igas”

W

R

PDP-11

Paper Tape
Software Handbook
Order No. DEC-11-XPTSA-B-D

digital equipment corporation - maynard, massachusetts

5/76-34

First Printing, April 1970
Revised: March 1971
January 1972

February 1973

June 1975

April 1976

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such

license.

Digital Equipment Corporation assumes no responsibility for the use or

reliability of its software on e

DIGITAL.

Copyright<:)1970,1971.19?2,1973,1975,1976byrﬁgita1 Equipment Corporation

quipment that is not supplied by

The postage prepaid READER'S COMMENTS form on the last page of this

document requests the user's critical eva

paring future documentation.

luation to assist us in pre-

The following are trademarks of Digital Equipment Corporation:

DIGITAL

DEC

PDP

DECUS

UNIBUS
COMPUTER LABS
COMTEX

DDT

DECCOMM

DECsystem~-10
DECtape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL

INDAC

LAB~-8
DECsystem-20

MASSBUS
OMNIBUS
0s/8

PHA

RSTS

RSX
TYPESET~8
TYPESET~10
TYPESET-11

mf

;Q
%

P

« & 5 e 9

« * s @

o L) b B L3 DD b U1 ke o S b

¢« & & @

NSNS BB WWWWWRONNDNND

S 4 & & & & 2

b D OO0 =3 O U B L B

. &
B o
%] -0

«. o »

o000 00 00 0O 00 0 00 0 00000 ~J ~3 =~ ~ sl)

s s 8 a2 e s e ®
2 8 % 8 & a = @
Pt e et D OO S ON UV B W DO

CONTENTS

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

CHARACTER SET.
STATEMENTS

Label

Operator

Operand '

Comments

Format Control
SYMBOLS

Permanent Symbols

User-Defined Symbols

Direct Assignment

Register Symbols
EXPRESSIONS

Numbers

Arithmetic and Logical OPerators

ASCII Conversion -

Mode of Expressions
ASSEMBLY LOCATION COUNTER -
RELOCATION AND LINKING
ADDRESSING

Register Mode

Deferred Register E@de

Autoincrement Mode -

Deferred Autuxncrement Hnée

Autodecrement Mode .

Deferred anto&eeremant Moée

Index Mode 3 ‘

Deferred Index ﬂgﬁe .

Immediate Mode and Deferreé Immedxate

{Absolute) Mode .

Relative and Deferreﬁ Relat;ve Modes
Table of Mode Forms and Codaes (6-bit(a)

format only — see Sectian 1.7.12)
Instruction Forms
ASSEMBLER DIRECTIVES
<TITLE :
.GLOBL

Program Section Dlrectives {.ASECT and

.CSECT)

CEOT

.Em

.END

-WORD

.BYTE

LASCII

.RADS50

+LIMIT

Conditional Assemhly Directives

iii

1-5

i

|
(=]

B b e b e
1O 0w ~100

-
1

el ad o
NN

1-13
1-13
1-13
1-14
1-14
1-14
1-14

1-15
1-15

1-16
1-17
1-18
1-18
1-18

1-19
1-20
1-20
1-20
1-20
1-21
1-21
1-22
1-23

- 1-23

CONTENTS (CONT.)

Page
1.9 OPERATING PROCEDURES 1-24
1.9.1 Introduction 1-24
1.9.2 Loading PAL-11S 1-24
1.9.3 Initial Dialogue . 1-24
1.9.4 Assembly Dialogue : 1-28
1.9.5 Assembly Listing 1-30
1.9.6 Object Module Output 1-30
1.9.6.1 Global Symbol Directory -1-30
1.9.6.2 Text Block 1-31
1.9.6.3 Relocation Directory T 1-31
1.10 ERROR CODES ‘ 1-31
1.11 SOFTWARE ERROR HALTS 1-32
CHAPTER 2 WRITING PAL*llA ASSEMBLY LANGUAGE PROGRAMS 2-1
2.1 CHARACTER SET 2-2
2.2 STATEMENTS 2-2
2.2.1 Label 2-3
2.2.2 Operator 2-3
2.2.3 Operand 2-3
2.2.4 Comments 2-4
2.2.5 Format Control 2-4
2.3 SYMBOLS 2-5
2.3.1 - Permanent Symbols 2-5
2.3.2 User-Defined Symbols 2-5
2.3.3 Direct Assignment 2-5
2.3.4 Register Symbols 2-6
2.4 EXPRESSIONS - 2-7
2.4.1 Numbers 2-7
2.4.2 Arithmetic and Logical Operators 2-8
2.4.3 ASCII Conversion 2-8
2.5 ASSEMBLY LOCATION COUNTER 2-8
2.6 ADDREBSING 2-9
2.6.1 Register Mode 2-10
2.6.2 Deferred Register Mode 2-10
2.6.3 Autoincrement Mode ' 2-10
2.6.4 Deferred Autoincrement Mode 2-11
2.6.5 Autodecrement Mode _ 2-11
2.6.6 Deferred Autodecrement Mode 2-11
2.6.7 Index Mode ‘ 2-11
2.6.8 Deferred Index Mode 2-12
2.6.9 Immediate Mode and Deferred Immedlate
(Absolute) Mode ; 2-12
2.6.10 Relative and Deferred Relative Modes 2-13
2.6.11 Table of Mode Forms and Codes (6~bit (A)
format only - see Section 3.7) 2-13
2.7 INSTRUCTION FORMS 2=-14
2.8 ASSEMBLER DIRECTIVES 2-15
2.8.1 .EOT 2-15
2.8.2 .EVEN 2-16
2.8.3 .END 2-16
2.8.4 .WORD or : 2-16
2.8.5 .BYTE 2-17
2.8.6 .ASCII ‘ 2-17
2.9 OPERATING PROCEDURES 2-17
2.9.1 Introduction 2-17
2.9.2 Loading PAL~11lA e 2-18

iv

o

Page

.9.4 Agsembly Dialogue , 2-23

.9.5 Assembly Listing - 2-24

.10 ERROR CODES 2-25
.11 SOFTWARE ERRCOR HALTS ' : : 2-26
CHAPTER LINK-11S LINKER ; R 3-1
.1 INTRODUCTION i ' 3-1
.1.1 General Description ~ 3-1
«1.2 Absolute and Relocatable Pregram Sections 3-2
.1.3 Global Symbols SER 3-2
.2 INPUT AND OUTPUT ' : 3-3
.2.1 Object Module : : 3-3
2.2 Load Modules : 3-3
.2.3 . Load Map - L ; 3-4
.3 OPERATING ?RQGEDURES ! 3-5
.3.1 Loading and Command String 3-5
.3.1.1 Operational Cautions : , 3-6
.3.2 ‘ Error Procedure and Haasages 3-7
.3.2.1 Restarting , 3-7
.3.2.2 Non-Fatal Errors . ; 3-7
«3.2.3 Fatal Errors ; 3-7
CHAPTER EDITING THE SOURCE PROGRAM 4-1
COMMAND MODE AND TEXT MODE 4~-1
COMMAND DELIMITERS -2
Arguments , -2
The Character Location Pointer (Dnt} -
Mark . -

Line~0:iented Command Braperties '
The Page Buffer

COMMANDS
Input and- Gatput Gammands
Open -
Read
List and Punch
Next .
Form Feed and Tra;lar o
Procedure with Low-Speed Puach
Commands to Move Dot and Mark
Beginning and End
Jump and Advance .
Mark
Search Commands
Get
wHole :
Commands to Modlfy the Text
Insert
Delete and Klll
Change and sxchange

OPERATING PROCEDURES
Error Corrections : ~
Starting ; : : 4-11
Restarting 4-11

P
[I I I}

LI T T T T
!

WMk N W U W N

» » +* & ®
L L N O
VORISR BRPRWWWEN

1

® S 8 8 8 8 € B & 8 9 % * P & 2 x e

[RR SR el e e L) L0 LN DD DO B e e et el el e e U WO

. » L
s
L)
o)
[~]

B B B B B B B B B B B B b s P B B B B B B B B B B B i B b L] WWwWWwWwwwwwiwwwwwwww w NN N
-9
i
-
(=]

s & ¢ 8 & 8 8 s 4 e 8 B B B & " 5 & s =B & & s s P 2 & &

BB RPWWWWWWWWWWERWWWWWWLWWWENNNNDNDND

« & =

CONTENTS (CONT.)

Page
4.4,.4 Creating a Paper Tape 4-11
4.4.5 Editing Example = - 4-12
4.5 SOFTWARE ERROR 'HALTS - : 4-17
CHAPTER 5 DEBUGGING OBJECT PROGRAMS ON-LINE 5-1
5.1 INTRODUCTION L 5-1
5.1.1 OoDT~11 and ODT-11X 5-1
5.1.2 ODT's Command Syntax 5-2
5.2 COMMAHDS AND FUNCTIONS , : 5-3
5.2.1 Openingy changing, and Closmng LOC&thnS 5-4
5.2.1.1 The Slash (/) L 5-4
5.2.1.2 The LINE FEED Key 5-4
5.2.1.3 The Up-Arrow (4) 5-5
5.2.1.4 The Back-Arrow (<) ' 5-5
5.2.1.5 Accessing General Registers 0-7 5-5
5.2.1.6 Accessing rnternal Registers 5-6
5.2.2 Breakpointa 5-6
5.2.2.1 Setting the Breakpclnt(n By 5-6
- 5.2.2.2 Liocating’ the Breakpoint ($B) - 5-7
5.2.3 Running the Program(n G anﬁ n;P) 5=-7
5.2.4 Searches : ’ 5-8
5.2.4.1 Word Seach{n;W) - 5-8
5.2.4.2 Effective Address Search{n;E) 5-9
5.2.5 Calculatlng Offsets (n;0) 5-9
5.2.6 ODT'S Priority Level($P) 5-10
5.3 ODT-11X 5-10
5.3.1 Opening, Changing and Closing Locations 5-10
5.3.1.1 Open the Addressed Location(@) : 5-11
5.3.1.2 Relative Branch Offset(>) ~ 5-11
5.3.1.3 Return to Previous Sequence (<) o 5-11
5.3.2 Calculating Offsets(n; 0) v 5-11
5.3.3 Breakpoints ~ ! 5-12
5.3.4 Single-Instruction Mode S ' 5-12
5.4 ERROR DETECTION TR : 5-13
5.5 PROGRAMMING ‘CONSIDERATIONS , L ' 5-14
5.5.1 Functional Organization ' ‘ 5-14
5.5.2 Breakpoints i : 5-14
5.5.3 Search ‘ ~ i 5~-18
5.5.4 Teletype Interrupt e S 5-19
5.6 OPERATING PROCEDURES a0 5-20
5.6.1 ‘Linking Procedures (LSI—ll Systems Gnly) 5-20
5.6.2 Loading Proce&ures-(nan~LSI~ll Systems
Only) 5-20
5.6.3 Starting and Restarting = 5-21
CHAPTER 6 LOADING AND DUMPING MEMORY 6-1
6.1 PAPER TAPE BOOTSTRAPS 6-2
6.1.1 BM792~YA Paper Tape Bootstrap ROM 6-2
6.1.2 BM873-YA Bootstrap Loader ROM ~ 6-2
6.1.3 LSI~11l Firmware Paper Tape Bootstrap 6-3
6.1.4 M9301-YB Bootstrap Loader 6-3
6.1.5 M8301-YA Bootstrap Loader 6-4
6.1.6 Other Bootstrap Loaders 6-4
6.1.6.1 Loading the Loader into Core 6-5

vi

Page

6.1.6.2 “Ioading Bootstrap Tapes 6~-6
6.1.6.3 Bootstrap Laaﬁ%z«egezatio« 6-8
6.2 THE ABSOLUTE Lﬂ&bﬁkﬁ ety 6-10
6.2.1 Loading the Loz ore: e 6-11
6.2.2 Using the Absolute: Loader N 6-11
6.2.3 Absolute Loader Ogeraticn 6-13
6.3 CORE MEMORY DUMPS TN o o 6=14
6.3.1 Operating Procedures 6-14
6.3.1.1 Using DUMPAB on Systems without Switch gy
Registers o 6~15
6.3.1.2 ' Using DUMPAB an¢,3§ﬁ§TT @ﬁ Systems with
Switch Registers . Ty 6-16
6.3.2 Output Formats = .- \u_«~,;' L 6-17
6.3.3 Sterage M&ps stis ps';«~~,~_a : 6-17
CHAPTER 7 IN?HT#QUT? v Rﬁ@aﬁﬁﬁlﬁs Pand [7-1
7.1 IHTRQQGCTxOR» 7-1
7.1.1 ig 5 7-3
7.1.2 i 7-3
7.2 THE DEVICE A$SIG¥HE§2 %anas a2 7-3
7.3 BQEPER ARR%KGEMEKT IH DﬁTA TR%HS?E& CDGMANDS 7~4
7.3.1 Buffer Size St o7=5
7.3.3 Status Byte £ K : 7-6
7.3.3.1 Non-Fatal Errorxr: cndas¢; 7-6
7-3«3.2 m Bit : 7"'7
7.3.3:3 End=0f-Meddium Bit . 7-7
7.3.3.4 End~Of-File Bit el VL 7-7
7. 3 » 4 Eyt@ comt Tk bxd : S L . 7"8
7.4 MODES : DB e E A s 7-8
7.4.2 ﬂhformatﬁe&\ASQII o BT 7-10
7.4.3 Formatted Binary S , 7-10
7.4.4 unfarmattea‘aiﬁary RS R 7-11
- 7.5 - ' DATA TRANSFERS ; ot - ' : 7-11
7.5.1 Read pe ; 7-11
7.5.2 Write o ' 7-12
7.5.3 Device Conﬁlicts In nata ?ransfer chmands 7-12
7.5.5. . Waitr vs. Teating the Buffer Done Bit - 7-13
7.5.8 " 'single Buffer Transfer on One Device = 7-14
7.5.7 Double Buffering : A N 7-15
7.5.8 Readr (Real-time) R S 7-15
7.5.9 Writr (Real-time W B O 7-16
7.6 ‘ REEH&B%I&G Tﬁg RE&DEK,A&& RES%&RTIHGA o 7-16
7.6.2 agstart bY S FAED “, w2 L e 7-16
7.7 FATAL ERRORS T 7-17
7.8 EXAMPLE oF,EkgGRAﬁ ssxxs 10X o 7-17
7.9 10X INTERNAL INFORMATION =~ 7-19
7.9.1 Conflict Byte/Word i 7-19
7.9.2 Device Interrupt Table (QIT) 7-20
7.9.3 Device Status Table (DST) 7-21

cvii

CHAPTER

CHAPTER

APPENDIX

APPENDIX

APPENDIX

O 0000000 0 W W W

Wwwwwwwww w P COUVWWOUWWOVOWWOVOVOWYLY W 00 NN

s o e 2 & o o o

WWwwwwwN =

. e * s 0

2 e e o o 8 & & & & s B

G W WD)

s o s ® o s 8 @
W WWWwWwwWwwN -

CONTENTS (CONT.)

Teletype Hardware Tab Facility
Adding Devices To 10X

Device Codes =

Table Modification

Interrupt Rautines

FLOATING POINT MATE PACKAGE O?ERVIEW
PROGRAMMING TECHNIQG&S

- WRITING POQITIGN~IKEEPENDERT CbDE

Position Independent Modes

Absolute Modes =

Writing Automatic PIC

Writing Non-Automatic PIC

Setting Up The Stack Pointer..

Setting Up A Trap or Interrupt Vector
Relocating Pointers ,

“ LOADING UNUSED TRAP VECTORS

CODING TECHNIQUES -
‘Altering Register Contents
Subroutines’ ,

ASCII CHARACTER SET
PAL*llS ASSEMBLY LANGGAGE AND ASSEMBLER‘

TERMINATORS

ADDRESS MODE SYNTAX .

INSTRUCTIONS
Double Operand Instructxons OP A,a
Single Operand Instructlons OP A
Rotate/Shift ;
Operation Instructions Op ,
Branch Instructions Op E Where
-128 <(E— -2)/2<127 3

Subroutxne Call JSR ER A B

Subroutine Return ’

Extensions for the LSI-ll Ver31on of PALwlls
ASSEMBLER DIRECTIVES

. ERROR CODES

INITIAL OPERATING PROCEDURES

. PAL-11A ASSEMBLY LANGUAGE‘AND,ASSEMBLER |

SPECIAL CHARACTERS

ADDRESS MODE SYNTAX

IHSTRUCTIONS . ' o)
Double-Operand Instructions Op A,A
Single-Operand Instructions Op A -
Rotate/Shift Instructions Op A
Operate Instructions Op
Trap xnstructions Op or Op E Where 0<E<3774

Branch Instructians op E where
*1231 LB~ -2)/25}2710

viii

Page

7-21
7-21
7-21
7-22

o ~
1 1
- N

w

mmmmwm?mm??$ ¥
N eRBRWWNE

L

w w
O
e

ol
[
NN

B-4

www
[
[N,

o
|
[+

w w
[
~~

B-7

o w
11
=
o

B-11
Cc-1

c-1
Cc-2
Cc-3
c-4
Cc-4
Cc-5
C-5
C-6

e

el CONTENTS (CONT.)

Page
b c.3.7 Subroutine Call Op ER, A LR R c-7
c.3.8 Subroutine Return Op ER = SN c-8
c.4 ASSEMBLER nxkscwxvxs : : c-8
= C.5 ERROR CODES ey S c-8
| c.6 INITIAL OPERATING 9:aw:n¢:m@ < c-9
APPENDIX D TEXT EDITOR, ED-11' S D-1
D.1 INPUT/OUTPUT COMMANDS p-1
D.2 poxamsawpesxgxo&:ﬁs cexua&as;“ F D-2
D.3 e s i D-2
i D.5 SYEBOLS CE e, ‘ D-3
g 'D.6 GROUPING OF caﬁnasas IS AP BT RO D-3
D.7 OPERATING PROCEDURES =~ D-4
D.7.1 Loading = - » D-4
D.7.2 *Sta::aga Maix:emﬁts : : D-4
D.7.4 Inltzal Dialngue : D-4
D.7.5 Restarting e ; .. D=4
APPENDIX E DEBUGGING OBJECT PROGRAMS ON-~LINE, ODT-11 K
AND ODT-11X E-1
% E.l SUMMARY OF caurnmrs ”i' f,,:, ' L E-1
APPENDIX F LOADING AND DUNPIHG caax MEHORY , F-1
F.l THE BOOTSTRAP Lﬂﬁﬁﬁﬁ ¢ F-1
F.l.1 ‘Loading The m&strap L@aﬂ&r F-1
F.2 THE ABSOLUTE LOADER F-3
F.3 CORE MEMORY DUMPS o F-4
APPENDIX G INPUT/OUTPUT paosnaxn:ﬂs, I0X G-1
Loy G.1 INSTRUCTION SUMMARY G-1
S G.2 ~ PROGRAM FLOW sunnasy S . G-1
G.3 FATAL ERRORS ST . G-2
APPENDIX H SUMMARY OF FLOATING POINT MATH eacxass,
FPMP-11 = H-1
H.1 OTS ROUTINES o | H-2
. H.2 NON-OTS ROUTINES H-7
H.3 ROUTINES ACCESSED VIA TRAP HANDLER H-7
APPENDIX I TAPE DUPLICATION ‘ ' I-1
®
APPENDIX J ASSEMBLY AND LINKING INSTRUCTIONS J-1
J.1 SYSTEMS WITHOUT SWITCH REGISTERS J-1
J.1.1 10X/ IOXLPT ; J-1
J.1l.1.1 Assembling IOX J-1
£ J.1.1.3 Linking IOX and IOXLPT J-1
o J.1.2 ODT11X | J-1

ix

APPENDIX
APPENDIX

APPENDIX

APPENDIX

INDEX

uagy

L] . L

.
NN NN NN b e e e e

oYU UUUOLgoYy

$ 6 & 5 & e s s e & @

LI

* L]

.
w WWwwwwN -~

.

S ﬁt‘ﬁg*ﬁt*ﬁ [

. .

BN b LS N = N

® 8 & » + ¢ o ¢ & o @
YA B WO N G DddWWwwWwN

s .

* s & 5 & @

CONTENTS ‘(CONT.)

Assembling ODT11X ..
Linking OBTI“ Lo
ED-11 SRUETDEIY
Assembling ED-ll
Linking ED-11
PAL~11S
Assembling PAL-118
Linking PAL-lls
LINK-118 ouispiios
Assembling Lzyxulzs
Linking LINEK-11S:: . :

SYSTEMS. WITH SWITCHE: REGISTER& &
Assembling PAL—llA Gl

Assembling ED=11: o B
OopT-11/0DT-11X " ;,’ ST
Assembling IOX/IOXLPT ,
Assembling and: Llnklng~PAL”11$
Assembling and Linking 'LINK~11S

STANDARD PDP-11 ABBREV;AEIDN54'

. CONVERSION TABLES

OCTAL~DECIMAL INTEGER CONVERSIONS

POWERS OF TWO -

SCALES OF NOTATION
2% In Decimal
10*N 1n Octal
n Log 2 and 10 In Deeimal @ i
Addition and Multlpiication, Blnary and
Octal
Mathematlcal Constants xn‘0¢t31

Page

J-1
J-2
J=-2
J-2
J-2
J-2
J=-3-
J=-3
J-4
J~-4
J-5
J-5
J-6
J=6
J=7
J-8
J-11

K-1
VL=

L-1
L-5
L-6
Sk 1%
L~6
L-6

L-6
L-7

NOTE TO USERS-QF SERIAL LA30 AND 600, 1200, ..

AND 2400 BAUD VTOS'

USING THE ABSOLUTB LGADER ON PDP*ll‘S WITHOUT

SWITCH REGISTERS

S LSI-XIL

M9301-YB BOOTSTRAP LOADER
M9301-YA BOOTSTRAP LOADER

M-1

N-1
S N1
N-3
N-4

Index-1

FIGURE

TABLE

5-1
6

6-2
6-3
6-4
F-1
F-2
F-3
F-4

1-1

CONTENTS (CONT.)

FIGURES

Communication and Data Flow

Bootstrap Loader Instructions

Loading and Verifying the Bootstrap Loader
Loading Bootstrap Tapes Into Core

The Bootstrap Loader Program ,

Loading and Verifying the Bootstrap Loader
Loading Bootstrap Tapes into Core

Loading with the Absclute Loader

Dumping Using DUMPAB or DUMPTT

TABLES

Instruction Operand Fields
Instruction Operand Fields

xi

Page

5-15
6-4
6-7

6-8

-2
F-3
F-5
F-6

1-17
2-14

Hr®

T

LN

o

CHAPTER 1
" PAL-115 ASSEMBLY LANGUAGE AND ASSEMBLER

PAL-11S Assembly (Program Assembly Language for the PDP-11,
Relocatable, Stand Alone Version) enables you :to write source
(symbolic) programs using letters, numbers, and symbols which are
meaningful to you. The source programs, generated either on-line
using the Text Editor (ED-11), or off-line, are then assembled into
object modules which are processed by the PDP-11 linker, LINK-11S.
LINK-11S produces a load module which is loaded by the Absolute Loader
for execution. Object modules may contain absolute and/or relocatable
code and separately assembled object modules may be linked with global
symbols. The object module is produced after two passes through the
Assembler; an optional third pass produces a complete octal/symbolic
listing of the assembled program. This listing is especially useful
for documentation and debugging purpeses.

This chapter not only explains how to write PAL-11S programs but also
how to assemble the source programs into object modules. All facets
of the assembly language are explained and illustrated with many
examples, and the chapter concludes with assembling procedures. In
explaining how to write PAL-11S source programs, it .is necessary,
especially at the outset, to make frequent forward references.
Therefore, we recommend that you first read through the entire chapter
to get a “feel" for the language, and then reread the chapter, this
time referring to appropriate sections as indicated, for a “thorough
understanding of the language and assembling procedures. S
Some notable features of Pﬁ&ells are: 1 i

1. Selective assembly péss functions.

2. Device specification for pass functicns.

3. Optional error listing on the~£éiepninter.

4. Double buffered and concurrent 1/0 (provided by IOXLPT).

5. Alphabetized, formatted symbol table listing.

6. Relocatable object modules.

7. Global symbols for linking between object modules.

8, Conditional assembly directives. k

9. Program Sectioning Directives.
The PAL-11S Assembler requires 8K of memory and provides for about 900
user~-defined symbols (see Section 1.3.2). 1In addition, it allows a

line printer to be used for program listing and/or symbol table
listing. : ,

1-1

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

The following discussion of the PAL-11S Assembly Language assumes that
you have read the PDP-11 Processor Handbook with emphasis on those
sections which deal with the PDP-11 instruction repertoire, formdts,
and timings -- a thorough knowledge of these is vital to efficient
assembly language programming.

1.1 CHARACTER SET

A PAL-11S source program is composed of symbols, numbers, expressions,
symbolic instructions, assembler directives, arqument separators, and
line terminators written using the following ASCII' characters.

- 1. The letters A through Z. (Upper and lower case letters are
- acceptable, although upon input, lower case letters will be
converted to upper case letters.) = T A

;'2}j‘$h3'numbetsfp thOQQhLQ-,?

3. The characters . and §. " (These characters are reserved for
(. ;systgm‘use.‘) e A 2L : Pk ey

1. " The separating or terminating symbols:
T o= % ¥ @ (), i Q,,p oo

carriage return tab space line feed form feed

1.2 STATEMENTS
: SRR

A source program is composed of a sequence of statements, where each
statement is on a single line. The statement is terminated by a
carriage return character which must be immediately followed by either
a line feed or form feed character. Should a carriage ‘return
character be preésent and .not be followed by a line feed or form feed,
the Assembler will generate a Q error (Section 1.10), and that portion
of the line following the carriage return will be ignored. Since the
carriage return terminator is a required statement terminator, a line
feed or form feed not immediately preceded by a carriage return will
have one inserted by the Assembler. PERTE T T

It should be noted that, if the Editor (ED-11) is being used to create
the source program, a typed carriage return (RETURN key) automatically
generates a line feed character. 5 SRR Gl :

A statement may be composed of up to four fields which are identified
by their order of appearance and by specified terminating characters
as explained below ‘and summarized in Appendix B. The four fields are:

Label Operator Operand = Comment
The label and comment fields are optional. The operator and operand

fields are inter-dependent -- either may be omitted depending upon the
contents of the other. e T g

I B
ASCII stands for American Standard Code for Information Interchange.

1-2

WA

g,w'm
i

PAL-115 ASSEMBLY LANGUAGE AND ASSEMBLER

1.2.1 Label

A label is a user-defined @g&hﬁi,ggeg;ﬁagtiaﬁnlaalz)m#hieh;tﬁuaﬁﬁigneé
the value of the curremt location ¢ er. . This value may be. either
absolute or relocatable de ng on whether the location counter
value is absolute or reloc e. .In the latter case, the final
absolute value is assigned by the Linker, i.e., the value .+ the
relocation constant. A label is a symbolic means of referring to a
specific location within a program. 1f present, a label always occurs
first in a statement and must be ga;ginaggggbyga;gakpa,g.Eux‘axamp;e,
olute 100 the statement: N

if the current location is abso

ABCD: MOV A,B

will assign the value 100 to the label ABCD so that subsequent
reference to ABCD will be to locatien 100 . . In the above case if the
location counter were relocatable then the final value. of ABCD would
be 100 +K, where K is the location of the ginning of the relocatable
section in which the label ABCD appears. More than one label may
appear within a single label field; each label within the field will
have the same value. For example, if the current location counter is
100 , multiple labels in the statement:

ABC: spD: - A7.7: MOV A,B

Qiiltégnataﬁ§$¢h~ofi§$a th:@églébéls g§£,,$§§;wah67£?,7 *it&fthéwﬁafue
100 .($ and . are reserved for system softwarej. . -~ =

The error code M (multiple definition of a symbol) will be generated
during assembly: if two. or more: labels have - the same first six
characters. .. e 1 . PRI e -

ok e, HY

1.2.2 rator

An operator follows the label field in a gtatement, and may be an
instruction mnemonic ;armfanﬁ;ssgmblzzidiggg%iye»1se§fsestianu;.8 and
Appendix B). When it is an instruction mnemonic, it specifies what
action is to be performed on any operand (s) which follows it. When it
is an assembler directive, it specifies a certain function or action

to be performed during assembly.

The operator may be preceded only by one or more labels and may be
followed by one or. more operands and/or. & comment. -An operator is
legally terminated by a space, tab, or any ~of the following
characters: C e : s PN B N T

line feed form feed carriage return
The use of each chataetér above will be explained ié,thiswchapter.
Consider the following examples: ’

MOV —» A,B ; ——n] (TAB) terminates operator MOV
MOVEA,B ;@ terminates operator MOV

When the operator staﬁésraiéne:*1thaatvanucgéian¢a9?‘ftamméat,;,ig is
terminated by a carriage return followed by a line feed or form feed
character. ‘ . : : ; cL e

PAL-115 ASSEMBLY LANGUAGE AND ASSEMBLER

1.2.3 Operand

An operand is that part of a statement which is operated “on by - the
operator —a”an~'ihstructionfmﬁemonié‘orfasgemhle;kdifective.”»09e;ands
may*be~symbol§y~iexpressiensjj*or"numberé;,V*Wheaﬂ*muitiplé operands
appear within a statement, each is‘séparatedffrcm»thé‘nekt'byfa comma.
An operand may be preceded by an operator and/or label, " and followed

by a comment.

The operand field'is~tetmiﬂatéd~hy*a _semicolon when followed by a
comment, or by a carriage return followed by a line feed or form feed
character when the operand ends the statement. For example,

LABEL: MOV GEORGE, BOB ;THIS IS A COMMENT

where the space between MOV and GEORGE terminated the operator field
and began the operand field; the comma separated the operands GEORGE
and BOB; the semicolon terminated the operand field and began the
comment. riis : :) R kel :

1.2.4 Comments

The comment field is optional and may contain any ASCII character
except null, rubout, carriage return, line feed or form feed. All
other characters, even those with special significance are ignored by
the Assembler when used in the comment field.

The comment field may be preceded by none, any, or all- of the 'other
three fields. It must begin with the semicolon and end with a
carriage return followed by a line feed or form feed character. For
example,

LABEL: CLR HERE ;THIS IS A $1.00 COMMENT
Comments do not affect assembly processing or program execution, - but

they are wuseful in program listings for later analysis, checkout or
documentation purposes. : & : :

1.2.5 Format Contrcl

The format is controlled by the space and tab characters. They have
no effect on the’assemhling process of the source program unless ‘they
are embedded within a symbol, number, or ASCII text; or are used - as
the operator field terminator. Thus, they can be used to provide a
neat, readable program. A statement can be written:
LABEL:MGV(SP}+,TAG:POP VALUE OFF STACK
or, using formatting characters it can be written:
LABEL: MOV (SP)+,TAG "~ ;POP VALUE' OFF STACK
which is much easier to read.

Page size is controlled by the form feed character. A page of n lines

is created by inserting a form feed (CTRL/FORM keys on the keyboard) .

after the nth 1line. If no form feed is ‘present, a page is
automatically terminated after 56 lines. R

(WJ'*#
W

PAL-115 ASSEMBLY LANGUAGE AND ASSEMBLER

1.3 SYMBOLS

There are two types of symbols; permanent and user-defined. Both are
stored in the Assembler's symbol table. Initially, the symbol table
contains the - permanent - symbols, ' but as the seurce program is
~assem§}éﬁ,*usat»&ﬁﬁiﬁaﬁM§?mbols*aze‘aédeﬂftegthevtable. : ' :

1.3.1 Permanent Symbols

Permaaentasymbbisnc@nsist%cf*&he instruction mnemonics (see Appendix
B.3) and assembler directives (see Section 1.8). These symbols are a
permanent part of the Assembler's symbol table and need not be defined
before being used in the source program. f '

1.3.2 User-Defined Bymbols

User-defined symbols are those defined as labels (see Section - 1.2.1)
or by direct assignment (see Section 1.3.3}. These symbols are added
to the symbol table as they are encountered during the first pass of
the assembly. They can be composed of alphanumeric characters, dollar
signs, and periods only; again $'s and .'s are reserved for system
software. Any other character is illegal and, if uged, will result in
the error message I or QU (see Sectien 1.10). I is a low priority
error which may be flagged as QU first. The following rules also
apply to user-defined symbols:

1. The first character mdst’aot be'é‘numbet.
2. Each symbol must be hniqbé within the first six characters.

3. A symbol may be written with more than six 1legal characters
but the seventh and subseguent characters are only checked
for 1legality, and are not otherwise recognized by the
Assembler, BooE RN SN v

4. Spaces and tébSZEQSt not be embedded within a symbol.

A user-defined symbol may duplicate a permanent symbol. The = value
associated with a permanent symbol that is also user-defined depends
upon ‘its use: = EEERE SO :

1. &1pe&maﬁﬁntvsyﬁhﬁii~encaﬁatéﬁéd' in"tha«<o§etazar"field» is
associated with its corresponding machine op-code.

2. If a permanent symbol in the operand field Iis also
user~defined, its wuser-defined value is associated with the
symbol. 1If the symbol is not found to be user-defined, then
the corresponding machine op-code value is associated with
the symbol. ~

User-defined symbols are either internal or global. All symbols are
internal unless they are explicitly typed as global with the .GLOBL
assembler directive (see Section 1.8.2). Global symbols are used to
provide links between object modules. A global symbol which is
defined (as a label or by direct assignment) in a program is called an
entry symbol or entry point. Such symbols may be referred to from
other object modules or assemblies. A global - symbol which: is not
defined in . the current assembly is called an external symbol. Some
other assembly must define the same. symbol as an entry point.

1-5

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

1.3.3 Direct Assignment

A direct assignment statement associates a symbol with a value.. - When
a ‘direct assignment statement ~defines a symbol for the first time,
that symbol is entered into : the Assembler's ‘symbol table and the
specified value 'is associated with it. A symbol may be redefined: by
assigning a new value to a previously defined symbol. The newly
assigned value will replace the previous value assigned to the symbol.

The symbol takes on the relocatable or absolute .attribute ofl the

defining expression. However, if the defining expression is global,

the defined symbel will not be global wunless: previously . defined as

such (see Section 1.4). = ~o . oo o0 Sidnesoihs seicbs on b Lok

The general formét for‘a éirect aé£ignmen£ étatéméni ia:ﬁé’f‘»a‘
symbol = expression.

The following conventions apply: s uel

“.1. ~An equal sign (=) . must separate the symbol . from: ~the
~ expression defining the symbol. i D RRE 5 TR
2. B direct ésSigﬁmeﬂt:étgéemeht hay’beﬁpreceééﬁ?byianlabeiw and
o may be. followed by a comment. ‘ oomli Fiaen, i 0
‘13;= Oniy‘one stballéan;benaéfined by any,bha dimec£ aséigﬁmﬁnt
‘statement. - . . i ‘ T PR

4. Only one level of forward referéncing is alldwéd;

Example of two levels of farwaré refe:encing (iliegai):

09 1< B¢
(R
03 1

X and Y are both ﬁndefinéd throughcut péss 1 and will be listed on the

teleprinter as such at the end of that pass. X is undefined

throughout pass 2, and will cause a U error message. - =

Examples:

a=1 STHE SYMEOL A IS EQUATED WITH THE VALUE 1.

B=’A-1EMASKLOW - §THE SYMROL B I8 EQUATED WITH THE EXPRESSION’S
RECRA FVALUE oo g i B

c D=3 . $THE SYMBOL D IS EQUATED WITH 3. THE
Ef MOV #1,ABLE FLABELS C AND E ARE EQUATED WITH THE
| o NUMERICAL MEMORY ADDRESS OF THE MOV

. SCOMMAND o 0o ;

1;3;4,‘Register,8ym501s

The eight general registers of the PDP-11 are numbered O through 7.
These registers may be referenced by use of a register symbol; that
is, a symbolic name for a register. A register symbol is - defined by
means . of ~a direct assignment, where the defining expression contains
at least one term preceded by a % or at least :one term ~previously
defined as a register symbol. In addition, the defining expression of
a register symbol must bée absolute. For example:

1-6

PAL~11§ ASSEMBLY LANGUAGE AND ASSEMBLER

ROsM9 - ADEFINE RO AS REGISTER 0 /'
'R3=RO$3 SDEFINE yéés%s:ﬁéﬁgs%é§iéf 5
| R4=14%3 $DEFINE R4 AS REGISTER 4 ,
| THERE=x2 ' $DEFINE "THERE® AS REGISTER 2

It is important to note that:-all register: symbols /mus :-be defined

before they are referenced. .-

w&&iwganéraiiy caungphaslwarrété*{séé»&ﬁa&@&w
The %?ﬁa& hakﬁs£ﬂ iﬁ£ahg%§%§fééa§é§fﬁ#ﬁ{eﬁ&finéi@&ii@gi&gfaﬁé;gﬁﬁe:/tn
a register. Such an expression is a.register expression. Thus, the
statement: . .- . CoE ety Coaadted ook aloiimos w0 Dedes
will clear register © while the statement: . ..

CLR =~ 6

will clear the word at memory address 6. In certain cases a register
can be referenced without the use of a register symbol or register
expression. These cases are recognized through the context of the
statement and are thoroughly esplained in Sections 1.7.11 and 1.7.12.
Two obvious examples of this are: = o - R

JSR 5»SUBR §THE FIRST OPERAND FIELD MUST ALMAYS
. }BE. & REGISTER ,

CLR X(EQ;,,',»%ARYxEXEﬁEﬁﬁI&Q;&%Q%ﬁ%EQ‘iﬁf(3} MUST BE
$A REGISTER. IN THIS CASE, INDEX REGISTER
2 T R 1= RN L I AL S

Arithmetic and logical operators (see Section 1.4.2) may be used to
form expressions. A term of -an expression may be a permanent or
user-defined symbol (which may be absoclute, relocatable or global), a
number, ASCII data, or the present value of the assembly location
counter represented by the period (see Section.l.5).. Expressions are
evaluated from left to right. -Parenthetical grouping is not allowed.

Expressions are evaluated as word quantities. The operands of a .BYTE
directive (Section 1.8.8) are evaluated as word expressions before
truncation to the 1low-order eight bits. The evaluation of an
expression includes the evaluation of the mode of the resultant
expresskqn;z;;that“,iagumgbsakate,‘,@elneakaﬁﬁa~fgx»;,exte;ﬁakjh; The
geiigition~.oﬁ~,the~vmaée& of expression are given below in Section

A missing term, expression or external symbol will be interpreted as
0. A missing operator will be interpreted as +. The error code Q
(Questionable syntax) will be generated for a missing = operator. For
example, ;

A +-100 ;OPERAND MISSING
will be evaluated as A + 0 - 100, and «
' TAG | LA 177777 ;OPERATOR MISSING

will be evaluated as TAG ! LA+177777.
1-7

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER °

The value of an external expression will be the value of the absolute
part of the expression: e.g., EXT+A will have a value of A. This
will be modified by the linker to become EXT+A. s

1.4.1 Numbers

The-Assembler accepts both octal and decimal numbers. Octal -numbers

consist of the digits 0 through 7 only. Decimal numbers consist of

the digits 0 through 9 followed by a decimal “‘point. ~If a -number
contains an 8 or 9 and is not followed by a decimal point, the N error

code (see Section 1.10) will be printed and the number will be
interpreted as decimal. Negative numbers may be ‘expressed as a number

preceded by a minus sign rather than in a two's complement - form:
Positive numbers may be preceded by a plus sign although this is not
required. & o

If a rumber is too large to fit into 16 bits, the number is ‘truncated
from the left. In the assembly listing the statement will be flagged
with a Truncation (T) error. Numbers are always considered to be
absolute quantities (that is, not relocatable).

1;4.2 4irithme££§ Aﬁd‘ﬁcéicalwopéréQOts .
The arithmetic operators are: ‘ | ’ «
+ i indiéates adéibion or a poéitive humbet ‘
- s indiqatesgsubtractien or a negative number

The logical operators are:

& indicates the logical AND operation
! indicates the logical inclusive OR operation
" AND e ‘ OR
0«1 =0 0t 1l=1
s 0=01 110 =1
1&1=1 1:11=1

l;4.3 ASCII Conversion

When preceded by an épostrophe,~fany ASCII character '(except- null,
rubout, carriage ' return, line feed, or form feed) is assignaﬁ~the

7-bit ASCII value of the character (see Appendix A). For example,
G

is assigned the valueflolg.

When preceded by a quotation mark, two ASCII characters {not including

null, rubout, carriage return, line feed, or form feed) dre assigned
the 7-bit ASCII values of each of the characters to be used. Each
7-bit value is stored in an 8-bit byte and the ‘bytes are combined to
form a word. For example "AB will store the ASCII value of A in the
low~order (even) byte and the value of B in the high-order (odd) byte:

1-8.

f{m’% .

éﬂ‘ﬁw" .
Vi

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

high-order byte } low~order byte Tl
B's value = 1 0 2 ' i 0o 1 = A's value
0 100 001 001 000 001
0 4 1 hi 0 1
“AB=041101 ' ,

ASCII text is always absolute.

1.4.4 Mode of Expressions

The mode of an expression may be absoclute, relocatable ar'ékternal as
defined below:

A term of an expression is absolute, relocatable or external depending
on whether 1its definer (i.e., number, symbel, ‘etc.) is absolute,
relocatable or external. Numbers, permanent symbais and generateﬁ
&ata are always treated as absoiute.f E
An absalute exgressian is éefined as:

1. Absolute term (one whose value is defined at assembly time)
preceded optionally by a single plus or minus sign, or

2. Relocatable expression minus a relocatable term, or

3. Absolute expreé#ion fa¥£ﬁ#e&“$y an operator followed by an
absolute expression.

A relacatable exptess;en is defxned as:

1. Releeatabla term {aae whose value is not known until 1link
,time}, ot ‘ : z

2. Relocatable express1qn followeé hy an arxthmetie operator
- followed by an absolute expression, or

3. Absolute expression followed by a plus opetator followed by a
te&ocatable exgressxun.‘

An external expression is defined as'

1. External term (one whose value is define& outside the
: pregtam), or L & R e

2. External expression followed by an arithmetic operator
followed by an absolute term, or / AR S S

3. Absclute ex?ressian falloweﬁ by a plus operator followed by
an external expression. e

In the followzng examples.
ABS ia an abs@lute symbol.
-~ REL is a relacatabiagsymbel;;

EXT is an external symbol.

PAL~11S5 ASSEMBLY LANGUAGE AND ASSEMBLER
Examples:

Thé féiléwing are vélid exp;éasiogs;w‘.w
EXT + ABS;» L ;Externél expfﬁééiézi
REL+REL~REL ‘3 :Relocaéah&efek@feséion
ABS+REL~-REL & ABS ;Absolute expression

The following are illegal expressions:

EXT+REL

REL+REL
- ABS—~EXT

1.5 ASSEMBLY LOCATION COUNTER

The period (.) is the symbol for the assembly location counter. (Note
difference of Program Counter. "#PC. See Section 1.7.) When used
in the operand field of an instruction, it represents the - address of
the first word of the instruction. When used in the operand field of
an ‘assembler directive, it represents the address of the current byte
or word. ' For ‘example, S B SR : G rnl

A: MOV #.,R0O vy erefers to location A,
: si.e., the address of the
;MOV.-instruction

(# is explained in Section 1.7.9.)

At the beginning of each assembly pass, the Assembler clears the
location counter. Normally, consecutive memory locations are assigned
to each byte of object data generated. However, the location where
the object data is stored may be changed by a direct assignment
altering the location counter: - . S R TR :

.=expression

Similar to other smeols; the idéatibn‘ccunter symbnimﬁgﬂfhas, a mode
associated with it. However, the mode cannot be external. Neither

can one change the existing mode of the location counter by using a

defining expression of a different mode.

The mode of the location countéf symbol can be changed by ‘the use of
the .ASECT or .CSECT directive as explained in Section 1.8.3.

The éxpressioh defining the 1ocati0ﬂfcounter must not contain forward
references or symbols that vary from one pass to another.

Examplés:

+ASECT R SAE

+ =500 PSET LOCATION COUNTER TO ABSOLUTE 500

FIRST? MOV L +10,COUNT $THE LABEL FIRST HAS THE VALUE 500
SCOCTAL) +10 EQUALS 510 <0OCTAL). THE
SCONTENTS OF LOCATION 510 ¢(0OCTAL) WILL
BE DEPOSITED IN LOCATION COUNT.

=520 $THE ASSEMBLY LOCATION COUNTER NOW
SHAS A VALUE OF ABSOLUTE 520 (OCTAL).

