automatically invalidated. System-space mappings are preserved.

To determine if the translation buffer contains a valid translation for a
particular virtual page, write a virtual address within that page to TBCHK
using an MTPR instruction. If the translation buffer contains a valid
translation for the page, the condition code V bit (PSL<1>) would be set.

31 0

0

1

0 0

31 0

Virtual Address

31 0

0 0

BXB-0201-92

MME

MAPEN Register

TBIS Register

TBIA Register

 CPU Chip 2-9

A full invalidation of the translation buffer, whether performed with an ex-
plicit write to the TBIA register, or as an implied clear due to writes to the
MAPEN register or any base/length register, resets the NLU pointer to the
first location in the translation buffer.

NOTE: The contents of the translation buffer are UNPREDICTABLE whenever
memory management is disabled. The entire translation buffer contents
should be flushed before memory management is enabled. The console firm-
ware performs this function as the system is booted.

2.6 Exceptions and Interrupts

At certain times during the operation of a system, events may occur that
break the explicit flow of instructions in the current process and require
execution of external software routines. Two types of events can cause
such a break: exceptions and interrupts.

An exception is an event related to the currently executing process and in-
vokes a software routine in the context of the current process. Exception
handlers are often system routines, not process routines.

An interrupt is an event caused by some activity outside the current proc-
ess and invokes a software routine outside the context of the current proc-
ess.

The CPU chip reports exceptions and interrupts by constructing a frame
on the stack and then dispatching to the service routine through an event-
specific vector in the system control block (SCB, Section 2.7). The mini-
mum stack frame for any interrupt and exception is a program counter/
processor status longword (PC/PSL) pair, as shown in Figure 2-9.

Figure 2-9 Minimum Stack Frame

The minimum stack frame is used for all interrupts. Certain exceptions
expand the stack frame by pushing additional parameters on the stack
above the PC/PSL pair, as shown in Figure 2-10.

Parameters that are pushed on the stack above the PC/PSL pair depend on
the type of exception.

31 0

BXB-0188-92

PC

PSL

2-10 CPU Chip

Figure 2-10 Expanded Stack Frame

2.6.1 Exceptions

There are three types of exceptions:

• Traps

• Faults

• Aborts

A trap occurs at the end of an instruction. Therefore, the PC saved on the
stack is the address of the next instruction that would normally have been
executed had the trap not occurred.

A fault occurs during the execution of an instruction and leaves the regis-
ters and memory in a consistent state, so that eliminating the fault condi-
tion and restarting the instruction gives correct results. The PC saved on
the stack points to the instruction that faulted.

An abort occurs during the execution of an instruction and leaves the
value of the registers and memory UNPREDICTABLE, so that the instruc-
tion cannot be restarted, completed, simulated, or undone. In most cases
the NVAX+ microcode attempts to convert an abort into a fault by restor-
ing the state preceding the start of the instruction that caused the abort.

This section lists VAX standard exceptions and discusses their implemen-
tation on the KA7AA CPU module. The standard exceptions are described
in the VAX Architecture Reference Manual.

The VAX architecture recognizes six categories of exceptions. Table 2-1
lists the types of exceptions in each category. Specific characteristics are
found in the following exceptions implemented on the NVAX+ chip:

• Arithmetic

• Memory management

• Emulated instruction

• System failure

BXB-0191-92

PC

PSL

Parameter 1

. . .

31 0

Parameter n

 CPU Chip 2-11

Table 2-1 KA7AA Module Exceptions

2.6.1.1 Arithmetic Exceptions

Arithmetic exceptions are detected during the execution of integer or
floating-point arithmetic instructions. Figure 2-11 shows the arithmetic
exception stack frame.

Figure 2-11 Arithmetic Exception Stack Frame

The exception is reported as either a trap or a fault, depending on the spe-
cific event. Table 2-2 shows the encoding of arithmetic exceptions.

Exception Category Type

Arithmetic traps/faults

Memory management exceptions

Operand reference exceptions

Instruction execution exceptions

Tracing exceptions

System failure exceptions

Integer overflow trap
Integer divide-by-zero trap
Subscript range trap
Floating overflow fault
Floating divide by zero fault
Floating underflow fault

Access control violation fault (ACV)
Translation not valid fault (TNV)
Modify fault (M)

Reserved addressing mode fault
Reserved operand fault or abort

Emulated instruction fault
Extended function (XFC) fault
Change-mode trap
Breakpoint fault

Trace fault

Kernel stack not valid abort
Interrupt stack not valid fault
Console error halt
Machine check abort

BXB-0189-92

PC

PSL

Type Code

31 0

2-12 CPU Chip

Table 2-2 Arithmetic Exception Codes

2.6.1.2 Memory Management Exceptions

Memory management exceptions are detected during a memory reference
and are always reported as faults. The memory management exceptions
and the associated SCB vectors are listed in Table 2-3.

Table 2-3 Memory Management Exceptions

All memory management exceptions push the same frame on the stack, as
shown in Figure 2-12.

Figure 2-12 Memory Management Exception Stack Frame

The M, P, and L bits of the parameter pointed to by the stack pointer re-
flect bits <2:0> of the MMESTS register, which are described in Table
2-38.

Code (Hex) Type Exception

1
2
7
8
9
A

Trap
Trap
Trap
Fault
Fault
Fault

Integer overflow
Integer divide-by-zero
Subscript range
Floating overflow
Floating divide-by-zero
Floating underflow

Exception SCB Vector (Hex)

Access control violation (ACV)
Translation not valid (TNV)
Modify fault (M)

20
24
3C

BXB-0190-92

PC

PSL

Some Virtual Address in the Faulting Page

31

MBZ

012

M P L

 CPU Chip 2-13

2.6.1.3 Emulated Instruction Exceptions

The NVAX+ chip implements the VAX base instruction group in hardware
and provides microcode support for macrocode emulation of certain other
instructions. Two types of emulation exceptions depend on the state of
PSL<FPD>. If FPD is zero at the beginning of the instruction, then the
exception is reported through SCB vector C8 (hex) as a trap, with the stack
frame shown in Figure 2-13.

Figure 2-13 Emulated Instruction Trap Stack Frame

Table 2-4 describes the emulated instruction stack frame parameters.

3
1 0

Opcode :SP

:SP + 4

:SP + 8

:SP + 12

:SP + 16

:SP + 20

:SP + 24

:SP + 28

:SP + 32

:SP + 36

:SP + 40

:SP + 44

Old Program Counter

Specifier #1

Processor Status Longword (PSL)

msb−p214−89

New Program Counter

Specifier #2

Specifier #3

Specifier #4

Specifier #5

Specifier #6

Specifier #7

Specifier #8

BXB-0192-92

New PC

PSL

Specifier 8

Opcode

31 0

Specifier 7

Specifier 6

Specifier 5

Specifier 4

Specifier 3

Specifier 2

Specifier 1

Old PC

2-14 CPU Chip

Table 2-4 Emulated Instruction Trap Stack Frame Parameters

If PSL<FPD> (see Figure 2-19) is one at the beginning of the instruction,
then the exception is reported through SCB vector CC (hex) as a fault,
with the stack frame as shown in Figure 2-14. In this case, PC is the
opcode of the emulated instruction.

Figure 2-14 Emulated Instruction Fault Stack Frame

2.6.1.4 System Failure Exceptions

A machine check exception is reported through SCB vector 04 (hex) when
the NVAX+ chip detects an error condition. The frame pushed on the
stack for a machine check indicates the type of error and provides internal
state information that may help identify the cause of the error. Machine
check exceptions are discussed at length in Chapter 9 (Error Handling).

In certain microcode flows, the NVAX+ microcode may detect an inconsis-
tency in internal state, a kernel-mode HALT, or a system reset. In these
instances, the microcode initiates a hardware restart sequence which
passes control to the console program. This process is called console halt.

When a console halt occurs, the NVAX+ microcode saves the current CPU
state, partially initializes the CPU, and passes control to the console pro-
gram at the physical address contained in the CHALT register.

During a hardware restart sequence, the stack pointer is saved in the ap-
propriate stack pointer (0 through 4), the current PC is saved in IPR42
(SAVPC register), and the current PSL, halt code, and validity flag are

Parameter Function

Opcode

Old PC

Specifiers

New PC

PSL

Zero-extended opcode of the emulated instruction.

Program counter of the opcode of the emulated instruction.

Address of the specified operand for specifiers of either access type write
(.wx) or address (.ax).

Operand value for specifiers of access type read (.rx).

For read-type operands whose size is smaller than a longword, the remain-
ing bits are UNPREDICTABLE.

For those instructions that do not have eight specifiers, the remaining
specifier longwords contain UNPREDICTABLE values.

Program counter of the instruction following the emulated instruction.

PSL saved at the time of the trap.

31 0

BXB-0188-92

PC

PSL

 CPU Chip 2-15

saved in IPR43 (SAVPSL register). Console halts are discussed at length
in Chapter 9 (Error Handling).

2.6.2 Interrupts

The interrupt section receives interrupt requests from both internal and
external sources. When an interrupt request is generated, the NVAX+
chip compares the request with the current IPL of the CPU. If the new re-
quest is of higher priority, an internal request is generated. At the comple-
tion of the current instruction, or at selected points during the execution of
interruptable instructions, a microcode interrupt handler is invoked to
process the request. The microcode handler determines the highest prior-
ity interrupt, updates the IPL, pushes a PC/PSL pair on the stack, and dis-
patches to a macrocode interrupt handler through the appropriate location
in the SCB.

The interrupt system is controlled by three IPRs:

• Interrupt Priority Level Register (IPL), IPR18

• Software Interrupt Request Register (SIRR), IPR20

• Software Interrupt Summary Register (SISR), IPR21

The IPL register is used for loading the interrupt priority level field
(IPL<4:0>) into PSL<20:16>. The SIRR register is used for creating soft-
ware interrupt requests. The SISR register records pending software inter-
rupt requests at levels 1 through 15. Figure 2-15 shows the three inter-
rupt control registers.

Figure 2-15 Interrupt Control Registers

31 4 05

0 PSL<20:16>

BXB-0183-92

31 4 3 0

0 Request
IPL

IPL Register

SIRR Register

SISR Register
31 16 15 14 13 12 11 10 9 4 3 08 7 6 5

0

12

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

IPL 15 Request
ILP 14 Request

...
IPL 2 Request
IPL 1 Request

...

2-16 CPU Chip

2.6.2.1 External Interrupt Requests

NVAX+ inputs six external interrupt signals as IRQ_H<3:0>, HALT_H,
and ERR_H. These signals request general-purpose interrupts at the fol-
lowing IPLs:

• HALT_H: The assertion of HALT_H causes the CPU to enter the con-
sole at IPL 1F (hex) at the next macroinstruction boundary. The inter-
rupt is not gated by the current IPL, and always results in console en-
try, even if the IPL is already 1F (hex). Note that unlike normal
interrupts, which cause a PC/PSL pair to be pushed on the interrupt
stack, HALT_H interrupts store the current PC/PSL and halt code in
the SAVPC and SAVPSL processor registers. Console halts are dis-
cussed at length in Chapter 9 (Error Handling).

• ERR_H: The assertion of ERR_H indicates that an error has been de-
tected in the system environment. This results in the dispatch of the
interrupt to the operating system at IPL 1D (hex) through SCB vector
60 (hex).

• IRQ<3:0>: Device interrupts resulting in dispatch of the interrupt to
the operating system at IPL 14–17 (hex) through SCB vector D0, D4,
D8, or DC (hex).

Table 2-5 shows the external interrupt request levels and the associated
SCB vectors. Interrupt routines at the specified SCB acknowledge the in-
terrupt.

Table 2-5 External Interrupt Requests

2.6.2.2 Internal Interrupt Requests

The Cbox, Ibox, and Mbox report error conditions by asserting internal in-
terrupt request signals. Table 2-6 gives the interrupt requests caused by
internal hard and soft errors.

Interrupt
Request

 Request IPL
 (Hex) (Decimal) Interrupt Condition

SCB Vector
 (Hex)

HALT_H

ERR_H

IRQ<3>

IRQ<2>

IRQ<1>

IRQ<0>

 1F 31

 1D 29

 17 23

 16 22

 15 21

 14 20

Ctrl/P typed at the console,
LCNR<NHALT> set, node reset,
or system reset

Hardware error

Device interrupt

Device interrupt

Device interrupt

Device interrupt

 Console

60

DC

D8

D4

D0

 CPU Chip 2-17

Table 2-6 Internal Interrupt Requests

The performance monitoring facility requests an interrupt at IPL 1B (hex)
when the performance counters become half full. This request is serviced
entirely by microcode. It is cleared by writing to the appropriate interrupt
service routine.

When the interval timer period expires (ICCS<6> is set), the interrupt is
dispatched to the operating system at IPL 16 (hex) through SCB vector C0
(hex).

An architecturally defined software interrupt request causes an associated
bit to be set in the SISR register. The request is dispatched to the operat-
ing system. The IPL of the SCB vector is implied by the interrupt request.
Table 2-7 shows the association between an SISR register bit, request IPL,
and SCB vector.

Table 2-7 Software Interrupt Requests

Interrupt Request
 Request IPL
 (Hex) (Decimal)

 SCB Vector
 (Hex)

H_ERR

S_ERR

 1D 29

 1A 26

 60

 54

SISR Bit Set
 Request IPL
 (Hex) (Decimal)

SCB Vector
 (Hex)

<15>
<14>
<13>
<12>
<11>
<10>
<9>
<8>
<7>
<6>
<5>
<4>
<3>
<2>
<1>

 0 15
 0E 14
 0D 13
 0C 12
 0B 11
 0A 10
 09 09
 08 08
 07 07
 06 06
 05 05
 04 04
 03 03
 02 02
 01 01

BC
B8
B4
B0
AC
A8
A4
A0
9C
98
94
90
8C
88
84

2-18 CPU Chip

2.7 System Control Block

The system control block (SCB) is a page containing vectors for servicing
interrupts and exceptions. The SCB is pointed to by the 32-bit System
Block Base Register (SCBB). Since the SCBB contains a 32-bit physical
address, the SCB can reside anywhere in memory space. For optimum
performance, the SCBB should contain a page-aligned address. Microcode
forces longword alignment by clearing bits <1:0> of the new value before
loading it into the SCBB register. Figure 2-16 shows the format of the
SCBB register.

Figure 2-16 System Control Block Base Register

NOTE: When When the CPU is in 30-bit physical address mode, SCBB<31:30> are
ignored.

An SCB vector is an aligned longword in the SCB. The NVAX+ chip
microcode dispatches interrupts and exceptions through the SCB vector,
shown in Figure 2-17.

Figure 2-17 System Control Block Vector

Table 2-8 describes the bit functions of the SCB vector.

31 9 08 12

Physical Page Address of SCB SBZ 0 0

BXB-0185-92

31 012

Longword Address of Service Routine Code

BXB-0197-92

 CPU Chip 2-19

Table 2-8 System Control Block Vector Bit Functions

Table 2-9 shows the SCB layout.

Bit(s) Function

<31:2>

<1:0>

Virtual address of the service routine for the interrupt or exception. The routine is
longword aligned, as the microcode forces the lower two bits of the address to 00
(hex).

These two bits are decoded as follows:

SCB<1:0> Function

00

01

10

11

The event is to be serviced on the kernel stack unless the CPU
is already on the interrupt stack, in which case the event is to
be serviced on the interrupt stack.

The event is to be serviced on the interrupt stack. If the event
is an exception, the IPL is raised to 1F (hex).

Unimplemented; results in a console error halt.

Unimplemented; results in a console error halt.

2-20 CPU Chip

Table 2-9 System Control Block Layout

Vector
(Hex) Name Type1

No. of
Parameters Notes

00

04

08

0C

10

14

18

1C

20

24

28

2C

30

34

38–3C

40

44

48

4C

Unused

Machine check

Kernel stack not valid

Unused

Reserved/privileged instruction

Customer reserved instruction

Reserved operand

Reserved addressing mode

Access control violation/
vector alignment fault

Translation not valid

Trace pending

Breakpoint instruction

Unused

Arithmetic

Unused

CHMK

CHME

CHMS

CHMU

 A

 A

 F

 F

A/F

 F

 F

 F

 F

 F

F/T

 T

 T

 T

 T

6

0

0

0

0

0

2

2

0

0

1

1

1

1

1

Parameters reflect ma-
chine state; must be serv-
iced on interrupt stack

Must be serviced on inter-
rupt stack

XFC instruction

Not always recoverable

Parameters are virtual ad-
dress, status code

Parameters are virtual ad-
dress, status code

Compatibility mode in
other VAX systems

Parameter is type code

Parameter is sign-extended
operand word

Parameter is sign-extended
operand word

Parameter is sign-extended
operand word

Parameter is sign-extended
operand word

1 A = Abort; F = Fault; T = Trap; I = Interrupt.

 CPU Chip 2-21

Table 2-9 System Control Block Layout (Continued)

Vector
(Hex) Name Type1

No. of
Parameters Notes

50

54

58

59–5C

60

64-80

84

88

8C

90–BC

C0

C4

C8

CC

D0

D4

D8

DC

E0–FFFC

Unused

Soft error notification

Performance monitoring
counter overflow

Unused

Hard error notification

Unused

Software level 1

Software level 2

Software level 3

Software levels 4–15

Interval timer

Unused

Emulation start

Emulation continue

Device vector

Device vector

Device vector

Device vector

Unused

 I

 I

 I

 I

 I

 I

 I

 I

 F

 F

 I

 I

 I

 I

0

0

0

0

0

0

0

 10

0

0

0

0

0

IPL is 1A (hex)

IPL is 1D (hex)

Ordinarily used for AST
delivery

Ordinarily used for process
scheduling

IPL is 16 (hex)

Same mode exception,
FPD=0; parameters are
opcode, PC, specifiers

Same mode exception,
FPD=1; no parameters

IPL is 14 (hex)

IPL is 15 (hex), includes
console interrupts

IPL is 16 (hex), includes
interprocessor interrupts

IPL is 17 (hex)

1 A = Abort; F = Fault; T = Trap; I = Interrupt.

2-22 CPU Chip

2.8 Process Structure

A process is a single thread of execution. The context of the current proc-
ess is contained in the process control block (PCB), which can be located
anywhere in memory space. The PCB is pointed to by the address con-
tained in the Process Control Block Base (PCBB) register, IPR16. The
physical address of the current PCB is changed by writing to the PCBB
register. The LDPCTX instruction loads a process context from the PCB as
described in the VAX Architecture Reference Manual. LDPCTX flushes
only the process space entries from the translation buffer; system space en-
tries are preserved. Other process structure functions are implemented as
described in the VAX Architecture Reference Manual.

NOTE: When the CPU is in 30-bit addressing mode, PCBB<31:30> are ignored.

Figure 2-18 shows the process control block layout.

 CPU Chip 2-23

Figure 2-18 Process Control Block

The processor status longword (PSL) is a 32-bit register that contains in-
formation about the state of the processor. Figure 2-19 shows the PSL.

KSP

ESP

: (PCBB)

+ 4

SSP

USP

+ 8

+ 12

R0

R1

+ 16

+ 20

R2

R3

+ 24

+ 28

R4

R5

+ 32

+ 36

R6

R7

+ 40

+ 44

R8

R9

+ 48

+ 52

R10

R11

+ 56

+ 60

AP (R12)

FP (R13)

+ 64

+ 68

PC

PSL

+ 72

+ 76

P0BR + 80

+ 84

+ 88

+ 92

31 0

0 0 0 0 0 ASTLVL 0 0 P0LR

0 0 0 0 0 0 0 0 0 0 P1LR

31 27 26 24 23 22 21 0

P1BR

BXB-0200-92

2-24 CPU Chip

Figure 2-19 Processor Status Longword

Table 2-10 identifies the bits in the PSL.

Table 2-10 Processor Status Longword Bits

31 30 29 28 27 26 25 24 23 22 21 20 16 15 4 3 08 7 6 5 12

IPL MBZ

BXB-0211-92

MBZ
VM
TP
CM

DV
FU
IV
T

MBZ
PRV_MOD
CUR_MOD
IS
FPD N

Z
V
C

Mnemonic Bit(s) Name

CM
TP
VM
FPD
IS
CUR_MOD
PRV_MOD
IPL
DV
FU
IV
T
N
Z
V
C

<31>
<30>
<29>
<27>
<26>
<25:24>
<23:22>
<20:16>
<7>
<6>
<5>
<4>
<3>
<2>
<1>
<0>

Compatibility mode
Trace pending
Virtual machine mode1

First part done
Interrupt stack
Current mode
Previous mode
Interrupt priority level
Decimal overflow trap enable
Floating underflow fault enable
Integer overflow trap enable
Trace trap enable
Negative condition code
Zero condition code
Overflow condition code
Carry condition code

1 MBZ unless virtual machine option is implemented.

 CPU Chip 2-25

2.9 Functional Partitions

The macropipelined VAX design of the NVAX+ CPU chip is implemented
through a group of tightly coupled logic units called boxes. The VAX func-
tions are partitioned among five boxes:

• Ibox

• Ebox and Microsequencer

• Fbox

• Mbox

• Cbox

The NVAX+ chip achieves high performance in large part through the con-
current, and relatively independent, operation of these logic boxes. Figure
2-20 shows the logic box level block diagram of the CPU module.

Figure 2-20 NVAX+ Logic Boxes

IBOX

EBOX

USEQ
MBOX

Q_BUS

CBOX
TAG/
DATA
RAMS

FBOX

EDAL

IBOX_ADDR

BXB-0350-92

2-26 CPU Chip

2.9.1 Ibox

The Ibox (instruction box) decodes VAX instructions and parses operand
specifiers. Instruction control, such as the control store dispatch address, is
then placed in the instruction queue for later use by the microsequencer
and Ebox (see Section 2.9.2). The Ibox processes the operand specifiers at
a rate of one specifier per cycle and, as necessary, initiates specifier mem-
ory read operations. All the information needed to access the specifiers
is placed in the source queue and destination queue in the Ebox.

The Ibox prefetches instruction stream data from a dedicated instruction
cache, called the virtual instruction cache (VIC), and places it into the 16-
byte prefetch queue (PFQ). The VIC is a 2-Kbyte, direct-mapped cache,
with a block and fill size of 32 bytes.

The Ibox has both read and write ports to the general purpose register
(GPR) and memory data (MD) portions of the Ebox register file. These
ports are used to process the operand specifiers. The Ibox maintains a
scoreboard to ensure that reads and writes to the register file are always
performed in synchronization with the Ebox. The Ibox stops processing in-
structions and operands upon issuing certain complex instructions like
CALL, RET, or character string instructions, so that proper read/write
ordering is maintained while the Ebox alters large amounts of VAX state
data. Since the Ibox is often parsing several macroinstructions ahead of
the Ebox, the correct value for the PSL condition codes is not known at the
time the Ibox executes a conditional branch instruction. Rather than
emptying the pipe, the Ibox predicts which direction the branch will take
and passes this information on to the Ebox via the branch queue. The
Ebox later signals if there was a misprediction, and the hardware backs
out of the path. The branch prediction algorithm uses a 512-entry RAM,
which caches four bits of branch history per entry.

The instruction fetching logic prefetches several instructions ahead of the
instruction parsing logic, identifying and pre-processing each instruction’s
components. The parsing logic decodes part of the instruction and passes
the instruction opcodes and associated information directly into the Ebox
instruction queue. Operand specifier information is passed on to the oper-
and specifier processing logic.

Instruction prefetching also provides a buffer, four bytes wide by four ele-
ments deep, that isolates the instruction parser from the bursts of data
coming in from cache and memory. The result is that the instruction fetch-
ing and instruction parsing can be done in parallel.

The operand specifier processing logic locates the operands in registers, in
memory, or in the instruction stream. This logic places operand informa-
tion in the Ebox source and destination queues and makes the required op-
erand memory requests.

The Ibox’s branch prediction unit (BPU) monitors each instruction opcode
as it is parsed, looking for a branch opcode. Upon identification of a
branch opcode, the BPU predicts whether the branch will be taken. If the
prediction is that the branch will be taken, the BPU adds the sign-
extended branch displacement to the current PC and broadcasts the result-
ing new PC to the rest of the Ibox. The BPU is controlled by the
microcode.

Since branch direction relies on Ebox condition codes, the Ibox has no prior
knowledge of branch direction. Branch prediction logic makes a prediction

 CPU Chip 2-27

on which way the branch will go and forces the Ibox to take that path. The
PC pointing to the alternate branch path is saved should the prediction
prove wrong. If the prediction is wrong, the Ibox is redirected to the cor-
rect path.

2.9.2 Ebox and Microsequencer

The Ebox and microsequencer work together to perform the actual “work”
of the VAX instruction execution. Together they implement a four-stage
micropipelined unit that can both stall and microtrap. The Ebox and
microsequencer dequeue instruction and operand information provided by
the Ibox through the instruction queue, the source queue, and the destina-
tion queue. For literal type operands, the source queue contains the ac-
tual operand value. In the case of register, memory, and immediate type
operands, the source queue holds a pointer to the data in the Ebox register
file. The contents of memory operands are provided by the Mbox (Section
2.9.4) based on earlier requests from the Ibox. GPR results are written di-
rectly back to the register file. Memory results are sent to the Mbox,
where the data is matched with the appropriate specifier address previ-
ously sent by the Ibox. At times, the Ebox initiates its own memory reads
and writes.

The Ebox contains a five-port register file, which holds the VAX GPRs,
six memory data registers, six microcode working registers, and ten mis-
cellaneous CPU state registers. It also contains an ALU, a shifter, and
the VAX processor status longword (PSL). The Ebox uses the retire queue
to order the completion of Ebox and Fbox (Section 2.9.3) instructions.
Since the Ebox and the Fbox are distinct hardware resources, some execu-
tion overlap is allowed between the two units.

The Ebox implements two IPRs: the Patchable Control Store Control Reg-
ister (PCSCR), used to patch the NVAX+ microcode and select certain
Ebox functions, and the Ebox Control Register (ECR), also used to select
certain Ebox functions.

The microsequencer determines the next microword to be fetched from the
control store. It then provides cycle-by-cycle control of the Ebox.

The control store is an on-chip ROM that contains the microcode used to
execute microinstructions and microtraps. It is made up of 1600 micro-
words. These are arranged as 200 entries, each entry consisting of 8
microwords. Each microword is 61 bits long, with bits <14:0> being used
to control the microsequencer. The remainder of the microword, bits
<60:15>, is used by the Ebox to control S3 through S5 of the pipeline. The
control store is addressed using the output of the current address latch
(CAL).

The patchable control store is an on-chip SRAM that contains microcode
patches. It consists of up to 20 microwords. It operates in parallel with
the control store. The microaddress from the CAL is the input to its con-
tent addressable memory (CAM). If the address hits in the CAM, the out-
put of the patchable control store is selected as the new microword, rather
than the output of the regular control store.

2-28 CPU Chip

2.9.3 Fbox

The Fbox is the floating-point unit in the NVAX+ CPU chip. It is a four-
stage pipelined floating-point processor, with an additional stage dedicated
to assisting division. The Fbox interacts with three segments of the main
CPU pipeline: the microsequencer in stage 2, and the Ebox in stages 3 and
4. The Fbox supports the following operations:

• Floating-Point Instructions and Data Types
The Fbox provides instruction and data support for VAX floating-point
instructions. VAX F_, D_, and G_floating-point data types are sup-
ported.

• VAX Integer Instructions
The Fbox implements longword integer multiply instructions.

• Pipelined Operation
Except for all the divide instructions, DIV{F,D,G}, the Fbox can start a
new single-precision floating-point instruction every cycle and a
double-precision floating-point or an integer multiply instruction every
two cycles. The Ebox can supply two 32-bit operands or one 64-bit oper-
and to the Fbox every cycle on two 32-bit input operand buses. The
Fbox drives the result operand to the Ebox on a 32-bit result bus.

• Conditional “Mini-Round” Operation
Result latency is conditionally reduced by one cycle for the most fre-
quently used instructions. Stage 3 can perform a “mini-round” opera-
tion on the least significant bits of the fraction for all ADD, SUB, and
MUL floating instructions. If the “mini-round” operation does not fail,
then stage 3 drives the result directly to the output, bypassing stage 4
and saving a cycle of latency.

• Fault and Exception Handling
The Ebox coordinates the fault and exception handling with the Fbox.
Any fault or exception condition received from the Ebox is retried in
the proper order. If the Fbox receives or generates any fault or excep-
tion condition, it does not change the flow of instructions in progress
within the Fbox pipe.

2.9.4 Mbox

The Mbox performs three primary functions:

• VAX Memory Management
The Mbox, in conjunction with the operating system memory manage-
ment software, manages the allocation and use of physical memory. It
performs translations of virtual addresses to physical addresses, access
violation checks on all memory references, and initiates the invocation
of software memory management code when necessary. The Mbox
uses the translation buffer, which contains 96 fully associative entries,
to map virtual to physical addresses. In the case of a TB miss, the
memory management hardware in the Mbox reads the PTE from the
cache or main memory and fills the TB. The Mbox performs all access
checks, TNV checks, M-bit checks, and quadword unaligned data
processing.

• Reference Processing
Due to the macropipeline structure of the NVAX+ chip, and the cou-
pling between NVAX+ and its memory subsystem, the Mbox can re-

 CPU Chip 2-29

ceive memory references from the Ibox, Ebox, and Cbox simultane-
ously. The Mbox receives read requests from the Ibox (both in instruc-
tion stream and data stream) and from the Ebox (data stream only).
It receives write/store requests from the Ebox. Also, the Cbox sends
the Mbox fill data and invalidates for the primary cache (P-cache). The
Mbox arbitrates between these requesters and queues requests that
cannot currently be handled. Once a request is started, the Mbox per-
forms address translation and cache lookup in two cycles, assuming
there are no misses or other delays. The two-cycle Mbox operation is
pipelined.

• Primary Cache Control
The Mbox contains the primary cache (P-cache), which is an 8-Kbyte,
2-way set associative, write-through cache with a block and fill size of
32 bytes. The Mbox maintains the P-cache state as a subset of the
backup cache (B-cache). The Mbox ensures that Ibox specifier reads
are ordered correctly with Ebox specifier stores. To prevent the Ibox
from using data that the Ebox should have first written, the Mbox
“scoreboards” the memory. Scoreboarding is done using the physical
address queue, a small list of physical addresses that have a pending
Ebox store.

The Mbox has four error registers. Two record TB parity errors, and two
record P-cache parity errors. They are as follows:

• TBADR (TB Parity Address Register)
Holds the virtual address associated with a translation buffer parity
error.

• TBSTS (TB Status Register)
Holds the error status associated with errors occurring in the Mbox.

• PCADR (P-Cache Parity Address Register)
Holds the physical address associated with a P-cache parity error.

• PCSTS (P-Cache Status Register)
Holds the error status of errors that occur in the P-cache.

When the operating system error handler routine is invoked from a
microtrap or interrupt, the handler can read the state of all the error regis-
ters through IPR read operations to determine what errors were present
when the error handler was invoked. IPR read operations are performed
with MFPR instructions.

2.9.5 Cbox

The Cbox provides the interface to the EDAL bus, which is the communica-
tion channel between the NVAX+ and the other sections of the KA7AA
module (B-cache and the LEVI interface).

The Cbox is tightly coupled to the Mbox. The Mbox sends read requests
and writes to the Cbox; the Cbox sends fills and invalidates to the Mbox.
The Cbox ensures that the P-cache is a subset of the B-cache through in-
validates.

The Cbox communicates with the LEVI interface, and thus with the LSB
bus, through the EDAL bus. The Cbox generates reads and receives fills;
it receives cache coherence transactions from the EDAL, to which it re-
sponds with invalidates and writebacks, as appropriate.

2-30 CPU Chip

The Cbox implements a programmable interval clock that provides an in-
terrupt at IPL 16 (hex) at programmed intervals. The counter is incre-
mented at 1 microsecond intervals, with at least .01% accuracy. The inter-
val clock consists of three internal processor registers (IPRs) that reside in
the privileged register space:

• Interval Count Control and Status Register (ICCS), IPR24

• Next Interval Count Register (NICR), IPR25

• Interval Count Register (ICR), IPR26

To program the interval clock, the negative (2’s complement) of the de-
sired interval is loaded into the NICR register. Then, writing 51 (hex) to
the ICCS enables interrupts, loads the next interval into the ICR, and sets
ICCS<RUN>. Setting this bit causes an interrupt to occur every “interval
count” microseconds. The interrupt routine should write C1 (hex) to the
ICCS to clear the interrupt. If the Interrupt bit has not been cleared (the
interrupt has not been handled) by the time of the next ICR overflow,
ICCS<ERR> is set. If the NICR is written while the clock is running, the
clock may lose or add a few ticks. If the interval clock interrupt is enabled,
this may cause the loss of an interrupt.

2.10 General Purpose Registers

General purpose registers are provided to be used by the operating system
in carrying out its normal functions. The NVAX+ processor contains six-
teen 32-bit general purpose registers. Some of these registers are assigned
to specific functions. The others can be used by the operating system for
any required purpose. Table 2-11 shows the usage of the GPRs.

Table 2-11 General Purpose Register Usage

GPR Acronym Use

R0–R11
R12
R13
R14
R15

AP
FP
SP
PC

General purpose
Argument pointer
Frame pointer
Stack pointer
Program counter

 CPU Chip 2-31

2.11 Internal Processor Registers

Internal processor registers implement functions assigned by hardware.
They are used to store data, control, and status information. The internal
processor registers are logically divided into three groups:

• Normal
Address individual registers in the NVAX+ chip or system environ-
ment.

• P-Cache Tag
The read/write block of IPRs that allow direct access to the P-cache
tags.

• P-Cache Data Parity
The read/write block of IPRs that allow direct access to the P-cache
data parity bits.

Each group of IPRs is distinguished by a particular pattern of bits in the
IPR address, as shown in Figure 2-21.

Figure 2-21 IPR Address Formats

Table 2-12 shows the numeric range of each group of IPRs.

31 25 24 23 22 21 13 12 11 4 3 05 2

1 1 1

BXB-0177-92

31 25 24 23 22 21 13 12 11 4 3 05 12

1 1 0 P-Cache
Tag Index

31 25 24 23 08 7

SBZ 0 IPR NUMBER

SBZ

SBZ

SBZ

SBZ

SBZ

SBZ

P-Cache
Tag Index SBZ

Normal IPR Address

P-Cache Tag IPR Address

P-Cache Data Parity IPR Address

�P-Cache Set Select
 0 = left

 1 = right

Subblock
Select

�P-Cache Set Select
 0 = left

 1 = right

2-32 CPU Chip

Table 2-12 IPR Address Space Decoding

Because of the sparse addressing space used for IPRs in groups other than
the normal group, valid IPR addresses in those groups are separated not
by 1, as are those of the normal group, but by either 8 or 20 (hex). For
example, the IPR address for the first subblock of P-cache data parity is
01C0 0000 (hex), and the IPR address for the second subblock of P-cache
data parity is 01C0 0008 (hex).

Table 2-13 lists the normal IPRs implemented by the NVAX+ chip.
Software-accessible registers are described individually in this section.

CAUTION: Many of the IPRs listed in Table 2-13 are used internally by the microcode
during normal operation of the CPU and are not intended to be referenced
by software except during test or diagnosis of the system. These registers
are flagged with the notation “Testability and diagnostic use only; not for
software use in normal operation.” References by software to these registers
during normal operation can cause undefined behavior of the CPU.

IPR Group Mnemonic1 Address Range (hex) Contents

Normal

P-cache tag

P-cache
data parity

PCTAG

PCDAT

0000 0000 to 0000 00FF2

0180 0000 to 0180 1FE02

01C0 0000 to 01C0 1FF82

256 individual IPRs.

256 P-cache tag IPRs, 128 per P-
cache set. Each IPR is separated
from the previous one by 20 (hex).

1024 P-cache data parity IPRs, 512
per P-cache set. Each IPR is sepa-
rated from the previous one by 8
(hex).

1 The mnemonic is for the first IPR in the group.
2 Unused fields for the IPR addresses for these groups should be zero. Neither hardware nor microcode detects and
faults on an address in which these bits are nonzero. Although noncontiguous address ranges are shown for these
groups, the entire IPR address space maps into one of these groups. If these fields are nonzero, the operation of the
CPU is undefined.

 CPU Chip 2-33

Table 2-13 KA7AA Internal Processor Registers

Name Mnemonic Type
Address
Dec (Hex)

Kernel Stack Pointer
Executive Stack Pointer
Supervisor Stack Pointer
User Stack Pointer
Interrupt Stack Pointer
P0 Base Register
P0 Length Register
P1 Base Register
P1 Length Register
System Base Register
System Length Register
CPU Identification Register1

Process Control Block Base Register
System Control Block Base Register
Interrupt Priority Level Register1

AST Level Register
Software Interrupt Request Register
Software Interrupt Summary Register1

Interval Count Control/Status Register1

Next Interval Count Register
Interval Count Register
Time-of-Day Register
Machine Check Error Register
Console Saved PC Register
Console Saved PSL Register
Memory Management Enable Register1

Translation Buffer Invalidate All Register
Translation Buffer Invalidate Single Register
Performance Monitor Enable Register1

System Identification Register
Translation Buffer Check Register
Interrupt System Status Register2

Mailbox Register
Performance Monitoring Facility Count
Patchable Control Store Control Register2

Ebox Control Register
Mbox TB Tag Fill Register2

Mbox TB PTE Fill Register2

BIU Control Register

KSP
ESP
SSP
USP
ISP
P0BR
P0LR
P1BR
P1LR
SBR
SLR
CPUID
PCBB
SCBB
IPL
ASTLVL
SIRR
SISR
ICCS
NICR
ICR
TODR
MCESR
SAVPC
SAVPSL
MAPEN
TBIA
TBIS
PME
SID
TBCHK
INTSYS
LMBOX
PMFCNT
PCSCR
ECR
MTBTAG
MTBPTE
BIU_CTL

R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
WO
R/W
R/W
WO
RO
R/W
WO
RO
RO
R/W
WO
WO
R/W
RO
WO
R/W
R/W
R/W
WO
R/W
WO
WO
R/W

0 (0)
1 (1)
2 (2)
3 (3)
4 (4)
8 (8)
9 (9)
10 (A)
11 (B)
12 (C)
13 (D)
14 (E)
16 (10)
17 (11)
18 (12)
19 (13)
20 (14)
21 (15)
24 (18)
25 (19)
26 (1A)
27 (1B)
38 (26)
42 (2A)
43 (2B)
56 (38)
57 (39)
58 (3A)
61 (3D)
62 (3E)
63 (3F)
121 (79)
122 (7A)
123 (7B)
124 (7C)
125 (7D)
126 (7E)
127 (7F)
160 (A0)

1 Initialized on reset.
2 Testability and diagnostic use only; not for software use in normal operation.

2-34 CPU Chip

Table 2-18 KA7AA Internal Processor Registers (Continued)

Name Mnemonic Type
Address
Dec (Hex)

Diagnostic Control Register
B-Cache Error Tag Register
BIU Status Register
BIU Address Register
Fill Syndrome Register
Fill Address Register
STxC Pass Fail/CEFSTS Register
Software ECC Register
Console Halt Register
Serial I/O Register
SROM_OE_Serial I.E. Register
Pack to QW Register
Clear I/O Pack Register
VIC Memory Address Register
VIC Tag Register
VIC Data Register
Ibox Control and Status Register
Ibox Branch Prediction Control Register
Ibox Backup PC Register
Ibox Backup PC with RLOG Unwind Register3

Mbox P0 Base Register2

Mbox P0 Length Register2

Mbox P1 Base Register2

Mbox P1 Length Register2

Mbox System Base Register2

Mbox System Length Register2

Mbox Map Enable Register2

Physical Address Mode Register
MME Address Register
MME PTE Address Register
MME Status Register
TB Parity Address Register
TB Parity Status Register
P-Cache Parity Address Register
P-Cache Parity Status Register
P-Cache Control Register
P-Cache Tag Registers

P-Cache Data Parity Registers

DIAG_CTL
BC_TAG
BIU_STAT
BIU_ADDR
FILL_SYND
FILL_ADDR
IPR_STR_COND
BEDECC
CHALT
SIO
SOE-IE
QW_PACK
CLR_IO_PACK
VMAR
VTAG
VDATA
ICSR
BPCR
BPC
BPCUNW
MP0BR
MP0LR
MP1BR
MP1LR
MSBR
MSLR
MMAPEN
PAMODE
MMEADR
MMEPTE
MMESTS
TBADR
TBSTS
PCADR
PCSTS
PCCTL
PCTAG

PCDAP

WO
RO
W1C
RO
RO
RO
RO
WO
R/W
R/W
WO
WO
WO
R/W
R/W
R/W
R/W
R/W
RO
RO
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
RO
RO
RO
RO
R/W
RO
R/W
R/W
R/W

R/W

161 (A1)
162 (A2)
164 (A4)
166 (A6)
168 (A8)
170 (AA)
172 (AC)
174 (AE)
176 (B0)
178 (B2)
180 (B4)
184 (B8)
185 (B9)
208 (D0)
209 (D1)
210 (D2)
211 (D3)
212 (D4)
214 (D6)
215 (D7)
224 (E0)
225 (E1)
226 (E2)
227 (E3)
228 (E4)
229 (E5)
230 (E6)
231 (E7)
232 (E8)
233 (E9)
234 (EA)
236 (EC)
237 (ED)
242 (F2)
244 (F4)
248 (F8)
(0180 0000 to
0180 1FE0)
01C0 0000 to
01C0 1FF8)

2 Testability and diagnostic use only; not for software use in normal operation.
3 Chip test use only; not for software use.

 CPU Chip 2-35

User-visible normal internal processor registers discussed in the following
sections include:

• Identification registers

• Ibox registers

• Ebox registers

• Mbox registers

• Cbox registers

2.11.1 Identification Registers

Table 2-14 lists the two registers used to identify the operating CPU and
the system. Functional descriptions of individual identification registers
follow.

Table 2-14 Identification Registers

Name Mnemonic Type IPR Address (Hex)

CPU Identification Register
System Identification Register

CUPID
SID

RO
RO

0E
3E

2-36 CPU Chip

CPUID—CPU Identification Register

Table 2-15 CPUID Register Bit Definitions

Address
Access

000E
RO

The CPUID register allows software to determine the currently
executing CPU in a multiprocessor system.