1-10

s

=F

PAL-115 ASSEMBLY LANGUAGE: AND ASSEMBLER

SECOND! MOV ,»INDEX $THE LABEL SECOND HAS THE VALUE 520
$(OCTAL}s THE CONTENTS OF LOCATION 520
- 3THAT I8s THE BINARY CODE FOR -
. S$INSTRUCTION ITSELF, WILL BE DEROSITED
. $IN LOCATION INDEX. - =

CBECT

. .=.420' .. . §SET LOCATION COUNTER 7O RELOCATABLE
THIRD: L WORD O -~ $THE LABEL THIRD HAS THE VALUE OF
Storage area may be reserved by advancing the location counter. For
example, if the current value of the location counter is 1000, the
direct: assigpment statement - i I B TS

will reserve 100 bytes of storage space in the program. The . next

instruction will be stored at 1100. o

The output of the relocatable assembler is an object module which must

be processed by - the PDP-11 Linker, LINK~118, before loading and
execution. The Linker essentially fixes (i.e., makes absolute) the
values of external or relocatable symbols and creates another module
(load mgdule} which contains the binary data to be loaded and
executed.

To enable the Linker to fix the value of an expression the assembler
issues certain directives . to the Linker together with the required
parameters. In the case of relocatable expressions the Linker adds
the ' base . of the .relocatable sectlon ~{the location in memory of
relocatable 0) to the value of the relocatable expression provided by
the Assembler. In the case of an external expression the value of the
external term in the expression is determined by the Linker (since the
external symbol . must be defined in one of the other object modules
being linked and adds it to the value of the external expression
provided by the Assembler. -

All instructions that are to be modified as described above will be
marked by a«;ﬁingingaﬁﬁﬁtﬁﬁﬁhé~;iﬂu»ﬁhﬂ%&ﬁﬁemﬁliﬂiiﬁtiﬂgm;;ﬁhﬁﬁ the

binary text ocutput w;il look as follows for the given examples:

005065’ CLR EXTERNAL(S) j :
000000 $VALUE OF EXTERNAL SYMBOL
$ASSUMED ZERD; WILL BE
. MODIFIED BY THE LINKER.
005065° CLR EXTERNAL+6(S) ;
000006 }

0050657 CLR RELOCATABLE(S) FABSUMING ME ARE IN THE
000040 $ARSOLUTE SECTION AND
i Dy) $THE VALUE OF RELOCATABLE
© §I8 RELOCATABLE 40

1~11

PAL~11S ASSEMBLY LANGUAGE AND ASSEMBLER

1.7 ADDRESSING

The Program Counter (register 7 of the eight general registers) always
contains the address of the ‘next word to be fetched; i.e., the
address of the next instruction to be executed, or the second.or third
word of the current instruction.

In order to understand how the address modes operate and how they
assemble, the ‘action of the Program Counter must be understood. The
key rule is: '

Whenever the processor implicitly uses the Program
Counter to fetch a word from memory, the Program
Counter is automatically incremented by two after
the fetch. ‘ PUoahan o ' w i

That is, when an instruction is fetched, the PC is incremented by two,
so that it is pointing to the next word in memory; and, if an
instruction uses indexing (see sections 1.7.7, 1.7.8 and 1.7.10), the
processor uses the Program Counter to fetch the base from memory.
Hence, using the rule above, the PC increments by two, and now points
to the next word. , “ 5 Sl

The following conventions are used in this section:
1. Let E be any expression as defined in Section 1.4.
2. Let R be a register expression. This 'is any expression
.containing a term preceded by a % character of a symbol
previously equated to such a term.. f B =

Examples:

RO = X0 $GENERAL REGISTER 0
Rl = RO+1 - : FBENERAL REGISTER 1

R2 = 1+%1 $GENERAL REGISTER 2

3. 'Let ER be a register'exptession or an expression 'in the range
0 to 7 inclusive. ' ok ‘

4. Let A be a general address specification which 'prbduées a
6~bit mode address field as described in a PDP-11 Processor
Handbook. Che e

The addressing specifications, A, may now be explained in terms of E,
R, and ER as defined above. Each will be illustrated with the single
operand instruction CLR or double operand instruction MOV. '

1&7.1 Register Mode

The iegiétef dehtains the operand.
Format: R
Example;

RO=%0 sDEFINE RO AS REGISBTER 0‘
CLR RO JCLEAR REGISTER 0

1-12

A]

{A@a;

PAL-Y}S ASSEMBLY LANGUAGE AN

1.7.2 nefexreﬁynagister Mode

The register c@ntains~fhe%a§axasaw@£uthtacpeianﬂe

Format: @R or (ER)

Example:

CLRER1 $CLEAR THE WORD AT THE.

CLoar
- CRRAL)

1.7.3 Autoincrement Mode

$ADDRESS CONTAINED IN
$REGISTER 1 ,

The contents of the register are,1nc:eﬁéﬁ£e6'fmmedié€é1y after being

used as the address of the operand. .= - -
Format: (ER) + B k

Examples:

CLR (RO)+ CLEAR WORDS AT ADDRESSES
. CLR (RO+3)4 FCONTAINED IN REGISTERS 0,3, AND 2
 CGLR (2)>+ $AND INCREMENT REGISTER CONTENTS

CEERY TWO.

NOTE

Both JMP and JSR instructions using mode
2 (non-deferred autoincrement mode},
execute differently on different PDP-11

Processors. Avoid use

of these

instructions with mode 2 addressing.

‘Double operand instructions ~of the
addressing form %R, (R)+ or %R, -(R)

where the source and

destination

registers are the same, give different

results on different 1
and should be avoided.

1.7.4 Befe:rgdwAutoigpréméﬁtrgaée |

ent PDPI11 processors,

The register contains the pointer to the address of the operand. The
contents of the register are incremented after being used.

Format: @{ER)+

Exdmple:

CLR @(3)+ sCONTENTS OF REGISTER 3 POINT
$TO ADDRESS OF WORD TO BE CLEARED
$BEFORE BEING INCREMENTED BY TWO

1-13

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

1.7.5 Autodecrement Mode

The contents of the register are ‘decremented before being used as « the
address of the operand {see note in Section 1. 7 3).

Format: - (ER)
Examples:
CLR: *fRﬂ) ?BEERE%EHT CGNYEMTS OF REGISTERS

CLR ~<R0+3) 30y '3 AND 2 BEFORE USING
CLR ~-(2) #AS ADDRESSES OF WORDS TO BE CLEARED

1 7 6 Deferred Autodecrement Mode

The ccntents of the regxster are decrementad befézevbeing»used as “the
pointer to the address of the operand.

Format: @-(ER)
Example:

CLR @-(2) SDECREMENT CONTENTS OF REG. 2
RERATE I ¥BEFORE USING AS FOINTER TO ADDRESS
© $0F WORD TO BE CLEARED.

1.7.7 1Index Mode

Formatihffls(agj -
The value of an express;on B is stared as .the . second or thltd word of
the instruction. The effective address is calculated as the value of
E plus the contents of register ER. . The value E is called the base.

A

Examplés:

CLR X+2(R1) JEFFECTIVE ADDRESS I8 X42 PLUS

THE, CONTENTS . OF - REGIST&R 1

CLR -2(3) JEFFECTIVE ADDRESS IS -2 PLUS
$THE CONTENTS OF REGISTER 3 -

1.7.8 Deferred Index Mode

An expression plus the contents of a register gives the pointer to the
address of the operand. SEERE

Format: @E(ER)
‘Example:

CLR @14(4) FIF REGISTER 4 HOLDS 100s AND LOCATION
#114 HOLDS 2000y LOC.2000 I8 CLEARED,

1-14

AT

PAL~115 ASSEMBLY. LANGUAGE AND ASSEMBLER.

"1.7.9 Immediate Mode and naiexred I&meﬂiate «&bsolute: xnde

The immediate mode allows the operand itself to be stored ‘as the
second or third word of the instruction. It is assembled as an
autoincrement of register 7, the PC.

Format:" $E
Examples:
MOV #100sRO MOVE AN OCTAL 100 TO ésaisfzk 0
MOV #XsRO SMOVE THE VALUE OF SYMBOL X TO -
SREGISTER O.
The operation of this mode is explained as follows:

The statement MOV #100,R3 assembles as two words. These are:

012703
60090 l 00

Just befcte thxs instruction is: fetche& and execute&, the PC 901nts to
the first word of the instruction. The processor fetches the first
word and increments the PC by two. The source operand mode is 27
(autoincrement the PC). Thus the PC is used as a pointer to fetch the
operand (the second word of the instruction) before being incremented
by two, to point to the next instruction.

If the $E is preceded by @, E specifies an absolute address.

1.7.10 Relative and Deferred Relative Modes

Relative mode is the normal mode for memory references.
Format: E
Examples:

CLR 100 sCLEAR LOCATION 190
MOV XY $MOVE CONTENTS OF LGCATIDN X TO
FLOCATION Y,

This mode is assembled as Index mode, using 7, the PC, as the
register. The base of the address calculation, which is stored in the
second or third word of the instruction, is not the address of the
operand. Rather, it is the number which, when added to the PC,
becowmes the address of. the operand. Thus, the base is X-PC. The
operation is explained as follows: : :

If the statement MOV 100,R3 is assembled at absolute location 20 then
the assembled code is:

Location 20: , 016
Location 22 000

The processor fetches the MOV instruction and adds two to the PC so
that it points to location 22. The source operand mode is 67; that
is, indexed by the PC. To pick up the base, the processor fetches the
word pointed to by the PC and adds two to the PC. The PC now points
to location 24. To calculate the address of the source operand, the
base is added to the designated register. That is, BASE+PC=54+24=100,
the operand address.

PAL-11S ASSEMBLY LANGUAGE. AND ASSEMBLER

Since the Assembler considers "." as the address of the first word of
the instruction, an equivalent statement would be

KOV 100 - 4(PC) 'R3

This mode is called relative because the operand address is calculated
relative to the current PC. The base is the distance (in bytes)
between the operand and the current PC. If the operator and its
operand are moved in memory so that the distance between the operator
and data remains constant, the instruction will operate correctly.

If E is preceded by @ the expression's value is the pointer to the
address of the operand.

1.7.11 Table of Mode Forms and Codes (6-bit(A) format only -~ see
Section 1.7.12})

Bach instruction takes at least one word. Operands of the first six
forms 1listed below, do not increase the length of an instruction.
Each operand in one of the other modes, however, - increases the
instruction length by one word.

Form Mode Meaning
None R On Register
of @R or (ER) 1n Register deferred
these (ER) + 2n Autoincrement
forms @ (ER) + 3n Autoincrement deferred
increases - (ER) 4n Autodecrement
the @-(ER) - 5n Autodecrement deferred
instruc-
tion
length.
Form Mode Meaning
Any of these E(ER) én Index
forms adds a @E(ER) n Index deferred
word to the $E 27 Immediate
instruction R#E - 37 Absolute memory reference
length. = E 67 Relative
BE 77 Relative deferred reference
Notes:

1. An alternate form for @R is (ER). However, the form = €0(ER)
is equivalent to @0(ER).

2. The form @#E differs from the form E in that the second or
third word of the instruction contains the absolute address
of the operand rather than the relative distance between the
operand and the PC. Thus, the statement CLR @#100 will clear
location 100 even if the instruction is moved from the point
at which it was assembled.

The Assembler is not particular about left and right and dangling +
and - signs in address fields. The following are some examples of
incorrect syntax that assemble as indicated, without an error
indication. ‘

R

()

{,_m ,
4

%

PAL-115 ASSEMBLY LANGUAGE AND ASSEMBLER

Porm Assembles As: Form Assembles As:
{R2)A A (R2) {R2)~- - (R2)

A-{R2) A(R2} or A-0{R2) & (R2)A € A(R2)
A(Rw)+ A(R2) A(R2)+B A+B(R2)

+{R2) (R2}+

1.7.12 Instruction Forms

The instruction mnemonics are fgivén in 'Appéndix B. This section
defines the number and nature of the operand fields for these
instructions.

In the table that follows, let R, E, and ER represent expressions as
defined in Sections 1.4 and 1.7 and let A be a 6-bit address
specification of the forms:

E eE -{ER) @ - (ER)

R @R or (R) E(ER) @ E(ER)

(ER) + @(ER)+ 2 @ #E
Table 1-1

Instruction Operand Fields

Instruction Form Example
Double Operand Op A,A MOV (R6)+, @Y
Single Operand ~Op A : CLR - (R2)
OPERATE OoP HALT
Branch Op E BR X+2

BLO - "4

where -128<{(E-.-2)/2<127 |

Subroutine Call JSR ER,A JSR PC,S5UBR
Subroutine Return RTS ER ‘RTS PC
EMT/TRAP Op or Op E EMT

where 0<E<377 EMT 31

The branch instructians are one word instructions. The high 'byté
contains the op code and the low byte contains an 8-bit signed offset
(7 bits plus sign) which specifies the branch address relative to the
PC. The hardware calculates the branch address as follows:

1. Extend the sign of the offset through bits 8-15.

2. Multiply the result by 2. This creates a word offset rather
than a byte offset.

3. Add the result to the PC to form the final branch address.
The Assembler performs the reverse operation to form the byte offset
from the specified address. Remember that when the offset is added to
the PC, the PC is pointing to the word following the branch
instruction; hence the factor -2 in the calculation.
Byte effset = (E-PC)/2 truncated to eight bits.
Since PC a'.+2}~we héQe |

Byte offset = (E-.~2)/2 truncated to eight bits.

1-17

PAL-~11S ASSEMBLY LANGUAGE AND ASSEMBLER

NOTE

It is illegal to branch to a location
specified as an external symbol, or to a
relocatable symbol when within/ = an
absolute section, or to an absolute
symbol when within a relocatable
section.

The EMT and TRAP instructions do not use the ~low~order . byte of = ‘the
word. This allows information to be transferred to the trap handlers
in the low-order. byte. If EMT or TRAP ig followed by an ‘expression,

the value is put into the low-order byte of the word. However , if the

expression is too big(>377g) it is truncated to eight bits ~and a
Truncation (T) error occurs.

Do not try to micro—program the condition code operators (see Appendix

B, B.4}. This makes sense in the PDP-11 hardware; however, the

current PAL-11S Assembler does not support this capability. Thus:
CLC!CLV '

results in a Q error (see Appendix B, B.5) and the statement is
assembled as CLC.

Expressions in the Assembler do, however, allow logical operators and
the use of instruction mnemonics. Thus, the proper ways to write the

‘above statement:)

‘WORD CLC! j0rerand of WORD
+CLCIECLY i0rerand of default +WORD
ICLCICLY slrerand of defasult JWORD

‘1.8 ASSEMBLER DIRECTIVES

Assembler directives (sometimes called pseudo-ops) direct the assembly
process and may denerate data. D

Assembler directives may be preceded by a label and followed by a
comment. The assembler directive occupies the operator field. Only
one directive may be placed in any one statement. One” or more
operands may occupy the operand field or it may be void -- allowable
operands vary from directive to directive. :

1.8.1 .TITLE
The .TITLE directive is used to name the object module. The name is

assigned by the first symbol following the directive. If there is no
-TITLE statement the default name assigned is ".MAIN.".

1.8.2 .GLOBL : .
The .GLOBL directive is used to declare a symbol as being global. It
may be an entry symbol, in which case it is defined in the program, or
it may be a external symbol, in which case it should be defined in
another program which will be linked with this program by the linker.
The form of the .GLOBL directive is

.GLOBL NAMA, NAMB,...,NAMN

1-18

{,ww* =
]

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

NOTE
A symbol cannot be declared global by

defining it as & global expresszon in a
direct assignmﬁnt ahateﬁent. o

If an illégal chﬁracter is deteet&ﬁ in the ogeraad fxéla of & .GLOBL
statement, an error message is not generated: and the‘issemﬁier may
ignore the remainder of the statement. 'Thus:

GL@%L a s,ac D
assemhiea thhéut er:of as:

.GLOBL A,B

1.8.3 Frogra& Sectian Bitectives {.ESECT and .CSECT}

The relocatable assembler provides for two program sectxons, an
absolute section declared by an .ASECT directive and a relocatable
section declared by a .CSECT directive. These directives therefore
enable the programmer to specify that parts of his program be
assembled in the absolute section and others in a relocatable section.
The - scope of each directive extends until a di:éetxve +to the c¢ontrary
is given. The Assembler initially starts in'the relocatable sscticn.
Thus, if the first statement of a program were

A: LASECT

the label "A" would be a relocatable symbol which 1is assigned the
value of relocatable zero. The absolute value of A will be calculated
by tge Linker by s&aiag the value of the ‘base of the relocatable
sect on.)

Example:
+ASECT - i '~5ASSE§B&ER IN:. QEQSLUTE SECTION
e QOO $FC = 1000 ABSOLUTE
At CLR X §A = 1000 ABSOLUTE
+CBECT : FASSEMBLE IN RELOCATABLE SECTION
X3 Jg? A $X=0 RELOCATABLE
+END

The absolute and/or relocatable section may be discohtlnued (by
switching to the alternate section) and then continued where they left
off by using anctﬁer +ASECT or .CSECT ‘statement.

Example:

+CBECT
+WORD 09192 - FASSEMBLED AT RELOCATABLE 0y 2 and 4
+ASECT :
+WORD Ovls2 © FASSEMBLED AT ABSOLUTE OQ» 2 and 4
+CSECT , , g
+WORD O FASSEMBLED AT RELOCATABLE 4.

T +END v ’ ;

If a label is defined twice, first in an absolute section and then in
a relocatable section, the symbol will be relocatable but its value
will be as defined in the absolute section.

1-19

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

1.8.4 .EOT

The .EOT directive indicates the physical End Of Tape though not* the
logical end of the program. If the .EOT is followed by a single line
feed or form feed, the Assembler will still read to . the end of the
tape, but will not process anything past the .BEOT directive. If .EOT
is followed by at least two line feeds or form feeds. the Assembler
will stop before the end of the tape. Either case is proper, but it
should be understood that even though it appears as if the Assembler
has read too far, it actually hasn't. SE

If a .EOT is embedded in a tape, and more information to be assembled
follows it, .EOT must be immediately followed by at least two line
feeds or form feeds. Otherwise, the first line following the .EOT
will be lost.

Any operands following a .EOT directive will be ignored. The .EOT
directive allows several physically separate tapes to be assembled as
one program. The last tape should be terminated by a .END directive
(see Section 1.8.6) but may be terminated with .EOT (see .END
emulation in Section 1.9.4). ' ‘

1.8.5 L.EVEN

The .EVEN directive ensures that the assembly location counter is even

by adding one if it is odd. Any operands following a .EVEN directive

will be ignored.

1.8.6 .END

The .END directive indicates the logical and physical end of the
source program. The .END directive may be followed by only one
operand, an expression indicating the program's transfer address.

At load time, the load module will be 1loaded and program execution
will begin at the transfer address indicated by the .END directive.
If the address is not specified, the loader will halt after reading in
the load module.

1.8.7 .WORD

The .WORD assembler directive may.have one or more operands, separated
by commas. Each operand is stored in a word of the object program.
If there is more than one operand, they are stored in successive
words. The operands may be any legally formed expression. For
example, .

«=1420

SAL.=0

+WORD 177335 «+425AL iSTORED IN WORDS 1420y 1422 AND
#1424 WILL BE 177533y 1424y AND O

Values exceeding 16 bits will be tfuncated from the 1eft; to word
length.

1-20

PAL-118 ASSEMBLY LANGUAGE AND ASSEMBLER

A .WORD directive followed by one or more void operands separated by
commas will store zeros for the void operands. For example,

+=1430 , . $ZERDs FIVEs AND ZERD ARE STORED
JWORD »S» $IN WORDS 1430, 1432, AND 1434

An operator field left blank will be interpreted as the .WORD
directive if the operand field contains one or more expressions. The
first term of the first expression in the operand field must not be an
instruction mnemonic or assembler directive unless preceded by a +, -,
or one of the legical operators, ! or &. For example, :

=440 " $THE OP~CODE FOR MOV, WHICH IS 010000,
LABEL$ +MOV»LABEL $1S STORED IN LOCATION 440, 440 I8
 $STORED IN LOCATION 442, '

Note that the default .WORD will occur whenever there 'is a leading
arithmetic or - logical operator, or whenever ~a leading symbol is
encountered which is not recognized as an instruction mnemonic or
assembler directive. Therefore, if an instruction mnemonic or
assembler directive is misspelled, the .WORD directive is assumed and
errors will result. Assume that MOV is spelled incorrectly as MOR:

MOR A,B
Two error codes: can resélt: *A.Q; will occur bgcause@ an ex?zession

operator is missing between MOR and A, and a U will occur if MOR is
undefined. Two words will be generated; one for MOR A and one for B.

1.8.8 .BYTE

The .BYTE assembler directive may have one or more operands separated
by commas. Bach -operand is stored in a byte of the object program.
If multiple operands are specified, they . are stored in successive
bytes. The operands may be any legally formed expression with a
result of 8 bits or less. For example,

S5AM=5 , - FSTORED IN LOCATION 410 WILL BE
=410 : 3040 (THE OCTAL EQUIVALENT OF 48).
+BYTE 48.s5AM #IN 411 WILL BE 003.

If the expression has a result of more than 8 bits, it will be
truncated to its low-order 8 bits and will be flagged as a T error.
If an operand after the .BYTE directive is Jleft wvoid, it will be
interpreted as zero. For example, :

+ =420 $ZERO. WILL BE STORED IN
+BYTE » » SBYTES 420y 421 aND 422§

If the expression is relocatable, a warning flag, A, will be given.

1.8.9 ,ASCII

The .ASCII directive translates strings of ASCII characters into their
7-bit ASCII codes with the exception of null, rubout, carriage return,
line feed and form feed. The text to be translated is delimited by a
character at the beginning and the end of the text. The delimiting
character may be any printing ASCII character except colon and equal
sign and those used in the text string. The 7-bit ASCII code

generated for each character will be stored in successive bytes of the
object program. For example,

1-21

PAL-115 ASSEMBLY LANGUAGE AND ASSEMBLER

+ =300 © “¥THE ASCII CODE FOR Y WILL BE
+ABCIT /YES/ , “$BTORED IN 500y THE CODE FOR E
#IN 501y THE CODE FOR 8§ IN 502,

+ASCII /S+3/2/7 0 0 FTHE DELIMITING CHARACTER OCCURS
‘ L L0 PAMONG THE OPERANDS. THE ASCII
$CODES FOR S5 » + +» AND 3 ARE
$STORED IN BYTES 503y H504» AND
1505, 27 18 NOT ASSEMBLED.

The ‘ASCII dlrective ‘may be terminated: by any legal ‘terminator except
for = and :. Note that if the text delimiter is also a terminator,
the leading text delimiter can also serve as the .ASCII directive
terminator. For example, e

JASCII /ARCD/ $THE SPACE IS REGUIRED

JBECAUSE / IS8 NOT A TER%INQTDR«
+ASCII+ABCDH ¢ FNO SPACE IS REQUIRED. :

1.8.190 .RADSO

PDP—ll system programs often handle symbols in a spec1ally coded form
caled "RADIX 50" (this form is sometimes referred to as "MOD40").
This form allows 3 characters to be packed into 16 bits; therefore,
any symbol can be held in two words, the form of the directive is:

.RAD50 /CCC/

The single operand is of the form /CCC/ where the slash (the
delimiter) can be any printable character except for = and :. The
delimiters enclose the characters to be converted which may be A
through 2, 0 through 9%, dollar ($), dot (.) and space {). If there
are fewer than 3 characters they are considered to be left-justified
and trailing = spaces are assumed. Any characters following the
traillng delxmlter are 1gnored and no_error results. - :

Examples:
+RADSO /ABC/ $PACK ABC INTO ONE WORD
" +RALSO /AR/ o PACK AR (SPACE)Y INTO ONE WORDS
+RADSO 7/ SFACK 3 SPACES INTO ONE WORD

The packing'algorithm is as follows:

A. Each character is translated into its RADIX 50 ~eguivalent as
indicated in the following table: '

Character RADIX 50 Equivalent (octal)
(SPACE} 0

A-Z - 1=32

$ 33

. 34

0-9 36-47

Note that another character can be defined for code 35.

B. The RADIX 50 equlvalents for charaeters 1 through 3 {Cl C2 C3) are
comblnéd as follows:

'RESULT=((C1*50) +c2)‘¥59+c3 |

1-22

®

PAL-118 ASSEMBLY LANGUAGE AND ASSEMBLER

1.8.11 .LIMIT

A program often wishes to know the boundaries of the relocatable code.
The .LIMIT directive generates two words into which the linker puts
the low and high addresses of the relocated code. The low address
{(inserted into the first word) is the address of the first byte of
code. The high address is the address of the first free byte
following the relocated code. These addresses will always be even
since all relocatable sections are loaded at even addresses and 1if a
relocatable section consists of an odd number of bytes the linker adds
one to the size to make it even. ,

1.8.12 Conditional Assembly Directives

Conditional assembly directives provide the programmer with the
capability to .conditionally include or not include portions of his
source code in. the assembly process. In what follows, E denotes an
expression and 5(i) denotes a symbol. The conditional directives are:

JIFZ E ;IF E=0
WIFNZ = E ~ ;IF E#0
~ .IFL E - 3IF E<0
.IFLE E . 3IF E<O
JIFG- ~ E ;IF E>0
.IFGE E ;IF E>0 i s ‘
.IFDF S (1) [!,&] S (2) [!,&]...[!,8] S(N) (!=OR,&=AND)

. IFNDF S (1) [t,&8] 8 (2) [1,&)...[!,&] S(N)

If the condition is met, all statements up to the matching .ENDC are
assembled. Otherwise, the statements are ignored until the matching
+ENDC is detected. 2 , Lo , S S

In the above,.IEDF and .IFNDF mean "if defined” and "if undefined"
respectively. - The scan is left to right, no parentheses permitted.

Example:

LJIFDF SI1TRU Means assemble if either S or T is
defined and U is defined

LJIFNIF T&UIS Means assemble if both T and U are
' undefined or .if S is undefined

General Remarks:

An errored or null expression takes the default value 0 for purposes
of the conditional test. An error in syntax, e.g., @ terminator other
than ;, !, &, or CR results in the undefined situation for .IFDF and
.IFNDF, as does an errored or null symbol.

All conditionals must end with -the .ENDC directive. Anything in the
operand field of .ENDC is ignored. RNesting is permitted up to a depth
of 127 . Labels are permitted on ceonditional directives, but the
scan is purely left to right. For example:

.IFZ 1
Az . ENDC
A is ignored.
A: LIFZ 1
.ENDC

A is entered in the symbol table.
1-23

PAL-118 ASSEMBLY LANGUAGE AND ASSEMBLER

If a .END is encountered while inside a satisfied conditional, a Q
flag will appear, but the .END directive will still be processed
normally. If more .ENDC's appear than are required, Q flags appear on
the extras. '

1.9 OPERATING PROCEDURES

1.9.1 Introduction

The Assembler enables you to assemble an ASCII tape containing PAL-11
statements into - a relocatable binary tape (object module). To do
this, two or three passes are necessary. On the first pass, the
Assembler creates a table of user-defined symbols and their associated
values, and a list of undefined symbols is printed on the teleprinter.
On the second pass the Assembler assembles the program and punches out
an absolute binary tape and/or outputs an assembly listing. During
the third pass (this pass is optional), the Assembler punches an
absolute binary tape or outputs an assembly listing. The symbol table
{(and/or a list of errors) may be output on any of these passes. The
input and output devices as well as various options are specified
during the initial dialogue (see Section 1.9.3). The Assembler
initiates the dialogue immediately after being loaded and after the
last pass of an assembly. :

1.9.2 Loading PAL-115

PAL-11S is loaded by the Paper Tape Software Absolute Loader. Note
that on systems with hardware switch registers, the start address of
the Absolute Loader must be in the Switch Register when loading~ the
Assembler. This is because the Assembler tape has an initial program
which clears all of core up to the address specified in the Switch
Register, and jumps to that address to start loading the Assembler.

1.9.3 Initial Dialogue

After being locaded, the Assembler prints its name and version and then
initiates dialogue by printing on the teleprinter

*S

meaning "What is the Source symbolic input device?" The response may
be T : '

use Low-speed reader («/denotes typing the RETURN key)
meaning High-speed reader

meaning Low-speed reader

meaning Teleprinter keyboard

HE‘NL

The device specification is tefminated, as is all wuser response, by
typing the RETURN key.

If an error is made in typing at any time, typing the RUBOUT key will

erase the immediately preceding character if it is on the current

line. Typing CTRL/U will erase the whole line on which it occurs.

1-24

C

(A

PAL~11S ASSEMBLY LANGUAGE AND ASSEMBLER-

After the *S question and response, the Assembler prints:
*B

meaning "What is the Binary output device?" The responses to *B are
similar to those for *8:

H meaning High-speed punch

L meaning Low-speed punch :
meaning do not output binary tape'(aidenetea typing
the RETURN key}: :

In addition to I/0 device specification, various ‘options may be
chosen. The binary output will occur on the second pass unless /3
(indicating the third pass) is typed following the H or L. Errors
will be 1listed on the same pass if /E is typed. If /E is typed in
response to more than one inquiry, only the last occurrence will be
honored. It is strongly suggested that the errors be listed on the
same pass as the binary output, since errors may vary from pass to
pass.

If both /3 and /E are typed, /3 must precede /E. The response is
terminated by typing the RETURN key. Examples:

*B L/E Binatg oﬁtputwon‘the loﬁ*speednpunch and
~ ‘the errors on the teleprinter, both
during the second pass.

*B H/3/E e Binary putput on . the high-speedg'punch
‘and the errors on the teleprinter during
the third pass.

*B <~/ The RETURN key alone will cause the
Assembler to omit binary output

After -the *B~qua$tien and response, the Assembler prints:
*L '

meaning "What is the assembly Listing output device?” The response to
*L may be: s

‘meaning Low-speed punch

meaning High-speed punch

meaning Teleprinter

meaning Line Printer - : :
meaning do not output listing («’/denotes typing RETURN)

Q\’Uﬂmt"

After the I/0 device specification, pass and error list options
similar to those for *B may be chosen. The assembly listing will be
output on the third pass unless /2 (indicating the second pass) is
typed following H, L, T, or P. Errors will be 1listed on the
teleprinter during the same pass if /E is typed. If both /2 and /B
are typed, /2 must precede /E. The response is terminated by typing
the RETURN key. Examples: ; : :

*L L/2/E Listing on low-speed punch and errors on

teleprinter during second pass.

'gg H Listing on high-speed punch during third
pass i

*L </ The RETURN key:«alonéf will cause the

Assembler to omit listing output. -

1-25

PAL-~118 ASSEMBLY LANGUAGE AND ASSEMBLER

After the *L question and response, the final question is ‘printed on
the teleprinter:

*T

meaning "What is the symbol Table output device?®" The device
specification is the same as for *L question. The symbol table will
be output at the end of the first pass unless /2 or /3 is typed in
response to *T, The first tape to be assembled should be placed in
the reader before typing the RETURN key because - assembly will begin
upon typing RETURN to the *T question. The /E'option is not a
meaningful response to *T. Example

*T T/3 o 'Symbol table output. on teieprintef ét
: : -~ end of third pass. N b e

*T : nyping,ihe RETURN‘kay alénef will" cause

, ' the Assembler ‘to omit symbol’' table
output. L e R 5

The symbol table is printed alphabetically, three symbols per line.
Each symbol printed is followed by its identifying characters and by
its value. If the symbol is undefined, six asterisks replace . its
value. The identifying characters indicate the class of the symbol;
that is, whether it is a label, direct assignment, register symbol,
etc. The following examples show the various forms.

ABCDEF 001244 (Defined Label)

‘R3 .~ o= $000003 “{Register Symbol)

DIRASM "= 177777 (Direct Assignment)

XYz = Fkokk ok ok (Undefined direct assignment)
R6 = FrEEARKX (Undefined register symbol)
LABEL = *kxkkk% . (Undefined label)

Generally, undefined symbols and external symbols will be 1listed as
undefined direct assignments. Multiply-defined symbols are not
flagged in the symbol table printout but are flagged wherever they are
used in the program. :

If the symbol is relocatable or global or both, the symbol's value
will be followed by an R, a G or both. ‘ ,

It is possible to output both the binary tape and the assembly listing
on the same pass, thereby reducing the assembly process to two passes
(see Example 1 below). This will happen automatically unless the
binary device and the listing device are conflicting devices or the
same device (see Example 2 below). The only conflicting devices are
the teleprinter and the low-speed punch. Even though the Assembler
deduces that three passes are necessary, the binary and listing can be
forced on pass. 2 by including /2 in the responses to *B and *L ({see
Example -3 below). L o : S

Example 1. Runs 2 passes:

High-speed reader
High-speed punch
‘Line Printer ‘
Teleprinter

*S

el
W gomom

Example 2. Runs ‘3 passes: .
*3 High-speed reader
‘High-speed punch =
High~speed punch
Teleprinter

EEE
L] ;'If faelie]

1-26

3

s
g,

k

PAL-115 ASSEMBLY LANGUAGE AND ASSEMBLER

Example 3. Runs 2 passes:

H High~speed reaéer

H/2 High-speed punch on pass. 2
H/2 High-speed punch on pass 2
T Teleprznter

3163l slea

Note that there are several cases whe:e the binary output can be
intermizxed with ASCII output: @« :

a. *B ‘H/2 Binazy<anﬁ~1isting:ta punch‘on,pass 2.
b. *B L/E -8;nary ta low~speed punch and error listing to
teleprznte: (and low~speed punch}.
c. *B L/2/E yaxnazy. error listing, and
*L T/2 . }isting ‘to low speed punch.

The object module so generated is acceptable to. the Linker as long as
there are no CTRL/A characters in the source program. The start of
every block on the binary tape is indicated by a 001 and the Linker
ignores all information until a 001 is detected. Thus, all source
and/or error messages will be ignored if they do not contain any
CTRL/A characters (octal 001). G

If a character other than those mentioned is;typeﬁv:iav reponse to a
question, the Assembler will ignore it and print the question again.
Example: , - i et o

H High-speed reader ;
Q Q is not a valid response
The question is repeated:

(111

If at any time you wish to restart the Assembler, typé ‘CPTRL/P. If the

low-speed reader is the source- input device, turn 1t off before typing
CTRL/P. i) d

When no passes.ate<emitted or erret:éptionsaspecified; the Assembler
performs as follows:

PASS 1:

Assembler creates a table of user-defined symbols and their associated
values to be used in assembling the source to object program.
Undefined symbols (not including external globals) are listed on the
teleprinter at the end of the pass. The symbol table is also listed
at this time. If an illegal location statement of the form
.=expression is encountered, the line and error code will be printed
out on the teleprinter before the assembly proceeds. ' An error in a
location statement is usually a fatal error in the program and should
be corrected.

PASS 2:

Assembler punches the. object module, and prints the pass error count
and undefined location statements on the teleprinter. - : it ;

PASS 3:

Assembler prints or punches the assembly program listing, undefined
location statements, and the pass error count on the teleprinter.

1-27

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

The functions of passes 2 and 3 will occur simultaneously on pass 2 if
the binary and listing devices are different, and do not conflict with
each other (the low~speed punch - and . teleprinter . conflict).
Furthermore, if the binary object module xs nat requested the listing
will be produced on pass 2. e

The following table summaz1zes the initial dialogue questlon5°

PRINTOUT ’ ‘ INQUIRY
*S What is the input device of the: Source symbolic tape?
*B What is the. output device of the Binary object tape?
*L What is the output device of the assembly Listing?
LR : “What is the" output devxce of the symbol Table?

The following table summarlzes the legal responses.

CHARACTER , S : RESPONSE INDICATED

T Teleprinter keyboard

L o Low-speed reader or punch’

H - High-speed reader or punch

P : Line Printer

/1 Pass 1 ‘

/2 Pass 2

/3 Pass 3 .

/E 8 ‘Errors listed on same 'pass (not meaningful
. response to *S5 or *T) '

-/ Omit function (except in response to *S).

Typical examples of complete initial dialogues:
For minimal PDP-11 configurations =

%3 L Source input on:low-speed reader
“*B. L/E Binary output on low-speed punch
errors during same (second) pass
*1, T Listing on teleprinter during pass 3
*T -~ T - Symbol table on teleprinter at end of pass 1 :

For a PDP-11 with high-speed 1I/0 devices:

*3 H Source input on high-speed reader
*B H/E Binary output on high-speed punch-
: errors during same (second} pass
*L, </ No listing ~
*T . T/2 Symbol table on’ teleprlnter at end of pass 2.

1.9.4 Assembly Dialogee

During assembly, the Assembler will pause to print on the teleprinter
varicus messages to indicate that you must respond in some way before
the assembly process can continue. You may also type CTRL/P, at any
time, if you wish to stop the assembly process and restatt the inltial
dialogue, as mentioned in the previous section. ;

When a .EOT assembler directive is read on the tape, the Assembler
prints

EOF - ?

and pauses. During this pause, the next tape is placed in the reader,
and RETURN is typed to continue the assembly.

1-28

(M |
e,

¥

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

If the specified assembly listing output device is the -high-speed
punch and if it is out of tape, or if the device is the Line Printer
and is out of paper, the Assembler prints on the teleprinter By ;o

EQM ?
and waits for tape or paper to be placed in the device. Type the

RETURN key when the tape or paper has been replenished; assembly will
continue. o

Conditions causing the EOM ? messages for an assembly listing device
are: : : - o ;

HSP . LPT

No power ‘No ‘power mil -

No tape Printer drum gate open
Too hot
-No paper

There is no EOM if the line_giinte: 'ia switched‘;off-line, although
characters may be lost for this condition as well as for an EOM.

If the binary output device is the high-speed punch and if it 1is out
of tape, the Assembler prints:

EOM 2
*S

The assembly process is aborted and the initial dialogue is begun
again. = : S o ' ‘

When a .END assembler directive is read on the tape, the Assembler
prints: , Lo

END ?

and pauses. During the pause the first tape is placed in the reader,
and the RETURN key is typed to begin the next pass. On the last pass,
the .END directive causes the Assembler to begin the initial dialogue
for the next assembly. o

If you are starting the binary pass and the binary is to be punched on
the low-speed punch, turn the punch on before typing the RETURN key
for starting the pass. The carriage return and line feed characters
will be punched onto the binary tape, but the Linker will ignore them.

If the last tape enas with a .EOT, the Assembler may be told to
emulate a .END assembler directive by responding with E followed by
the RETURN key. The Assembler will then print :

END ?

fresehlan SR

and wait for another RETURN before starting the next pass. Example:

EOF 2 Ed/
END ? >

Note that fcrcing a .END in this manner causes the error counter to be
incremented by one. , : : o

1-29

PAL~11S ASSEMBLY LANGUAGE AND ASSEMBLER

1.9.5 Assembly Listing

PAL-11S produces a side~by-side assembly listing of symbolic source
statements, their octal equivalents, assigned addresses, and error
codes, as follows:

" EELLLLLL OOOOOOASSS.......S
000000
000000

The E's represent the error field. The L's represent - the —address.
The O's represent the object data in octal. The S's represent the
source statement. "A" represents a single apostrophe which indicates
that either the second, third or both words of the instruction will be
modified by the Linker. While the Assembler accepts 72 characters
per line on input, the listing is reduced by the 16 characters to the
left of the source ‘statement. ;

The above represents a three-word statement. The second and third
words of the statement are listed under the command word. No
addresses precede the second and third words since the address order
is sequential. P : :

The third line is omitted for a two-word statement; both second and
third lines are omitted for a one-word statement. ‘ ,

For a .BYTE directive, the object data field is three octal digits.
For a direct assignment statement, the value of the defining
expression is 'given in the object code field although it is not
actually part of the code of the object program. S

The .ASECT and .CSECT directives cause the current value of the
appropriate location counter (absolute or relocatable) to be printed.

Each page of the listing is headed by a page number (octal).

1.9.6 Object Module Output

The output of the assembler during the binary object pass is an object
module which is meaningful only to the linker. What follows gives an
overview of what ‘the object module contains and at what stage each
part of it is produced. ' ' =

The binary object module consists of three main types of data block:

a) Global symbol directory {GSD)
b) Text blocks : {TXT)
¢) Relocation Directory (RLD)

1.9.6.1 Global Symbol Directory - As the name suggests, the GSD
contains a 1list of all the giobal symbols together with the name of
the object module. Each symbol is in Radix-50 form and contains
information regarding its mode and value whenever known.

The GSD is created at the start of the binary object pass.

1-30

‘-‘ge s

F&Bﬁl&&-ﬁSS&HBL?“&AREﬁEGE.Eﬁﬁ1A$SE&&&ER

1.9.6.2 gggﬁggiggg«~~The~t&xtablacks_cénsist~entire1y of the binary
object data as shown in. the listing. The -operands are in the
unmodified form. : T S v : -

1y9.6.3,;nei ;ahiﬁnzﬁinechﬁék ~wThg"RL§ blq¢§§}¢aa$ist of directives
to the Linker which may reference the text block preceding the RLD.
These directives control the relocation and linking process.

Text and RLD blocks are constructed during the binary object pass.
Outputting of each block is done whenever either the TXT or RLD buffer
is full and whenever the location counter needs to bg‘moéified. , ~

1.10 ERROR CODES

The error codes printed beside the octal and symbolic code in the
assembly listing have the following meanings: - o R

Error Code Meaning

A Addressing error. An address within the instruction
, is incorrect. Also may indicate a relocation error.

B Bounding error. Instructions or word data are being
assembled at an odd address in memory. The location
counter is updated by +1.

D ' Doubly-defined symbol referenced. . Reference was
made to a symbol which is defined more than once.

I Illegal character detected. Illegal characters
~ which are also non-printing are replaced by a.? on
the listing. ‘ o

L Line buffer évetfiqw. ~Ext:a'aharacte:s on a- line
(more than 72) are ignored.

M Multiple definition of ﬁa,;label. A label was
encountered which was equivalent (in the first six
characters) to a previously encountered label.

N o Number containing 8 or 9 has decimal point missing.

P -Phase error. A label's definition or value varies
, - from one pass to another. =

Q ‘ Questionable syntax. There are missing arguments or
the instruction scan was not completed or a carriage
return was not immediately followed by a line feed
or form feed.

R Register-type error. An invalid use of or reference
to a register has been made.

S Symbol table overflow. When the quantity of
user-defined symbols exceeds the allocated space
available in the user's symbol table, the assembler
outputs the current source line with the S error
code, then returns to the initial dialogue.

1-31

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

T ‘ Truncation error. A number generated more than 16
bits of significance or an expression generated more
than 8 bits of significance during the use of the
.BYTE directive.

u Undefined symbol. An undefined symbol was
encountered during the evaluation of an expression.
* Relative to the,expression;'thé'undefinedfsymbol is

assigned a value of zero. o ‘ ‘ :

1.11 SOFTWARE ERROR HALTS

PAL-11S loads all of its unused trap vectors with the code
+WORD .+2,HALT
so that if the trap does occur, the processor will halt in the second

word of the vector. The address of the halt, displayed in the console
address register, therefore indicates the cause of the halt.

Address of Halt (octal) :) . Meaning
12 : R Reserved instruction executed
16 S Trace trap occurred
26 : : ‘ Power fail trap
32 ~ : EMT executed

A halt at address 40 indicates an IOXLPT detected error. RO
(displayed in the console lights)y contains aﬁ'identifying code: :

Code in RO Meaning

0 Illegal memory reference, SP overflow or
illegal instruction.

Illegal IOX command.

Slot number ocut of range.

Device number illegal o

Referenced slot not INITed.

Illegal Data Mode. .

U W N

IOXLPT also sets Rl as follows:

If the error code is 0, Rl contains the PC at the time of the error.
If the error code is 1-5, Rl points to some element in the IOT
argument list or to the instruction following the argument list,

depending on whether IOXLPT has finished decoding all the arguments
when it~detects the error, ' V ' ‘

1-32

CHAPTER 2

WRITING PAL*IIA;ASSE%BLX LANGUAGE PROGRAMS'

PAL-11A (Program Assembly Language for the PDP-11's Absolute
Assembler) enables you to. write source ({symbolic) programs using
letters, numbers, and symbols which are meaningful to you. The source
programs, generated either on-line using the Text Editor (ED-11), or
off-line, are then assembled into object programs (in absolute binary)
which are executable by the computer. The object program is produced
after two passes through the Assembler; an optional third pass
produces a complete octal/symbolic listing of the assembled program.
This listing is especially useful for documentation and debugging
purposes. f

This chapter explains not only how to write PAL-1lA programs but also
how to assemble the source programs into computer-acceptable object
programs. All facets of the assembly language are explained and
illustrated with many examples, and the chapter concludes with
assembling procedures. In explaining how to write PAL-11lA -source
programs it is necessary, especially at the outset, to make frequent
forward references. Therefore, we recommend that you first read
through the entire chapter to get a "feel" for the language, and then
reread the chapter, this time referring to appropriate sections as
indicated, for a thorough understanding of the language and assembling
procedures. . .

Some notable features of PAL-11A are:
1. Selective assembly pass functions
2. Device specification for pass functions
3. Optional error listiﬁg on’Teletype |
4. Double buffered and concurrent x/b (pro?idéé by IOX)
5. hlphaﬁetiiea, formatted s&&hel table 1ié£in§'

The PAL-11A Assembler is available in two versions: a 4K version and
an 8K version. ; L

The assembly language applies egually to both ~versions. The 4K
version provides symbol storage for about 176 user-defined symbols;
and the 8K version provides for about 1256 user-defined symbols (see
Section 2.3).

In addition, the 8K version allows a line printer to be used for the
program listing and/or symbol table listing.

'PAL-11A is not currently available for PDP-11 systems without switch
registers. : :

2-1

WRITING PAL~11A ASSEMBLY LANGUAGE PROGRAMS

The following discussion of the PAL-11A Assembly Language assumes that
you have read the PDP-11 Processor Handbook, with emphasis on those
sections which deal with the PDP-11 instruction set, formats, and
timings -- a thorough knowledge of these 1is vital to efficient
assembly language programming. -

2.1 CHARACTER SET

A PAL-1lA source program is composed of symbols, numbers, expressions,
symbolic instructions, assembler directives, arguments separators, and
line terminators written using the following ASCII' characters.

1. The letters A through 3. (Upper and lower case letters are
© acceptable, although wupon input, lower case letters will be
converted to upper case letters.) :

2. The numbers 0 through 9. |
.3. The charaépers . and é (ﬁeseived for éyséem software).
: 4. The‘SEParatiﬁg or tefminéting symbols: -

e O O R AP |

-carriage return ‘tab space line feed = form feed

2.2 STATEMENTS
A source program is composed of a sequence of statements, where. -each
statement is ‘on a single 1line. The statement is terminated by a
carriage return character and must. be immediately. followed by either a
line feed or form feed character. Should a carriage return.character
be present and not be followed by a line feed or form feed, the
Assembler will generate a Q error (Section 2.10) and that portion of
the line following the carriage return will be ignored. . Since the
carriage return is a required statement terminator, a line feed or
form feed not immediately preceded by a.carriage return will have one
inserted by the Assembler.

It should be noted that, if the Editor (ED-11) is being used to create
the source program (see Section ‘4.4.4), a typed carriage return
(RETURN key) automatically generates a line feed character.

A statement may be composed of up to four fields which are identified
by their order of appearance and"by specified terminating characters
as explained below and summarized in Appendix B. The four fields are:

Label Operator Operand Comment

The label and comment fields are optional: The operator and operand
fields are interdependent -- eitheeray'be omitted depending upon the

contents of the other.

ASCII stands for American Standard Code for Information Interchange.

2-2

(J,;x-»,
Vi,

gws ..

€-¢w
v,

WRITING PAL-~11A /ASSEMBLY LANGUAGE PROGRAMS

2.2.1 Label

A label is a user—-defined symbol (see Section 3.3.2) which is assigned
the value of the current location counter. it is a symbolic means of
referring to a .specific location within :a program. - If present; a
label always occurs first in a statement and must be terminated by a
colon. For example, if the current location is 100(octal), the
statement ! : : : Foo [.

ABCD: MOV A,B

will assign the value 100 {octal) to the,iabel;ABﬁE~sa+that~~subsequent
reference to ABCD will be to location 100 (octal). More than one ‘label
may appear within a single label field; each label within the field
will have the same wvalue. For example, if the current location is
100, multiple labels in the statement

ABC: $DD: AT7.7: MOV A,B

will equate each of the three labels ABC, $DD, and A7.7 with the value
100 (octal). ($ and . are reserved for system software.) : ,
The error code M (multiple definition of a symbol) will be generatea
during assembly if two .or -more labels have the same first six
characters. : I ; : L

2.2.2 Operator

An operator follows the label field in a statement, and may be .an
instruction mnemonic or an assembler directive (see Appendix B). When
it is an instruction mnemonic, it specifies what ~action is to. be
performed on any operand(s) which follows it. When it is an assembler
directive, it specifies a certain function or action to be performed
during assembly.

The operator may be preceded only by one or more "labels and may be
followed by one or more operands and/or a comment. An operator is
legally terminated by a space, "tab, or any of the. following
characters. : co ,

B T L T T R
line feed form feed carriage return

The use of each character abpove will be expiéined in’this chapter.
Consider the following examples: o |

MOV AsB ,={(TAB) terminates operator MOV
MOVEAsSB ;@ terminates operator MOV .

when the operator stands alone without an operand or comment, it is
terminated by a carriage return followed by a line feed or form feed
character. S ‘ '

2.2.3 Operand

An operand is that part of a statement which is operated on by the
operator -~ an instruction mnemonic or assembler directive. Operands
may be symbols, expressions, or numbers. When multiple operands
appear within a statement, each is separated from the next by a comma.

2-3

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

An operand may be preceded by an operator and/or label, and followed
by a comment.

The operand field is terminated by a semicdlon>'whén~ followed .hy &
comment, ‘or by a carriage return followed by a line feed or form feed

character when the operand -ends the statement. For ‘example,

LABEL: MOV GEORGE,BOB ;THIS IS A COMMENT

where the space between MOV and GEORGE terminated ‘the operator field
and began the operand field; the comma separated the operands GEORGE
and BOB; ' the semicolon terminated the operand field and began the
comment. i : o '

2.2.4 Comments

The comment field is optional and may contain any ASCII character
except null, rubout, carriage return, line feed or form feed. All
other characters, even those with special significance are ignored by
Assembler when used in the comment field.

The comment field may be preceded by none, any, or all of the other
three fields., It must begin with the semicolon and end with a
carraige return followed by a line feed or form feed character. For
example,

LABEL: CLR HERE sTHIS IS A $1.00 COMMENT
Comments do not affect assembly processing or program exeéution, but

they are wuseful in program listings for later analysis, checkout or
documentation purposes. ‘ :

2.2.5 Format Control

The format is controlled by the space and tab characters. They - have
no -effect on the assembling process of the source program unless they
are embedded within a symbol, number, or ASCII text; or are wused as
the operator field terminator. Thus, they can be used to provide a
neat, readable program. a statement can be written

LABEL:MOV(SP)+,TAG;POP VALUE OFF STACK
or, using formatting characters it can be written
LABEL; ‘ MOV“(SP)+,TAG : POP VALUE OFF STACK’
which is much easier to rea&. | ’
Page size is controlled by the form feed character. A page of n lines
is created by inserting a form feed {CTRL/FORM keys on the keyboard)

after the nth line. 1If no form feed is present, a page is terminated
after 56 lines.

{([M .‘
i,

{lm'

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

2.3 SYMBOLS

There are two types of symbols, permanent and user-defined. Both are
stored in the Assembler's symbol table. 1Initially, the symbol table
contains the permanent symbols, but as the source program is
assembled, user-defined symbols are added to the table.

2.3.1 Permanent Symbols

Permanent symbols consist of the instruction mnemonics - (see Appendix
B.3) and assembler directives (see Section 2.8). These symbols are a
permanent part of the Assembler's symbol table and need not be defined
before being used in the source program.

2.3.2 User»Defineé Symbols

User-defined symbols are those defined as labels (see Section 2.2.1)
or by direct assignment (see Section 2.3.3). These symbols are added
to the symbol table as they are encountered during the first pass of
the assembly. They can be composed of alphanumeric characters, dollar
signs, and periods only; again, dollar signs and periods are reserved
for use by the system software. Any other character is illegal and,
if used, will result in the error message I (see Section 2.11). The
following rules also apply to user-defined symbols:

1. The first character must not be a number.
2. Each symbol must be unique within the first six characters.

3. A symbol may be written with more than six 1legal characters
‘but the seventh and subsequent characters are only checked
for legality, and are not otherwise recognized by the
Assembler. S

4. Spaces and tabs must not be embedded within a symbol.

A user-defined symbol may duplicate a permanent symbol. The value
associated with a permanent symbol that is also user-defined depends
upon its use:

1. A permanent symbdl encountered in thé“:aperatoff field is
associated with its corresponding machine op-code. :

2. If a permanent symbol in the operand field is also
user-defined, its user-defined value is associated with the
symbol. If the symbol is not found to be user-defined, then
the corresponding machine op-code value is associated with
the symbol. '

2.3.3 Direct Assignment

A direct assignment statement associates a symbol with a value. When
a direct assignment statement defines a symbol for the first time,
that symbol is entered into the Assembler's symbol table and the
specified value 1is associated with it. A symbol may be redefined by
assigning a new value to a previously defined symbol. The newly
assigned value will replace the previous value assigned to the symbol.

2-5

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

The general format for a direct assignment statement is
. symbol = expression
The following conventions apply:

1. An equal sign' {=) must separate the symbol from the
expression defining the symbol.

2. A direct assignment statement may be preceded by a label and
may be followed by a comment.

3. Only one symbol can be defined by any one direct assignment
statement. ‘ v o A ,

4. Only one level of forward referencihgtis allowed.

Example of the two levels of forward referencing (illegal):

X =Y
¥ =2
z =1 | .

X and Y are both undefined througbaﬁt pass 1 and,éill be listed on the
printer as such at the end of that pass. X is undefined throughout
pass 2, and will cause a U error message. ‘

Examplesi
A= 1 JTHE SYMBOL A IS EQUATED WITH THE VALUE 1

B = ‘A~13MASKLOW = $THE SYMEOL B IS EQUATED WITH THE EXFRES-
FSTON'S VALUE.

ct np=23 Lo 3THE GYMBOL I IS EQUATED WITH 3. . THE

El MOV #1yARLE FLABELS C AND E ARE EQUATED WITH THE
FNUMERICAL MEMORY ADDRESS OF THE MOV
s COMMAND .

2.3.4 Register Symbols

The eight general registers of the PDP-11 are numbered 0 through 7.

These registers may be referenced by use of a register symbol, that —
is, a symbolic name for a register. A register symbol is defined by

means of a direct assignment, where the defining expression contains

at least one term preceded by a % or at least one term previously

defined as a register symbol. : Lo

RO=%0 fDEFINE RO AS REGISTER ¢

R3=R0O+3 PDEFINE R3 AS REGISBTER 3 : .
RA4=1+%3 FOEFINE R4 AS REGISTER 4 *
THERE=X%2 FUEFINE "THERE®" AS REGISTER 2

It is important to note that all register symbols must be defined
before they are referenced. A forward reference to a register symbol
will generally cause phase errors (see Section 2.10).

WRITING PAL~11A ASSEMBLY LANGUAGE PROGRAMS

The % may be used in any expression thereby indicating a reference to
a register. Such an expression is a register expression. Thus, the
statement SERE :

CLR %6
will clear register 6 while the statement
CLR 6

will clear the word at memory address 6. In certain cases a register
can be referenced without the use of a register symbol or register
expression. These cases are recognized through the context of the
statement and are thoroughly explained in Sections 2.6 and 2.7. Two
obvious examples of this are:

JER Sy QUBR - #THE FIRST OPERAND FIELD MUST
; FALWAYS BE A REGISTER.

CLR X2y FANY . EXPRESSION ENCLOSED IN
$() MUST BE & REGISTER. 1IN
FTHIS CASE» INDEX REGISTER 2.

2.4 EXPRESSIONS

Arithmetic and logical operators (see Section 2.4.2):may be used to
form expressions. A term of an expression may be a permanent or
user-defined symbol, a number, ASCII .data, or the present value of the
assembly location counter represented by the period. Expressions are
evaluated from left to right. Parenthetical grouping is not allowed.

Expressions are evaluated as word quantities. The operands of a .BYTE
directive (S8ection 2.8.5) are evaluated as word expresslons before
truncation to the low-order eight bits.

A missing term or expression will -be interpreted as 0. A -missing
operator will be interpreted’ as +. ‘The error code Q0 (Questionable
syntax} will be genezated for .a missing operator. For example,

A+ -100 ;epzmnn MISSING
will be evaluated as A+ 0 - 100,’and ,
TAG | LA 177777 ;OPERATOR MISSING

will be evaluated as TAG ! LA+177777.

2.4.1 Numbers

The Assembler accepts both octal and decimal numbers. © Octal numbers
consist of the digits 0 through 7 only. Decimal numbers consist of
the digits 0 through 9 followed by a decimal point. If a number
contains an 8 or 9 and is not followed by a decimal point, the N error
code (see Section 2.10) will be printed and the number interpreted as
decimal. Negative numbers may be expressed as a number preceded by a
minus sign rather than in a two's complement form. - Positive: numbers
may be preceéeé by a plus sign although tnis is net zéquired.. :

If a number is too iarge to fit 1nto 16 bits, the number is truncateﬂ
from the left. 1In the assembly listing the: statement will be flagged
with a Truncation (T) error. ,

2-7

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

2.4.2 Arithmetic and Logical Operators

The arithmetic operators are:
+ indicates addition or a positive number
- indicates subtraction or a negative number

The logical operators are defined and illustrated below.

& indicates the logical AND operation
! indicates the logical inclusive OR operation
AND OR‘
0&0=0 01 0=20
0&81=20 01 1=1
l1&0=0 1 t10=1
l1&1=1 1411=1

2.4.3 ASCII Conversion

When preceded by an apostrophe, any ASCII ~charactet‘ {except hull.
rubout, carriage return, 1line feed, or form feed) is assigned the
7-bit ASCII value of the character (see Appendix A). For example,

'A
is assigned the value 101 (octal).

When preceded by a quotation mark, two ASCII characters {(not including
null, rubout, carriage return, line feed, or form feed) are assigned
the 7-bit ASCII values of each of the characters to be used. Each
7-bit value 1is stored in an 8~bit byte and the bytes are combined to
form-a word. For example, "AB-will store the ASCII value of A in the
low-order (even) byte and the value of B in the high-order (odd) byte:

high-order byte - low~-order byte

|
'
'
I
I
|

B's value = 1 0 2 1 G 1 = A's value
0 100 001 001 000 001
-~ N S’ R i
0 4 1 1 G 1

"AB = 041101

2.5 ASSEMBLY LOCATION COUNTER

The period (.) is the symbol for the assembly location counter. (Note
difference of Program Counter. . . = PC. See Section 2.6.) When used
in the operand field of an instruction, it represents the address of
the: first word of the instruction. When used in the operand field of
an assembler directive, it represents the address of the current byte
or word. For example,

2-8

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

Al MOV #.9RO i+ REFERS T LOCATION QI~I¢E-;'
#THE ADRDRESS OF THE MOV INSTRUCTION

(# is exglained in Section 2.6.9).

At the begznning of each assembly pass, the Assembler clears the
location counter. Normally, consecutive memory locations are assigned
to each byte of object data generated. However, the location where
the object data is stored may be changed by a direct assignment
altering the location counter.

.=expression

The expression defining the period must not contain forward references
or symbols that vary from one pass to another. Examples:

« =300

FIRST! MOV +10,COUNT $THE LABEL FIRST HAS THE VALUE(OCTAL)
$.+10 EQUALS 510(0CTAL). THE CONTENTS
0F THE LOCATION S10(0CTAL)Y WILL BE DE-
FFOSITED IN LOCATION COUNT.

+ =520 $THE ASSEMBLY LODCATION COUNTER NOW
$HAS A VALUE OF S20(0CTAL).

SECONII? MOV . s INDEX §THE LABEL SECOND HAS THE VALUE 520(0CTAL).
FTHE CONTENTS OF LOCATION 520¢0CTAL)
3THAT IS» THE BINARY CUDE FOR THE
FINSTRUCTION ITSELFs WILL BE DEPOSITED
§IN LOCATION INDEX.

Storage area may be reserved by advancing the location counter. For
example, if the current value of the location counter is 1000, the
direct assignment statement

.=.+100

will reserve 100(octal) bytes of storage space in the program. The
next instruction will be stored at 1100. ’

2.6 ADDRESSING

The Program Counter (register 7 of the eight general registers) always
contains the address of the next word to be fetched; i.e., the
address of the next instruction to be executed, or the second or third
word of the current instruction.

In order to understand how the address modes operate and how they
assemble (see Section 2.6.11), the action of the Program Counter must
be understood. The key rule is:

Whenever the processor implicitly uses the Ptogram Counter (PC) to
fetch a word from memory, the Program Counter~‘is'automatica11y
incremented by two after the fetch.

That is, when an instruction is fetched, the PC is 1ncfemented by two,
so that it is pointing to the next word in memory; ~and,; if an
instruction uses indexing (see Sections 2.6.7, 2.6.8, and 2.6.10), the
processor uses the Program Counter to fetch the base from memory.
Hence, using the rule above, the PC increments by twc, and ‘now points
to the next word.

WRITING PAL-11A :ASSEMBLY LANGUAGE . PROGRAMS

The following conventions are used in this section:.

a. Let E be any expression as defined in Section 3.4.

b. Let R be a register expression. This is any expression
containing a term preceded by a % character or a symbol
previously equated to such a term. P :
Examples:

30 s GENERAL REGISTER 0

RO =
Rl = RO + 1 ;GENERAL REGISTER 1
R2 =

1 + %1 ;GENERAL REGISTER 2
c. Let ER .be-a fegisteraexpression or an expression~ih'théxiange
0 to 7 inclusive.

d. Let A be a general address specification which produces a
6~bit address field as described in the PDP-~11 Handbook.

The addressing specification, A, may now be explained in terms of E,
R, and ER as defined above. Each will be illustrated with the single
operand instruction CLR or double operand instruction MOV.

2.6.1 Register Mode

The register‘contains the operand.

Format: R

Example: T »‘ ol o
RO = %0 . ;DEFINE RO AS REGISTER 0
CLR RO :CLEAR REGISTER 0

2}6.2 Defétred Register Mode

The register contains the address of the operand.

Format: @R or (ER)

Example:

| CLR ®R1 SCLEAR THE WORD AT THE
ar $ ADDRESS CONTAINED IN

CLR (1) sREGISTER 1.

2.6.3 Autoincrement Mode

The,con;entsf0f the¢register,aﬂefincrementedfimmediatély after being
used as the address of the operand.!. : ; .

la. Both JMP._and JSR instructions using mode 2 may increment the
register before or after its use, depending on what PDP-11 processor
is being used, . This mode should be avoided,

b. In double operand instructions of the addressing form %R, (R)+ or
8R,-(R) where the source and destination registers are the same, the
results may be different when executed on different PDP~11 processors.
The use of these forms should be avoided!

2-10

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

Format : (ER) +
Examples: ’
CLR (RO)+ $CLEAR WORDS AT ADDRESSES _
CLR (RO+3)+ FCONTAINED IN REGISTERS O» 3» AND 2 AND
CLR (2)+ $ INCREMENT REGISTER CONTENTS
$BY TWO.

2.6.4 Deferred Autoincrement Mode

The register contains the 901nter to the address of the aperand. - The
contents of the register are 1ncrementeﬂ after being used.

Format: @ (ER) +
Example
CLR @(3)+ $CONTENTS OF REGISTER 3 POINT

$TO ADDRESS OF:WORD TO BRE CLEARED
$BEFORE BEING INCREMENTED BY TWO

2.6.5 Autodecrement Mode

The contents of the reg1stez are &ecrementeé before being used as the
address of the operand.’ :

Format: - (ER)
Examples:
CLR ~{RO) - $DECREMENT CONTENTS OF REG~
CLR ~(RO+3} $ISTERS Or 3y AND 2 BEFORE USING
CLR =¢2) $AS ADDRESSES OF WORNS TO BRE CLEARED

2.6.6 Deferred Autodecrement Mode

The contents of the régister are decremented befcte being used as the
pointer to the address of the operand.

Format: @-(ER}
Example:
CLR B~(2) $BECREEENT CQQTENYQ OF RﬁG. 2

FBEFORE USING A8 POINTER TO. ﬁQBREEE
C$0F WORD TO BE CLEARED.

2.6.7 Index Mode
Format: E(ER)
The value of an expression E is stored as the second or third word of

the instruction. The effective address is calculated as the value of
E plus the contents of register ER. The value E is called the base.

'See previous footnote.
2-11

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

Examples:

CLR X+2(R1) SEFFECTIVE ADDRESS IS X+2 FLUS
FTHE CONTENTS OF REGISTER 1

CLR - -2(3) FEFFECTIVE ARDRESS IS -2 PLUS
FTHE CONTENTS OF REGISTER 3

2.6.8 Deferred Index Mode

An expression plus the contents of a register gives the pointer to the
address of the operand. '

Format: @E(ER)

Example:
CLR @14(¢4) #IF REGISTER 4 HOLDS 100y AND LOCA-
STION 114 HOLDS 2000y LOC. 2000 IS

- #CLEARED :

2.6.9 Immediate Mode and Deferred Immediate (Absolute) Mode

The immediate mode allows the operand itself to be stored as the
second or third word of the instruction. It is assembled as an
autoincrement of register 7, the PC. : - :
Format: #E
Examples:

MOV #100» RO $iMOVE AN OCTAL 100 TO REGISTER ©

- MOV #Xs RO FMOVE THE VALUE OF SYMROL X TO
IREGISTER 0O

The operation of this mode is explained as follows:
The statement MOV $#100,R3 assembles as two words. These are:

01 27 0 3

0 0 0 1 0 0
Just before this instruction is fetched and executed, the PC points to
the first word of the instruction. The processor fetches the first
word and increments the PC by two. The source operand mode is 27
(autoincrement the PC). Thus, the PC is used as a pointer to fetch
the operand (the second word of the instruction) before being
incremented by two, to point to the next instruction.

If the #E is preceded by @, E specifies an absolute address.

R

@

WRITING PAL~11A ASSEMBLY LANGUAGE PROGRAMS

2.6.10 Relative and Defe:ted Relative Modes

Relative Mode is the normal mode for memory references.

Format L E
Examples:
CLR 100 iCLEﬁR LOCATION 106
MOV X»Y , FMOVE CONTENTS OF LOCATION x TG

FLOCATION Y

This mode is assembled as Index Mode, using 7, the PC, as the
register. The base of the address calculation, which is stored in the
second or third word of the instruction, is not the :address of the
operand. Rather, it is the .number which, when .added to the PC,
becomes the address of the operand. -Thus, the base is X - PC. The
operation is explained -as follows.- ' : .

If the statement MOV 100,R3 is assembled at lbcation 20, then the
assembled code is:

“Location 20: 0o 1 6 7 0 3
Location 22: 0 6 0 0 5 4

The processor fetches the MOV instruction and adds two to the PC so
that it points to location 22. The source operand mode is 67; that
is, indexed by the PC. To pick up the base, the processor fetches the
word pointed to by the PC and adds two to the PC. The PC now points
to location 24. To calculate the address of the source operand, the
base is added to the designated register. That is, Base + PC = 54 +
24 = 100, the operand address.

Since the Assembler considers . as the address of the first word of
the instruction, an equivalent statement would be

MOV 100-.-4(PC),R3

This mode is called relative because the operand address is calculated
relative to the current PC. The base is the distance (in bytes)
between the operand and the current PC. If the operator and its
operand are moved in memory so that the distance between the operator
and data remains constant, the instruction will operate correctly.

If E is preceded by &, the expression's value is the pointer to the
address of the operand.

2.6.11 Table of Mode Forms and Codes (6-bit (A) format only - see
Section 3.7) ' ,

Each instruction takes at least one word. Operands of the first six
forms listed below do not increase the 1ength of an instruction. - Each
operand in one of the other forms however, increases the instruction
length by one word. ~

Form Mode Meaning

R On Register
None of these @R or (ER) 1n © “Register n deferred
forms increase {ER)} + “2n Autoingrenient '
the instruction @ (ER) + 3n Autoincrement deferred
length. | - (ER) 4N Autodecrement

@~ (ER) 5N Autodecrement deferred

2-13

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

E(ER) - 6n Index
Any of these @E (ER) n Index deferred
forms adds a #E : 27 Immediate
word to the Q@#E 37 Absolute memory
instruction reference
length E 67 Relative

QE 77 Relative deferred

reference

Notes:

1. An alternate form for @R is (ER). However, the form @(ER) is
equivalent to @0(ER).

2. The form @#E differs from the form E in that the second or
third word of the instruction contains the absolute address
of the operand rather than the relative distance between the

- operand and the PC. Thus, the statement CLR @#100 will clear
location 100 even if the instruction is moved from the point
at which it was assembled.

2.7 INSTRUCTION FORMS

The instruction mnemonics are given in Appendix B. This section

defines the number and nature of the operand fields for these
instructions. ‘

In the table,thai fdllows, let 'R, E, and ER represent 'expressiens as
defined in Section 3.4, and let A be a 6~bit address specification of
the forms: ;

E @QE
R @R or (R)
. {ER)+ @Q(ER)+

2-14

~{ER) @-(ER)
E(ER) QE(ER)
#E @#E
Table 2-1
Instruction Operand Fields
Instructién : Form ‘ ~ : Example
Double Operand Op A,A ‘ MOV (R6)+,@Y
Single Operand op A CLR ~-(R2)
Operate Op HALT
Branch Op E BR X+2
| , BLO .-4
where -128 <(E-.-2)/2<127 “ :
:“ subroutine Ccall ‘JSR'ER,A JSR PC,SUBR
| Subroutine Return RTS ER 'RTS PC
EMT/TRAP Op EMT
or
Op E EMT 31
where 0<E<377 (octal)

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

The branch instructions are one word instructions. The high byte
contains the op code and the low byte contains an 8~-bit signed offset
{7 bits plus sign) which specifies the branch address relative to the
PC. The hardware calculates the branch address as follows: = .

a) Extend the sign of the offset through bits 8-15.

b) Multiply the result by 2. This creates a word offset rather
than a byte offset. v

c} Add the result to the PC to form the final branch address.

The Assembler performs the reverse operation to form the byte -offset
from the specified address. Remember that when the offset is added to
the PC, the PC is pointing to the word following the branch
instruction; hence the factor -2 in the calculation..

Byte offset = {E~PC)/2 tfdncatéd to éight bits.,
Since PC = .+2, we have

Byte offset = (E-.-2)/2 truncated to eight bits.
The EMT and TRAP instructions do not use thé:,quﬁatdér.~byte,fof, the
wordg. This allows information to be transferred to the trap handlers
in the low-order byte. If EMT or TRAP is followed by an expression,
the value is put into-the low-order byte of ‘the word. However, if the

expression is too big (>377(octal)) it is truncated to eight bits and
a Truncation (T) error occurs.

2.8 ASSEMBLER DIRECTIVES

Assembler directives (sometimes called pseudo-ops direct the assembly
process and may generate data. They may be preceded by a label and
followed by a comment. The assembler directive occupies the operator
field. Only one directive may be placed in any one statement. “One or
more operands may occupy the operand field or it may ‘be void ~-
allowable operands vary from directive to directive.

2.8.1 LEOT

The .EOT directive indicates the physical End-of-Tape though not the
logical end of the program. If the .EOT is foellowed by a single line
feed or form feed, the Assembler will still read to the end of the
tape, but will not process anything past the .EOT directive. If .EOT
is followed by at least two line feeds or form feeds, the Assembler
will stop before the end of the tape. Either case is proper, but it
should be understood that even though it appears as if the Assembler
has read too far, it actually hasn't.

If a .EOT is embedded in a tape, and more information to be assembled
follows it, .EOT must be immediately followed by at least two line
feeds or form feeds. Otherwise, the first line following the - .EOT
will be lost. ' ’ : 4 : ;

Any operands following a .EOT directive will be ignored. The .EOT
directive allows several physically separate tapes to be asgembled as
one program. The last tape ig normally terminated by a .END directive
(see Section 3.8.3) but may be terminated witg; .EOT = (see .END
emulation in Section 3.9.4). S : : , : :

2-15

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

2.8.2 .EVEN

The .EVEN directive ensures that the assembly location counter is even
by adding one if it is odd. Any operands following a .EVEN directive
will be ignored. ‘

2.8.3 LEND

The .END directive indicates the logical and physical end of the
source program. The .END directive may be followed by only one
operand, an expression indicating the program's entry point.

At load time, the object tape will be loaded and program execution
will begin at the entry point indicated by the .END directive. If the
entry point is not specified, the Loader will halt after reading in
the object tape. :

2.8.4 L.WORD

The .WORD assembler directive may have one or more operands, separated
by commas. Each operand is stored in a word .of the object program.
If there is more than one operand, they are stored in successive
words. The operands may be any legally formed expressions. For
example, , , A

+=1420

S5AL=0

+WORD 177535 .+4:5AL $STORED IN WORDS 1420, 14225 AND
F1424 WILL BE 177535, 1426y AND O.

Values exceeding 16 bits will be truncated from the left, to word
length. ‘

A .WORD diréctive followed by one or more void operands separated by
commas will store zeros for the void operands. For example, «

+=1430 §ZER07 FIVE: AND ZERQ ARE STORED
+WORDN +3, FIN WORDS 1430y 1432, AND 1434,

An operator field 1left blank will be interpreted as the .WORD
directive if the operand field contains one or more expressions. The
first term of the first expression in the operand field must not be an
instruction or assembler directive unless preceded by a +, -, or one
of the logical operators ! or &. For example,

« =440 ‘ $THE OF-CODE FOR MOVy WHICH IS 010000,
LAREL D +MOV»LABEL $I8 BTORED IN LOCATION 440. 440 IS
: FSTORED IN LOCATION 442,

Note that the default .WORD will occur whenever there is a leading
arithmetic or logical operator, or whenever a leading symbol is
encountered which is not recognized as an instruction mnemonic or
assembler directive. Therefore, if an instruction mnemonic or
assembler directive is misspelled, the .WORD directive is assumed and
errors will result. Assume that MOV is spelled incorrectly as MOR:

MOR A,B
Two error codes can result: a Q will 'occur because an expression
operator is missing between MOR and A, and a U will occur if MOR is
undefined. Two words will be generated; one for MOR A and one for B.

2-16

@

WRITING PAL-11A' ASSEMBLY LANGUAGE FROGRAQS

2.8.5 LBYTE

The .BYTE assembler directive may have one or more operands separated
by commas. Each operand is stored in a byte of the object program.
If multiple operands are specified, they are stored in successive
bytes. The operands may be any legally formed expression with a
result of 8 bits or less. For example, A

SAM=5 FSTORED IN LOCATION 410 WILL BE
+=410 71060 (THE OCTAL EQUIVALENT OF 48).
+BYTE 48.:54M FIN 411 WILL BE 005,

If the expression has a result of more than 8 bits, it will be
truncated to its low-order 8 bits and will be flagged as a T error.
If an operand after the .BYTE directive is left wvoid, it will be
interpreted as zero. For example,

+ =420 $ZERD WILL BE STORED IN
+BYTE » » FBYTES 420» 421 AND 422,

2.8.6 .ASCII

The .ASCII directive translates strings of ASCII characters into their
7-bit ASCII codes with the exception of null, rubout, carriage return,
line feed, and form feed. The text to be translated is delimited by a
character at the beginning and the end of the text. The delimiting
character may be any printing ASCII character except colon and equal
sign and those wused in the text string. The 7-bit ASCII code
generated for each character will be stored in successive bytes of the
object program. For example, :

» =500 FTHE ASCII CODE FOR "Y' WILL BE
+A8CIT /YES/ FSTORED IN 500y THE CODRE FOR *E*
' $IN 501y THE CODE FOR "8" IN 502.

+ASCIT /543727 STHE DELIMITING CHARACTER OCCURS
: FAMONG - THE QOPERANDS. THE ASCII
sCODES FOR *"5"» "+"» AND "3" ARE
FETORED IN BYTES 503y 504y AND
§905, 2/ IS NOT ASSEMELED.

The ASCII directive must be terminated by a space or a tab.

2.9 OPERATING PROCEDQRES

2.9.1 Introduction

The Assembler enables vou to assemble an ASCII tape containing PAL-11A
statements into an absolute binary tape. To do this, two or three
passes are necessary. On the first pass the Assembler creates a table
of user-defined symbols and their associated values, and a list of
undefined symbols is printed on the teleprinter. On the second pass
the Assembler assembles the program and punches out an absolute binary
tape and/or outputs an assembly listing. During the third pass (this
pass is optional) the Assembler punches an absolute binary tape or
outputs an assembly listing. The symbol table (and/for a 1list of
errors) may be output on any of these passes. The input and output
devices as well as various options are specified during the initial
dialogue (see Section 3.3.9). The Assembler initiates the dialogue
immediately after being loaded and after the last pass of an assembly.

2~17

WRITING PAL~11A ASSEMBLY LANGUAGE PROGRAMS

2.9.2 Loading PAL-11A

PAL-11A is loaded by the Absolute Loader (see Chapter 6 for operating
procedures). Note that the start address of the Absolute Loader must
be in the Switch Register when loading the Assembler. This is because
the Assembler tape has an initial portion which clears all of core up
to the address specified in the Switch Register, and jumps to’ that
address to start loading the Assembler.

2.9.3 1Initial Dialogue

After being loaéed,.the,Assemblet initiates dialogue by‘ printing on
the teleprinter: ' . , ~ : , o

*S

meaning "What is the Source stbolic.input device?" The response may
be:

H meaning High-speed reader
L meaning Low-speed reader
T meaing Teletype keyboard

If the response is'T, the éource progzam must be typed at the terminal
once for each pass of the assembly and it must be identical each time
it is typed. . ' ' '

The device specification is terminated, as is all wuser response, by
typing the RETURN key.

If an error is made in typing at any time, typing the RUBOUT key will
erase the immediately preceding character if it is on the current
line. Typing CTRL/U will erase the whole 1ine on which it occurs.
After the *S question and response, the Assembler prints:

*B :

meaning "What is the Binary output device?" The responses to *B are
similar to those for *S: : ‘ : ;

H meaning High-speed punch
L meaning Low-speed punch
-/ meaning do not output binary tape

(< denotes typing the RETURN key)

In addition to I/0 device specification, various options may be
chosen. The binary output will occur on the second pass unless /3
(indicating the third pass) is typed following the H or L. Errors
will be 1listed on the same pass if /E is typed. If /E is typed in
response to more than one inquiry, only the last occurrence will be
honored. It is strongly suggested that the errors be listed on the
same pass as the binary output, since errors may vary from pass to
pass. If both /3 and /E are .typed, /3 must precede /E. The response
is terminated by typing the RETURN key. Examples: '

2-18

fw ‘
e,

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

*B L/E Binary output on the Iewmsgeed punch and the
errors on the the teleprznter, both dur;ng
the second pass.,

*B H/3/E -~ .. Binary output on the high-ageed punch and the
errorg on - the ﬁeleptinter, both during the
third pass.

*B o/ Typing just the RETURN key will cause the
Assembler to omit binary output.

After the *B guestion and response, the Assembler prints:
*L

meaning "What is the assembly Listing output device?® The response to
*L may be:

L meaning Lowespeed punch (outputs a tab as a tab-rubout}
H meaning High—-speed punch ’

T meaning Teleprlntex {autputs a tah as multiple spaces}
P meanlng line Prlntet {BK version only}

-/ meaning do not output: listing
(aw’denotes typing the RETURN key)

After the I/0 device specificatlon, ~pass and error list options
similar to - those for *B may be chosen. The assembly listing will be
output to the third pass unless /2 (indicating the second pass) is
typed following H, L, T, or P. Errors will be 1listed on the
teleprinter during the same pass if /E is typed. If both /2 and /E
are typed, /2 must precede /E. The response is terminated by typing
the RETURN key. Examples: S ‘ : ' :

*L L/2/E Listing on low-speed punch and errors
on teleprinter during second pass.

*L, H Listing on hiéh—speed punch during
third pass.

o The RETURN key alone will cause the
Assembler to omit listing output.

After the *L question and response, the final questxan is printed on
the teleprinter:

*T

meaning "What is the symbol Table -output device?"™ The device
specification is the same as for the *L question. The symbol table
will be output at the end of the first pass: unless /2 or /3 'is typed
in response to *T. The first tape to be assembled should be placed in
the reader before typing the RETURN key because :assembly will begin
upon typing the RETURN key in response to the *T question. The /E
option is not a meaningful response to *T. Example:

*T T/3 "~ Symbol table putput on telepr;nter at
end of thlté pass.

*T </ Typxng just the RETURE key will cause the
; Assembler to omit the symbsi table output.

2-19

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

The symbol table is printed alphabetically, four symbols per line.
Each symbol printed is followed by its identifying characters and by
its value. If the symbol is undefined, six asterisks replace its
value. The identifying characters indicate the class of the symbol;
that is, whether it is a label, direct-assignment, register symbol,
etc. The following examples show the various forms:

ABCDEF 001244 (Defined label)

R3 = 2000003 (Register symbol)

DIRASM = 177777 (Direct assignment)

XYZ = kkkkdkk (Undefined direct assignment)
Rb& = FrREAL LK (Undefined register symbol)
LABEL = Rekkk Ak (Undefined label)

Generally, undefined symbols (including 1labels) will be listed as
undefined direct assignments. :

Multiply-defined symbols are not flagged in the symbol table 'printout
but they are flagged wherever they are used in the program.

It is possible to output both the binary tape and the assembly listing
on the same pass, thereby reducing the assembly process to two passes
(see Example 1 below). ‘This will happen automatically unless the
binary device and the listing device are conflicting devices or the
same device (see Example 2 below). The only conflicting devices are
the teleprinter and the low-speed punch. Even though the Assembler
deduces that three passes are necessary, the binary and listing can be
forced on pass 2 by including /2 in the responses to *B and *L (see
Example 3 below). , , :

Example 1. Runs 2 passes:

*S H. High-speed reader
*B H ﬁ ’ High-speed punch
*L P ’ Line Printei;

*T T

Teleprinter

Example 2. Runs 3 passes:

*S H High~speed teader
*B H High-speed punch
*L H Righ-speed: punch
T S

Teleprihter

Example 3. Runs 2 passes:

*S H ﬂigh-spéed reader

*B H/2 ‘High-speed punch on pass 2
*L H/2' Highéspeéd punch on pass 2
*T.T : Teleprinter

2-20

a

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

Note that there are several cases where the binary output can be
intermixed with ASCII output:

a. *B H/2 Bihary and
*L H/2 listing to punch on pass 2
b. *B L/E . Binary to low-speed punch and
error listing to teleprinter
{and: low-speed punch}
c. *B L/2/E . Binary, error listing, and
*L T/2 listing to low-speed punch.

The binary so generated is loaéable by the Absolute Leader as long as
there are no CTRL/A characters in the source program. The start of
every block on the binary tape is indicated by a 001 and the Absolute
Loader ignores all information until a 001 is detected. Thus, all
source and/or error messages will be ignored if they do not contain
any CTRL/A characters (octal 001}.

If a character other than those mentioned is typed in response to a
qguestion, the Assembler will ignore it and print the question again.
Example: !

*S H High-speed reader
*B Q Q is not a valid response
*B The question is repeated

If at any time you wish to restart the Assembler, type CTRL/P.

When no passes are omitted or error options spec1f1ed, the Assembler
performs as follows:

PASS 1: Assembler creates a table of user-defined symbols and -their
associated wvalues to be used in assembling the source to
object program. Undefined symbols -are ligted - on the
teleprinter at the end of the pass. The symbol table is also
listed at this time. If an illegal location statement of the
form .=expression is encountered, the line and error code
will be printed out on the~te1aprxnter before the assembly
proceeds. -Ap . error in a iocation statement is usually a
fatal error in the program and should be corrected.

PASS 2: Assembler punches ‘the object tape, and prints the pass error
count and undefined location statements on the teleprinter.

PASS 3: Assembler prints or punches the assembly program listing,
undefined location statements, and the pass error count on
the teleprinter.

The functions of passes 2 and 3 will occur simultaneously on pass 2 if

the binary and listing devices are different, and do not conflict with
each other (low-speed punch and Teleprinter conflict).

2=-21

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

o

The following table summarizes the initial dialogue questions:
Printout Inquiry
*S What is the input device of the Source symbolic tape?

*B What is=thg_autput’device of the Binary object tape?

*L What is the oﬁﬁput'éeviCe'of“the assembly Listing? e
*' What is the output device of the symbol Table?
The following table summarizes the legai‘fesponses; ’ ’ L
Character ©oa ‘, | Response Indxcated

T Teletype keyboard or printer
L Low~speed reader or punch
H High-speed reader or punch

P Line Printer (8K version only)

/1 Pass 1
/2 Pass 2
/3 Pass 3

/E Errors listed on same pass (not meaningful in response to *$S
or *T)

-/ Omit function
Typical. examples of" compl@te inztial dxalagues'

For minlmal PDP~11 conflguratlon.‘

' ,*3 L e Source 1ﬁput on low—speed reader
*B L/E * Binary cutput on low-gpeed punch
: © Errors during same (second) pass e,
*L T Listing on teleprinter during pass 3
*T o " Symbol table on teleprinter at end of pass 1

For a PDP~11 w1th hlgh-speed I/O dev1ces.

*S H Source input on hlgh-speed reader

~ *B HSE Binary output ‘on- hlgh~speea punch, 4

Errors during same (Second) pass.

*L No 11sting

*T T/2 Symbol table on teleprinter at end of pass 2

2-22

)

L

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

2.9.4 Assembly Q;alog“~

Bur1ng assembly, the Assem&&e: wzll pauae to pxiat on the tezeprxnter
various messages to indicate that you must respond in some way before
the assembly process can continue. You may also type CTLR/P, at any
time, if you wish to stop the assembly process and restart the inltial
dialogue, as mentioned in the previous section. ,

When a .EOT assembler directive is read on the tape, the assembler
prints: R

EQF ?

and pauses. During this pause, the‘ﬁext»tape is placed'in the reader,
and RETURN is typed to continue the ass&mbly.

If the speczfxeé assembly lishlng output daviug is tbe high~speed
punch and if it is out of tape, or if the device is the Line Printer
and is out of paper, the Assembler prints on the teleprinter:

EOM ?

and waits for tape;br paﬁér‘to'be éiéCed‘ in the device. Type the
RETURN key when the tape or paper has been replenished; assembly wil
continue.

Conditions causing the EOM? message for an assembly 1listing device
are:

HSP LPT

ﬂd;poket h’(’ Q» Lcmomge k ”‘}ﬁqﬂééger .

No tape Printer drum gate open
Too hot
Nd éééér

There zs no EOM if the line. prxnter is switcheé off»line. altheuqh
characters may . be lost for this cenditan as well as for an EOM. If
the binary output device is the. h;ghvsgead punch ané if it is out of
tape, the Assembler prints:

- EOM 2
*S

The assembly proeéés is aborted and the initial dialogue is begun
again.

When a .END assembler di:eatxve 15 zea& on the ‘tgge;';thé¢ Assembler
prints:

END ?

and pauses.. Da:;ng the pause the. first tape is placed in the z&ader,
and the RETURN key is typed to begin the .next pass., On the last pass,
the .END directive causes the Assembler to begin the initial dialogue
for the next assembly. : Co SN ; ,

If you are starting the binary pass and the binary is to be punched on
the low-speed punch, turn the punch on before typing the RETURN key
for starting the pass. The carriage return and line feed characters
will be punched onto the binary tape, but the Absolute Loader will
ignore them.

2-23

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

If the last tape ends with a .EOT, the Assembler may be told to
emulate a .END assembler directive by responding with E followed by
the RETURN*key. iThe‘Assembler'will then print:

END 2 ,
and wait for ancther RETURN before startlng the next pass. Example:

EOF 2 E

NOTE

When a .END directive is emulated with
~an E response to the EOF? message, the
error counter is 1ncremented.

'To avoid incrementing the error counter,
place .a paper tape containing only the
line .END in the reader and press the
RETURN key instead of using the E

- response. ‘

2.9.5 Assembly Listing

PAL-11A produces a side-by-side assembly listing of symbolic source
statements, their octal equivalents, assigned absolute addresses, and
error~codes as follows:’

EELLLLLL 000000 858.¢444.48
000000
000000

The E's represent the error field. The L's represent the absolute
address. The O's represent the object data in octal. The S's
represent the source statement. While the Assembler accepts
72(decimal) characters per 1line on input, the listing 1s rednced by
the 16 characters to the left of the source statement.

The above represents a three-word statement. The second and third
words of the statement are 1listed under the command word. No
addresses precede the second and thlrd word 51nce the address order is
sequential. =

The third line is omitted for a two-word statement; both second and
third lines are omitted for a one-word statement. ‘

For a .BYTE directive, the object data field is three octal digits.
For a direct assignment statement, the wvalue of the defining
expression is given in the ‘object ‘code field although it is not
actually part of the code of ‘the iject program.

Each page of the listing is headed by a page number.

sy

£

s

Faii

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

2.10 ERROR CODES

The error codes printed beside the octal and symbolic code in the
assembly listing have the following meanings:

Error Code Meaning

A Addresging eg;qr;”' An address within thé,,ingtrucitcn is
incorreect. ... - 8 : : . : :

B éoun&ingi‘ertét; f Instructi0ns or .wcrd' data - are - being
assembled at an odd address in memory. The location counter
is updated by +l1. : ‘

D Doubly-defined symbol referenced. Reference was made to a
‘symbol which is defined more then once.