31 08 7

0 CPU_ID

BXB-0182-92

Name Bit(s) Type Function

CPU_ID <7:0> RO CPU Identification. Indicates the currently executing
CPU in a multiprocessor system. The KA7AA module de-
fines bits <5:0> only, corresponding to CPU5 to CPU0.
This field is loaded by the console firmware at power-up
and is readable by software at any time.

 CPU Chip 2-37

SID—System Identification Register

Table 2-16 SID Register Bit Definitions

Address
Access

003E
RO

The SID register contains information that identifies the processor
type and the microcode revision level.

31 24 23 16 15 08 7

CPU_TYPE 0 0 0 0 0 0 0 0 MIC_PATCHES MIC_REV

BXB-0180-92

Name Bit(s) Type Function

CPU_TYPE

MIC_PATCHES

MIC_REV

<31:24>

<15:8>

<7:0>

RO

RO

RO

CPU Type. Indicates the type of CPU used in the
system. The value of this field for the NVAX+ CPU
chip is 17 (hex).

Microcode Patches. Indicates the microcode
patches if any, included in the CPU chip. Normally,
this field has a value of zero.

Microcode Revision. Indicates the microcode revi-
sion of the NVAX+ CPU chip. The value of this field
is 2 for the first revision of the CPU module or higher
for later revisions.

2-38 CPU Chip

2.11.2 Ibox Registers

Table 2-17 lists the Ibox registers. Functional descriptions of individual
Ibox registers follow.

Table 2-17 Ibox Registers

Name Mnemonic Type IPR Address (Hex)

VIC Memory Address Register
VIC Tag Register
VIC Data Register
Ibox Control and Status Register
Branch Prediction Control Register

VMAR
VTAG
VDATA
ICSR
BPCR

R/W
R/W
R/W
R/W
R/W

D0
D1
D2
D3
D4

 CPU Chip 2-39

VMAR—VIC Memory Address Register

Table 2-18 VMAR Register Bit Definitions

Address
Access

00D0
R/W

The VMAR register provides access to the virtual instruction cache
(VIC) arrays. When the VIC is disabled, the VMAR register can be
used as an index for direct IPR access to the cache arrays. This
register also latches and holds the virtual address on VIC array
parity errors.

31 11 10 4 3 05 12

ADDR 0 0

BXB-0132-92

ROW_INDEX
SUBBLOCK

LW

Name Bit(s) Type Function

ADDR

ROW_INDEX

SUBBLOCK

LW

<31:11>

<10:5>

<4:3>

<2>

RO

R/W

R/W

WO

Error Address. Latches tag portion of the virtual ad-
dress on VIC parity errors.

Row Index. Contains row index for read and write
access to cache array; also latches the virtual address.

Subblock Select. Selects data subblock for access to
cache array. Also latches bits <4:3> of the virtual ad-
dress on VIC parity errors.

Longword Select. Selects longword of subblock for
access to cache array.

2-40 CPU Chip

VTAG—VIC Tag Register

Table 2-19 VTAG Register Bit Definitions

Address
Access

00D1
R/W

The VTAG register provides diagnostic access to the cache tag ar-
ray.

31 11 10 9 4 3 08 7

TAG 1 1

BXB-0133-92

TAG_P
DATA_P
DATA_V

Name Bit(s) Type Function

TAG

TAG_P

DATA_P

DATA_V

<31:11>

<8>

<7:4>

<3:0>

R/W

R/W

R/W

R/W

Tag. Supplies tag on tag array read/writes.

Tag Parity. Supplies tag parity on tag array
read/writes.

Data Parity. Supplies four parity bits for four
quadwords of data on array read/writes. Each data
parity bit has a corresponding data valid bit
(VTAG<3:0>). VTAG<4> and VTAG<0> are associated
with the quadword of data addressed when
VMAR<4:3> = 00; VTAG<5> and VTAG<1> corre-
spond to the quadword of data addressed when
VMAR<4:3> = 01, and so on.

Data Valid. Supplies four valid bits for four
quadwords of data on array read/writes. Each data
valid bit has a corresponding data parity bit
(VTAG<7:4>). See description of VTAG<7:4> for
quadwords associated with each data valid bit.

 CPU Chip 2-41

VDATA—VIC Data Register

Table 2-20 VDATA Register Bit Definitions

VDATA Read/Write
When the VDATA register is written, the cache data array entry indexed
by the VMAR register is written with the IPR data. Since the IPR data is a
longword, two accesses to the VDATA register are required to read or write
a quadword cache subblock.

Writes to the VDATA register with VMAR<2> = 0 accumulate the IPR
data destined for the low longword of a subblock in FILL_DATA<31:0>. A
subsequent write to the VDATA register with VMAR<2> = 1 directs the
IPR data to FILL_DATA<63:32> and triggers a cache write sequence to
the subblock indexed by the VMAR register.

Reads to the VDATA register with VMAR<2> = 0 trigger a cache read se-
quence to the subblock indexed by the VMAR register. The low longword
of a subblock is returned as IPR read data. A read of the VDATA register
with VMAR<2> = 1 returns the high longword of the subblock as IPR data.

Address
Access

00D2
R/W

The VDATA register provides diagnostic access to the cache data
array.

31 0

VIC_DATA

BXB-0134-92

Name Bit(s) Type Function

VIC_DATA <31:0> R/W VIC Data. Data for array reads and writes.

2-42 CPU Chip

ICSR—Ibox Control and Status Register

Table 2-21 ICSR Register Bit Definitions

Address
Access

00D3
R/W

The ICSR register provides control and status functions for the
Ibox.

31 4 3 05

0

12

0 0

BXB-0135-92

TPERR
DPERR

LOCK
VIC_ACC_ENB

Name Bit(s) Type Function

TPERR

DPERR

LOCK

VIC_ACC_ENB

<4>

<3>

<2>

<0>

RO

RO

WC

R/W,0

Tag Parity Error. Sets when a VIC tag parity error
occurs in the tag array.

Data Parity Error. Sets when a VIC data parity er-
ror occurs in the data array.

Lock. Sets when either ICSR<TPERR> or
ICSR<DPERR> is set. The set state of this bit vali-
dates the status of those two error bits and prevents
further modification of their status and the error ad-
dress in the VMAR register. When clear, indicates that
no VIC parity error has been recorded and allows up-
dates of the ICSR register and the VMAR register.

VIC Access Enable. When set, allows access to the
VIC.

 CPU Chip 2-43

BPCR—Branch Prediction Control Register

Table 2-22 BPCR Register Bit Definitions

Address
Access

00D4
R/W

The BPCR register provides control for the branch prediction unit
and read/write access to the history array.

31 16 15 9 4 3 08 7 6 5

BPU_ALGORITHM 0 0 0 0 0 0 0 0

31 28 27 24 23 20 19 16 15 0

1 1 1 1 1 1 1 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BXB-0136-92

As part of the power-up sequence, the microcode will write FECA0000, which is the following bit pattern:

LOAD_HISTORY
FLUSH_CTR
FLUSH_BHT

MISPREDICT
HISTORY

F E C A 0 0 0 0

Name Bit(s) Type Function

BPU_ALGORITHM

LOAD_HISTORY

FLUSH_CTR

FLUSH_BHT

MISPREDICT

HISTORY

<31:16>

<8>

<7>

<6>

<5>

<3:0>

R/W

WO

WO

WO

WO

R/W

Branch Prediction Unit Algorithm. Con-
trols direction of branch for given history.

Load History. Write of a one loads the history
array into the location addressed by the BPCR
address counter.

Flush Center. Write of a one resets the BPCR
address counter to zero. Cleared by hardware.

Flush Branch History. Write of a one resets
all history table entries to a neutral value.
Cleared by hardware.

Mispredict. Sets if last conditional branch
mispredicted.

History. Branch history table entry bits.

2-44 CPU Chip

BPCR Read/Write
The write-only BPCR<FLUSH_BHT> causes a BPU branch history table
flush. The flush is identical to the context switch flush, which resets all
branch table entries to a neutral value: HISTORY = 0100. The write-only
BPCR<FLUSH_CTR> causes the Branch Table Counter bits <8:0> in the
Ibox to be cleared. The Branch Table Counter provides an address into the
branch table for IPR read and write accesses. Each IPR read from the
BPCR or write to the BPCR with BPCR<LOAD_HISTORY> = 1 incre-
ments the counter. This allows IPR branch table reads and writes to step
through the branch table array. LOAD_HISTORY enables writes to the
branch history table. A write to the HISTORY field with BPCR<8> = 1
causes a BPU branch history table write. The history bits for the entry in-
dexed by the counter are written with the IPR data. The BPCR register
reads supply the history bits in BPCR<3:0> for the entry indexed by the
counter. BPCR<MISPREDICT> returns a 1 if the last conditional branch
mispredicted. BPCR<31:16> contains the branch prediction algorithm.
Any IPR write to the BPCR register updates the algorithm. An IPR read
returns the value of the current algorithm. For example, a 0 in BPCR<16>
means that the next branch encountered will not be taken if the history is
0000. A 1 in BPCR<21> means that the next branch encountered when
the prior history is 0101 will be taken.

BPCR bits <8>, <7>, and <6> are defined in Table 2-23 for IPR writes to
the BPCR register.

NOTE: The prediction algorithm is updated on every IPR write to the BPCR.

Table 2-23 BPCR Write Actions

 BPCR
<8:6> Write Action

000
001
010
011
100
101
110
111

Do nothing except update algorithm.
Flush branch table; history not written.
Address counter reset to zero; history not written.
Flush branch table; reset address counter; history not written.
Write history to table; counter automatically increments.
UNDEFINED. Branch table flushed; new history written; counter incremented.
UNDEFINED. Write history to old counter value; counter reset to zero.
UNDEFINED. Branch table flushed; write history to old counter value; counter
reset to zero.

 CPU Chip 2-45

2.11.3 Ebox Registers

Table 2-24 lists the Ebox registers. Functional descriptions of individual
Ebox registers follow.

Table 2-24 Ebox Registers

Name Mnemonic Type IPR Address (Hex)

Patchable Control Store Control Register
Ebox Control Register

PCSCR
ECR

WO
R/W

7C
7D

2-46 CPU Chip

PCSCR—Patchable Control Store Control Register

Table 2-25 PCSCR Register Bit Definitions

Address
Access

007C
WO

The PCSCR register is used to load control store patches. This reg-
ister is not used in normal operation.

31 13 12 11 10 9 08 7

0 0

BXB-0137-92

PCS_DATA
SHIFT

PCS_WRITE
PCS_ENB

PAR_PORT_DIS

29 28 24 23 22

NONSTANDARD_PATCH
PATCH_REV

Name Bit(s) Type Function

PATCH_REV

NONSTAN-
DARD_PATCH

PCS_DATA

SHIFT

<28:24>

<23>

<12>

<11>

R/W

WO

WO, 0

Patch Revision. Updated by software after load-
ing a microcode patch. Indicates the revision of the
standard microcode patch that has been loaded.

Nonstandard Patch. When set, indicates a non-
standard microcode patch has been loaded.

Patchable Control Store Data. Loaded with the
data bit to be shifted into PCS read/write chain for
writing to PCS RAM or CAM. The shift occurs
whenever PCSCR<11> is written with one. By re-
peatedly loading this bit with one or zero, and set-
ting PCSCR<11> after each load, any data pattern
can be written into the PCS read/write chain.

Shift. A write of one loads the PCS_DATA bit into
the PCS R/W chain and shifts the PCS read/write
chain by one.

 CPU Chip 2-47

Table 2-25 PCSCR Register Bit Definitions (Continued)

Name Bit(s) Type Function

PCS_WRITE

PCS_ENB

PAR_PORT_DIS

<10>

<9>

<8>

WO, 0

WO, 0

WO, 0

Patchable Control Store Write. A write of one
loads the contents of the PCS read/write chain to the
PCS RAM and CAM.

Patchable Control Store Enable. A write of one
enables PCS outputs, so that patches supersede the
control store ROM.

Parallel Port Disable. A write of one disables con-
trol of load/shift operations to the PCS read/write
chain.

2-48 CPU Chip

ECR—Ebox Control Register

Table 2-26 Ebox Control Register Bit Definitions

Address
Access

007D
R/W

The ECR register is used to configure certain Ebox functions.

31 30 23 22 21 19 18 17 16 15 14 13 12 4 3 07 6 5 12

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BXB-0138-92

FBOX_ST4_BYPASS_ENB
MBZ

FBOX_ENB

TO_CLOCK
TO_TEST

TO_OCCURRED

PMF_CLEAR
PMF_LFSR

PMF_EMUX
PMF_PMUX

PMF_ENB
FBOX_TEST_ENB

0

8

RSVD

Name Bit(s) Type Function

PMF_CLEAR

PMF_LFSR

PMF_EMUX

<31>

<22>

<21:19>

WO, 0

R/W, 0

R/W, 0

Performance Monitor Facility Clear. Writ-
ing one to this position clears the performance
monitor facility counters. This function is han-
dled by microcode.

PMF Linear Feedback Shift Register.
When set, enables the LFSR accumulator. This
is a testability feature.

PMF EMUX. Selects the Ebox events counted
by the performance monitor facility, when the
PMF is configured to count Ebox events.

 CPU Chip 2-49

Table 2-26 Ebox Control Register Bit Definitions (Continued)

Name Bit(s) Type Function

PMF_PMUX

PMF_ENB

FBOX_TEST_ENB

TO_CLOCK

TO_TEST

TO_OCCURRED

FBOX_ST4_
BYPASS_ENB

MBZ

FBOX_ENB

<18:17>

<16>

<13>

<6>

<5>

<4>

<3>

<2>

<1>

R/W, 0

R/W, 0

R/W, 0

R/W, 0

R/W, 0

W1C, 0

R/W, 0

R/W, 0

R/W, 0

PMF PMUX. Selects the source of events
counted by the performance monitor facility to be
the Ibox, Ebox, Mbox, or the Cbox.

PMF Enable. This bit is the internal implemen-
tation of the PME processor register.

Fbox Testability Enable. When set, places the
Fbox in test mode. in which data is passed from
stage to stage unaltered.

Timeout Clock. This is the most significant bit
of the timeout base counter. When timeout is
functioning, this bit should be one half of the time
and zero the other half of the time.

Timeout Test. When set, the S3 stall timeout
time is roughly 50 microseconds instead of
roughly 3 seconds.

Timeout Occurred. Set when a S3 stall timeout
occurs. Cleared by a write of one.

Fbox Stage 4 Bypass Enable. Set by configura-
tion code to enable Fbox stage 4 bypass.

Must Be Zero. Must always be written as zero.
Writing one disables S3 timeouts.

Fbox Enable. Set by configuration code to en-
able the Fbox.

2-50 CPU Chip

2.11.4 Mbox Registers

Table 2-27 lists the Mbox registers. Functional descriptions of individual
Mbox registers follow.

Table 2-27 Mbox Registers

Name Mnemonic Type IPR Address (Hex)

Mbox P0 Base Register 1

Mbox P0 Length Register1

Mbox P1 Base Register1

Mbox P1 Length Register1

Mbox System Base Register1

Mbox System Length Register1

Mbox Map Enable Register1

Address Mode Register

MME2 Address Register1

MME PTE Address Register1

MME Status Register1

TB Parity Address Register

TB Parity Status Register

P-Cache Parity Address Register

P-Cache Parity Status Register

P-Cache Control Register

P-Cache Tag Registers

P-Cache Data Parity Registers

MP0BR

MP0LR

MP1BR

MP1LR

MSBR

MSLR

MMAPEN

PAMODE

MMEADR

MMEPTE

MMESTS

TBADR

TBSTS

PCADR

PCSTS

PCCTL

PCTAG

PCDAP

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

RO

RO

RO

RO

R/W

RO

R/W

R/W

R/W

R/W

E0

E1

E2

E3

E4

E5

E6

E7

E8

E9

EA

EC

ED

F2

F4

F8

0180 0000 to
0180 1FE0

01C0 0000 to
01C0 1FF8

1 Testability and diagnostic use only; not for software use in normal operation.
2 Memory management exception.

 CPU Chip 2-51

MP0BR—Mbox P0 Base Register

Table 2-28 MP0BR Register Bit Definitions

Address
Access

00E0
R/W

The MP0BR register contains the base address of the P0 region of
the process space.

31 30 29 9 08

1 0 SYS_VA_P0 0 0 0 0 0 0 0 0 0

BXB-0139-92

Name Bit(s) Type Function

SYS_VA_P0 <29:9> R/W System Virtual Address of P0. Contains the
system virtual address of the P0 page table.

2-52 CPU Chip

MP0LR—Mbox P0 Length Register

Table 2-29 MP0LR Register Bit Definitions

Address
Access

00E1
R/W

The MP0LR register contains the size of the P0 region of the proc-
ess space.

31 22 21 0

0 0 0 0 0 0 0 0 0 0 P0_LENGTH_LW

BXB-0140-92

Name Bit(s) Type Function

P0_LENGTH_LW <21:0> R/W P0 Length Longwords. Contains the length of
the P0 page table in longwords.

 CPU Chip 2-53

MP1BR—Mbox P1 Base Register

Table 2-30 MP1BR Register Bit Definitions

Address
Access

00E2
R/W

The MP1BR register contains the base address of the P1 region of
the process space.

31 30 29 9 08

1 0 SYS_VA_P1 0 0 0 0 0 0 0 0 0

BXB-0141-92

Name Bit(s) Type Function

SYS_VA_P1 <29:9> R/W System Virtual Address of P1. Contains the
system virtual address of the P1 page table.

2-54 CPU Chip

MP1LR—Mbox P1 Length Register

Table 2-31 MP1LR Register Bit Definitions

Address
Access

00E3
R/W

The MP1LR register contains the size of the P1 region of the proc-
ess space.

31 22 21 0

0 0 0 0 0 0 0 0 0 0 P1_LENGTH_LW

BXB-0142-92

Name Bit(s) Type Function

P1_LENGTH_LW <21:0> R/W P1 Length Longwords. Contains the length of
the P1 page table in longwords.

 CPU Chip 2-55

MSBR—Mbox System Base Register

Table 2-32 MSBR Register Bit Definitions

Address
Access

00E4
R/W

The MSBR register contains the physical address of the system
page table.

31 9 08

SYS_PT_PA 0 0 0 0 0 0 0 0 0

BXB-0143-92

Name Bit(s) Type Function

SYS_PT_PA <31:9> R/W System Page Table Physical Address. Con-
tains the physical address of the system page ta-
ble in longwords.

2-56 CPU Chip

MSLR—Mbox System Length Register

Table 2-33 MSLR Register Bit Definitions

Address
Access

00E5
R/W

The MSLR register contains the length of the system page table in
longwords.

31 22 21 0

0 0 0 0 0 0 0 0 0 0 SYS_PT_LENGTH_LW

BXB-0144-92

Name Bit(s) Type Function

SYS_PT_LENGTH_LW <21:0> R/W System Length Longwords. Contains the
length of the system page table in longwords.

 CPU Chip 2-57

MMAPEN—Mbox Map Enable Register

Table 2-34 MMAPEN Register Bit Definition

Address
Access

00E6
R/W

The MMAPEN register contains the bit that enables/disables mem-
ory management.

31 0

0 0

BXB-0145-92

MEM_MNG_ENB

1

Name Bit Type Function

MEM_MNG_ENB <0> R/W Memory Management Enable. When set, en-
ables Mbox memory management. When clear, dis-
ables memory management.

2-58 CPU Chip

PAMODE—Physical Address Mode Register

Table 2-35 PAMODE Register Bit Definition

Address
Access

00E7
R/W

The PAMODE register selects the size of the physical address
space to be used in mapping virtual addresses to physical ad-
dresses.

31 0

0 0

BXB-0146-92

PHYS_ADDR_MODE

1

Name Bit Type Function

PHYS_ADDR_MODE <0> R/W Physical Address Mode. When set, NVAX+ maps
addresses from a 32-bit physical address space.
When clear, NVAX+ maps addresses from a 30-bit
physical address space.

 CPU Chip 2-59

MMEADR—MME Address Register

Table 2-36 MMEADR Register Bit Definitions

Address
Access

00E8
RO

The MMEADR register contains the address associated with the
MME fault.

31 0

BXB-0147-92

MME_FAULT_ADDR

Name Bit(s) Type Function

MME_FAULT_ADDR <31:0> RO MME Fault Address. Contains the address as-
sociated with the MME fault.

2-60 CPU Chip

MMEPTE—MME PTE Address Register

Table 2-37 MMEPTE Address Register Bit Definitions

Address
Access

00E9
RO

The MMEPTE register contains the PTE address associated with
an address corresponding to a modify fault.

31 0

BXB-0148-92

MOD_FAULT_PTE_ADDR

Name Bit(s) Type Function

MOD_FAULT_PTE_ ADDR <31:0> RO Modify Fault PTE Address. Contains
the PTE address associated with an ad-
dress corresponding to a modify fault.

 CPU Chip 2-61

MMESTS—MME Status Register

Table 2-38 MMESTS Register Bit Definitions

Address
Access

00EA
R/W

The MMESTS register reports faults or violations in memory man-
agement operations.

31 29 28 26 25 16 15 14 13 3 012

SRC 0

BXB-0149-92

LOCK

FAULT M
PTE_REF

LV

Name Bit(s) Type Function

LOCK

SRC

<31:29>

<28:26>

RO

RO

Lock. Indicates the lock status of the MMESTS
register. This field is shadowed by MMESTS<SRC>
bits.

Source. Complemented shadow copy of LOCK bits.
However, the SRC bits do not get cleared when the
LOCK bits are cleared.

MMESTS
<31:29> Definition

000

001
011
111

MMESTS, MMEADR, MMEPTE are
unlocked.

Valid IREAD error is stored.
Valid Ibox specifier error is stored.
Valid Ebox reference error is stored.

2-62 CPU Chip

Table 2-38 MMESTS Register Bit Definitions (Continued)

Name Bit(s) Type Function

FAULT

M

PTE_REF

LV

<15:14>

<2>

<1>

<0>

RO

RO

RO

RO, 0

Fault. Indicates type of memory management
fault.

Modify. Indicates corresponding reference had
write or modify intent.

Page Table Entry Reference. Indicates
ACV/TNV fault occurrence on PTE reference corre-
sponding to the MMEADR register.

Length Violation. Indicates ACV fault occur-
rence due to length violation.

MMESTS
<15:14> Fault

01

10

11

ACV fault. Highest priority fault in
the presence of multiple simultane-
ous faults.

TNV fault. Next priority fault to
ACV.

M=0 fault. Lowest priority fault.

 CPU Chip 2-63

TBADR—Translation Buffer Parity Address Register

Table 2-39 TBADR Register Bit Definitions

Address
Access

00EC
R/W

The TBADR register contains the address of the reference that
caused the TB parity error.

31 0

BXB-0150-92

VA_TB_PE

Name Bit(s) Type Function

VA_TB_PE <31:0> RO Virtual Address TB Parity Error. Con-
tains the virtual address of the reference
that caused the translation buffer parity er-
ror.

2-64 CPU Chip

TBSTS—Translation Buffer Parity Status Register

Table 2-40 TBSTS Register Bit Definitions

Address
Access

00ED
R/W

The TBSTS register reports the status of the TB parity error.

31 29 28 9 8 4 3 012

SRC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CMD

BXB-0151-92

EM_VAL
TPERR
DPERR

LOCK

00

Name Bit(s) Type Function

SRC

CMD

<31:29>

<8:4>

RO

RO

Source. Indicates the original source of the reference
causing the TB parity error.

Command. S5 command corresponding to TB parity
error.

TBSTS
<31:29> Definition

111
110
100
000

Valid Mbox reference error is stored.
Valid IREAD error is stored.
Valid Ibox specifier error is stored.
Valid Ebox reference error is stored.

 CPU Chip 2-65

Table 2-40 TBSTS Register Bit Definitions (Continued)

Name Bit(s) Type Function

EM_VAL

TPERR

DPERR

LOCK

<3>

<2>

<1>

<0>

RO

RO

RO

W1C,0

EM Latch Valid. Indicates if EM_LATCH was valid
at the time of the TB parity error detection. This
helps the software error handler determine if a write
operation may have been lost due to the TB parity er-
ror.

Tag Parity Error. Set when a TB tag parity error
occurs.

Data Parity Error. Set when a TB data parity error
occurs.

Lock. When set, validates TBSTS contents and pre-
vents any other field from further modification. When
clear, indicates that no TB parity error or PTE error
has been recorded, and allows updates of the TBSTS
and TBADR registers.

2-66 CPU Chip

PCADR—P-Cache Parity Error Address Register

Table 2-41 PCADR Register Bit Definitions

Address
Access

00F2
RO

The PCADR register contains the quadword physical address asso-
ciated with the recorded P-cache parity error.

31 3 012

PC_PE_PA 0 0 0

BXB-0152-92

Name Bit(s) Type Function

PC_PE_PA <31:0> RO P-Cache Parity Error Physical Address. Con-
tains the quadword physical address associated
with the recorded P-cache parity error.

 CPU Chip 2-67

PCSTS—P-Cache Parity Status Register

Table 2-42 PCSTS Register Bit Definitions

Address
Access

00F4
R/W

The PCSTS register reports information about the P-cache parity
error.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 4 3 08

1

12

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

BXB-0153-92

LEFT_BANK
RIGHT_BANK

DPERR
LOCK

CMD

PTE_ER
PTE_ER_WR

Name Bit(s) Type Function

PTE_ER

PTE_ER_WR

CMD

LEFT_BANK

RIGHT_BANK

DPERR

LOCK

<10>

<9>

<8:4>

<3>

<2>

<1>

<0>

W1C, 0

W1C, 0

RO

RO

RO

RO

W1C, 0

PTE Error. Set when a hard error occurs on a PTE
DREAD.

PTE Error Write. Set when a hard error occurs on
a PTE DREAD which resulted from a TB miss on a
Write or Write_Unlock.

Command. S6 command corresponding to P-cache
parity error.

Left Bank Tag Error. Set when a P-cache tag
parity error occurs on the left bank.

Right Bank Tag Error. Set when a P-cache tag
parity error occurs on the right bank.

Data Parity Error. Set when a P-cache data parity
error occurs.

Lock. When set, validates PCSTS<8:1> contents
and prevents modification of these fields. When
clear, invalidates PCSTS<8:1> and allows these
fields and PCADR to be updated.

2-68 CPU Chip

PCCTL—P-Cache Control Register

Table 2-43 PCCTL Register Bit Definitions

Address
Access

00F8
R/W

The PCCTL register controls the state of P-cache operations.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 4 3 05

1

12

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

BXB-0154-92

PC_PE_ENB
BANK_SEL

FORCE_HIT
I_STR_ENB

D_STR_ENB

PMM

RED_ENB
ELEC_DISABLE

1

8 7

1

Name Bit(s) Type Function

RED_ENB

ELEC_DISABLE

PMM

<9>

<8>

<7:5>

RO

R/W, 0

R/W,0

Redundancy Enable. When set, indicates that
one or more P-cache redundancy elements are en-
abled.

Electrically Disable. When set, the P-cache is
disabled electrically to reduce power dissipation.
This bit should only be set when the P-cache is
functionally turned off by clearing of both
I_STR_ENB and D_STR_ENB. UNPREDICT-
ABLE operation results if this bit is set when
I_STR_ENB or D_STR_ENB is also set. Note that
P-cache tag parity IPRs do not function properly
when ELEC_DISABLE is unconditionally set.

Performance Monitor Mode. Specifies Mbox
performance monitor mode. This field does not con-
trol or affect the operation of the P-cache in any
way.

 CPU Chip 2-69

Table 2-43 PCCTL Register Bit Definitions (Continued)

Name Bit(s) Type Function

PC_PE_ENB

BANK_SEL

FORCE_HIT

I_STR_ENB

D_STR_ENB

<4>

<3>

<2>

<1>

<0>

R/W,0

R/W,0

R/W,0

R/W,0

R/W,0

P-Cache Parity Error Enable. When set, enables
detection of P-cache tag and data parity errors. When
clear, disables P-cache parity error detection.

Bank Select. When set with PCCTL<2> = 1, selects
the “right bank” (Set 1) of the addressed P-cache in-
dex. When clear with PCCTL<2> = 1, selects the “left
bank” (Set 0) of the addressed P-cache index. This bit
is a don’t care when PCCTL<2> = 0. Note that
BANK_SEL does not affect bank selection during IPR
reads and IPR writes to the P-cache tags or P-cache
data parity bits. Bank selection for these operations
is determined by the specified IPR address.

Force P-Cache Hit. If set, forces a P-cache hit on all
reads and writes when P-cache is enabled for I- or D-
stream operation.

I-Stream Enable. When set, enables P-cache proc-
essing of INVAL, IREAD, and I_CF commands. When
clear, forces a P-cache miss on IREAD operations and
prevents state modification due to an I_CF operation.

D-Stream Enable. When set, enables P-cache for all
INVAL operations and for all D-stream read/write/fill
operations, qualified by other control bits. When clear,
forces a P-cache miss on all P-cache D-stream
read/write/fill operations. Note, however, that an
ACV/TNV/M = 0 condition overrides a deasserted
D_STR_ENB by forcing a P-cache hit condition with
D_STR_ENB = 0.

2-70 CPU Chip

PCTAG—P-Cache Tag Registers

Table 2-44 PCTAG Register Bit Definitions

Address
Access

0180 0000 to 0180 1FE0
R/W

The PCTAG registers provide diagnostic access to the tag and the
associated state bits of the P-cache.

31 12 11 4 06 5 1

TAG 0 0 0 0 0 0

BXB-0155-92

PARITY
VALID

ALLOC

Name Bit(s) Type Function

TAG

PARITY

VALID

ALLOC

<31:12>

<5>

<4:1>

<0>

R/W

R/W

R/W

R/W

Tag. Tag data.

Parity. Even tag parity.

Valid. Valid bits corresponding to the four data
subblocks. PCTAG<4> corresponds to uppermost
quadword in the block; PCTAG<1> corresponds to lower-
most quadword in the block.

Allocation. Allocation bit corresponding to index of this
block.

 CPU Chip 2-71

PCDAP—P-Cache Data Parity Registers

Table 2-45 PCDAP Register Bit Definitions

Address
Access

01C0 0000 to 01C0 1FF8
R/W

The PCDAP registers provide diagnostic access to the even byte
parity corresponding to the addressed quadword of data.

31 08 7

0 DATA_PARITY

BXB-0156-92

Name Bit(s) Type Function

DATA_PARITY <7:0> R/W Data Parity. Even byte parity corresponding to ad-
dressed quadword of data.

2-72 CPU Chip

2.11.5 Cbox Registers

The internal processor registers (IPRs) in the system as well as in the Cbox
are accessed through IPR read commands and IPR write commands from
the Mbox to the Cbox.

All IPR reads and writes to the Cbox flush the write queue before they are
completed. Any IPR read sets conflict bits in all valid entries in the write
queue so that all preceding writes of any kind complete before the IPR
read. An IPR write is placed in the write queue after the preceding writes
so that the ordering takes place naturally.

If a read arrives before an IPR write has been processed, the write queue
conflict bits are set so that the write queue takes priority over the read. If
the IPR read addresses one of the Cbox registers, the Cbox returns just one
quadword or less of data, rather than the usual four quadwords.

If a write-only Cbox register is read, the Cbox returns UNPREDICTABLE
data. Reading an unimplemented Cbox register also returns UNPRE-
DICTABLE data. If a write is performed to an unimplemented register,
the write is discarded by the Cbox and normal operation continues.

If the Cbox receives an IPR write to an address that is not within its block
of IPR addresses, the Cbox discards the write and normal operation contin-
ues. If the Cbox receives an IPR read to an address that is not within its
block of IPR addresses, the Cbox returns UNPREDICTABLE data.

Table 2-46 lists the Cbox registers. Functional descriptions of individual
Cbox registers follow.

Table 2-46 Cbox Registers

Register Mnemonic Type
IPR Address
 (Hex)

Interval Count Control/Status Register
Next Interval Count Register
Interval Count Register
Time-of-Day Register
BIU Control Register
Diagnostic Control Register
B-Cache Error Tag Register
BIU Status Register
BIU Address Register
Fill Syndrome Register
Fill Address Register
Software ECC Register
Console Halt Register

ICCS
NICR
ICR
TODR
BIU_CTL
DIAG_CTL
BC_TAG
BIU_STAT
BIU_ADDR
FILL_SYND
FILL_ADDR
BEDECC
CHALT

R/W
WO
RO
R/W
R/W
WO
RO
W1C
RO
RO
RO
WO
R/W

18
19
1A
1B
A0
A1
A2
A4
A6
A8
AA
AE
B0

 CPU Chip 2-73

ICCS—Interval Count Control and Status Register

Table 2-47 ICCS Register Bit Definitions

Address
Access

0018
R/W

The ICCS register contains control and status information on the
interval clock.

31 30 4 3 08 7 6 5

MBZ

BXB-0167-92

1

ERR INTR
IE

SGL
XFR
RUN

MBZ

Name Bit(s) Type Function

ERR

MBZ

INTR

IE

<31>

<30:8

<7>

<6>

W1C, 0

R/W

W1C, 0

R/W, 0

Error. Set whenever the Interval Count Register
overflows and INTR (ICCS<7>) is already set. Thus,
ERR indicates a missed overflow.

Must be zero. Must always be written as zero.

Interrupt. Set whenever the Interval Count Register
overflows. If IE (ICCS<6>) is set when INTR is set, an
interrupt is posted. Whenever the Interval Count Reg-
ister overflows and INTR is already set, ERR
(ICCS<31>) is set. Reset clears ICCS<6> and ICCS<0>,
but leaves the rest of ICCS UNPREDICTABLE.

Interrupt Enable. When set, an interrupt request is
generated on ICR overflows, that is, every time INTR
(ICCS<7>) is set. When clear, no interrupt is re-
quested. Similarly, if INTR is already set and the soft-
ware sets IE, an interrupt is generated. This bit is
cleared by reset.

2-74 CPU Chip

Table 2-47 ICCS Register Bit Definitions (Continued)

Name Bit(s) Type Function

SGL

XFR

MBZ

RUN

<5>

<4>

<3:1>

<0>

WO

WO

R/W

R/W

Single Step. When RUN (ICCS<0>) is clear, writing
one to SGL generates a pulse that causes the Interval
Count Register to be incremented by one. When RUN
is set, or if SGL and XFR (ICCS<4>) are written at the
same time, the write to SGL is ignored. Multiple SGLs
produce multiple increments. SGL does not require
clearing. It always reads as zero.

Transfer. Writing one to XFR generates a pulse that
causes the NICR register to be copied to the ICR regis-
ter. Multiple XFRs produce multiple transfers. XFR
does not require clearing. It always reads as zero.

Must be zero. Must always be written as zero.

Run. When set, the ICR register is incremented once
per microsecond. When clear, the ICR register does
not increment automatically. RUN is cleared during
reset.

 CPU Chip 2-75

NICR—Next Interval Count Register

Table 2-48 NICR Register Bit Definitions

Address
Access

0019
R/W

The NICR register contains the value to be loaded into the ICR reg-
ister on count overflow or in response to a write of one to XFR
(ICCS<4>).

31 0

NINT_COUNT

BXB-0169-92

Name Bit(s) Type Function

NINT_COUNT <31:0> R/W Next Interval Count. Contains the count that is
loaded into the ICR register on overflow of ICR<31>.
The value of NINT_COUNT is retained after the ICR
register is loaded. NINT_COUNT is cleared by reset.

2-76 CPU Chip

ICR—Interval Count Register

Table 2-49 ICR Register Bit Definitions

Address
Access

001A
RO

The ICR register contains the interval count.

31 0

INT_COUNT

BXB-0168-92

Name Bit(s) Type Function

INT_COUNT <31:0> R/W Interval Count. Contains the interval count. This
field is incremented by a write of one to SGL
(ICCS<5>) when RUN (ICCS<0>) is clear. When
RUN is set, INT_COUNT is incremented by one
every microsecond. Upon a carry-out (overflow) from
ICR<31>, INT_COUNT is automatically loaded from
the NICR register and continues incrementing. That
is, the value of the ICR register on successive micro-
seconds will be FFFF FFFD, FFFF FFFE, FFFF
FFFF, value of NICR<31:0>. The counter overflow
sets INTR (ICCS<7>), which generates an interrupt,
if the interrupt is enabled (that is, ICCS<6> is set).
INT_COUNT can specify a maximum delay of ap-
proximately 1.2 hours. It is cleared by reset.

 CPU Chip 2-77

TODR—Time-of-Day Register

Table 2-50 TODR Register Bit Definitions

Address
Access

001B
R/W

The TODR register forms an unsigned 32-bit binary counter that is
driven from a 100 Hz oscillator, so that the least significant bit of
the clock represents a resolution of 10 milliseconds. The TODR
register counts only when it contains a non-zero value.

31 0

TOD

BXB-0166-92

Name Bit(s) Type Function

TOD <31:0> RO Time-of-Day. Unsigned counter that indicates the
time of day with a resolution of 10 ms.

2-78 CPU Chip

BIU_CTL—BIU Control Register

Table 2-51 BIU_CTL Register Bit Definitions

Address
Access

00A0
R/W

The BIU_CTL register controls certain operations and parameters
related to the P-cache, B-cache, and I/O mapping. This register
reads the complement of its contents.

31 30 28 27 24 23 20 19 16 15 14 13 12 11 10 9 4 3 08 7 6 5 12

X X X X 0 0 0 0 X X X X X

BXB-0213-92

BC_SIZE
WS_IO

IO_MAP
PV

QW_IO_RD
PCACHE_MODE

X X X 0

BC_SPD
BC_FHIT

OE
ECC

BC_ENB
NOTE: X bits read inverted values from DIAG_CTL

Name Bit(s) Type Function

WS_IO <31> R/W Workstation I/O. When set, indicates that I/O
space is mapped for workstations.

 CPU Chip 2-79

Table 2-51 BIU_CTL Register Bit Definitions (Continued)

Name Bit(s) Type Function

BC_SIZE

IO_MAP

PV

QW_IO_RD

PCACHE_MODE

<30:28>

<14:13>

<10>

<9>

<8>

R/W

R/W

R/W

R/W

R/W

B-Cache Size. Specifies the size of the B-cache
as follows:

BC_SIZE is not initialized on reset. Therefore, it
must be explicitly written before the B-cache is en-
abled.

I/O Map. Used on I/O references to allow selection
of the range for I/O mapping by different systems.

PV System Mode. Affects write probes to the B-
cache. When set, writes execute as if the B-cache
were disabled; when clear, enables B-cache probes
on writes. Read probes are not affected by the
state of this bit. PV is set by hardware at initiali-
zation or on reset.

Quadword I/O Read. When set, IO_SPACE
DREADs that are not quadword-aligned return
data from an internal register containing bits
<63:32> of the previous quadword-aligned read.

P-Cache Mode. Controls P-cache mapping mode.
When set, P-cache functions as 2-way set associa-
tive; when clear, P-cache functions as direct-
mapped.

BIU_CTL
<30:28> B-Cache Size

000
001
010
011
100
101
110

128 Kbytes
256 Kbytes
512 Kbytes
1 Mbyte
2 Mbytes
4 Mbytes
8 Mbytes

2-80 CPU Chip

Table 2-51 BIU_CTL Register Bit Definitions (Continued)

BIU_CTL Read/Write
A read of the BIU_CTL register provides the complement of its contents
(inverted values of all bits). Bit positions not used for BIU_CTL functions
reflect inverted values of the DIAG_CTL bits of the corresponding posi-
tions. Since the DIAG_CTL register is write only, its state can be deter-
mined by reading the BIU_CTL register.

The following examples show how to read and write to the BIU_CTL regis-
ter through the console and how to decode BIU_CTL reads.

Name Bit(s) Type Function

BC_SPD

BC_FHIT

OE

ECC

BC_ENB

<5:4>

<3>

<2>

<1>

<0>

R/W, 0

R/W

R/W

R/W

R/W

B-Cache Speed. Indicates to the BIU the read and
write access time, in CPU cycles, of the RAMs used to
implement the B-cache. NVAX+ uses the BC_SPD
field to program the read and write cache access time.

BC_SPD is initialized on reset to 2 x CPU cycles
(00 bin).

B-Cache Force Hit. When this bit is set, and
BC_ENB is also set, all READ_BLOCK and
WRITE_BLOCK transactions are forced to hit in the
B-cache. Tag and tag control parity are ignored when
the BIU operates in this mode. BC_ENB takes prece-
dence over BC_FHIT. When BC_ENB is clear and
BC_FHIT is set, no tag probes occur.

Output Enable. When set, NVAX+ does not assert
its chip enable lines during RAM write cycles, thus al-
lowing these lines to be connected to the output enable
lines of the cache RAMs.

Error Correction and Control. When set, NVAX+
generates/expects ECC report. When clear, NVAX+
generates/expects parity report.

B-Cache Enable. When clear, disables the B-cache.
When the B-cache is disabled, the BIU does not probe
the B-cache tag store for read and write references; it
launches a cycle request immediately.

BIU_CTL
<5:4> B-Cache Speed

00
01
10

2 x CPU cycle
3 x CPU cycle
4 x CPU cycle

 CPU Chip 2-81

Example 2-1 shows how to read the BIU_CTL register and decode its con-
tents. The read provides bit states for both the BIU_CTL register and the
DIAG_CTL register. Only BIU_CTL register bits are commented on.

Example 2-1 BIU_CTL Read

>>> e biu_ctl
ipr: 000000A0 (BIU_CTL) AFE09FF8
>>> !
>>> ! The complement of BIU_CTL is 501F 6007
>>> ! This decodes to the following state:
>>> !
>>> ! BC_ENB = B-cache enabled
>>> ! ECC = ECC mode
>>> ! OE = OE mode
>>> ! BC_FHIT = Not B-cache force hit
>>> ! BC_SPD = 2x CPU cycle B-cache speed
>>> ! PCACHE_MODE = P-cache in 2-way set associative mode
>>> ! QW_IO_RD = Not enabled
>>> ! IO_MAP = I/O map is 11
>>> ! BC_SIZE = B-cache size is 4 Mbytes
>>> ! WS_IO = Not enabled

Example 2-2 shows how to change B-cache speed from 2x CPU cycle time
to 4x CPU cycle time.