I Illegal character detected. /Iiiegal characters which are
also non-printing are replaced by a ? on the listing.

L Line buffer overflow. Extra characters on a line (more than
72 (decimal)) are ignored.

M Multiple definition of a label. A iabel was encountered
which was eguivalent (in the first six characters) to a
previously encountered label.

N Number containing 8 or 9 has no decimal point.

P Phase error. A label's definition or value varies from one
pass to another.

Q Questionable syntax. There are missing arguments or the
instruction scan was not completed or a carriage return was
not immediately followed by a line feed or form feed.

R Register-type error. An invalid use of or reference to a
register has been made.

S Symbol table overflow. When the gquantity of user~defined
symbols exceeds the allocated space available in the user's
symbol table, the assembler outputs the current source line
with the S error code, then returns to the initial dialogue.

T Truncation error. A number generated more than 16 bits of
significance or an expression generated more than 8 bits of
significance during the use of the .BYTE directive.

4] Undefined symbol. An undefined symbol was encountered during

the evaluation of an expression. Relative to the expression,
the undefined symbol is assigned a value of zero.

2-25

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

2.11 SOFTWARE ERROR HALTS

PAL-11A loads all ‘unused trap vectors with the code

«WORD .+2,HALT

so that if the trap does occur, the processor will halt in the second

word of the vector. The address of the halt; ‘displayed in ‘the console

address register, therefore indicates the cause of the halt. In)
addition to the halts which may occur in the vectors, the standard I0X

;error halt ‘at location 40 may occur’ (see Chapter ?) '

: Address of Halt Meanlng f et | €
12 Reserved instrdctiOn’eiegated 1
16’ ‘ kTrace trap cccurred o
26f' Power fa11 trap
32 EMT executed -
40 10X detected error‘

See Appendix B for summazies of PAL—llA featuresa‘ -

2-26

\\ 33"‘?

CHAPTER 3
LINK~11S LINKER

3.1 INTRODUCTION

3 .1 i Geue:al Qaaar;ktlon

LINK~118 (stand alone) is a PDP-ll system yrogram ﬂeslgned to 1ink and

relocate programs p:evioualy assembled by PAL-11S. The user can-. -

separately assemble ‘the main. program and each: of its wvarious:

subroutines without &ssigning an absolute load address at assemblyv ’

time. -~ The binary output of assegbly (caile& -an ngact mc&uie}
pxcceased by LIEX»IAS tos

1. *Relocate eaeh abaect maéula and assign absa;ate addresses. W7

2. »&ink the maaules by coxrelating global aymbals &at;neﬁ in gne
, «medule eﬂd refetencad in ather m@ﬂn&es.r~~ L

3, ~9rint a 1aad map whieh d;splays the ass;gned absal@tg
e cé&resses; : A

4. Eunch a lead a@éuiexwhich can subaeqaeﬁtly be leaded {by the
i -Absslate Laadgr3 ané executed.~ ;

Some of the advantages”of usigg ?Ab-lls and &iﬁﬁ»il& areg

1. The gragtan is divxdaﬂ into segments :{ﬂ&ﬂ&ll? aubra&tiuea)

.. which are assembled sapanately., If an error is discovered in
one segment. only that segment needs to be reassembled. The
new object module is then 1linked with the other object
modules.

2. Absolute addresses need not be assigned at assembly time.
The Linker automatically assigns absolute addresses. This

- keeps programs from overlaying each other. This also allows
subroutines - to change size withent infiuﬁnci;, th@ placament

of e%her raﬁ&&nes.;

'3;f_separate ass&mblias allow the t@tal pumber. of agmhals to
P exeee& ahe»nﬁmbet aliﬁwe@‘in a sihgie ass&mhly. e

4‘;”ma£etn§1 ﬁymbalsx{symhols whxch are. nat qlnbal} need nat be
unique among object modules. Thus, naming rules are tequireé
:@nly for global symbols when separate p;ograma&rs prepa:e
- separate. sabtaatinea af a siﬂgie pragtan. SIEEE

5. Subroutines may be pravided far general use in object module
form to be linked into the user's program.

3-1

LINK~11S LINKER

LINK~11S is designed to run on an 8K PDP-11 with an ASR-33. A PCl1
(high speed paper tape reader and punch) and an LPl1l (line printer)

may be used if available. The PCll significantly speeds up the

%1nk1ng process. An LPll provides a fast device for the load map
isting.

3.1.2 Absolute and Relocatable Prog:am Sections

A program assembled by PAL-118 may consist of an absolute program
section, declared by the .ASECT assembléer directive, and a relocatable
program section, declared by the .CSECT assembler directive. (If a
program has neither an .ASECT or .CSECT directive, the assembler
implicitly assumes a .CSECT directive.) The program and data in the
absolute section are assigned absolute addresses as specified by the
location counter setting statements (. =X) . The Linker assigns
absolute addresses to the program and data in the relocatable section.

Addressses are normally assigned such that the relocatable section is

at the high end of memory. The assignment of addresses may be
1nf1uenced by command strlng options (see Section 3 3 2)

The Linker appropriately modlfzes all instructions ~and/or data as
necessary to account for the relocation of the control section. &

LINK-118 can handle object modules = containing ~named control
(relocatable) sections as generated by PAL-11R. However, PAL-11S can
Create only the unnamed control section (which has the special default
name of 6 blanks) and the absolute section (with the special name
- ABS.). The unnamed control section is internal to each object
module. That is, every object module may have an unnamed control
section (each with the name 6 blanks) but the 'Linker treats them
independently. Each is assigned an absolute address such that they
occupy mutually exclusive areas of memory. Named control sections, on
the other hand, are treated globally. That is, if different object
modules each have control sections with the same name, they are all
assigned the same absolute 1load address and the size of the area
reserved or loading of the section’ is the'maximum of the sizes of each
section. Thus, named control sections allow the sharing of data
and/or programs among object modules. This is very similar to- the
handling and function of labelled COMMON in FORTRAN IV. A restriction
of LINR-11S is that the name of a control section must not be the same
as the 'name of a “global entry symbol, as this results in multiple
definition errors. = 7 EE SO '

3. 1 3 Global Symbols o

,Giobal symbols provide the 11nks forf~communicati6n !betﬁeen object
modules ' (or assemblies). Global symbols are e¢reated with the .GLOBL

assembler directive. Symbols which are not global -are called internal

symbols. If the global symbol is defined (as a label or direct
assignment) in an object module it is called ‘an “entry - symbol, and
other object modules: may reference it. : If the" glcbal symbol is not
defined in the object module it is an external symbol. It is assumed
to be defineé (as an: entry symbol) in: some other abject mo&ule.

As the anker reads the’ object mo&ules 1t recards ~all the global
symbol definitions and references. ' It then modifies the ‘instructions
and/or data that reference the global symbols.

£ 3

LINK-11S LINKER

3.2 INPUT AND OUTPUT

'3.2.1 oObject Module

Input t@fﬂi&ﬁ~l£§ isﬂthesabﬁectwmaduie.ivTﬁis isatha,dutﬁataaﬁ Pﬁs~xls
{or 'a&y;qther;grogsaﬁ%whiqh'caﬁ,c:eate,an‘objeet’module).‘ The ‘Linker
xeads&eachaebjeﬁtjmcdﬁle:twice;g~that is, it is 3,twa~pass:p:osessera-

On pass 1, the Linker reads each - object module to -gather enough
information to assign absolute addresses to all relocatable sections
and absolute values to all globals. This information appears in the
global symbol directory: (GSD) of the object module. e ey d st

On pass 2, the iinker;reﬁds all‘of each ébject moﬁulé,and gro&aéethhe

load module (see Section 3.2.2). The data gathered on pass 1 guides
the relocation and linking process on pass 2. ' EE R

3.2.2 Load Modules

The normal output of the Linker is a load module which may be loaded
and run. ‘

A load module consists of formatted binary blocks holding ~absolute
load addresses and object data as specified for the paper Tape System
Absolute Loader and the PDP-11 Disk Monitor. ' The first few words of
data are the communications directory (COMD) :and have an absolute load
address equal to the lowest relocated address of the program. The
absolute loader loads the COMD at the . gpecified address but the
program subsequently overlays it.! The disk monitor loader expects the
COMD and loads it where the monitor wants it. The end of the load
module is indicated by a TRA block; that is, a block containing only
a load address. The byte count in the formatted binary block is 6 on
this block; on all other blocks the byte count is larger than 6. The
TRA (transfer address) is selected by the Linker to be the first even
transfer address seen. Thus, if four object modules are linked
together and if the first and second had a .END statement, the third
had a .END A and the fourth had a .END B, the transfer address would
be A of module three. N R

'The overlaying of the COMD by the relocated program is a trick ¢to
allow the Absolute Loader to handle 1load modules with a COMD.
However, a problem arises if a load module is to be ‘loaded by the
absolute loader and either of the following conditions exists:

a. The object modules used to construct the load module
contained no relocatable code; or

b. The total size of the relocatable code is less than 20
(decimal) bytes (the size of the COMD).

In either case, there is not enough relocatable code to overlay the
COMD which means the COMD will load into parts of memory not intended
to be altered by the user. The COMD's load address, selected by the
Linker in the above cases, is such that it will be up against the
current top of memory (see *T option in section 3.3.1). - If the top
happens to be very low, the Linker does not allow the COMD to be
loaded below address 0; it loads it at 0.

LINK-11S LINKER

3.2.3 Load Map

The load map provides several types of information concerning the load
module's make-up. The map begins with an indication of the low and
high limits of the relocatable code and the transfer address. Then
there is a section of the map for each object module included in the
linking process. Each of these sections begins with the module name
followed by 'a .list«of;thefeontrolwsectians*and‘tne?entzy:points for
each:control section. For each control ‘section, the base of the
section (its 1low address) and its size (in bytes) is printed to the
fight»off&heusection~namev(enclosed in angle. brackets):. Following
each section ‘name is a 1list of entry points and their addresses.
After:all information has been ‘printed for each- object module, any
undefined symbols are listed. Note that modules are loaded such that
if modules A, B and C are linked together, A 1is 1lowest and C is
highest in memory. = 27 B LR S ST v '

The fbrmat'is quite sélf»explanatory‘aé cah be séen from the following
example:

LOAD MAP

TRANSFER ADDRESS: €37434
LOW LIMIT: 837486 . .
HIGH LIMIT: ©37468
3 3k 3 ok ok ok ok o ek

~ MODULE MOD1 RSN , -
'SECTION ENTRY = ADDRESS SIZE

<o ABSe> - L POeBRe alpePRe
< il L= B3T406 SBBBaA
X3 837452 SRR
X4 o @23T440
Xs 237450
: X7 . @37430
stk o S ok o oK K '

- MODULE MOD2 -
SECTION ENTRY ADDRESS SIZE

< > B37452 Q00666
X1 237452
X2 - 837452

HokolkoRk Rk A

e e ofe ke ke 3K o K ok ok

UNDEFINED REFERENCES

X6 i

PASS 2

*

LINK~11S LINKER

The Linker is .loaded by the Absolute Loader and is self-starting. it
uses a simple command dialogue which allows the object modiile, load
module and load map devices to be specified. During pase 1 and pass
2, the Linker asks for each object module individually.

epergiigﬁ‘beginéybﬁwéﬁéfi%nﬁerftypgnébitswnaéé and version. This is
followed by the inpnt&gggiaaggginted‘as*1&¢V,@he responses are:

o< + Read object module from HSR.
B/ .+ .'Read object module from HSR.
L/ ~ Read object module from LSR.)

The input option is followed by the output optien *QA. The responses

ey

</ Punch load module on HSE.
He/ . Punch load module on HSP.
Le/ . -Punch load module on LSP.

LINK-11S asks if a load map is desired by typing *MA. The legal
responses are <’/ for no map, Ta/ oL Ho/ or P./for a map on the
teleprinter, high-speed punch, or line printer, respectively.

The next two options concern the placement of: the relocated object
program in memory. The standard version of the Linker assumes it is
5@%§ linking for an 8K machine. It relocates the program such that. it v is
g as high as possible in BK but leaves room for the Absolute and Boot
Loaders. These assumed values may be changed by altering parameters
HGHMEM (highest legal memory address +1) and ALODSZ (number of bytes
allocated for Absolute Loader-and Boot Loader) -and reassembling the
Linker. The user may control where a pregram is relocated to with the
*T and *B options. After the option *TA has been typed, the user may
respond as follows: :

-l Relocate so. that program is up against the

s ; : - current top of memory. If the top has not

L '~ been changed, then the top is the assembled~in

£ 2 top (HGHMEM~ALODSZ). The standard aseumption
is 16272 decimal (16384-112) or 37460 octal.

N/ N is an octal number (unsigned) which defines
a new top address.

If a new top is specified, the *B option is suppressed.
After the option *BA has b&@gcéziﬁtgaQ;he7hs§r'méyﬁreépana as follows:

</ Use current top of memory.

N/ - N is an unsigned octal number which defines
T .5+ -the hottom address of :the pregram. That is, a

. new top of memory is calculated so that the
‘bottom of the program gorresponds with N..

Once a top of memory has been calculated (by *T or *Bj, that value is
used until it is changed.

i

LINK-11S LINKER

LINK-118 indicates the start of pass one by typing PASS 1. The input
1s requested by the Linker, one tape at a time, by typing *A. The
legal responses are:

</ Read a tape and request more input.

U ik ‘List all undefined globals on the teleprinter
f ~-. and request more input. = T

EL/ ~ End of input. If theré are undefined globals,
list them on the teleprinter and request more
input. Otherwise print the 1load map, if
requested, and enter pass 2. - SRR

Ce/ End of input. ''Assign 0 to any undefined
i globals, print the 'load map (if requested),
‘and enter pass 2. :

The Linker indicates the start of pass 2 by typing PASS 2, It then
requests each input tape as in pass 1. ‘ :

A carriage return is the only useful response to * on pass 2. The
modules must be read on pass 2 in the same order as pass 1. When the
last module has been read the Linker automatically finishes the 1load
module and restarts itself.

Leader and traileruéré*punched onAthe‘load module.

If the LSP is being used for the load module output, it should be
turned on before pass 2 begins. Thus, turn it on before typing E/or
Cad{ 'The echo ef~thésé%éhéracteréf(and'tﬁe’lo&&“map,Aif”ﬁrinted on the
TTY) 'is' punched “on. the load module but may be easily removed since
leader is punched on the load module. In any case, ASCII information
in ‘a‘load module is ignored by the Absolute and Disk Monitor loaders.
However, the LSP can be turned on while leader is being punched (after
the linker ‘"has typed PASS 2) to keep the load map, etc., from being
punched onto the tape. ° = e o K i -

Note:

On all command string options, except for *T and *B, the linker
examiaes' on1y the last ‘character typed'preceding the carriage return.

Thus,
' ABCDEFGH./

is equivalent to H./

3.3.1.1 Operational Cautions - The Linker does not give a warning if
a -program: 1s 1linked s0 low in memory that it goes below address 0.
However, this case is easily seen by examining the low and high limits
which are always printed (on the load map or on the teleprinter).

The Linker reads object modules until an end of medium is detected.
Object modules from the DEC Program Library contain a special checksum
at the end of the tape which must be removed before they are 1inked.
Failure to remove this checksum can result in fatal Linker errors.

3-6

‘‘‘‘‘

LINK~11S LINKER

3.3.2 Error Prqceduse=and,ﬁessagas

3.3.2.1 Restarting ~ CTRL/P ({symbolized as “p) is used for two
purposes by LINK-11. If a P is typed while a load map is being
printed, the load map is aborted and the Linker continues. A "P typed
at any other time causes the Linker to restart itself.

3.3.2.2 Non-Fatal Errors -
1. Non-unique object module name - this error is detected during
: pass 1; ~an -error message is issued and the module is
rejected. The message is:
PMODULE NAME sooooo: NOT UNIQUE
' The Linker then asks for moré ihput.
2. Load map device EOM - this error allows the user to fix the
device and continue or abort the map listing. The Linker
- prints: g o : e i

TMAF DEVICE EOM.,
TYPE <CR> TO CONTINUE

Any response, terminatea by «/ or ¢+ causes the Linker to
continue. A ¢ P causes the map to be aborted.

3. A byte reloéétion error - thé Linkei tries to relocate and
link byte guantities. However, relocation usually fails and
linking may fail. Failure is defined as the high byte of the
relocated value (or the linked value) not being all zero. 1In
such a case, the value is truncated to 8 bits and the
following message is printed: '

 »BYTE RELOC ERROR AT AES ADDRESS xsxxiie
The Linker automatically continues.
4. 1If the object modules aré not read in the same order on pass
2 as pass 1, the Linker indicates which module should be
~ loaded next by typing: s SR : Lk
?LOAD xxxXXXx NEXT!
The linker then asks for more input.

5. Multiply-Defined Globals - this “results in the following
error message during pass 1: S E I

Preweswi MULTIPLY DEFINED BY MODULE xuXMKM,

The second definition is ignored and the Linker continues.

3.3.2.3 Fatal Errors - Each of the following errors causes the
indicated error message to be printed and the Linker to be restarted.

1. Symbél Table overflow — the message is:
PSYMBOL TABLE OVERFLOW ~ MODULE sooootks SYMBOL soooxx

3-17

LINK-11S LINKER

2. System Errors - this class of errors prints: -
PSYSTEM ERROR

wherg XX is an identifying”numbertaé*fOllows:_

‘Number S . Meaning

01 Unrecognized symbol table entry was found.

02 A relocation directory references a ~global
name which cannot be ‘found in the symbol
table.

'1=03 e oA relocatinnvdiréctazy contains. a location
counter modification command which is not
last.

04 Object module does not start with a GSD.

05 The firstventry in the‘GSD is not the module

ot o Svuname., o g R : ‘

06 o ‘ An RLD references a section name which cannot
be found. '

07 The TRA -~ specification references a
non-existent module name.

08 ' : fThe; TRA . épecifiéation references a
non-existent section name.

09 SRR hie An internal jump table:iﬁdex is out of range.

10 ¢ PN ; AaichecksumV e£rbr occurred on the object

d = ~module. Ty ' «
11 An object module binary. block is too big

{more than 64 decimal words of data).

12 A device error occurred on the 1load module
output device.

All~syétemﬁer£&rsfexéépt~farfnumbersqlﬂ ahé 12 'inaicate a program
failure either in the Linker or the program which generated the object

module. Error 05 can occur if a tape is read which is not an object
module. N T T

3.3.2.4 "Error HALTs ~ LINK~11S loads all of its unused trap vectors
with the code: : o : ’

+WORD . .+2, HALT
850 that“ifrthe.ttaploﬁcurs,rthe'pracessor halts in the second word of

the vector. The address of the halt, displayed in the console lights,
therefore indicates the cause of the halt.

3-8

LINK-115S LINKER

£, Address of HALT (octal) Meaning
ﬁ 12 Reserved instruction executed.
16 Trace trap occurred.
26 rower fail trap.
32 EMT executed.
A halt at address 40 indicates an IOXLPT detected error. RO
. (displayed in the console lights) contains an identifying code:
Code in RO Meaning
i? 0 Illegal memory reference, SP overflow or

illegal instruction.

1 Illegal IOX command.

2 Slot number out of range.

3 Device number illegal.

4 Referenced slot not INIT ed.

5 Illegal data mode.

5"% IOXLPT also sets Rl as follows:

If the error code is 0, Rl contains the PC at the time of the error.
If the error code is 1-5, Rl points to some ‘element in the IOT
argument list or to "the instruction following the argument list,
depending on whether IOXLPT has finished decoding all the arguments
when it detects the error.

?‘*E
7

A5

L

- CHAPTER 4 ‘
EDITING THE SOURCE PROGRAM

The PDP-11 Text Editor program (ED-11) enables you to displayk your
source program (or any text) on the teleprinter, make corrections or
additions to it, and punch all or any portion of the program on paper
tape. This is accomplished by typing simple one-character commands on
the keyboard.
The Editor csmmands can ‘be grouged acco:ding te f&nctzan.

1. 1nput/output-

2. searching for strings of charactersy

3. pasxtioning tha eurr&nt character location paintet‘

4. 1nsert1ng, deleting, and exchangzng text portzons.

All input/output functions are handleé by IOX, the ?DP~11 Input/Output
Executive {see Chapter’ 7).

4.1 COMMAND MODE AND TEXT MODE

Whenever ED-11 prints an * on the teleprinter, you may type a command
to it. (Only one command per line is acceptable.) The Editor is then
said to be in Command Mode. While most commands operate exclusively
in this mode, there are five ED-11 commands that require additional
information in order for the commands to be carrled out. The EBEditor
goes into Text Mode to receive this text.

Should a nonexistent command be typed or a command appear in incorrect
format, ED-11 prints a ?. This is followed by an * at the beginning
of a new line indicating that the Editor is in Command Mode.

Editor processing begins in Command Mode. When you type a command, no
action occurs until you follow it by typing the RETURN key (symbolized
as</). 1If the command is not a text-type command, typing the RETURN
key - initiates the —execution of the command and ED-11 remains in
Command Mode. However, if the command is a text-type command (Insert,
eXchange, Change, Get, or wHole), typing the RETURN key causes the
Editor to to xnto Text Mode. At this time you should type the text to
be operated ‘on by the command. ‘This can include the non-printing
characters discussed below, as well as ‘spaces and tabs (up to eight
spaces generated by the CTRL/TAB keys). : :

Note that typing the RETURN key always causes the physical return of
the Teletype print element to the beginning of the 1line, and
automatically generates a line feed, thereby advancing the carriage to
a new line. In Text Mode, the RETURN key not only serves these

4-1-

EDITING THE SOURCE PROGRAM

mechanical functions, allowing you to continue typing at the beginning
of a new line, but at the same time it enters a carriage return and
line feed character into the text. (A carriage return not followed by
a line feed cannot, therefore, be entered from the keyboard.)

RETURN and LINE FEED are both counted as characters and can be edited
along with the printing characters (as can the form feed, discussed in
Section 4.2.5). When you wish to terminate Text Mode and reenter
Command Mode, you must type the LINE FEED key symbolized as ¢ }. A
typed LINE FEED is not considered to be part of the text unless it is
the first character entered in Text Mode.

4.2 COMMAND DELIMITERS

4.2.1 Arguments

Some ED-11 commands require an argument to specify the particular
portion of text to. be affected by the command or how many times to
perform the command. In other commands this specification is implicit
and arguments are not allowed. S

The ED-11 command arguments are described as follows:

1. n stands for any number from 1 through 32767 (decimal} and
may, except where noted, be preceded by a + or ~-.

If no sign precedes n, n is assumed to be a positive number.

Where an argument is acceptable, its absence implies an
argument of 1 (or ~1 if a - is present).

The role of n varies according to the command with which it
is associated. e , :

2. 0 refers to the beginning of the current line.

3. @ refers,to a marked {éesignated) character . iocation, {see
: -Section 4.2.3). . «

4. /'refers to the end of text in the Page Buffer.

The roles of all arguments are explained further with = the
corresponding commands which qualify them. :

4.2.2 The Character Location Pointer (Dot)

Almost all ED-11 commands function with respect -to a movable reference
point, ' Dot. . This character pointer is normally located between the
most recent character operated upon and the next character and, at any
given time, can be thought of as "where the Editor is" in your text.
There are commands which move Dot anywhere in the text, thereby
redefining the "current location®" and allowing greater facility in the
use of the other commands. : : ' '

ME
i

EDITING THE SOURCE PROGRAM

4.2.3 Mark

In addition to Dot, a secondary character pointer known as Mark also
exists in ED-11. This less agile pointer is used with great effect to
mark or "remember" a location by moving to Dot and conditionally
remaining there while Dot moves on to some other place in the text.
Thus, it is possible.to think of Dot as "here® and Mark as “there”.
Positioning of . Mark, which is referenced by means of the argument '@,
is. discussed below in several commands. e Sk R

4.2.4 Line-Oriented Command Properties

ED-11 recognizes a line as a unit by detecting a 1line terminator in
the text. This means that ends of lines {line feed or form feed
characters) are counted in line-oriented commands. This is important
to- khow, particularly if Dot, which is a charvacter location pointer,
is not pointing at the first character of a line. B e e

In such a case, an argument n does not affect the same number of lines
(forward) as its negative (backward). For example, the argument -1
applies to the character string beginning with the 'first character
following the second previous end-of-line character and ending at Dot;
argument +1 applies to the character string beginning at Dot and
ending at the first end-of-line character. If Dot is located, say, in
the center of a line, notice that this affects 1-1/2 lines back or 1/2
line forward, respectively: : b S0l i e ‘ "

Example of List Commands -1L and +1L:
Text ~ Command -~ Printout
CMPB ICHAR,#033 #-1L

BEQ gALT o 8
CMPB JCHAR, #175 = = *31L
BNE LACE

Dot is here

4.2.5 The Page Buffer

The Page Buffer holds the text being edited. The unit of source data
that is read into the Page Buffer from a paper tape, is the page.
Normally a page is terminated, and therefore defined, by a form feed
(CTRL/FORM) in the source text wherever a page is desired. (A form
feed is an acceptable Text Mode character.) Overflow, no-tape, or
reader-off conditions can also end a page of input (as described in
Section 4.3.1.2). Since more than one page of text can be in the
buffer at the same time, it should be noted that the entire contents
of the Page Buffer are available for editing.

4-3

EDITING THE SOURCE PROGRAM
4.3 COMMANDS

4. 3 1 Input and autput Commanés ;

Three commands are awailable fcr reading: in a page of text. The Read
command (Section: 4.3.1.2) is a specialized input command; the Next
command. {Section 4.3.1.4) reads in. a page after punching out the
previous page; and the wHole command (Section 4.3.3.2) reads in and
punches out pages of text as part of a search for a specified
character string.

Output commands either list text or punch it on paper tape. The List
command causes specified lines of text to be printed at the terminal
so that they may be examined. -Paper tape . commands (Next and wHole
also perform input) provide for the output of specified pages, lines,
form feeds (for ghanging the amount of data that constitutes a given
page), -and blank tape. .Note that the process of outputting text does
not cause Dot to move. ; 5 gt i ~ cny :

4, 3 1 1 Ogen - The Open ccmmand {O) sheald be typed whenever ‘a new
tape is . put in. the .reader.. This is used when the text file bezng
edited is on more than one paper tape.,=~<

Rote,alsbkthat‘if the :eader is off at;the‘time an input éommand is
given, turning the reader on must be followed by the Open command.

4.3.1.2 Read - One way of gettlng a page of text into the Page Buffer
so that it can be edited is the Read (R) command. The R command
causes a page of text to; be read from:either the low-speed reader or
hzgh speed reader (as specified in the starting dialogue, Section
4. 2), and appended to the contents (if any) of the Page Buffer.

Text is read in until elther-
1. A form feed character is encountered;

2. The page buffer is 128 characters from being filled, or a
line feed 1is encountered after the buffer has become 500
vcharacte:s from being filled;

3gffThe readex is turned off, ot :uns cut of paper: tape (see Gpen
cummand, Section 4.3.1. l}Q, s

Followxng execut1an of ap R commandr Dot and Mark are 1ocated '\ the
beglnning af the Page Buffer.f~ .

A 4K system can accommodate aboﬁt f4000,/characteis of text. Each
additional 4K of memory provides space for about 8000 characters.

NOTE

An attempt to overflow the storage area
causes the command (in this case, R) to _
stop executing. A ? is then printed,
followed by an * on the next line
indicating that a command may be typed.
No data is lost.

[
i

sy
4

o,

s

EDITING THE SOURCE PROGRAM

4.3.1.3 List and Punch - Output commands List (L) and Punch (P) can
be descrIEEE tegetﬁer, as they differ only in that the device

addressed by the former is the terminal, and the device addressed by

the 1latter

is the paper tape punch. Dot is not moved by these

commands. , ' ‘ ,

nL k ‘ Lists‘ } thefcharaétei string beginning at Dot and

nP Punches ending with the nth end~of-line

-nL . Lists } the character string beginning with the

-nP: . - ,'Punchgs ~first character following the (n+l)th pre-
P st ~ ©~ vious end-of~line and terminating at Dot

oL Lzata the aharact&é string beginning with the

op Puaches ‘first character of t&e cuttent 1ine and

 ;¢ﬁding ‘at Dot

' the character sttlng between Dot and the

eL Lists }
}

epP Punches Marked location
/L Lists the character string beginning at Dot and
/P Punches ending with the last character in the Page

Buffer

In addition to the above List commands, there are three special List
commands that accept no arguments. The current line is defined as the
line containing Dot, i.e., from the line feed (or form feed) preceding
Dot to the 11ne feed (ot far& feed) following Dat.

v L:sts the entire 1ina contaxning Dot
< _ Same as -1L. If Dot is located at the

beginning of a line, this simply lists
the line preceding the current line

> -+ Lists the line following the current line
Examples:
TEXT - COMMANDS
CMPB ICHAR, #033 v
- BEQ . $ALT ; , <

‘CMPB ' ICHAR,#175 =

BNE LACE "+~ R >
Dot is here!

Dot remains hete.

4.3.1.4 Next - Typing nN punches out the entire contents of the Page
Buffer (follswad by a trailer of blank tape if a form feed is the last
character in the buffer), deletes the contents of the buffer, and
reads the Next page into the buffer. It performs this sequence n
times.‘ 'If theﬁeiare ‘fewer than the n pages specified, the command is
executed for the number of pages actually available, and a ? is
printed out. Following execution of a- Rext, Dot and Mark are located
at the beginning of the Page Buffer. B

EDITING THE SOURCE: PROGRAM -

4.3.1.5 Fa:g Feed. angATrgileg S dugauloe dueed By fall oL T
» ,F,; Runches eut a Fo:m feed chaxactez and faur inches of biank
tape j e 5 <

nT Punches out four inches of Trailer (blank) tape n tiﬁés

4.3.1.6- Procedure with Low-Speed Punch ~ If the low speed’' punch 'is

the spec;fied output: device- (see e Section 4.4.2), the Editor pauses B
before executing-any -tape: command just. typed (Punch, Form feed, %%
Trailer, Next, wHole). The punch must be turned on at this time, =
after which typing the SPACE. bar .initiates the execution of the

command. Following completion of ‘the operation, the Editor pauses

again to let you turn the punch off. When the punch has been turned

off, typing the SPACE bar returns ED—ll to Command Mode.

Ba

4.3.2 C mands tg Move Dot and Ma k '

4. 3 2.1 Begxnning and End -

B ~Jf Moves Dot to the Begznning of the Page Buffer

E Moves Dot to the End of the Page Buffer (see ‘alsc /J
and- /A below) o , g

4.3.2.2 Jump and~§dvahce$~f

nJ - .- Jumps Dot forward past 'n characters
-nd Moves Dot backward past n characters
nA Advances: Dot forward ‘past n ends-of-<lines to the

beginning of the succeeding line

-na ﬁévéggfnot ‘backwards across n ends-of-lines and .
posltidns ‘Dot immediately after n+l. endS*of ~lines,
i.e., at the beginning of the -n line.

0J or OA Moves Dot to the beginning of the current line
6J or @A Moves Dot to the Marked location

/J or /A Moves Dot to the end ofutha«Page Buffer (see also E
4abave) : ~ ~ e (. £

Notice that whlie n m@ves Dot n eharacters in the Jump command, its
role becomes that of a.line counter in the Advance. command. However;
because 0, @, and /. are absolute, their use with these commands
overrides. line/character distinctions. . Thatw,isf"Jump‘and Advance
perform identical functions if both have either 0, @ or / for an
argument.

4~6

£

EDITING THE SOURCE PROGRAM'

-~ The M command marks (“temémbers®) the current position

ok later reference in a command using the argument 2. Note

that an&x ane ‘position at a time can be in a marked state. Mark is

o affected by the .execution of those cammands which alter the
contegts of the - Page anﬁet: ;

¢ b B 1 X »uf:'TR" X

4.3.3 Search Commands

4.3.3.1 Get ~ The basic search command nG starts at Dot and Gets the
nth occurrence of the sgecifxed text ‘in ths ‘Page Buffer. - If no
argument is- present, it is ~assumed to 'be 1. ~When :‘you type the
command,. followed by the RETORN - ‘key, ED-11 goes into Text Mode. The
character string to be. searcheéd for must now be typed. ' (EP-11 will
accept . a search object of up to 42:echaracters.} &ygzng the LI&E FEED
key te;minates @ext Kaée and &nitiates thé seareh. o

This aemmand sets uot ta the pnsition immediately follawing the founé
charapter string, 'and a OL: listing is performed by ED-11. xf a
carriage return, line feed, or form feed is specified as part of the
search object, the automatic OL displays only a portion of text -- the
part-defined as the last line. Where any of these characters “is the
last . ..character: of the search ﬁb§éct, the 0L Gf course yields no
printcat at ali. £ fin i :

If the 3earch is unsuccessfu} Bot is at the ené ef “the Page anfat
and a ? |is printe& cut. The Editor then returns to Command Mode.

Examplea* ,
o 1‘ - : ~TeXt Y o "Cdmmand ; k Brintéut »

MOV @RMAX,@RS ; 2Ga’ BEQ CK
ADD #6, (R5) + , ’
CLR $CK3

| TsT R2
BEQ CKCR

Dot was here. Dot is now here\

2. CMPB ICHAR,#RUBOUT 6 BR '

BEQ SITE : TE./ :

€§ - PUT , BR+ ~

Do Dot/

4.3.3.2 wﬂai"u A second search commané, H, :‘starts at Dot and 1looks
through the wﬁﬁie ‘text file for the next occurrence of the character
string you have specified in Text Mode. It combines a Get and a Next
such. that if ‘the search is not successful in the Page Buffer, the
contents of the buffer are punched on tape, the buffer contents are
deleted, and & new page is read in, where the search is continued.
This continues until the search object is found or until the complete
source text has been searched. In either case, Mark is at the
beginning of the Page Buffer.

4-7

EDITING THE SOURCE PROGRAM

If the search object is found, Dot is located immediately followxng
it, and ‘a OL is performed by ED-11. As in the Get command, if the
search is not successful Dot is at the end of the buffer and a ?
.appears -on the teleprinter. “Upon completion. of the command, the
.Editor will be in Command Mode. No argument is allowed. '~ Note ‘that an
H command specifying a nonexistent search object can be used to close
out an edit, i.e., copy all remaining text from the input tape to the
output tape.

4.3.4 Commands to Modify the Text

4.3.4.1 Insert - The Insert command (I) allows text to be inserted at
Dot. After I is typed (followed by the ‘typing of the RETURN key), the
Editor goes into Text Mode to receive ‘text to be inserted. ‘Up to 80
characters per 1line are acceptable. Execution of the command occurs
when the LINE FEED ‘key . {which does not Insert a 1line feed character
unless it is the first key typed in Text Mode) is typed terminating
Text Mode. At this point, Dot is located in the position immediately
following the last inserted text character. If the Marked location
was anywhere after the text. to be Inserted, Dot becomes the new. Marked
1ocatian‘;

Dur1ng an 1nsert, it sometimes happens ,that the user accidentally
types. C?RLXQ rather. than SEIFT/P (for. @), thus deleting the entire
insert (see Section 4.4.1). To minimize the effect of such a mistake,
the insert may be termlnated every few lines and then contlnued wzth a
new Insezt command. ~ :

As w1th the Read command, an attempt to overflow the Page Buffer
causes a ? to be printed out followed by an * on the next line
indicating that a command may be typed. All or part of the last line
typed may ‘be .lost. All previously typed lines are inserted.
Examples:

Text ~ Command P Effect

1. MOV #8.,EKO{ I./ MOV $8.,EKOCNT
. CN L
Dot Dot ,

2. Inserting a carriage return (and automatic line feed):
CLR RICLR R2 S 5 CLR Rl
, </ CLR R2
Dot \

3. Inserting a single line feed:

1</
LOOK WHAT HAPPENS HERE - Dy “LOOK WHAT
- : - ¥ : : H&PPENS HERE
Dot o o \

Dot

4-8

P

g
£

EDITING THE SOURCE PROGRAM

4.3.4.2 Delete and Kill - These commands are closely related to each
other; they both erase specified text from the Page Buffer. The
Delete command {D) differs from the Kill command (K) only in that the
former accepts an argument, n, that counts characters to be removed,
while the latter accepts an argument; ~n, - that counts lineg +to be
removed. 0, @, and / are also allowed as arguments. ' After execution
of these commands, Dot becomes the Marked location.

nD Deletes the following n characters
-nD ' Deletes the previous n characters

nK Kills the character string’ beginaing at Dat and ending
o at the nth end~of-line

=nk 'Kills the character string beginning with the first
S character following the (n&i;th prev&cus ena~ﬁf-1ine
and. endxng at bet - ,

oD ox,ﬂk 'Remaves the carraﬂt lxne up to Dot :
@D or €K ‘Removes the character strlng bounded by Dot and Mark

/D or /K Removes the character string beginning at Dot and
' ending with the last character in the Page Buffer

Text - Command Effect
1. ;CHECK THE mzz;ns -2p ;CHECK THE MODE

Do Dot

2. ;IS IT A TAB, OR 2K ;IS IT A T
;IS IT A CR\
; Dot pot~"

4.3.4.3 Change and exchange - The Change (C} and eXchange (X)
commands can be thought of as two-phase commands combining,
respectively, an Insert followed by a Pelete, and an 1Insert followed
by a Kill. After the Change or eXchange command is typed. ED-11 goes
into Text Mode to receive the text to be inserted. If n is used as
the argument, it - is then interpreted as in the Delete
(character-oriented) or Kill {line-oriented), and accordingly removes
the indicated text. 9, @. and / are also alzowea as argumeﬂts.

nC : Changes the follewing
XXXX - n characters
XXXX
-nC - Changes the previﬁas
XXX ~ n characters
X - eXchanges the cha:acter
XXX - string beginning at Dot and
XXXX i enéing at the nth enﬂ-efnline
“nX ? fexehanges the cha:acter e
xxx = string beginning = with the first = character

. following the (n+l)th ?revioas sna—of~1ine and
- ending at Dot

EDITING THE SQURCE PROGRAM -

0C or- OX <. Replaces the current:line up to Dot
XXXX' XXXX . 0 o = RN BT
XXXX XXXX

qéc or ‘@xf— 'ieplaces the character string bounded by Dot =~
XxXx. -+ XXx. . and the Marked location . . i

/C or /X Replaces the character string beginning at Dot
XXX XXX and ending with the last character in the Page
Buffer.- T : o ;

Again, the: use of absolute arguments 0, and @, ‘'and '/ overrides the
line/character distinctions that n-and -n-.produce in these commands.

1f the Insert portion of a Change or eXchange is terminated because of
attempting to overflow the Page Buffer, data from the latest line may
have been lost, and text removal does not occur. Such buffer overflow
might be avoided by separately executing a Delete or Kill followed by
an Insert, rather than a Change or eXchange, which does an Insert
followed by a Delete or Kill. Examples:

Text " Command Effect
;A LINE FEED,IS HERE = -9C./ ; A TAB.IS HERE
TAB4

; THIS 2%/ ; THIS

1 IS ON Dot PAPER ;IS ON

sFOUR ' . ;PAPER

ﬁnxnss “

Dot ' Dot

4.4 OPERATING PROCEDURES

4,4.1;.£rxorbCo:ructions

During the course of editing a page of the program, it may become
necessary to.;correct mistakes in the commands themselves. ' There are

four special commands.which do this:.

~1. Typing the RUBOUT key removes the preceding typed character,
Jif it is on the current line. . Successive RUBOUTs remove
preceding characters on the line (including the SPACE), one
character for each RUBOUT typed. e A

2. The CTRL/U combination (holding down the CTRL key and typing
U) removes all the characters in the current line. e

3. CTRL/P cancels the current command .in. its entirety. - This
includes all the current command text just typed, if ED-11
was in Text Mode. Do not use another CTRL/P before typing a
line terminator, as: this will cause ap ED-11 restart. {see 4.
below). If CTRL/P is typed while a found search object of a
Get or wHole is being printed out, the normal position of Dot
(just after the specified search object) is not affected.

S .. . CTRL/P should not be used while .a punch operation is in

progress as it is not possible to know exactly how much data
will be output.

4-10

EDITING THE SOURCE PROGRAM

4, Two CTRL/P's not -interrupted by a typed line terminator
restart ED-11, initiating the dialoque desctibed in Section
4.4.2, :

After -removing the incorrect command data;, the user can éirectly type
in the desired input.

4.4.2 Starting

The Editor is loaded by the Absolute Loader {see Chapter 6, Section
6.2.2) and starts automatically. Once the Editor has been loaded, the
followzng seqnence oceurs. : S ‘

3

ED-11 Prints User Types

*1 ; L </ (if the low-speed Reader is to be used
for source 1nput}

HS (if the high~speed Readez is to be used
for source input)

*Q L </ (if the low-speed Punch is to be used
for edited output)

H./ (if the high—speed Punch is to be used
.- for. edited output) ,

If all text is to be entered fraﬁ the keyboard - zx.e‘, via the Insert
command) , either L or H may. be specified for Input.

If the output devxce is the high-spead punch (HSP), the Editor enters
Command Mode to accept input. Otherwise, the sequence continues with:

LSP OFF +/ (when low-speed Punch (LSP) is off)

Upon input of *J'frdﬁ thézkeyboard. the Editor enters Command Mode and
is ready to accept input.

4.4.3 Restarting

To restart ED-11, type CTRL/P twice. This initiates the normal
starting dialogue described in Section 4.4. 2. If the Low-speed Reader
(LSR) is in operation it must first be turned off. The text to be
edited should be loaded (or reloaded) at this time. ,

4.4.4 Creating a Paper Tape

Input commands assume that text is to be read from a paper tape by the
low-speed reader or high-speed reader. However, the five commands
that go into Text Mode enable the user to input- from the keyboard.
The Insert command, in particular (Section 4.3.4.1) can be useful for
entering large guantities of text not on paper tape. The Page Buffer
can thus be filled from-+the "keyboard, -and a paper tape actually
created by using a command-to. punch ocut the buffer contents.

4-11

EDITING THE SOURCE PROGRAM

4.4.5 Editing Example
The following example consists of three parts:

1. The marked up source program listing indicating the desired
changes.

2. The ED-11 commands to implement those changes (with comments
on the editing procedure).

NOTE

Typing the RETURN key terminates Command Mode in all
cases. In commands which then go into Text Mode,
typing the LINE FEED key (symbolized as +) produces
the terminator.

3. The edited text.

Part I Original Source for Edit

FCOMMON INFUT ROUTINE FOR USE BY NON FILE DEVICES

SINFUT? ADC

ICHARy (RS54

FUFDATE CKSUM

CLR ~(L8) $CLEAR DONE

MOV (RS)+s RMAX $BET ADR MAX

MOV (RS)+» MODADR SGET ADR MODE

~ $RS NOW POINTS TO POINTER

$CKMODE SRITR @MODADE,#ASCII 18 THIS ASCII

ENE CKBIN. ;N0~"TTHY EINARY
$CKNUL.S TSTR ICHAR $ASCII~~-IS CHAR A NULL

BEQ CK $YES--NO GO

$LOOK AT MODE TO SEE IF

$CKFAR! BITE @MODADRy #FARRIT $SUPFOSED TO CHECK PARITY?

ENE FAROK . $NO

MOVE ICHAR y OCHAR $YES-~-CK IT

JBR K7 »FARGEN

SUR ICHAR y OCHAR P

BEQ FAROK JOK?

BIS $FARERR y @MODADK $NO--~SET ERR BIT
FAROK: CLR OCHAR

RIC $177200y ICHAR $STRIF PARITY

CMPE @10(RADDD » #KBD 518 THIS KED INFUT

ENE 0KO iND

TSTH EKOCNT $YES---DNONE EKO OF LAST?

REQ $0K §YES ‘

CLR ICHAR $NO-~~DROP NEW CHAR
$IPRCKE JMP CK ' ~ '

FWHAT I8 THE CHAR

~ Ju

$0K: CHPB ICHAR,#CTRLC SIS IT A ~C :
. BNE e e —N éﬁfv‘
MOV FUPC » OCHAR: $YES-~ECHD ~C
INC ROUN
MOV $ABRTADs20(R6) $DIDDLE RETURN ADR
BB PLUS1

4-12

e

=

. RESTAD,

EDITING THE SQURCE PROGRAM

(R&)

CHMFB
BEQ
RE

ICHAR

RIOUN

FUFPF » OUHAR
——rtt et

IﬁHéRs*RUBGUT

CK
FUT

$THIS IS NOT KBD INPUT s ERMATIED A2

G FHEG—ASE LT TORNATTED ™) wmuuuM‘b

e s 3 AS X MHAY,
i >

$I8 THIS A& RUBDUT

SYES~~-~IGNORE IT

$NO o

CKUPUZ

S CK

(R5)+

$ YE§---FORGET IT
SECHO A \ f
 POINTER=FOINTER-1

_ $POINTER=BUF ADR+6

ADD by RS+
CLR @RS $BC=0
BE EKO JECHO_
CKTAB: CMPB ICHAR» #HTAR 518 IT A TAR
BNE. CKCR $NO
MOV #BLNKS » OCHAR $YES-~~ECHO BLANKS
MOV TABCNTyEKOCNT $8ET UF COUNTER
BB PUT 3
CKCR: CMFB ICHARy #CR 5IS IT A CR?Y
BNE $CK3 $NO
MOV #CRLF » DCHAR $ YEG~~~ECHO CRLF
ING ROUN
BE PLUS1 3
ALT
$CK§? CMFR ICHAR» $#033 "
BEQ $ALT ‘ . ;3 Chan
CMPR ICHAR» #175 4#
BEQ $ALT AlTMeog ?
CMPB

10&@&;#175

4=~13

CRLF?

CKRFF3

. .Part TI:

CHMPR
BNE
ING
BE

MOV
CMPR
BNE
MOV
MOV
BE. -

EDITING THE SOURCE 'PROGRAM

ICHAR s #L.F

.. CKFF
© RIUN.

FUT

ICHAR» OCHAR
ICHAR s #FF
PUT
#8.) EKOCNT
$LFLF y OCHAR

FUT

Editing Session

Assume that ED-11 has been starteé, is in Command Mode, and the tape

is in the reader.

Underlined matter indicates ED-11 output.

‘ReAds in a”page 6f7£é§t

OKO repiaées,last~5wchazactegs~(CKUPP}

;Dot is moved 6 lines ahead (including

;9 lines are killed starting with CKUPP:

:Next line is listed -~ Dot is not moved

;Dot is moved 1 line ahead to point to

;Following comments replace the next 4

*R
*H -Searches entire program ‘for 2CK: -
2CK:¥ ;when found ED-11 performs a OL
SJP2CK:
*G ;Seatphechurrent page for next CK -
CK ;when found ED~11 performs a OL
$JP2CK _JMP CK)
*1 ;Inserts DUN following CK
DUNY 1 :
*G ;Searches for next CKUPP ~
CKUPP+ i ;when found ED-11 performs a OL
BNE CKUPP
*-5¢C |
OKO
*6A
3a blank line)
*9K
*L
- __;THIS IS NOT KBD INPUT
*] :Blank line is inserted
</
*
*A
" ;character O of OKO:
*4x
;lines
; FORMATTED AND UNFORMATTED
;ASCII ARE- EANDLED TBE SAHE@
*G ;Searches’ fér next CRIEP"*L* o
CKINP:+ OL printout occurs when-found
CKINP: -

‘4-14

‘EDITING THE SOURCE PROGRAM

£, *0J ‘ j © . ;Dot is moved to the beginning of the
f * s ~jcurrent line.
*/K » i ~ ~ 3The rest of the page is killed (3 lines)
*N ‘;Currént page is’punchéd out on paper tape -
‘;a new page is read in ‘
* *L , ;The next line is listed - Dot is not moved
TST 2(R5) ;BC=0? ,
*15K 315 lines are killed starting with TST
*2L S +1 blank line and 1 line of text
jare 1isted - Dot is not moved
CKTAB: CMPB ICHAR, $HTAB 1T A '1*
*2G -Sea:ches far 2nd occurrence of S$CK3 -
e,) CK3+ P . 30L printout verifies it is found
£ 0 ECKﬁ
*-C ;ALT replaces pteceding character
ALTY
*y ; ;Lists entife current line to verify
$CKALT: CMPB ICHAR,#033 ;the above-C result
*G | '~ ;Searches for the 033 to position Dot
033+ ifor next~cﬂmman& -~ QL ocgurs
SCKALT: CMPB ICHAR,#033 '
U *I ;The following text is inserted in the
jcomment field
;IS CHAR AN ALTKOQK?
*G ' ;Searches for next CKLF -- 0L occurs
CKLF+¥ : : o ' :
BNE CKLF
*-2C ;zx replaces the preceéing two characters
EX o (LFy
éﬁ%% *2J3 ;Jumps Dot past the carriage return and
k ;line feed characters
*K 3Kills next line (start;ng with $AL?)
*I ;Inaerts $ALT~ at beglnning of the fol-
SALT:4 ; ‘$lowing line ' ,
*A ;Advances Dot past 1 line feed to the
b 5 :beginning of the next line
*M . _iMarks the position of Dot
- *B 5 ~uoves Dqt to the beginning ef the cur-
-rent paqe

4-15

*ep

*ea

*2K

EDITING THE SOURCE PROGRAM

;Punches out the: lines from Dot to the
;position just marked - Dot not moved

sMoves Dot from the beginning of the
;page to the marked position

+1Kills the next 2 lines

PART III Edited Source

F COMMON INFUT ROUTINE FOR USE BY: NON FILE DEVICES

SINPUT: ADD
CLR
MoV
MOV

SCRMODEIRITR
BNE

SCKNUL. T TETR
REQ

$CKFAR? RBITR
BNE
MOVE
JER
SUB
BEQ
RIS

FAROK? LLR
RIC
CMFPR
BNE
TETER
BEQ
CLR

$JF2CKE UMF

~ICHAR Y (RS +

= (L8)
(RS5)+ s RMAX
(RE)Y+yMODADR

EMODADE $ASCII
CKBIN ‘

ICHAR
CK

EMODADR s #PARRIT
FAROK -

ICHAR » OCHAR

R7 s FARGEN
ICHAR » OCHAR
FAROR
#FARERR » @MODADR
OCHAR
#1772005ICHAR
B1O(RALNDN) » #KED
RO

ERKOCNT

$0K

ICHAR

CKIDUN

FWHAT I8 THE CHaAR

$0K: CHMPR
BNE
MOV
ING
MOV
ER

CRTARD CMPB

TEHAR s #CTRLE
OKO - ,
FUFC » OCHAR

- RIOUN

#ABRTAL» 20(R6)
PLUSL

ICHAR s #RUROUT
CK ,
PUT
ICHAR » #HTAR
CKCR
#BLNKS » OCHAR
TARCNT » EKOCNT
PUT

FUPDATE CKSUM

$CLEAR DONE

FGET ADR MAX

FGET ADR MODE ‘

*RS NOW POINTS TO FOINTER

$I8 THIS ASCII
#NO~~-=TRY BINARY

$ASCII-~~15 CHAR A NULL
§YES~-NO .60

sLOOK AT MODE TO 8EE IF
$SUPFOSED TO CHECK PARITY®?
§NO

$YES~—-—~CK IT

§
FOK?
FNO~-~8ET ERR RIT

iSTRIF PARITY

$I8 THIS KRD INPUT

$NO

3 YES—-—~DONE EKO OF LAST?
$YES

$NO~~-DROF NEW CHAR

IS IT A "C
INO ,
$YES~-~ECHO ~C

SUIDDLE RETURN ADR

$THIS I8 NOT KED INPUT
SFORMATTED AND UNFORMATTEDR

F#ABCII ARE HANDLED THE SAME

$IS THIS A RUROUT
FYES-——~IGNORE IT

§ NQw o ;

SIS IT & TAR

§NO

FYEG—-—-ECHD BLANKS
FSET UP COUNTER

¥

4-16

=

EDITING THE SOURCE PROGRAM

o CKCR: CMFE ICHAR» #CR $IS IT A CR?
£ ENE $CK3 $ND
MOv #$CRLF y BCHAR $YEG~~~ECHD CRLF
INC RDUN
ER PLUSL ;
$CKALT: CMPR ICHAR » $033 518 CHAR AN ALTMODE?
BEQ $ALT
- CMPR ICHAR s $175
BEQ $ALT
CMPE ICHAR» #176
. ENE CKEX
L $ALT: MOV $175s ICHAR
CKLF: CMPE ICHAR » #LF
ENE CKFF
INC RDUN
BR PUT
CKFF: MOV ICHAR y OCHAR
CMEP ICHAR y #FF
o ENE PUT
MOV #8sEKOCNT
MOV $LFLF » DCHAR
BE PUT

4.5 SOFTWARE ERROR HALTS

ED-11 loads all unused trap vectors with the code
. .WORD .+2,HALT

so that if the trap does occur, the processor halts in the second word
of the vector. The address of the halt, displayed in the console
address register, therefore indicates the cause of the halt. In
addition to the halts which may occur in the vectors, the standard IOX
error halt at location 40 may occur (see Chapter 7).

Address of HALT Meaning
12 Reserved instruction executed
16 Trace trap occurred
ﬁﬂmﬁ 26 power fail trap
‘ 32 EMT executed
36 : TRAP executed
40 I0X detected error

CHAPTER 5

DEBUGGING OBJECT PROGRAMS ON-LINE

5.1 INTRODUCTICN

ODT-11 (On-line Debugging Technique for the PDP-11) 1is a system
program which aids in debugging assembled object programs. From the
£ Teletype keyboard you interact with ODT and the object program to:

. print the contents of any 1location for examination or
alteration

. run all or part of an object program using the breakpoint
feature

. search the object program for specific bit patterns

. search the object program for words which reference a
specific word

{ ' . calculate offsets for relative addresses
During a debugging session you should have at the terminal the
assembly 1listing of the program to be debugged. Minor corrections to
the program may be made on-line during . the debugging session. The
program may then be run under control of ODT to verify any change
made. Major corrections, however, such as a missing subroutine,
should ' be noted on the assembly listing and incorporated 1in a
subsequent updated program assembly.

A A binary tape of the debugged program can be obtained by use of the

DUMPAB program {see Chapter 6, section 6.3).

5.1.1 ODT-11 and ODT-11X

There are two versions of ODT included in the PDP-11 Paper Tape
‘Software System: a standard version, ODT-~11l, and an extended version,

% <ODT-11X." Both versions are independent, self-contained programs.
ODT-11X has all the features of ODT-1ll, plus some additional features.
Each version is supplied on two separate paper tapes: a source tape
and an absolute binary tape. The purpose of the tapes, and loading

L and starting procedures are explained in a later section of this
chapter.

ODT-11 is completely described in section 5.2, and the additional
features of ODT-11X are covered in section 5.3. 1In all sections of
this chapter, except where specifically stated, reference to ODT

&% i Y

' Only ODT-11X is available for the LSI-11 or the PDP-11/03.

5-1

DEBUGGING OBJECT PROGRAMS ON-LINE

applies to both versions. Concluding sections discuss ODT's internal
operations -- how it effects breakpoints, how it uses the "trace trap"”
and the T-bit, and other useful data.

The following discussion assumes that the reader is familiar with the

PDP-11 introduction formats and the PAL-11A Assembly Language as
described in Chapter 3.

5.1.2 ODT's Command Syntax

ODT's commands are composed of the following characters and symbols.
They are often used in combination with the address upon which the
operation is to occur, and are offered here for familiarization prior
to their thorough coverage which follows. Unless indicated otherwise,
n below represents an octal address.

n/ open the word at location n
/ reopen last opened location
n\ (SHiFT/L) open the byte at location n (ODT-11X only)
\ reopen the last opened byte (ODT-11X only)
+ (LINE FEED key) open next sequential location
1 open previous location
RETURN close open location and accept the next command
«2 take contents of opened location, index by contents of

PC, and open that location

@ take contents of opened location as absolute address
and open that location (ODT-11X only)

> take contents of opened location as relative branch
instruction and open referenced location (ODT-11X only)

< return to sequence prior to last @, >, or _ command and
open succeeding location (ODT-11X only)

sn/ open general register n (0-7)

separates commands from command arguments (used with
alphabetic commands below)

~e

:B remove Breakpoint(s) (see description of each ODT
version for particulars)

n;B set Breakpoint at location n

'The circumflex appears on some keyboards and printers in place of the
up-arrow.

’The underline appears on some keyboards and printers in place of the
back-arrow.

%E

. DEBUGGING OBJECT PROGRAMS ON-LINE

n;rB set Breakpoint r at location n (ODPT-11X only)

;B remove r{th) Breakpoint (0ODT-11X only)

n;E seaxch for instructions that reference Effective
address n *

n;w search for Words with bit patterns which match n

snS . enable Single-instruction mode (n can have any value
and is not significant); disable breakpoints

1S disable Single-instruction mode

n;G Go to location n and start program run

: P Proceed with program execution from breakpoint; stop
when next breakpoint is encountered or at end of
program

In Single-instruction mode only (ODT-11X), Proceed to
execute next instruction only ,

n;p Proceed with program execution from breakpoint; stop
after encountering the breakpoint n times.

In single-instruction mode only (ODT-11X), Proceed to
execute next n instructions.

n/(word)n;Q calculate Offset from location n to location m

$B/ open Breakpoint status word (ODT-11)
open BREAKPOINT 0 STATUS WORD (ODT-11X)
sM/ - open search Mask
$s/ open location containing user program's Status register
$p/ open location containing ODT's Priority level

With ODT-11, location references must be to even numbered 16-bit
words. With ODT-11X, location references may be to 16-bit words or
8-bit bytes.

The semicolon in the above commands is ignored by ODT-11l, but is wused
for the sake of consistency, since similar commands to ODT-11X require
it.

5.2 COMMANDS AND FUNCTIONS

When ODT is started as explained in section 5.6, it indicates its
readiness to accept commands by printing an asterisk (*) on the left
margin of the terminal paper. In response to the asterisk, you can
issue most commands; for example, you can examine and, if desired,
change a word, run the object program in its entirety or in segments,
or even search core for certain words or references to certain words.
The discussion below first explains some elementary features, and then
covers the more sophisticated features. ‘

All commands to ODT are issued using the characters and symbols shown
above in Section 5.1.2.

DEBUGGING OBJECT PROGRAMS ON-LINE

5.2.1 Opening, Changing, and Closing Locations

An open location is one whose contents ODT has printed for
examination, and whose contents are available for change. A closed
location is one whose contents are no longer available for change.
Any even-numbered location may be opened using ODT-11.

The contents of an open location can be changed by typing the new

contents followed by a single character command, which requires no

argument (i.e. + + RETURN « @ > <). Any command typed to open a

- location when another location is already open causes the currently
open location to be closed.

5.2.1.1 The Slash (/) - One way to open a location is to type its
address followed by a slash:

*1000/012746

Location 1000 is open for examination and is ‘available for change.
Note that in all examples ODT's printout is underlined; vyour typed
input is not.

Should you not wish to change the contents of an open location, merely
type the RETURN key and the location will be closed; ODT prints
another asterisk and waits for another command. However, should you
wish to change the word, simply type the new contents before giving a
command to close the location.

*1000/012746 012345
*

In the example above, location 1000 now contains 012345 and is closed
since the RETURN key was typed after entering the new contents, as
indicated by ODT's second asterisk.

Used alone, the slash reopens the last location opened:

*1000/012345 2340
%/002340

As shown in the example above, an open location can be closed by
typing the RETURN key. In this case, ODT changed the contents of
location 1000 to 002340 and then closed the location before printing
the - *, A single slash then directed ODT to reopen the last location
opened. This allowed us to verify that the word 002340 was correctly
stored in location 1000. (ODT supplies the leading zeroes if not
given.)

Note again that opening a location while another is currently open
automatically c¢loses the currently open location before opening the
new location.

5.2.1.2 The LINE FEED Key - If the LINE FEED key is -typed when a
location 1is open, ODT closes the open location and opens the next
sequential location:)

*1000/002340 + - ~(¥+ denotes typing the LINE FEED key)
001002/012740 e

DEBUGGING OBJECT PROGRAMS ON~LINE

In this example, the LINE FEED key instructed ODT to print the address
of the next location along with its contents and to wait for further
instructions. After the above operation, location 1000 is closed and
1002 is open. The open location may be modified by typing the new
contents.

5.2.1.3 The Up-Arrow{+) - The up-arrow (or curcumflex) symbol is
effected by typing the SHOFT and N key combination. If the up-arrow
is typed when a location is open, ODT closes the open- location and
opens the previous location (as shown by continuing from the example
above) : C :

001002/012740 t (* is printed by typing SHOFT and N)

(o

0010007002340

Now location 1002 is closed and 1000 is open. The open location may
be modified by typing the new contents.

5.2.1.4 The Back-Arrow(+) - The back-arrow (or underline) symbol is
effected by typing the SHIFT and O key combination. If the back-arrow
is typed to an open locatién, ‘ODT interprets the contents of the
currently open location as an address indexed by the Program Counter
(PC) and opens the location so addressed:

*1006/000006 + (« is printed by typing SHIFT and 0)
-001016/100405

Notice in this example that the open location(1006) was indexed by the
PC as if it were the operand of an instruction with address mode 67 as
explained in Chapter 3.

A modification to the opened location can be made before a+, %+, or «
is typed. Also, the new contents of the location will be used for
address calculations using the _ command. Example:

*100/000222 44 {modify to 4 and open next location)
0001027000111 6+ (modify to 6 and open previous location)
000100/000004 100+ {change to 100 and open location indexed

~0£GZJZ/{ngtents) A ‘by PC)

5.2.1.5 (Accessing,aenexal Registers 0-~7 - The . program's general
registers 0-7 can be opened using the following command format:

*$n/
where n is the integer representing the desired register (in the range

0 through 7). When opened, these registers can be examined or changed
by typing in new data as with any addressable location. For example:

*$0/000033. (RO was examined and closed)
*
and
*$4/000474 464 (R4 was opened, changed, and closed)
%

DEBUGGING OBJECT PROGRAMS ON-LINE

The example above can be verified by typing a slash in response to
ODT's asterisk:

*/000464

The + , ¢+, +, or @ commands may be used when a register is open (the @
is an ODT-11X command).

5.2.1.6 Accessing Internal Registers - The program's Status Register
contains the condition codes of the most recent operational results
and the interrupt priority level of the object program. It is opened
using the following command:

*$5/000311

where $S represents the address of the Status Register. In response
to $5/ in the example above, ODT printed the 16-bit (of which only the
low-order 8 bits are meaningful): Bits 0-3 indicate whether a carry,
overflow, zero, or negative (in that order) has resulted, and bits 5-7
indicate the interrupt priority level (in the range 0-7) of the object
program. :

The $ is used to open certain other internal locations:

$B internal breakpoint status word (see section 5.2.2.2)

$M mask location for specifying which bits are to be
examined during a bit pattern search (see section
5.2.4)

$P location defining the operating priority of ODT (see

section 5.2.6)

$8 location containing the condition codes (bits 0-3}) and
interrupt priority level (bits 5-7)

5.2.2 Breakpoints

The breakpoint feature facilitates monitoring the progress of program
execution. A breakpoint may be set at any instruction which is not
referenced by the program for data. When a breakpoint is set, ODT
replaces the contents of the breakpoint 31location with a trap
instruction. Thus, when the program is executed and the breakpoint is
encountered, program execution is suspended, the original contents of
the breakpoint location are restored, and ODT regains control.

5.2.2.1 Setting the Breakpoint(n;B) -~ ODT-11l provides only one
breakpoint; ODT~11X provides eight. Breakpoint{s) may be changed at
any time. A breakpoint is set by typing the address of the desired
location of the breakpoint followed by ;B. For example:

*1020;B
*

sets a breakpoint at location 1020. The breakpoint above is changed
to location 1120 as shown below.

*1020;B
%1120;B
*

L

DEBUGGING OBJECT PROGRAMS ON-LINE

Breakpoints should not be set at locations referenced by the program
for -data, nor at an IOT, EMT, or TRAP instruction. This restriction
is explained in section 5.5.2.

The breakpoint is removed by typing ;B without an argument, as shown

below.
*1120;B (sets breakpoint at location 1120)
*;B ~ {removes breakpoint)
*

5.2.2.2 Locating the Breakpoint($B) - The command $B/ causes ODT-11
to print the address of the breakpoint (see also section 5.3.3 on $B
in ODT-11X):

*$B/001120

The breakpoint was set at location 1120. $B represents the address
containing ODT-=11's breakpoint location. Typing the RETURN key in the
example above leaves the Dbreakpoint at location 1120 and returns
control to ODT-1l. The breakpoint could be changed to a different
location: : ,

*#$B/001120 1114
*$B/001114
*

The breakpoint was found in location 1120, changed to location 1114,
and the change was verified.

If no breakpoint is set, $B contains an address internal to ODT-11.

5.2.3 Running the Program(n;G and n;P)

Program execution is under control of ODT. There are two commands for
running the program: n;G and n;P. The n;G command is used to start
execution (GO) and n;P to continue (Proceed) execution after halting
at a breakpoint. For example:

*1000;G

starts execution at location 1000. The program runs until it
encounters a breakpoint or until pregram completion. If the program
enters an infinite 1loop, it must be restarted or reentered as
explained in section 5.6.2.

When a breakpeint is encountered, execution stops and ODT-11 prints B;
followed by the address of the breakpoint. Desired locations can then
be examined for ' expected data. For example:

*1010;B (breakpoint is set at location 1010}

#1000;6G (execution started at location 1000)
B;001010 - {execution stopped at location 1010)
* . H

To continue program execution from the breakpoint, type ;P in response
to ODT-11l's last *.

When a breakpoiht is set in a loop, it may be desirable to allow the
program to execute a certain number of times through the loop before

5-7

DEBUGGING OBJECT PROGRAMS ON-LINE

recognizing the breakpoint. This may be done by typing the n;P
command and specifying the number of times the breakpoint is to be
encountered before program execution is suspended (on the n(th)
encounter). (See section 5.3.3 for ODT-11X interpretation of this
command when more than one breakpoint is set in a loop.)

Example:
B;001010 (execution halted at breakpoint)
*1250;B (set breakpoint at location 1250)
*4:P (continue execution. loop through
B;001250 breakpoint 3 times and halt on the
* 4 (th) occurrence of the breakpoint)

The breakpoint repeat count can be inspected by typing $B/ followed by
LINE FEED. The repeat count is then printed. This also provides an
alternative way of specifying the count. Since the location is open,
its contents can be modified in the wusual manner by typing new
contents followed by the RETURN key.

*$B/001114 + (address of breakpoint is 1114)
nnnnnn/000003 6 (repeat count was 3, changed to 6)
* i

Breakpoints are inserted when performing an n;G or n;P command. Upon
execution of the n;G or n;P command, the general registers 0-6 are set
to the values in the locations specified as $0-%6 and the processor
status register is set to the value in the location specified as $S.

5.2.4 Searches

With ODT you can search all or any specyfied portion of core memory
for any specific bit pattern or for references to a specific location.

The location represented by $M is used to specify the mask of the
search. The next two sequential locations contain the lower and upper
limits of the search. Bits set to 1 in the mask are examined during
the search; other bits are ignored. For example,

*$M/000000 177400 + (v deéenotes typing LINE FEED)
nnnnnn/000000 1000 + (starting address of search)
nnnnnn/000000 1040 (last address in search)

*

where nnnnnn represents some location in ODT. This 1location varies
and is meaningful only for reference purposes. Note that in the first
line above, the slash was used to open $M which now contains 177400,
and that the LINE FEEDs opened the next two sequential locations which
now contain the lower and upper limits of the search.

5.2.4.1 Word Search(n;W) -~ Before initiating a word search, the mask
and search 1limits must be specified as explained above. Then the
search object and the initiating command are given wusing the n;W
command where n 1is the search object. When a match is found, the
address of the unmasked matching word is printed. For example:

*$M/000000 177400 + (test high order eight bits)
nnnnnn/000000 1000 +
nnnnnn/000000 1040
*400;W -
001010/000770
001034/0060404

¥

{initiating word search)

5-8

DEBUGGING OBJECT PROGRAMS ON-LINE

£ In the search process, the word currently being examined and the

t search object are exclusive ORed (XORed), and the result is ANDed to
the mask. 1If this result is zero, a match has been found, and is
reported at the terminal. Note that if the mask is zero, all
locations within the limits are printed.

5.2.4.2 Effective Address Search(n;E) -~ ODT enables you to search for
words which address a specified location. After specifying the search
limits (section 5.2.4), type n;E (where n is the effective address) to
initiate the search.

Words which are either an absoclute address (argument n itself), a
relative address offset, or a relative branch to the effective address
are printed after their addresses. For example:

*$M/177400 +
nnnnnn/ﬂﬁ}ﬁﬁo 1010 +

P : nnonnnn/001040 1060 : ,

£ *1034;E {initiating search)
001016/001006 {(relative branch)
001054/002767 (relative branch)
*1020;E {initiating a new searhc)
001022/177774 (relative address offset)
001030/001020 {absolute address)
i :

Particular attention should be given to the reported references to the

effective address because a word may have the specified bit pattern of

: an effective address without actually being so used. ODT will report

e these as well.

5.2.5 Calculating Offsets (n;0)

Relative addressing and branching use an offset - the number of wrods

or bytes forward or backward from the current location of the

effective address. During the debugging session it may be necessary

to change a relative address or branch reference by replacing one

instruction offset with another. ODT calculates the offsets in
o response to the n;O0 command.

gy

The command n;O causes ODT to print the 16-bit and 8-bit offsets from
the currently open location to address n. 1In opT-11, the 8-bit offset
is printed as a 16-bit word. For example:

*346/000034 414;0 000044 000022 22
*/000022 '
*20/000046 200;0 000156 000067 67
*20/000067 : : :

In the first example, location 346 is opened and the offsets from that
location to location 414 are calculated and printed. The contents of
- location 346 are then changed to 22 and verified on the next line.
" The 16-bit offset is printed followed by the 8-bit offset. In the
example above, 000156 is the 16-bit offset and 000067 is the 8-bit
offset. ,

The 8-bit offset is printed only if the 16-bit offset is even, as in
the case above. With ODT-11 only, the user must determine whether the
£ 8-bit offset is out of the range 177600 to 000177 (-128 decimal to 127

decimal). The offset of a relative branch is calculated and modified
as follows:

5-9

DEBUGGING OBJECT PROGRAMS ON-LINE

*1034/103421 1034;0 177776 177777 103777
* B

Note that the modified low-order byte 377 must be combined with the
unmodified high-order byte. Location 1034 was still open after the
calculation, thus typing 103777 changed its contents; the 1location
was then closed.

5.2.6 ODT'S Priority Level ($P)

$P represents a location in ODT that contains the priority 1level at
which ODT operates. If SP contains the value 377, ODT operates at the
priority level of the processor at the time ODT is entered. Otherwise
$P may contain a value between 0 and 7 corresponding to the fixed
priority at which ODT operates.

To set ODT to the desired priority level, open $P. ODT prints the
present contents, which may then be changed:

*$P/000006 377
*

If $P is not specified, its value is seven.

Breakpoints may be set in routines at different priority levels. For
example, a program running at a low priority level may use a device
service routine operating at a higher priority level. If a breakpoint
occurs from a low priority routine, if ODT operates at a low priority,
and if an interrupt does occur from a high priority routine, then the
breakpoints in the high priority routine will not be executed since
they have been removed.

ODT-11X has all the commands and features of ODT-11 as explained in
section 5.2, plus the following. :

5.3.1 Opening, Changing and Closing Locations

In addition to operating on words, ODT-11X operates on bytes.

One way to open a byte is to type the address of the byte followed by
a backslash: .

*¥1001/025 (\ is printed by typing SHIFT and L)

A backslash typed alone reopens the last open byte. If a word was
previously open, the backslash reopens its even byte. : ‘

*1002/000004\004

The LINE FEED and up-arrow (or circumflex) keys operate on bytes if a
byte is open when the command is given. For example:

*1001\025 +
001002\004 +

001001\025
*

")%’?

fﬁmﬁ

g

DEBUGGING OBJECT PROGRAMS ON-LINE

5.3.1.1 Open the Addressed Location(@) - The symbol @ optionally
modifies, closes an open word, and uses its contents as the address of
the location tc open next.

*1006/001024 @ (open location 1024 next)
0010247000500 , :

*1oas/ac1az4 2100 @ (modify to 2100 and open
002100/177774 location 2100)

5.3.1.2 Relative Branch Offset(>) - The right angle bracket, >,
optionally modifies, closes an open word, and uses its even byte as a
relative branch offset to the next word opened.

*1032/000407 301 > ' (modify to 301 and intergret
000636/6060010 as & relative branch)

Note that 301 is a negative offset (-77). The offset is doubled
before it is added to the PC; therefore, 1034 + -176 = 636.

5.3.1.3 Return to Previous Sequence(() - The left angle bracket, <,
optionally modifies, closes an open location, and opens the next
location of the previous sequence interrupted by a «, &, or > command.
Note that <« , @, > cause a seguence change to the word opened. If a
sequence change has not occurred, < simply opens the next location as
a LINE FEED does. The command operates on both words and bytes.

*1032/000407 301 > (> causes a sequence change)
0006367000010 < (<causes a retu:n to original
sequence}
001034/001040 @ (@ causes a seguence change)
001040/000405\005 < {< now operates on byte)
C)103ﬂ§ agg < (< acts like +)
001036\ 004

5.3.2 Calculating Offsets(n;0)

The command n;0 causes ODT to print the 16-bit and 8~bit offsets from
the currently open location to address n. The following examples,
repeated from the ODT-11 section describing this command (see section
5.2.5), show a difference only in printout format:

*346/000034 414;0 000044 022 22
*/000322

*1034/103421 1034;0 177776 377\021 377
*/103777

Note that the modified low-order byte 377 must be combined with the
unmodified high-order byte.

5-11

DEBUGGING OBJECT PROGRAMS ON-LINE

5.3.3 Breakpoints

With ODT-11X vyou can set up to eight breakpoints concurrently,
numbered 0 through 7. The n;B -command used in ODT-11 to set the
breakpoint at address n sets the next available breakpoint in ODT-11X.
Specific breakpoints may be set or changed by the n;mB command where m
is the number of the breakpoint. For example:

*1020;B (sets breakpoint 0)
*1030;B (sets breakpoint 1)
*1040;B (sets breakpoint 2)
*1032;1B (resets breakpoint 1)

The ;B command used in ODT-11 to remove the only breakpoint removes
all breakpoints in ODT-11X. To remove only one of the breakpoints,
use the ;nB command, where n is the number of the breakpoint. For
example:

;2B {removes the second breakpoint)

%] %

The $B/ command opens the location containing the address of
breakpoint 0. The next seven locations contain the addresses of the
other breakpoints in order, and thus can be opened using the LINE FEED
key. (The next location is for single~-instruction mode, explained in
the next section.) Example:

*$B/001020 +
nnnnnn/001032 +
nnnnnn/{aéd:ess internal to ODT)

In this example, breakpoint 2 is not set. The contents are an address
internal to ODT. After the table of breakpoints is the table of
Proceed command repeat counts for each breakpoint and for +the
single~-instruction mode (see Section 5.3.4).

-

. ¥

nnnnnn/001036 4 (address of breakpoint 7)
nnnnon/nnnnnn ¥ (single~instruction address)
nnnnnn/0000G0 15 + {count for breakpoint 0)
nnnnnn/000000 (count for breakpoint 1)

It should be noted that a repeat count in a Proceed command refers
only to the most recent breakpoint. Execution of other breakpoints
encountered is determined by their own repeat counts.

5.3.4 Single~Instruction Mode

With this mode you can specify the number of instructions you wish
executed before suspension of the program run. The Proceed command,
instead of specifying a repeat count for a breakpoint encounter,
specifies the number of succeeding instructions to be executed. Note
that breakpoints are disabled when single~instruction mode is
operative. Commands for single-instruction mode follow:

ins Enables single-instruction mode (n can have any value

and serves only to distinguish this form from the form
:S); breakpoints are disabled.

5-12

<y
o

£

&

DEBUGGING OBJECT PROGRAMS ON-LINE

n;P Proceeds with program run for next n instructions
pbefore reentering ODT (if n is missing, it is assumed
" to be 1). (Trap instructions and associated handlers
can affect the Proceed repeat count. See section
5.5.2.)

;S pisables single-instruction mode

When the repeat count for single-instruction mode is exhausted and the
program suspends execution, ODT prints:

B8;:n
*

where n is the address of the next instruction to be executed. The $B
breakpoint table contains this address following that of breakpoint 7.
However, unlike the table entries for breakpoints 0-7, the B8 entry is
not affected by direct modification. :

similarly, the repeat count for single-instruction mode follows the
repeat count for breakpoint 7. This table entry, however, may be
directly modified, and thus is an alternative way of setting the
single-instruction mode repeat count. 1In such a case, ;P implies the
argument set in the $B repeat count table rather than the argument 1.

5.4 ERROR DETECTION

ODT-11 and ODT-11X inform you of two types of errors: illegal or
unrecognizable command and bad breakpoint entry.

Neither ODT-11 nor ODT-11X checks for the legality of an address when
commanded to open a location for examination or modification.

Thus, the command

177774/
references nonexistent memory, and causes a trap through the vector at
location 4. If this vector has not been properly initialized (by IOX,
or the user program if IOX is not used), unpredictable results occur.
Similarly, a command such as

s$20/

which referencés an address eight times the value represented by $2,
may cause an illegal {nonexistent) memory reference.

Typing other than a legal command causes ODT to ignore the command,
print

[E 30N

and wait for another command. Therefore, to cause ODT to ignore a
command Jjust typed, type an illegal character (such as 9 or RUBOUT)
and the command will be treated as an error, i.e., ignored.

ODT suspends program execution whenever it encounters a breakpoint,
i.e., a trap to its breakpoint routine. If the breakpoint routine is
entered and no known breakpoint caused the entry, ODT prints:

BE0Q1542
¥

5-13

DEBUGGING OBJECT PROGRAMS ON-LINE

and waits for another command. In the example above, BE001542 denotes
Bad Entry from location 001542. A bad entry may be caused by an
illegal trace trap instruction, setting the T-bit in the status
register, or by a jump to the middle of ODT.

5.5 PROGRAMMING CONSIDERATIONS

Information in this section is not necessary for the efficient use of
ODT. However, its content does provide a better understanding of how
ODT performs some of its functions.

5.5.1 Functional Organization

The internal organization of ODT is almost totally modularized into
independent subroutines. The internal structure consists of three
major functions: command decoding, command execution, and wvarious
utility routines.

The command decoder interprets the individual commands, checks for
command errors, saves input parameters for use in command execution,
and send control to the appropriate command execution routine.

The command execution routines take parameters saved by the command
decoder and use the utility routines to execute the specified command.
Command execution routines exit either to the object program or back
to the command decoder.

The utility routines are common routines such as SAVE-RESTORE and I/0.
They are used by both the command decoder and the command executers.

Communication and data flow are illustrated in Fiqure 5-1.

5.5.2 Breakpoints

The function of a breakpoint is to pass control to ODT whenever the
user program tries to execute the instruction at the selected address.
Upon encountering a breakpoint, the user can utilize all of the ODT
commands to examine and modify his program.

When a breakpoint is executed, oDT removes the breakpoint
instruction(s) from the user's code so that the locations may be
examined and/or altered. ODT then types a message to the user, in the
form Bn(Bm;n for ODT-11X), where n is the breakpoint address (and m is
the breakpoint number). The breakpoints are automatically restored
when execution is resumed. :

A major restriction in the use of breakpoints is that the word

5~14

£

DEBUGGING OBJECT PROGRAMS ON-LINE

- BREAKPOINT -
HANDLER
“ ! 1
PROGRAM INTERNAL
o ”R;’_Gﬂ“" EXAMINATION & TABLE MAIN-~
¢ ' ACTION MODIFICATION PULATION
COMMANDS COMMANDS COMMANDS
USER T
| |
o B g e e o - [VR | i
' {
oot
- ——— INTERNAL
¢ ! TABLES
PROGRAM *
i
1
fg’ T, UTILITY
~ e i = -4 ROUTINES
(1/0,ETC.)
USER ENVIRONMENT onT
LEGEND
Flow of control — — ~
Flow of dots
11 -0065
£, ,
Figure 5-1 Communication and Data Flow
-®

5-15

DEBUGGING OBJECT PROGRAMS ON-LINE

where a breakpoint has been set must not be referenced by the program
in any way since ODT has altered the word. Also, no breakpoint should
be set at the location of any instruction that clears the T-bit. For
example:) '

MOV $240,177776 sSET PRIORITY TO LEVEL 5.
A breakpoint occurs when a trace trap instruction {placed in the user
program by ODT) is executed. When a breakpoint occurs, ODT takes the
following steps:

1. Set processor priority to seven (automatically set by trap
instruction).

2. Save registers and set up stack.
3. 1If internal T-bit trap flag is set, go to step 13.
4. Remove breakpoint(s).:

5. Reset processor priority to ODT's priority or user's
priority.

6. Make sure a breakpoint or Single-instruction mode caused the
interrupt.

7. 1If the breakpoint did not cause the interrupt, go to step 15.
8. Decrement repeat count.

9. Go to setp 18 if non-zero, otherwise reset count to one.

10. Save Teletype status.

11. Type message to user about the breakpoint or
Single~instruction mode interrupt.

12. Go to command decoder;

13. Clear T-bit in stack and internal T-bit flag.
14. Jump to the "GO" processor.

15. Save Teletype status.

16. Type "BE" (Bad Entry) followed by the address.

17. Clear the T-bit, if set, in the user status and proceed to
the command decoder.

18. Go to the "Proceed", bypassing the TTY restore routine.
Note that steps 1~5 inclusive take approximately 100 microseconds
during which time interrupts are not permitted to occur (ODT is
running at level 7).
When a proceed (;P) command is given, the following occurs:

1. The proceed is checked for legality.

2. The processor priority is set to seven.

3. The T-bit flags {internal and user status) are set.

DEBUGGING OBJECT PROGRAMS ON~LINE

PN 4., The user registers, status, and Program Counter are restored.

5. Control is returned to the user.

6. When the T-bit trap occurs, steps 1, 2, 3, 13, and 14 of the
breakpoint sequence are executed, breakpoints are restored,
and program execution resumes normally.

- When a breakpoint is placed on an 10T, EMT, TRAP, or any instruction
causing a trap, the following occurs:

1. When the breakpoint occurs as described above, ODT is
entered.

2. When ;? is typed, the T-bit is set and the 10T, EMT, TRAP, or
other trapping instruction is executed.

3. The current PC and status (with the T-bit included) are
pushed on the stack.
A 4. The new PC and status (no T-bit set) are obtained from the
respective trap vector.

5. The whole trap service routine 1is executed without any
breakpoints.

6. When an RTI is executed, the saved PC and P8 (including the

T-bit) are restored. The instruction following the

trap-causing instruction is executed. If this instruction is

not another trap-causing instruction, the T-bit trap occurs,

causing the breakpoints to be reinserted in the user program,

o~ or the Single~instruction ' mode repeat count to be

g decremented. If the following instruction is a trap-causing
instruction, this seguence is repeated, starting at step 3.

NOTE

Exit from the trap handler must be wvia the RTI
instruction. Otherwise, the T-bit will be lost. ODT
will not gain control again since the breakpoints
have not been reinserted yet.

P :

v In ODT-11, the ;P command is illegal if a breakpoint has not occurred
(ODT responds with ?). In ODT-11X, ;P is legal after any trace trap
entry.

WARNING
; Since ODT-11 ignores all semicolons,
& typing the 0ODT-11X form of breakpoint
command number to ODT-11, specifying a
breakpoint number n, causes the
following error:

L 4

100;B (sets the breakpoint at location
100)

100;0B (sets the breakpoint at

‘location 1000)

‘100;4B (sets the breakpoint at location

P i 1004)

5-17

DEBUGGING OBJECT PROGRAMS ON-~LINE

ghe internal breakpoint status words for ODT-11 have the following
ormat:

1. The first word contains the breakpoint address. If this
location points to a location within ODT, it is assumed no
breakpoint is set for the cell (specifically, ODT has set a
dummy breakpoint within itself).

2. The next word contains the breakpoint repeat count.
For ODT-11X (with eight breakpoints) the formats are:

1. The first eight words contain the breakpoint addresses for
breakpoints 0-7. (The ninth word contains the address of the
next instruction to be executed in Single-instruction mode.)

2. The next eight words contain the respective repeat counts.
(The following word contains the repeat count for
Single-~instruction mode.)

The user may change these words at will, either by using the
breakpoint cdémmands or by direct manipulation with $B.

When program runaway occurs (that is, when the program is no longer
under ODT control, perhaps executing an unexpected part of the program
where a breakpoint has not been placed) ODT may be given control by
pressing the HALT key to stop the machine, and restarting ODT (see
Section 5.6.2). ODT prints *, indicating that it is ready to accept a
command. v

If the program being debugged uses the terminal for input or output,
the program may interact with ODT to causes an error since ODT also
uses the terminal. This interactive error does not occur when the
program being debugged is run without ODT.

1. If the terminal output interrupt is enabled upon entry to the
ODT break routine, and no output interrupt is pending when
ODT is entered, ODT is entered, ODT generates an unexpected
interrupt when returning control to the program.

2. If the interrupt of the terminal input (the keyboard) is
enabled upon entry to the ODT break routine, and the program
is expecting to receive an interrupt to input a character,
both the expected interrupt and the character will be lost.

3. If the terminal input (keyboard) has just read a character
into the reader data buffer when the ODT break routine is
entered, the expected character in the input data buffer will
be lost.

5.5.3 Search

The word search allows the user to search for bit patterns in
specified sections of memory. Using the $M/ command, the user
specifies a mask, a lower search limit ($M+2), and an upper search
limit ($M+4). The search object is specified in the search command
itself.

The word search compares selected bits (where ones appear in the mask)
in the word and search object. If all selected bits are equal, ODT
prints the unmasked word.

£ %

DEBUGGING OBJECT PROGRAMS ON-LINE

The search algorithm is:
1. Fetch a word at the current address.
2. XOR (exclusive OR) the word and search object.
3. AND the result of step 2 with the mask.
4. If the result of step 3 is zero, type the address of the
unmasked word and its contents. Otherwise, proceed to step
5.
5. Add two to the current address. If the current address is
greater than the upper limit, ¢type * and return to the
command decoder, otherwise go to step 1.
Note that if the mask is zero, ODT prints every word between the
limits, since a match occurs every time (i.e., the result of step 3 is
always zero).
In the effective address search, ODT interprets every word in the
search range as an instruction which is interrogated for a possible
direct relationship to the search object.

The algorithm for the effective address search is (where (x) denotes
contents of x, and k denotes the search object}:

1. Fetch a word at the current address X.
2. If (x)=k [direct reference], print contents and go to step 5.

3. If (x)+x+2=k [indexed by PC}, Print contents and go to step
5 »* N ’

4, If (x) is a relative branch to k, print contents.
5. Add two to the current address. If the current address is
greater than the upper limit, perform a carriage return/line

feed and return to the command decoder; otherwise, go to
step 1.

5.5.4 Teletype Interrupt

Upon entering the TTY SAVE routine, the following occurs:
1. Save the LSR status register (TKS).
2. Clear interrupt enable and maintenance bits in the TKS.
4. Clear interrupt enable and mainﬁenance bits in the TPS.
To restore the TTY:
1. wWait for completion of any I/0 from ODT.
2. Restore the TKS.

3. Restate the TPS.

5-19

DEBUGGING OBJECT PROGRAMS ON-~LINE

NOTES

If the TTY printer interrupt is enabled
upon entry to the ODT break routine, the
following may occur:

l. If no output interrupt is pending
when ODT is entered, an additional
interrupt always occurs when ODT
returns control to the user.

2. If an output interrupt is pending
upon entry, the expected interrupt
occurs when the user regains
control.

If the TTY reader (keyboard) is busy or
done, the expected character in the
reader data buffer will be lost.

If the TTY reader (keyboard) interrupt
is enabled upon entry to the ODT break
routine, and a character is pending, the
interrupt (as well as the character)
will be lost.

5.6 OPERATING PROCEDURES

This section describes procedures for linking ODT on LSI-11 machines,
and for loading ODT on other PDP-~11 machines. It describes starting,
restarting, error recovery, and setting the priority level of ODT.

5.6.1 Linking Procedures (LSI-11 Systems Only)

For LSI-1l1 systems, ODT-11X is supplied on relocatable object tapes.
Binary tapes are produced by linking the ODT-11X object tape with the
object tapes of the program to be debugged (using LINK-11S). The
ODT-11X tape should be the first tape processed by LINK-11S; in this
manner, ODT-11X is started first when the binary tape is loaded.

5.6.2 Loading Procedures (non-LSI-11 Systems Only)

For all systems other than LSI-~11l, ODT is supplied on source and
binary tapes. Appendix N explains assembly instructions for source
tapes. Binary tapes are loaded with the Absolute Loader. Since ODT
is started as soon as it is loaded, the program to be debugged should
be loaded prior to ODT.

When supplied on binary tape, ODT-11 loads beginning at 1location
13026, and occupies about 533 (decimal) words of memory. ODT-11X
loads beginning at location 12054, and requires about 800 (decimal)
words of memory.

G
%

-
=

£

Py

DEBUGGING OBJECT PROGRAMS ON-LINE

5.6.3 Starting and Restarting

The Absolute Loader starts ODT automatically after loading it into
core. ODT indicates its readiness to accept input by printing an *.