Example 2-2 BIU_CTL Write

>>> e biu_ctl
ipr: 000000A0 (BIU_CTL) AFE09FF8
>>> !
>>> ! The complement of BIU_CTL is 501F 6007
>>> ! Change BC_SPD from 00 (bin) to 10 (bin) gives 501F 6027
>>> ! Write this value to BIU_CTL
>>> !
>>> dep biu_ctl 501F6027
>>> !
>>> e biu_ctl
ipr: 000000A0 (BIU_CTL) AFE0 9FD8
>>> !

See the description of the DIAG_CTL register for examples on how to read
and write to the DIAG_CTL register.

2-82 CPU Chip

DIAG_CTL—Diagnostic Control Register

Table 2-52 DIAG_CTL Register Bit Definitions

Address
Access

00A1
WO

The DIAG_CTL register is used for diagnostics.

31 28 27 26 24 23 21 20 16 15 14 13 12 11 10 08 7 6 5

X X X X 0 0 0 0 0 X X X X X X X X X X X

BXB-0212-92

SW_ECC
TODR_TEST
TODR_INC
PACK_DISABLE
MBZ

PM_ACCS_TYPE
PM_HIT_TYPE
DIS_ECC_ERR

Name Bit(s) Type Function

SW_ECC

PM_ACCS_TYPE

<27>

<26:24>

WO, 0

WO

Software ECC. When set, enables the use of ECC
check bits from the BEDECC internal processor reg-
ister as given by software for write data. If
SW_ECC is set when parity mode is selected
(BIU_CTL<1> = 0), then BEDECC<0> is the parity
bit generated for data <31:0> and BEDECC<7> is
the parity bit for data <64:32>.

Performance Monitor Access Type. Selects
B-cache tag compare type for performance monitor
access.

 CPU Chip 2-83

Table 2-52 DIAG_CTL Register Bit Definition (Continued)

DIAG_CTL Read/Write
Since the DIAG_CTL register is write only, it cannot be read directly.
However, the contents of the DIAG_CTL register can be obtained indi-
rectly by reading the BIU_CTL register. Note that the state of a
DIAG_CTL bit appears inverted when the BIU_CTL register is read (see
description of the BIU_CTL register).

The following examples show how to read and write to the DIAG_CTL reg-
ister through the console, and how to decode DIAG_CTL reads (through
BIU_CTL reads).

Name Bit(s) Type Function

PM_HIT_TYPE

DIS_ECC_ERR

MBZ

PACK_DISABLE

TODR_INC

TODR_TEST

<23:21>

<15>

<12>

<11>

<7>

<6>

WO

WO, 1

WO, 0

WO

WO

WO

Performance Monitor Hit Type. Selects
B-cache tag compare type for performance monitor
access.

Disable ECC Error. When set, disables
ECC/data parity error reporting.

Must Be Zero. Must always be written as zero.

Pack Disable. When set, disables write packing,
except for quadword packing, which is directed by
microcode.

Time-of-Day Register Increment. When set,
the contents of the TODR register are incremented
for testing, provided DIAG_CTL<TODR_TEST> is
also set.

Time-of-Day Register Test. When set, places
the TODR register in test mode.

2-84 CPU Chip

Example 2-3 shows how to read the contents of the DIAG_CTL register.
The read provides bit states for both the DIAG_CTL register and the
BIU_CTL register. Only DIAG_CTL register bits are commented on.

Example 2-3 DIAG_CTL Read

>>> e biu_ctl
ipr: 000000A0 (BIU_CTL) AFE09FF8
>>> !
>>> ! The complement of BIU_CTL is 501F 6007
>>> ! TODR_TEST = Not enabled
>>> ! TODR_INC = Not enabled
>>> ! PCACHE_MODE = P-cache in 2-way set associative mode
>>> ! QW_IO_RD = Not enabled
>>> ! PACK_DISABLE = Write packing enabled
>>> ! MBZ = Written as zero
>>> ! DIS_ECC_ERR = ECC reporting enabled
>>> ! PM_HIT_TYPE = PMCNTR1 enabled for B-cache hit counting
>>> ! PM_ACCS_TYPE = PMCNTR0 enabled for B-cache access counting
>>> ! SW_ECC = Not enabled

Example 2-4 shows how to change reporting of ECC errors from enabled to
disabled.

Example 2-4 DIAG_CTL Write

>>> e biu_ctl
ipr: 000000A0 (BIU_CTL) AFE0 9FF8
>>> !
>>> ! The complement of BIU_CTL is 501F 6007
>>> ! Set DIS_ECC_ERR gives 501F E007
>>> ! Write this value to DIAG_CTL
>>> !
>>> dep diag_ctl 501FE007
>>> !
>>> e biu_ctl
ipr: 000000A0 (BIU_CTL) AFE0 1FF8
>>> !

See the description of the BIU_CTL register for examples on how to read
and write to the BIU_CTL register.

 CPU Chip 2-85

BC_TAG—B-Cache Error Tag Register

Table 2-53 BC_TAG Register Bit Definitions
9

Address
Access

00A2
RO

The BC_TAG register is loaded with the results of every B-cache
tag probe. When a tag or tag control parity error or primary fill
data error (parity or ECC) occurs, this register is locked against
further updates. The BC_TAG register is unlocked when the
BIU_STAT<3:2> field is cleared. Software can read this register by
using the MFPR instruction.

31 17 16 15 14 13 12 11 10 0

TAG <31:17> 0 0 0 0 0 0 0 0 0 0 0

BXB-0276-92

TAGADR_P
TAGCTL_P
TAGCTL_S
TAGCTL_D

TAGCTL_V
TAG_MATCH

2-86 CPU Chip

Name Bit(s) Type Function

TAG

TAGADR_P

TAGCTL_P

TAGCTL_S

TAGCTL_D

TAGCTL_V

TAG_MATCH

<31:17>

<16>

<15>

<14>

<13>

<12>

<11>

RO

RO

RO

RO

RO

RO

RO

Tag. Contains the tag that is being probed cur-
rently.

Tag Address Parity. Reflects the state of the
TAGP_H signal of the NVAX+ chip when a tag,
tag control, or data parity error occurs.

Tag Control Parity. Reflects the state of the
TAGCTLP_H signal of the NVAX+ chip when a
tag, tag control, or data parity error occurs.

Tag Control Shared. Reflects the state of the
TAGCTLS_H signal of the NVAX+ chip when a
tag, tag control, or data parity error occurs.

Tag Control Dirty. Reflects the state of the
TAGCTLD_H signal of the NVAX+ chip when a
tag, tag control, or data parity error occurs.

Tag Control Valid. Reflects the state of the
TAGCTLD_H signal of the NVAX+ chip when a
tag, tag control, or data parity error occurs.

Tag Match. When set, indicates that there was
a tag match when a tag, tag control, or data par-
ity error occurred.

 CPU Chip 2-87

BIU_STAT—BIU Status Register

Table 2-54 BIU_STAT Register Bit Definitions

Address
Access

00A4
W1C

The BIU_STAT register reports error conditions that occur at the
bus interface unit. This register is not unlocked or cleared by re-
set. It must be cleared explicitly by microcode.

BXB-0162-92

FILL_SEO
FILL_QW
FILL_IRD

FILL_DPERR
FILL_CRD
FILL_ECC
BIU_SEO

BIU_DSP_CMD
BC_TCPERR

BC_TPERR
BIU_SERR
BIU_HERR

0

BIU_ADDR
FILL_ADDR

LOST_WRITE
FILL_DSP_CMD

31 30 29 28 27 21 20 19 16 15 14 13 12 11 10 9 4 3 08 7 6 12

0 0 0 0 0 0 0

Name Bit(s) Type Function

FILL_ADDR<33:32>

BIU_ADDR<33:32>

LOST_WRITE

<31:30>

<29:28>

<20>

RO

RO

W1C, 0

Fill Address <33:32>. Bits <33:32> of the
FILL_ADDR register. Should be set only for I/O
space address. This field is locked against fur-
ther updates when FILL_ADDR<31:5> is locked.

BIU Address <33:32>. Bits <33:32> of the
BIU_ADDR register. Should be set only for I/O
space address. The field is locked against further
updates when BIU_ADDR<31:5> is locked.

Lost Write. A second error, and command is
write.

2-88 CPU Chip

Table 2-54 BIU_STAT Register Bit Definitions (Continued)

Name Bit(s) Type Function

FILL_DSP_CMD

FILL_SEO

FILL_QW

<19:16>

<14>

<13:12>

RO

W1C, 0

RO

Fill Dispatch Command. This field latches the
DSP_CMD (dispatch command) that resulted in the
BIU error and locks till BIU_STAT<14, 10:8> are
cleared.

Fill SEO. When set, indicates that a P-cache fill op-
eration resulted in either an uncorrectable ECC er-
ror or in a parity error while FILL_ECC or
FILL_DPERR was already set.

Fill Quadword. Identifies the quadword within
the hexword P-cache fill block that caused the error.
It can be used together with FILL_ADDR<33:5> to
get the complete physical address of the quadword
in error. This field is decoded as follows:

FILL_QW is only meaningful when either
FILL_ECC or FILL_DPERR is set.

BIU_STAT
<19:16> Dispatch Command

100X
1010
1100
1101
0010
0011
0111
0110
0101
0001

DREAD
DREAD_IO
DREAD_LOCK
DREAD_LOCK_IO
IREAD
IREAD_IO
WRITE_UNLOCK
WRITE
IO_WRITE
WRITE_UNLOCK_IO

BIU_STAT
<13:12> Quadword in Error

00
01
10
11

1
2
3
4

 CPU Chip 2-89

Table 2-54 BIU_STAT Register Bit Definitions (Continued)

Name Bit(s) Type Function

FILL_IRD

FILL_DPERR

FILL_CRD

FILL_ECC

BIU_SEO

<11>

<10>

<9>

<8>

<7>

RO

W1C, 0

W1C, 0

W1C, 0

W1C, 0

Fill I-Cache Read. When set, indicates that the er-
ror that caused FILL_ECC or FILL_DPERR to set oc-
curred during an I-cache fill. When clear, it indicates
that the error occurred during a D-cache fill.
FILL_IRD is only relevant when either FILL_ECC or
FILL_DPERR is set.

BIU Parity Error. When set, indicates that the
BIU received data with a parity error from outside
the CPU chip while performing either a D-cache or
an I-cache fill. FILL_DPERR is only relevant when
the CPU chip is in parity mode, as opposed to ECC
mode.

Corrected Read. When set, indicates that the ECC
error that caused FILL_ECC to set was correctable.
When clear, it indicates that the error was not
correctable. FILL_CRD is only relevant when
FILL_ECC is also set.

ECC Error. When set, indicates that the P-cache fill
data received from outside the CPU chip contained
an ECC error.

BIU SEO. When set, indicates that an external cycle
was terminated with a hard error or that a B-cache
probe encountered bad parity in the tag address or
tag control RAMs while BIU_HERR, BIU_SERR,
BC_TPERR, or BC_TCPERR was already set.

2-90 CPU Chip

Table 2-54 BIU_STAT Register Bit Definitions (Continued)

BIU_STAT Updates
When any of bits BIU_HERR, BC_SERR, BC_TPERR, or BC_TCPERR is
set, BIU_STAT<6:0> are locked against further updates. The address as-
sociated with the error is latched and locked in the BIU_ADDR register.
BIU_STAT<7:0> and the BIU_ADDR register are unlocked when
BIU_STAT<7, 3:0> are written with ones.

When FILL_ECC or FILL_DPERR is set, BIU_STAT<13:8> are locked
against further updates. The address associated with the error is latched
and locked in the FILL_ADDR register. BIU_STAT<14:0> and the
FILL_ADDR register are unlocked when BIU_STAT<14, 11:8> are written
with ones.

Name Bit(s) Type Function

BIU_DIS_CMD

BC_TCPERR

BC_TPERR

BIU_SERR

BIU_HERR

<6:4>

<3>

<2>

<1>

<0>

RO

W1C, 0

W1C, 0

W1C, 0

W1C, 0

BIU Dispatch Command. This field latches dis-
patch command bits <3:1>, inverting bit <1> if the
command is WRITE_UNLOCK, when a BIU_HERR,
BIU_SERR, BC_TPERR, or BC_TCPERR error oc-
curs, and locks till BIU_STAT<7, 3:0> are cleared.

B-Cache Tag Control Parity Error. When set,
indicates that a B-cache tag probe encountered bad
parity in the tag control RAM.

B-Cache Tag Parity Error. When set, indicates
that a B-cache tag probe encountered bad parity in
the tag address RAM.

BIU Soft Error. When set, indicates that an exter-
nal cycle was terminated with a soft (recoverable) er-
ror.

BIU Hard Error. When set, indicates that an ex-
ternal cycle was terminated with a hard (nonre-
coverable) error.

BIU_STAT
<6:4> Dispatch Command

100
101
110
110
001
001
011
010
010
000

DREAD
DREAD_IO
DREAD_LOCK
DREAD_LOCK_IO
IREAD
IREAD_IO
WRITE_UNLOCK
WRITE
IO_WRITE
WRITE_UNLOCK_IO

 CPU Chip 2-91

BIU_ADDR—BIU Address Register

Table 2-55 BIU_ADDR Register Bit Definitions

Address
Access

00A6
RO

The BIU_ADDR register contains the physical address associated
with any errors reported in the BIU_STAT register. This register is
locked against further updates upon detection of an error and is
unlocked when it is read by the processor.

BIU_ERR_PA

BXB-0186-92

31 4 05

X X X X X

Name Bit(s) Type Function

BIU_ERR_PA <31:5> RO BIU Error Physical Address. Contains the physi-
cal address of the reference that caused the error re-
ported in the BIU_STAT register. BIU_ERR_PA is
locked against further updates upon detection of an er-
ror and is unlocked when it is read by the processor.

2-92 CPU Chip

FILL_SYND—Fill Syndrome Register

Table 2-56 FILL_SYND Register Bit Definitions

A syndrome of 0 indicates no ECC error for the associated longword. Table
2-57 outlines syndromes for all single-bit errors. Any non-zero syndrome
not listed in the table indicates a double-bit error.

Address
Access

00A8
RO

The FILL_SYND register contains the syndrome bits associated
with the quadword in error if the NVAX+ chip is in ECC mode and
an ECC error is recognized during a P-cache fill operation. The
contents of the FILL_SYND register remain locked with the
quadword in error until the processor reads the FILL_ADDR regis-
ter. The FILL_SYND register is 14 bits wide.

63 7 6 014 13

HI LO

BXB-0163-92

0

Name Bit(s) Type Function

HI

LO

<13:7>

<6:0>

RO

RO

High. Latches the ECC syndrome bits for the high
longword.

Low. Latches the ECC syndrome bits for the low
longword.

 CPU Chip 2-93

Table 2-57 Syndromes for Single-Bit Errors

Bit
Syndrome
 (Hex) 1 Bit

Syndrome
 (Hex)

Data<0>
Data<1>
Data<2>
Data<3>
Data<4>
Data<5>
Data<6>
Data<7>
Data<8>
Data<9>
Data<10>
Data<11>
Data<12>
Data<13>
Data<14>
Data<15>
Data<16>
Data<17>
Data<18>
Data<19>

4F
4A
52
54
57
58
5B
5D
23
25
26
29
2A
2C
31
34
0E
0B
13
15

Data<20>
Data<21>
Data<22>
Data<23>
Data<24>
Data<25>
Data<26>
Data<27>
Data<28>
Data<29>
Data<30>
Data<31>
ECC<0>
ECC<1>
ECC<2>
ECC<3>
ECC<4>
ECC<5>
ECC<6>

16
19
1A
1C
62
64
67
68
6B
6D
70
75
01
02
04
08
10
20
40

1 Any non-zero syndrome of 0 not listed in this table indicates a double-bit error.

2-94 CPU Chip

FILL_ADDR—Fill Address Register

Table 2-58 FILL_ADDR Register Bit Definitions

Address
Access

00AA
RO

The FILL_ADDR register contains the physical address associated
with any errors reported in the BIU_STAT<14:8>. This register is
locked against further updates upon detection of an error and is
unlocked when it is read by the processor.

FILL_ERR_PA

BXB-0187-92

31 4 05

X X X X X

Name Bit(s) Type Function

FILL_ERR_PA <31:5> RO Fill Error Physical Address. Contains the physi-
cal address of the reference that caused the error re-
ported in the BIU_STAT<14:8>. FILL_ERR_PA is
locked against further updates upon detection of an
error and is unlocked when it is read by the proces-
sor.

 CPU Chip 2-95

BEDECC—Software ECC Register

Table 2-59 BEDECC Register Bit Definitions

Address
Access

00AE
WO

The BEDECC register is a 14-bit write-only register. If
BIU_CTL<SW_ECC> = 1, the check bits for write data are sourced
from the BEDECC register instead of the normal check bit genera-
tion logic.

31 14 07 6

HI [6..0]

BXB-0262-92

LO [6..0]

13

Name Bit(s) Type Function

HI

LO

<13:7>

<6:0>

WO

WO

High. Check bits of data<63:32>.

Low. Check bits of data<31:0>.

2-96 CPU Chip

CHALT—Console Halt Register

Table 2-60 CHALT Register Bit Definitions

Figure 2-22 shows the console dispatch data structure.

Address
Access

00B0
R/W

The CHALT register contains the base address of the console pro-
gram. Microcode uses this register to determine where to start
executing the console program whenever a console halt occurs as a
result of an error condition or operator intervention (Ctrl/P typed
at the terminal keyboard).

31 0

CON_BASE_ADDR

BXB-0170-92

Name Bit(s) Type Function

CON_BASE_ADDR <31:0> R/W Console Base Address. Contains the console base
address that is used by microcode to determine the
starting address of the console program on a console
halt. CON_BASE_ADDR is loaded at power-up by the
console code.

 CPU Chip 2-97

Figure 2-22 Console Dispatch Data Structure

The SYS_TYPE line contains information that distinguishes different
NVAX+ based module implementations. Figure 2-23 shows the parame-
ters of the SYS_TYPE line.

Figure 2-23 SYS_TYPE Parameters

Table 2-61 gives the encoding of the SYS_TYPE parameters in the console
dispatch data structure.

BXB-0263-92

BRW Code

SYS_TYPE

Cosole Load / Start Addr

HWRPB Size (in 512 b pages)

HWRPB Base Physical Address

Memory Bitmap Size (in bits)

Memory Bitmap Physical Address

Beginning of Console Code

0

4

8

C

10

14

18

1C

31 24 23 16 15 08 7

SYS_TYPE REV_LEVEL SYS_VAR ARCH_ID

BXB-0181-92

2-98 CPU Chip

Table 2-61 SYS_TYPE Parameter Definitions

Name Bit(s) Type Function

SYS_TYPE

REV_LEVEL

SYS_VAR

ARCH_ID

<31:24>

<23:16>

<15:8>

<7:0>

RO

RO

RO

RO

System Type. Indicates the type of system: 0 for
VAX 7000 and 1 for VAX 10000.

Revision Level. Contains the revision number of
the CPU module’s console firmware. For the KA7AA
CPU module, this field contains 01 (hex).

System Variant. Distinguishes variants of similar
systems. For the KA7AA CPU module, this field con-
tains 01 (hex).

Architectural ID. Licensing bits that distinguish
timesharing systems from workstations. For the
KA7AA CPU module, this field contains 01 (hex).

 Cache Subsystem 3-1

Chapter 3

Cache Subsystem

The cache subsystem of the KA7AA CPU module is organized as a three-
level instruction cache and a two-level data cache. It consists of the fol-
lowing structures:

• Virtual Instruction Cache (VIC)
On-chip, 2 Kbytes, direct mapped, virtually addressed, instruction
stream only; has 32-byte block size and a valid bit per quadword
subblock (fill) size.

• Primary Cache (P-cache)
On-chip, 8 Kbytes, 2-way set associative, physically addressed, read
allocate, no-write allocate, write through, mixed instruction and data;
has 32-byte block size and a valid bit per quadword subblock (fill)
size.

• Backup Cache (B-cache)
Off-chip, 4 Mbytes, direct mapped, physically addressed, write back,
mixed instruction and data; has 64-byte block size to match the LSB
bus block size, and 64-byte fill size.

The KA7AA CPU caches are not strictly hierarchical. Since the VIC is
virtually addressed and holds I-stream data only, it is not necessarily a
subset of the P-cache, which is always a subset of the B-cache. Maintain-
ing coherency in this type of cache organization requires strict adherence
to the proper sequence of turning caches on and off.

Although the instruction caching is not necessarily hierarchical, fetching
instructions operates as if it were. If an instruction is not found in the
VIC, it is looked for first in the P-cache, then in the B-cache, and finally
in memory. Data is sought first from the P-cache, then the B-cache, and
finally from memory.

Figure 3-1 shows the KA7AA CPU module cache organization.

3-2 Cache Subsystem

Figure 3-1 KA7AA CPU Module Cache Organization.

LSB Bus

LSB Address

P0
Map

P1
Map

LLOCK
Reg

V
Buf

LEVI

B-Stat

B-Tag

B-Data

B-Map

D
ata

T
ag

S
tat

P-Cache0

P-Cache1

I-Cache
NVAX+

PA

B
IU

 D
ata

Write
 BufData & Instruction

Instruction

To reg file

To reg file

To Ibuf

TB

VA

From
Ebox
 &
Ibox

From Ibox

Data & Instruction

PA

BXB-0210-92

B
IU

 A
ddress

 Cache Subsystem 3-3

3.1 Virtual Instruction Cache

The virtual instruction cache (VIC) acts as the primary source of instruc-
tion stream for the Ibox. It is direct-mapped with a 2-Kbyte cache size.
Table 3-1 summarizes the VIC attributes.

Table 3-1 Virtual Instruction Cache Attributes

The VIC contains four internal processor registers (IPRs) that provide con-
trol and read/write access to the cache arrays. They are:

• VIC Memory Address Register (VMAR), IPR208

• VIC Tag Register (VTAG), IPR209

• VIC Data Register (VDATA), IPR210

• Ibox Control and Status Register (ICSR), IPR211

The VIC registers are described in Section 2.11.2.

Attribute Implementation

Cache size
Access type
Block size
Subblock size
Valid bits
Data parity bits
Number of tags
Tag parity bit
Fill algorithm
Access size
Bus size
Prefetching
Data stored
Virtual/physical

2 Kbytes
Direct-mapped
32 bytes
8 bytes
4 per block; 1 per subblock
4 even parity bits per cache block; 1 per subblock
64
1 even parity bit per tag
Fill forward, random cycle allocate if no tag hit or data subblock valid
8 bytes
8 bytes
None
I-stream only
Virtual

3-4 Cache Subsystem

3.2 Primary Cache

The primary cache (P-cache) represents the first level of D-stream memory
hierarchy and the second level of I-stream memory hierarchy. The P-cache
is 2-way set associative. It stores 8 Kbytes of data and 256 tags corre-
sponding to 256 hexword blocks (1 hexword = 32 bytes). Each tag is 20 bits
wide corresponding to bits <31:12> of the physical address. There are four
quadword subblocks per block with a valid bit associated with each
subblock. The access size for P-cache reads and writes is one quadword.
Parity is maintained for each byte of data (32 bits per block). One bit of
parity is maintained for every tag. The P-cache has a one cycle access and
a one cycle repetition rate for both reads and writes.

Memory updates affect the P-cache as follows. If the block is in the P-
cache, then external logic invalidates the P-cache entry and updates the B-
cache. If the block is in the B-cache but NOT in the P-cache, external logic
invalidates the B-cache entry and does nothing to the P-cache.

Table 3-2 summarizes the P-cache attributes.

Table 3-2 Primary Cache Attributes

Five different internal processor registers (IPRs) control the P-cache and
provide read/write access to the cache arrays. They are:

• P-Cache Tag Registers (PCTAG) —256 IPRs

• P-Cache Data Parity Registers (PCDAP) —1024 IPRs, 512 for each
P-cache set

• P-Cache Parity Error Address Register (PCADR), IPR242

• P-Cache Control Register (PCCTL), IPR248

• P-Cache Parity Error Status Register (PCSTS), IPR244

The P-cache registers are described in Section 2.11.4.

Attribute Implementation

Cache size
Access type
Block size
Subblock size
Valid bits
Data parity bits
Number of tags
Tag parity bit
Fill algorithm
Access size
Bus size
Prefetching
Data stored
Virtual/physical

8 Kbytes
2-way set associative
32 bytes
8 bytes
4 per block; 1 per subblock
4 even parity bits per cache block; 1 per subblock
256
1 even parity bit per tag
Fill forward, random cycle allocate if no tag hit or data subblock valid
8 bytes
8 bytes
None
Both I- and D-stream
Physical

 Cache Subsystem 3-5

3.3 Backup Cache

The backup cache (B-cache) is implemented in RAMs and represents the
second level of D-stream memory hierarchy and the third level of I-stream
memory hierarchy. It consists of three RAM structures: B-tag, B-data,
and B-stat, located between the NVAX+ chip and the LEVI interface, and
is controlled by the Cbox and the LEVI interface.

The B-cache stores 4 Mbytes of data. It is organized as direct-mapped,
with a block (line) size of 64 bytes to match the LSB bus. For each block,
the following information is stored:

• Tag: Consists of bits <33:22> of the physical address

• Tag parity: Reflects even parity over the tag field

• Valid bit (V): Indicates whether the line can be considered

• Shared bit (S): Indicates whether this line might be resident in an-
other cache in the system.

• Dirty bit (D): Indicates whether the line has been written to by this
CPU and has more recent data than memory.

• Status parity bit: Reflects even parity over the V, S, and D bits.

The B-cache organization groups the status bits in a single 64K X 4 RAM
(B-stat) and allows these bits to be updated without changing the value of
the tag. This in turn allows the CPU to set the Dirty bit on write hits to
nonshared blocks. In general, the tag field is only loaded by the LEVI in-
terface, and the status and data stores are loaded by both the processor
and the LEVI interface.

3.3.1 B-Cache States

The B-cache state is defined by the three status bits: Valid, Shared, and
Dirty. Table 3-3 shows the legal combinations of the status bits.

From the perspective of the NVAX+ chip, a tag probe for a read is success-
ful if the tag matches the address and the V bit is set. A tag probe for a
write is successful if the tag matches the address, the V bit is set, and the
S bit is clear.

3-6 Cache Subsystem

Table 3-3 B-Cache States

3.3.2 B-Cache State Changes

The state of any given cache line in the B-cache is affected by either proc-
essor actions or actions of other nodes on the LSB bus.

Table 3-4 shows what effect processor actions have on the state of a given
B-cache line and the resulting/required bus traffic. Table 3-5 shows what
effect bus actions have on the state of a given B-cache line, and the result-
ing/required module action.

LSB writes always clean (make non-dirty) the cache line in both the initi-
ating node and all nodes that choose to take the update. They also update
the appropriate location in main memory.

The KA7AA CPU module decides whether to take an update or not as a
function of the state of the P-cache backmap (P-map, Section 3.4.1). If the
LEVI interface determines that the block referenced by an LSB write com-
mand is resident in the P-cache, the relevant block is updated in the B-
cache with the LSB write data and also invalidated in the P-cache, since
the P-cache must be a subset of the B-cache at all times. If the LEVI inter-
face determines that the block referenced by an LSB write command is not
resident in the P-cache, but is resident in the B-cache, it invalidates the
relevant block in the B-cache.

The KA7AA CPU module also compares incoming LSB addresses to those
found in the LLOCK register, LVICT register, and LWPEND register (see
Chapter 7). The behavior of the KA7AA CPU module in these cases is
shown in Table 3-6.

 B-Stat
V S D State of Cache Line Assuming Tag Match

 0 X X

 1 0 0

 1 0 1

1 1 0

1 1 1

Not valid miss.

Valid for read or write. This cache line contains the only cached copy of the
block. The copy in memory is identical to this block.

Valid for read or write. This cache line contains the only cached copy of the
block. The contents of the block have been modified more recently than the
copy in memory.

Valid for read or write but writes must be broadcast on the bus. This cache
line may also be present in the cache of another CPU. The copy in memory is
identical to this block.

Valid for read or write but writes must be broadcast on the bus. This cache
line may also be present in the cache of another CPU. The contents of the
block have been modified more recently than the copy in memory.

 Cache Subsystem 3-7

Table 3-4 Effect of Processor Action on B-Cache Line

Processor
Request Tag Probe Result1 Action on LSB

LSB
Response

Next Cache
State

Read

Read

Write

Write

Read

Read

Write

Write

Read

Read

Write

Write

Read

Write

Write

Write

Invalid

Invalid

Invalid

Invalid

_____ _____
Match AND Dirty
_____ _____
Match AND Dirty
_____ _____
Match AND Dirty
_____ _____
Match AND Dirty

Match AND Dirty

Match AND Dirty

Match AND Dirty

Match AND Dirty

Match

Match AND Shared

Match AND Shared

Match AND Shared

Read

Read

Read

Read, Write

Read

Read

Read

Read, Write

Read, Wr-Victim

Read, Wr-Victim

Read, Wr-Victim

Read, Write,
Wr-Victim

None

None

Write

Write

Shared

Shared

Shared

Shared

Shared

Shared

Shared

Shared

Shared

Shared

Shared

Shared

None

None

Shared

Shared

______ _____
Shared, Dirty

Shared, Dirty

Shared, Dirty

Shared, Dirty

______ _____
Shared, Dirty

Shared, Dirty

Shared, Dirty

Shared, Dirty

______ _____
Shared, Dirty

Shared, Dirty

Shared, Dirty

Shared, Dirty

No change

Shared, Dirty
______ _____
Shared, Dirty

Shared, Dirty

1 An overscore on a cache block status bit indicates the complement of the state. For example, Shared = Not Shared.

3-8 Cache Subsystem

Table 3-5 Effect of LSB Bus Action on B-Cache Line

Table 3-6 KA7AA CPU Module Response to Incoming Addresses

3.4 Cache Backmaps

The KA7AA CPU module implements two backmaps (or duplicate tag
stores) that keep track of the contents of the P-cache and the B-cache.
They are referred to as P-map and B-map. The backmaps are cycled with
every bus transaction to allow the KA7AA CPU module to properly re-
spond to a given bus command/address.

LSB
Operation Tag Probe Result1

Module
Response

Next Cache
State Comment

Read

Write

Read

Read

Write

Write

Match OR Invalid

Match OR Invalid

Match AND Dirty

Match AND Dirty

Match and line is
interesting

Match and line is
uninteresting

______ _____
Shared, Dirty
______ _____
Shared, Dirty

Shared, Dirty

Shared, Dirty

Shared, Dirty

 ______ _____
Shared, Dirty

No change

No change

Shared, Dirty

Shared, Dirty

Shared, Dirty

Invalid

This module must
supply the data.

This module takes
the update.

This module takes
the invalidate.

1 An overscore on a cache block status bit indicates the complement of the state. For example, Shared = Not Shared.

LSB
Operation

Address Register
Matched Module Response Action

Read

Write

Read

Write

Read

Write

LLOCK register

LLOCK register

LVICT register

LVICT register

LWPEND register

LWPEND register

Shared

Dirty

Shared, Dirty
______ _____
Shared, Dirty

Shared

Shared, Dirty

No action

Clear LLOCK<31>

Supply data from victim buffer

Invalidate victim buffer; remove
bus request

No action

Accept update to B-cache

1 An overscore on a cache block status bit indicates negation.

 Cache Subsystem 3-9

NOTE: No backmap is necessary for the VIC, because the VIC is virtually ad-
dressed and is flushed on REI (Return from Exception or Interrupt) instruc-
tions.

3.4.1 P-Map

The P-map is located in the LEVI gate arrays and consists of two struc-
tures, each 128 entries deep. Each entry contains a value that is equal to
the difference between the B-cache tag (address bits <33:22>) and the P-
cache tag (address bits <31:12>), valid bit, and parity. Thus, the P-map is
12 bits wide: Address bits <21:12>, V, and P. The P-map is loaded by the
NVAX+ chip during B-cache D-stream read hits and by LEVI during B-
cache D-stream read misses. LEVI control can read the P-map whenever
an LSB write hits in the B-map.

The KA7AA CPU module enforces inclusion, which ensures that the valid
contents of the P-cache are always a subset of the valid contents of the B-
cache. Therefore, the KA7AA CPU module must invalidate P-cache lines
whenever the given block becomes invalid in the B-cache. This occurs on
refills (either a dirty victim or a nonshared victim) and on updates.

When an update occurs on the LSB bus, and the given address yields a tag
match and the entry is valid in the P-map, the B-cache takes the update
and the CPU module invalidates the corresponding entry in the P-cache.

3.4.2 B-Map

The B-map is located on the module and is a structure 64K entries deep.
Each entry consists of the B-cache tag (address bits <33:22>), valid bit, and
parity. The B-map is written by LEVI at the same time that the B-cache
tag is written (within the context of B-cache manipulation, due to either
processor action or bus action). The B-map is read on every LSB bus com-
mand/address cycle. The contents of the B-map inform the KA7AA CPU
control logic when to request the B-cache to form an appropriate bus re-
sponse.

3.5 Victim Buffer

The KA7AA CPU module implements a victim buffer to hold the contents
of a victimized block in the B-cache. A victim block is a B-cache line that is
valid and dirty but has a tag mismatch for a processor request. The proces-
sor tag probe yields a miss and the appropriate block is fetched from mem-
ory. However, the block in the B-cache at this index must be written back
to memory since it is dirty. The KA7AA CPU module posts the miss refill
to the bus before actually performing the victim write.

A single victim block and victim address pair is stored in the LEVI chips
for later transmission on the bus. While the victim buffer contains a valid
victim, the KA7AA CPU module treats this block like a second set in the
B-cache, compares all bus addresses to the victim address, and responds to
bus reads and writes as required by the bus protocol (see Table 3-6).

The KA7AA CPU module implements only a single victim buffer. It there-
fore does not process a second B-cache miss before writing the victim block
to memory.

3-10 Cache Subsystem

3.6 Write Policy

The NVAX+ chip contains an 8-byte write packer and an 8-entry write
queue where each entry is a quadword of data. The function of the write
packer is to accumulate memory-space writes that arrive sequentially to
the same quadword, so that only one write needs to be done to the cache.
Only normal write commands to the same quadword are packed together.
All other writes (that is, Write_Unlock) pass immediately from the write
packer into the write queue. Data in the write queue is assembled into an
octaword (when possible) and written to the B-cache when the Cbox arbiter
does not see a request of higher priority, or when one of the following con-
ditions exists:

• A DREAD_LOCK or WRITE_UNLOCK command.

• An IPR_READ or IPR_WRITE command (including Clear Write
Buffer).

• An I/O space read or I/O space write.

• A DREAD or IREAD conflict with data in the write packer or write
queue. (Addresses are checked to hexword granularity on address bits
<31:5>.)

Depending on how it is able to pack and assemble data in the write queue,
the Cbox is able to write between one and four longwords of data at a time
to the B-cache. For the case of a byte/word write, the Cbox does a Read-
Modify-Write operation, which is implemented in hardware.

When the Cbox detects a byte/word write condition that incurred a B-cache
miss, it does the following:

1. Issues an LDxL command and drives the EDAL address lines with the
write address.

2. Receives a quadword of data, checks ECC, and merges the read data
with the byte/word write data.

3. Issues an STxC command along with the correct LW_MASK<7:0> and
write address. If the STxC command fails (LLOCK<31> not set),
microcode loops back to 1 (first element in the current list) and issues
an LDxL.

Otherwise, the Cbox does a B-cache read hit, merge, and B-cache write hit.

The KA7AA CPU module performs LSB bus write operations as follows:

• Victims
If a given cache line is valid and dirty and the tag does not match the
address for the given processor request, the line must be written back
to memory. To enhance performance, this victim is written back to
memory after the refill. The victim data must be removed from the B-
cache data store and held in a victim buffer for later transmission on
the LSB bus. While a block is in a victim buffer, the KA7AA CPU
must respond to all reads and writes that reference the block (see Ta-
ble 3-6).

• Shared Blocks
If the response to a tag probe for a processor write is shared, the write
must be broadcast on the LSB bus.

 Cache Subsystem 3-11

3.7 B-Cache Operating Modes

The backup cache has two modes of operation:

• B-cache on

• B-cache force hit

The operating modes are controlled by two bits in the BIU_CTL register:
BC_ENB (bit <0>) and BC_FHIT (bit <3>).

Table 3-7 shows how the operating mode of the B-cache is selected.

Table 3-7 Selection of the B-Cache Operating Mode

The On state is the normal operating mode of the B-cache. It is selected by
setting BIU_CTL<0> and clearing BIU_CTL<3>.

The B-cache force hit mode is selected by setting FORCE_HIT
(BIU_CTL<3>) when the B-cache is enabled. When FORCE_HIT is set, all
memory space reads and writes to the B-cache, both I-stream and D-
stream, are forced to hit. The tag store state is not changed. The data
RAMs are accessed as if the tag store access produced a dirty-valid hit. In
a multiprocessor environment, the B-cache must be flushed of all dirty
blocks before force hit mode is selected.

Force hit mode is intended to be used only for testing and initialization.
Tag store parity and data RAM ECC errors are detected in this mode.

3.8 Cache Initialization

On power-up or following a reset, the processor microcode and the console
firmware initialize the P-cache and the B-cache. In the initialized state,
the P-cache is enabled for I-stream and D-stream operations, and the B-
cache is on.

CAUTION: The cache subsystem is initialized to a determined state. Software must
never turn the B-cache off once the system is up and running. Turning the
B-cache off during normal operation places the system in an UNDETER-
MINED state.

BIU_CTL<3> BIU_CTL<0> Operating Mode

0

1

1

1

B-cache on

Force hit

 LSB Bus Interface 4-1

Chapter 4

LSB Bus Interface

The CPU module connects to the LSB bus through LEVI, the LSB inter-
face, which is implemented in two gate array chips, LEVI-A and LEVI-B.
LEVI controls all the tags, maps, and data RAMs on the CPU module. It
contains the P-map, which maps the processor P-cache.

LEVI performs the following major tasks:

• Translates CPU memory and I/O space references to the appropriate
LSB transactions.

• Supports control of writebacks to memory and cache fills from mem-
ory in reponse to processor actions.

• Supports control of cache invalidates, cache updates, and cache block
transfers to the LSB bus in response to LSB actions.

• Initiates reads and writes to the CPU node private address space (the
Gbus on the CPU module).

• Supports LSB required interrupt logic.

• Implements all LSB required registers.

This chapter discusses the role of LEVI in transactions between the CPU
module and other modules on the LSB bus. Sections include:

• LEVI Address Path

• LEVI Data Path

• LEVI Controllers

• Interfacing Rules

• Address Space Mapping

• LEVI Transactions

Figure 4-1 shows a block diagram of the LEVI chips.

4-2 LSB Bus Interface

Figure 4-1 LEVI Block Diagram

4.1 LEVI Address Path

The LEVI address path (see Figure 4-1) is implemented in the LEVI-A
chip. It consists of the following major elements:

• P-Map
The P-map consists of four 64 X 16 dual-ported RAMs maintained ex-
clusively by LEVI. Each entry in the P-map represents a P-cache block
in the processor. LEVI writes to the P-map during processor read hits
to the B-cache. One use of the P-map is deciding whether to update or
invalidate a B-cache block during LSB writes from another node. If the
LSB write hits in the P-map, the update is taken; otherwise LEVI in-
validates the B-cache. Another use is to invalidate P-cache blocks that
are being displaced by B-cache fills.

• LVICT Register
LEVI keeps the address of the last victimized B-cache block and a valid
bit in the LVICT register. Once the LSB Victim Write takes place, the
Valid bit is cleared. Should another LSB (non-Victim) write match the
address in the LVICT register, LEVI invalidates its own LVICT regis-
ter (see Table 3-6).

• LLOCK Register
The address is latched and LLOCK<31> is set when the processor is-
sues an LDxL instruction. LLOCK<31> is cleared after a successful

BXB-0364-92

To NVAX+

LSB System Bus

Fill
Buffer

Write
Buffer

Get
Buffer

LEVI
Buffer

VB

Fill
Buffer

Write
Buffer

Get
Buffer

SB

VB

LVICT
Reg

LLOCK
RegP-Map

Hit

Hits

SB

LC

LSB
Arb

LPC

LEVI-B

LEVI-A

Data <127:40>
ECC <27:0>

D
ata <

39:0>

B-cache

ECC Info

CMD
Data

D
ata

D
ata

A
ddr

Addr

LDC

To
Data Path
Elements

LWPEND
Reg

 LSB Bus Interface 4-3

STxC instruction. LSB reads that hit in the LLOCK register cause
LEVI to respond “Shared” so that all subsequent writes to the address
are visible on the LSB bus. LSB writes that hit in the LLOCK register
cause LEVI to clear the LLOCK<31> (see Table 3-6).

• LWPEND Register
This register contains the address of the pending write and a valid bit.
If an LSB Write hits the LWPEND register, LEVI-A takes the update
even if the write missed in the P-map to assure that the write about to
be issued has the latest data (see Table 3-6).

4.2 LEVI Data Path

The LEVI data path, like the LSB bus and CPU module data paths, is 156
bits wide: 128 bits of data and 28 bits of ECC (7 bits for each longword).
Note that LEVI treats the data and ECC bits identically, since there is no
ECC correction between the B-cache and the LSB bus.

An array of buffers in the LEVI data path serve to store data and synchro-
nize data movement within LEVI. The buffers are implemented in both
LEVI chips, as shown in Figure 4-1. The main buffer elements on the
LEVI data path are the following:

• Fill Buffer
The fill buffer works with the LEVI buffer on the module to receive,
and possibly hold, four octawords of LSB data headed for the B-cache.
The data pipeline shifts from the gate array time domain to the clock-
forwarded module time domain in the fill buffer. The fill buffer also
merges write buffer data with LSB data following B-cache write
misses.

• Get Buffer
The get buffer also works with the LEVI buffer; it captures B-cache
blocks headed for the LSB bus. The data pipeline shifts back from the
module to the gate array time domain in the get buffer.

• Write Buffer
The write buffer captures two octawords of write data from the proces-
sor in three situations:

B-cache write misses
B-cache write hits to shared blocks
CSR writes

The write buffer also receives a write data mask (LEVI-A gets four of
eight bits; LEVI-B gets all eight bits) and ADDR<5> from the proces-
sor. The mask and address bits indicate which longwords are to be
merged with B-cache data.

• Stall Buffer
The stall buffer holds four octawords of B-cache data for broadcast onto
the LSB bus. It also merges write buffer data with B-cache data dur-
ing writes to shared blocks and processor CSR writes.

• Victim Buffer
The victim buffer holds B-cache blocks victimized by cache fills. The
buffer holds only a single cache block so transactions that cause other
victims are held off until the current victim reaches the LSB bus.

4-4 LSB Bus Interface

4.3 LEVI Controllers

The control functions on the LEVI transactions are implemented in three
controllers in the LEVI chips:

• LEVI processor controller (LPC)

• LEVI data controller (LDC)

• LSB controller (LC)

4.3.1 LEVI Processor Controller

The LPC provides the control interface between the processor and LEVI.
It fields requests from the processor and initiates LEVI responses. Major
functions include:

• LoadLock/StoreCond
The LPC first probes the cache; misses generate requests to the LSB
controller for LSB transactions.

• Gbus Read
The LPC asks the LSB controller for a CSR read and does extra hand-
shaking on the Gbus. It appears on the LSB as a private command
(not a CSR read).

• Gbus Write
The LPC controls the write to the LEVI write buffer, then handshakes
with the Gbus and acknowledges the processor. No LSB transaction is
requested.

• Processor Read Fill
After a processor read miss and after LEVI has received the missed
data from the LSB bus, the LPC loads the processor with the two
octawords it has waited for. The LEVI data controller (LDC) briefly in-
terrupts the B-cache fill after the first octaword write to allow the proc-
essor to load two octawords from the LEVI buffer. The LDC then com-
pletes the final three octaword writes.

• Processor Write Data
The LPC controls the processor writes to the write buffer on LEVI
when the processor cannot write directly to the B-cache.

• P-Cache Invalidates
Whenever LEVI invalidates P-map entries, the LPC invalidates the
corresponding P-cache entries in the processor.

The LPC runs in the processor time domain.

4.3.2 LEVI Data Controller

The LDC directs data traffic moving between the LSB and the B-cache
based on requests from the LC. Each transaction described below moves
one B-cache block. The LDC is involved in the following transactions:

• GetRAM
GetRAM moves one B-cache block to the LSB by way of the stall buffer.
The LSB controller (LC) requests this transfer when another node has
issued a read to a block and the local (and only valid) copy is dirty.

 LSB Bus Interface 4-5

• GetWBRAM
GetWBRAM is used on processor writes to shared B-cache blocks and
processor CSR writes. The fetched B-cache block is conditionally
merged with the contents of the write buffer (based on the values of
the write data mask and ADDR<5>) before being driven onto the LSB
by way of the stall buffer.

• GetVic
GetVic is used to route B-cache blocks that are victimized by B-cache
fills to the victim buffer. Note that blocks in the victim buffer must
await an LSB slot; blocks in the stall buffer have already had their
LSB slots allocated (by the LC).

• FillRAM
FillRAM moves one block directly from the LSB to the B-cache. The
LC requests this to take an update to a shared block or to complete the
first read of a processor write miss to a shared B-cache block.

• FillProcRAM
FillProcRAM is requested following processor read misses. The LDC
moves data from the LSB to the fill buffer and the LEVI buffer on the
module. The data pipeline is frozen briefly after the first octaword
write to the B-cache to allow the LPC to load the first two octawords
into the processor (in its own time domain) by way of the LEVI buffer.
The LPC then releases the processor but retains control of the B-cache
so that the LDC can write the remaining three octawords to the
B-cache.

• FillProc
FillProc services processor CSR reads. This transaction is identical to
FillProcRAM discussed above except that writes to the B-cache are
suppressed. (CSR data is not cached.)

• FillWBRAM
FillWBRAM merges processor write data in the Write buffer with the
incoming LSB data and writes the result into the B-cache. Merging is
based on the values of the write data mask and ADDR<5>. The LC re-
quests this transaction following processor write misses to blocks that
are not shared.

The LDC uses clock forwarding on the CPU module for data transfers be-
tween LEVI and the B-cache.

4.3.3 LSB Controller

The LC is the central controller of the LEVI chipset. It receives requests
from the LPC and issues requests to the LPC, LDC, and the LSB arbiter.
The LC responds to both processor-initiated and LSB-initiated transac-
tions. Specifically, the LC performs the following functions:

• Controls the address path and LEVI access to the B-map, B-stat, and
B-tag RAMs on the CPU module.

• Schedules all LEVI and CPU module operations except B-cache hits
and Gbus transactions. Requests from the LC to the LPC and LDC
move data around the module, the gate arrays, and the LSB bus.

• Asserts the LSB address and control signals (CNF, ERR) according to
LSB protocol. LSB SHARED and DIRTY are asserted based on the re-

4-6 LSB Bus Interface

sults of B-tag and B-stat lookup. LSB STALL is asserted when re-
quired by internal conflicts.

• The LC also controls B-cache access from the processor or LEVI with
the LSYNC signal (Section 4.4.1).

The LC schedules transfers of data between the LEVI and the CPU module
during dedicated LSB cycles.

4.4 Interfacing Rules

Logic on the CPU module synchronizes dual-ported accesses to the B-cache
and the P-map, since these components are accessed by both the processor
and LEVI. On the other hand, arbitration rules govern node accesses to
the LSB bus.

All cache data is longword ECC protected (seven bits per longword). LEVI
does look-aside ECC error detection but no ECC error correction.

The LEVI chips calculate ECC for each longword and compare it against
the received ECC. Any difference between calculated and received ECC in-
dicates an error, which is signaled to the system. The ECC for longword 0
and a partial ECC syndrome for longword 1 are passed each cycle from
LEVI-B to LEVI-A.

4.4.1 Dual-Ported Access Synchronization

Dual-ported B-cache and P-map accesses are synchronized with the
LSYNC semaphore. LSYNC is also used to synchronize access to the CPU
module data path during Gbus references.

Whenever LSYNC is deasserted (default state), the processor can read or
write the B-stat, B-tag, and B-data RAMs directly.

NOTE: The B-map RAMs are never accessed by the processor.

During LoadLock and StoreCond requests, whenever LSYNC is
deasserted, the LPC can read or write the B-stat, B-tag, and B-data RAMs
directly.

During RBlock and WBlock requests to Gbus addresses, whenever LSYNC
is deasserted, the LPC can transfer data between the processor and the
Gbus buffer on the CPU module. LEVI has priority to assert LSYNC and
access the B-cache to service LSB transactions, since the LSB is non-
pended. LEVI also accesses the B-cache to complete processor transactions
that miss the B-cache. When the LC asserts LSYNC, the processor and
the LPC suspend B-stat/B-tag references (tag probes), P-map updates
(PMapWE), and B-data references within a fixed number of LSB cycles.
The LEVI is then free to access any resource within the CPU module until
it deasserts LSYNC at the completion of the LSB-related access.

4.4.2 LSB Arbitration

LEVI watches all LSB traffic to adhere to the arbitration rules. Specifi-
cally, read, write, or victim transactions from any node that reference a
common memory bank cannot occur more frequently than once every three
transactions (or once every 15 LSB cycles). CSR transactions are also lim-
ited in the same manner.

 LSB Bus Interface 4-7

4.5 Address Space Mapping

The LEVI chips define which portion of the address space is cacheable or
noncacheable. Cacheable address space is memory space and noncacheable
address space is I/O space. The LEVI chips further separate I/O space into
LSB bus CSR space and local Gbus space.

The LEVI interface ensures that processor references to memory result in
an LSB bus read or write command, while references to I/O space result in
an LSB read CSR, write CSR command, or private command.

Table 4-1 gives the encodings of commands that LEVI can send to the LSB
bus.

Table 4-1 LSB Command Field Encodings

4.6 LEVI Transactions

As the CPU module’s interface to the LSB bus, LEVI responds to transac-
tions initiated from two sources:

• Processor (CPU chip)

• LSB bus (other nodes)

These transactions require that both the processor and LEVI have access
to the B-cache on the CPU module and the P-map in LEVI. The dual-
ported accesses to these components are synchronized with the LSYNC
semaphore (Section 4.4.1). The two LEVI chips operate in both the proces-
sor and the LSB bus time domains.

4.6.1 Processor-Initiated Transactions

LEVI responds to the following processor requests:

• Read/Write Hit
During a D-stream read hit, LEVI updates its P-map. It takes no other
action.

• Block Read/Write
LEVI captures B-stat and B-tag data, arbitrates for the LSB bus, is-
sues the read/write command code on the bus, receives/drives data on
the bus, and updates all tags, maps, and B-stat bits.

LSB D<37:35> Command

000
001
010
011
100
101
110
111

Read
Write
Reserved
Write Victim
Read CSR
Write CSR
Reserved
Private

4-8 LSB Bus Interface

• LoadLock/StoreCond
LEVI waits for LSYNC to deassert, if necessary, then probes the B-tag.
On an LDxL (LoadLock) command that hits in the B-cache, LEVI com-
pletes the read request and sets LLOCK<31>. If the LDxL is a B-
cache miss, LEVI issues an LSB bus read command and sets
LLOCK<31>. On an STxC (StoreCond) request from the processor,
LEVI checks LLOCK<31>. If this bit is set, (success) and the B-cache
tag lookup results in a hit, LEVI immediately completes the write and
clears LLOCK<31>. If the tag probe results in a miss, and
LLOCK<31> is set, LEVI issues an LSB bus write command. On an
STxC, if LLOCK<31> is clear, LEVI returns failed status to the proces-
sor.

• Gbus Read/Write
LEVI waits for LSYNC to deassert, if necessary. For Gbus reads,
LEVI-A arbitrates for the LSB bus, issues a private command, for-
wards data from the Gbus to the processor by way of the LSB bus.
Gbus writes slip through LEVI to the Gbus without an LSB transac-
tion.

The processor can be engaged in only one external operation at a time.
This means that once the processor makes a transaction request to LEVI,
it remains idle until released by LEVI.

4.6.2 LSB-Initiated Transactions

LEVI responds to transactions initiated by other nodes on the LSB. These
transactions include:

• Read
LEVI checks each read address against the B-map. If there is a match,
LEVI then checks the B-stat RAMs. It returns B-cache data if the
Dirty bit is set. LEVI returns a victimized block if the block’s address
matches the read address.

• Write
When the write address matches that of a valid block in the B-map,
LEVI reacts as follows. If the address also hits in the P-map, LEVI
takes the update and invalidates the P-cache block in the processor.
Otherwise, the B-cache block is simply invalidated. Note that this be-
havior can be altered with the LMODE register.

• Victim Write
LEVI ignores victim writes from other nodes. Victimized blocks do not
hit in the local B-cache.

• CSR Read/Write
Only registers in the LSB node space can be read or written from the
LSB. Gbus registers cannot be accessed from the LSB. Note that
LEVI can also respond to its own processor-generated CSR transac-
tions on the bus.

• Private
Private transactions are used to return Gbus data to the processor, to
allow access to the B-tag, B-stat, B-map, and P-map structures directly
by the processor, and to resolve STxC boundary conditions. LEVI does
not respond to private commands from other modules.

LEVI is pipelined to track up to three interleaved LSB transactions.

 LSB Bus Interface 4-9

4.6.3 Transaction Ordering

The processor controller (LEVI PC, Section 4.3.1) and the LSB controller
(LEVI LC, Section 4.3.3) work together to guarantee strict ordering of
transactions issued on the LSB. Processor and LEVI actions proceed in
stages as shown in Table 4-2.

Table 4-2 Processor-LEVI Actions During Transactions

Processor Action LEVI Action

P1. The processor issues a request
with address A1.

P2. The processor can issue a new
request with address A2 any time
after L1 completes.

In response to P1, LEVI performs
the following actions:

L1. LEVI initiates an LSB trans-
action with address A1.

L2. If P1 was a WBlock and L1
was an LSB Read that received a
shared response, LEVI issues an
LSB Write with address A1.

L3. If L1 was an LSB Read and
the B-cache block being displaced
had the Dirty bit set, LEVI issues
an LSB Write Victim command.

In response to P2, LEVI performs
the following action:

L4. LEVI initiates an LSB trans-
action with address A2.

 Console Overview 5-1

Chapter 5

Console Overview

The KA7AA CPU module supports the LSB system console with com-
bined hardware/software elements that control the system at power-up,
on reset, or on CPU halts. This chapter describes the console hardware
that resides on the CPU module. Sections include:

• CPU Console Hardware

• Console Program Invocation

• Console Registers

The console user interface and commands are discussed in the Console
Reference Manual.

5.1 CPU Console Hardware

The KA7AA CPU module provides hardware to support the console func-
tions. This hardware includes:

• A serial ROM (read-only memory) for first-level console program stor-
age

• A set of FEPROMs (flash programmable ROMs) for second-level con-
sole program storage

• An EEPROM (electrically erasable/programmable ROM) for miscella-
neous parameter/log storage

• A set of UARTs (universal asynchronous receivers/transmitters) that
allow the console program to communicate serially with one console
terminal and the system power supplies

• A watch chip that provides a battery-backed-up time-of-year (TOY)
clock for use by operating system software

• A set of parallel I/O ports for functions such as LED status indicators
and node identification

• A serial I/O port for manufacturing diagnostic use

The CPU module provides access to ROM, EEPROM, console UARTs, the
watch chip, and other functions through the 8-bit Gbus.

All Gbus component registers and memory stores are located in node pri-
vate space, which means that their addresses are constant and are inde-
pendent of slot identification. Table 5-1 gives the address ranges allo-
cated to the Gbus components.

5-2 Console Overview

Every Gbus memory store byte or register byte is located on a 64-byte,
naturally aligned boundary. For example, the first byte of FEPROM stor-
age is located at byte address F000 0000; the second byte is at F000 0040.
Also note that a single 128-Kbyte FEPROM consumes 8 Mbytes of address
space. This addressing restriction implies that processor code cannot be
executed from this address space.

Table 5-1 Gbus Components

5.1.1 Serial ROM

After power-up, node reset, or system reset, but before any instructions are
executed, the NVAX+ chip automatically loads its internal P-cache through
the serial I/O port from an external, 8-Kbyte serial ROM.

The serial ROM contains the first level of console/diagnostic/bootstrap code
(serial ROM code). This code initializes all programmable features of the
NVAX+ chip, diagnosing any faults detected along the bootstrap path and
bootstrapping code execution out to the second level of console/diagnostic/
bootstrap code (the main console program). The first level bootstrap copies
the main console program code from FEPROM storage to the P-cache and
transfers control flow to the P-cache. Once the serial ROM is loaded into
the P-cache, the same serial I/O port becomes available for use by software
as a diagnostic interface.

Component Address

Console ROM

Console EEPROM

UART registers

WATCH registers

Gbus$WHAMI

Gbus$LEDs

Gbus$PMask

Gbus$Intr

Gbus$Halt

Gbus$LSBRST

Gbus$Misc

Gbus$RMode

Gbus$LTagRW

F000 0000 to 0000

F380 0000 to FFFF

F400 0000 to FFFF

F600 0000 to 0FC0

F700 0000

F700 0040

F700 0080

F700 00C0

F700 0100

F700 0140

F700 0180

F780 0000

F780 0100

 Console Overview 5-3

5.1.2 Serial Port

The NVAX+ chip provides an initialization and diagnostic interface in the
form of a serial I/O port. The serial I/O port is a full duplex connection be-
tween the CPU chip and a module connector. The port is accessed and con-
trolled through internal processor registers.

The serial I/O port drives a LED indicator, which may flash as data is
transmitted over the serial port, but is otherwise available to diagnostic
code as a status indicator.

5.1.3 FEPROMs

The console program is stored in a set of 128K X 8 FEPROM chips. This
code does not appear in a structure of contiguous locations in the proces-
sor’s address space. Specifically, each byte of FEPROM storage appears
on a 64-byte naturally aligned boundary. This implies that the console pro-
gram cannot execute directly out of FEPROM, but instead, must be copied
into a more compact contiguous space in cacheable memory and executed
from there. This process of copying the code store and transferring control
flow is known as the first-level bootstrap and is performed by the serial
ROM code, as explained in Section 5.1.1.

The FEPROMs can be programmed online without assistance from an ex-
ternal programming device. The FEPROMs cannot be patched; they can
only be erased and programmed as a whole.

5.1.4 EEPROM

A single 8K X 8 EEPROM is used for miscellaneous parameter and log
storage. This store does not appear in a contiguous address space. Specifi-
cally, each byte of EEPROM storage appears on a 64-byte boundary.

The EEPROM can be written to byte-by-byte online, without assistance
from an external programming device.

5.1.5 UARTs

The CPU module has six serial communication lines but uses only three.
The communication lines are named and assigned as follows:

• UART0A is connected to the LSB local console terminal line LOC_RX/
LOC_TX (computer room terminal for field service).

• UART1B is connected to the LSB power supply status lines PS_RX
and PS_TX.

• UART2A is dedicated to Ctrl/P character detection. Its receive line can
tap receive characters off LOC_RX, OP_RX, or RD_RX as selected by
the Gbus$PMask register. Its transmit line is unused.

• UART0B, UART1A, and UART2B are unused.

The LSB console serial lines are connected to all CPU slots. After power-
up or system initialization, the CPU modules arbitrate for use of the com-
mon console lines; the winner is allowed to drive them. The default con-
figuration of the serial lines at power-up is as follows:

5-4 Console Overview

Baud rate set to 9600
No parity
One stop bit
8-bit characters

One physical component (DUART) implements two UARTs, hence the
naming of the UARTs as UART0A, UART0B, and so on, where the number
indicates the physical component and the letter indicates the individual
UART within the component. Control of these UARTs is accomplished
through a set of registers in each UART. These registers are listed in Ta-
ble 5-2.

5.1.5.1 Ctrl/P Character Detection and Halt Protection

UART2A is dedicated to detecting Ctrl/P characters received from the con-
sole terminal.

UART2A intercepts a copy of all UART receive characters from the console
terminal line and compares for Ctrl/P. Characters other than Ctrl/P re-
sult in an IPL15 interrupt posted to the processor (reflected in the
Gbus$Intr register). Ctrl/P characters result in an IPL1F interrupt (halt)
posted to the processor (reflected in the Gbus$Halt register). Note that the
IPL1F interrupt is in addition to the IPL15 interrupt. If no serial lines are
selected for console operation (the processor is halt-protected), then all re-
ceive characters result in an IPL15 interrupt. For UART2A to detect
Ctrl/P characters, all control settings must be programmed to match the
console terminal UART.

5.1.5.2 UART Register Addressing

Each UART in a DUART component is controlled independently through
its own set of registers (some registers are shared between two UARTs
within a DUART). All UART registers are either read only (for status and
data receive) or write only (for control and data transmit). Read registers
and write registers share common addresses, that is, reading and writing a
single address accesses two separate registers.

For each UART there are two read registers and two write registers that
are directly accessible in the processor’s address space: RR0, WR0, RR8,
and WR8. RR0 and WR0 are the main status and control registers for the
UART. RR8 and WR8 are the data receive and transmit registers.

For each UART there are a number of other control and status registers
that are indirectly accessible through RR0 and WR0. These registers are
accessed by writing the correct index value into WR0 and then reading
RR0 or writing WR0. After the second read/write operation occurs, the in-
dex value is automatically reset back to zero.

5.1.6 Watch Chip

A watch chip resides on the Gbus and provides a battery-backed-up time-
of-year clock and 50 bytes of battery-backed-up RAM. The chip contains a
built-in crystal oscillator and a 10-year lithium battery.

 Console Overview 5-5

5.2 Console Program Invocation

The NVAX+ chip operates in console mode when the CPU module encoun-
ters one of the following conditions:

• System reset through power-up, control panel reset, or reset through
the Gbus$LSBRST register

• Module reset performed by setting NRST (LCNR<30>)

• Module halted by setting NHALT (LCNR<29>)

• Ctrl/P character received from the console terminal

When the NVAX+ chip enters console mode, it transfers control to the lo-
cation addressed by the contents of the CHALT register.

5.3 Console Registers

Table 5-2 lists the console registers with their addresses and indicates the
components in which they are implemented.

Table 5-2 Console Registers

Register Address Implementation

UARTxx$WR01

UARTxx$WR1
UARTxx$WR2
UARTxx$WR3
UARTxx$WR4
UARTxx$WR5
UARTxx$WR6
UARTxx$WR7

UARTxx_BASE1

Index 0001
Index 0010
Index 0011
Index 0100
Index 0101
Index 0110
Index 0111

DUART chip
DUART chip
DUART chip
DUART chip
DUART chip
DUART chip
DUART chip
DUART chip

1 UART Base Addresses:

 xx = 0B; BASE = F400 0000
 xx = 0A; BASE = F400 0080
 xx = 1B; BASE = F480 0000
 xx = 1A; BASE = F480 0080
 xx = 2B; BASE = F500 0000
 xx = 2A; BASE = F500 0080

5-6 Console Overview

Table 5-2 Console Registers (Continued)

A number of console/diagnostic/interrupt related registers listed in Table
5-2 are referred to with a prefix of Gbus$. These registers provide the fol-
lowing control and status functions:

• Node identification

• LED status indicators

Register Address Implementation

UARTxx$WR8
UARTxx$WR9
UARTxx$WR10
UARTxx$WR11
UARTxx$WR12
UARTxx$WR13
UARTxx$WR14
UARTxx$WR15
UARTxx$RR0
UARTxx$RR1
UARTxx$RR2
UARTxx$RR3
UARTxx$RR8
UARTxx$RR10
UARTxx$RR13
UARTxx$RR15
Watch$Seconds
Watch$Minutes
Watch$Hours
Watch$Day_of_Month
Watch$Month
Watch$Year
Watch$CSRA
Watch$CSRB
Watch$CSRC
Watch$CSRD
BBackup RAM (50 bytes)
Gbus$WHAMI
Gbus$LEDs
Gbus$PMask
Gbus$Intr
Gbus$Halt
Gbus$LSBRST
Gbus$Misc
Gbus$RMode
Gbus$LTagRW

UARTxx_BASE+40H
Index 1001
Index 1010
Index 1011
Index 1100
Index 1101
Index 1110
Index 1111
UARTxx_BASE
Index 0001
Index 0010
Index 0011
UARTxx_BASE+40H
Index 1010
Index 1101
Index 1111
F600 0000
F600 0080
F600 0100
F600 01C0
F600 0200
F600 0240
F600 0280
F600 02C0
F600 0300
F600 0340
F600 0380 to F600 FC00
F700 0000
F700 0040
F700 0080
F700 00C0
F700 0100
F700 0140
F700 0180
F780 0000
F780 0100

DUART chip
DUART chip
DUART chip
DUART chip
DUART chip
DUART chip
DUART chip
DUART chip
DUART chip
DUART chip
DUART chip
DUART chip
DUART chip
DUART chip
DUART chip
DUART chip
Watch chip
Watch chip
Watch chip
Watch chip
Watch chip
Watch chip
Watch chip
Watch chip
Watch chip
Watch chip
Watch chip
CPU module
CPU module
CPU module
CPU module
CPU module
CPU module
CPU module
CPU module
LEVI

1 UART Base Addresses:

 xx = 0B; BASE = F400 0000
 xx = 0A; BASE = F400 0080
 xx = 1B; BASE = F480 0000
 xx = 1A; BASE = F480 0080
 xx = 2B; BASE = F500 0000
 xx = 2A; BASE = F500 0080

 Console Overview 5-7

• Interrupt status summaries

• Console terminal selection

• Halt protection

• System reset

This section provides descriptions of individual Gbus registers. The re-
maining console registers are listed in Table 5-2 for reference only. All
Gbus registers are eight bits wide.

5-8 Console Overview

Gbus$WHAMI

Table 5-3 Gbus$WHAMI Register Bit Definitions

Address
Access

BB + 0000 0000
RO

The Gbus$WHAMI register provides information on system con-
figuration and reflects the status of certain backplane signals.

4 3 07 6 5 2

BXB-0243-92

NID
MFG
LSB_BAD
LSB_CONWIN
REQ_MODE

Name Bit(s) Type Function

REQ_MODE <7:6> RO Request Mode. Indicates the maximum number of
CPU modules that this CPU module supports in a sys-
tem.

Gbus$WHAMI
 <7:6> CPUs Allowed in LSB Slots

 00
 01
 10
 11

1 to 6
Reserved
Reserved
Reserved

 Console Overview 5-9

Table 5-3 Gbus$WHAMI Register Bit Definitions (Continued)

Name Bit(s) Type Function

LSB_CONWIN

LSB_BAD

MFG

NID

<5>

<4>

<3>

<2:0>

RO

RO

RO

RO

LSB CONWIN. Reflects the inverted state of the
LSB_CONWIN L backplane signal. When set, indi-
cates that Gbus$LEDs<1> is clear (asserted) in one
or more CPU modules.

LSB Bad. Reflects the inverted state of the
LSB_BAD L backplane signal. When set, indicates
that LSB_BAD L is driven by one or more CPU mod-
ules.

Manufacturing Status. Used by manufacturing.

Node ID. Identifies the CPU module by the slot
(0-7) where it resides.

5-10 Console Overview

Gbus$LEDs

Table 5-4 Gbus$LEDs Register Bit Definitions

Address
Access

F700 0000
R/W

The Gbus$LEDs register is used for lighting a series of LEDs on the
module to aid in debug and to indicate self-test status. Writing a
zero to a bit in this register lights the corresponding LED.

4 3 07 6 5 12

BXB-0240-92

STP_L
CONWIN_L
RUN_L
LED3_L

LED4_L
LED5_L
LED6_L
LED7_L

Name Bit(s) Type Function

LEDs_L

RUN_L

CONWIN_L

STP_L

<7:3>

<2>

<1>

<0>

R/W

R/W

R/W

R/W

LEDs Low. When a bit in this field is set, the associ-
ated LED signal is asserted low.

RUN Low. When set, the associated LED signal is as-
serted low. The state of this bit also indicates whether
the currently running software is the operating system
(and not the diagnostic/console program).

CONWIN Low. When set, the associated LED signal
is asserted low. Also drives the backplane signal
LSB_CONWIN L. The state of this signal can be read
through the Gbus$WHAMI register.

Self-Test Passed Low. When set, the associated LED
signal is asserted low.

 Console Overview 5-11

Gbus$PMask

Table 5-5 Gbus$PMask Register Bit Definitions

Address
Access

F700 0040
R/W

The Gbus$PMask register controls halts to the processor.

4 3 07 12

RSVD

BXB-0242-92

HALT_EN
SEL_CONS_TERM
PHALT_EN

Name Bit(s) Type Function

RSVD

PHALT_EN

<7:4>

<3>

R/W, 1

R/W, 1

Reserved. Initialized to ones.

Ctrl/P Halt Enable. When set, enables Ctrl/P
characters received by the UART selected in the Se-
lect Console Terminal field of this register to halt
the processor. The Halt Enable bit of this register
must also be set for a Ctrl/P character to generate a
halt.

5-12 Console Overview

Table 5-5 Gbus$PMask Register Bit Definitions (Continued)

Name Bit(s) Type Function

SEL_CONS_TERM

HALT_EN

<2:1>

<0>

R/W, 1

R/W, 1

Select Console Terminal. Selects one of three
console terminals for Ctrl/P character detection.

Halt Enable. When set, enables halts to the
processor, including halts generated by
LCNR<NHALT> or by detection of a Ctrl/P char-
acter received by a UART selected in the Select
Console Terminal field of this register. When
clear, all halts to the processor are disabled.
PHALT_EN must also be set for Ctrl/P characters
to generate a halt.

Gbus$PMask
 <2:1>

 Console Terminal
 Selected

 00

 01

 10

 11

UART0A (local terminal)

UART0B (Reserved)

UART1A (remote diagnostic
control)

UART2A placed into module-
level loopback mode. In this
mode, the UART2A receive
line is driven by the UART2A
transmit line. PHALT_EN
(bit <3> of this register) must
be zero (Ctrl/P halts disabled)
while modifying
SEL_CONS_TERM to avoid
erroneous halts.

 Console Overview 5-13

Gbus$Intr

Table 5-6 Gbus$Intr Register Bit Definitions

Address
Access

F700 0080
R/W

The Gbus$Intr register stores interrupt summary information.
Specifically, it provides a means to determine the source of IPL14,
IPL15, and IPL16 interrupts to the processor.

4 3 07 6 5 12

0

BXB-0244-92

DUART0_INT
DUART1_INT
LSB0
LSB1

RSVD
LSB2
IP
INTIM

Name Bit(s) Type Function

INTIM

IP

LSB2

RSVD

<7>

<6>

<5>

<4>

RO, 0

W1C, 0

RO, 0

R0

Interval Timer. When set, indicates that the watch
chip is asserting its interval timer output.

Interprocessor. When set, indicates that the LEVI-
A chip has detected a write to the LIPINTR register
with data selecting this node.

LSB 2. When set, indicates that the LEVI-A chip has
an LSB level 2 interrupt pending.

Reserved. Reads as zero.

5-14 Console Overview

Table 5-6 Gbus$Intr Register Bit Definitions (Continued)

Name Bit(s) Type Function

LSB1

LSB0

DUART1_INT

DUART0_INT

<3>

<2>

<1>

<0>

RO, 0

RO, 0

RO, 0

RO, 0

LSB 1. When set, indicates that the LEVI-A chip
has an LSB level 1 interrupt pending.

LSB 0. When set, indicates that the LEVI-A chip
has an LSB level 0 interrupt pending.

DUART1 Interrupt. When set, indicates that
either UART1A or UART1B is requesting an inter-
rupt for the processor. This bit is cleared when all
possible DUART1 interrupt sources are cleared.

DUART0 Interrupt. When set, indicates that
either UART0A or UART0B is requesting an inter-
rupt for the processor. This bit is cleared when all
possible DUART0 interrupt sources are cleared.

 Console Overview 5-15

Gbus$Halt

Table 5-7 Gbus$Halt Register Bit Definitions

Address
Access

F700 0100
R/W

The Gbus$Halt register summarizes halt and power conditions.

4 3 07 6 5 12

0 0

BXB-0241-92

RSVD
NHALT
LSB_SEC
LDC_PWR_OK

PWR_MODA_OK
PWR_MODB_OK
Ctrl/P_HALT
RSVD

Name Bit(s) Type Function

RSVD

Ctrl/P_HALT

PWR_MODB_OK

PWR_MODA_OK

<7>

<6>

<5>

<4>

R0

W1C, 0

RO

RO

Reserved. Reads as zero.

Ctrl/P Halt. Set when a Ctrl/P character is received
by the UART selected in the Gbus$PMask register.

Power Module B Okay. Set when Power Module B
of the I/O PIUs (plug-in unit) is working properly.
Cleared when Module B fails.

Power Module A Okay. Set when Power Module A
of the I/O PIUs (plug-in unit) is working properly.
Cleared when Module A fails.

5-16 Console Overview

Table 5-7 Gbus$Halt Register Bit Definitions (Continued)

Name Bit(s) Type Function

LDC_PWR_OK

LSB_SEC

NHALT

RSVD

<3>

<2>

<1>

<0>

RO

RO

RO

R0

LDC Power Okay. Is set when all local disk con-
verters (LDC) in the platform are working properly.
Cleared when no LDCs are installed or when one or
more of the LDCs fails.

LSB Secure. Reflects the inverted state of the
backplane signal LSB_SECURE L. When set, indi-
cates that the control panel keyswitch is in the Se-
cure position and that Ctrl/P halts to the processor
are disabled by hardware.

Node Halt. Reflects the state of LCNR<NHALT>.

Reserved. Reads as zero.

 Console Overview 5-17

Gbus$LSBRST

Address
Access

F700 0140
R/W

The Gbus$LSBRST register is used for initiating a system reset se-
quence. When the CPU chip writes any value to this register, the
LSB RESET signal is asserted for 512 LSB cycles.

07

BXB-0264-92

5-18 Console Overview

Gbus$Misc

Table 5-8 Gbus$Misc Register Bit Definitions

Address
Access

F700 0180
R/W

The Gbus$Misc register controls various system functions.

3 07 12

RSVD

BXB-0239-92

EXPSEL
BAD

Name Bit(s) Type Function

RSVD

BAD

<7:3>

<2>

RO, 1

R/W, 1

Reserved. Initialized to ones.

Bad. When set, causes the module to drive LSB BAD which,
in turn, lights the control panel fault LED. The state of this
bit does not affect the Self-Test-Passed LED on the module or
the STP bits in the Gbus$LEDs and LCNR registers. This bit
allows software to assert LSB BAD on behalf of another sys-
tem component. To determine if any module is driving LSB
BAD, software should read Gbus$WHAMI<LSB_BAD>, not
Gbus$Misc<BAD>.

 Console Overview 5-19

Table 5-8 Gbus$Misc Register Bit Definitions (Continued)

Name Bit(s) Type Function

EXPSEL <1:0> R/W, 1 Expander Select. Selects which cabinet the power supply
UART lines are logically connected to, and therefore, which of
three 48V regulators are connected to the power supply lines.

Gbus$Misc
 <1:0> Power Supply Connection

00

01

10

11

PS lines logically connected to main CPU
cabinet.

PS lines logically connected to right ex-
pander cabinet.

PS lines logically connected to left ex-
pander cabinet.

PS transmit line is looped back to PS re-
ceive line.

5-20 Console Overview

Gbus$RMode

Address
Access

F780 0000
R/W

The Gbus$RMode register is a write-only register. A write to it
sets LDIAG<FRIGN> and logically disconnects the CPU module
from the LSB bus. This register is intended for use as a backup
system should there be a problem with the LSB interface and
writes to the LDIAG register be unsuccessful (writes to the LDIAG
register require a successful LSB transaction while writes to Gbus
space are completed without any LSB access). Note that software
should write to the LDIAG register as a first choice and use the
Gbus$RMode register only if the write to the LDIAG register fails.

07

BXB-0264-92

 Console Overview 5-21

Gbus$LTagRW

Address
Access

F780 0100
R/W

The Gbus$LTagRW register, when used with LTAGA, LTAGW, and
LDIAG registers, allows software to read and write the B-cache, B-
map, and P-map tags. See descriptions of the LTAGA, LTAGW, and
LDIAG registers in Chapter 7.

07

BXB-0264-92

 I/O Operations 6-1

Chapter 6

I/O Operations

I/O operations handled by the KA7AA CPU module include I/O reads, I/O
writes, and device interrupts. The NVAX+ CPU chip uses four hardcoded
SCB vectors for all device interrupts. Interrupt service routines at the
four SCB vectors are required to determine the source of the interrupt
and invoke the appropriate service routine.

From the perspective of I/O operations, registers are divided into two
groups: local registers and remote registers. Registers that reside on the
KA7AA CPU module and the LSB bus are local registers. Those that re-
side on I/O buses are remote registers. Local registers are directly acces-
sible to software; remote registers are not. Access to remote registers is
achieved by means of the mailbox protocol. The LMBOX register is pro-
vided to assist software in the mailbox protocol.

6.1 Mailbox Data Structure

Remote control and status registers (CSRs) are accessed through 64-byte
naturally aligned mailbox data structures located in main memory. Read
requests are posted in mailboxes. Data is returned in memory with
status in the following quadword. Mailboxes are allocated and managed
by the operating system software. Figure 6-1 shows a mailbox data struc-
ture.

6-2 I/O Operations

Figure 6-1 Mailbox Data Structure

Table 6-1 describes the mailbox data structure. Refer to the DEC 7000
AXP System/VAX 7000 I/O System Technical Manual for a detailed de-
scription of the mailbox protocol.

Table 6-1 Mailbox Data Structure

63 48 47 40 39 32 31 012

SBZ CMD

BXB-0174 -92

RBADR <63:0>

WDATA <63:0>

RDATA <63:0>

STATUS
E
R
R

D
O
N

UNPREDICTABLE

UNPREDICTABLE

MASKQW 0

QW 1

QW 2

QW 3

QW 4

QW 5

QW 6

QW 7

UNPREDICTABLE

HOSE SBZ

30 29

W B

Field Bit(s) Type
Quad-
word Function

HOSE

MASK

CMD

RBADR

WDATA

RDATA

STATUS

ERR

DON

<63:48>

<39:32>

<29:0>

<63:0>

<63:0>

<31:0>

<63:2>

<1>

<0>

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

0

0

0

1

2

4

5

5

5

Hose. Used to determine which remote bus the
command is meant for.

Mask. Contains the byte mask. The I/O mod-
ule does not use this field.

Command. Contains the command. A value of
one is a read; a value of seven is a write.

Remote Broadcast Address. Contains the ad-
dress to be broadcast on the remote bus.

Write Data. Contains the write data to be
broadcast on the remote bus.

Read Data. Contains read data returned from
the remote bus.

Status. Contains status information provided
by the remote bus.

Error. When set, indicates that a mailbox op-
eration failed.

Done. Status bit set by the I/O module when a
mailbox operation is complete.

 I/O Operations 6-3

6.2 Mailbox Operation

The I/O module services mailbox requests by means of four mailbox pointer
CSRs (LMBPR registers; see Section 6.4) located in the I/O module’s node
space. There is one LMBPR register for each CPU node. Software sees
only one LMBPR register address, but the CPU module replaces the least
significant two bits of the address (that is, D<2:1>) with the least signifi-
cant two bits of the node ID (that is, NIOD<1:0>). If a given LMBPR regis-
ter is in use when it is written to, the I/O module does not acknowledge it
and CNF is not asserted. Processors use the lack of CNF assertion on
writes to the LMBPR register to indicate a busy status. The write is
retried later under software control.

To perform a write to the LMBPR register, microcode must know the ad-
dress of the LMBPR register and the address of the mailbox data structure
to be loaded into the LMBPR register. Another memory structure needs to
be created to pass this information to microcode. This structure is called
the Mailbox Pointer and consists of two longwords. Figure 6-2 shows the
mailbox pointer structure. Table 6-2 gives the bit definitions of the
mailbox pointer structure.

Figure 6-2 Mailbox Pointer Structure

Table 6-2 Mailbox Pointer Structure

When software has created the mailbox data structure and the mailbox
pointer structure, it can start the I/O operation. An MTPR to the LMBOX
register (Section 6.4) initiates the I/O operation. Microcode reads the
MB_ADDR field out of the mailbox pointer structure and then writes the
value to the LMBPR register using the address provided in the mailbox
pointer structure. An EDAL store conditional command is used to per-
form the write. Microcode then checks the Zero Condition Code bit
(PSL<2>) in the BIU_STAT register to determine if the write passed or
failed. If the write passed, PSL<2> is set; otherwise, PSL<2> is cleared.

31 06 5

MB_ADDR MBZ

BXB-0176-92

LMBPR_ADDR

Name Bit(s) Type Function

MB_ADDR

LMBPR_ADDR

<31:6>

<31:0>

WO

WO

Mailbox Address. Contains the physical ad-
dress of the mailbox data structure. Since this
structure is aligned on a 64-byte boundary, bits
<5:0> of the address must be zero.

LMBPR Address. Contains the virtual address
of the LMBPR register.

6-4 I/O Operations

Software can loop on the MTPR to the LMBOX register until the write
passes.

After the I/O module has accepted the write to LMBPR, it performs the I/O
operation. Software can now poll the status bit in the mailbox data struc-
ture until the I/O operation is complete. When the I/O operation has com-
pleted, DON in the mailbox data structure (see Table 6-1) is set. If an er-
ror occurred during the transaction, LBER<E> (see Chapter 7) is also set.
If the operation was an I/O write, no further action is required. If the op-
eration was an I/O read, software can now fetch the returned data from the
RDATA field in the mailbox data structure.

6.3 Device Interrupt Handling

The KA7AA CPU module uses the device interrupts as shown in Table
6-3. Interrupts from the LSB and the UARTs (device interrupts) are han-
dled by both hardware and software. After an interrupt has been posted to
the CPU chip through one of the four IRQ lines, the CPU chip passes con-
trol to the operating system through four dedicated SCB entry points. Ta-
ble 6-3 shows the device interrupt sources and their matching SCB entry
points.

Table 6-3 KA7AA CPU Interrupts

For IPL16 and IPL17 interrupts, software reads the Gbus$Intr register to
determine if the interrupt is posted by an LSB I/O device, another proces-
sor in the system, or a UART. If an interprocessor or a UART interrupt
has been received, software can directly pass control to the appropriate
service routine. For LSB I/O interrupts, software must get the device in-
terrupt vector from the I/O module.

6.4 I/O Operation Registers

Two registers are used for I/O operations:

• Mailbox Pointer CSR (LMBPR)

• Mailbox Register (LMBOX)

The LMBPR register resides on the IOP module and is described in the
DEC 7000 AXP System/VAX 7000 I/O System Technical Manual. The de-
scription of the LMBOX register follows.

Interrupt
Level (Hex) Interrupt Condition

NVAX+
IRQ Pin

SCB
Vector

17
16
16
15
15
14

LSB level 3 interrupts
Interprocessor interrupt
LSB level 2 interrupts
Console UARTs
LSB level 1 interrupts
LSB level 0 interrupts

3
2
2
1
1
0

DC
D8
D8
D4
D4
D0

 I/O Operations 6-5

LMBOX—LSB Mailbox Register

Table 6-4 LMBOX Register Bit Definitions

Address
Access

BB + 00
R/W

The LMBOX register contains the physical address of the mailbox
pointer structure.

31 0

BXB-0175-92

MBXREG

Name Bit(s) Type Function

MBXREG <31:0> WO Mailbox Register. Contains the physical address of
the mailbox pointer structure.

 CPU Module Registers 7-1

Chapter 7

CPU Module Registers

The KA7AA CPU module, like the memory and I/O modules on the LSB
bus, contains two groups of registers:

• LSB required registers

• CPU-specific registers

LSB required registers are used for internode communication over the
LSB bus. CPU-specific registers are used to perform functions specific to
the CPU module.

7-2 CPU Module Registers

7.1 Register Mapping

All CPU module registers reside in node space. The only exceptions to this
rule are the two interrupt registers, LIOINTR and LIPINTR, which reside
in LSB broadcast space.

CPU module registers are mapped to the node space as offsets to a base
address (BB). The base address is implemented in hardware and depends
on the node ID, which is determined by the LSB backplane slot occupied
by the module. Table 7-1 gives the physical base addresses of nodes on the
LSB bus.

Table 7-1 LSB Node Space Base Addresses

Table 7-2 lists the CPU module registers and gives the address of each reg-
ister as an offset from a selected node space base address.

NOTE: Two CPU registers listed in Table 7-2, LIOINTR and LIPINTR, are located
in LSB broadcast space, the base address of which is FE00 0000.