The starting address for ODT-1l on binary tape is 13026; the starting
address for ODT-11X on binary tape is 12054. If ODT is reassembled
using PAL-11A, the starting address in indicated in the symbol table
as the value of the symbol 0.0DT. If ODT is linked using LINK-11S,
the starting address is indicated in the link map as the value of the
global symbol O.ODT.

When ODT is started at its start address, the SP register is set to an
ODT internal stack, registers RO-R5 are left untouched, and the trace
trap vector is initialized. If ODT is started after breakpoints have
been set in a program, ODT ignores the breakpoints and leaves the
program modified, i.e., the breakpoint instructions are 1left in the
program.

There are two ways to restart ODT:
1. Restart at start address+2
2. Reenter at start address+4

To restart, key in the start address+2, press LOAD ADDRess and then
START. A restart saves the general registers, removes all the
breakpoint instructions from the user program and then ignores all
breakpoints, i.e., simulates the ;B command.

To reenter, key in the load address+4, press LOAD ADDRess and then
START. A reenter saves the general registers, removes the breakpoint
instructions from the user program, and types the BE (Bad Entry) error
message. ODT remembers which breakpoints were set and resets them on
the next ;G command (;P is illegal after a Bad Entry).

CHAPTER 6

LOADING AND DUMPING MEMORY

This chapter describes procedures for 1loading programs int¢ memory
(using the Bootstrap Loader and Absolute Loader) and for dumping the
contents of memory (using the DUMPAB and/or DUMPTT programs).

The Bootstrap Loader, which loads short paper tape programs (162 or
fewer octal words), appears on one of three forms, depending upon the
system configuration:

1. Hardware - on some CPUs, the Bootstrap Loader is present as a
ROM chip.

2. Software - on some CPUs, the Bootstrap Loader must be toggled
in via console switches.

3. Firmware - on LSI-1l1s, the Bootstrap Loader is a firmware
loader, present as a programmable ROM chip.

Once familiar with the operation of the Bootstrap Loader, the user can
load other programs (such as the Absolute Loader, DUMPAB, and DUMPTT).

The Absolute Loader (see section 6.2) is a system program that enables
the wuser to load data punched on paper tape in absolute binary format
into any available memory bank. It is used primarily to load the
paper tape system software, binary programs assembled with PAL-11A,
and binary tapes produced by LINK-118 from object tapes produced by
PAL-11S. :

The loader programs are loaded into the upper-most area of available
core and are available for wuse with system and user programs.
Programs should not use the locations used by the loaders without
restoring their contents; otherwise, the loaders must be reloaded
since they will have been altered by the object program.

Core memory dump programs (see section 6.3) print or punch the
contents of specified areas of core. For example, when developing or
debugging user programs it is often necessary to get a copy of the
program or portions of core. There are two dump programs supplied in
the paper tape software system: DUMPTT, which prints or punches the
octal representation of specified portions of core, and DUMPAB, which
punches specified portions of core in absolute binary format suitable
for loading with the Absolute Loader.

LOADING AND DUMPING MEMORY

6.1 PAPER TAPE BOOTSTRAPS

Procedures for operating the various PDP-11 paper tape bootstraps are
described below:

6.1.1 BM792-YA Paper Tape Bootstrap ROM

1.
2.

4.

5.

Set the console ENABLE/HALT switch to HALT.

Place the bootstrap tape in the desired paper tape reader
with the special bootstrap leader <code over the reader
sensors (under the reader station).

If the low-speed reader (ASR-33) is to be used, and a
high-speed reader is, present on the system, turn the high
speed reader OFF. If the high-speed reader is to be used,
turn it ON.

Set the console ENABLE/HALT switch to ENABLE.

Set the console switch register to 773000.

Press the console START switch. The contents of the
bootstrap tape will be loaded into the highest locations of
memory.

The bootstrap transfers control to the program just loaded.
Typically, this program halts.

6.1.2 BMB73-YA Bootstrap Loader ROM

1.
2.

5a.

5b.

Set the console ENABLE/HALT switch to HALT.

Place the bootstrap tape in the desired paper tape reader
with the special bootstrap leader code over the reader
sensors (under the reader station).

If the low-speed reader (ASR-33) is to be used, and a
high~speed reader is present on the system, turn the
high-speed reader OFF. If the high-speed reader is to be
used, turn it ON.

Set the console ENABLE/HALT switch to ENABLE.

If the low-speed reader is to be used, set the console switch
register to 773210.

If the high-speed reader is to be used, set the console

‘switch register to 773312.

Press the console START switch. The contents of the
bootstrap tape will be loaded into the highest locations of
memory.

The bootstrap transfers control to the program just loaded.
Typically, this program halts. :

™

N

e
& 3

&

LOADING AND DUMPING MEMORY

6.1.3 LSI-11 Firmware Paper Tape Bootstrap

l‘

2.

Press the front panel BOOT/INIT switch. This enables the
micro-ODT; an €@ prints at the terminal.

Place the bootstrap tape in the ~desiied paper tape reader
with the special bootstrap leader <code over the reader
sensors (under the reader station).

If the low-speed reader (ASR-33) is to be wused, and a
high-speed reader is ©present on the system, turn the
high~speed reader OFF. If the high-speed reader is to be
used, turn it ON.

Type the command/status register address of the input device
followed by L to load the tape.

For example, when loading from the console terminal
reader, type:

@ 177560L

After reading the contents of the tape, the LSI-11
microprocessor starts the program, which typically halts. In
this case, the micro-ODT automatically restarts and prints @
followed by the address of the instruction after the HALT
instruction. For example, after loading the Absolute Loader
on an 8K system, the micro-ODT prints:

8375000
e

The starting address of the Absolute Loader in this case is
375000,

6.1.4 M9301-¥YB Bootstrap Loader

la.

1b.

If the system does not have 'a switch register, press the
front panel BOOT/INIT switch.

If the system does not have a BOOT/INIT switch, set the
console switch register to 773000; press LOAD/ADDR; then
press START.

Four numbers are printed at the terminal, followed by a §.
These numbéers are the contents of the general registers RO,
R4, R6, and RS5, respectively. For CPUs @thout switch
registers (such as the 11/04), R5 contains fhe contents of
the program counter (PC) at the time BOOT/INIT was pressed.

For example:

007740 012450 00544 00405
Y .

Place the bootstrap tape in the desired paper tape reader
with ‘the special bootstrap 1leader <code over the reader
sensors (under the reader station).

LOADING AND DUMPING MEMORY
4. Type the device code (PR for high-speed reader, TT for
terminal reader), and type RETURN, as follows:
$PR./ or $TT,/
After reading the contents of the tape, the Bootstrap Loader

transfers control to the program just loaded. Typically,
this program halts.

6.1.5 M9301-YA Bootstrap Loader

If a console terminal is available, boot instructions for the M9301-YA
Bootstrap Loader are the same as for the M9301-YB Bootstrap Loader
{Section 6.1.4).

If no console terminal is available, the auto-boot feature of the
M9301-YA must be used. See the M9301 Maintenance Manual for
instructions on placing the appropriate paper tape bootstrap in the
M9301 module micro-switch. Then follow the procedure below:

1. Place the bootstrap tape in the desired paper tape reader
with the special bootstrap leader code over the reader
sensors (under the reader station).

2. Set the console HALT/CONT switch to CONT.
3. Press the console BOOT/INIT switch. After reading the

contents of the tape, the Bootstrap Loader transfers control
to the program just loaded. Typically, this program halts.

6.1.6 Other Bootstrap Loaders

This section is for users without any of the bootstrap aids 1listed
above.

The Bootstrap Loader should be loaded (toggled} into the highest core
memory bank. The 1locations and corresponding instructions of the
Bootstrap Loader are listed and explained below.

Location Instruction
xx7744 016701
xx7746 000026
xx7750 012702
xx7752 000352
xx7754 005211
xx7756 105711
xx7760 100376
xx7762 116162
xx7764 000002
xx7766 xx7400
xx7770 005267
xx7772 177756
xx7774 000765
xx7776 Yyyyyy

Figure 6~1 Bootstrap Loader Instructions

6-4

&

*

LOADING AND DUMPING MEMORY

In Figure 6-1, xx represents the highest available memory bank. For
example, the first location of the Loader would be one of the
following, depending on memory size, and xx in all subsequent
locations would be the same as the first.

Location Memory Bank Memory Size
017744 0 4K
037744 1 8K
057744 2 12K
077744 3 16K
117744 4 20K
137744 5 24K
157744 6 28K

Note also in Figure 6~1 that the contents of location xx7766 should

reflect the appropriate memory bank in the same manner as the
location. ~

The contents of location xx7776 (yyyyyy in the Instruction column of
Figure 6-1) should contain the device status register address of the
paper tape reader to be used when loading the bootstrap formatted
tapes. Either paper tape reader may be used, specified as follows:

Teletype Paper Tape Reader -~ 177560
High-Speed Paper Tape Reader — 177550

6.1.6.1 Loading the Loader Into Core -~ Toggle in the Bootstrap Loader
as explained below.

1. Set xx7744 in the Switch Register (SR) and press LOAD ADDRess
(xx7744 is displayed in the ADDRESS REGISTER).

2. Set the first instruction, 016701, in the SR and l1ift DEPosit
(016701 is displayed in the DATA register).

NOTE

When DEPositing data into consecutive words, the
DEPosit automatically increments the ADDRESS REGISTER
to the next word.

3. Set the next instruction, 000026, in the SR and lift DEPosit
(000026 is displayed in the DATA register).

4. Set the next instruction 'in the SR, press DEPosit, and
continue depositing subsequent instructions (ensure that.
location xx7766 reflects the proper memory bank) until after
000765 has been deposited in location xx7774.

5. Deposit the desired device statug register address in
location xx7776, the last location of the Bootstrap Loader.

It is good programming practice to verify that all instructions are
stored correctly. This is done by proceeding at step 6 below.

6. Set xx7744 in the SR and press LOAD ADDRess.

LOADING AND DUMPING MEMORY

7. Press EXAMine (the octal instruction in location xx7744 is
displayed in the DATA register so that it can be compared to
the correct instruction, 016701. If the instruction is
correct, proceed to step 8; otherwise go to step 10.

8. Press EXAMine (the instruction of the location displaved in
the ADDRESS REGISTER is displayed in the DATA register;
compare the DATA register contents to the instruction for the
displayed location.

9. Repeat step 8 until all instructions have been verified or go
to step 10 whenever the correct instruction is not displayed.

When an incorrect instruction is displayed, it c¢an be <corrected by
performing steps 10 and 11.

10. With the desired location displayed in the ADDRESS REGISTER,
set the correct instruction in the SR and 1lift DEPosit ({the
contents of the SR are deposited in the displayed location).

11. Press EXAMine to ensure that the instruction was correctly
stored (it is displayed in the DATA register).

12. Proceed at step 9 until all instructions have been verified.

The Bootstrap Loader is now loaded into core. The procedures above
are illustrated in the flowchart of Figure 6-2.

6.1.6.2 Loading Bootstrap Tapes - Any paper tape punched in bootstrap
format 1is referred to as a bootstrap tape (see Section 6.1.3) and is
loaded into core using the Bootstrap Loader. Bootstrap tapes begin
with about two feet of special bootstrap leader code (ASCII code 351,
not blank leader tape as required by the Absolute Loader).

With the Bootstrap Loader in core, the bootstrap tape is loaded into
core starting anywhere between location xx7400 and location xx7743,
i.e., 162 (octal) words. The paper tape input device used 1is that
which is specified in location xx7776 (see section 6.1.6.1).

Bootstrap tapes are loaded into core as explained below.
1. Set the ENABLE/HALT switch to HALT.
2. Place the bootstrap tape in the specified reader with the
special bootstrap leader code over the reader sensors {under
the reader station).

3. 8Set the console switch register to xx7744 (the starting
address of the Bootstrap Loader) and press LOAD ADDRess.

4. Set the ENABLE/HALT switch to ENABLE.

5. Press START. The bootstrap tape passes through the reader as
data is being loaded into core.

6. The bootstrap tape stops after the last frame of data (see
Figure 6-5) has been read into core. The program on the
bootstrap is now in core.

The procedures above are illustrated in the flowchart of Figure 6-3.

LOADING AND DUMPING MEMORY

Y .
: “ (wimauze)
. SETSR TO
1 > xx7744
L]

‘ PRESS
LOAD ADDR
LOAD
P LOAD OR VERIFY VERIFY

iy

INSTRUCTIONS
?
\

SETSRTO :
16700 PRESS EXAM |
i
’fm"b“» LIFT DEP NO INSTRUCTION
' : CORRECT
1
K] SET SR TO
: CORRECT
SETSRTO INSTRUCTION
NEXT ,
INSTRUCTION
\
1
o~ LIFT DEP
(R LIFT DEP
’ FINISHED
Figure 6-2 Loading and Verifying the Bootstrap Loader

6-7

LOADING AND DUMPING MEMORY

WITH BOOTSTRAP

LOADER IN CORE y

SEE FIGURE 6-

{ G 2) SET ENABLE/HALT

I TO ENABLE
SET ENABLE/HALT ;
TOHALT
PRESS START
i
PLACE BOOTSTRAP
TAPE IN SPECIFIED
READER (CODE 351 i
MUST BE OVER TAPE READS IN
READER SENSORS) AND STOPS AT
END OF DATA
4
SETSR TO J
xx7744 DATA IS
IN CORE
4
PRESS
LOAD ADDR

Figure 6-3 Loading Bootstrap Tapes into Core

Should the bootstrap tape not read in immediately after depressing

START switch, one of the following conditions may exist:
1. Bootstrap Loader not correctly loaded.
2. Wrong input device used.
3. Code 351 not directly over the reader sensors.

4. Bootstrap tape not properly positioned in reader.

6.1.6.3 Bootstrap Loader Operation - The Bootstrap Loader

the

sgurce

program 1s shown below. The starting address in the example denotes
that the Loader is to be loaded into memory bank zero (a 4K system).

"

O TN D WD -

B 17744

11 17758
= 12 17752

15 17754
16 17756
17 17764
18 17762

19 17778

21 17774
22 17776

gogege
600891
paeoag
foseaT

2174680 1

B17744

21e7al
geeazeé
g127¢2
eaa3s2

@es211
105711

LOADING AND DUMPING MEMORY

START:

LOOP:
DSPMNT:

WAIT:

168376

116162
peeege
@17408
285267

177756

08765
177568

BRNCH:
DEVICE:

gosEpl

+ ASECT

= z1 JPOINTER TO DEVICE ADDRESS

= %2 71.0AD ADDRESS DISPLACEMENT

= %7 3 PROGRAM COUNTER

= 17400 3 DATA CANNOT BE LOADED BELOV
3TH1S ADDRESS

= LOAD+ 344 3 STARTING ADDRESS

MOV DEVICE,RI

MOV (PC)+sR2
+.~LOAD

INC eR!
TSTB @Rl
BPL VAIT

$: COPY DEVICE ADDRESS

; COPY ADDRESS DISPLACEMENT

s INITIALLY OFFSET TO THIS LOC
3NOTE THAT THIS LOC IS PART OF
s PREVIQUS INSTRUCTION

3 START THE PAPER TAPE READER

3 FRAME READY?

$BR IF NOT

MOVB 2(R1),LOAD(R2) 3 STORE FRAME READ IN MEMORY

. INC DSPMNT

BR LOOP
177568

+END

3 INCREMENT DISPLACEMENT TO NEXT

3 LOCATION

3 READ NEXT BYTE

$ ADDRESS OF INPUT DEVICE, MAY BE
3177556 IF HIGH SPEED READER

Figure 6-4 The‘Bootstrap Loader Program

The program above is a brief example of the PAL-1lA Assembly Language
which is explained in Chapter 2.

Bootstrap tapes are coded in the following format.

351

351
XXX
AAA

BBB
ccce

222
301
035
026
000
362
025
373
YYy

Special bootstrap leader code (at least two feet
in length)

Load offset {see text below)

Program to be loaded (up to 162 words or 344

frames)

Boot overlay code, as shown.

Jump offset {see text below)

Figure 6-5 Bootstrap Tape Format

6-9

LOADING AND DUMPING MEMORY

The Bootstrap Loader starts by loading the device status register
address into Rl and 352g into R2. The next instruction indicates a
read operation in the device and the next two instructions form a loop
to wait for the read operation to be completed. When data is
encountered it is transferred to a location determined by the sum of
the index word (xx7400) and the contents of R2.

Because R2 is initially 352g, the first word is moved to location
xx7752, and it becomes the immediate data to set R2 in the next
execution of the loop. This immediate data is then incremented by one
and the program branches to the beginning of the loop.

The leader code, plus the increment, is equal in value to the data
placed in R2 during the initialization; therefore, leader code has no
effect on the loader program. Each time leader code is read the
processor executes the same loop and the program remains unmodified.
The first code other than leader code, however, replaces the data to
be loaded into R2 with some other value which acts as a pointer to the
program starting location (loading address). Subsequent bytes are
read not into the location of the immediate data but into consecutive
core locations. The program will thus be read in byte by byte. The
INC instruction which operates on the data for R2 puts data bytes in
sequential locations, and requires that the value of the 1leader code
and the offset be one less than the value desired in R2.

The boot overlay code overlays the first two instructions of the
Loader, because the last data byte is placed in the core location
immediately preceding the Loader. The first instruction is unchanged
by the overlay, but the second instruction is changed to place the
next byte read, jump offset, into the 1lower byte of the branch
instruction. By changing the offset in this branch instruction, the
Loader can branch to the start of the loaded program or to any point
within the program. '

The Bootstrap Loader is self-modifying, and the program loaded by the
Loader restores the Loader to its original condition by restoring the
contents of locations xx7752 and %x7774 to 000352 and 000765
respectively. :

6.2 THE ABSOLUTE LOADER

The Absolute Loader is a system program that enables the user to load
data punched on paper tape 1in absolute binary format into any
available memory bank. It is used primarily to load the paper tape
system software, binary programs assembled with PAL-11A, and binary
tapes produced by LINK-11S from object tapes produced by PAL-118. The
major features of the Absolute Loader include:

1. Testing of the checksum on the input tape to assure complete,
accurate loads.

2. Starting the loaded program upon completion of loading
without additional wuser action, as specified by the .END in
the program just loaded.

3. Specifying the load bias of position independent programs at

load-time rather than at assembly time, by using the desired
Loader switch register option.

6-10

Ey,

LOADING AND DUMPING MEMORY

6.2.1 Loading the Loader Into Core

The Absolute Loader is supplied on punched paper tape in bootstrap
format. Therefore, a Bootstrap Loader is used to load the Absolute
Loader into core. It occupies locations xx7474 through 'xx7743, and
its starting address is xx7500. The Absclute Loader program is
72 words long, and is loaded adjacent to the Bootstrap Loader as
explained in section 6.1.6.2.

6.2.2 Using the Absolute Loader

Paper tapes punched in absolute binary format are also called absolute
tapes, binary tapes, or .LDA tapes. These are the tapes loaded by the
Absolute Loader. :

In the following discussion, reference is made to a "switch register."
For systems without switch registers (such as the LSI-11 and
PDP-11/04), this term refers to a software switch regigter, which is a
memory - location internal to the Absolute Loader for systems without
hardware switch registers. The location within the Absolute Loader is
xxx516, where xxx reflects memory size as follows:

Memory XXX
4K 017
8K 037

12K - 057
16K 077
20K 117
24K ; 137
28K 157

When text indicates that a value be placed in a switch register, users
without hardware switch registers must use either the M9301 console
emulator or the LSI-1l micro-ODT, as appropriate, to store the switch
register value in location xxx516. Once this value has been stored,
the user starts the Absolute Loader at location =xxx500. Once the
Absolute Loader is loaded, it initializes the value of location xxx516
to 0. This value changes only when modified by the user.

A normal load occurs when data is loaded into memory according to the
load addresses on the binary tape. The usger must set bit 0 of the
switch register to 0 immediately before starting the load.

There are two types of relocated loads:

1. Loading to continue from where the locader left off after the
previocus load -~

This is used, for example, when the object program being
loaded is contained on more than one tape. "It is specified
by setting the switch register to 000001 immediately before
starting the load. :

- 2. Loading into a specific area of core -

This is normally used when loading position independent
programs. A position independent program is one which may be
loaded and run anywhere in available core. The program is
written using the position independent instruction format
(see Chapter 9)}. This type of load is specified by setting
the switch register to the 1load bias and adding 1 to it

6-11

LOADING AND DUMPING MEMORY

(i.e., setting bit 0 to 1). The effect of this is to add the
value in the switch register to the start address od the
tape.

Optional switch register settings for the three types of locads are
listed below.

Switch Register

Type of Load Bits 1-14 Bit ©
Normal (ignored) 0
Relocated -~ continue 0 ' 1

loading where left off

Relocated - load in nnnnn 1
specified area of core (specified
address)

The absolute tape may be 1locaded using either of the paper tape
readers. The desired reader 1is specified in the 1last word of
available core memory (xx7776), the input device status word, as
explained in section 6.1.6. The input device status word may be
changed at any time prior to loading the absolute tape.

With the Absolute Loader in core as explained in section 6.1.6.2,
absolute tapes are loaded as explained below.

1. Set the ENABLE/HALT switch to HALT.

To use an input device different from that used when 1loading
the Absolute Loader, change the address of the device status
word {(in location xx7776) to reflect the desired device,
i.e., 177560 for the Teletype reader or 177550 for the
high-~speed reader.

2. Set the switch register to xx7500 and préés LOAD ADDR.

3. Set the switch register to reflect the desired type of 1load
(Figure E~3 in Appendix E).

4. Place the absolute tape in the proper reader with blank
leader tape directly over the reader sensors.

5. Set ENABLE/HALT to ENABLE.

6. Press START. The absolute tape begins passing through the
reader station as data is being loaded into core.

If the absolute tape does not begin passing through the reader
station, the Absolute Loader 1is not in core correctly. Reload the
Loader and start over at step 1 above. If it halts in the middle of
the tape, a checksum error occurred in the last block of data read in.

Normally, the absolute tape stops passing through the reader station
when it encounters the transfer address as generated by the statement,
.END, denoting the end of a program. If the system halts after
loading, check that the low byte of the DATA register is zero. If so,
the tape 1is correctly 1loaded. If not =zeroc, a checksum error
(explained later) has occurred in the block of data just loaded,
indicating that some data was not correctly loaded. Reload the tape
starting at step 1 above.

B

‘. *\'V%

LOADING AND DUMPING MEMORY

When loading a continuous relocated load, subseguent blocks of data
are - loaded by placing the next tape in the appropriate reader and
pressxng the CONTinue switch.

The Absolute Loader may be restarted at any time by startlng at step 1
above.

6.2.3 Absolute Loader Operation

The Loader uses the eight general registers (R0O-R7) and does not
preserve or restore their previous contents. Therefore, caution
should be taken to restore or 1load these registers when necessary
after using the Loader.

A block of data punched on paper tape in absolute binary format has
the following format.

FRAME 1 001 start frame
2 000 null frame
3 XXX byte count (low 8 bits)
4 XXX byte count (high 8 bits)
5 yvy load address (low 8 bits)
6 Yyy load address (high 8 bits)
. data is
. placed
. here
222 last frame contains a block checksum

A program on paper tape may consist of one or more blocks of data.
Each block with a byte count {frames 3 and 4) greater than six causes
subsequent data to be loaded into core (starting at the address
specified 1in frames 5 and 6 for a normal load). The byte count is a
positive integer denoting the total number of bytes in the block,
excluding the checksum. When the byte count of a block is six, the
specified load address is checked to see whether the address is to an
even or to an odd location. If even, the Loaded transfers control to
the address specified. Thus the loaded program runs upon completion
of loading. If odd, the loader halts,

The transfer ad&:ess (TRA) may be explicitly specified in the source
program by placing the desired address in the operand field following
the .END statement. For example,

.END ALPHA
specifies the symbolic location ALPHA as the TRA, and

.END
causes the Loader to halt. With

.END nnnnnn
the Loader also halts if the address (nnnnnn) is odd.
The checksum is displayed in the low byte of the DATA register of the
computer conscle. Upon completion of a load, the low byte of the DATA
register should be all zeros (unlit). Otherwise, a checksum error has
occurred, indicating that the load was not correct. The checksum is
the low-order byte of the negation of the sum of all the previous

bytes in the block. When all bytes of a block including the checksum
are added together, the low-order byte of the result should be zero.

6-13

LOADING AND DUMPING MEMORY

If not, some data was lost during the load or erroneous data was
picked up; the load was incorrect. When a checksum error is
displayed, the entire program should be reloaded, as explained in the
previous section. The 1loaders occupy core memory as illustrated
below: ‘ ~ .

xx7776 1/O DEVICE WORD
- xx7744 o '~ BOOTSTRAP LOADER
xx7500 ABSOLUTE LOADER
xx7474 ‘ LOADER STACK
USER AND -
SYSTEM
PROGRAMS

6.3 CORE MEMORY DUMPS

A core memory dump program.is a system program which enables the user
to dump (print or punch) the contents of any specified portion of core
memory onto the Teletype printer and/or punch, 1line printer or
high-speed punch. There are two dump programs available in the Paper
Tape Software System:

1. DUMPTT', which dumps the octal representation of the contents
of specified portions of core onto the teleprinter, low-speed
punch, high-speed punch, or line printer.

2. DUMPAB, which dumps the absolute binary code of the contents
of specified portions of core onto the low-speed punch or
high~speed punch.

Both dump programs are supplied on punched paper tape in bootstrap and
absolute binary formats. The bootstrap tapes are loaded over the
Absolute Loader as explained in section 6.1.6.3, and are used when it
would be undesirable to alter the contents of user storage (below the
Absolute Loader). The absolute binary tapes are position independent
and may be loaded and run anywhere in core as explained in section
6.2.2,

DUMPTT and DUMPAB are similar in function, and differ primarily in the
type of output they produce. :

6.3.1 Operating Procedures

Neither dump program punches leader or trailer tape, but DUMPAB always
punches ten blank frames of tape at the start of each block of data
dumped. ’ : ;

zDUMPTT is not available for systems without switch registers.
6-14

LOADING AND DUMPING MEMORY

£ 6.3.1.1 Using DUMPAB on Systems Without Switch Registers - Operating
' procedureS fof DUMPAB on systems without switch registers are as
follows: oo

- 1. Select either the absolute binary or the bootstrap version of
DUMPAB and place it in the reader specified by location
xx7776 {see section 6.1}.

2a. If using a bootstrap tape, load the tape using the procedure
outlined in section 6.1. When the computer halts, go to step
3.

2b. If using an absolute binary tape, load the tape using the
procedure outlined in section 6.2.2, relocating as follows:

a. Select the address to which the program is to be
relocated. The relocation offset is then equal to the
loading address. For example, if the desired relocation
address is 000400, the relocation offset is 000401.

b. Deposit the relocation offset with bit 0 set in the
Absolute Loader's software switch register. Using the
example from the previous step, the user would deposit
000401 into location xxx516.

Start the Absolute Loader.

3. When the program halts, find the address in the program
counter. For LSI-11 machines, the value is printed at the
console terminal by the micro-ODT. For UNIBUS PDP-11
machines, the user must press the BOOT/INIT switch to obtain

P register values at the console terminal (see section 6.1.4).

The last of the four values displayed is the PC contents.

Add 2 to the value of the PC. (For example, the PC contents
for the bootstrap version of DUMPAB are xxx516; adding 2 to
this value gives xxx520.) This new value is the address of
the first of these succeeding parameters, described in
subsequent steps.

4. Deposit the address of the first byte to be dumped into the
first parameter (whose address was determined in the previous
s step}.

5. Deposit the address of the last byte to be dumped into the
second parameter (next sequential location).

6. The third parameter contains the value 177564 (a default
specifying the ASR-33 punch). If this is the first time this
step is executed and the high~speed reader is the desired
output . device, change the value of the third parameter to

& 177554.

7a. If using the LSI-11l, type P to proceed.

* 7b. If using a UNIBUS PDP-11, restart the program (at xxx510 if
bootstrap tape); press CONT when the program halts.

8. DUMPAB:dumps the specified segment of memory and halts.

9., Repeat steps 4 through 8 until all desired memory segments
P have been dumped. ;

&

6-15

LOADING AND DUMPING MEMORY

10. A transfer block for DUMPAB must be generated to terminate
the dump. This value must be deposited in the first
parameter (step 4) to terminate DUMPAB. If the tape is not
to be self-starting, use 000001 as the transfer address.
Under no conditions c¢an 000000 be wused as the transfer
address.

11. Deposit 000000 in the second parameter (as in step 5).

12. Repeat step 7a or 7b, as appropriate, to punch the transfer
block.

6.3.1.2 Using DUMPAB and DUMPTT on Systems with Switch Registers -

1. Select the dump program desired and place it in the reader
specified by location xx7776 (see Section 6.1).

2. 1If a bootstrap tape is selected, load it using the Bootstrap

Loader, section 6.1.6.2. When the computer halts go to step
4.

3. If an absolute binary tape is selected, load it using the
Absolute Loader (section 6.2.2), relocating as desired.

Place the proper start address in the switch register, press
LOAD ADDRess and START. (The start addresses are shown in
section 6.3.3).

4. When the computer halts, enter the address of the desired
output device status register in the switch register and
press CONTinue (low-speed punch and teleprinter = 177564;
high-speed punch = 177554; 1line printer = 177514).

5. When the computer halts, enter in the switch register the
address of the first byte to be dumped and press CONTinue.
This address must be even when using DUMPTT.

6. When the computer halts again enter in the switch register
the address of the last byte to be dumped and press CONTinue.
When using the low-speed punch, set the punch to ON before
pressing CONTinue.

7. Dumping proceeds on the selected output device.
8. When dumping is complete, the computer halts.

If further dumping is desired, proceed to step 5. It is not necessary
to respecify the output device address except when changing to another
output device. In such a case, proceed to the second paragraph of
step 3 to restart.

If DUMPAB is being used, a transfer block must be generated as
described below. If a tape read by the Absolute Loader does not have
a transfer block, the loader will wait in an input loop. In such a
case, the program may be manually initiated. However, this practice
is not recommended, as there is no guarantee that load errors will not
occur when the end of the tape is read.

The transfer block is generated by performing step 5 with the transfer
address in the Switch Register, and step 6 with the transfer address
minus 1 in the Switch Register. If the tape is not to be
self-starting, an odd-numbered address must be specified in step 5
(000001, for example).

6-16

.

P

LOADING AND DUMPING MEMORY

The dump programs use all eight general registers and do not restore
their original contents. Therefore, after a dump the general

registers should be 1lcaded as necessary prior to their use by
subsequent programs.

6.3.2 Output Formats

The output from DUMPTT is in the following format:

XXXXXXD>YYYYYY YYYYYY YYYYYY YYYYYY YYYYYY YYYYYY YYYYYY YYYYYY

where xxxxxx is the octal address of the first 1location printed or
punched, and yyyyyy are words of data, the first of which starts at
location xxxxxx. This is the format for every line of output. There
will be no more than eight words of data per line, but there will be
as many lines as are needed to complete the dump.

The output from DUMPAB is in absolute binary, as explained in section
6.2.3.

6.3.3 Storage Maps

The DUMPTT program is 87 words long. When used in absolute format the
storage map is:

xx7776

BOOTSTRAP LOADER
xx7744

ABSOLUTE LOADER
xx7500
xx7474 LOADER STACK SPACE
XXXXXX+2566

DUMPTT

oo TWO-WORD STACK SPACE

xxxxxx = desired load address = start address

When used in bootstrap format the storage map is:

6-17

LOADING AND DUMPING MEMORY

xx7776
BOOTSTRAP LOADER
xx7744
DUMPTT
start address = xx7440
xx7434 TWO-WORD STACK SPACE

The DUMPAB program (for systems with a switch register) is 65(10)
words long. When used in absolute format the storage map is:

xx7776

BOOTSTRAP LOADER
xx7744
ABSOLUTE LOADER
xx7500
xx7474 LOADER STACK SPACE
XXxxxx+244

DUMPAB

HXXXXX
THREE-WORD STACK SPACE

xxxxxx = desired load address = start address

When used in bootstrap format the storage map is:

The DUMPAB program (for systems without a switch register)

words long.

LOADING AND

xx7776

xx7744

start address = xx7510
xx7500

xx7776

xx7744

xx7500
xx7474

XXXXXX+202

KXXXXX

DUMPING MEMORY

BOOTSTRAP LOADER

DUMPARB

THREE-WORD STACK SPACE

BOOTSTRAP LOADER

ABSOLUTE LOADER

LOADER STACK SPACE

DUMPAB

TWO-WORD STACK SPACE

xxxxxx = desired load address = start address

is

when used in absolute format the storage map is:

82(10)

LOADING AND DUMPING MEMORY

When used in bootstrap format the storage map is:

xx7776
BOOTSTRAP LOADER
xx7744
DUMPAB
start address = xx7500
7474
> , TWO-WORD STACK SPACE

6-20

,%%
r

=0

CHAPTER 7

INPUT/QUTPUT PROGRAMMING

7.1 INTRODUCTION

The PDP-11 Input/Output eXecutive (IOX), frees the user from dealing
directly with 1I/0 devices. It provides programming formats that allow
programs written for the paper tape software system to be used later
in a monitor environment with only minor coding changes.

10X provides asynchronous I/0 service for the following
non-file-oriented devices:

1. Teletype keyboard, printer, and tape reader and punch
2. High-speed paper tape reader and punch

For line printer handling, in addition to all IOX facilities, IOXLPT
is available. '

Simple I/O requests can be made, specifying devices and data forms for
interrupt-controlled data transfers, that can occur concurrently with
the execution of a user program. Multiple I/O devices can run single-
or double-buffered I/0 processing simultaneously.

Real-time capability is provided by allowing user programs to be
executed at device priority levels upon completion of a device action
or data transfer. o :

Communication with IOX is accomplished by IOT (Input/Output Trap)
instructions in the user's program. Each IOT is followed by two or
three words consisting of one of the I0X commands and its operands.
The IOX commands can be divided into two categories:

1. those concerned with establishing necessary conditions for
performing input and output {(mainly initializations), and

2. those concerned directly with the transfer of data.

When transfer of data is occurring, IOX is operating at the priority
level of the device. The calling program runs at its priority level,
either concurrent with the data transfer, or sequentially.
Programming format for commands is:

10T

.WORD (an address)

.BYTE (a.command code), (a slot number)

Before using the data transfer commands, two preparatory tasks must be
performed: |

7-1

INPUT/OUTPUT PROGRAMMING

1. Since device specifications are made by referring to ‘"slots"
in IO0X's Device Assignment Table (DAT) rather than devices
themselves, the slots specified in the code must have devices
assigned to themn.

2. The buffer, whose address is specified in the code, must be
set up with information about the data.

In those non-data-transfer commands where an address or slot number
does not apply, a 0 must be used. Addresses or codes indicated can,
of course, be specified symbolically.

The following program segment illustrates a
input-process-output sequence. It includes:

simple

1. The setting up of a single buffer

2. All necessary initializations

3. A formatted ASCII read into the buffer
4. A wait for completion of the réad

5. Processing of data just reéd

6. A write command from the buffer.

RESET=2 FASSIGN T0OX COMMAND CODES
READ=11

WAITR=4

WRITE=12

o7 #I0X RESET TO DO NECESSARY
+WORD O FINITIALIZATIONS INCLUDING

+BYTE RESET«0Q

10T
+WORD BUFFER
+BYTE READsO

SINITING SLOT O FOR KBD» AND 1 FOR TTY

FTRAF TO 10X

FSPECIFY BUFFER ,
FREAD FROM KBD (SLOT 0) TILL
$LLINE FEED DR FORM FEED

i

WAIT!? 10T FTRAF TO IOX
+WORD WAIT #BUSY RETURN ADDRESS WHILE WAITING
. $FOR KED TO FINISH
+BYTE WAITR»O FWAIT FOR KBD (SLOT 0) TO FINISH
(rrocess BUFFER)
107 sTRAP TO 10X
+WORD BUFFER $SPECIFY BUFFER
+BYTE WRITEs1 SWRITE TO TELEPRINTER (SLOT 1)
BUFFER!? 100 $BUFFER SIZE IN BYTES
0 sCODE FOR FORMATTED ASCII MODE
4] $I0X WILL SET HERE THE NUMBER OF BYTES READ
+=.+100 iSTORAGE RESERVED FOR 100 EBYTES

In more complex programming it is likely that more than one buffer

will be

set up for the transfer of data, so that data processing can

occur concurrently rather than sequentially, as here. Note too, that
five IOX commands not used in this example that will help
meet the requirements of I/0 problems not as straightforward as this.

there

£

INPUT/OUTPUT PROGRAMMING

7.1.1 Using IOX With The LSI-1l Processor

I0X (IOXLPT) is supplied on source and relocatable object tapes. It
is thus unnecessary to assemble IOX unless the program is to be
modified. User object tapes can be linked with the IOX object tape
(using LINK-118) to produce an absolute binary tape. Appendix J
describes assembly procedures for source tapes.

10X requires approximately 633 (decimal) words of core; IOXLPT
requires approximately 724 (decimal) words.

7.1.2 Using IOX with Unibus PDP-11 Processors

I0X (IOXLPT) is supplied on source and binary tapes. Appendix J
describes assembly procedures for source tapes. Binary tapes are
loaded prior to user programs by the Absolute Loader. After 1I0X is
loaded, the Absolute Loader halts.

IOXLPT is used instead of I0X if the program uses a line printer.

I0X is supplied on an absolute binéry tape with a loading address of
15100; the load address for IOXLPT is 34600. I1f the user desires
different 1load addresses, the programs must be reassembled as
described in Appendix J.

I0X requires approximately 634 (decimal) words of core; IOXLPT
requires approximately 725 (decimal) words.

7.1.3 I0X Interrupt and Trap Vectors

IOX (IOXLPT) loads the following'intertuptwand trap vectors:

Console terminal

high speed reader and punch
timeout and other errors
10T

line printer (IOXLPT only)

7.2 THE DEVICE ASSIGNMENT TABLE

The Device Assignment Table (DAT) makes programs device~independent by
allowing the user to refer to a slot to which a device has been
assigned, rather than a specific device itself. Thus, changing the
input or output device becomes a simple matter of reassigning a
different device to the slot indicated in the program.

The DAT is created by means of the Reset and/or 1Init commands. The
I0X codes for devices (listed in the description of the Init command
below) are assigned to the slots.

INPUT/QUTPUT PROGRAMMING

7.2.1 Reset

IoT
+WORD ¢
.BYTE 2,0

This command must be the first IOX command issued by a user program.
It clears the DAT, initializes I0X, resets all devices to their state
at power-up, enables keyboard interrupts, and initializes DAT slots 0
and 1 for the keyboard and teleprinter, respectively.

7.2.2 Initialization

10T
-WORD {address of device code)
+BYTE 1, (slot number)

The device whose code (stored as a byte) is found at the specified
address is associated with the specified slot (numbered in the range
0-7). The device interrupt is turned off when necessary. {The
keyboard interrupt always remains enabled.) There is no restriction on
the number of slots that can be initialized to the same device.

DEVICE
DEVICE CODE
Teletype Keyboard = (KBD) 1
Teletype printer {TTY) 2
Low~Speed Reader (LSR) 3
Low-Speed Punch (LSP) 4
High-Speed Reader (HSR) 5
High-Speed Punch (HSP) 6
Line Printer , :

(IOXLPT conly) (LPT) 10

Note that a device code is used only in the 1Initialization (INIT)
command. All other commands that refer to a device do so by means of
a slot. Example: »

INIT=1

1oT sTRAFP TO IO0X

+WORD HBRCOD FINIT SLOT 3

+BYTE INIT»3 $FOR HSR
HSRCOD: +BYTE & sHER CODRE

7.3 BUFFER ARRANGEMENT IN DATA TRANSFER COMMANDS

Use of data-transfer commands {Read, Write, Real-time Read, Real-time
Write) requires the creation of at least one buffer. This buffer is
used not only to store data for processing, but to hold information
regarding the gquantity, form, and status of the data. The non-data

7-4

& 3
& L

INPUT/CUTPUT PROGRAMMING

portion of the buffer is called the buffer header, and precedes the
data portion. In data transfer commands, it is the address of the
first word of the buffer header that is specified in the word
following the IOT of the command.

NOTE
IOX wuses the buffer header while

transferring data. The user's program
must not change or reference it.

The buffer format is:

Location Contents
Buffer Maximum number of data bytes {unsigned
integer)
BUFFER Buffer+2 Mode of data (byte)
HEADER
Buffer+3 Status of data (byte)
Buffer+4 " Number of data bytes involved in transfer

{(unsigned integer)

Buffer+6 Actual data begins here

BUFFER SIZE (IN BYTES)

STATUS MODE

BYTE COUNT

' DATA

7.3.1 Buffer Size

The first word of the buffer contains the size (in bytes) of the data
portion of the buffer as specified by the user. I0X will not store
more than this many data bytes on input. Buffer size has no meaning
on output.

7.3.2 Mode Byte

The low-order byte of the second word holds information concerning the
mode or transfer. A choice of four modes exists:

Coded as
1. Formatted ASCII 0 {or 200 to suppress echo)
2. Formatted Binary 1
3. Unformatted ASCII 2 {or 202 to suppress echo)
4. Unformatted Binary 3

INPUT/OUTPUT PROGRAMMING

The term echo applies only to the KBD. Data transfers from other o
devices never involve an echo.

MODE BYTE
Bits 7 6 5 4 3 2 1 0 Bits
_ UNFOR- *
1 NO ECHO MATTED | BINARY 1
FOR-
0= ECHO matTep| ¢! =0 #

7.3.3 Status:-Byte

The high-order byte of the second word of the buffer header contains
information set by IOX on the status of the data transfer:

Bits 0-4 contain the non-fatal error codes (coded octally)

Bit 5 1

]

End-Of-File has occurred (attempt at reading data
after an End-0f-Medium)

Bit 6 1

L}

End-of-Medium has occurred (see Section 7.3.3.3)

Bit 7 1 = Done (Data Transfer complete) s
STATUSBYTE
7 6 5 4 3 2 1 0
i i I T
= 1= = SEE CODES
DONE EOM EOF
] I 1 i

NON-FATAL ERRORS

7.3.3.1 Non-Fatal Error Codes ({(Octal) -

2 = checksum error

o
3 = truncation of a long line
4 = an improper mode

1. A checksum error can occur only on a Formatted Binary read
(see Section 7.4.3).

&

INPUT/CUTPUT PROGRAMMING

2. Truncation of a long line can occur on either a Formatted
Binary or Formatted ASCII read (Section 7.4.1). This error
occurs when the binary bloc¢k or ASCII line is bigger than the
buffer size specified in the buffer header. In both cases,
I0OX continues reading characters into the last byte in the
buffer - until the end of the binary block or ASCII line is
encountered. :

3. An improper mode can occur only on a Formatted Binary read.
Such occurrence means that the first non-null character
encountered was not the proper starting character for a
Formatted Binary block (see Section 7.4.3)

7.3.3.2 Done Bit - When the data transfer to or from the buffer is
complete, the Done Bit is set by IOX.

7.3.3.3 End-Of-Medium Bit - The following conditions cause the EOM
bit to be set in the buffer Status byte associated with a data
transfer command. An EOM occurrence also sets the Done Bit.

HSR ’ ' HSP ‘ LSR - LPT
No tape No tape Timeout No paper

detected
Off line = No power : No power

No power _— Printer drum gate open
Overtemperature condition

An End-0f-Medium condition on an output device is cleared by a manual
operation such as putting a tape in the high~speed punch. IOX does
not retain any record of an EOM on an output device. However, an EOM
on an input device is recorded by IOX so that succeeding attempts to
read from that device will cause an End-Of-File (see Section 7.3.3.4).
To reenable input the device must be manually readied and a Seek
command (Section 7.6) executed on the proper slot. The INIT and RESET
commands will also clear the EOM condition for the device.

See Section 7.5.3 for information on detection of conditions causing
LSR timeouts. o

When an End-Of-Medium has occurred on a Read, there may be data in the
buffer. If an EOM has occurred on a Write, there is no way of knowing
how much of the buffer was written.

7.3.3.4 End-Of-File Bit - An EOF condition appears in the Status byte
if an attempt to read is made after an EOM has occurred. EOF cannot
occur on output. When an EOF has occurred, no data is available in
the buffer. i e

INPUT/OUTPUT PROGRAMMING

7.3.4 Byte Count
The third word contains the Byte Count:

Input: In unformatted data modes, IOX reads as many data bytes
as the wuser has specified. In formatted modes, IOX
inserts here the number of data bytes available in the
buffer. In all modes, if an EOM occurs, IO0X will set
the Byte Count egual to the number of bytes actually
read. If an EOF occurs, Byte Count will be set to 0.