Node ID Module
Physical Base Address (BB)
 (Byte)

0
1
2
3
4
5
6
7
8

CPU/Memory
CPU/Memory
CPU/Memory
CPU/Memory
CPU/Memory
CPU/Memory
CPU/Memory
CPU/Memory
I/O

F800 0000
F840 0000
F880 0000
F8C0 0000
F900 0000
F940 0000
F980 0000
F9C0 0000
FA00 0000

 CPU Module Registers 7-3

Table 7-2 CPU Module Registers

Register Name Mnemonic
Address
(Byte Offset)

LSB Required

Device Register
Bus Error Register
Configuration Register
Memory Mapping Register 0
Memory Mapping Register 1
Memory Mapping Register 2
Memory Mapping Register 3
Memory Mapping Register 4
Memory Mapping Register 5
Memory Mapping Register 6
Memory Mapping Register 7
Bus Error Syndrome Register 0
Bus Error Syndrome Register 1
Bus Error Syndrome Register 2
Bus Error Syndrome Register 3
Bus Error Command Register 0
Bus Error Command Register 1
I/O Interrupt Register
Interprocessor Interrupt Register

CPU-Specific

Mode Register
Module Error Register
Lock Address Register
LSB Diagnostic Control Register
Tag Address Register
Tag Write Data Register
Console Communication Register 0
Console Communication Register 1
Performance Counter Control Register
Performance Counter 0 Register
Performance Counter 1 Register
Last Miss Address Register

LDEV
LBER
LCNR
LMMR0
LMMR1
LMMR2
LMMR3
LMMR4
LMMR5
LMMR6
LMMR7
LBESR0
LBESR1
LBESR2
LBESR3
LBECR0
LBECR1
LIOINTR
LIPINTR

LMODE
LMERR
LLOCK
LDIAG
LTAGA
LTAGW
LCON0
LCON1
LPERF
LCNTR0
LCNTR1
LMISSADDR

BB1 + 0000
BB + 0040
BB + 0080
BB + 0200
BB + 0240
BB + 0280
BB + 02C0
BB + 0300
BB + 0340
BB + 0380
BB + 03C0
BB + 0600
BB + 0640
BB + 0680
BB + 06C0
BB + 0700
BB + 0740
BSB2 + 0000
BSB + 0040

BB + 0C00
BB + 0C40
BB + 0C80
BB + 0D00
BB + 0D40
BB + 0D80
BB + 0E00
BB + 0E40
BB + 0F00
BB +0F40
BB + 0F80
BB + 0FC0

1 BB is the node space base address of the CPU module in hex.
2 BSB is the broadcast space base address, which is FE00 0000.

7-4 CPU Module Registers

7.2 Register Descriptions

LSB required registers have the following characteristics:

• All writes are 32 bits wide. Byte or word operations are not supported.

• Writes directed to a read-only register may be accepted and acknowl-
edged, but no action is taken, and the content of the register is not af-
fected.

CPU-specific registers appear in the LSB CSR space.

 CPU Module Registers 7-5

LDEV—Device Register

Table 7-3 LDEV Register Bit Definitions

Address
Access

BB + 0000
R/W

The LDEV register is loaded during initialization with information
that identifies a node.

31 0

DREV

BXB-0100-92

1516

DTYPE

Name Bit(s) Type Function

DREV <31:16> R/W, 0 Device Revision. Identifies the revision level
of an LSB node. For the KA7AA CPU module,
the value of this field is zero.

DTYPE <15:0> R/W, 0 Device Type. Identifies the type of node. For
the KA7AA CPU module, the value of this field
is set to 8002 hex.

7-6 CPU Module Registers

LBER—Bus Error Register

Address
Access

BB + 0040
R/W

The LBER register stores the error bits that are flagged when an
LSB node detects errors in the LSB operating environment and
logs the failing commander ID. The status of this register remains
locked until software resets the error bit(s).

31 18 17 16 15 14 13 12 11 10 9 4 3 08 7 6 5 12

RSVD

NSES
CTCE
DTCE

CDPE
CPE2
CPE
CE2

CNFE
STE
TDE

CDPE2

DIE
SHE
CAE

NXAE

19

BXB-0101-92

<3>
<2>
<1>
<0>

<7>
<6>
<5>
<4>

<11>
<10>
<9>
<8>

<15>
<14>
<13>
<12>

<18>
<17>
<16>

CE
UCE2
UCE

E

 CPU Module Registers 7-7

Table 7-4 LBER Register Bit Definitions

Name Bit(s) Type Function

RSVD

NSES

CTCE

DTCE

DIE

SHE

CAE

NXAE

CNFE

STE

TDE

<31:19>

<18>

<17>

<16>

<15>

<14>

<13>

<12>

<11>

<10>

<9>

R0

RO, 0

W1C, 0

W1C, 0

W1C, 0

W1C, 0

W1C, 0

W1C, 0

W1C, 0

W1C, 0

W1C, 0

Reserved. Read as zero.

Node-Specific Error Summary. Set when an error
condition is reported in the LMERR register.

Control Transmit Check Error. Set when an LSB con-
trol line is driven incorrectly by the CPU module. When
CTCE is set, ERR is asserted by the CPU module.

Data Transmit Check Error. Set when the CPU mod-
ule detects an error while driving the the D<127> and
ECC<27:0> lines during a data or command cycle. When
DTCE is set, ERR is asserted by the CPU module.

Dirty Error. Set if the CPU module receives an asserted
DIRTY signal during a cycle when DIRTY signals are not
allowed. When DIE is set, ERR is asserted by the CPU
module.

Shared Error. Set if the CPU module receives an as-
serted SHARED signal during a cycle when SHARED sig-
nals are not allowed. When SHE is set, ERR is asserted
by the CPU module.

Command/Address Error. Set if the CPU module re-
ceives an asserted CA signal during a cycle when CA sig-
nals are not allowed. When CAE is set, ERR is asserted
by the CPU module.

Nonexistent Address Error. Set when the CPU mod-
ule does not receive confirmation for a command it sent on
the LSB. When NXAE is set, ERR is asserted by the CPU
module.

CNF Error. Set if the CPU module receives a confirma-
tion signal during a cycle that does not permit confirma-
tion. When CNFE is set, ERR is asserted by the CPU
module.

STALL Error. Set when the CPU module receives a
STALL signal during a cycle that does not permit stalls.
When STE is set, ERR is asserted by the CPU module.

Transmitter During Error. Set if a CE, UCE, CPE, or
CDPE error occurs during a cycle when the CPU module
was driving D<127:0>. When TDE is set, ERR is as-
serted by the CPU module.

7-8 CPU Module Registers

 Table 7-4 LBER Register Bit Definitions (Continued)

Name Bit(s) Type Function

CDPE2

CDPE

CPE2

CPE

CE2

CE

UCE2

UCE

E

<8>

<7

<6>

<5>

<4>

<3>

<2>

<1>

<0>

W1C, 0

W1C, 0

W1C, 0

W1C, 0

W1C, 0

W1C, 0

W1C, 0

W1C, 0

W1C, 0

Second CSR Data Parity Error. Set when a second
parity error occurs while CDPE is set on a CSR data cycle.

CSR Data Parity Error. If a parity error occurs during
a CSR data cycle, the CPU module sets CDPE, asserts
ERR, and locks D<38:0> in the LBERCR registers.

Second Command Parity Error. Set when a second
parity error occurs on a command cycle while CPE is set.

Command Parity Error. If a parity error occurs on a
command cycle, the CPU module sets CPE, asserts ERR,
and locks D<38:0> in the LBECR registers.

Second Correctable Data Error. Set when a second
correctable ECC error occurs on a data cycle while CE is
set.

Correctable Data Error. If the CPU module detects an
ECC error on the LSB, it sets CE, asserts ERR, and locks
D<38:0> of the command cycle in the LBECR registers.

Second Uncorrectable Data Error. Set when the
CPU module detects a second uncorrectable data error
while UCE is set.

Uncorrectable Data Error. If the CPU module detects
an uncorrectable ECC error on the LSB during a data cy-
cle, it sets UCE, asserts ERR, and locks D<38:0> of the
command cycle in the LBECR registers.

Error. Set whenever the CPU module detects assertion
of ERR on the LSB.

 CPU Module Registers 7-9

LCNR—Configuration Register

Table 7-5 LCNR Register Bit Definitions

Address
Access

BB + 0080
R/W

The LCNR register contains LSB configuration setup and status in-
formation.

31 30 29 28 27 0

RSTSTAT
NHALT
NRST
STF

BXB-0102-92

CEEN

MBZ

1

Name Bit(s) Type Function

STF

NRST

NHALT

RSTSTAT

MBZ

CEEN

<31>

<30>

<29>

<28>

<27:1>

<0>

W1C, 1

WO, 0

R/W, 0

W1C, 0

R/W, 0

R/W, 0

Self-Test Fail. When set, indicates that this node has
not yet completed self-test.

Node Reset. When set, the node enters console mode
and undergoes a reset sequence.

Node Halt. When set, a CPU node enters console
mode.

Reset Status. When set, provides an indication to con-
sole software that a given CPU node should not attempt
to become the boot processor, but should rather join an
already running system. This bit is set when NRST
(LCNR<30>) is set. It is cleared with a write of one, at
system power-up, or with an LSB RESET command.
This bit is not cleared in a reset sequence caused by set-
ting NRST.

Must Be Zero. Must always be written as zero.

Correctable Error Detection Enable. When set, en-
ables detection of correctable errors.

7-10 CPU Module Registers

LMMR0–7—Memory Mapping Registers

Table 7-6 LMMR Register Bit Definitions

Address
Access

BB + 0200 to BB + 03C0
R/W

Eight LMMR registers define the memory configuration for all
memory modules installed in the system. They are copies of the
equivalent AMR registers in memory modules installed in the sys-
tem. Each LMMR register is associated with the LSB module
whose node ID matches the three lower bits of the LMMR address.
Thus, LMMR0 is associated with node 0, LMMR1 is associated with
node 1, and so on. LMMR registers are loaded during system in-
itialization when the memory modules are initialized and config-
ured.

31 17 16 11 10 9 4 3 0

BXB-0104-92

8 5

RSVDMODULE_ADDR

2 1

NBANKS
AW

IA
INT
EN

Name Bit(s) Type Function

MODULE_ADDR

RSVD

<31:17>

<16:11>

R/W

R0

Module Address. Specifies the most significant
bits of the base address of the memory region
spanned by the memory module associated with
this register (LMMR0–LMMR7). These bits cor-
respond to bits <39:25> of the byte address or
D<34:20> of the command cycle.

Reserved. Read as zero. Writes ignored.

 CPU Module Registers 7-11

Table 7-6 LMMR Register Bit Definitions (Continued)

Name Bit(s) Type Function

NBANKS

AW

IA

INT

EN

<10:9>

<8:5>

<4:3>

<2:1>

<0>

R/W

R/W

R/W

R/W

R/W

Number of Banks. Specifies the number of in-
dividual memory banks (1, 2, 4, or 8) contained
on the memory module associated with this reg-
ister (LMMR0–7). The value of this field deter-
mines how many bits of the memory address (0,
1, 2, or 3) are inserted into the bank number.

Address Width. Specifies the number of valid
bits in MODULE_ADDR (LMMR<31:17>), start-
ing from the MSB. The remaining bits of MOD-
ULE_ADDR are ignored.

Interleave Address. Specifies which inter-
leave, within a group of interleaved modules, is
served by the module associated with this regis-
ter (LMMR0–7).

Interleave. Specifies the number of memory
modules interleaved with this module (1, 2, or 4).
This value determines the number of bits in the
INT field (0, 1, or 2, starting from the LSB) that
are compared to the LSBs of the memory ad-
dress.

Enable. When set, indicates that the module
associated with this register (LMMR0–7) is in-
stalled, and it is a memory module.

 LMMR
<10:9>

Banks per
Module

Bits in Bank
Number

00
01
10
11

1
2
4
8

0
1
2
3

 LMMR
<2:1>

Modules
Interleaved

Address Bits
Compared

00
01
10
11

1
2
4
Reserved

0
1
2
Reserved

7-12 CPU Module Registers

LBESR0-3—Bus Error Syndrome Registers

Table 7-7 LBESR Register Bit Definitions

Address
Access

BB + 0600 06C0
RO

The LBESR registers contain the syndrome computed from the
LSB Data and ECC fields received during the cycle when an error
was detected. The syndrome is the bit-by-bit difference between
the ECC check code generated from the received data and the ECC
field received over the bus. The LBESR registers lock only on the
first occurrence of an ECC error (LBER<CE> or LBER<UCE>).
Subsequent ECC errors set LBER<CE2> or LBER<UCE2> until
software clears those error bits.

31 0

SYND_0

7 6

RSVD

SYND_1RSVD

SYND_2RSVD

SYND_3RSVD

BXB-0105-92

Name Bit(s) Type Function

RSVD

SYND_0

SYND_1

SYND_2

SYND_3

<31:7>

<6:0>

<6:0>

<6:0>

<6:0>

R0

RO

RO

RO

RO

Reserved. Read as zero.

Syndrome 0. Syndrome computed from
D<31:0> and ECC<6:0> during error cycle.

Syndrome 1. Syndrome computed from
D<63:32> and ECC<13:7> during error cycle.

Syndrome 2. Syndrome computed from
D<95:33> and ECC<20:14> during error cycle.

Syndrome 3. Syndrome computed from
D<127:96> and ECC<27:21> during error cycle.

 CPU Module Registers 7-13

Syndrome Values
A syndrome of zero indicates no ECC error for the given longword. Table
7-8 gives the syndromes for all single-bit errors. Any non-zero syndrome
not listed in Table 7-8 indicates a double-bit error.

Table 7-8 Syndromes for Single-Bit Errors

 Bit
Syndrome
 (Hex)

Bit Syndrome
 (Hex)

Data<0>
Data<1>
Data<2>
Data<3>
Data<4>
Data<5>
Data<6>
Data<7>
Data<8>
Data<9>
Data<10>
Data<11>
Data<12>
Data<13>
Data<14>
Data<15>
Data<16>
Data<17>
Data<18>
Data<19>

4F
4A
52
54
57
58
5D
23
25
26
29
2A
2C
31
34
0E
0B
13
15

Data<20>
Data<21>
Data<22>
Data<23>
Data<24>
Data<25>
Data<26>
Data<27>
Data<28>
Data<29>
Data<30>
Data<31>
ECC<0>
ECC<1>
ECC<2>
ECC<3>
ECC<4>
ECC<5>
ECC<6>

16
19
1A
1C
62
64
67
68
6B
6D
70
75
01
02
04
08
10
20
40

7-14 CPU Module Registers

LBECR0,1—Bus Error Command Registers

Table 7-9 LBECR Register Bit Definitions

Address
Access

BB + 0700 and BB + 0740
RO

The LBECR registers save the contents of the LSB command and
address fields during the command cycle when an error is de-
tected. The following errors detected by the CPU module lock the
LBECR registers:

LSB uncorrectable ECC error (LBER<1>)
LSB correctable ECC error (LBER<3>)
LSB command parity error (LBER<5>)
LSB CSR data parity error (LBER<7>)
LSB nonexistent address error (LBER<12>)
LSB arbitration drop error (LMERR<10>
LEVI P-map parity error (LMERR<3:0>)
LEVI B-cache tag parity error (LMERR<4>)
LEVI B-cache status parity error (LMERR<5>)
LEVI B-map parity error (LMERR<6>)

31 20 19 18 17 16 15 14 11 10 0

CA <31:0>

7 6 5 3 2

RSVD CID

BXB-0106A-92

CID3 P CMD CA

CNF

DIRTY
SHARED

DCYCLE

Name Bit(s) Type Function

CA

RSVD

<31:0>

<31:20>

RO

R0

Command/Address. Contents of D<31:0> during the
command cycle.

Reserved. Read as zero.

 CPU Module Registers 7-15

Table 7-9 LBECR Register Bit Definitions (Continued)

Name Bit(s) Type Function

DCYCLE

DIRTY

SHARED

CNF

CID

CID3

P

CMD

CA

<19:18>

<17>

<16>

<15>

<14:11>

<10:7>

<6>

<5:3>

<2:0>

RO

RO

RO

RO

RO

RO

RO

RO

RO

Data Cycle. Indicates which data cycle had data error.

Dirty. Set when DIRTY is asserted for the current com-
mand.

Shared. Set when SHARED is asserted for the current
command.

Confirmation. Set when CNF is asserted for the cur-
rent command.

Commander ID. Contents of REQ<3:0> during com-
mand cycle.

Commander ID 3. This field is the duplicate of CID
(bits <14:11>). It reads the same as CID. In some early
versions of the KA7AA module, CID3 reads as zero.

Parity. Contents of D<38> during command cycle.

Command. Contents of D<37:35> during command cy-
cle. CMD is decoded as follows:

Command/Address. Contents of D<34:32> during com-
mand cycle.

LBECR <19:18> Data Cycle in Error

00
01
10
11

0
1
2
3

Command Function DAS Value1

000
001
010
011
100
101
110
111

Read
Write
Reserved
Write Victim
Read CSR
Write CSR
Reserved
Private

00
08

18
20
28

38

1 The hex value commonly found in the low byte of this register
when less than 8 Gbytes of memory are present in the system.

7-16 CPU Module Registers

LIOINTR—I/O Interrupt Register

Table 7-10 LIOINTR Register Bit Definitions

Interrupt Mapping
Each interrupt target is assigned four bits of interrupt in the LIOINTR
register corresponding to the four VAX I/O interrupt levels. A given CPU
only looks at the four bits that correspond to its target assignment. This
allows interrupts to be targeted to a single CPU or up to six CPUs, depend-
ing on the data supplied in the bus CSR write transaction from the I/O
module.

Address
Access

BSB + 0000
R/W

The LIOINTR register is used by the LSB I/O module to signal in-
terrupts from the LSB I/O system to processors.

31 16 15 12 11 4 3 0

CPU0

8 7

MBZ CPU1CPU2CPU3

BXB-0109-92

CPU4CPU5

23 20 1924

Name Bit(s) Type Function

MBZ

CPU5

CPU4

CPU3

CPU2

CPU1

CPU0

<31:16>

<23:20>

<19:16>

<15:12>

<11:8>

<7:4>

<3:0>

R/W, 0

W1S

W1S

W1S

W1S

W1S

W1S

Must Be Zero. Must always be written as zero.

CPU5 I/O Interrupt. When a bit is set in this
field, an interrupt is posted to CPU5.

CPU4 I/O Interrupt. When a bit is set in this
field, an interrupt is posted to CPU3.

CPU3 I/O Interrupt. When a bit is set in this
field, an interrupt is posted to CPU3.

CPU2 I/O Interrupt. When a bit is set in this
field, an interrupt is posted to CPU2.

CPU1 I/O Interrupt. When a bit is set in this
field, an interrupt is posted to CPU1.

CPU0 I/O Interrupt. When a bit is set in this
field, an interrupt is posted to CPU0.

 CPU Module Registers 7-17

This register appears in LSB broadcast space. Writes that address this lo-
cation are accepted without regard to node ID. Thus, all CPUs accept
writes to the register. The register bits are write one to set (W1S). Multi-
ple writes with a value of one to a given bit in this register post an equal
number of interrupts to the targeted CPU. Reads to this location are unde-
fined. Any given CPU implements only four bits of this register.

Table 7-11 shows the mapping of LSB interrupt levels to NVAX+ interrupt
levels.

Table 7-11 LSB Interrupt Mapping

When any of the four interrupt-pending bits is set, the LEVI gate array
correspondingly asserts the IOINTR<3:0> signals. The CPU module then
uses these signals to assert the appropriate interrupt request to the
NVAX+ chip. The LEVI-A gate array also watches for LSB CSR reads to
the LILID0–3 registers in the IOP module. When an LSB CSR read for
LILID0 is asserted on the LSB bus, the LEVI-A gate array correspondingly
deasserts IOINTR<0>. The LEVI-A gate array performs the same function
on LILID3, LILID2, and LILID1.

LSB Interrupt Level NVAX+ IPL (Dec)

3

2

1

0

IPL 23

IPL 22

IPL 21

IPL 20

7-18 CPU Module Registers

LIPINTR—Interprocessor Interrupt Register

Table 7-12 LIPINTR Register Bit Definitions

Address
Access

BSB + 0040
WO

The LIPINTR register is used by the CPU modules to signal
interprocessor interrupts.

31 16 15 0

MBZ MASK

BXB-0120-92

Name Bit(s) Type Function

MBZ

MASK

<31:16>

<15:0>

R/W, 0

W1S, 0

Must Be Zero. Must always be written as zero.

Interprocessor Interrupt Mask. When a
given bit is set, an interprocessor interrupt is
posted to a specific processor. Bits are mapped
to specific CPUs within a multiprocessor system
as follows:

LIPINTR Bits NVAX+ CPU

<15:6>

<5>

<4>

<3>

<2>

<1>

<0>

Not used.

CPU5

CPU4

CPU3

CPU2

CPU1

CPU0

 CPU Module Registers 7-19

Interprocessor Interrupt
When a processor wishes to post an interrupt to another processor, it sim-
ply writes to the LIPINTR register to set the relevant bit. The bits in
LIPINTR<3:0> are write one to set (W1S).

This register appears in LSB broadcast space. Writes that address this lo-
cation are accepted without regard to node ID. Thus, all CPUs accept
writes to the register. Reads to this location are undefined.

The contents of LIPINTR<3:0> are qualified by the node ID. If a given
CPU node is selected, the LEVI-A gate array asserts the IPINTR signal for
one processor external clock. The CPU module ORs this signal and issues
the appropriate interrupt request to the NVAX+ chip.

7-20 CPU Module Registers

LMODE—Mode Register

Table 7-13 LMODE Register Bit Definitions

Address
Access

BB + 0C00
R/W

The LMODE register contains mode setup for an operational CPU
module (as opposed to the LDIAG register which provides mode
setup for a CPU module while running diagnostics).

31 17 16 15 11 10 9 4 3 08 7 6 5 12

MBZ MBZ

BXB-0130-92

LEVI_REV
CLR_LOCK

STCOND_TO

LOCK_MODE
PMODE
WMODE

BSIZE

Name Bit(s) Type Function

MBZ

LEVI_REV

MBZ

CLR_LOCK

<31:17>

<16>

<15:11>

<10>

R/W, 0

RO, X

R/W, 0

WO, 0

Must Be Zero. Must always be written as zero.

LEVI Revision. When clear, indicates pass 1 LEVI-
A. When set, indicates pass 2 LEVI-A.

Must Be Zero. Must always be written as zero.

Clear Lock. When set, forces LEVI to deassert
LSB_LOCKOUT and clear any relevant saved state
irrespective of the state of LOCK_TIME, and so on.

 CPU Module Registers 7-21

Table 7-13 LMODE Register Bit Definitions (Continued)

Name Bit(s) Type Function

STCOND_TO

LOCK_MODE

PMODE

<9:8>

<7:6>

<5:4>

R/W, 0

R/W, 0

R/W, 0

Store Conditional Timeout. Specifies the
timeout period for lockout assertions. This field is
only relevant when LOCK_MODE is non-zero.

Lock Mode. Specifies how LEVI will drive and
respond to LSB_LOCKOUT.

P-Cache Mode. Allows LEVI to work with CPU
chips with varying internal cache organizations.
The value of this field for the NVAX+ CPU chip is
10 (bin), which denotes an 8K P-cache and 2K vir-
tual instruction cache.

LMODE
<9:8> StoreCond Lockout Time

00

01

10

11

Count 1 STx_C failure before assert-
ing LSB_LOCKOUT

Count 8 STx_C failures before as-
serting LSB_LOCKOUT

Count 16 STx_C failures before as-
serting LSB_LOCKOUT

Count 32 STx_C failures before as-
serting LSB_LOCKOUT

LMODE
<7:6> LEVI Lockout Behavior

00

01

10

11

LOCKOUT is off

All writes prevented with LOCK-
OUT asserted

Only write due to STx_C prevented
with LOCKOUT asserted

LEVI behavior undefined

7-22 CPU Module Registers

Table 7-13 LMODE Register Bit Definitions (Continued)

Name Bit(s) Type Function

WMODE

BSIZE

<3:2>

<1:0>

R/W, 0

R/W, 0

Write Mode. Selects the behavior of LEVI in
response to LSB writes.

B-Cache Size. Tells LEVI about the size of
the B-cache.

LMODE
<3:2> LEVI Behavior

00

01

10

11

Use results of P-map lookup to
determine invalidate/update.

Invalidate the B-cache.

Update the B-cache.

LEVI behavior undefined.

LMODE
<1:0> B-Cache Size

00
01
10
11

4 Mbytes
1 Mbyte
16 Mbytes
LEVI behavior undefined.

 CPU Module Registers 7-23

LMERR—Module Error Register

Table 7-14 LMERR Register Bit Definitions

Address
Access

BB + 0C40
R/W

The LMERR register provides module-specific error information.
If any bits are set in this register, NSES (LBER<18>) is also set.

31 11 10 9 4 3 08 7 6 5

RSVD

BXB-0122-92

ARBDROP
ARBCOL

BDATADBE
BDATASBE

BMAPPE
BSTATPE

BTAGPE
PMAPPE

Name Bit(s) Type Function

MBZ

ARBDROP

ARBCOL

<31:11>

<10>

<9>

R/W, 0

W1C, 0

W1C, 0

Must Be Zero. Must always be written as zero.

Arbitration Drop. Set when the LEVI arbitration
logic detects an LSB cycle in which a node has
failed to assert a command after having gained ac-
cess to the LSB bus. When ARBDROP is set, the
LSB command and address are latched in the
LBECR register.

Arbitration Collision. Set when the LEVI arbi-
tration logic detects an attempt to arbitrate for the
LSB bus in an illegal time slot.

7-24 CPU Module Registers

Table 7-14 LMERR Register Bit Definitions (Continued)

Name Bit(s) Type Function

BDATADBE

BDATASBE

BMAPPE

BSTATPE

BTAGPE

PMAPPE

<8>

<7>

<6>

<5>

<4>

<3:0>

W1C, 0

W1C, 0

W1C, 0

W1C, 0

W1C, 0

W1C, 0

B-Cache Data Double-Bit Error. When set,
indicates that the LEVI chips have detected a
double-bit ECC error when unloading the B-
cache RAMs. This bit is set when data being
transmitted on the LSB bus incurs a double-bit
error. The address and the associated ECC syn-
drome are latched in the LBECR and LBESR
registers, respectively.

B-Cache Data Single-Bit Error. When set,
indicates that the LEVI chips have detected a
single-bit ECC error when unloading the B-data
RAMs. This bit is set when data being trans-
mitted on the LSB bus incurs a single-bit error.
The address and the associated ECC syndrome
are latched in the LBECR and LBESR registers,
respectively.

B-Map Parity Error. When set, indicates that
the LEVI-A chip has detected bad parity when
reading the B-map RAMs. The associated ad-
dress is latched in the LBECR register.

B-Cache Status Store Parity Error. When
set, indicates that the LEVI-A chip has detected
bad parity when reading the B-stat RAM. The
associated address is latched in the LBECR reg-
ister for LSB probes. For LEVI probes due to
processor misses (LDx_L and so on),
BIU_STAT<0> is set and the address is latched
in the FILL_ADDR register.

B-Cache Tag Store Parity Error. When set,
indicates that the LEVI chips have detected bad
parity when reading the B-tag RAMs. The asso-
ciated address is latched in the LBECR register
for LSB probes. For LEVI probes due to proces-
sor misses (LDx_L and so on), BIU_STAT<0> is
set and the address is latched in the
FILL_ADDR register.

P-Map Parity Error. A bit is set in this field if
the LEVI-A chip detects bad parity when read-
ing one of the four internal P-map RAM struc-
tures. The associated address is latched in the
LBECR register.

 CPU Module Registers 7-25

LLOCK—Lock Address Register

Table 7-15 LLock Register Bit Definitions

Address
Access

BB + 0C80
RO

The LLOCK register contains the physical address and lock bit of
the most recently executed LDxL instruction that referenced mem-
ory space.

31 30 29 28 0

LADR

BXB-0126-92

MBZ
LOCK

 MBZ

1

Name Bit(s) Type Function

LOCK

MBZ

LADR

MBZ

<31>

<30:29>

<28:1>

<0>

W1C, 0

R/W, 0

RO, 0

R/W, 0

Lock. When set, indicates that the LLOCK register
contains a valid address used in the most recent
memory space LDx_L instruction executed by the
processor and that no LSB writes that reference the
same 64-byte LSB block have occurred. This bit is
used to determine the response to a subsequent
STx_C instruction. Software can clear this bit ex-
plicitly with an LSB write to the 64-byte block refer-
enced in LLOCK<28:1>.

Must Be Zero. Must always be written as zero.

Lock Address. Lock address bits <33:6>.

Must Be Zero. Must always be written as zero.

7-26 CPU Module Registers

LDIAG—LSB Diagnostic Control Register

Table 7-16 LDIAG Register Bit Definitions

Address
Access

BB + 0D00
R/W

The LDIAG register allows a diagnostic program to manipulate
various sections of the CPU module for complete testing.

31 11 10 4 3 07 6 5 12

MBZ

BXB-0121-92

TAG_SEL
FRIGN
FBDP
FBCP

FDBE
FSBE

FSHARE
FDIRTY
SPARE

8

Name Bit(s) Type Function

MBZ

TAG_SEL

<31:11>

<10:8>

R/W, 0

R/W, 0

Must Be Zero. Must always be written as zero.

Tag Select. Specifies which tag store is to be
read/written when Gbus$LtagRW is accessed.

When LDIAG is being used to read a tag, only one
bit in TAG_SEL is allowed to be set. If more than
one bit is set in TAG_SEL when Gbus$LtagRW is
written, all specified tags are written.

LDIAG<10:8> Tag Store Selected

100
010
001

B-cache
B-map
P-map

 CPU Module Registers 7-27

Table 7-16 LDIAG Register Bit Definitions (Continued)

Name Bit(s) Type Function

FRIGN

FBDP

FBCP

FDBE

FSBE

FSHARE

FDIRTY

SPARE

<7>

<6>

<5>

<4>

<3>

<2>

<1>

<0>

R/W, 1

R/W, 0

R/W, 0

R/W, 0

R/W, 0

R/W, 0

R/W, 0

R/W, 0

Force LSB Ignore. When set, forces the
LEVI gate arrays to ignore all LSB bus traffic
except transactions initiated by this node.
When FRIGN transitions from set to clear, the
LEVI gate array sets LSB ERR to allow all
LSB arbitration to resync.

Force Bad Data Parity. When set, forces the
LEVI-A gate array to assert bad parity on the
LSB during CSR data cycles.

Force Bad Command Parity. When set,
forces the LEVI-A gate array to assert bad par-
ity on the LSB during CSR command cycles.

Force Double-Bit Error. Allows a diagnostic
program to force the LEVI gate arrays to load
data into the B-cache with double-bit ECC er-
rors. When set, LEVI inverts every ECC bit for
each longword loaded into the B-cache from the
LSB bus. This bit is only relevant when the
LEVI gate arrays are loading the B-cache data
store (fills).

Force Single-Bit Error. Allows a diagnostic
program to force the LEVI gate arrays to load
data into the B-cache with single-bit ECC er-
rors. When set, LEVI inverts every ECC bit for
each longword loaded into the B-cache from the
LSB bus. This bit is only relevant when the
LEVI gate arrays are loading the B-cache data
store (fills).

Force Share. When set, the LEVI-A chip re-
sponds to all LSB memory transactions with
assertion of SHARED.

Force Dirty. When set, the LEVI-A chip re-
sponds to all LSB memory space read transac-
tions with assertion of DIRTY and supplies the
data from the B-cache to the LSB.

Spare. Has no effect on the CPU module.

7-28 CPU Module Registers

Diagnostic Notes
The following notes offer additional information for performing diagnostics
on the CPU module.

• How to Make the B-Cache Emulate Main Memory
The CPU module can be made to present its cache as main memory to
the LSB environment by setting BIU_CTL<FHIT>, LDIAG<FDIRTY>,
and LMODE<WMODE>=10 (bin). The selection of this mode is possi-
ble under the following two conditions: (1) Only a single CPU module
is placed in this mode; (2) No memory module is present in the system.

• How to Read/Write Tags
The combinations of LDIAG, LTAGA, LTAGW, and Gbus$LtagRW reg-
isters allow diagnostic programs or error recovery programs to read or
write any tag store on the CPU module. LDIAG<TAG_SEL> selects
the tag store of interest; LTAGA selects the location in the tag store;
LTAGW supplies the value to be written into the tag; and
Gbus$LtagRW provides the mechanism. The use of the Gbus register
allows LEVI to perform the tag access without the need for any special
setup (that is, FRIGN). Even though the Gbus registers are specified
to be a byte in length, reads from Gbus$LtagRW return a full longword
of data, since no physical Gbus location is actually being read. Gbus
address space is used for convenience only.

Writing Tags
1. Write LDIAG<TAG_SEL> to select the tag store.
2. Write LTAGA to select the location.
3. Write LTAGW to specify the value to be written.
4. Write Gbus$LtagRW with any random data. This action trig-
gers LEVI to perform the tag write as set up.

Reading Tags
1. Write LDIAG<TAG_SEL> to select the tag store.
2. Write LTAGA to select the location.
3. Read Gbus$LtagRW. This action triggers LEVI to perform the
 tag read as set up. The data returned is the value from the se-
 lected tag location in the format specified by the LTAGW register.

 CPU Module Registers 7-29

LTAGA—Tag Address Register

Table 7-17 LTAGA Register Bit Definitions

Address
Access

BB + 0D40
R/W

The LTAGA register provides a means by which a diagnostic pro-
gram can specify the location to be accessed in the CPU cache data
and tag RAM structures.

31 19 18 0

TAG_ADDR

BXB-0123-92

MBZ

Name Bit(s) Type Function

MBZ

TAG_ADDR

<31:19>

<18:0>

R/W, 0

R/W, 0

Must Be Zero. Must always be written as zero.

Tag Address. Specifies the location (tag address
bits <23:5>) to be accessed in the tag store se-
lected by LDIAG<TAG_SEL>.

7-30 CPU Module Registers

LTAGW—Tag Write Data Register

Table 7-18 LTAGW Register Bit Definitions

Address
Access

BB + 0D80
R/W

The LTAGW register provides a means by which a diagnostic pro-
gram can specify the value to be loaded into the CPU caches and
tag RAM structures.

31 30 29 28 27 0

TAG_DATA

BXB-0124-92

PMAPP
VALID
SHARED
DIRTY

26 25 24 23

BTAGP
BSTATP
BMAPP

MBZ
��

Name Bit(s) Type Function

MBZ

DIRTY

SHARED

VALID

PMAPP

<31>

<30>

<29>

<28>

<27>

R/W, 0

R/W, 0

R/W, 0

R/W, 0

R/W, 0

Must Be Zero. Must always be written as zero.

Dirty. Loaded into the Dirty field (if any) of the B-stat
store specified in LDIAG<TAG_SEL> when WTAG
(LDIAG<4>) is set.

Shared. Loaded into the Shared field (if any) of the B-
stat store specified in LDIAG<TAG_SEL> when WTAG
(LDIAG<4>) is set.

Valid. Loaded into the Valid field (if any) of the B-stat
store specified in LDIAG<TAG_SEL> when WTAG
(LDIAG<4>) is set.

P-Map Parity. Specifies the value to be loaded in the
B-map parity location when the Gbus$LtagRW register
is written. PMAPP covers tag data bits <23:10> and the
valid bit (even parity).

 CPU Module Registers 7-31

Table 7-18 LTAGW Register Bit Definitions (Continued)

Name Bit(s) Type Function

BMAPP

BSTATP

BTAGP

TAG_DATA

<26>

<25>

<24>

<23:0>

R/W, 0

R/W, 0

R/W, 0

R/W, 0

B-Map Parity. Specifies the value to be loaded in the
B-map parity location when the Gbus$LtagRW register
is written. BMAPP covers tag data bits <33:22> and the
valid bit (even parity).

B-Stat Parity. Specifies the value to be loaded in the B-
stat parity location when the Gbus$LtagRW register is
written. BSTATP covers the Shared, Dirty, and Valid
bits.

B-Tag Parity. Specifies the value to be loaded in the B-
tag parity location when the Gbus$LtagRW register is
written. BTAGP covers tag data bits <33:22> (even par-
ity).

Tag Data. Loaded into the tag store specified in
LDIAG<TAG_SEL> when the Gbus$LtagRW register is
written. Mapping is performed as follows:

LTAGW<23:0> Tag RAM Structure

<23:12>
<23:12>
<13:0>

<33:22>
<33:22>
<23:10>

B-cache tag
B-map tag
P-map tag

7-32 CPU Module Registers

LCON0,1—Console Communication Registers

Table 7-19 LCON Register Bit Definitions

Address
Access

BB + 0E00 and BB + 0E40
R/W

The LCON register provides a nonmemory communication location
for the KA7AA console firmware. The value contained in this regis-
ter has no direct effect on any CPU module hardware.

31 0

CON_COM_DATA0

BXB-0129-92

CON_COM_DATA1

0

1

Name Bit(s) Type Function

CON_COM_DATA0

CON_COM_DATA1

<31:0>

<31:0>

R/W, 0

R/W, 0

Console Communication Data 0. Data
stored in the LCON0 register.

Console Communication Data 1. Data
stored in the LCON1 register.

 CPU Module Registers 7-33

LPERF—Performance Counter Control Register

Table 7-20 LPERF Register Bit Definitions

Address
Access

BB + 0F00
R/W

The LPERF register defines how the LEVI performance registers
(LCNTR0, LCNTR1, and LMISSADDR) behave. Each counter reg-
ister has an event select field, control bits, and an overflow bit.
Some of the events to be counted are subject to the node ID mask.
The LMISSADDR register loads miss addresses based on the value
of the Miss Address Frequency field.

31 24 23 22 21 20 16 15 14 13 12 4 3 08 7 12

N_MASK LC1_SEL LC0_SEL MBZ

BXB-0229-92

LC1_HLT
LC1_RUN

MBZ

MA_FREQ
LC1_OVFL
LC0_OVFL

LC0_HLT
LC0_RUN

MBZ

Name Bit(s) Type Function

N_MASK

LC1_HLT

LC1_RUN

MBZ

<31:24>

<23>

<22>

<21>

R/W, 0

WO, 0

WO, 0

R/W, 0

Node Mask. When a bit is set in this field, the LSB reads,
LSB writes, or victim writes are counted for the associated
node. The bits are in one-to-one correspondence, so that bit
<31> is associated with node 7, bit <30> with node 6, and
so on, except for bit <24>, which is associated with node 0
and the IOP. More than one bit may be set, allowing trans-
actions from multiple nodes to be counted. This field ap-
plies to both LCNTR registers.

LCNTR1 Halt. Write one to disable LCNTR1 counting.

LCNTR1 Run. Write one to enable LCNTR1 counting.

Must Be Zero. Must always be written as zero.

7-34 CPU Module Registers

Table 7-20 LPERF Register Bit Definitions (Continued)

Name Bit(s) Type Function

LC1_SEL

LC0_HLT

LC0_RUN

MBZ

<20:16>

<15>

<14>

<13>

R/W, 0

WO, 0

WO, 0

R/W, 0

LCNTR1 Select. Selects event for the LCNTR1 register.

LCNTR0 Halt. Writing one disables LCNTR0 counting.

LCNTR0 Run. Writing one enables LCNTR0 counting.

Must Be Zero. Must always be written as zero.

LPERF
<20:16>1 Event to Count in LCNTR1

00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000
10001
10010
10011
10100
Other

Misses due to reads
Misses due to writes.
Misses due to shared blocks
LDL_X instructions
STC_X failures
LSB B-map hits
Bank conflict delays —LSB cycles
Arbitration losses
Victim buffer hits —wrapped only
CSR reads
CSR writes
LMBPR writes
LSB interrupts
Gbus reads
Gbus writes
LSB reads —subject to node mask
LSB writes —subject to node mask
Victim writes —subject to node mask
Stall cycles
Total memory latency
Carry out from LCNTR0
Reserved

1 When counting victim buffer hits, LC1_SEL = 01000 counts only
hits for which LEVI has to swap (or wrap) the first and second
hexwords to satisfy the read request in the proper order (see
LVICT register in this section). LC0_SEL = 01000 counts all
(wrapped or unwrapped) hits.

 CPU Module Registers 7-35

Table 7-20 LPERF Register Bit Definitions (Continued)

Name Bit(s) Type Function

LC0_SEL

MBZ

<12:8>

<7:4>

R/W, 0

R/W, 0

LCNTR0 Select. Selects event for the LCNTR0 register.

Must Be Zero. Must always be written as zero.

LPERF
<12:8>1 Event to Count in LCNTR0

00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000
10001
10010
10011
10100
Other

Misses due to reads
Misses due to writes.
Misses due to shared blocks
LDL_X instructions
STC_X failures
LSB B-map hits
Bank conflict delays —LSB cycles
Arbitration losses
Victim buffer hits —wrapped or unwrapped
CSR reads
CSR writes
LMBPR writes
LSB interrupts
Gbus reads
Gbus writes
LSB reads —subject to node mask
LSB writes —subject to node mask
Victim writes —subject to node mask
Stall cycles
Total memory latency
Carry out from LCNTR1
Reserved

1 When counting victim buffer hits, LC1_SEL = 01000 counts only
hits for which LEVI has to swap (or wrap) the first and second
hexwords to satisfy the read request in the proper order (see
LVICT register in this section). LC0_SEL = 01000 counts all
(wrapped or unwrapped) hits.

7-36 CPU Module Registers

Table 7-20 LPERF Register Bit Definitions (Continued)

Name Bit(s) Type Function

MA_FREQ

LC1_OVFL

LC0_OVFL

<3:2>

<1>

<0>

R/W, 0

RO, 0

RO, 0

Miss Address Frequency. Determines how often the
LMISSADDR register loads the last miss address.

LCNTR1 Overflow. Records overflow from the LCNTR1
register. Clears when the LCNTR1 register is reset.

LCNTR0 Overflow. Records overflow from the LCNTR0
register. Clears when the LCNTR0 register is reset.

LPERF
<3:2> Miss Frequency

00
01
10
11

Load every 32nd miss address
Load every 64th miss address
Load every 128th miss address
Load every 256th miss address

 CPU Module Registers 7-37

LCNTR0,1—Performance Counter Registers

Table 7-21 LCNTR Register Bit Definitions

Address
Access

BB + 0F40 and BB + 0F80
R/W

The LCNTR registers count events selected by the Select (LC0_SEL
and LC1_SEL) and N_MASK fields of the LPERF register. Each
register is a 32-bit counter with an associated overflow bit
(LPERF<0> for LCNTR0 and LPERF<1> for LCNTR1). With the
correct values of the Select fields, the LCNTR registers can be cas-
caded to form a single 64-bit register. The two counters are en-
abled and disabled independently through their associated LPERF
control bits. The LCNTR registers can be read while the counters
are stopped or running. The registers can also be stopped and re-
started without resetting to zero. A write to an LCNTR register re-
sets the counter and the associated overflow bit in the LPERF reg-
ister, and sets the counter to the stopped state. Writes to these reg-
isters are ignored.

31 0

EV_COUNT0

BXB-0228-92

EV_COUNT1

Name Bit(s) Type Function

EV_COUNT0

EV_COUNT1

<31:0>

<31:0>

R/W, 0

R/W, 0

Event Count 0. Number of events (selected
through LPERF<LC0_SEL>) that occurred while
LCNTR0 was enabled. Writes ignored.

Event Count 1. Number of events (selected
through LPERF<LC1_SEL>) that occurred while
LCNTR1 was enabled. Writes ignored.

7-38 CPU Module Registers

LMISSADDR—Last Miss Address Register

Table 7-22 LMISSADDR Register Bit Definitions

Address
Access

BB + 0FC0
RO

The LMISSADDR register captures every nth B-cache miss address
(determined by LPERF<MA_FREQ>. The miss may be due to a
read, a write, or a shared block.

31 29 28 0

MISS_ADDR

BXB-0227-92RSVD

Name Bit(s) Type Function

RSVD

MISS_ADDR

<31:29>

<28:0>

R0

R/W, 0

Reserved. Read as zero.

Missed Address. Block address of one of the last n
B-cache misses. LPERF<MA_FREQ> determines
the value of n.

 Initialization 8-1

Chapter 8

Initialization

The KA7AA CPU module can be initialized in three ways:

• Power-Up Sequence. When the LSB system is powered up, the
CPU module generates a local reset signal.

• System Reset. Whenever the LSB RESET signal is asserted, the
CPU module is initialized. LSB RESET can be asserted by any node
or from the control panel keyswitch through CCL_RESET.

• Node Reset. A single CPU module can be reset by setting
LCNR<NRST>.

The processor chip (NVAX+) can be reset independently of the other com-
ponents on the CPU module through the serial I/O port (see Section
5.1.2).

8.1 Initialization Overview

A CPU reset causes the console code to first invoke the on-board self-test
sequence. Self-test begins by testing a very small portion of the CPU
logic and gradually expands the scope of testing until all hardware func-
tions of the module have been verified.

Action subsequent to the completion of the CPU module self-test depends
on the state of LCNR<RSTSTAT>. If the state of this bit indicates a
power-up or system reset, CPU module self-test is followed by CPU-
based testing of other system components.

Once all appropriate testing has been completed, the KA7AA console pro-
gram determines a primary processor. The primary processor is then re-
sponsible for displaying the results of all testing, configuring the LSB sys-
tem (memory, registers, and so on), and creating the software data
structures necessary to communicate between processors and the operat-
ing system. The console program then enters its input loop.

If the CPU module reset was caused by a node reset, no additional system
components are tested. CPU registers are set to their firmware-
initialized state, but no other LSB system configuration is performed.
There is no change in the primary processor, and the console program en-
ters its input loop.

8-2 Initialization

8.2 Self-Test

CPU self-test is a layered process that is called as the first part of the con-
sole entry sequence. It starts with a simple load of code from the SROM
into the P-cache and augments itself through additional ROM-resident
code that is copied to the B-cache and runs from the B-cache. The process
completes by returning a GO/NOGO status to the console entry sequence.
The following subsections summarize the various stages in the CPU self-
test. A complete description and flowchart of self-test sequences can be
found in the Advanced Troubleshooting manuals.

8.2.1 SROM Operation

Following the deassertion of reset to the NVAX+ chip, the contents of the
SROM are loaded into the internal cache (see Section 5.1.2 the PC is
pointed to location zero and instruction execution is started. This code per-
forms the following:

• A quick internal test of the processor chip

• Tests the external B-cache tag, status, and data store RAMs and asso-
ciated control

• Determines that access to the Gbus resources is operational

• Copies the balance of CPU self-test and the CPU console program from
the Gbus ROMs to the B-cache and, following a checksum verification,
transfers control to it.

At any point in this process, the SROM code can signal failures through
the Gbus$LEDs register.

8.2.2 CPU Module Self-Test

Following the transfer of control from the SROM code to the main body of
CPU self-test in the B-cache, the CPU module is tested thoroughly. High-
lights include:

• Test of all Gbus resources including the UARTs and the watch chip

• LEVI tests including LSB transfers

• Tests of all RAM structures

8.2.3 Additional Power-Up Testing

If the CPU module self-test completes successfully, additional power-up
testing is next performed to verify untested system components. Addi-
tional testing performed by all processors includes:

• Tests of the processor/memory LSB interface

• Tests of CPU multiprocessor logic

• Tests of the LSB I/O port module

The boot processor then performs tests on interfaces to the I/O port.

 Initialization 8-3

8.3 Console Entry

When the power-up test sequence is complete, the console code entry se-
quence continues. This section briefly describes the system-level initializa-
tion functions that are required to start the operating system, performed
by the console code following self-test.

8.3.1 Boot Processor Arbitration

The console program determines the boot processor. A boot processor must
also be determined on an interim basis, between phases of power-up test
sequence, for the purpose of printing out test results.

The boot processor is selected dynamically. Any processor in a multi-
processor system can become the boot processor. By default, the CPU with
the lowest LSB node number that has passed all of its power-up tests thus
far, and is eligible, is selected as the boot processor.

If all processors fail self-test, or if all processors have been disabled
through console commands from becoming boot processors, then no boot
processor is assigned. In this case, a unique code is placed on the LEDs,
and all processors monitor the console terminal lines waiting for a se-
quence to be typed by the operator, which would force one of the processors
to become the boot processor.

The console set cpu command can be used to change the boot processor
once the console is running. Refer to the Console Reference Manual for fur-
ther information on the set cpu command.

8.3.2 Boot Processor System Setup

Following configuration of memory, the console creates data structures in
memory that are required to communicate between processors and with
the operating system. These data structures include:

• Hardware restart parameter block (HWRPB)

• A physical memory descriptor

• A bitmap of good and bad pages of physical memory

• Console routines block (CRB)

• Console terminal block (CTB)

8.3.3 Operating System Startup

The KA7AA console program’s primary role in operating system startup is
to load and transfer control to the primary bootstrap program. The
method the console generally uses to load the primary bootstrap program
is called bootblock booting. To begin the boot, the console reads the first
logical block (LBN 0) on a disk. This is the bootblock, which contains infor-
mation that points to the location of the primary bootstrap program on the
disk. Using the same routines that loaded the bootblock, the console then
uses this information to load the primary bootstrap program.

When booting from a network, the console must request the bootstrap im-
age from an external server.

8-4 Initialization

Once control is passed to the primary bootstrap, the console program’s only
remaining role is to allow access to console terminal routines and I/O rou-
tines. The console terminal routines allow the operating system software
to send/receive characters to/from the console terminal. The I/O routines
allow the primary bootstrap program to utilize the console boot drivers to
load the secondary bootstrap or operating system software.

 Error Handling 9-1

Chapter 9

Error Handling

Errors detected by or reported to the KA7AA processor can occur anywhere
in the system. If errors occur during data movement within the NVAX+
chip or between the NVAX+ and its environment, they are detected by the
NVAX+ chip. Errors that occur during data movement within KA7AA
hardware external to the NVAX+ (B-cache and LEVI) or during interac-
tions with the LSB bus (other nodes) are detected by the LEVI interface
and reported to the NVAX+ chip.

This chapter does not offer an exhaustive discussion of error handling on
the KA7AA CPU module. Although it provides detailed parse trees for er-
ror isolation, it limits specific error discussions to the necessary. The parse
trees and accompanying texts should provide enough information for the
experienced system programmer to determine the source of an error on
the CPU module and apply a recommended recovery method.

Topics discussed in this chapter include:

• Software Error Handling

• Error Reports

• Console Halt and Halt Interrupt

• Machine Checks

• Hard Error Interrupts

• Soft Error Interrupts

• Kernel Stack Not Valid Exception

• System Environment Errors

9.1 Software Error Handling

Software error handling (by operating system routines) can be logically di-
vided into the following steps:

• State collection

• Analysis

• Recovery

• Retry

The following terminology is used in subsequent discussions:

9-2 Error Handling

Fill — Any quadword or data returned to the NVAX+ chip in response to
read-type operations. The quadword containing the requested data is a
fill.

Flush — Causes victim writebacks to memory of all dirty blocks in the B-
cache.

9.1.1 Error State Collection

All relevant state must be collected before error analysis can begin. The
stack frame provides the PC/PSL pair for all exceptions and interrupts.
For machine checks, the stack frame also provides details about the error.

Besides the stack frame, machine checks and hard and soft error inter-
rupts usually require analysis of other registers. The state of some regis-
ters should be saved prior to analysis so that analysis is not complicated by
changes in state in the registers as the analysis progresses. Errors in-
curred during analysis and recovery can be processed within that context.

The state of the following registers should be read and saved:

Ibox

ICSR: Ibox Control and Status Register
VMAR: VIC Memory Address Register

Ebox

ECR: Ebox Control Register

Mbox

TBSTS: TB Parity Status Register
TBADR: TB Parity Address Register
PCSTS: P-Cache Status Register
PCADR: P-Cache Parity Address Register

Cbox

BIU_STAT: Bus or Fill error status
BC_TAG: Contains tag of tag parity, control parity, or fill error
BIU_ADDR: Address associated with cache probe or bus error
 (BIU_HERR, BIU_SERR, BC_TPERR, BC_TCPERR)
FILL_ADDR: Address associated with fill error, FILL_ECC, or
 FILL_DPERR
FILL_SYNDROME: Syndrome bits associated with FILL_ADDR

NOTE: In discussions and examples in this chapter, it is assumed that each of
these register states is saved in a variable whose name is constructed by
prepending “S_” to the register name. For example, the ICSR register would
be saved in the variable S_ICSR.

Example 9-1 shows allocation of memory storage for the error state.

 Error Handling 9-3

Example 9-1 Memory Storage Allocation to the Error State

;ERROR STATE COLLECTION DATA STORAGE

;IBOX
S_ICSR .LONG 0 ;IBOX VIC CONTROL AND STATUS REGISTER
S_VMAR .LONG 0 ;IBOX VIC ERROR ADDRESS REGISTER

;EBOX
S_ESR .LONG 0 ;EBOX CONTROL AND STATUS REGISTER

;MBOX
S_TBSTS .LONG 0 ;TB STATUS REGISTER
S_TBADR .LONG 0 ;TB ADDRESS REGISTER
S_PCSTS .LONG 0 ;P-CACHE STATUS REGISTER
S_PCADR .LONG 0 ;P-CACHE ERROR ADDRESS REGISTER

;CBOX
S_BIU_STAT .LONG 0 ;Bus or fill error status
S_BCTAG .LONG 0 ;Contains tag of tag_parity, control_parity,

;or fill error
S_BIU_ADDR .LONG 0 ;Address associated with BIU_HERR, BIU_SERR,

;BC_TPERR, BC_TCPERR
S_FILL_ADDR .LONG 0 ;Address associated with fill error, FILL_ECC,

;or FILL_DPERR
S_FILL_SYNDROME .LONG 0 ;Syndrome bits associated with FILL_ADDR

Example 9-2 shows collection error state that would normally be done in
the error handling routine. If a second bus or fill error is detected, the
SEO second error bit is set, but the error address and status are lost.

Example 9-2 Collection Error State

SAVE_STATE: ;Save all error state upon entry
;to error routine

;CBOX
MFPR #PR19S_BIU_STAT,S_BIU_STAT
MFPR #PR19S_BIU_ADDR,S_BIU_ADDR
MFPR #PR19S_FILL_ADDR,S_FILL_ADDR
MFPR #PR19S_FILL_SYNDROME,S_FILL_SYNDROME
MFPR #PR19S_BC_TAG,S_BC_TAG

;IBOX
MFPR #PR19S_ICSR,S_ICSR
MFPR #PR19S_VMAR,S_VMAR

;EBOX
MFPR #PR19S_ECR,S_ECR

;MBOX
MFPR #PR19S_TBSTS,S_TBSTS
MFPR #PR19S_TBADR,S_TBADR
MFPR #PR19S_PCSTS,S_PCSTS
MFPR #PR19S_PCADR,S_PCADR

;System environment
 ;Collection of system environment error registers goes here

9-4 Error Handling

Additional state collection is recommended while/after flushing the B-
cache because certain errors can occur as a result of the flush operation.

9.1.2 Error Analysis

The error condition is analyzed with the error state obtained during the
collection process. The purpose is to determine, if possible, what error
event caused the error notification, and what other errors may also have
occurred. Analysis of machine checks and hard and soft error interrupts
should be guided by the parse trees given in the appropriate sections.

Errors detected in or by one of the caches usually result in the cache being
automatically disabled. To minimize the possibility of nested errors,
analysis and recovery for memory or cache-related errors should be per-
formed with both the P-cache and B-cache disabled (BIU_CTL<0>=0).

In some cases a notification for a single error occurs in two ways. For ex-
ample, an uncorrectable error in the B-cache data RAMs will cause a soft
error interrupt and may also cause a machine check. Software needs to
handle cases where a machine check handler clears error bits and then the
soft error handler is entered with no error bits set.

In general, an error reporting register can report events that lead to ma-
chine checks, soft errors, or hard errors. A given error can result in either
a machine check or a soft error interrupt, or both. Events that lead to hard
error interrupts generally cannot also cause a machine check or soft error
interrupt. However, if a hard error occurs from a write operation, a subse-
quent read error can result in a machine check with SEO set.

Each category of error—machine check exception, soft error interrupt, and
hard error interrupt—is analyzed by tracing an error cause determination
parse tree. The IPLs assigned to these errors establish a hierarchy going
in descending order from the machine check exception to the soft error in-
terrupt. This hierarchy is important because knowledge of which notifica-
tion event occurred is used to distinguish between certain error events.
For example, an error on the initial fill quadword for a read-lock is distin-
guished from a fill error on a subsequent quadword by a machine check no-
tification issued on the former error.

9.1.3 Error Recovery

Error recovery consists of clearing any latched error state and restoring
the system to normal operation. Analysis and recovery from cache and
memory errors require special care and are discussed separately.

Multiple simultaneous errors may make useful recovery impossible. How-
ever, in cases where no conflict exists in the reporting of multiple errors,
and recovery from each error is possible, then recovery from the set of er-
rors is accomplished by recovering from all. For example, recovery from a
P-cache tag parity error and a B-cache correctable data error which are re-
ported together, is possible by following the recovery procedures for each
error in sequence.

All recovery procedures in this section assume that only one error is pre-
sent. None of the procedures are valid in multiple error cases without fur-
ther analysis.

In some instances, it may be desirable to stop using the hardware that is
the source of a large number of errors. For example, if a cache reports an

 Error Handling 9-5

excessive number of errors, it may be preferable to bypass (disable) it.
Software should maintain error counts that can be compared against error
thresholds on every error report. If the count (per unit time) exceeds the
threshold, the hardware should be disabled.

Cache and memory error recovery requires special considerations:

• Cache and memory error recovery should always be done with the P-
cache and VIC off.

• B-cache flush should always be done one block at a time, recapturing
the relevant error registers after each block flush.

• Cache coherence requires a specific procedure for reenabling the
caches.

• Error recovery should be performed starting with the most distant
component and working toward the CPU and Ebox. This rule requires
that system environment memory errors be processed first, then B-tag
and B-data, P-cache, TB, and, finally, VIC errors.

• BIU and FILL errors are cleared by writing the W1C (write 1 to clear)
bits in the BIU_STAT register.

• P-cache tag and data errors are cleared by writing the W1C bits in the
PCSTS register. The suggested way to do this is to write a one to the
specific error bit. P-cache flush is necessary after P-tag parity errors.

• Translation buffer errors are cleared by writing the W1C bits in the
TBSTS register. The suggested way to do this is to write a one to the
specific error bit.

• PTE read errors are cleared by writing the W1C bits in the PCSTS reg-
ister. The suggested way to do this is to write a one to the specific er-
ror bit.

• VIC errors are cleared by writing the W1C bits in the ICSR register.
The suggested way to do this is to write a one to the specific error bit.
VIC flush and reenable is necessary after VIC tag store parity errors.

9.1.3.1 Cache Coherence in Error Handling

Certain procedures must be followed to maintain cache coherence while
enabling NVAX+ caches. Since many errors cause caches to be disabled,
and since cache and memory error recovery is normally done with the P-
cache and VIC off, the complete cache enable procedure is done as part of
recovery from all cache and memory errors.

The VIC is not automatically kept coherent with memory. It is flushed as
a side effect of the REI instruction (as required by the VAX architecture).
Normally in error recovery, there is no need to flush the VIC. For consis-
tency and for the sake of beginning error retry in a known state, flushing
the VIC during error recovery is recommended. However, in the event of
VIC tag parity errors, the complete VIC flush procedure must be done.

The translation buffer is not automatically kept coherent with memory.
Software uses the TBIS and TBIA functions to maintain coherence, and
the LDPCTX instruction clears the process PTEs in the TB. Normally in
error recovery, there is no need to flush the TB. For consistency and for
the sake of beginning error retry in a known state, flushing the TB during
error recovery is recommended. When a TB parity error occurs, The

9-6 Error Handling

Mbox hardware flushes the TB by itself (through an internally generated
TBIA), but it would be appropriate for software to test the TB after a par-
ity error.

9.1.3.2 Cache Enable, Disable, and Flush Procedures

Before NVAX+ caches are enabled, they must be flushed. The caches then
must be enabled in a specific order. This is necessary for coherence be-
tween the B-cache, P-cache, and memory. For simplicity, one procedure is
given here for enabling the NVAX+ caches, even though variations on the
procedure could also produce correct results.

NOTE: In error handling, the VIC and the P-cache are disabled.

To disable NVAX+ caches for error handling, proceed as follows:

1. Disable the VIC (MTPR to ICSR)

2. Disable the P-cache (MTPR to PCCTL)

3. Disable the B-cache (MTPR to BIU_CTL)

The procedure to enable the NVAX+ caches after an error is the same as
the one used to initialize the caches after power-up. This procedure en-
sures that error retry/restart occurs with the caches in a known state. Pro-
ceed as follows:

1. Disable all NVAX+ caches and the B-cache.

2. Flush the B-cache.

3. Enable the B-cache (MTPR to BIU_CTL).

4. Flush the P-cache (Loop on MTPR to PCTAG IPRs).

5. Enable the P-cache (MTPR to PCCTL).

6. Flush the TB.

 MTPR #0, #PR19S_TBIA

7. Flush the VIC (loop on MTPRs to VMAR and VTAG, writing different
initial values into the left and right banks).

8. Enable the VIC (MTPR to ICSR).

9.1.3.3 Extracting Data from the B-Cache

To extract data from the B-cache, place the B-cache in force hit mode with
an MTPR to BIU_CTL.

After the B-cache is flushed, set the B-cache in force hit mode and extract
the data. Note that the code that executes this procedure and its local data
must be in I/O space. The TB entries (PTEs) that map this code and local
data must be fixed in the TB. This is most easily done by flushing the TB
through an MTPR to TBIA and then accessing all the relevant pages in se-
quence.

With the B-cache in force hit mode, a read in memory space of any address
whose index portion matches the index of the cache data will return the
data (provided there is no uncorrectable data RAM error). This is most
easily accomplished by reading from the true address of the data.

 Error Handling 9-7

NOTE: In force hit mode, fill ECC errors are detected. Software should prepare for
an ECC error (BIU_STAT<FILL_ECC>).

9.1.3.4 Cache and TB Test Procedures

Testing is generally done using the force hit mode of a cache. The code and
data of the test procedure must reside in I/O space. Assuming memory
management is enabled during the test procedure, the needed PTEs must
be in the TB before entering force hit mode in the P-cache or B-cache. For
the B-cache, testing should be done with errors disabled
(DIAG_CTL<DISABLE_ERRORS>=1). The ECC logic should be tested
thoroughly on one location by forcing various check bit patterns and exam-
ining the syndrome latched on the read (FILL_SYNDROME is loaded on
every read in B-cache disable errors mode). Presently FILL_SYNDROME
is valid if an error occurs and the syndrome bits for the last fill cannot be
recovered with an IPR_RD of this register otherwise. P-cache and VIC
parity checking should be tested by writing bad parity into the arrays. TB
testing can be accomplished by writing to MTBTAG and MTBPTE (being
careful not to change any TB entry necessary for the test code and data,
and not to cause two TB entries to exist for one address). Probe read and
probe write (setting PSL<PRV_MOD>) are then used to verify the protec-
tion bits. Testing the Modify bit in the memory management stack frame
would be difficult, though approaches exist.

9.1.4 Error Retry

Error retry is a function of the error notification (machine check or error
interrupt), error type, and error state. The sections below specify the con-
ditions under which the instruction stream may be restarted.

If retry is to be attempted, the stack must be trimmed of all parameters
except the PC/PSL pair. An REI will then restart the instruction stream
and retry the error. Some form of software loop control should be provided
to limit the possibility of an error loop. Note that pending error interrupts
may be taken before the retry occurs, depending on the IPL of the inter-
rupted or machine checked code.

Strictly speaking, an REI from a hard or soft error interrupt handler is not
a retry since these interrupts are recognized between macroinstructions.
A machine check exception is an instruction abort, and an REI from the
handler will cause the failing instruction to be retried. What these cases
all have in common is that the interrupted instruction stream is restarted.
This is only done when the result of error analysis and recovery is such
that all damaged state has been repaired and there is no reason to suspect
that incorrect results will be produced if the image is restarted and an-
other error does not occur.

If complete recovery from one or more errors is not possible, software must
determine if the error is fatal to the current process, to the processor, or to
the entire system, and take the appropriate action.

It is expected that software handles machine checks, soft error interrupts,
and hard error interrupts independently. For example, after handling a
machine check from which retry is to occur, software does not check for er-
rors that might cause a pending hard or soft error interrupt.

NOTE: In the case of HARD_ERROR interrupt, the machine check code must not
clear the BIU_STAT register if the interrupt is to be taken.

9-8 Error Handling

The machine check handler is exited by REI (after trimming the machine
check information off the stack). If the IPL of the machine checked in-
struction stream is low enough, any pending hard or soft error interrupt is
taken before the retry occurs. However, if the interrupted instruction
stream was running at a high IPL, the system will continue without deal-
ing with the remaining errors.

Multiple errors can be reported at the same time. In some cases the
NVAX+ pipeline will contain multiple operand prefetches to the same
memory block. This can cause multiple errors from a single nontransient
failure. Two separate errors could also occur at nearly the same time and
be reported simultaneously.

Multiple error scenarios can be grouped into the following classes:

• Class 1 errors are multiple distinct errors for which no error report in-
terferes with the analysis of any other (that is, no lost error bit is set).

• Class 2 errors are multiple errors that could have been caused by the
NVAX+ pipeline issuing more than one reference to a given block be-
fore the error interrupt or the machine check forced a pipeline flush.

• Class 3 errors are multiple errors for which analysis is complicated be-
cause the reports interfere with each other.

This chapter treats class 1 errors as separate errors, each with its own re-
covery. Retry or restart evaluation is based on the cumulative result of the
recovery and repair procedures for each error.

The chapter identifies and deals with specific cases of class 2 errors in
which lost errors are tolerated. These cases are selected because the
NVAX+ pipeline can easily cause them (given one error), and because suffi-
cient safeguards exist to ensure that correct operation is maintained.

Class 3 errors are generally not considered recoverable and the system is
crashed.

Lost correctable errors are not considered serious problems, since hard-
ware recovers from these errors automatically.

 Error Handling 9-9

9.2 Error Reports

The KA7AA processor reports errors to the operating system software
through machine checks and interrupts. Error notification occurs through
one of the following events listed in order of decreasing severity:

• Console error halt
A halt to console mode is caused by one of several errors such as inter-
rupt stack not valid. For certain halt conditions, the console prompts
for a command and waits for operator input. For other halt conditions,
the console may attempt a system restart or system bootstrap.

• Machine check
A hardware error occurred synchronous to the execution of instruc-
tions. Instruction-level recovery and retry may be possible.

• Kernel stack not valid
During exception processing, a memory management exception oc-
curred while trying to push information on the kernel stack.

• Hard error interrupts
A hardware error occurred asynchronous to the execution of instruc-
tions. Usually, data is lost or state is corrupted, and instruction-level
recovery may not be possible.

• Soft error interrupts
A hardware error occurred asynchronous to the execution of instruc-
tions. The error is not fatal to the execution of instructions, and
instruction-level recovery is usually possible.

All errors (except those leading to a console halt) go through SCB (system
control block) vector entry points and are handled by service routines pro-
vided by the operating system. A console halt, on the other hand, transfers
control to a hardware-prescribed I/O space address. Software-driven re-
covery or retry is not recommended for errors resulting in console halt.

Table 9-1 gives a summary of errors and notification entry points for the
various error categories. For each SCB entry point, discussions provide
the following information:

• Parameters pushed on the stack

• Defined failure codes

• What additional information exists and should be collected for analysis

• How to restore the state of the machine and what level of recovery is
possible

Error categories are discussed in the next sections.

9-10 Error Handling

Table 9-1 Error Categories by SCB Entry Points

9.3 Console Halt and Halt Interrupt

A console halt is a transfer of control by the NVAX+ CPU microcode di-
rectly into console macrocode at the address stored in the CHALT register.
Console halts are initiated:

• At power-up

• When the microcode detects certain double-error conditions, specifi-
cally when a second error occurs during error processing

• When LBER<NHALT> is set

• When Ctrl/P is typed on the console terminal

• When the system is reset

• When a kernel-mode HALT instruction is executed

• When the external signal HALT_H is asserted

No exception stack frame is associated with a console halt. Instead, the
state is saved in the SAVPC (IPR42) and SAVPSL (IPR43) processor regis-
ters. Figure 9-1 shows the SAVPC IPR.

SCB Index
 (Hex) Error Category Summary of Errors

None

04

08

54

60

Console halt1

Machine check

Kernel stack
not valid

Soft error
interrupt

Hard error
interrupt

Interrupt stack not valid
Kernel mode halt
Double error halt
Illegal SCB vector

Memory management
Interrupt
Microcode-detected CPU errors
CPU stall timeout
TB parity errors
VIC tag or data parity errors
Uncorrectable data read errors
CACK_H error on reads

Error during exception processing

VIC tag or data parity errors
P-cache tag or data parity errors
B-cache tag parity error on reads
Uncorrectable data read errors
Correctable data read errors

Uncorrectable data errors on write operations
B-cache tag parity error on writes
CACK_H error on writes

1 Does not go through an SCB entry point.

 Error Handling 9-11

Figure 9-1 Console Saved PC

The PSL halt code, MAPEN<0>, and a validity bit are saved in SAVPSL.
Figure 9-2 shows the SAVPSL IPR.

Figure 9-2 Console Saved PSL

Table 9-2 lists the possible halt codes that can appear in SAVPSL<13:8>.

31 0

Saved PC

BXB-0261-92

31 16 15 14 13 08 7

PSL <31:16> Halt Code

BXB-0245-92

MAPEN
Invalid SAVPSL if 1

PSL <7:0>

9-12 Error Handling

Table 9-2 Console Halt Codes

At the time of the halt, the current stack pointer is saved in the appropri-
ate IPR (0 to 4), and SAVPSL<31:16,7:0> are loaded from PSL<31:16,7:0>.
SAVPSL<15> is set to MAPEN<0>. SAVPSL<14> is clear if the PSL is
valid, and set if it is not (SAVPSL<14> is undefined after a halt due to a
system reset). SAVPSL<13:8> is set to the console halt code.

To complete the hardware restart sequence and thereby pass control to the
console macrocode, the CPU is initialized as shown in Table 9-3.

Code
(Hex) Mnemonic Description:

02

03

04

05

06

07

08

0A

10

11

12

13

19

1A

1B

1D

1E

1F

3F

ERR_HLTPIN

ERR_PWRUP

ERR_INTSTK

ERR_DOUBLE

ERR_HLTINS

ERR_ILLVEC

ERR_WCSVEC

ERR_CHMFI

ERR_IE0

ERR_IE1

ERR_IE2

ERR_IE3

ERR_IE_PSL_26_24_101

ERR_IE_PSL_26_24_110

ERR_IE_PSL_26_24_111

ERR_REI_PSL_26_24_101

ERR_REI_PSL_26_24_110

ERR_REI_PSL_26_24_111

ERR_SELFTEST_FAILED

HALT_H asserted

Initial power-up

Interrupt stack not valid

Machine check during exception processing

HALT instruction in kernel mode

Illegal SCB vector (bits <1:0> = 11)

WCS SCB vector (bits <1:0> = 10)

CHMx on interrupt stack

ACV/TNV during machine check processing

ACV/TNV during kernel-stack-not-valid processing

Machine check during machine check processing

Machine check during kernel-stack-not-valid processing

PSL<26:24> = 101 during interrupt or exception

PSL<26:24> = 110 during interrupt or exception

PSL<26:24> = 111 during interrupt or exception

PSL<26:24> = 101 during REI

PSL<26:24> = 110 during REI

PSL<26:24> = 111 during REI

Microcoded power-up self-test failed

 Error Handling 9-13

Table 9-3 CPU State Initialized on Console Halt

9.4 Machine Checks

A machine check exception indicates a serious system error. Under certain
conditions, the error may be recoverable by restarting the instruction. The
recoverability is a function of the following parameters:

• Machine check code

• VAX Restart bit (VR) in the machine check stack frame

• Opcode

• State of PSL<FPD>

• State of certain second error bits in internal error registers

• External error state

A machine check results from an internally detected consistency error (for
instance, the microcode reaches an “impossible” state), or hardware-
detected error (for instance, an uncorrectable FILL_ECC error on a data
read).

Technically, a machine check is an aborted macro instruction. The NVAX+
microcode attempts to convert the condition to a fault by unwinding the
current instruction, with no guarantee that the instruction can be properly
restarted. As much information as possible is pushed on the machine
check stack frame and provided in other error registers. The rest of the
error parsing is left to the operating system.

When the software machine check handler routine receives control, it must
explicitly acknowledge receipt of the machine check early in the routine to
clear the internal machine-check-in-progress flag with the following in-
struction:

 MTPR #0, #PR19S_MCESR

CPU State Initialized Value

SP

PSL

PC

MAPEN

ICCS

SISR

ASTLVL

PAMODE

BPCR<31:16>

CPUID

All else

IPR 4 (IS)

041F 0000

from CHALT register

0

0 (after reset, code = 3, only)

0 (after reset, code = 3, only)

4 (after reset, code = 3, only)

0 (after reset, code = 3, only)

FECA (after reset, code = 3, only)

0 (after reset, code = 3, only)

Undefined

9-14 Error Handling

Figure 9-3 shows the machine check stack frame.

Figure 9-3 Machine Check Exception Stack Frame

Table 9-4 describes the contents of the fields in the machine check stack
frame. Fields not explicitly defined in Figure 9-3 are UNDEFINED.

31 29 28 23 15 9 08 7

Parameter Byte Count (18 Hex)

BXB-0196-92

AST X MCHK Code X CPU_ID

INT.SYS Register

SAVEPC Register

VA Register

Q Register

Rn Mod Opcode VR

PC

PSL

1626 25

X X

:SP

:SP + 4

:SP + 8

:SP + 12

:SP + 16

:SP + 20

:SP + 24

:SP + 28

:SP + 32

 Error Handling 9-15

Table 9-4 Machine Check Stack Frame Fields

Table 9-5 describes the machine check codes.

Longword Bits Contents

SP+0 <31:0>

SP+4 <31:29>

 <23:16>

 <7:0>

SP+8 <31:0>

SP+12 <31:0>

SP+16 <31:0>

SP+20 <31:0>

SP+24<31:28>

 <25:24>

 <23:16>

 <7>

SP+28 <31:0>

SP+32 <31:0>

Byte count. The size of the stack frame in bytes, not including the PC,
PSL, or the byte count longword. Stack frame PC and PSL values should
always be referenced using this count as an offset from the stack pointer.

AST LVL. The current value of the register.

Machine check code. The reason for the machine check, as listed in Ta-
ble 9-5.

CPUID. Contains the current value of the CPUID register.

INT.SYS register. Contains the value of the INT.SYS register. This
value is read onto the A-bus by the microcode.

SAVEPC register. The SAVEPC register which is loaded by microcode
with the PC value in certain circumstances. It is used in error handling for
PTE read errors with PSL<FPD> set in this stack frame.

VA register. The contents of the Ebox VA register, which may be loaded
from the output of the ALU.

Q register. The contents of the Ebox Q register, which may be loaded
from the output of the shifter.

Rn. The value of the Rn register, which is used to obtain the register num-
ber for the CVTPL and EDIV instructions. In general, the value of this
field is UNPREDICTABLE.

Mode. A copy of the current mode field, PSL<CUR_MOD>.

Opcode. Bits <7:0> of the instruction opcode. The FD bit is not included.

VR. The VAX Restart bit, which is used to communicate restart informa-
tion between the microcode and the operating system. When set, this bit
indicates that no architectural state has been changed by the instruction
that was executing when the error was detected. When clear, it indicates
that architectural state was modified by the instruction.

PC. The value of the program counter at the time of the fault.

PSL. The value of the processor status longword at the time of the fault.

9-16 Error Handling

Table 9-5 Machine Check Codes in the Stack Frame

Figure 9-4 is a parse tree that can be used to analyze the cause of a ma-
chine check exception. The parse trees include error isolation at the proc-
essor level and module level. Discussions that follow provide detailed de-
scriptions of the errors, give the recovery procedures and, when
appropriate, indicate the conditions for retry.

NOTE: In the error descriptions it is assumed that the state being analyzed is the
saved state. Otherwise the state could change during the analysis proce-
dure, possibly leading to incorrect conclusions.

Code
(Hex) Mnemonic Description:

01

02

03

04

05

06

MCHK_UNKNOWN_MSTATUS

MCHK_INT.ID_VALUE

MCHK_CANT_GET_HERE

MCHK_MOVC.STATUS

MCHK_ASYNC_ERROR

MCHK_SYNC_ERROR

Unknown memory management status error

Illegal interrupt ID error

Illegal microcode dispatch occurred

Illegal combination of state bits detected dur-
ing string instruction

Asynchronous hardware error occurred

Synchronous hardware error occurred

 Error Handling 9-17

Figure 9-4 Machine Check Exception Parse Tree

MCHK_UNKNOWN_MSTATUS

MCHK_INT.ID_VALUE

MCHK_CANT_GET_HERE

MCHK_MOVC.STATUS

MCHK_ASYNC_ERROR

1 2 3

Unknown memory
management status error

TBSTS.LOCK <0>
TBSTS.DPERR <1>

TBSTS.DPERR <2>

None of the above

ECR.S3_STALL_TIMEOUT

None of the above

MCHK_SYNC_ERROR

ICSR.LOCK <2>
ICSR.DPERR <3>

not PCSRS.PTE_ER <10>

ICSR.TPERR <4>

Otherwise...

BIU_STATE.FILL_ECC <8> and
not BIU_STAT.FILL_CRD <9>

BIU_STAT.FILL_DSP_CMD <19:16> = DREAD

Otherwise...

BIU_STAT.FILL_DSP_CMD <19:16> = IREAD

Illegal interrupt ID error

Impossible microcode address

MOVCx status encoding error

TB PTE data parity error

TB tag parity error

Inconsistent error

S3 stall timeout

Inconsistent error

Select ALL, at least one.

Select ALL

VIC data parity error

VIC tag parity error

Inconsistent error

Select ONE

Select ONE

A

B

Inconsistent error

EXE$MCHK

BXB-0301-92

Code
(Hex)

01

02

03

04

05

06

Select ONE

Select ALL

9-18 Error Handling

Figure 9-5 Machine Check Exception Parse Tree (Continued)

1 2 3

BIU_STAT.FILL_SEO <14>

BIU_STAT.BIU_SEO <7>

BIU_STAT.BC_TPERR <2>

None of the above

PCSTS.PTE_ER <10>
BIU_STAT.FILL_ECC <8>

not BIU_STAT.CRD <9>

Lost B-cache ECC error

Lost B-cache fill error

Select ONE

Inconsistent error

Select ONE

BXB-0302-92

1 2 3

BIU_STAT/BIU_DSP_CMD <6:4> = DREAD
D-stream read B-tag parity error

BIU_STAT/BIU_DSP_CMD <6:4> = IREAD
I-stream read B-tag parity error

BIU_STAT.BC_TCPERR <3> Select ONE

BIU_STAT/BIU_DSP_CMD <6:4> = DREAD
D-stream read B-tag
 control parity error

BIU_STAT/BIU_DSP_CMD <6:4> = IREAD
I-stream read B-tag
 control parity errorBIU_STAT.BIU_HERR <0> E

Select ONE

BIU_STAT.FILL_DSP_CMD<19:16> = DREAD
C

BIU_STAT.FILL_DSP_CMD<19:16> = IREAD
D

BIU_STAT.FILL_SEC <14> Lost ECC errors during PTE read

BIU_STAT.BC_TPERR <2> Select ONE

BIU_STAT.BIU_DSP_CMD<6:4>

 = DREAD

BIU_STATE.BIU_DSP_CMD<6:4>

 = IREAD

Otherwise...

PTE D-stream read B-tag parity error

PTE I-stream read B-tag parity error

PTE write B-tag parity error

 Error Handling 9-19

Figure 9-5 Machine Check Exception Parse Tree (Continued)

BXB-0309-92

1 2 3

BIU_STAT.BC_TCPERR <3> Select ONE

BIU_STAT.BIU_DSP_CMD<6:4>

 = DREAD

BIU_STATE.BIU_DSP_CMD<6:4>

 = IREAD

Otherwise...

BIU_STAT.BIU_HERR<0>

PTE B-tag control parity error
 during D-stream read

PTE B-tag control parity error
 	during I-stream read

PTE B-tag control parity error
 during write

F

Inconsistent error
Inconsistent error
Inconsistent error

Else
Else
Else

9-20 Error Handling

Figure 9-5 Machine Check Exception Parse Tree (Continued)

LBER.UCE <1>

MERA.UCER

Other CPU LMERR.BDATA_DBE

Else

A
BC_TAG <11>

D-stream cache
 double-bit error

D-stream read double-bit error

D-stream error on other CPU

D-stream read LSB
 double-bit error

LBER.UCE <1>

MERA.UCER

Other CPU LMERR.BDATA_DBE

Else

B
BC_TAG <11>

	I-stream cache
 double-bit error

I-stream read double-bit error

I-stream error on other CPU

I-stream read LSB
 double-bit error

LBER.UCE <1>

MERA.UCER

Other CPU LMERR.BDATA_DBE

Else

C
BC_TAG <11>

PTE D-stream cache
 double-bit error

PTE D-stream read double-bit error

PTE D-stream error on other CPU

PTE D-stream read LSB
 double-bit error

LBER.UCE <1>

MERA.UCER

Other CPU LMERR.BDATA_DBE

Else

�D
BC_TAG <11>

PTE I-stream cache
 double-bit error

PTE I-stream read double-bit error

PTE I-stream error on other CPU

PTE I-stream read LSB
 double-bit error BXB-0310-92

 Error Handling 9-21

Figure 9-5 Machine Check Exception Parse Tree (Continued)

1 2

BIU_STAT.BIU_DSP_CMD<6:4> = Read

Read ARB drop

Inconsistent error

LBER.NSES<18>

IMERR.ARBDROP<12>

Else

LBECR.CA<37:35> = CSR Read

LBER.CA<37:35> = Read

LBER.CA<37:35> = Private

E

LBER.E<0> and LBERCR1.CID<10:7> = This_CPU
LBER.NXAE<12>

LSB command parity error

Previous system error latched

Inconsistent

LBER.E

Else

Inconsistent

NXM to LSB memory

NXM to self I/O space

NXM to LSB I/O space

BXB-0312-92

LBER.CPE<5>

Else

BIU.STAT.BIU_DSP_CMD<6:4>=Loadlock

Read ARB drop

LEVI B-cache tag parity
 error (lookup)

LBER.NSES<18>
IMERR.ARBDROP<10>

IMERR.BTAGPE<5>

IMERR.BSTATPE<4>

Else
Inconsistent

LEVI B-cache status parity
 error (lookup)

9-22 Error Handling

Figure 9-5 Machine Check Exception Parse Tree (Continued)

Memory data

1

LBER.E<0> and
LBECR.CA<37:35> = Read and
LBECR1.CID<10:7> = This_CPU

LBER.NXAE<12>

LBER.CPE<5>

Else

LBER.3

Else

Else

Write LSB NXM

LSB command parity error

Previous system error latched

Inconsistent

Inconsistent
BXB-0313-92

E Continued

Inconsistent

2

 Error Handling 9-23

Figure 9-5 Machine Check Exception Parse Tree (Continued)

9.4.1 MCHK_UNKNOWN_MSTATUS

Description: An unknown memory management status was returned from
the Mbox in response to a microcode memory management probe. This er-
ror is probably caused by an internal error in the Mbox, Ebox, or
microsequencer.

Recovery procedure: No explicit error recovery is required.