Output: Byte Count determines the number of bytes output, for
all modes. An HSP end-of-tape or LPT out-of-~paper
condition will also terminate output, and EOM will be
set in the Status byte. I0X does not modify the Byte
Count on output. ‘ '

7.4 MODES

7.4.1 Formatted ASCII

A Formatted ASCII read transfers 7-bit characters (bit 8 will be zero)
until a line feed or form feed is read. IOX sets the Byte Count word
in the buffer header to indicate the number of characters in the
buffer. If the 1line 1is too long, characters are read and overlaid
into the last byte of the buffer until an end-of-line (a line feed or
form feed) or EOM is detected. Thus, if there is no error, the buffer
will always contain a line feed or form feed.

A Formatted ASCII write transfers the number of 7-bit characters
specified by the buffer Byte Count. Bit 8 will always be output as
Zero. ‘ :

Device-~Dependent Functions

Kéyboard

Seven~bit characters read from the keyboard are entered in the buffer
and are echoed on the teleprinter except as follows:

Null - Ignored. This character is not - echoed or
transferred to the buffer. ,
Tab - Echoes as spaces up to the next tab stop. "Stops”
(CTRL/TAB are located at every 8th carriage position.
keys)
- Deletes the previbus character on the current - line

RUBOUT
: and echoes as a backslash (\). If there are no
characters to delete, RUBOUT is ignored.

CTRL/U - Deletes the current line and echoes as 1U.

!

Carriage Echoes as a carriage return followed by a line feed.
Return Both characters enter the buffer.
(RETURN key)

CTRL/P - Echoes as 4P and causes a jump to the restart
address, if non-zero (see 7.6.2).

The echo may be suppressed by setting bit 7 of the buffer header Mode
byte.
7-8

»

w2,
A

L

INPUT/OUTPUT PROGRAMMING

If the buffer overflows, only the characters which fit into the buffer
are echoed. O0f course, characters which are deleted by RUBOUT or
CTRL/U do not read into the buffer even though they are echoed. If a
carriage return causes an overflow, or is typed after an overflow has
occurred, a carriage return and line feed will be echoed but only the
line feed will enter the buffer.

In the following Formatted ASCII examples:
1. assume there is room for five characters
2. </ indicates:
'in left column, the RETURN key
:in center column, the execution of a carriage return
in right column, the ASCII code for carriage return
3. 4 indicates:
‘in center column, the execution of a line feed
in right column, the ASCII code for line feed

4. RUB indicates the RUBOUT key

ouT
5. CTRL indicates the CTRL and U keys.
U
Typed Echoed Entered Buffer
ABC./ ABC/+ ABC../+
ABCD,/ v , ABCD /+ ABCD +
ABCDEF./ ABCD/+ ABCD +
ABCDEF RUB_/ ABCD\ /¥ AR ABC /4
outr™ ‘
CTRL RUB_/

u ouT UL+ <
ABCDEF RUB RUB_/ ABCD\\ o/ + ABL/+
OUT OUT :

ABCDEF RUB RUB RUB _ ABCD \\\X./+ AX /4

ouT OUT OUT

Low-Speed Reader and High-Speed Reader

All characters are transferred to the buffer except that nulls and
rubouts are ignored.

Teleprinter

Characters are printed from the buffer as they appear except that
nulls are ignored and tabs are output as spaces up to the next tab
stop.

Low-Speed Punch and High-Speed Punch

Characters are punched from the buffer as they appear except that
nulls are ignored and tabs are followed by a rubout.

INPUT/OUTPUT PROGRAMMING

Line Printer (IOXLPT only)

Characters are printed from the buffer ‘as they appear except as
follows: '

Nulls - Ignored

Tab - Output as spaces up to the next tab stop.
Carriage = Ignored. ‘It is assumed that a line feed or form
Return feed follows. These characters cause the line

printer "carriage" to advance.

All characters beyond the 80th are ignored except a line feed or form
feed. :

7.4.2 Unformatted ASCII

Unformatted ASCII transfers the number of 7-bit characters. specified
by the header Byte Count.

Device-Dependent Functions
Keyboard
Characters aré read and echoed excépt as follows;
Tab - Echoes as spaces up to the next tab stop.

CTRL/P - Echoes as "P and causes a jump to the restart
address, if non-zero (see 7.6.2).

7.4.3 Formatted Binary

Formatted Binary is used to transfer checksummed binary ‘data (8-bit
characters) in blocks. A Formatted Binary block appears as follows:

Byte (Octal) Meaning
001 - Start of block
000 - Always null
XXX - Block Byte Count (low-order followed by
XXX - high-order). Count includes data and

preceding four bytes.

DDD
DDD
. > - Data bytes
DDD
DDD
cce - Checksum. Negation of the sum of all

preceding bytes in the block.

7-10

e

stimy

INPUT/OUTPUT PROGRAMMING

I0X creates the block on output, from the buffer and buffer header.
The Byte Count word in the buffer header specifies the number of data
bytes following, which are to be output. Note that the Byte Count
output is four larger than the header Byte Count. As the block is
output, IOX calculates the checksum which is output following the last
data byte. ’

On Formatted Binary reads, I0X ignores null characters until the first
non-null character is read. If this character is & 001, a Formatted
Binary block is assumed to follow and. is read from the device under
control of the Byte Count value. If the first non-null character is
not 001, the read is immediately terminated and error code 4 is set in
the Status byte. As the block is read a checksum is calculated and
compared to the checksum following the block. If the checksum is
incorrect, error code 2 1is set in the Status byte of the buffer
header. If the binary block is too large (Byte Count less 4, larger
than the Buffer Size specified in the header), the last byte of the
buffer is overlaid until the last data byte has been read; error code
3 is set in the Status byte.

Device-Dependent Functions

None.. Eight-bit data characters are transferred to and from the
device and buffer exactly as they appear.

7.4.4 Unformatted Binary

This mode transfers 8-bit characters with no formatting or character
conversions of any kind. For both input and output, the buffer header
Byte Count determines the number of characters transferred.
Device~Depenéeﬁt Functions

None

7.5 DATA TRANSFERS

7.5.1 Read

10T

.WORD (address of first word of the buffer header)
.BYTE 11, (slot number)

This command causes IOX to read from the device associated with the
specified slot according to the information found in the buffer
header. 1I0X initiates the transfer of data, clears the Status byte,
and returns control to the calling program. If the device on the
selected slot is busy, or a conflicting device {see Section 7.5.3) is
busy, IOX retains control until the data transfer can be initiated.
Upon completion of the Read, the appropriate bits in the Status byte
are set by I0X and the Byte Count word indicates the number of bytes
in the data buffer. Note that use of the KBD while an LSR Read is in

progress will intersperse KBD characters into - the buffer
unpredictably.

INPUT/OUTPUT PROGRAMMING

7.5.2 VWrite

~I0T -

«WORD (address of first word of the buffer header)
+BYTE 12, (slot number) kR

I0X writes on the device associated with the specified slot according
to the information found in the buffer header. Transfer of data
occurs in the amount specified by Byte Count (Buffer+4). 1IOX returns
control to the calling program as soon as the transfer has been
initiated. If the device on the selected slot is busy, or a
conflicting device is busy, IOX retains control until the transfer can
be initiated. Upon completion of the Write, IOX will set the Status
byte to the latest conditions. If a Write causes an EOM condition,
the user has no way of determining how much of his buffer has been
written (the Byte Count remains the same.)

7.5.3 Device Conflicts In Data Transfer Commands

Because there is a physical association between the devices on the ASR
Teletype, certain devices cannot be in use at the same time. When a
data transfer command is given, IOX simultaneously checks for two
conditions before executing the command:

1. 1Is the device requested already in use? and,

2. Is there some other device in use that would result in an
operational conflict?

I0X resolves both conflict situations by waiting until the first
device is no longer busy, before allowing the requested device to
start functioning. (This is an automatic Waitr command. See next
section.) For example, if the LSR is in use, and either a KBD request
or a second request for the LSR itself is made, IOX will wait until
the current LSR read has been completed before returning control to
the calling program. In the particular case of the LSR, IOX also
performs a timeout check while waiting for it to become available.

When a Read command has been issued for the LSR, IOX waits about 100
milliseconds for each character to be read. If no character is
detected by this time (presumably because the LSR is turned off, or
out of tape), a timeout is declared and IOX sets EOM in the
appropriate buffer Status byte.

The following is a table listing the devices. Corresponding to each

device on the left is a list of devices (or the echo operation} which
would conflict with it in operation.

All Possible Conflicting

Device Devices or Operations
KBD CHO, KBD, TTY, LSR, LSP
TTY Echo, KBQ, TTY, LSP
LS8R KBD, LSR
LSP Echo, KBD, TTY, LSP
HSR HSR
HSP HSP

LPT {(IOXLPT only)LPT

INPUT/OUTPUT PROGRAMMING

7.5.4 Waitr {Wait, Return)

10T
.WORD (busy return address)
.BYTE 4, (slot number)

Waitr, like device conflict resclution, causes IOX to test the status
of the device associated with the specified slot. If the device (or
any possible conflicting device) is not transferring data, control is
passed to the instruction following the Waitr. Otherwise, IOX
transfers program control to - the busy return address. If it 1is
desired to continuously test for completion of data transfer on the
device, the busy return address of the immediately preceding IOT
instruction can be specified, effecting a Wait loop.

If a slot is inited to any device other than the LSR, control is
returned to the calling program about 150 microseconds after execution
of a Waitr. For the LSR, however, the time is about 100 milliseconds.

Note that a not-busy return from Waitr normally means the device is
available. However, in the case of a Write, this only means that the
last character has been output to the device. The device is still in
the process of printing or punching the character. Thus, care must be
exercised when performing an IOX Reset, hardware RESET, or HALT after
a Write-Waitr sequence, since these may prevent the last character
from being physically output.

7.5.5 Waitr vs. Testing the Buffer Done Bit

Since I0X permzts you to have device-independent code, it may - not be
known, from run to run, what devices will be assigned to the slots in
your program. Waitr tests the status, not only of the device it
specifies, but also of all possible conflicting devices.

This means that when Waitr indicates that the device is not busy, the
data transfer on the device of interest may have been done for some
time. Depending on the program and what devices are assigned to the
slots for a given run, the Waitr could have been waiting an additional
amount of time for a conflicting device to become free.

Where this possibility exists and buffer availability is what is of
interest, testing the Done bit of the Status byte (set when buffer
transfer is complete) would be preferable to Waitr; whereas Waitr
would be preferable if device availability is what is of interest.

This distinction is made in order to write device-~independent code.
In the example below:

1. If the devices at slots 2 and 3 could be guaranteed always to
be conflicting, neither Waitr nor testing the Done bit would
be necessary, because IOX would automatically wait for the
busy device to finish before allowing the other device to
begin. ,

2, If these devices could be guaranteed never to be conflicting,
it wouldn't matter which of these methods was used, because
Waitr couldn't be waiting extra time for a conflicting device
(of no interest) to become free.

INPUT/OUTPUT PROGRAMMING

Example: PROGRAM A PROGRAM B
Iar Ior]
+WORD BUF2 +WORD BUFZ2
+BYTE READs SLOT2 +BYTE READ, SLOTZ2
Ior : 0T
+WORD BUF1 +WORD BUF1
+BYTE READy 8SLOT2 +BYTE READy SLOTZ
IoT Ior
+WORD BUF2 +WORD BUF2
+BYTE WRITEs SLUOTS +BYTE WRITEy SLOT3
DUNTST TSTE BUF1+3 DEVTST! IoT
‘ EBPL. DUNTST +WORD DEVTST

+BYTE WAITR,SLOT2

or
+WORD SLOTZ2DEVY
+BYTE INIT, SLOTA4

Programs A and B do two successive reade from the same device into two
different buffers. Since the devices are the same, IOX waits for the
first read to finish before allowing the second to begin.

In Program A, we wish to process buffer 1. To have issued a Waitr for
the device associated with slot 2 could have meant waiting also for
the device at slot 3 if that device were in conflict. Hence, testing
the Done bit in the buffer header is the proper choice.

in Program B, we wish control of the device at slot 2, so that it can

be assigned to another slot and so we must know its availability.
Therefore, Waitr is appropriate.

7.5.6 Single Buffer Transfer on One Device

Al 10T $TRAP TO 10X
+WORD BUF1 sSPECIFY RUFFER .
+BYTE REAL»SLOT3 sREAD FROM DEVICE AT
§SLOT 3 INTO BUFFER
BRUSY: IOT sTRAF TO I0X
+WORD BUSY FSFECIFY BUSY RETURN ADDRESS
+BYTE WAITR,SLOT3 fWAIT FOR DEVICE AT SLOT

#3 TO FINISH READING
(rrocess buffer 1)

JMP A

The program segment above includes a Waitr which goes to a Busy Return
address that is its own IOT -- continuously testing the device at slot
3 for availability. 1In this instance, involving only a single device
and a single buffer, a Done condition in the Buffer 1 Status byte can
be inferred from the availability of the device at slot 3. This
knowledge assures us that all data requested for Buffer 1 is available
for processing.

Testing the Done Bit of Buffer 1 might have been used instead, but was
not necessary with only one device operating. Moreover, a Waitr,
unlike a Done Bit test, would detect a timeout on the LSR if that
device happened to be associated with slot 3.

7~14

T

L

)

INPUT/OUTPUT PROGRAMMING

7+5.7 Double Buffering
. 10T ‘ : sTRAP TO I0X

+WORD BUF1 JSPECIFY BUFFER 1
+BYTE READ SLOT3 FREAIN FROM DEVICE AT
; $8LOT 3 INTO BUFFER 1
Al 10T sTRAF TO I0X
+WORD BUF2 sSPECIFY BUFFER 2
+BYTE READSLOT3 READ FROM DEVICE AT 8L.OT

$3 INTO BUFFER 2
(rrocess BUFL concurrent with Read imto BUFZ2)

Bt IOT $TRAF TOD I0X

+WORD BUF1 SSPECIFY BUFFER 1

+BYTE READISLOTI $REAR FROM DEVICE AT
o o - $8LOT- 3 INTO BUFFER 1

(rrocess BUF2 concurrent with Read inte RUF1)

JNP A |
The example above illustrates a time~saving double-buffer scheme
whereby data is processed in Buffer 1 at the same time as new data is

being read into Buffer 2; and, sequentially, data is processed in
Buffer 2 at the same time as new data is being read into Buffer 1.

Because IOX ensures that the regquested device 1is free before
initiating the command, the subsequent return of control from the IOT
at A implies that the read prior to A 1is complete; - that 1is, that
buffer 1 is available for processing. Similarly, the return of
control from the IOT at B implies that buffer 2 is available. Waitr's
are not required because IOX has automatically ensured the device's
availability before initiating each Read.

7.5.8 Readr (Real-time Read)

10T o .

«HWORD (address of first word of the buffer header)
.BYTE 13, (slot number)

.WORD (done-address)

The Readr command functions as the Read except that upon completion of
the data transfer, program control goes to the specified Done-address
at the priority level of the device. Readr is used when you wish to
execute a segment of your program immediately upon completing the data
transfer. 10X goes to the Done address by executing a JSR R7,
Done-address.

The general registers, which were saved when the 1last character
interrupt occurred, are on the SP stack in the order indicated below:

(SP)» Return: address to 10X
R5

7-15

INPUT/OUTPUT PROGRAMMING

Return to IOX is accomplished by an RTS R7 instruction. IOX will then
restore all registers and return to the interrupted program.-: Care
should be taken in initiating another data transfer if the ' specified
device can conflict with device requests at other priority levels.
Waitr cannot be used to resolve conflict situations between priority
levels.

7.5.9 Writr (Real-time Write)

I0T

-WORD (address of first word of the buffer header)
.BYTE 14, (slot number of device)

.WORD (done address)

The Writr command functions as the Write except that, upon completion
of the data transfer, program control goes to the specified
bone-address at the priority level of the device. IOX goes to the
Done-address by executing a JSR R7, Done-address. The condition of
the general registers and the return to IOX are the same as for Readr.
Writr is wused when you wish to execute a segment of your program
immediately upon completing the data transfer.

As in the Readr, care should be taken in initiating another data

transfer if the specified device can conflict with device requests at
the priority level of the calling program.

7.6 REENABLING THE READER AND RESTARTING

7.6.1 Seek

IO0T
.WORD O
.BYTE 5, (slot number of LSR or HSR)

The Seek command clears IOX's internal End-Of-Medium (EOM) indicator
on the LSR or HSR, making possible a subsequent read on those devices.
With no EOM, an EOF cannot occur. The device associated with the
specified slot remains Inited.

7.6.2 Restart

I0T
.WORD {address to restart)
.BYTE 3,0

This command designates an address at which to restart your program.
After this command has been issued, typing CTRL/P on the KBD will
transfer program control to the restart address, providing there is no
LSR read 1in progress. In such a case, the LSR must be turned off
(causing a timeout) before typing a CTRL/P. If the Restart address is
designated as 0, the CTRL/P Restart capability is disabled.

The Restart command does not cancel any I/O in progress. It is the
program's responsibility in its restart routine to clean up any 1I/0 by
executing a RESET command and ensuring that the stack pointer is
reset.

vy

INPUT/QUTPUT PROGRAMMING

7.7 FATAL ERRORS

Fatal errors result in program termination and a jump to location 40g
(loaded with a HALT by I10X), with RO set to the error code and Rl set
as followss - , ' ,

1f the fatal error was due to an illegal memory reference (code
0), Rl will contain the PC at the time of the error.

If the fatal error was due to an error coded in the range 1-5, Rl
will point to some element in the IOT argument list or to the
instruction following the argument list, depending on whether I0X
has finished decoding the arguments when it detects the error.
Fatal Errocr Code , Reason

g Illegal Memory Reference, SP overflow, illegal
instruction

Illegal IOX command
Slot out of range
Device out of range

Slot not inited

(S - S TSR S

Illegal data mode

Note that the SP stack contains the value of the registers at the time
of the error, namely

(SP}+» RS
R4
R3
R2
Rl
RO
PC
Processgor Status (PS)

(See Section 7.3.3.1 for a discussion of non-fatal errors.)

7.8 EXAMPLE OF PROGRAM USING IOX

This program is used to duplicate paper tape. Note that it could be
altered by changing the device code at RDEV or PDEV. For instance,
the program could easily be made to list a tape.

RO=%0
R1=%1
R2=%42
R3=%3
R4=7%4
Ré6=%46
KSLOT=0
TSLAOT=1
RSLOT=3
FSLOT=4
RESET=2
RESTRT=3
INIT=1

INPUT/OUTPUT PROGRAMMING

WAITR=4
READ=11
WRITE=12
EOF=20000 ; ;
CR=1%5 FCR ASSIGNED ASCII CODE FOR CARRIAGE RETURN
LF=12 SLF ASSIGNED ASCII CODE FOR LINE FEED
+=1000 .)
H8G1¢ 4] sCANNED MESSAGE
- O : sFORMATTED ASCII
MSEG1IRC: ENDLI~MSG1BRC-2 FEBYTE COUNT

+BYTE CRyLF
+ASCII / PLACE TAPE IN READER/

+RYTE CRyLF
+ABCII / STRIKE CR WHEN READY/
ENDI1: +EVEN

RUF 3 2 , FBUFFER. SIZE
0 sFORMATTED ASCII MODE
0 FRC
0 - 3CR LF
RDEV?] $DEVICE CODE FOR HSR
FDEVS & fDEVICE CODE FOR HSP
BUF1? 100 s BUFFER GIZE
3 fCODE FOR UNFORMATTED BINARY
100 FSFECIFIES NUMBER OF BYTES FOR TRANSFER
e=y 100 *RESERVES STORAGE FOR DATA
BUF2? 100 FBUFFER SIZE
3 FCODE FOR UNFORMATTED RINARY
100 #SPECIFIES NUMBER OF BYTES FOR TRANSFER
e +100 FRESERVES STORAGE FOR DATA
BEGIN? MOV #500vRé FSPECIFY ADDRESS FOR RBOTTOM OF STACK
Ior
0
+RBYTE RESET»0 SINITIALIZATION
IoT
BEGIN F*BEGIN® SPECIFIED AS RESTART
+BYTE RESTRT»0 $ADDRESS FOR CTRL F
MOV #100yBUF1+4 FSET UP INITIAL EC ON RUF1
MOV #1005 BUF 244 §SET UP INITIAL BC ON RUF2
Ior STYFE QUT DIRECTIONS
M8G1
+BYTE WRITE»TSLOT
Ior ' fREAD A CRsLF
BRUF3
+BYTE READSKSLOT
Al Ior SWAIT FOR HIM TO TYFE A CARRIAGE RETURN»
sLINE FEED
A
+RYTE WAITRyKSLOT
1ar FINIT READER
RIOEV '
+BYTE INITsRSLOT
10T FINIT FUNCH
FREV

+BYTE INITPSLOT

7-18

INPUT/OUTPUT PROGRAMMING

Ior $START FIRST READ
BUF1
+BYTE READsRSLOT
LOOP: 10T $READ INTO 2NI BUFFER
RUF2
+BYTE READSRSLOT
BIT #EOF BUF142 SEND OF FILE?
BNE BEGIN JYES
FNO
Iov SWRITE OUT THIS BUFFER
BUF1
SRYTE WRITE(PSLOT
c: IoT SWAIT TILL DEVICE HAS FINISHED
c
+BYTE WAITR.PSELOT
10T $READ INTO 1ST BUFFER
BUF1
+BYTE READsRSLOT
BIT ¥EOF » BUF 242 - $END OF FILE?Y
BNE BEGIN
107 FWRITE OUT BUFFER 2
BUF2
+BYTE WRITEsFSLOT
B IaT SWAIT TILL DEVICE HAS FINISHELD
B
+BYTE WAITRyPSLOT
EBR LOOFr

+END BEGIN

7.9 10X INTERNAL INFORMATION

7.9.1 Conflict Byte/Word

The IOX Conflict byte (in IOXLPT, Conflict Word) contains the status
(busy or free) of all devices as well as whether or not an echo is in
progress. Bit 0 is the echo bit, bits 1-6 (and 8 in IOXLPT) refer to
the corresponding codes for devices:

If Bit is Set

Bit 0 = Echo in progress
Bit
1 = KBD busy
Device
Bit
2 = TTY busy
Device

w
[}

Bit
LSR busy
Device

7-19

INPUT/OUTPUT PROGRAMMING

Bit

4 = LSP busy
Device
Bit

5 = HSR busy
Device
Bit

6 = HSP busy
Device
Bit 8

= LPT busy

Device 10

8

In IOXLPT, the Conflict Byte is expanded to a word in order to
accommodate the line printer, there being no bit 8 to correspond with
that device's code of 10 (octal) (the lowest available code for an
output device - see Section 7.9.5.1).

. All Possible Conflict
Device Conflicting Devices Number
KBD Echo, KBD, TTY, LSR, LSP 37
TTY Echo, KBD, TTY, LSP 27
LSR KBD, LSR 12
LSP Echo, KBD, TTY, LSP 27
HSR HSR 40
HSP HSP 100
LPT LPT 400

For each of the devices in the left hand column, all the possible
conflicts are 1listed along with their respective conflict numbers.
These numbers, representing bit patterns of the devices 1listed in
column two above, are used to resolve any conflicting requests for
devices. The appropriate number is masked with the conflict byte. If
the result is zero, there are no conflicts and the device being tested
has its bit set allowing data transfer to begin.

7.9.2 Device Interrupt Table (DIT)

Each device interrupt handler has associated with it a Device
Interrupt Table (DIT) containing information that the handler needs:

DIT Checksum

DIT+2 Byte size from buffer header

DIT+4 Address of Mode byte in buffer header
DIT+6 Byte Location Pointer

DIT+10 Byte Count

DIT+12 Device code

7-20

s

3 £

INPUT/OUTPUT PROGRAMMING

DIT+14 Real time done-address
DIT+16 Address of device's data buffer register
The device interrupt routines gain access to the proper data by means

of the DIT entry. When a transfer is complete, they set the
appropriate bits in the buffer header pointed to by the DIT contents.

7.9.3 Device Status Table (DST)

The Device Status Table (DST) is used by I0OX to check for EOF
conditions. This table contains a word@ for each device indicating an
EOM condition with a 1. When an EOM condition is recognized on input,
I0X not only sets the appropriate —bit in the buffer status byte
associated with the data transfer, it also records this occurrence in
the DST. When a data transfer command is given, IOX checks the DST
for the EOM condition. 1If the appropriate word has a valuwe of 1, I0X
sets EOF in the Status byte of the current-command buffer. Since EOF
is only possible for the LSR (code 3), and HSR (code 5), the words
corresponding to those devices are the only ones that can ever be set
to 1.

7.9.4 Teletype Hardware Tab Facility

If the Teletype model has a hardware tab facility, teleprinter output
can be speeded up by:

1. For 10X, deleting the code from I.TTYCK+6 through I.TAB3+3.

2. For IOXLPT, skipping the code from XI.IOLF through I.TAB3+3
(for the teleprinter only - not the line printe:).

7.9.5 Adding Devices To I0X

In order to add a device to IO0X the following tasks must be done:
1. Assign a legal code to the device
2. Modify the IOX tables
3. Provide an interrupt routine to handle data for the device.

The line printer (in IOXLPT) will be used as an example throughout
this discussion. , ,

7.9.5.1 Device Codes - The numbers from 7 to 17 (octal) are available
for new-device codes, with the exception of 10 {octal) in the IOXLPT
version. This code has been assigned to the line printer. The device
code must be odd for an input device and even for an output device.
This is so a check can be made for <command/device correspondence;
i.e.,, for a Read from an input device or a Write to an ocutput device.

If the newest device was assigned a number that is higher than the
codes of all the other devices, I.MAXDEV must be redefined to that
value. This is so an cut-of-range device specification in an Init
command can be detected. In IOXLPT, I.MAXDEV=10.

7-21

INPUT/OUTPUT PROGRAMMING -

Since each device code functions as an index in several word tables,
the entries relating to a given device must be placed at the same
relative position in each appropriate table. That is, the code number
must indicate how many words into the table the entry for that device
will be found. This, of course, means accounting for ‘any unused space
preceding the entry, if the codes are not assigned in strict sequence.
Table entries for the line printer are found at the 10th (octal) word
past the table tag, i.e., at Table+20.

7.9.5.2 Table Modification -

l. I.FUNC - Each entry is the octal value of the bit pattern in
the device Control/Status Register that enables the
corresponding device and/or any interrupt facility it has.
Bit setting this number into the device's Control/Status
register turns the device on; bit clearing turns it off.
Determine this value for the device to be added, and place

. the entry in the appropriate device position in the table.
For example, the line printer Control/Status Register has an
Interrupt Enable facility in bit 6. This pattern of 180 is
the LPT entry, and is located at I.FUNC+20.

2. I.SCRTAB - This table contains the addresses of the device
Control/Status registers. The line printer entry I.LPTSCR
has the value 177514, and is located at I.SCRTAB+20.

3. I.DST - (Refer to Section 7.9.3.) Create an entry of 0 for

the device in ‘the proper table location. Inserting a word of

0 at I.DST+20 created a device status entry for the line
printer. ! :

4. I.CONSIT - An entry in this table is used to set or clear a
device's busy/free bit in the Conflict Byte (Conflict Word in
IOXLPT). (See Section 7.9.1, and 5. below.) Each value is
obtained by setting one bit only - the bit number
corresponding to the device number. The line printer, being
device 10(octal), has a value of 400(octal) (bit 10 set) and
is located at I.CONSIT+20.

In the IOX version without the line printer, entries to this
table are found in the high-order bytes of Table I.CONFLC.
One more input device entry can be added to it. In IOXLPT,
however, I.CONSIT is a separate word table, allowing eight
more devices (four input and four output) to be added. Byte
operations :in the I0X I.CONSIT became word operations in
IOXLPT to adapt to this expansion.

5. I.CONFLC - (Refer to Section 7.9.1 on Conflict Byte/Word.)
Entries are bit patterns of conflicting devices. Since the
line printer can only c¢onflict with itself, the I.CONFLC
entry is equal to the I.CONSIT entry. As in the I.CONSIT

~ . table, ‘byte operations were changed to word operations for
©»I.CONFLC in IOXLPT. : G ‘ e :

6. Create a DIT for the device (refer to Section 7.9.2) by

- .rassigning a DIT 1label and seven words of 0. ' If it is an

output device; the address of the Device Buffer Register must
be added as an eighth word.

7~22

g
3

INPUT/OUTPUT PROGRAMMING

7. I.INTAB - This is a table of DIT addresses. Place the label
of the DIT (mentioned in 6. above) in the correct position
in the table. I.INTAB+20 contains the 1line printer entry
I.LPTDIT.

7.9.5.3 1Interrupt Routines - Write (and assign a label to) an
interrupt routine for the device to:

1. Get a character

2. Check for errors by means of the device Control/Status
register

3. Do character interpretation according to the device and mode
4. Get a character in or out of the buffer
5. Update 10X's Byte Count

6. Compare IOX's Byte Count to User's Byte Count and Buffer size
specification

7. Return for next character

Place the label of the interrupt routine at the address of the device
vector, and follow it with the value of the interrupt priority in bits
7, 6, and 5. I.LPTIR, the address of the 1line printer interrupt
routine, 1is at location 200. Location 202 contains the value 200
(indicating priority level 4).

If the device to be added is similar to the other single-character
devices, steps 3-7 above can be performed by IO0X as indicated below:

There are two routines, I.INPUT and I.QUTPUT, that are called from the
interrupt routines. These routines mainly perform common functions
for input and output devices. They are called as follows: .

JSR R5,I.INPUT and JSR R5,I.0OUTPUT

At the location following one of these calls is the DIT for the proper
device. The - routine 1is thus able to use R5 to reference the DIT
entries.

I.INPUT and 1.QUTPUT also contain device-dependent c¢ode to perform
functions such as tab counters for the teleprinter and line printer,
and deletion of carriage returns in Formatted ASCII mode for the 1line
printer. The device index value is used to identify the device. For
the line printer, a symbol I.LPT, has been assigned the value 20 for
convenient reference to the device index.

7-23

e

CHAPTER 8

FLOATING POINT MATH PACKAGE OVERVIEW'

The new Floating-Point Math Package, FPMP-1l, is designed to bring the
2/4 word floating point format of the FORTRAN environment to the paper
tape software system of the PDP~1l. The numerical routines in FPMP-11
are the same as those of the DOS/BATCH FORTRAN Operating Time System
(0TS) . TRAP and error handlers have been included to aid in
interfacing with the FORTRAN routines.

FPMP-11 provides an easy means of performing basic arithmetic
operations such as add, subtract, multiply, divide, and compare. It
also provides transcendental functions (SIN, COS, etc.), type
conversions (integer to floating-point, 2-word to 4-word, etc.), and
ASCII conversions (ASCII to 2-word floating-point, etc.).

Floating-point notation 1is particularly useful for computations
involving numerous multiply and divide operations where operand
magnitudes may vary widely. FPMP-11 stores very large and very small
numbers by saving only the significant digits and computing an
exponent to account for leading and trailing zeros.

To conserve core space in a small system, FPMP-11l can be tailored to
include only those routines needed to run a particular user program.

For more information on FPMP-11, refer to the F¥PMP-11 User's Manual
(DEC-11~NFPMA~-A~-D) and to Appendix H of this manual.

'FPMP is not currently available for the LSI-11 (PDP-11/03).
8~-1

g,

CHAPTER 9

PROGRAMMING TECHNIQUES

This chapter presents various programming technigues. They c¢an be
used to enhance your programming and to make optimum use of the PDP-11
processor. The reader is expected to be familiar with the PAL-11
assembly language (Chapters 1 & 2). ‘ : '

9.1 WRITING POSITION INDEPENDENT CODE -

When a standard program is available for different users, it often
becomes useful to be able to load the program into different areas of
core and to run it there. There are several ways to do this:

1. Reassemble the program at ﬁheaﬂeSLreéﬁiacatioﬁ;‘

2. Use a relocating loader which accepts specially coded binary
from the assembler.

3. Have the program relocate itself after it is loaded.
4. Write code which is position independent.

On small machines, reassembly is often performed. When the required
core 1is available, a relocating loader (usually called a linking
loader) is preferable. It generally is not economical to have a
program relocate itself since hundreds or thousands of addresses may
need adjustment. Writing position independent code 1is usually not
possible because of the structure. of the addressing of the object
machine. However, on the PDP-11, position independent code (PIC) is
possible. : R e

PIC .is .achieved on the PDP-11 by using addressing modeg which form an
effective memory address relative to the Program Counter (PC). Thus,
if an instruction and its object(s) are moved in such a way that the
relative distance between them is not - altered, the same offset
relative to the PC can be used in all positions in memory. Thus, PIC
usually references locations relative to the current location. PIC
may make absolute references as long ag the locations referenced stay
in the same place while the PIC is relocated. FPor example, references
to interrupt and trap vectors are absolute, as are references to
device registers in the external page and direct references to the
general registers.

9-1

PROGRAMMING TECHNIQUES

9.1.1 Position Independent Modes

There are three position independent modes or forms of instructions.

They are:
l.

Branches -~ the conditional branches, as well as the
unconditional branch, BR, are position independent since the
branch address is computed as an offset to the BC.

Relative Memory References -- any relative memory reference
of the form

CLR X
MOV X,Y
JMP X

is position independent because the assembler assembles it as
an offset indexed by the PC. The offset is ‘the difference

between the referenced location and the PC. For example;

assume the instruction CLR 200 is at address 100:

1007 005087 #FIRST WORD OF CLR 200
102/ 000074 $OFFSET = 200~104

The offset is ‘added to the PC. The PC contains 104, i;e.,
the address of the word follow1ng the offset. '

Although the form CLR X is position 1ndependent, the form CLR
@X is not. <Consider the following:

81 CLR ex $CLLEAR LOCATION A

+
*

X! JWORD A #POINTER TO A
*

*

Al JWORD O

'The contents of location X are used as the address of the
‘operané in the location labeled A. Thus, if all of the code

is relocated, the contents of location X must be altered to
reflect the new address of A. If a, however, was the name
associated with some fixed Ilocation (e.g., trap ‘vector,
device register), then statements S and X would be relocated
and A would remain ‘fixed. Thus, the «following' code is

'position independent.

A = 3é : ’;RDDREBS GF SECQNﬁ NORB BF

' - $TRAP VELTOR: '

8 CLR @8X - $CLEAR LOCATION A
! . o ; it A
+

X! WORD A FPOINTER TO A

Immediate Operands -- The assembler addressing form #X
specifies immediate data, that 1is, the operand is in the
instruction. Immediate data is position independent since it
is a part of the instruction and 1is moved with the

9-2

",

‘4%
i

=

PROGRAMMING TECHNIQUES

instruction. Immediate data is fetched using the PC in the
autoincrement mode. o '

As with direct memory references, the addressing form @#X is
not position independent. As before, the final effective
address is absolute and points to a fixed location not
relative to the PC. “ , « ; ‘

9.1.2 Absolute Modes

Any time a memory location or register is used as a pointer to data,
the reference is absolute. If the referenced data is fixed in memory,
independent of the position of the PIC (e.g., trap-interrupt vectors,
device registers), the absolute modes must be used.! If the data is
relative to the PIC, the absolute modes must not be used unless the
pointers involved are modified. The absolute modes are:

ex Location X is a‘pointer

e#x The immediate word is a pointer

(R} The register is a pointer

(R}+ .and ~(R) The régistar is a pﬁintet

@(R)+ and @-(R) The register points to a pointer

X{R} R#6 or 7 The base, X, modified by (R) is
the address of the operand

eX (R) The base, modified by (R), is a
pointer

The non-deferred index modes and stack operations require & little
clarification. As described in Sections 3.6.10 and 9.1.1, the form
X(7) is the normal mode to reference memory and is a relative mode.
Index mode, using a stack pointer (SP or other register) is also a
relative mode and may be used conveniently in PIC. Basically, the
stack pointer points to a dynamic storage area and index mode is used
to access data relative to the pointer. The stack pointer may be
initially set up by a position independent program as shown in Section
9.1.4.1. 1In any case, once the pointer is set up, all data on the
stack is referenced relative to the pointer. It should also be noted
that since the form 0 (S8P) is considered a relative mode so is its
equivalent @SP. In addition, the forms (8P)+ and —-({SP) are required
for stack pops and pushes.: ,

9.1.3 Writing Automatic PIC

Automatic PIC is code which requires no alteration of addresses or
pointers. Thus, memory references are limited to relative modes
unless the 1location referenced 1is fixed (trap-interrupt vectors,
etc.). In addition to the above rules, the following must be
observed: : :

1. Start the program with .=0 to allow easy relocation using the
Absolute Loader (see Chapter 6}.

'When PIC is not being written, references to fixed locations may be
performed with either the absoclute or relative forms.

9-3

PROGRAMMING TECHNIQUES

2. All location setting statements muet be of the form .=.*X or
.= function of tags within the PIC., ' For example, .=A+l0
where A is a local label.

3. There must not be any absolute location setting statements.
‘ This means that a block of PIC cannot set up trap and/or
interrupt vectors at load time with statements such as:

=34
+WORD TRAPH» 340 i TRAP VECTOR

~ - data by ‘the load bias (see Chapter 6). Thus, the data for
~ © the wector would be relocated to some ‘other place. Vectors
may be set at‘éxecution time (see Section 9.1.4). B :

The Absolute Loader, when it is relocating PIC,’féloéates all

9.1.4 Writing Non-Automatic PIC

Often it is not possible or economical to write totally automated PIC.
In these .cases, some relocation may be easily peformed ‘at execution
time. Some of the required methods of solution are presented below.
Basically, the methods operate 'by examining the PC to determine where
the PIC is actually located. Then a relocation factor can be easily
computed. In = all examples, it is assumed that the code is assembled
at zero and has been relocated somewhere else by the Absolute Loader.

9.1.4.1 Setting Up The Stack Pointer - Often the first task of a
program 1s to set the stack polnter (SP). This may be done as
follows: ' ' o

=0 JBEG IS THE FIRST INSTRUCTION OF
: 5THE PROGRAM S
BEG: MOV PCsSP $SP=ADR BEG+2 ‘
TST ~(SP) SDECREMENT SP BY 2, ;
#A PUSH ONTO THE STACK WILL STORE
STHE DATA AT BEG-2.

9.1.4.2 @Setting Up A Trap or Interrupt Vector ~ Assume the first word
of the vector is to point to location INT which is in PIC.,

X1 MOV PCsRO RO = ADR X+42
ADDL FINT-X-2vyRO FADD OFFSET :
MOV RO»@#VECT $MOVE POINTER TO VECTOR

The offset INT~X-2 is equivalent to INT- (X+2) and X+2 is the value of
the PC moved by statement X. If PC is the PC that was assumed for
the program when loaded at 0, and if PC is the current real PC, then
the calculation is: o o ' ‘ ~

INT*PQ;%PCn=;NT+(pgnypco}: . |
Thus, the relocation factor, PC -PC_, is added to the assembled value

of INT to produce the relocatednval%e of INT.

9-4

AM%

'

PROGRAMMING TECHNIQUES

9.1.4.3 Relocating Pointers -~ If pointers must be used, they may be
relocated as shown above. For example, assume a list of data is to be
accessed with the instruction

ADD (RO)+,R1

The pointer to the list, list L, may be calculated at execution time
as follows:

Mt MOV PCsRO $GET CURRENT PC
AL #L-M~2yRO $ADD OFFSET

Another variation is to gather all pointers into a table. The
relocation factor may be calculated once and then applied to all
pointers in the table in a loop. : : :

X3 MOV PCsRO $RELOCATE ALL ENTRIES IN PTRTBL
o SUB #X+2s,R0 SCALCULATE RELOCATION FACTOR
MOV #PTRTBL»R1 $GET AND RELOCATE A POINTER

ADD ROsR1 3 TO PTRTBL
MOV #TBLLENsR2 §BET LENGTH OF TABLE
LOOPS ADD ROs(R1)>+ FRELOCATE AN ENTRY
DEC R2 $ COUNT e
BGE L.OOP $BRANCH IF NOT DONE

Care must be exéxciséd,WhenLﬁgatagtiﬁg a program which relocates a
table of pointers. The restart procedure must not include the

relocating again, i.e., the table must be relocated exactly once after
each load.

9.2 LOADING UNUSED TRAP VECTORS

One of the features of the PDP-11 is the ability to trap on various
conditions such as illegal instructions, reserved -instructions, power
failure, etc. However, if the trap vectors are not loaded with
meaningful information, the occurrence of any of these traps will
cause unpredictable results. By loading the vectors as indicated
below, it is possible to avoid these problems as well as gain
meaningful information about any unexpected traps that .occur. This
technique, which makes it easy to identify the source of a trap, is to
load each unused trap vector with:

.=trap adéﬁess;
.WORD .+2,BALT

This will load the first word of the vector with the address of the
second word of the vector (which contains a HALT). Thus, for example,
a halt at location 6 means that a trap through the vector at location
4 has occurred. The old PC and status may be examined by looking at
the stack pointed to by register 6. : : v

The trap vectors of interest are:

Vector ~ Halt At

Location Location Mééning
4 6 Bus Error; Illegal Instruction;
Stack Overflow; Nonexistent
Memory; Nonexistent Device; Word
Referenced at Odd Address
10 12 Reserved Instruction

PROGRAMMING TECHNIQUES

14 16 Trace Trap Instruction (000003) or
CoL o : » ,Tﬁhiﬁ‘Set*ih”Statﬁé“WOtd'(usé&“hy
20 22 IOT Executed (used’'by IOX)
24 Sl 26 ‘Power Failure or Restoratién‘ .
30 32 ~ EMT Executed (used by FPP-11)
34 36 TRAP Executed

9.3 CODING TECHNIQUES

Because of the great flexibility in PDP-11 coding, time- and
space-saving ways ‘of performing operations may not be immediately
apparent. ' Some campari§ons,follow. '

9.3.1 Altering Register Contents

The techniques described in this section take advantage of the
automatic stepping feature of autoiﬁcrémént»and‘autqdeq:ement modes
when used especially in TST and CMP instructions. These instructions
do ‘not alter operands. However, it is'important to make note of the
following: o

® These alternative ways of altering register contents
affect the condition codes differently.

® Register contents must be even when steppiqg by 2.':

o These techniques work properly only if“ﬁhéVregistets~?are
pointing' to an existing memory location; otherwise, a
trap iszgeneratedg], T R R o '

1. Adding 2 to a register might be accomplished by ADD $2,R0.
However, this takes two words, whereas TST (RO)+ which also
“adds 2 to a register, takes only one word. ' :

2, Subtracting 2 from a register can be done by the
complementary instructions”'ﬁﬁB*#Z;RG or TST ~(R0) with the
same conditions as in adding 2. .

3. This can be extended to adding or subtracting 2 from two
e different registers, or 4 from the same register, in’'one
single-word instruction: . : R o

CHMP (ROY+» (ROY+ PAID 4 TO RO

CMP ~(R1)s~(R1) $SUBTRACT 4 FROM R1 ;

. CMP (RO)+s-(R1) JARD 2 TO RO» SUBTRACT 2 FROM R1
CMP ~(R3)y~(R1) ~ #SUBTRACT 2 FROM BOTH R3 AND Ri
CMP (R334 (ROD+ $ADD 2 TO BOTH R3 AND RO

PROGRAMMING TECHNIQUES

£ 4. Variations of the examples above can be employed if the
' instructions operate on bytes and one of the registers is the
Stack Pointer. These examples depend on the fact that the
Stack Pointer (as well as the PC) is always autoincremented
or autodecremented by 2, whereas registers RO-R5 step by 1 in
byte instructions. :

CHPR (SP)%;(R3)+ ;ADD 2 TO SP AND 1 TO R3

* CMPR ~(R3) s~ (SF) $SURTRACT 1 FROM R3 AND 2 FROM SP
CMPR (R3)+s~(8F) 5ADD 1 TO R3y SURBRTRACT 2 FROM 8P
" 5. Popping an unwanted word off the processor stack (adding 2 to

register 6) and testing another value can be two separate
instructions or one combined instruction:

TST (SP)Y+ : $POF WORD
TST COUNT : $SET CONDITION CODES FOR COUNT
or : L N
MOV COUNT» (SP3+ $POP WORD & SET CODES FOR COUNT
5”1% The differences are that the TST instructions take three
words and clear the Carry bit, and the MOV instruction takes
two words and doesn't affect the Carry bit.
9.3.2 Subroutines
1. Condition codes set within a subroutine can be used to
conditionally branch upon return to the calling program,
, since the RTS instruction does not affect condition codes.
€ JSR PCsX CALL SUBROUTINE X
ENE ABC = $BRANCH ON CONDITION SET
. $IN SUBROUTINE X
. ’ . ‘
X3 FSUBROUTINE ENTRY
L]
) CHMP R2sDEF $TEST CONDITION
Py RTS PC $RETURN TO CQLLING PROGRAM
‘ 2. When a JSR first operand register is not the PC, data stored
following a subroutine call can be accessed within the
subroutine by referencing the register. {The register
contains the return address.)
JBR RS»Y
+SWORD HIGH
. +WORD LOW . o ,
‘ . $LATEST RS VALUE WILL POINT HERE
. , ,
. 'Y Do o
- Yt MOV (RS53++R2 $VALUE OF HIGH ACCESSED
MOV (RS5)>++R4 $VALUE OF LOW ACCESSED
RTS RS SRETURN TO LOCATION

FCONTAINED IN RS

9-7

PROGRAMMING TECHNIQUES

Another possibility is:

' JSR RSySUB ! P S
- BR PSTARG ;LOW-ORDER BYTE IS OFFSET TO RETURN
. ;ADDRESS, WHICH EQUALS NO. OF ARGS.
+WORD A JADDRESS OF ARG A
JWORD B SADDRESS OF ARG B
~ WMORD € JADDRESS OF ARG C
:

L PBTARGS B - FRETURN ADDRESS

P

e

SuUR: MOVB@RS » COUNT FGET NO. OF ARGS FROM LOW RYTE
PAOTETOL b S $0OF BR (IF DESIRED),
MOV @14(R5)>R2 JFE.G.» GET 6TH ARGUMENT
MOV B&CRE) SR FGET- 3RD ARBUMENT

+

RTS RS . SRETURNS TO BRANCH WHICH JUMPS PAST
FARG LIST TO REAL RETURN ADDRESS

In the example above, the branch instruction contributes two main
advantages: i o

S

20

If R5 is unaltered when the RTS is executed; return will

- always be to the branch instruction. ‘This ensures a return
.to . the proper location even if the length of the argument

list is shorter or longer than expected.