Retry condition: This error only happens in microcode processing of mem-
ory management faults for a virtual memory reference. Retry if:

(VR = 1) OR (PSL<FPD> = 1)

BIU_STAT.BIU_DSP_CMD<6:4>=Read

LBER.NSES<18>

IMERR.ARBDROP<12>

Else
PTE read ARB drop

Inconsistent error

F

LBER.E<0> and
LBECR1.CID<10:7> = This_CPU

LBER.NXAE<12>

LBER.CPE<5>

Else

PTE NXM to LSB memory

PTE LSB command parity error

Previous system error latched

Inconsistent

LBER.E

Else

BXB-0314-92

Inconsistent

BIU_STAT.BIU_DSP_CMB<6:4>=Loadlock

PTE read ARB drop

PTE LEVI B-cache tag parity
 error (lookup)
PTE LEVI B-cache status parity
 error (lookup)

IMERR.ARBDROP<10>

IMERR.BTAGPE<5>

IMERR.BSTATPE<4>

Else
Inconsistent

LBER.E<0> and
LBECR.CA<37:35> = Read and
LBECR1.CID<10:7> = This_CPU (Memory data)

PTE write LSB NXM

PTE LSB command parity error

LBER.E
Previous system error latched

Else
Inconsistent

 Inconsistent

LBER.NXAE<12>

LBER.CPE<5>

Else

9-24 Error Handling

9.4.2 MCHK_INT.ID_VALUE

Description: An illegal interrupt ID was returned in INT.SYS during in-
terrupt processing in microcode. This error is probably caused by an inter-
nal error in the interrupt hardware, Ebox, or microsequencer.

Recovery procedure: No explicit error recovery is required.

Retry condition: This error only happens in microcode processing of inter-
rupts that occur between instructions or the middle of interruptible in-
structions. Retry if:

 (VR = 1) OR (PSL<FPD> = 1)

9.4.3 MCHK_CANT_GET_HERE

Description: Microcode execution reached a presumably impossible ad-
dress. This error is probably caused by an internal error in the Ebox or
microsequencer.

Recovery procedure: No explicit error recovery is required.

Retry condition: Retry if:

(VR = 1) OR (PSL<FPD> = 1)

9.4.4 MCHK_MOVC_STATUS

Description: During execution of MOVCx, the two state bits that encode
the state of the move (forward, backward, fill) were set to the fourth (ille-
gal) combination. This condition is probably caused by an internal error in
the Ebox or microsequencer.

Recovery procedure: No explicit error recovery is required.

Retry condition: Because the state bits encode the operation, the instruc-
tion cannot be restarted in the middle of the MOVCx. If software can de-
termine that no specifiers have been overwritten (MOVCx destroys R0–R5
and memory due to string writes), the instruction can be restarted from
the beginning by clearing PSL<FPD>. Retry should be done only if the
source and destination strings do not overlap and if:

PSL<FPD > = 1

9.4.5 MCHK_ASYNC_ERROR

This machine check code reports serious errors that interrupt the
microcode at an arbitrary point. Many internal machine states (that is,
bits in PSL, PC, and SP) are questionable and recovery is typically not pos-
sible.

TB Parity Error

Description: Parity errors in tags and PTE data in the TB that hit cause
an asynchronous machine check by directly forcing a microtrap in the
microsequencer.

Since the Ibox is nearly always able to issue instruction prefetches, TB
parity errors could occur at any time, making it impossible to determine
what machine state is incorrect. There is no guarantee that all writes with

 Error Handling 9-25

a different PSL<CUR_MOD> completed successfully. Therefore, even the
stack frame PSL<CUR_MOD> cannot be used to determine whether sys-
tem data is uncorrupted.

Recovery procedure: Clear TBSTS<LOCK>.

Retry condition: Retry is not possible. Crash the system.

Ebox Stage 3 Stall Timeout Error

Description: Stage 3 stall timeout errors occur when the Ebox microcode is
stalled waiting for some result or action that will probably never happen.
S4 stalls in the Ebox cause S3 stalls and, therefore, can lead to an S3 stall
timeout. Additionally, field queue stall and instruction queue stall can
cause this timeout. The timeout can occur in any microflow for a number
of reasons. Machine state may be corrupted because of an internal error in
NVAX+ such that one box would be waiting for another to do something
which the second box will not do. An example would be the Ebox micro-
code expecting one more source specifier than the Ibox delivered and
timeout occurs while the Ebox is waiting. S3 timeout errors can be caused
by failures of various pipeline control circuits in the Ebox. Also, this error
can be caused by a deadlock within a box or across multiple boxes.

Recovery procedure: Clear ECR<TO_OCCURRED>.

Retry condition: It is not possible to determine what machine state is in-
correct. Retry is not possible. Crash the system.

9.4.6 MCHK_SYNC_ERROR

This machine check code reports errors that occur in memory or I/O space
instruction fetches or data reads. Except in the case of PTE read errors,
NVAX+ state should be consistent since microcode has to explicitly access
an operand or instruction in order to incur this error. Microcode does not
access memory results or dispatch for a new instruction execution with the
NVAX+ in an inconsistent state.

PTE read errors on write transactions can cause a microtrap at an arbi-
trary time, and so the NVAX+ state may be inconsistent.

Many of the error events described below for synchronous machine checks
are possible causes. If more than one is present, there is no way to deter-
mine which actually caused the machine check. If only one cause is discov-
ered, then the machine check can be attributed to that cause. The reason
multiple causes may be present is that the NVAX+ CPU prefetches in-
structions and data. If the CPU branches or takes an exception before us-
ing data it has requested, then the pending machine check is taken as a
soft error interrupt (although it might not be recoverable).

If multiple errors occur, recovery and retry may be possible. It is recom-
mended that retry from multiple errors be done only if one error report
does not interfere with analysis of, and recovery from, another error.

If two errors are entirely separate, neither interfering with the analysis
and recovery of the other, then it is acceptable to retry from these errors
provided all the error analysis and recovery procedures result in a retry in-
dication.

In several cases, lost errors are tolerated. The strong tendency to prefetch
data exhibited by the NVAX+ pipeline makes the particular lost error
likely, given that one error of that kind occurred. Also, in each case, if data

9-26 Error Handling

is lost in the lost error, a hard error interrupt is posted. So these errors
are tolerated as long as they do not cause a hard error interrupt.
BIU_STAT<WRITE_LOST> is maintained to report unrecorded errors on
write operations. If BIU_STAT<WRITE_LOST> is set, the H_ERR inter-
rupt is asserted.

Errors in opcode or operand specifier fetching are always detected before
architecturally visible state within the CPU is modified. This means the
VR bit from the machine check stack frame should be one. This error han-
dling analysis attempts to recover from multiple errors, so the retry condi-
tion for each error is made as general as possible. If the machine check
handler finds only errors of the kind listed here, then VR should be one
and it is an inconsistent report if it is not.

• VIC parity errors

• B-data uncorrectable ECC FILL errors in I-stream reads

• CACK_H error in I-stream reads

VIC Parity Errors

Description: A parity error was detected in the VIC tag or data store in the
Ibox.

• VIC data parity error
A parity error occurred in the data portion of the VIC.

• VIC tag parity error
A parity error occurred in the tag portion of the VIC.

In all cases, the quadword virtual address of the error is in VMAR.

NOTE: ICSR<LOCK> must be set for ICSR<DPERR> or ICSR<TPERR> to be
valid. The Lock bit also latched the information in the VMAR register. If
this bit is clear, then no parity errors have occurred and the registers can be
updated.

Pending interrupts: A soft error interrupt should be pending.

Recovery procedure: Disable and flush the VIC by rewriting all the tags.
Clear ICSR<LOCK>.

Retry condition: Retry if:

(VR = 1) OR (PSL<FPD> = 1)

FILL Uncorrectable ECC Errors

Description: (uncorrectable ECC errors): An uncorrectable data error was
detected by the Cbox in an I-stream or D-stream read fill. Fill uncorrect-
able data errors can result from reads of the B-cache, another CPU cache,
memory, or LSB (double error). S_FILL_ADDR contains the address of
the error, and S_FILL_SYNDROME contains the syndrome calculated by
the ECC logic.

Pending interrupts: A soft or hard error interrupt should be pending.

Recovery procedure: The machine check handling software should defer re-
covery until the expected hard or soft interrupt occurs. If one of these in-
terrupts is taken, the B-cache should be flushed and
BIU_STAT<FILL_ECC> should be cleared.

 Error Handling 9-27

Retry condition: If no writeback error occurs in the B-cache flush, retry if:

(VR = 1) OR (PSL<FPD)>= 1)

If a writeback error occurs in the B-cache flush, then the data is presumed
to be unrecoverable. Given that the address is available (no error in the
tag store), software should determine if the error is fatal to one process or
the whole system and take appropriate action. Otherwise, crash the sys-
tem.

Lost Fill Error

Description: Some fill errors were not latched because a previous fill error
was reported in the BIU_STAT register. If the reported error is not a read,
a fill error while merging write data from a write has been logged. The
logged error is not the cause of the machine check, but FILL_SEO
(BIU_STAT<14>) might be. H_ERR should be pending if the reported er-
ror was not correctable. If the reported error is a read or a correctable fill
error and LOST_WRITE (BIU_STAT<20>) is not set, the error causing
FILL_SEO to set may be the cause of the machine check. The operation
can be retried unless the aborted instruction has altered essential state. If
S_PCSTS<PTE_ER> is set, refer to PTE errors, discussed below in this
section.

Lost fill errors may be caused by more than one operand prefetch to the
same cache block.

Recovery from lost fill errors depends on whether the pending interrupt is
hard or soft. The machine check error handling software should defer re-
covery until the expected hard or soft error interrupt occurs. Once the in-
terrupt is taken, the error recovery and restart instructions found in the
hard error interrupt and soft error interrupt sections should be referenced
(Sections 9.5 and 9.6, respectively).

Software should employ some mechanism to record that an interrupt for a
lost fill error is pending. This mechanism should allow detection of a case
in which an expected interrupt does not occur (once the IPL is lowered). If
the expected interrupt does not occur when the IPL is lowered, then a seri-
ous inconsistency exists and the system should be crashed.

Pending interrupts: A hard or soft error interrupt, possibly both, should be
pending.

Recovery procedure: No specific recovery action is required.
BIU_STAT<FILL_SEO> should be cleared by the hard or soft error inter-
rupt handler.

Retry condition: Retry only if:

(VR = 1) OR (PSL<FPD> = 1)

BIU_HERR

Description: An I-stream or D-stream read returned CACK_H error or did
not complete because of a tag (BIU_STAT<TPERR>=1) or tag control par-
ity error (BIU_STAT<TCPERR>=1) .

I-stream errors cause a machine check when the Ebox microcode requests
dispatch to a new instruction execution microflow or attempts to access an
operand within an instruction execution microflow.

9-28 Error Handling

D-stream errors cause a machine check when the Ebox microcode accesses
prefetched operand data or when the Mbox returns data tagged with an er-
ror indication to the Ebox register file.

D-stream ownership read errors cause a machine check when the Ebox
microcode accesses prefetched operand data. If the address is in I/O space,
the status is inconsistent.

Pending interrupts: A soft error interrupt should be pending.

Recovery procedure: Clear BIU_STAT<BIU_HERR>.

Retry condition: Retry if:

(VR = 1) OR (PSL<FPD> = 1)

Lost BIU Error

Description: Some fill errors were not latched because a previous BIU er-
ror was reported in the BIU_STAT register. If the reported error is not a
read, a fill error while merging write data from a write has been logged.
The logged error is not the cause of the machine check, but BIU_SEO
(BIU_STAT<7>) might be. H_ERR should be pending. If the reported er-
ror is a read or a correctable fill error and LOST_WRITE
(BIU_STAT<20>) is not set, the error causing BIU_SEO to set may be the
cause of the machine check, and the operation can be retried unless the
aborted instruction has altered essential state. If S_PCSTS<PTE_ER> is
set, refer to PTE errors, discussed below in this section.

Lost BIU errors may be caused by more than one operand prefetch to the
same cache block.

Recovery from lost BIU errors depends on whether the pending interrupt
is hard or soft. The machine check error handling software should defer
recovery until the expected hard or soft error interrupt occurs. Once the
interrupt is taken, the error recovery and restart instructions found in the
hard error interrupt and soft error interrupt sections should be referenced
(Sections 9.5 and 9.6, respectively).

Software should employ some mechanism to record that an interrupt for a
lost fill error is pending. This mechanism should allow detection of a case
in which an expected interrupt does not occur (once the IPL is lowered). If
the expected interrupt does not occur when the IPL is lowered, then a seri-
ous inconsistency exists and the system should be crashed.

Pending interrupts: A hard or soft error interrupt, possibly both, should be
pending.

Recovery procedure: No specific recovery action is required.
BIU_STAT<FILL_SEO> should be cleared by the hard or soft error inter-
rupt handler.

Retry condition: Retry only if:

(VR = 1) OR (PSL<FPD> = 1)

PTE Read Errors

PTE read errors happen in reads issued by the Mbox in handling a TB
miss. Handling of these errors differs from handling the same underlying
error (BIU_HERR, BC_TPERR, BC_TCPERR, FILL_ECC) when PTE read
is not the cause.

 Error Handling 9-29

If S_PCSTS<PTE_ER> is set, then a PTE read issued by the Mbox in proc-
essing a TB miss had an unrecoverable error. The TB miss sequence was
aborted because of the error. The original reference can be any I-stream or
D-stream read or write. If the original reference was issued by the Ebox,
then the PTE read that incurred the error will have been retried once be-
cause of a special hardware/microcode mechanism for handling PTE read
errors on Ebox references.

PTE read errors are difficult to analyze, partly because the read error re-
port in the Cbox does not directly indicate that the failing read was a PTE
read. Because of this and because PTE read errors should be rare (a very
small percentage of the reads issued by the Mbox are PTE reads), multiple
errors that interfere with the analysis of the PTE error are not considered
recoverable.

The mechanism for reporting PTE read errors on Ebox references involves
the Mbox forcing the Ebox into the microcode routine which normally han-
dles memory management faults. This routine probes the address of the
original reference, effectively retrying the failing PTE read. Assuming the
error is not transient, the probe by microcode will cause a machine check.
If the error does not occur on the probe, microcode restarts the current in-
struction stream. So machine checks caused by PTE read errors can easily
occur with the particular PTE read error having occurred twice (with a lost
error bit set in the relevant Cbox error register).

The analysis here tolerates these particular multiple error reports and al-
lows retry in those cases, provided the remainder of the error analysis indi-
cates retry is appropriate.

If the reference that incurs the PTE read error is a write, S_PCSTS<PTE_
ER_WR> will be set. In this case the original write is lost. No retry is
possible partly because the instruction that took the machine check may be
subsequent to the one that issued the failing write. Also, PTE read errors
on write transactions can cause a machine check at an arbitrary time in a
microcode flow, and core machine state may not be consistent.

PTE Read Errors in Interruptible Instructions

Another special case associated with PTE read errors exists for interrupt-
ible instructions (specifically CMPC3, CMPC5, LOCC, MOVC3, MOVC5,
SCANC, SKPC, and SPANC). For these instructions, if the PTE read error
occurred for an Ebox reference, the PC in the machine check stack frame
points to the instruction following the interrupted instruction. In this
case, the SAVEPC element in the machine check stack frame is the PC of
the interrupted instruction.

However, in all other cases SAVEPC is UNPREDICTABLE. This case is
not considered recoverable because analysis of the error information can-
not unambiguously conclude that this case is present. To see if this case is
present, the error handler examines PSL<FPD> in the machine check
stack frame. If FPD is set in the stack frame in the case of a PTE read
error, then one of the following is true:

• One of the interruptible instructions listed above incurred the PTE
read error. In this case, SAVEPC from the machine check stack frame
points to the interrupted instruction, and the PC in the stack frame
points to the next instruction.

9-30 Error Handling

• An REI instruction loaded a PSL with FPD set and a certain PC. The
Ibox incurred the PTE read error in fetching the opcode pointed to by
that PC. In this case, the PC in the stack frame points to the instruc-
tion that was the target of the REI, and SAVEPC from the stack frame
is UNPREDICTABLE.

It is not possible to determine which of the two above cases is the cause of
a machine check with S_PCSTS<PTE_ER> set and stack frame
PSL<FPD> set. Retry is not possible since software cannot tell which PC
to restart with.

Uncorrectable ECC Fill Errors and PTE Errors on Reads

Description (uncorrectable ECC errors): A fill uncorrectable data error was
detected by the Cbox in a PTE read. Uncorrectable data errors are the re-
sult of a multiple-bit error in the data read from the B-cache on a fill from
the system during a READ_BLOCK or LDxL.

Description (all cases): S_FILL_ADDR contains the cache address of the
error, and FILL_SYNDROME contains the syndrome calculated by the
ECC logic. If the address is in I/O space, this is an inconsistent status.

S_BIU_STAT<FILL_SEO> may be set. This error is probably caused by
the same PTE error occurring more than once. This is an acceptable as-
sumption unless a hard error interrupt occurs after handling this error.

Pending interrupts: A soft error interrupt should be pending.

Recovery procedure (uncorrectable ECC errors): Clear
BIU_STAT<FILL_ECC>.

Recovery procedure (both cases): Flush the B-cache. Clear
PCSTS<PTE_ER>.

Retry condition: If no writeback error occurs in the B-cache flush, retry if:

(VR = 1) AND (PSL<FPD> = 0) AND
(S_PCSTS<PTE_ER_WR> = 0)

Crash the system if:

(PSL<FPD> = 1) OR (S_PCSTS<PTE_ER_WR> = 1)

If a writeback error occurs in the B-cache flush, then the data is presumed
to be unrecoverable. Software must determine if the error is fatal to one
process or the whole system and take appropriate action.

CACK_H Error on PTE Read

Description: A PTE read returned CACK_H error.
S_BIU_STAT<BIU_SEO> may be set. This error is probably caused by the
same PTE error occurring more than once. This is an acceptable assump-
tion unless a hard error interrupt occurs after handling the error.

Pending interrupt: A soft error interrupt should be pending.

Recovery procedure: Clear BIU_STAT<BIU_ HERR> and
PCSTS<PTE_ER>.

Retry condition: Retry if:

(VR = 1) AND (PSL<FPD> = 0) AND
(S_PCSTS<PTE_ER_WR> = 0)

 Error Handling 9-31

Otherwise, crash the system.

Post retry recovery: If the same fill error occurs on retry, then the block is
probably “lost.” In this case the more general sense of “lost” is implied.
Software must determine if the error is fatal to one process or the whole
system and take appropriate action.

NOTE: In a block “lost” case, it would be appropriate to first cause each CPU in the
system to flush its B-cache, then retry once more.

9.4.7 Inconsistent Status in Machine Checks

Description: A presumed impossible error report was found in the error
registers. This could be due to a hardware failure.

Pending interrupts: Either a hard or soft error interrupt, or both should be
pending.

Recovery procedure: No specific recovery action is called for.

Retry condition: No retry is possible. Crash the system.

9-32 Error Handling

9.5 Hard Error Interrupts

A hard error interrupt reports an error that was detected asynchronous
with respect to the instruction execution.

A hard error interrupt results in an interrupt at IPL 1D (hex) being dis-
patched through SCB vector 60 (hex). Typically, these errors indicate that
machine state has been corrupted and that a retry is not possible. The
stack frame for a hard error interrupt consists of two parameters, PC and
PSL.

Figure 9-5 contains the hard error interrupt parse tree, which isolates er-
rors at the processor level and module level. The sections following the
parse tree provide a description of the hard error, the procedure to recover,
and the conditions for restarting the operation.

Figure 9-5 Hard Error Interrupt Parse Tree

BIU_STAT.LOST_WRITE_ERR

Select ALL, at least one...

B-cache tag parity error on a
write from MBOX

BXB-0318-92

EXE$HERR

BIU_STAT.BC_TPERR and
BIU_STAT.BIU_DSP_CMD<6:4> = WRITE

BIU_STAT.BC_TCPERR and
BIU_STAT.BIU_DSP_CMD<6:4> = WRITE

B-cache tag control parity error
on a write from MBOX

BIU_STAT.FILL_ECC
and not BIU_STAT.CRD
and BIU_STAT.BIU_DSP_CMD<6:4> = WRITE

Uncorrectable ECC error on a
write from MBOX

BIU_STAT.BIU_HERR
and BIU_STAT.BIU_DSP_CMD<6:4> = WRITE

LBER.E or LBER.NSES

A

B

Inconsistent error

Uncorrectable ECC error on a
write from MBOX

Else

 Error Handling 9-33

Figure 9-6 Hard Error Interrupt Parse Tree (Continued)

1 2

BIU_STAT.BIU_DSP_CMD<6:4>=Write

(getting memory data for write)
LBER.NSES<18> and
LBECR.CA<37:35> = Read and
LBERC1.CID = This_CPU

IMERR.ARBDROP<10>

Else
Read ARB drop

Inconsistent error

A

BXB-0319-92

(B-cache contains shared data)LBER.NSES<18> and
LBERCR.CA<37:35> = Write and
LBECR1.CID<10:7> = This_CPU

IMERR.ARBDROP<10>

Else
Write ARB drop

Inconsistent error

(LSB problem getting data)

LBER.E<0> and
LBECR.CA<37:35> = Read and
LBECR1.CID<10:7> = This_CPU

LBER.NXAE<12>

LBER.CPE<5>

Else

Read LSB NXM

LSB read command parity error

Inconsistent error

(B-cache contains shared data)LBER.E<0> and
LBECR.CA<37:35>=Write and
LBECR1.CID<10:7>=This CPU

LBER.NXAE<12>

LBER<CPE<5>

Else

Write LSB NXM

LSB command parity error

Inconsistent
LBER.E<0> and
LBECR.CA=CSR Write and
LBECR1<10:7>=This CPU

(I/O Cycle)

LBER.CDPE

LBER.NXAE<12>

Else

Write CSR data parity error

Write CSR NXM

Inconsistent

9-34 Error Handling

Figure 9-6 Hard Error Interrupt Parse Tree (Continued)

BXB-0320-92

1 2 A Continued

Previous system error latched

Inconsistent

LBER.O

Else

BIU_STAT.BIU_DSP_CMD<6:4>=Write Unlock

LBER.NSES<18>

IMERR.ARBDROP<10>

IMERR.BTAGPE<5>

IMMER.BSTATPE<4>

Else

Read ARB drop

LEVI B-cache tag parity
 error (lookup)
LEVI B-cache status parity
 error (lookup)
Inconsistent

Inconsistent

Inconsistent
Else

Else

 Error Handling 9-35

Figure 9-6 Hard Error Interrupt Parse Tree (Continued)

LBER.NSES
Select ALL, at least one...

Serious LEVI failure

B-cache tag parity error

LMERR.PMAPPE<3:0>

LMERR.BTAGPE

LMERR.BDATASBE

LMERR.BDATADBE

LMERR.BMAPPE

LMERR.BSTATPE

None of the above...

B

BXB-0322-92

LMERR.ARBDROP or
LMERR.ARBCOL

C

D

E

F

P-cache backmap parity error

LBER.E
Select ALL, at least one...

LSB cache protocol error

LBER.SHE
or LBER.DIE

LSB synchronization failure

LBER.STE or
LBER.CNFE or
LBER.CAE

LBER.TDE

LBER.CTCE
Select ONE...

Inconsistent

Control transmit check errors

Select ONE...
Correctable datacheck error
 on LSB write
Uncorrectable datacheck error
 on LSB write
LSB write CSR data parity error

Inconsistent error

LBER.CE

LBER.UCE

LBER.CDPE

None of the above...

LBER.DTCE

LBER.CE

LBER.UCE

None of the above...

Correctable ECC error on LSB

Inconsistent error

Uncorrectable ECC error on LSB

1 2

9-36 Error Handling

Figure 9-6 Hard Error Interrupt Parse Tree (Continued)

1 2

1

BXB-0323-92

B Continued2

Lost LSB command parity error

Lost LSB CSR data parity error

Lost LSB correctable ECC error

Lost LSB uncorrectable ECC error

LBER.CPE2

LBER.CDPE2

LBER.CE2

LBER.UCE2

LBER.UCE and not LBER.TDE

LBECR1.CA<37:35>=READ
LBECR1.CID=THIS_LNP

Otherwise...

Correctable ECC error
 on LSB read fill

Bystander - correctable ECC error
 on LSB read

Otherwise...
LBECR1.SHARED
Otherwise...

Correctable ECC error during
 B-cache update

Bystander - correctable ECC error
on LSB write

Bystander - LSB read CSR
 data parity error
LSB ERR asserted by other node(s)

Inconsistent error

LBER.CDPE

Any Adapter - LBER.E Set

None of the Above...

LBER.UCE and not LBER.TDE
LBECR1.CA<37:35>=Read

LBECR1.CID=This_CPU

Otherwise...

Uncorrectable ECC error
 on LSB read fill
Bystander - uncorrectable ECC
 error on LSB readOtherwise...

LBECR1.SHARED

Otherwise...
Bystander - uncorrectable ECC
 error on LSB write

Uncorrectable ECC during
 B-cache update

 Error Handling 9-37

Figure 9-6 Hard Error Interrupt Parse Tree (Continued)

1 2

1

BXB-0324-92

B Continued

LBER.E<0> and LBECR1.CID=IOP_node (IOP is cmdr)

IOP_LBER.STE<10>

IOP_LBER.CAE<13>

IOP_LBER.CNFE<11>

IOP_LBECR1.CA<37:35>=Write

Else

IOP_LBER.NXAE<12>

IOP_LBER.CPE<5>

IOP_LBER.CE<3>

IOP_LBER.UCE<1>

Inconsistent

Else

IOP_LBER.NXAE<12>

IOP_LBER.CPE<5>

IOP_LBER.CE<3>

IOP_LBER.UCE<1>

Inconsistent

 IOP_LBERCR1.CA<37:35> = Read

Else

IOP_LBER.NXAE<12>

IOP_LBER.CPE<5>

IOP.LBER.CE<3>

IOP_LBER.UCE<1>

Inconsistent

 IOP_LBECR1.CA<37:35> = Wrt CSR

9-38 Error Handling

Figure 9-6 Hard Error Interrupt Parse Tree (Continued)

1

BXB-0325-92

B Continued2

IOP_LBER.CPE2<6>

IOP_LBER.CDPE2<8>

IOP_LBER.CE2<4>

Else

IOP_LBER.UCE2<2>

IOP_LBER.NESES<18>

Inconsistent

Inconsistent

 Error Handling 9-39

Figure 9-6 Hard Error Interrupt Parse Tree (Continued)

Uncorrectable Errors During Write or Write Unlock Processing

Description: In processing a write or write unlock, the Cbox detected a
CACK_H error from the system, a tag parity error, a control parity error,
or an uncorrectable ECC error on the data read, which is to be merged
data from the write, is lost.

Uncorrectable ECC errors indicate that two or more bits of the stored data
quadword have changed and the error correcting code cannot correct the
data. The write merge sequence is aborted.

Recovery procedure: The data in this block is lost.

Restart condition: If the address of the data is available and no unex-
pected writeback errors occurred during the B-cache flush, software must
determine if the lost data is fatal to one process or the whole system, and
take appropriate action.

System Environment Hard Error Interrupts

See Section 9.8.

LEVI read of B-cache correctable
 error from LSB request
 (dirty block)

LEVI LSB write correctable error

Inconsistent

LBECR1.CA<37:35> = Read and
LBECR1.CID = not this node

C

BXB-0326-92

Else

LBECR1.CA<37:35> = Write and
LBECR1.CID<10:7> = This node

LEVI read of B-cache uncorrectable
 error from LSB request
 (dirty block)

LEVI LSB write uncorrectable error

Inconsistent

LBECR1.CA<37:35> = Read and
LBECR1.CID = not this node

D

Else

LBECR1.CA<37:35> = Write and
LBECR1.CID <10:7> = This node

LEVI lookup B-cache B-map parity
 error from LSB read request

LEVI lookup B-cache B-map parity
 error from write request

LEVI lookup B-cache B-map parity
 error from write

LBECR1.CA<37:35> = Read and
LBECR1.CID = not this node

E

Else

LBECR1.CA<37:35> = Write and
LBECR1.CID<10:7> = not this node

LEVI lookup B-cache STS parity
 error from LSB read request

LEVI lookup B-cache STS parity
 error from LSB write request

LEVI lookup B-cache STS parity
 error from LSB write

LBECR1.CA<37:35> = Read and
LBECR1.CID = not this node

F

Else

LBECR1.CA<37:35> = Write and
LBECR1.CID<10:7> = not this node

9-40 Error Handling

Inconsistent Status in Hard Error Interrupt Cause Analysis

Description: A presumed impossible error report was found in the error
registers. This could be due to a hardware failure or bug.

Recovery procedure: No specific error action is called for.

Restart condition: No retry is possible. Crash the system.

9.6 Soft Error Interrupts

A soft error interrupt is requested to report an error that was detected but
which did not affect instruction execution. This results in an interrupt at
IPL 1A (hex) to be dispatched through SCB vector 54 (hex). The stack
frame for a soft error interrupt consists of two parameters, PC and PSL.

Many errors that cause a soft error interrupt may also lead to a machine
check exception. For this reason, a soft error interrupt with no apparent
cause is not an inconsistent state unless the CPU has executed an instruc-
tion while IPL was lower that 1A (hex) since the most recent machine
check exception.

When a soft error interrupt is the only notification for a memory read error
which could cause a machine check, the error did not cause a machine
check for one of the following reasons:

• The error did not occur on the quadword the Ebox or the Ibox re-
quested. (P-cache fill error).

• The Ebox took an interrupt before accessing an instruction or operand
which was prefetched by the Ibox. (It could be this software interrupt.)

• A prefetched instruction or operand belonged to an instruction follow-
ing the mispredicted branch, so the Ebox never executed the instruc-
tion and it was flushed from the pipeline when the branch mispredict
was recognized.

• The Ebox took an exception for a different reason before attempting to
use an instruction execution dispatch or access operand prefetched by
the Ibox. (The pipeline was flushed because of the exception.)

Figure 9-6 contains the soft error interrupt parse tree. The sections follow-
ing the parse tree provide a description of the soft error, the procedure to
recover, and the conditions for restarting the operation.

 Error Handling 9-41

Figure 9-6 Soft Error Interrupt Parse Tree

VIC Parity Errors

Description: A parity error was detected in the VIC tag or data store in the
Ibox. The data parity error may occur in bank 0 (DPERR0) or bank 1
(DPERR1) of the VIC. The tag parity error may occur in bank 0 (TPERR0)
or bank 1 (TPERR1) of the VIC. The quadword virtual address of the error
is in S_VMAR.

Recovery procedure: Disable and flush the VIC by rewriting all the tags
and clear ICSR<LOCK>.

ICR.LOCK

VIC data parity error - bank 0

VIC tag parity error - bank 0

VIC data parity error - bank 1

VIC tag parity error - bank 1

ICSR.DPERR0

ICSR.TPERR0

ICSR.DPERR1

ICSR.TPERR1

None of the above...

BXB-0329 -92

EXE$SERR

Inconsistent error
PCSTS.LOCK

Select ALL, at least one...

P-cache data parity error

P-cache tag parity error in right bank

P-cache tag parity error in left bank

Inconsistent error

PCSTS.DPERR

PCSTS.RIGHT_BANK

PCSTS.LEFT_BANK

Otherwise...

not PCSTS.PTE_ER_WR
Select ALL, at least one...

Read timeout

Tag parity error on read

Tag control parity error on read

Correctable ECC error on fill or
write merge

BIU_STAT.BIU_HERR and
BIU_STAT.BIU_CMD = READ

Uncorrectable ECC error on fill

BIU_STAT.LOST_WRITE_ERR
Write error after SERR

PCSTS.PTE_ER_WR
Hard error on a PTE DREAD for write or
write unlock

BIU_STAT.BIU_TPERR and
BIU_STAT.BIU_CMD = READ

BIU_STAT.BIU_TCERR and
BIU_STAT.BIU_CMD = READ

BIU.STAT.FILL_ECC and BIU_STAT.CRD

BIU_STAT.FILL_CERR and not
BIU_STAT.CRD and
BIU_STAT.ARB_CMD = READ

BIU_STAT.BIU_SERR

None of the above...
System soft error interrupt (not used)

Inconsistent error

None of the above...
Inconsistent error

Select ALL, at least one...

9-42 Error Handling

P-Cache Parity Errors

Description: A parity error was detected in the P-cache. Either a tag par-
ity error or a data parity error is reported, although tag parity errors in
both the left and right banks may be reported simultaneously. The refer-
ence, whether it was a read or write, was passed to the Cbox as if the P-
cache had missed. No data is lost. The P-cache is disabled because
PCSTS<LOCK> is set.

S_PCADR contains the physical address of the operation incurring the er-
ror. The address should not be in I/O space. If it is, it is an inconsistent
status.

Recovery procedure: Clear PCSTS<LOCK>. Flush the P-cache and initial-
ize the P-cache tag store.

FILL Uncorrectable ECC Errors on I-Stream or D-Stream Reads

Description: An uncorrectable ECC error was detected by the Cbox in an I-
stream or D-stream read. Uncorrectable data errors are the result of mul-
tiple bit errors in the data read. S_FILL_ADDRESS contains the address
of the error, and S_FILL_SYNDROME contains the syndrome calculated
by the ECC logic. If the physical address is found to be in I/O space, it is
an inconsistent status.

Recovery procedure: Clear BIU_STAT<FILL_ECC>. Flush the B-cache.
(BC_TAG can be used to determine if the fill is from the B-cache.) If the
data is dirty in the B-cache and the error repeats itself (it is not transient),
then a writeback error will result from the flush procedure.

Restart conditions: If a writeback error occurs in the B-cache flush, then
the data is presumed to be unrecoverable. Software must determine if the
error is fatal to one process or the whole system and take appropriate ac-
tion.

If the address of the error in the flush is not the same as that of the origi-
nal error, this is a multiple error case in the data RAMs and is a serious
failure. Crash the system.

Multiple Errors Associated with PTE Errors

PTE errors are difficult to analyze, partly because the read error report in
the Cbox does not directly indicate the failing read was a PTE read. Be-
cause of this and because PTE read errors should be rare (a very small per-
centage of the reads issued by the Mbox are PTE reads), multiple errors
that interfere with the analysis of the PTE error are considered recover-
able.

If the reference that incurs the PTE read error is a write,
S_PCSTS<PTE_ER_WR> will be set. In this case the original write is lost.
No retry is possible partly because the instruction that took the machine
check may be subsequent to the one that issued the failing write. Also,
PTE read errors on write transactions can cause a machine check at an ar-
bitrary time in a microcode flow, and core machine state may not be consis-
tent.

Restart condition: If no writeback error occurs in the B-cache flush, restart
if:

S_PCSTS<PTE_ER_WR> = 0

 Error Handling 9-43

If:
S_PCSTS<PTE_ER_WR> = 1

crash the system.

If a writeback error occurs in the B-cache flush, then the data is presumed
to be unrecoverable (software must determine if the error is fatal to one
process or the whole system and take appropriate action). Clear
PCSTS<PTE_ER_WR>.

Restart condition: Restart if:

S_PCSTS<PTE_ER_WR> = 0

Otherwise, crash the system.

Multiple Errors That Interfere with Analysis of PTE Read Errors

Because analysis of PTE read errors leads to several unusual causes, re-
start is not recommended in the event that other errors cloud the analysis
of the PTE error.

Pending interrupts: A hard or software interrupt should be pending, or
possibly both.

Recovery procedure: No specific recovery action is called for.

Restart condition: Not possible. Crash the system.

9.7 Kernel Stack Not Valid Exception

A kernel stack not valid exception occurs when a memory management ex-
ception is detected while attempting to push information on the kernel
stack during microcode processing of another exception. Note that a con-
sole halt with an error code of ERR_INTSTK is taken if a memory manage-
ment exception is encountered while attempting to push data on the inter-
rupt stack. The kernel stack not valid exception is dispatched through
SCB vector 08 (hex). The kernel stack not valid stack frame consists of
two parameters, PC and PSL.

9-44 Error Handling

9.8 System Environment Errors

System environment errors are detected by the LEVI gate arrays, which
signal them to the NVAX+ processor by two mechanisms corresponding to
the two sets of pins in the processor used for error reporting: CACK_H sig-
nals and IRQ_H signals.

Parse trees given in Figures 9-4 and 9-5 isolate errors to the system envi-
ronment as well as to the processor.

9.8.1 Error Categories

Module and system level errors can be divided into two groups: synchro-
nous errors and asynchronous errors (not to be confused with NVAX+ syn-
chronous and asynchronous errors, which are internal to the processor).

9.8.1.1 Synchronous Errors

Synchronous errors are those detected on the CPU module or in the LSB
system while the processor was waiting (idle) for service from LEVI. These
errors imply that something drastic went wrong while LEVI was trying to
complete the processor’s request, and that LEVI is unable to complete the
processor’s transaction. Specifically, only the following errors induce syn-
chronous errors if the processor is waiting for an acknowledgment from
LEVI:

• B-cache tag parity error

• B-cache status parity error

• LSB arbitration drop

• LSB command parity error

• LSB nonexistent address error

Other errors detected while the processor is waiting for an acknowledg-
ment are signaled as asynchronous errors because they do not prevent
completion of the processor’s request.

LEVI reports synchronous errors to the processor by returning H_ERR
status instead of the normal acknowledgment. (The CACK_H signals are
driven with H_ERR instead of a normal cycle acknowledge. This in turn
sets BIU_STAT<HERR>.)

9.8.1.2 Asynchronous Errors

Asynchronous errors include all errors detected on the CPU module or in
the LSB system while the processor was not waiting for service from LEVI.
Module and LSB errors not included in the synchronous error list above
are categorized as asynchronous errors even if the processor is waiting for
LEVI. The distinction is that only certain errors prevent LEVI from com-
pleting the processor’s request.

LEVI reports asynchronous errors to the processor through the interrupt
signals (IRQ_H). LEVI asserts a module signal (LEVI_ERROR) which is
dispatched to the appropriate IRQ_H pin on the processor.

 Error Handling 9-45

9.8.2 Environment Error Sources

The environment errors originate either from the LEVI operations within
the CPU module or from interactions of the LEVI with other nodes
through the LSB bus.

9.8.2.1 LEVI Errors

LEVI B-Cache Status Parity Error

Description: LEVI detected a B-cache status parity error while examining
the status bits on behalf of the processor or the LSB. If LEVI detects the
error while evaluating status in response to a processor request, it returns
an H_ERR acknowledgment.

If LEVI detects the error while evaluating status to determine a response
to an LSB request, it signals the error to the processor even if the proces-
sor is waiting for an acknowledgment.

Processor response: If H_ERR is returned in response to a read request,
NVAX+ takes a machine check at IPL 31 through SCB offset 04 (hex). If
H_ERR is returned in response to a write, or IRQ_H<4> is asserted,
NVAX+ takes a hard error interrupt at IPL 29 through SCB offset 60
(hex). In either case, LEVI asserts ERROR on the LSB.

State captured: LMERR<BSTATPE> and LBER<NSES> are set. Address
and LSB command are captured in the LBECR register.

Recovery: None possible. Crash the system. The CPU module responds by
asserting ERROR on the LSB, while SHARED and DIRTY remain unas-
serted.

LEVI B-Cache Tag Parity Error

Description: LEVI detected a B-cache tag parity error while examining the
tag bits on behalf of the processor. (Note that LEVI never examines the B-
tag RAMs on behalf of the LSB. It uses the B-map to perform this func-
tion.) It returns H_ERR acknowledgment.

Processor response: If H_ERR is returned in response to a read request,
NVAX+ takes a machine check through SCB offset 04 (hex). If H_ERR is
returned in response to a write, NVAX+ takes a hard error interrupt at
IPL 29 through SCB offset 60 (hex). In either case, LEVI asserts ERROR
on the LSB.

State captured: LMERR<BTAGPE> and LBER<NSES> are set. The ad-
dress and LSB command are captured in the LBECR register.

Recovery: None possible.

LEVI P-Map Parity Error

Description: LEVI detected a parity error while examining its internal P-
map to determine how to respond (invalidate or update) to an LSB write.
(Note that this is only done if the write address hits in the B-map.) It noti-
fies the processor by asserting the IRQ_H <5> signal.

Processor response: NVAX+ takes a hard error interrupt at IPL 29 through
SCB offset 60 (hex). LEVI asserts ERROR on the LSB.

9-46 Error Handling

State captured: LMERR<PMAPPEn> and LBER<NSES> are set. The ad-
dress and LSB command are captured in the LBECR register.

Recovery: Flush the relevant internal processor cache and invalidate the
index in the map RAM structure. LEVI responds by asserting DIRTY from
the results of the B-map only and assumes a P-map hit (asserts SHARED).

LEVI B-Map Parity Error

Description: LEVI detected a parity error while examining the B-map to
check for an LSB hit in this cache. LEVI asserts the IRQ_H<5> signal to
notify the processor.

Processor response: NVAX+ takes a hard error interrupt at IPL 29 through
SCB offset 60 (hex). LEVI asserts ERROR on the LSB.

State captured: LMERR<BMAPPE> and LBER<NSES> are set. The ad-
dress and LSB command are captured in the LBECR register.

Recovery: No recovery is possible since this error is detected in the LSB
time domain in response to an LSB command. Crash the system. The
CPU module responds by asserting ERROR on the LSB, while SHARED
and DIRTY remain unasserted.

9.8.2.2 LSB Errors

LSB Arbitration Drop

Description: LEVI signals an arbitration drop error when a node, having
requested and been granted the LSB, fails to initiate a command/address
cycle (by asserting CA on the LSB). If LEVI is the commander that failed
to initiate a command in response to a processor request, it acknowledges
the processor with a H_ERR status. If LEVI caused the error while the
processor was not waiting for a response (while writing a victim for exam-
ple) or if any other node caused the error, LEVI notifies the processor by
asserting the IRQ_H<4> signal.

Processor response: If H_ERR is returned in response to a read request,
NVAX+ takes a machine check through SCB offset 04 (hex). If H_ERR is
returned in response to a write, or IRQ_H<4> is asserted, NVAX+ takes a
hard error interrupt at IPL 29 through SCB offset 60 (hex). In either case,
LEVI asserts ERROR on the LSB.

State captured: LMERR<ARBDROP> and LBER<NSES> are set. The
address and LSB command are captured in the LBECR register.

Recovery: All nodes resynchronize the arbitration when ERROR is as-
serted on the LSB. Crash the system.

LSB Arbitration Collision

Description: LEVI signals an arbitration collision error by asserting the
IRQ_H<5> signal when a node tries to request the LSB (that is, drives the
REQ lines) during an inappropriate cycle.

Processor response: NVAX+ takes a hard error interrupt at IPL 29 through
SCB offset 60 (hex). LEVI asserts ERROR on the LSB.

State captured: LMERR<ARBCOL> and LBER<NSES> are set.

 Error Handling 9-47

Recovery: All nodes resynchronize the arbitration when ERROR is as-
serted on the LSB. Crash the system.

LSB Transmit Check Error

Description: LEVI signals a transmit check error when it detects a dis-
crepancy between the command (or data) it drives onto the LSB and the
command (or data) it receives from the LSB. It notifies the processor by
asserting the IRQ_H<5> signal.

Processor response: NVAX+ takes a hard error interrupt at IPL 29 through
SCB offset 60 (hex). LEVI asserts ERROR on the LSB.

State captured: LBER<CTCE> or LBER<DTCE> is set.

Recovery: All nodes will resynchronize the arbitration when ERROR is as-
serted on the LSB. Software should probably crash.

LSB Dirty Error

Description: LEVI signals a Dirty error when LSB DIRTY is asserted dur-
ing an inappropriate cycle. It notifies the processor by asserting the
IRQ_H<5> signal.

Processor response: NVAX+ takes a hard error interrupt at IPL 29 through
SCB offset 60 (hex). LEVI asserts ERROR on the LSB.

State captured: LBER<DIE> is set.

Recovery: LSB ERROR is asserted and all nodes resynchronize the arbi-
tration. Crash the system.

LSB Shared Error

Description: LEVI signals a Shared error when LSB SHARED is asserted
during an inappropriate cycle. It notifies the processor by asserting the
IRQ_H<5> signal.

Processor response: NVAX+ takes a hard error interrupt at IPL 29 through
SCB offset 60 (hex). LEVI asserts ERROR on the LSB.

State captured: LBER<SHE> is set.

Recovery: LSB ERROR is asserted and all nodes resynchronize the arbi-
tration. Crash the system.

LSB CA Error

Description: LEVI signals a CA error when LSB CA is asserted during an
inappropriate cycle. It notifies the processor by asserting the IRQ_H<5>
signal.

Processor response: NVAX+ takes a hard error interrupt at IPL 29 through
SCB offset 60 (hex). LEVI asserts ERROR on the LSB.

State captured: LBER<CAE> is set.

Recovery: LSB ERROR is asserted and all nodes will resynchronize the ar-
bitration. Software should probably crash.

9-48 Error Handling

LSB Nonexistent Address Error

Description: LEVI signals a nonexistent address error when there is no
CNF response to a command/address cycle on the LSB. If the missing
CNF was needed to complete a processor request, LEVI returns an H_ERR
acknowledgment. If the error occurred while the processor was not wait-
ing for a response or if the error was in response to a request from another
node, LEVI signals the processor by asserting the IRQ_H<4> signal.

Processor response: If H_ERR is returned in response to a read request,
NVAX+ takes a machine check through SCB offset 04 (hex). If H_ERR is
returned in response to a write, or IRQ_H<4> is asserted, NVAX+ takes a
hard error interrupt at IPL 29 through SCB offset 60 (hex). In either case,
LEVI asserts ERROR on the LSB.

State captured: LBER<NXAE> is set. The address and LSB command are
captured in the LBECR register. Note that although there is no CNF sig-
nal on the LSB, the transaction continues and data parity or ECC errors
will likely follow when the requesting node reads an undriven LSB during
the corresponding data cycles. Any of the following LBER bits may be set
along with NXAE: UCE, UCE2, CE, CE2, CDPE, CDPE2.

Recovery: LSB ERROR is asserted and all nodes resynchronize the arbi-
tration. Software should probably crash if this was not expected (like not
during INIADAPT).

LSB CNF Error

Description: LEVI signals a CNF error when CNF is asserted during an
inappropriate cycle. It notifies the processor by asserting the IRQ_H<5>
signal.

Processor response: NVAX+ takes a hard error interrupt at IPL 29 through
SCB offset 60 (hex). LEVI asserts ERROR on the LSB.

State captured: LBER<CNFE> is set.

Recovery: LSB ERR is asserted and all nodes will resynchronize the arbi-
tration. Software should probably crash.

LSB Stall Error

Description: LEVI signals a Stall error when LSB STALL is asserted dur-
ing an inappropriate cycle. It notifies the processor by asserting the
IRQ_H<5> signal.

Processor response: NVAX+ takes a hard error interrupt at IPL 29 through
SCB offset 60 (hex). LEVI asserts ERROR on the LSB.

State captured: LBER<STE> is set.

Recovery: LSB ERR is asserted and all nodes will resynchronize the arbi-
tration. Software should probably crash.

 Error Handling 9-49

LSB Transmitter During Error

Description: This bit is set in the LBER of the node driving the LSB when
an error is detected. Only one node should have this bit set for any given
error. This bit is set only in response to LSB ERROR; it does not cause
LSB ERROR to be asserted. LEVI notifies the processor when it detects
the original error.

Processor response: None.

State captured: LBER<TDE> is set.

Recovery: All nodes resynchronize the arbitration once ERROR is asserted.
Software should probably crash.

LSB CSR Data Parity Error

Description: LEVI detected a parity error on the LSB during a CSR data
cycle. It notifies the processor by asserting the IRQ_H<5> signal regard-
less of whether the processor is waiting for this data.

Processor response: NVAX+ takes a hard error interrupt at IPL 29 through
SCB offset 60 (hex). LEVI asserts ERROR on the LSB.

State captured: LBER<CDPE> or LBER<CDPE2> is set. Address and
LSB command are captured in the LBECR register (only on the first
CDPE; not on CDPE2).

Recovery: LSB ERROR is asserted and all nodes resynchronize the arbi-
tration.

LSB Command Parity Error

Description: LEVI detected bad parity on an LSB command cycle. If the
command was issued to satisfy a processor request LEVI returns an
H_ERR acknowledgment. If LEVI caused the error while the processor
was not waiting for a response (while writing a victim for example) or if
any other node caused the error, LEVI notifies the processor by asserting
one of the IRQ_H signals.

Processor response: If H_ERR is returned in response to a read request,
NVAX+ takes a machine check through SCB offset 04 (hex). If H_ERR is
returned in response to a write, or IRQ_H<4> is asserted, NVAX+ takes a
hard error interrupt at IPL 29 through SCB offset 60 (hex). In either case,
LEVI asserts ERROR on the LSB.

State captured: LBER<CPE> or LBER<CPE2> is set. The address and
LSB command are captured in the LBECR register (only on the first com-
mand parity error; not on CPE2).

Recovery: LSB ERROR is asserted and all nodes resynchronize the arbi-
tration.

LSB Correctable ECC Error

Description: LEVI detected a correctable data error on the LSB. It notifies
the processor by asserting one of the IRQ_H signals only if LCNR<CEEN>
is set.

Processor response: NVAX+ takes a hard error interrupt at IPL 29 through
SCB offset 60 (hex). LEVI asserts ERROR on the LSB.

9-50 Error Handling

State captured: If LCNR<CEEN> is clear, nothing is captured. Otherwise,
LBER<CE> or CE2 is set, the LSB command and address are captured in
the LBECR register, and the ECC syndromes are captured in the LBESR
register (only on the first correctable ECC error; not on CE2). If the data
was driven by LEVI onto the LSB, LMERR<BDATASBE> is also set.

Recovery: If LCNR<CEEN> is set, LSB ERROR is asserted and all nodes
will resynchronize the arbitration. The eventual consumer of this data (if
any) will also report a single-bit error and correct it. The LEVI gate arrays
will not correct data; only set-aside checking is performed for fault isola-
tion purposes.

LSB Uncorrectable ECC Error

Description: LEVI detected an uncorrectable data error on the LSB. It no-
tifies the processor by asserting the IRQ_H<5> signal.

Processor response: If the IRQ_H<5> pin is asserted, NVAX+ takes a hard
error interrupt at IPL 29 through SCB offset 60 (hex). LEVI asserts ER-
ROR on the LSB.

State captured: LBER<UCE> or UCE2 is set. The address and LSB com-
mand are captured in the LBECR register and ECC syndromes are cap-
tured in LBESR (only on the first Uncorrectable ECC error, not on UCE2).
If the data was driven by LEVI onto the LSB, LMERR<BDATADBE> is
also set.

Recovery: LSB ERROR is asserted and all nodes resynchronize the arbi-
tration. The eventual consumer of this data (if any) also reports a double-
bit error and takes appropriate action. LEVI does not correct data; only
set-aside checking is performed for fault isolation purposes.

LSB Error Line Asserted

Description: Some node on the LSB asserted ERROR. (All nodes set the
LBER<ERR> bit whenever LSB ERROR is asserted.) LEVI notifies the
processor through the IRQ_H<5> signal.

Processor response: If the IRQ_H<5> signal is asserted, NVAX+ takes a
hard error interrupt at IPL 29 through SCB offset 60 (hex). LEVI asserts
ERROR on the LSB.

State captured: LBER<E> is set.

Recovery: LSB ERROR is asserted and all nodes resynchronize the arbi-
tration. Some other node on the LSB has noticed an error condition that
was not noticed by this node. Software should query the LBER registers of
other nodes and take appropriate action.

Index-1

Index

A
Aborts, 2-10
Access synchronization, 4-6
ADDR, 2-39
Address path, LEVI, 4-2
Address space, 2-3

physical, 2-3
virtual, 2-3

Address space decoding, IPR, 2-32
Address space mapping, 4-7
Address translation

process space, 2-5
system space, 2-4

Address Width bits, 7-11
ALLOC, 2-70
Allocation bit, 2-70
ARBCOL, 7-23
ARBDROP, 7-23
Arbitration collision, 9-46
Arbitration Collision bit, 7-23
Arbitration Drop bit, 7-23
Arbitration, boot processor, 8-3
Arbitration, LSB, 4-6
Architectural ID bits, 2-98
ARCH_ID, 2-98
Arithmetic exceptions, 2-11
Arithmetic exception codes, 2-12
Arithmetic exception stack frame, 2-11
Asynchronous errors, 9-44
AW, 7-11

B
Backmaps, cache, 3-8
Backup cache description, 3-1, 3-5
BAD, 5-18
Bad bit, 5-18
Bank Select bit, 2-69
BANK_SEL, 2-69
Base addresses, 7-2
BC_ENB, 2-80
BC_FHIT, 2-80
BC_SIZE, 2-79
BC_SPD, 2-80
BC_TAG, 2-85

BC_TCPERR, 2-90
BC_TPERR, 2-90
BDATADBE, 7-24
BDATASBE, 7-24
BEDECC, 2-95
BIU Address Register, 2-91
BIU Address <33:32> bits, 2-87
BIU Control Register, 2-78
BIU Dispatch Command bits, 2-90
BIU Error Physical Address bits, 2-91
BIU Hard Error bit, 2-90
BIU Parity Error bit, 2-89
BIU SEO bit, 2-89
BIU Soft Error bit, 2-90
BIU Status Register, 2-87
BIU_ADDR, 2-87, 2-91
BIU_CTL, 2-78
BIU_CTL read/write, 2-80
BIU_DIS_CMD, 2-90
BIU_ERR_PA, 2-91
BIU_HERR, 2-90, 9-27
BIU_SEO, 2-89
BIU_SERR, 2-90
BIU_STAT, 2-87
BIU_STAT updates, 2-90
Block diagram

CPU module, 1-2
system, 1-1

BMAPP, 7-31
BMAPPE, 7-24
Boot processor arbitration, 8-3
Boot processor system setup, 8-3
BPCR, 2-43
BPCR read/write, 2-44
BPU_ALGORITHM, 2-43
Branch Prediction Control Register, 2-43
Branch Prediction Unit Algorithm bits, 2-43
BSIZE, 7-22
BSTATP, 7-31
BSTATPE, 7-24
BTAGP, 7-31
BTAGPE, 7-24
Bus Error Command Register, 7-14
Bus Error Register, 7-6
Bus Error Syndrome Register, 7-12

Index-2

B-Cache Data Double-Bit Error bit, 7-24
B-Cache Data Single-Bit Error bit, 7-24
B-cache description, 3-1, 3-5
B-Cache emulation of main memory, 7-28
B-Cache Enable bit, 2-80
B-Cache Error Tag Register, 2-85
B-Cache Force Hit bit, 2-80
B-cache force hit mode, 3-11
B-cache operating modes, 3-11
B-Cache Size bits, 2-79, 7-22
B-Cache Speed bit, 2-80
B-cache states, 3-5
B-cache state changes, 3-6
B-cache status parity error, 9-45
B-Cache Status Store Parity Error bit, 7-24
B-Cache Tag Control Parity Error bit, 2-90
B-cache tag parity error, 9-45
B-Cache Tag Parity Error bit, 2-90
B-Cache Tag Store Parity Error bit, 7-24
B-cache, introduction, 1-4
B-map, 3-9
B-Map Parity bit, 7-31
B-Map Parity Error bit, 7-24
B-map parity parity error, 9-46
B-Stat Parity bit, 7-31
B-Tag Parity bit, 7-31

C
CA, 7-14, 7-15
Cache backmaps, 3-8
Cache coherence, error handling, 9-5
Cache disable procedure, 9-6
Cache enable procedure, 9-6
Cache flush procedure, 9-6
Cache initialization, 3-11
Cache organization, 3-2
Cache test procedures, 9-7
CACK_H error on PTE read, 9-30
CAE, 7-7
CA error, 9-47
Cbox, 2-29
Cbox Registers, 2-72
CDPE2, 7-8
CE, 7-8
CEEN, 7-9
CE2, 7-8
CHALT, 2-96
CID, 7-15
CID3, 7-15
Clear Lock bit, 7-20
CLR_LOCK, 7-20
CMD, 2-64, 2-67, 7-15
CNF, 7-15
CNFE, 7-7
CNF error, 9-48

CNF Error bit, 7-7
Commander ID bits, 7-15
Commander ID 3 bits, 7-15
Command bits, 2-64, 2-67, 7-15
Command parity error, 9-49
Command Parity Error bit, 7-8
Command/Address bits, 7-14, 7-15
Command/Address Error bit, 7-7
Configuration Register, 7-9
Confirmation bit, 7-15
Console Base Address bits, 2-96
Console Communication Data 0 bits, 7-32
Console Communication Data 1 bits, 7-32
Console Communication Register, 7-32
Console dispatch data structure, 2-97
Console entry, 8-3
Console halt, 9-10
Console halt codes, 9-12
Console Halt Register, 2-96
Console halt, CPU state, 9-13
Console hardware, 5-1
Console program invocation, 5-5
Console registers, 5-5
Console saved PBC, 9-11
Console saved PSL, 9-11
Controller, 4-5
Controller, LSB, 4-5
Control Transmit Check Error bit, 7-7
CONWIN Low bit, 5-10
CONWIN_L, 5-10
CON_BASE_ADDR, 2-96
CON_COM_DATA0, 7-32
CON_COM_DATA1, 7-32
Correctable Data Error bit, 7-8
Correctable ECC error, 9-49
Correctable Error Detection Enable bit, 7-9
Corrected Read bit, 2-89
CPE2, 7-8
CPUID, 2-36
CPU chip functional units, 1-3
CPU Identification bits, 2-36
CPU Identification Register, 2-36
CPU interrupt levels, 6-4
CPU module

block diagram, 1-2
register list, 7-3
self-test, 8-2

CPU registers
Bus Error, 7-6
Bus Error Command, 7-14
Bus Error Syndrome, 7-12
Configuration, 7-9
Console Communication, 7-32
Device, 7-5
Interprocessor Interrupt, 7-18
I/O Interrupt, 7-16

Index-3

Last Miss Address, 7-38
Lock Address, 7-25
LSB Diagnostic Control, 7-26
Memory Mapping, 7-10
Mode, 7-20
Module Error, 7-23
Performance Counter, 7-37
Performance Counter Control, 7-33
Tag Address, 7-29
Tag Write Data, 7-30

CPU self-test, 8-2
CPU state at console halt, 9-13
CPU Type bits, 2-37
CPU0, 7-16
CPU0 I/O Interrupt bits, 7-16
CPU1 I/O Interrupt bits, 7-16
CPU2, 7-16
CPU2 I/O Interrupt bits, 7-16
CPU3, 7-16
CPU3 I/O Interrupt bits, 7-16
CPU4, 7-16
CPU4 I/O Interrupt bits, 7-16
CPU5, 7-16
CPU5 I/O Interrupt bits, 7-16
CPU_ID, 2-36
CPU_TYPE, 2-37
CSR data parity error, 9-49
CSR Data Parity Error bit, 7-8
CTCE, 7-7
Ctrl/P character detection, 5-4
Ctrl/P Halt bit, 5-15
Ctrl/P Halt Enable bit, 5-11
Ctrl/P_HALT, 5-15

D
Data Cycle bits, 7-15
Data Parity bits, 2-71
Data Parity Error bit, 2-42, 2-65, 2-67
Data path, LEVI, 4-3
Data structure, mailbox, 6-1
Data Transmit Check Error bit, 7-7
Data types, 2-2
Data Valid bit, 2-40
DATA_P, 2-40
DATA_PARITY, 2-71
DATA_V, 2-40
DCYCLE, 7-15
Device interrupt handling, 6-4
Device Register, 7-5
Device Revision bits, 7-5
Device Type bits, 7-5
Diagnostic Control Register, 2-82
Diagnostic notes, 7-28
DIAG_CTL, 2-82
DIAG_CTL read/write, 2-83

DIE, 7-7
DIRTY, 7-15, 7-30
Dirty bit, 7-15, 7-30
Dirty error, 9-47
Dirty Error bit, 7-7
Disable ECC Error bit, 2-83
DIS_ECC_ERR, 2-83
DPERR, 2-42, 2-65, 2-67
DREV, 7-5
DTCE, 7-7
DTYPE, 7-5
Dual-ported access synchronization, 4-6
DUART0 Interrupt bit, 5-14
DUART0_INT, 5-14
DUART1 Interrupt bit, 5-14
DUART1_INT, 5-14
D-Stream Enable bit, 2-69
D_STR_ENB, 2-69

E
E, 7-8
Ebox and microsequencer, 2-27
Ebox Control Register, 2-48
Ebox registers, 2-45
Ebox stage 3 stall timeout error, 9-25
ECC, 2-80
ECC Error bit, 2-89
ECR, 2-48
ECR-Ebox, 2-48
EEPROM, 5-3
Electrically Disable bit, 2-68
ELEC_DISABLE, 2-68
Emulated instruction exceptions, 2-13
EM Latch Valid bit, 2-65
EM_VAL, 2-65
EN, 7-11
Enable bit, 7-11
Environment error sources, 9-45
ERR, 2-73
Error Address bits, 2-39
Error analysis, 9-4
Error bit, 2-73, 7-8
Error categories, 9-44
Error categories, SBC entry points, 9-10
Error Correction and Control bit, 2-80
Error handling

cache coherence, 9-5
software, 9-1

Error line asserted, 9-50
Error recovery, 9-4
Error reports, 9-9
Error retry, 9-7
Error sources, environment, 9-45
Error state collection, 9-2
Event Count 0 bits, 7-37

Index-4

Event Count 1 bits, 7-37
EV_COUNT0, 7-37
EV_COUNT1, 7-37
Exceptions, 2-10

arithmetic, 2-11
system failure, 2-14

Exceptions and interrupts, 2-9
Exception, kernel stack not valid, 9-43
Expanded stack frame, 2-10
Expander Select bits, 5-19
EXPSEL, 5-19
External interrupt requests, 2-16
Extracting data, B-cache, 9-6

F
FAULT, 2-62
Faults, 2-10
Fault bits, 2-62
FBCP, 7-27
FBDP, 7-27
Fbox, 2-28
Fbox Enable bit, 2-49
Fbox Stage 4 Bypass Enable bit, 2-49
FBOX_ENB, 2-49
FBOX_ST4_, 2-49
FBOX_TEST_ENB, 2-49
FDBE, 7-27
FDIRTY, 7-27
FEPROMs, 5-3
Fill Address Register, 2-94
Fill Address <33:32> bits, 2-87
Fill buffer, 4-3
Fill Dispatch Command bits, 2-88
Fill Error Physical Address bits, 2-94
Fill I-Cache Read bit, 2-89
Fill Quadword bit, 2-88
Fill SEO bit, 2-88
Fill Syndrome Register, 2-92
FILL uncontrollable ECC errors, 9-26
FILL uncontrollable ECC errors, P-cache, 9-42
FILL_ADDR, 2-94
FILL_ADDR<33:32>, 2-87
FILL_CRD, 2-89
FILL_DPERR, 2-89
FILL_DSP_CMD, 2-88
FILL_ECC, 2-89
FILL_ERR_PA, 2-94
FILL_IRD, 2-89
FILL_QW, 2-88
FILL_SEO, 2-88
FILL_SYND, 2-92
Flush Branch History bit, 2-43
Flush Center bit, 2-43
FLUSH_BHT, 2-43
FLUSH_CTR, 2-43

Flux Testability Enable bit, 2-49
Force Bad Data Parity bit, 7-27
Force Dirty bit, 7-27
Force Double-Bit Error bit, 7-27
Force hit mode, 9-6
Force hit mode, 3-11
Force LSB Ignore bit, 7-27
Force P-Cache Hit bit, 2-69
Force Share bit, 7-27
Force Single-Bit Error bit, 7-27
FORCE_HIT, 2-69
FRIGN, 7-27
FSBE, 7-27
FSHARE, 7-27
Functional partitions, 2-25

G
Gbus components, 5-2
Gbus$Halt, 5-15
Gbus$Intr, 5-13
Gbus$LEDs, 5-10
Gbus$LSBRST, 5-17
Gbus$LTagRW, 5-21
Gbus$Misc, 5-18
Gbus$PMask, 5-11
Gbus$RMode, 5-20
Gbus$WHAMI, 5-8
General purpose registers, 2-30
Get buffer, 4-3

H
Halt Enable bit, 5-12
Halt interrupt, 9-10
Halt protection, 5-4
HALT_EN, 5-12
Hard error interrupts, 9-32
Hard error interrupt parse tree, 9-32
HI, 2-92, 2-95
High bits, 2-92, 2-95
HISTORY, 2-43
History bit, 2-43

I
IA, 7-11
Ibox, 2-26
Ibox Control and Status Register, 2-42
Ibox registers, 2-38
ICCS, 2-73
ICR, 2-76
ICSR, 2-42
Identification registers, 2-35
IE, 2-73
Inconsistent status, hard error interrupts, 9-40
Inconsistent status, machine checks, 9-31

Index-5

Initialization
cache, 3-11
overview, 8-1

Instruction set, 2-2
INT, 7-11
Interfacing rules, 4-6
Interleave Address bits, 7-11
Interleave bits, 7-11
Internal interrupt requests, 2-16
Internal processor registers

discussion, 2-31
list, 2-33

Interprocessor bit, 5-13
Interprocessor interrupt, 7-19
Interprocessor Interrupt Mask bits, 7-18
Interprocessor Interrupt Register, 7-18
Interrupts, 2-15

hard error, 9-32
soft error, 9-40

Interrupt bit, 2-73
Interrupt conditions, 6-4
Interrupt control registers, 2-15
Interrupt Enable bit, 2-73
Interrupt handling, device, 6-4
Interrupt levels, 6-4
Interrupt mapping, 7-16
Interrupt requests

external, 2-16
internal, 2-16
software, 2-17

Interrupt, interprocessor, 7-19
Interval Count bits, 2-76
Interval Count Control and Status Register,

2-73
Interval Count Register, 2-76
Interval Timer bit, 5-13
INTIM, 5-13
INTR, 2-73
INT_COUNT, 2-76
IO_MAP, 2-79
IP, 5-13
IPL, 7-17
IPR address space decoding, 2-32
I-Stream Enable bit, 2-69
I/O Interrupt Register, 7-16
I/O Map bits, 2-79
I/O operation registers, 6-4
I_STR_ENB, 2-69

K
KA7AA block diagram, 1-2
KA7AA internal processor registers, 2-33
Kernel stack not valid exception, 9-43

L
LADR, 7-25
Last Miss Address Register, 7-38
LBECR, 7-14
LBER, 7-6
LBESR, 7-12
LCNR, 7-9
LCNTR, 7-37
LCNTR0 Halt bit, 7-34
LCNTR0 Overflow bit, 7-36
LCNTR0 Run bit, 7-34
LCNTR0 Select bits, 7-35
LCNTR1 Halt bit, 7-33
LCNTR1 Overflow bit, 7-36
LCNTR1 Run bit, 7-33
LCNTR1 Select bits, 7-34
LCON, 7-32
LC0_HLT, 7-34
LC0_OVFL, 7-36
LC0_RUN, 7-34
LC0_SEL, 7-35
LC1_HLT, 7-33
LC1_OVFL, 7-36
LC1_RUN, 7-33
LC1_SEL, 7-34
LDC Power Okay bit, 5-16
LDC_PWR_OK, 5-16
LDEV, 7-5
LDIAG, 7-26
LEDs Low bits, 5-10
LEDs_L, 5-10
Left Bank Tag Error bit, 2-67
LEFT_BANK, 2-67
Length Violation bit, 2-62
LEVI, 4-4
LEVI address path, 4-2
LEVI block diagram, 4-2
LEVI B-cache status parity error, 9-45
LEVI B-cache tag parity error, 9-45
LEVI B-map parity parity error, 9-46
LEVI controllers, 4-4
LEVI data controller, 4-4
LEVI data path, 4-3
LEVI errors, 9-45
LEVI processor controller, 4-4
LEVI P-map parity parity error, 9-45
LEVI Revision bit, 7-20
LEVI transactions, 4-7
LEVI_REV, 7-20
LIOINTR, 7-16
LIPINTR, 7-18
LLOCK, 7-25
LMBOX, 6-5
LMBPR, 6-4
LMBPR Address bits, 6-3

Index-6

LMBPR_ADDR, 6-3
LMERR, 7-23
LMISSADDR, 7-38
LMMR, 7-10
LMODE, 7-20
LO, 2-92, 2-95
Load History bit, 2-43
LOAD_HISTORY, 2-43
LOCK, 2-42, 2-61, 2-65, 2-67, 7-25
Lock Address bit, 7-25
Lock Address Register, 7-25
Lock bit, 2-42, 2-65, 2-67, 7-25
Lock bits, 2-61
Lock Mode bits, 7-21
LOCK_MODE, 7-21
Logic boxes, 2-25
Longword Select bit, 2-39
Lost BIU error, 9-28
Lost fill error, 9-27
Lost Write bit, 2-87
LOST_WRITE, 2-87
Low bits, 2-92, 2-95
LPERF, 7-33
LSB, 4-5
LSB arbitration, 4-6
LSB arbitration collision, 9-46
LSB arbitration drop, 9-46
LSB Bad bit, 5-9
LSB CA error, 9-47
LSB CNF error, 9-48
LSB command field encodings, 4-7
LSB command parity error, 9-49
LSB controller, 4-5
LSB CONWIN bit, 5-9
LSB correctable ECC error, 9-49
LSB CSR data parity error, 9-49
LSB Diagnostic Control Register, 7-26
LSB Dirty error, 9-47
LSB errors, 9-46
LSB error line asserted, 9-50
LSB interface, introduction, 1-4
LSB interrupt level, 7-17
LSB Mailbox Register, 6-5
LSB node space base addresses, 7-2
LSB Secure bit, 5-16
LSB Shared error, 9-47
LSB stall error, 9-48
LSB transmitter durring error, 9-49
LSB transmit check error, 9-47
LSB uncorrectable ECC error, 9-50
LSB 0 bit, 5-14
LSB 1 bit, 5-14
LSB 2 bit, 5-13
LSB-initiated transactions, 4-8
LSB1, 5-14
LSB2, 5-13

LSB_BAD, 5-9
LSB_CONWIN, 5-9
LSB_SEC, 5-16
LTAGA, 7-29
LTAGW, 7-30
LV, 2-62
LW, 2-39

M
M, 2-62
Machine check

codes, 9-16
exception stack frame, 9-14
inconsistent status, 9-31
parse tree, 9-17

Machine checks, 9-13
Mailbox

data structure, 6-1
operation, 6-3
pointer CSR, 6-4
pointer structure, 6-3

Mailbox Address bits, 6-3
Mailbox Register bits, 6-5
Manufacturing status bit, 5-9
Mapping

address space, 4-7
interrupt, 7-16

MASK, 7-18
MA_FREQ, 7-36
Mbox, 2-28
Mbox Map Enable Register, 2-57
Mbox P0 Base Register, 2-51
Mbox P0 Length Register, 2-52
Mbox P1 Base Register, 2-53
Mbox P1 Length Register, 2-54
Mbox registers, 2-50
Mbox System Base Register, 2-55
Mbox System Length Register, 2-56
MBXREG, 6-5
MB_ADDR, 6-3
MCHK_ASYNC_ERROR, 9-24
MCHK_CANT_GET_HERE, 9-24
MCHK_INT.ID_VALUE, 9-24
MCHK_MOVC_STATUS, 9-24
MCHK_SYNC_ERROR, 9-25
MCHK_UNKNOWN_MSTATUS, 9-23
Memory emulation, B-cache, 7-28
Memory management

control, 2-7
discussion, 2-4

Memory management control registers, 2-8
Memory Management Enable bits, 2-57
Memory Mapping Register, 7-10
MEM_MNG_ENB, 2-57
MFG, 5-9

Index-7

Microcode Patches bits, 2-37
Microcode Revision bits, 2-37
Microsequencer, 2-27
MIC_PATCHES, 2-37
MIC_REV, 2-37
Minimum stack frame, 2-9
MISPREDICT, 2-43
Mispredict bit, 2-43
Missed Address bits, 7-38
Miss Address Frequency bits, 7-36
MISS_ADDR, 7-38
MMAPEN, 2-57
MMEADR, 2-59
MMEPTE, 2-60
MMESTS, 2-61
MME Faulting Address bits, 2-59
MME Faulting Address Register, 2-59
MME PTE Address Register, 2-60
MME Status Register, 2-61
MME_FAULT_ADDR, 2-59
Mode Register, 7-20
Modify bit, 2-62
Modify Fault PTE Address bits, 2-60
Module Address bits, 7-10
Module Error Register, 7-23
MODULE_ADDR, 7-10
MOD_FAULT_PTE_, 2-60
MP0BR, 2-51
MP0LR, 2-52
MP1BR, 2-53
MP1LR, 2-54
MSBR, 2-55
MSLR, 2-56

N
NBANKS, 7-11
Next Interval count bits, 2-75
Next Interval Count Register, 2-75
NHALT, 5-16, 7-9
NICR, 2-75
NID, 5-9
NINT_COUNT, 2-75
Node Bank bits, 7-33
Node Halt bit, 5-16, 7-9
Node ID bit, 5-9
Node Reset bit, 7-9
Node space base addresses, 7-2
Node-Specific Error Summary bit, 7-7
Nonexistent Address Error bit, 7-7
Nonstandard Patch bit, 2-46
NONSTANDARD_PATCH, 2-46
NRST, 7-9
NSES, 7-7
Number of Banks bits, 7-11
NVAX+ functional units, 1-3

NXAE, 7-7
N_MASK, 7-33

O
OE, 2-80
Operating system startup, 8-3
Output Enable bit, 2-80
Overview, CPU module, 1-1

P
P, 7-15
Pack Disable bit, 2-83
PACK_DISABLE, 2-83
Page table entry format, 2-6
Page Table Entry Reference bit, 2-62
PAMODE, 2-58
Parallel Port Disable bit, 2-47
PARITY, 2-70
Parity bit, 7-15
Parity bit (1), 2-70
Parse tree

hard error interrupt, 9-32
machine check exception, 9-17
soft error interrupt, 9-41

PAR_PORT_DIS, 2-47
Patchable Control Store Control Register, 2-46
Patchable Control Store Data bit, 2-46
Patchable Control Store Enable bit, 2-47
Patchable Control Store Write bit, 2-47
Patch Revision bits, 2-46
PATCH_REV, 2-46
PCACHE_MODE, 2-79
PCADR, 2-66
PCCTL, 2-68
PCDAP, 2-71
PCSCR, 2-46
PCSTS, 2-67
PCS_DATA, 2-46
PCS_ENB, 2-47
PCS_WRITE, 2-47
PCTAG, 2-70
PC_PE_ENB, 2-69
PC_PE_PA, 2-66
Performance Counter Control Register, 7-33
Performance Counter Register, 7-37
Performance Monitor Access Type bits, 2-82
Performance Monitor Facility Clear bit, 2-48
Performance Monitor Hit Type bits, 2-83
Performance Monitor Mode bit, 2-68
PHALT_EN, 5-11
Physical Address Mode bits, 2-58
Physical Address Mode Register, 2-58
Physical address space, 2-3
Physical base addresses, 7-2
PHYS_ADDR_MODE, 2-58

Index-8

PMAPP, 7-30
PMAPPE, 7-24
PMF EMUX bits, 2-48
PMF Enable bit, 2-49
PMF FMUX bits, 2-49
PMF Linear Feedback Shift Register bit, 2-48
PMF_CLEAR, 2-48
PMF_EMUX, 2-48
PMF_ENB, 2-49
PMF_LFSR, 2-48
PMF_PMUX, 2-49
PMM, 2-68
PMODE, 7-21
PM_ACCS_TYPE, 2-82
PM_HIT_TYPE, 2-83
Power Module A Okay bit, 5-15
Power Module B Okay bit, 5-15
Power supply connection codes, 5-19
Power-up test, 8-2
Primary cache, 3-1, 3-4
Processor status longword, 2-24
Processor-initiated transactions, 4-7
Process control block, 2-23
Process space address translation, 2-5
Process structure, 2-22
PSL, 2-24
PTE errors on reads, 9-30
PTE Error bit, 2-67
PTE Error Write bit, 2-67
PTE format, 2-6, 2-7
PTE read errors, 9-28
PTE read errors, interruptible instructions,

9-29
PTE_ER, 2-67
PTE_ER_WR, 2-67
PTE_REF, 2-62
PV System Mode bit, 2-79
PWR_MODA_OK, 5-15
PWR_MODB_OK, 5-15
P-cache, 3-1, 3-4
P-Cache Contrlol Register, 2-68
P-Cache Data Parity Register, 2-71
P-Cache Mode bit, 2-79
P-Cache Mode bits, 7-21
P-cache parity errors, 9-42
P-Cache Parity Error Address Register, 2-66
P-Cache Parity Error Enable bit, 2-69
P-Cache Parity Error Physical Address bits,

2-66
P-Cache Parity Error Status Register, 2-67
P-Cache Tag Register, 2-70
P-map, 3-9
P-Map Parity bit, 7-30
P-map parity error, 9-45
P-Map Parity Error bit, 7-24
P0 Length Longwords bits, 2-52

P0 region address translation, 2-5
P0_LENGTH_LW, 2-52
P1 Length Longwords bits, 2-54
P1 region address translation, 2-5
P1_LENGTH_LW, 2-54

Q
Quadword I/O Read bit, 2-79
QW_IO_RD, 2-79

R
Redundancy Enable bit, 2-68
RED_ENABLE, 2-68
Register addressing, UART, 5-4
Register descriptions, 7-4
Register mapping, 7-2
Registers

BIU Control, 2-78
BIU Status, 2-87
BIU Address, 2-91
Branch Prediction Control, 2-43
B-Cache Error Tag, 2-85
Console Halt, 2-96
CPU Identification, 2-36
Diagnostic Control, 2-82
Ebox Control, 2-48
Fill Address, 2-94
Fill Syndrome, 2-92
Ibox Control and Status, 2-42
Interval Count, 2-76
Interval Count Control and Status, 2-73
Mbox Map Enable, 2-57
Mbox P0 Base, 2-51
Mbox P0 Length, 2-52
Mbox P1 Base, 2-53
Mbox P1 Length, 2-54
Mbox System Base, 2-55
Mbox System Length, 2-56
MME Faulting Address, 2-59
MME PTE Address, 2-60
MME Status, 2-61
Next Interval Count, 2-75
Patchable Control Store Control, 2-46
Physical Address Mode, 2-58
P-Cache Control, 2-68
P-Cache Data Parity, 2-71
P-Cache Parity Error Address, 2-66
P-Cache Parity Error Status, 2-67
P-Cache Tag, 2-70
Software ECC, 2-95
System Control Block Base, 2-18
System Identification, 2-37
Time-of-Day, 2-77
Translation Buffer Parity Address, 2-63
Translation Buffer Status, 2-64

Index-9

VIC Data, 2-41
VIC Memory Address, 2-39
VIC Tag, 2-40

Request Mode bits, 5-8
REQ_MODE, 5-8
Reset Status bit, 7-9
Revision Level bits, 2-98
REV_LEVEL, 2-98
Right Bank Tag Error bit, 2-67
RIGHT_BANK, 2-67
Row Index bits, 2-39
ROW_INDEX, 2-39
RSTSTAT, 7-9
RUN, 2-74
Run bit, 2-74
RUN Low bit, 5-10
RUN_L, 5-10

S
SAVEPC register, 9-15
SCB, 2-18
Second Command Parity Error bit, 7-8
Second Correctable Data Error bit, 7-8
Second CSR Data Parity Error bit, 7-8
Second Uncorrectable Data Error bit, 7-8
Select control terminal bits, 5-12
Self-test description, 8-2
Self-Test Fail bit, 7-9
Self-Test Passed Low bit, 5-10
SEL_CONS_TERM, 5-12
Serial port, 5-3
Serial ROM, 5-2
SGL, 2-74
SHARED, 7-15, 7-30
Shared bit, 7-15, 7-30
Shared error, 9-47
Shared Error bit, 7-7
SHE, 7-7
SHIFT, 2-46
Shift bit, 2-46
SID, 2-37
Single Step bit, 2-74
Single-bit error syndromes, 2-93, 7-13
Software ECC bit, 2-82
Software ECC Error Register, 2-95
Software error handling, 9-1
Software interrupt requests, 2-17
Soft error interrupts, 9-40
Soft error interrupt parse tree, 9-41
Source bits, 2-61, 2-64
SPARE, 7-27
Spare bit, 7-27
SRC, 2-61, 2-64
SROM, 5-2
SROM operation, 8-2

Stack frame
expanded, 2-10
minimum, 2-9

Stall buffer, 4-3
Stall error, 9-48
Stall Error bit, 7-7
STCOND_TO, 7-21
STE, 7-7
STF, 7-9
Store Conditional Timeout bits, 7-21
STP_L, 5-10
Structure, mailbox pointer, 6-3
SUBBLOCK, 2-39
Subblock Select bits, 2-39
SW_ECC, 2-82
Synchronization, 4-6
Synchronous errors, 9-44
Syndromes for single-bit errors, 7-13
Syndromes, single-bit errors, 2-93
Syndrome values, 7-13
Syndrome 0 bit, 7-12
Syndrome 1 bit, 7-12
Syndrome 2 bit, 7-12
Syndrome 3 bit, 7-12
SYND_0, 7-12
SYND_1, 7-12
SYND_2, 7-12
SYND_3, 7-12
System block diagram, 1-1
System control block, 2-18
System Control Block Base Register, 2-18
System control block layout, 2-20
System control block vector, 2-18
System environment errors, 9-44
System failure exceptions, 2-14
System Identification Register, 2-37
System Length Longwords bits, 2-56
System Page Table Physical Address bits, 2-55
System setup, boot processor, 8-3
System space address translation, 2-4
System Type bits, 2-98
System Variant bits, 2-98
System Virtual Address of P0 bits, 2-51
System Virtual Address of P1 bits, 2-53
SYS_PT_LENGTH_LW, 2-56
SYS_PT_PA, 2-55
SYS_TYPE, 2-98
SYS_TYPE parameters, 2-97
SYS_VAR, 2-98
SYS_VA_P0, 2-51
SYS_VA_P1, 2-53

T
Tag, 2-40
TAG, 2-40, 2-70, 2-86

Index-10

TAGADR_P, 2-86
TAGCTL_D, 2-86
TAGCTL_P, 2-86
TAGCTL_S, 2-86
TAGCTL_V, 2-86
Tag Address bits, 7-29
Tag Address Parity bit, 2-86
Tag Address Register, 7-29
Tag bits, 2-70, 2-86
Tag Control Dirty bit, 2-86
Tag Control Parity bit, 2-86
Tag Control Shared bit, 2-86
Tag Control Valid bit, 2-86
Tag Data bits, 7-31
Tag Match bit, 2-86
Tag Parity, 2-40
Tag Parity Error bit, 2-42, 2-65
Tag read/write, 7-28
Tag Select bits, 7-26
Tag Write Data Register, 7-30
TAG_ADDR, 7-29
TAG_DATA, 7-31
TAG_MATCH, 2-86
TAG_SEL, 7-26
TBADR, 2-63
TBSTS, 2-64
TB parity error, 9-24
TB test procedures, 9-7
TDE, 7-7
Timeout Clock bit, 2-49
Timeout Occurred bit, 2-49
Timeout Test bit, 2-49
Time-of-Day bits, 2-77
Time-of-Day Register, 2-77
Time-of-Day Register Increment bit, 2-83
Time-of-Day Register Test bit, 2-83
TOD, 2-77
TODR, 2-77
TODR_INC, 2-83
TODR_TEST, 2-83
TO_CLOCK, 2-49
TO_OCCURRED, 2-49
TO_TEST, 2-49
TPERR, 2-42, 2-65
Transaction ordering, 4-9
Transfer bit, 2-74
Translation buffer, 2-7
Translation Buffer Parity Address Register,

2-63
Translation Buffer Status Register, 2-64
Transmitter during error, 9-49
Transmitter During Error bit, 7-7
Transmit check error, 9-47
Traps, 2-10

U
UARTs, 5-3
UART register addressing, 5-4
UCE, 7-8
UCE2, 7-8
Uncorrectable Data Error bit, 7-8
Uncorrectable ECC error, 9-50
Uncorrectable errors, write or write-unlock,

9-39

V
VALID, 7-30
Valid bit, 7-30
Valid bits, 2-70
VA_TB_PE, 2-63
VDATA, 2-41
VDATA read/write, 2-41
VIC, 3-1
Victim buffer, 3-9
VIC Access Enable bit, 2-42
VIC data bits, 2-41
VIC Data Register, 2-41
VIC Memory Address Register, 2-39
VIC parity errors, 9-26, 9-41
VIC Tag Register, 2-40
VIC_ACC_ENB, 2-42
VIC_DATA, 2-41
Virtual address space, 2-3
Virtual Address TB Parity Error bits, 2-63
Virtual instruction cache, 3-1, 3-3
VMAR, 2-39
VTAG, 2-40

W
Watch chip, 5-4
WMODE, 7-22
Workstation I/O bit, 2-78
Write buffer, 4-3
Write Mode bits, 7-22
Write policy, 3-10
WS_IO, 2-78

X
XFR, 2-74