The,oparand”affthé brénch, being anueffgét past the argument
list, provides the number of arguments in the 1list.

Arguments can be made sharable by separating the data from the main

code.

This is easily accomplished by treating the JSR and its return

as a subroutine itself:

CaLLz: . ARGLEBT?! = USR RS,SUR
AR e ER FSTARG
e T —_
JBR PLyARGLET +WORD A
. : . : [
* i : H D [S
* T ; 0

The examples above all demonstrate the calling of subroutines
from a non-reentrant program. The c&lled subroutine can be
either reentrant or non-reentrant . in each case. The
following example illustrates a method of also allowing

- calling programs to be reentrant. The arguments and linkage

are first placed on the stack, simulating a JSR R5,SUB, so
that arguments are accessed from the subroutine via X(R5).
Return to the calling program is executed from the stack.

-,

e
%
[l

PROGRAMMING TECBNIQUES

CALLS

MOV RSs~(SPF) $SAVE RS ON STACK.

MOV JBBRy~-(SP) $PUSH INSTRUCTION JSR R&s@RS ON
. $STACK. PUSH ADDRESSES OF ARGU-
. ; $MENTS ON STACK IN REVERSE ORDER
. § (BEE BELOW).

MOV BRNs-(SP) $FUSH BRANCH INSTRUCTION ON STACK

: MOV SPyRS FMOVE ADDRESS OF BRANCH TO RS.

JER PCySUB ~ $CALL SUB AND SAVE RETURN ON STACK.
RET? MOV (SPY+¢R3S JRESTORE OLD RS UPON RETURN.

*

. $DATA AREA OF PROGRAM.

JBER? JBR R6yE@RSI ; :
BRNS BR S HN+N+H2 . $BRANCH PAST N WORD ARGUMENTS

The adéxeséygf~aﬂ argument can be paéhed on the stack in
several ways. Three are shown below. - :

The arguments'kw B,waaé‘c'are-readwonlyHCOnstants which are
in memory {not on the stack): . TR

MOYU #Cs—(SP) SFUSH ADDRESS OF C
MOV $Bs—~(SP) - $PUSH ADDRESS OF B
MOU #A,-(SP) ~ 3PUSH ADDRESS OF A

. Arguments A, B, and»C’h&ve,theiz>adéteéﬁas,nnr~the stack at

the Lth, Mth, and Nth bytes from the top of ‘the stack.

MOV N(SF)s-(SP) $PUSH ADDRESS OF C
MOV M42(5P)y—(SP) iPUSH ADDRESS OF B
MOV L+4(SP)y~(SP) $PUSH ADDRESS OF A

Note that the displacements from the top of the stack are
adjusted by two for each previous push because the top of the
stack is being moved on each push. =

Arguments A, B, and C are on the stack at the Lth, Mth, and
Nth bytes from the top but their addresses are not.

MOU $N42¢-(8P) $PUSH DISPLACEMENT TO ARGUMENT

ALl SPSRBSP $CALCULATE ACTUAL ADDRESS OF C
MOV #M+42~ (8P) e o

ARD SP,@8P $ADDRESS OF B

MOV #L+&s~(SP)

_ADD SPy@SP JADDRESS OF A

PROGRAMMING TECHNIQUES

When subroutine SUB is entered, the stack appears as follows:

RET
BR #N+N+2
A
B

JSR R6,@R5 ~ :BRANCH IS TO HERE
"OLD RS T '

Subroutine SUB returns by means of an RTS R5, which places R5

into the PC and pops the return address from'the stack into

R5. This causes the execution of the branch because RS has

been loaded (at location X) with the address of the branch.

The JSR branched to then returns ‘control to the calling
program, and in so doing, moves the current PC value into the

8P, thereby removing everything above the o0ld R5 from the

stack. Upon return at RET, this too is popped, restoring the
original R5 and SP values.

The next example is a recursive subroutine (one that calls
itself). Its function is to look for a matching right
parenthesis for every left parenthesis encountered. The
subroutine is called by JSR PC,A whenever a left parenthesis

~is encountered (R2 points to the character following it).

When a right parenthesis is found, an RTS PC is executed, and
if the right parenthesis is not the last legal one, another
is 'searched for. When the final matching parenthesis is
found, the RTS returns control to the main program.

Al MOVE (R2)+sRO #GET SUCCESSIVE CHARACTERS.

- CMPB #‘ (»RO - #LOOK FOR LEFT PARENTHESIS.
BNE R S FFOUND?
JER PLCyA FLEFT PAREN FOUND» CALL SEL.
ER A F60 LOOK AT NEXT CHARACTER
B CHMFR #/)sRO JLEFT PAREN NOT FOUNDs LOOK FOR
EN I FRIGHT PAREN:-
BNE # FFOUND? IF NOT» GO TO A,

RTS FC SRETURN PAREN FOUND, IF NOT LAST»

fG0 TO B, IF LAST» GO TO MAIN PROGRAM.

The example below illustrates the use of co-routines, called
by JSR PC,@(SP)+. The program uses double buffering on both
input and output, performing as follows:

Write O1 Write 02
Read I1 concurrently Read 12 concurrently
Process 12 Process Il

JSR PC,@(SP)+ always performs a jump to the address specified
on top of the stack and replaces that address with the new
return address. Each time the JSR at B is executed, it jumps
to a different 1location; initially to A and thereafter to
the location following the JSR executed prior to the one at
B. All other JSR's jump to B+2.

ey

PROGRAMMING TECHNIQUES

] PC=%7 |
REGIN? {do I/0 resetsy initsy ete.)
107 iREﬂﬁ INTO I1 TO START PROCESS
JWORD 11 i e
+RYTE REAN»INSLOT
» MOV #Ay-(H) FINITIALIZE STACK FOR FIRST JSBR
B} JBR PCsB(&I+ 00 1/0 FOR 01 AND I1 OR Q2 AND I2
+ E B "
N e rerform processins.
BR R $MORE 1/0
$END OF MAIN LOOF
$1/0 CO~-ROUTINES
Al 107 $READ INTO 12
+WORD I2
+BYTE READy INSLOT
7 .

N set rarsameters to process Ils 01

J8R PCsB(&)+ SRETURN TO PROCE3S AT B+2

ior SWRITE FROM D1
+WORD 01
LBYTE WRITEODUTSLOT
107 SREAD INTO Il
JWORD I1 , e
+BYTE READsINSLOT
. set rarameters to rrocess I2» 02
L JER FCrB(E)+ $RETURN TO PROCESS AT B42
ioT o PWRITE FROM 02
+WORD 02
+RYTE WRITE, OUTSLOT
BR A ‘ $READ INTO I2
6. The trap handler, below, simulates a two?wnrd JSR instruction
with a one-word TRAP instruction. 1In this example, all TRAP
instructions in the program take an operand, and trap to the
handler address at location 34. The table of subroutine
o, addresses (e.g., A, B, ...) can be constructed as follows;
£ : ,
TABLE! ~
CALA=,-TABLE , S o
+WORD A . FCALLED BY: TRAP CALA
CALB=,~TABLE :
+WORD R $CALLED BY! TRAP CALR
+
Another way to construct the table:
* TABLE
CALA=,~TABLE+TRAP :
+WORD & sCALLED BY?! CALA

9-11

PROGRAMMING TECHNIQUES

The TRAP handler for either of the abéve‘methoqg follows:

TRAP34: MOV @5Py2(5F) FREPLACE STACKED PS8 WITH PC,
SUB #2,@8F SGET POINTER TO TRAP INSTRUCTION.
MOV @(SF)+s~(SF)IREPLACE ADDRESS OF TRAF WITH
o ' 7 TRAP INSTRUCTION ITSELF.
ALD #TABLE-TRAF,@5F $CALCULATE SUBROUTINE ADDR.
MOV R(SP)+.FC FJUMP TO SUBROUTINE.,

In the example above, if the third instruction had been written
MOV @(8P),(SP) it would have taken an extra word since @(SP) is in
Index Mode and assembles as @QO(SPy. In the final instruction, a jump
was executed by a MOV @(SP)+,PC because no equivalent JMP instruction
exists.

Following are some JMP aﬁd‘MOV eguivalences (note that JMP does not

affect condition codesy.’

JMP (R4) = MOV R4,PC
JMP @(R4) = MOV (R4),PC
{2 words) {1 word)
none = = MOV @ (R4) ,PC
JMP - (R4) = none
aMP @(R4)+ = MOV (R4),PC
JMP @-(R4) = MOV’f(R4),PC
none o = MOV/@(§4)+,PC
none ' . Cm MOV @-(R4),PC
4P X = MOV #X,PC
Jmp @3, - MOV X,PC
"~n0§é 3 - MoV @X,PC -

The TRAP handler can be useful, also, as a patching "technique.
Jumping -out to a patch area is often difficult because a two-word jump
must be performed. However, the one-word TRAP instruction may be used
to dispatch to patch areas. A sufficient number of slots for patching
should first be reserved in the dispatch table of the TRAP handler.
The jump can ‘then be accomplished by placing the address of the patch
area into the table and inserting the proper TRAP instruction where
the patch is to be made. ' ‘

}Replacing the savéd PS loses the T-bit status. If a breakpoint has
been set on the TRAP instruction, ODT will not gain control again to
reinsert the breakpoints because the T-bit trap will not occur.

9-12

—

» APPENDIX A
ASCII CHARACTER SET

EVEN 7-BIT
PARITY OCTAL

BIT CODE CHARACTER REMARKS
0 000 NUL NULL, TAPE FEED, CONTROL SHIFT P.
1 001 SOH START OF HEADING; ALSO SOM, START OF
£ MESSAGE, CONTROL A,
k 1 002 STX START OF TEXT; ALSO EOA, "END OF ADDRESS,
CONTROL B,
0 003 ETX END OF TEXT: ALSO EOM, EHB‘OF MESSAGE
CONTROL C, o
1 004 EOT END OF TRANSMISSION (END): SHUTS OFF TWX
MACHINES, CONTROL D,
0 005 ENQ ENQUIRY (ENQRY); ALSO WRU, CONTROL E,
0 006 ACK ACKNOWLEDGE. ALSO RU, CONTROL F.
1 067 BEL RINGS THE BELL. CONTROL G.
1 010 BS BACKSPACE: ALSO FEO, FORMAT EFFECTOR.
o BACKSPACE SOME MACHINES, CONTROL H.
g3 0 011 HT HORIZONTAL TAB. CONTROL I.
0 Gl2 LF LINE FEED OR LINE SPACE (NEW LINE):
ADVANCES PAPER TO NEXT LI&E, DUPLICATED
BY CONTROL .J.
1 013 vT VERTICAL TAB (VTAB). CONTRQL K.
0 014 FF FORM FEED TO TOP OF NEXT PAGE {PAGE)
CONTROL L.
1 015 CR CARRIAGE RETURN TO BEGINNING OF LINE.
DUPLICATED BY CONTROL M. ‘
1 016 80 SHIFT OUT: CHANGES RIBBON COLOR TO RED.
CONTROL N.
ﬁﬂw% 0 017 51 SHIFT IN: CHANGES RIBBON COLGR
: TO BLACK. CONTROL O
1 020 " DLE DATA LINK ESCAPE. CONTROL P (DCO).
0 021 ~ DC1 DEVICE CONTROL 1, TURNS TRANSMITTER
{READER) ON, CONTROL Q (XON).
0 022 DC2 DEVICE CONTROL 2, TURNS PUNCH OR AUXI-
LIARY ON. CONTROL R (TAPE, AUX ON).
1 023 DC3 DEVICE CONTROL e, TURNS TRANSMITTER
(READER) OFF, CONTROL S (XOFF).
* 0 024 DC4 DEVICE CONTROL 4. TURNS PUNCH OR AUXI-
LIARY OFF. CONTROL T (TAPE, AUX OFF)
1 025 NAK NEGATIVE ACRKQHLEBGB' ALBO ERR. ERROR.
CONTROL U. '
* 1 026 SYN SYNCHRONOUS IDLE (SYNC). CONTROL V.
0 027 ETB END OF TRANSMISSION BLOCK: ALSO LEM.
LOGICAL END OF MEDIUM. CONTROL W.
0 030 CAN CANCEL (CANCL). CONTROL X.
1 031 EM END OF MEDIUM. CONTROL Y.
1 032 SUB SUBSTITUTE. CONTROL Z.
0 033 ESC ESCAPE. PREFIX.

& Y

A-1

HOOHHOOROHHOHOOMOHHOOMKHOHOOHOHHOHOOHHOOHOHHOROOHORHOOHKOHOOKKOO M

034
035
036
037
040
041
042
043
044

046

047.

050
051
052
053
054

055 .
056

057

061
062

063

. 064 -

065

v 066
S 067 o
070,
s 071
w5072
073
074
075

076

- 077
100

101

402

103

104

105

106000

107

L ‘1L9W’:‘(
e e MR vivenren
112

(00143

o114

C 116
pi 13k

122

a3 e
g 1240 20 o
cn k@9 o
126 -

127
130

131

132
133

AN F R - W

~NKXE<CHONON O RN RUHTAMEO QW E®UY I A% = GOURNEWN HON:
i

ASCII CHARACTER SET

FILE SEPARATOR. CONTROL SHIFT L. £
GROUP SEPARATOR. CONTROL SHIFT M. ‘
RECORD SEPARATOR. CONTROL SHIFT N.

UNIT SEPARATOR. CONTROL SHIFT O.

SPACE.

—-ncowh ™
mnnnn

H

ACUTE ACCENT OR APOSTROPHE.

SHIFT K

A-2

HOOOOKKO

HOMMOO OO RO OOR OO MO

134
135
136
137
140
175
176
177

141
142
143
144
145
146
147
150
151
152
153
154
155
156
157

‘160

161
162
163
164
165
166
167
170
171
172
173
174

P

DEL

NMXESCCTOIRNQUODS BT ITamo Lo U

ASCII CHARACTER SET

SHIFT L
SHIFT M
SHIFT N

ACCENT GRAVE.

THIS CODE GENERATED BY ALT MODE.

THIS CODE GENERATED BY ESC KEY (IF PRESENT)
DELETE, RUB OUT.

LOWER CASE ALPHABET FOLLOWS (TELETYPE
MODEL 37 ONLY).

R

et

™
APPENDIX B

k PAL-11S ASSEMBLY LANGUAGE AR!) ASSEMBLER

' B.1 TERMINATORS
The list below defines all charg@tefs “which are considered to be
terminators. The order of the list implies the descending hierarchy
of significance. ~ g e ey

-~ Character o Functidq:

k CTRL/FORM ‘Source line terminator.
LINE FEED Source line terminator.
RETURN Source'iine terminator
: | Label texminatvr |
= Direct aésignﬁent delineator
$ - Regiater,ﬁerm»déliﬁéatcr 7
TAB Item terminator

Field terminator

BLANK or Item terminator
SPACE Field términator
Immediate expression field indicétot
@ k Deferred/aadreésing'indicator

5“%% (Initial register field indicator

:) Perminal régiater field indiéatar

‘Operand field separator
; . - Comments field delimiter
+ Arithmetic addition operator

- Arithmetic subtraction operator

N & Logical AND operator
1 ﬁogicélwehﬁage:atof
" Double ASCII text indicator
' Single ASCII text indicator.
o,

%

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

B.2 ADDRESS MODE SYNTAX

r is an integer between 0 and 7.

R is a register expression, E is an expression, ER is either a
register expression or an absolute expression in the range of 0 to 7.

Address Address Mode Symbol in

Mode Name Operand
Number ' " Fiela Meaning
Or Register R Register R contains the operand. R
is a register expression.
ir Deferred Register @R or (R)Register R contains the operand
2r Autoincrement {ER) + The contents of the register
specified by ER is incremented
after being used as the address of
the operand.
Deferred - : o ' -
3r Autoincrement @ (ER) + ER contains the pointer to the
address of the operand. ER is
incremented after use.
4r Autodecrement - (ER) The contents of register ER is de-
cremented before'it is used as the
address of the operand.
Deferred ' SR
5r Autodecrement @~ (ER) The contents of register ER is de-
cremented before it is used as the
pointer to the address of the oper-
Index by the and. S i
register ' :
6r Specified E (ER) E plus the contents of the register
specified, ER, is the address of
Deferred index the operand. ‘ '
: by the register ‘ , ,
7r specified & @E (ER) E added to ER gives the pointer to
' the address of the operand. :
27 Immediate Operand #E E is the operand.
37 Absolute address @4E E is the operand address.
67 Relative address E E is the address of the operand.

77 Deferred rela-
tive address. @E E is the pointer to the address of
the operand.

B.3 INSTRUCTIONS

The tables of instructions which follow are grouped according to the
operands they take and according to ‘the bit patterns of their
op-codes.

B-2

e

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

In the representation of op-codes, the following symbols are used:

ss Socurce operand specified by a 6~bit
address meée

31] Destination operand specified by a 6-bit
; address mode

XX 8~-bit offset to a

location ‘ (branch instructions)
R Integer between 0 and 7 representing a general
register

Symbols used in the description of instruction operations are:

SE Source effective address

DE Destination effective address
() contents of

> becomes

PS Processor Status word

The condition codes in the processor status word (PS) are affected by
the instructions; these condition,cades are represented as follows:

N Negative bit: set if the result is negative

2 Zero bit: set if the result is zero

v oVerflow bit: set if the result had an overflow
C Carry bit: set if thg,result had a carry

In the representation of the instruction's effect on the condition
codes, the following symbols are used:

* Conditionally set
- Not affected

0 Cleared

1 Set

To set conditionally means to use the instruction's result to
determine the state of the ccode. '

Logical operators are represented by the fcllngipg symbols:

! Inclusive OR
(:) Exclusive OR
& AND
- (used over a symbol) NOT (i.e., 1l's complement)

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

B.3.1 .Double Operand Instructions. < OP A.A
s Condition Codes

Op-code MNEMONIC Stands for Operation N 2 v C
0lssdd mov move (SE)+DE * * 0 -
1lssdd movb move Byte :
025SDD CMP CoMPare (SE) - (DE) ok x
128SDD CMPB .. CoMPare Byte SN et c
03SSDD BIT BIt Test (SE) & (DE) * % 0 -
13sSDD BITB. BIt Test Byte , 4 ,
04SSDD BIC BIt Clear (SE) & (DE)»DE * * @ -
14SSDD BICB BIt Clear Byte ' ‘
05SSDD BIS BIt Set " (SE) | (DE)>DE * * 0 -
15SSDD BISB BIt Set Byte
06SSDD ADD ADD (SE) + (DE)-»DE LI S
16SSDD SUB SUBtract (DE) ~ (SE)-+DE L I
B.},Z/fSihgi§*QQe:an§aiﬁéﬁ;ugtiéhs, oP A

RIS : ‘s i v - Condition. Codes .
Op-~code MNEMONIC Stands for Operation: N 2 Vv C
0050DD CLR . CLeaR - 0+DE . 0 1 0.0
1050DD CLRB CLeaR Byte ’
0051DD COM COMplement (DE)»DE *+ x 0 1
1051DD.. COMB COMplement Byte i ‘
0052DD INC INCrement (DE) + 1+DE |
1052DD INCB INCrement Byte -
0053DD DEC DECrement (DE) -1+DE R A T
1063DD DECB DECrement Byte
0054DD NEG NEGate (DE) + 1+DE *xaw
1054DD NEGB NEGate Byte :
0055pD . . ADC . ADd Carry . (DE) # (C)»DE = * * %
1055DD ADCB ADd Carry Byte sy Jgdg wr
0056DD SBC .. . SuBtract Carry (DE)=~{(C)»DE. . ok Ead
1056DD SBCB SuBtract Carry Byte
0057DD TST TeST (DE) - 0>DE ~ * * 0 0
1057DD TSTB TeST Byte o | ,

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

B.3.3 Rotate/Shift

0060DD - ROR - ROtate Right p ‘ 5 e R
1060DD RORB- :Retata Right , * * X X
Byte : .
0061DD ROL ROtate Left *F x e
1061DD ROLB ~ ROtate Left I
S 33{;31; L S
- 0062DD ASR Arithmetic ¢ o as
Shift Right O :
1062DD ASRB Arithmetic C ooE kLR
Shift Rxght QP
Byte : S =
o, 0063DD ASL Arithmetic * k%
£ Shift Left
| 1063DD ASLB Arithmetic xox
Shift Left
Byte ,
0001DD JMP JuMp DE—=P(C - - - -
0003DD SWAB SWAp Bytes [EE; * * 0 0
£ " B.3.4 Operation Instructions Op ‘ -
- Condition Codes
Op~Code MNEMONIC Stands for St Operation - N Z Vv C. o
000000 HALT HALT o o0 The computer stops - o~ = =
all functions.
000001 WAIT WAIT The computer stopg - - -~ =~
and waits for an
PN D . intertupt.‘ ; N |
: 000002 RTI ReTurn from ‘The BC and PS are - - - -
Interrupt popped off the SP
stack:
((8P))>PC =
{SP)+2*SP
((SP))+PS
® . ’ * * * %*
000003 000003 breakpoint Trap to location 14. '
, trap This is used to
: : ~ ERCRIEEE S e ¢a&1 ODT-11+
000004 IoT Input/ﬂutput Tzap,td location * & x X
S Trap i 20 This is used i '
») to call IOX. ‘
000005 RESET RESET Returns all I/0 - - = -

£ device handlers to
| : E) power—-on state.

PAL~-11S ASSEMBLY LANGUAGE AND ASSEMBLER

Trapping Op or Op E where 058g37% SR
104000~ EMT EMulator - ' Trap to location * % * &

104377 Trap. . o 30. This is used
e to:call system
programs. -
104400~ TRAP © TRAP Trap to location * * * =

104777 e 34. This is used
B to call any routine . '
desired by the pro-

grammer.
CONDITION COﬁE OPERATES
Op-code ~ MNEMONIC Stands for
000241 CLC CLear Carry bit in ®S.
000261 - SEC SEt Carry bit.
000252 CLv CLear oVerflow bit.
000262 SEV SEt oVerflow bit.
000244 CLzZ CLear Zero bit.
000264 SEZ SEt Zero bit.
000250 CLN CLear Negative bit.
000270 SEN SEt Negative bit.
000254 cNz CLear Negative and Zero bi£s;“
000257 ccc CLear all Condition Codes.
000277 sCC - Set: all Condition Codes.
000240 NOP No;oéérétion.

B.3.5 Branch Instructions Op E Where -1287¢<(E~.-2)/2<127;y¢

Condition to be

Op-Code MNEMONIC Stands for & met if branch is to occur
0004xX BR BRanch aiways
0010xX BNE Branch‘if Not Equal to Zero Z=0
0014xX BEQ ‘ Bganch if EQual (to zero) o Z=1
0020xx BGE "Brahéh‘if ér&ater than oryf | N(:)V=0
egqual (to zero) ’

0024xx BLT . Branch if Less Than (zero) N(:)V -1
0030XX BGT Branch if Greater Than 21 ((Dv)=0

, (zero) ' o
0034XX BLE Branch if Less than or 21 (N(D)v) =1

Equal (to zero)

B-6

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER.

1000xX BPL Branch if PLUS N={
1004XX BM1 Branch if MInus N=1
1010XX BHI Branch if HIgher c(1)z=0
1014xXx BLOS Branch if LOwer or Same | Ciz=1
1020XX BVC Branch if oVerflow Clear V=0
1024Xx BVS Branch if oVerflow Set V=1

1030XX% BCC {or BHIS)
Branch if Carry Clear C=0
(or Branch if HIgh or Same)

1034xX BCS ({or BLO)
Branch if Carry Set (or C=1
Branch if LOw)

B.3.6 Subroutine Call JSR ER,A

Op-code MNEMONIC Stands for Operation

004RDD JSR Jump to Sub=- Push register on the SP stack, put
Routine the PC in the register: :
DE + TEMP -a temporary storage reg-
ister internal to proc~-
essor

(SP)-2+SP

(REG) + (SP))

(PC)+m REG -m depends upon the ad-
dress mode.

(TEMP) » PC

B.3.7 Subroutine Return

Op~code MNEMONIC - Stands for Operation

00020R RTS. ReTurn from

Subroutine

Put register contents in PC and
pop o0ld contents from SP stack
into register.

B.3.8 Extensions for the LSI-1l Version Of PAL-11S

Op~code MNEMONIC Stands for Operation Condition Codes
N 2 VvV C

00674d SXT Sign eXTend Nx(-1) DE - * 0 -

1067dd MFPS Move byte (PS) DE * * 0 -

From PS

'These extensions are available only with the LSI-11 version of
PAL-11S.

1064ss

074rdd
070rss
071rss
072rss

073rss

0064nn

077cnn

000006

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

MTPS

XOR
MUL
DIV

ASH

ASHC

MARK

SOB

RTT

Move byte
To PS

eXclusive OR
MULtiply
DIVide

Arithmetic
SHift

Arithmetic
SHift
Combined

MARK

Subtract One
and Branch
if 0

ReTurn from
Trap

B.4 ASSEMBLER DIRECTIVES

MNEMONIC

.EOT

.EVEN

.END
(E

«WORD
.BYTE
.ASCII
.TITLE

+ASECT

.CSECT

-LIMIT

Operand

none

none

E
optional)

E,E,...
E,E,...

E,E...

/XXX «aoX/

NAME

none

none

none

Stands for

End Of Tape

EVEN
END

WORD
(the void
operator)
BYTE

ASCII
TITLE

ASECT

CSECT

LIMIT

(SE)} PS * x k0
r ! (DE) DE ¥ *x 0 -
r x (SE) r * % g *
r / (SE) r * * * *

SP+2xnn SP
R5 PC
SP™ R5

(r)~1 r; if
(r) 0 then
(PC)-2xnn PC

((SP)) PC loaded from stack
((SP)}+2 SP
((SP)) Ps

(SP)+2 SP

Operation
Indicates the physical end of the
source input medium

Insures that the assembly location
counter is even by adding 1 if it
is- odd. :

Indicates the physical and logical
end of the program and optionally
specifies the entry point (E)

Generates words of data
Generates words of data

Generates bytes of data

Generates 7-bit ASCII characters
for text enclosed by delimiters.
the

Generates a name for

module.

object

Initiates the Absolute section.

Initiates
section.

the Relocatable Control

Generates two words containing the

M%%

.GLOBL

«.RADS0
.IFZ
.IFNZ
.IFL

.IFLE

+IFG

- IFGE

. IFDF
+IFNDF

.ENDC

~ NAME

PAL~115 ASSEMBLY LANGUAGE AND ASSEMBLER

NAME ,NAME,

/XXX/

NAME .

none

e .

GLOBAL

RADIX 50

IF E=0

IF E#0

IFP E<O

IF EsO

IF E>0

IF B20

IF NAME
defined

. IF NAME

undefined

End of
Conditional

sion E is 0.

low and high limits of the reloca~
table section.

Specifies each name to be a global
symbol

Generates the RADIX 50
representation of the ASCII
character in delimiters.

Assemble what follows up to the
terminating .ENDC if the expres-~

Assemble what follows up to the
terminating .ENDC, if the expres-
sion E is not 0.

Assemble what follows up to the
terminating .ENDC, if the
expression E is less than 0.

Assemble what follows up to the
terminating .ENDC, if the
expression E is less than or equal
tG Oe N

Agssemble what follows up to the
terminating - .ENDC, if the
expression E is greater than 0.

Assemble what follows up to the
terminating .ENDC, if the
expression B is greater than or
equal to 0.

Assemble what follows
terminating .ENDC
NAME is defined.

up to the
if the symbol

Assemble what follows up to the

terminating .ENDC if the
NAME is undefined.

symbol

Terminates the
tional directive.

range of a condi-~-

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

B.5 ERROR CODES

Error Code

A

Meaning
Addressing error. An - address within the
instruction is incorrect. Also includes

relocation errors.

Bounding error. Instructions or word data are
being assembled at an odd address in memory.

Doubly~defined symbol referenced. Reference was
made to a symbol which is defined more than once.

Illegal character detected. Ilegal characters
which are also non-printing are replaced by a ?
on the listing.

Line buffer overflow. All extra characters beyond
72 are ignored.

Multiple definition of a 1label. A label was
encountered which was equivalent (in the first six
characters) to a previously encountered label.

Number containing an 8 or 9 was not terminated by
a decimal point.

Phase error. °A label's definition or value varies
from one pass to another.

Questionable syntax. There are missing arguments
or the instruction scan was not completed, or a
carriage return was not followed by a linefeed or
form feed.

Register-type error. An invalid use of or
reference to a register has been made.

Symbol table overflow. when the gquantity of
user-defined symbols exceeds the allocated .space
available in the user's symbol table, the
assembler outputs the current source line with the
S error code, then returns to the command string
interpreter to await the next command string to be
typed.

Truncation error. More than the allotted number
of bits were input so the 1leftmost bits were
truncated. T error does not occur for the result
of an expression.

Undefined symbol. An undefined symbol was
encountered during the evaluation of an
expression. Relative to the expression, the
undefined symbol is assigned a value of zero.

B~-10

L

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

£ B.6 IQITIAL OFEﬂkfING PBQC&QQRBS

Loading~ : Use Absnlute Loader. The start address of the
noader must be in the consele switches.

Starage aequiremants ?ﬁhvlls uses 8K of memory.

Starting: Immediately upon 1loading, PAL-11S will be in
e & ‘control and initiate dialogue.

Initial Dialogue:

Printout Inquiry
*g What is the input device of the Source symbolic tape?
*B what is the output device of the Binary object tape?
*L What is the output device of the assembly Listing?
5@%% *T What is the output device of the symbol Table?
Each of these questions may be answered by any one of the following
characters:
Character Answer Indicated
T Teleprinter keyboard
L Low-gpeed reader or punch
ot H High-speed reader or punch
L P Line Printer
Each of these answers may be followed by the other characters
indicating options:
Option Typed Function to be performed
/1 on pass 1
P /2 on pass 2
I /3 on pass 3
/E errors to be listed on the Teletype on the same pass
(meaningful only for *B or *L}.
Each answer is terminated by typing the RETURN key. A RETURN alone as
answer will delete the function.
* Dialogue During Assembly:
Printout Response
H EQF ? Place next tape in reader and type RETURN. A L.END
statement may be forced by typing E followed by
RETURN.
END ? Start next pass by placing first tape in reader and
- typing RETURN.

0
%
L

ey

B-11

EOM ?

Restarting:

PAL-115 ASSEMBLY LANGUAGE AND ASSEMBLER

If the end-of-medium is on the 1listing device, the
device may be readied and the assembly may be
continued by typing RETURN. : ;

If the end-of-medium is on the binary device, the
assembler will discontinue the assembly and restart
itself.

Type CTRL/P. The initial dialogue will be started
again.

" APPENDIX C

PAL-11A ASSEMBLY LANGUAGE AND ASSEMBLER

C.1 SPECIAL CHARACTERS

Character

form feed
line feed
carriage return

=

%
tab

space

Function

Source line terminator
Source line terminator
Source statement terminator
Label terminator

Direct assignment indicator
Register term indicator

Item terminator
Field terminator

Item terminator
Field terminator

Immediate expression indicator
Deferred addressing indicator
Initial register indicator
Terminal register indicator
Operand field separator

Comment field indicator
Arithmetic addition operator
Arithmetic subtraction operator
Logical AND operator

Logical OR operator

Double ASCII character indicator
Single ASCII character indicator

Assembly location counter

PAL-11A ASSEMBLY LANGUAGE AND ASSEMBLER

C.2 ADDRESS MODE SYNTAX

n is an integer between 0 and 7

register expression, E

Address
Mode
Format Name
R Register

@R or (ER) Deferred Register

(ER) + Autoincrement

@ (ER) + Deferred Auto-
inc;ement

~{ER) Autodecrement

@~ (ER) Deferred Auto-
decrement

E (ER) Index

@E (ER) Deferred Index

$E Immediate

GH#E Absolute

E Relative

€@E Deferred Relative

representing
an expression,
expression or an expression in the range 0 to

Address

Mode

Number
On

In

2n

3n

4n

5n

én

n
27
37
67

77

a register. R is a
ER is either a register
7‘

Meaning

Register R contains the
operand. R is a

register expression.

Register R contains the
operand address.

The contents of the
register specified by ER
are incremented after
being used as the
address of the operand.

ER contains the pointer
to the address of the
operand. ER is
incremented after use.

The contents of register
ER are decremented
before being used as the
address of the operand.

The contents of register
ER are decremented
before being used as the
pointer to the address
of the operand.

E plus the contents of
the register specified,
ER, is the address of
the operand.

E added to ER gives the

pointer to the address
of the operand.

E is the operand.

E is the address of the
operand.

E is the address of the
operand.

E is the pointer to the
address of the operand.

PAL-11A ASSEMBLY LANGUAGE AND ASSEMBLER

C.3 INSTRUCTIONS

The instructions whi¢h follow are grcuped according to the operands
they take and the bit patterns of their op~ccﬁes.

ss

DD

XX

R

Symbols used
’SE

DE

()

-

PS

in the

In the representation of op«codes. the following symbols are used:

Source operand specified by a G-bit address mede.

Destination operand specifxed by a 6-bit address
mOde . : . " .

8-bit offset to a location (branch instructions)

Integer between 0 and 7 representing a general
register. : - e R

description nf 1natruct1on operatxons are:
Source Effective addz$5s

Destlnaticn ‘Effective address

Contents af

Is transferred to

Processor Status word

The conéitien codes in the processor status word (PS) are affected by
the instructions.

N

v

C

These condition codes are represented as follows:

Negative bit: set if the result is negative

Zero bit: - set if the result is zero

oVerflow bit: sg&,it‘the‘aggtationfcauseé an
overflow

garry‘bitzy ~ set if the operation caused a
carry

In the :epreséntation of the instruction's effect on the condition
codes, the following symbols are used:

*

—

0
1

Conditionally set
Not affected
Cleared

Set

To set conditionally means to wuse the instruction's result to

determine the state of the code (see the PDP-1l Processor Handbook).

Logical operations are represented by the following symbols:

!

Inclusive OR

Exclusive OR

AND |

(used over a symbol) NOT {i.e., 1's complement)
C~3

PAL-11A ASSEMBLY LANGUAGE AND ASSEMBLER

C.3.1 Double-Operand Instructions Op A,A

'~ Status Word
’ Condition Codes
0p~Codg MNEMONIC Stands for Operation N Z \'4 C

01SsDb MOV MOVe {SE) > DE * * 0 -
11SSpD '~ MOVB MOVe Byte . ‘

02SSDD CMP CoMPare (SE)~{DE) ' * K * *
12SSDD CMPB CoMPare Byte

03Sspb: - © BIT " BIt Test - (SE)Y&(DE) * * 0 -
13ssbD BITB BIt Test Byte

04SSDD BIC BIt Clear (SE) & (DE) + DE * * g -
14SSDD BICB BIt Clear Byte

05S8SDD BIS BIt Set (SE) { (DE) » DE * * 0 -
158SDD BISB BIt Set Byte e o

06SSDD ADD ADD "(SE)+(DE)~+ DE - * * * *
16SSDD SUB SUBtract (DE)~(SE) + DE * * * *

C.3.2 Single-Operand Instructions Op A

Status Word
SR ‘ ‘ oo Condition Codes
Op-Codes MNEMONIC Stands for ’ Operation ‘N z \'4 C

0050DD CLR CLeaR 0 DE : 0o 1 o0 o
1050DD CLRB CLeaR Byte

0051DD CoM COMplement (DE) DE * o+ 9 1
1051DD COMB COMplement Byte

0052DD INC INCrement (DE)+1 DE LA I
1052DD - INCB INCrement Byte

0053DD DEC DECrement - (DE)-1 DE LA
1053DD '~ DECB DECrement Byte ‘ ,
0054DD NEG NEGate (DE)+1 DE x % x x
1054DD NEGB NEGate Byte

0055DD ADC ADd Carry (DE)+(C) +~ DE LI B S
1055DD ADCB ADd Carry Byte

0056DD SBC SuBtract Carry (DE)=~{C)~ DE A R
1056DD SBCB SuBtract Carry Byte

0057DD TST = TeST (DE)~0 +DE * x 0 0
1057DD "TSTB TeST Byte: '

&

C.3.3 Rotate/Shift Instructions

PAL-11A ASSEMBLY LANGUAGE AND ASSEMBLER

_opa

Op-Code MNEMONIC Stands for.

0060DD

1060DD

0061DD

1061DD

0062DD

1062DD

0063DD

1063DD

0001DD

0003DD

ROR

RORB

ROL

ROLB

ASR

ASRB

ASL

ASLB

JMP

SWAB

_Byte

ROtate Righ
ROtate Righ
ROtate Left

ROtate Left
Byte

~Arithmetic

shift Right

Arithmetic
Shift Right

‘Byte

Arithmetic

-Shift Left

Arithmetic

Shift Left
Byte

JuMPpP

SWAp Bytes

C.3.4 Operate Instructions

FD"'V —"

Ope:atioﬁ
0

lrEe——4

t even or odd byte

00 OO0

- ==
o

Oa

e#en or odd byte

Op~Code MNEMONIC Stands for

000000

000001

HALT

WAIT

HALT

WAIT

11 11
E}af , Zx°
i 11}
DE -+ PC
%5‘ i §; 1o
Op
Operation

The computer stops all
functions.

The computer stops and
waits for an inter-
rupt. o

Status Word
Condition Codes
N 2z v C

* * * *
* * * *
* * * *
* * * *
* * * *
* ¥* * *
* =) * *
* * * *

>Status Word
Condition Codes
N Z v C

PAL-11A ASSEMBLY LANGUAGE AND ASSEMBLER

The PC and PS are popped *

000002 RTI ReTurn * * *
from off the SP stack:
Inter-
rupt ((SP))+ PC
E {SP)+2~+ 8P
((SP)) » PS
(SP) +2~+ 5P
RTI is also used to re- ®
- turn from a trap.
000005 RESET - RESET Returns all I/0 devices - - - = A
~ to power-on state. y

€C.3.5 Trap Instructions Op or Op E

Where OSESB??S

MNEMONIC Stands for ‘Oper

" Status Word
Condition Codes

Op-Code , ation N z v C
*000003 (none) (breakpointTrap to location 14. This * * % #
‘ ’ " trap) 18 used to c¢all ODT.
*000004 I0T Input/Out- Trap to location 20. This * * * *
A , put Trap- is used toycall on; i
104000~ EMT N“Euulafor f?éﬁ,to location 30. This * * * x
104377 " Trap is used to call system pro-
) grams. o o
104400 TRAP TRAP Trap to location 34. This * * % =
104777 is used to call any routine
' ~desired by the programmer.
*Op (only)

CONDITION CODE OPERATES

Op~-Code
000241
000261
000242
000262
‘9&0244
000264
000250
000270
000254
000257
000277

CLC
SEC
CLV

SEV

cLz

SEZ
CLN
SEN
CNZ
CCC
scCC

MNEMONIC Stapds for

_CLear'Carry bit in PS.
SEt Cafry bit.

‘CLear oVerflow bit.
SEt oVerflow bit.
CLear Zero bit.

;SEtygérq big.)

' CLeéi;Negéﬁiveibit;
SEt*Regativewhit:’
CLear’NééééiQé aﬁd Zero bits.

~Clear all Condition Codes.

Set - all Condition Codes.

Cc-6

€.3.6 Branch Instructiona Op E where~12810

PAL-11A ASSEMBLY LANGUAGE AND ASSEMBLER

{(E~um 2)/251271G

Op-Code MNEMONIC $tanda for

Conditicn to be met if
branch is to occur

OﬂéRDE

: JSR

Jump to 8ubaoutiné

0004XX BR , Ba&nch always
0010Xx BNE Branch if Not Equal 2=0

{to zero) .
0014XX BEQ Branch if EQual (to Z=1

, zero)
0020XX BGE Branch if Greater than nwo
. ~.or. Equal (to zero)
0024%xX BLT - Branch if Less Than N(Z)an
, {zero) :

0030XX BGT Branch if Greater Than 21 (N(D)v)=0
: , (zero) ~ SEER: o
0034XX BLE Branch if Less than or ! '{H@V)«l

Equal (to zero)
-1000XX BPL ‘Branch if PLus N=0
1004XX BMI _Branch if MInus N=1
1010XX BHI ~Branch if HIgher Cl1Z2=20
1014%X BLOS Branch if LOwer or Same Cl12Z = 1
1020xX BVC Branch if oVerflow Clear V=0
1024XX - BVS Branch if oVerflow Set v=1
1030X%X BCC (or Branch if Carry Clear C=0

BHIS) {or Branch if HIgher or

Same) ;

1034xX% BCS (or. Branch if Carry Set (or C=l
BLO) Branch if LOwer)

C.3.7 Subroutine Cail eﬁ”éx,'a‘
Op-Code MHB&G&IC Stands for Operation

fPﬁsh,fregister - on the SP

stack,put the PC in the

- registers
DE (TEH?) - a temporary
~ ‘storage register
- internal - to
processor.
(8P)=2 +SP
(REG) + (SP)
(TEMP} > PC

PAL-11A ASSEMBLY LANGUAGE AND ASSEMBLER

C.3.8 Sub;outine

Return Op ER

Op-Code MNEMONIC Stands for Operation
00020R RTS ReTurn from Sub- Put register contents into PC
routine and pop old contents from SP
stack into register.
C.4 ASSEMBLER DIRECTIVES
Op-Code MNEMONIC Stands for Operation
.EQOT End Of Tape Indicates the physical end of
the source input medium
. EVEN EVEN Ensuresg that the assembly
location counter is even by
adding 1 if it is odd
.END m END Indicates the physical and
{m optional) logical end of the program and
‘ » optionally specifies the entry
point (m)
.WORD WORD Generates words of data
E,E,.. .
E,E,... (the void operator) Generates words of data
.BYTE BYTE Generates bytes of data
E,E,...
.ASCII ASCII Generates 7-bit Ascii
/XXX..oX/ character for the text
enclosed by delimiters
C.5 ERROR CODES
Error Code Meaning

A Addressing error. An address within the instruction is
incorrect. ‘ i

B Bounding error. Instructions or word data are being
assembled at an odd address in memory.

D Doubly-defined symbol referenced. Reference was made to a
symbol which is defined more than once. :

I Illegal character detected. Illegal characters which are

; ‘also non-printing are replaced by a ? on the listing.

L Line bufferVoverflow. Extra characters (more than 7210)
are ignored.

M gnltiplé definition of a label. A label was encountered
which was equivalent (in the first six characters) to a
previously encountered label.

N Number containing an 8 or 9 has a decimal point missing.

P Phase error. A label's definition or

value varies from
one pass to another. .

C-8

F."s‘ 3

PAL-11A ASSEMBLY LANGUAGE AND ASSEMBLER

%uestionable ‘syntax. There are missing arguments or the
nstruction scan was not completed, or a carriage return
was not followeé by a line feed or form feed.

Registerutype error. An invalid use of or reference to a
register has been made.

Symbol-table overflow. When the quantity of user-defined
symbols exceeds the allocated space available in the
user's symbol table, the assembler outputs the current
source line with the 8 error code, then returns to the
command string interpreter to await the next command
string ‘to be typed.

Truncation error. A number was too big for the allotted
number of bits; the leftmost bits were truncated. T
error does not occur for the result of an expression.

Undefined symbol. An undefined symboi wag encountered
during the evaluation of an expressxcn. Relative to the
expression, the undefined symbol is assigned a value of
zero.

C.6 INITIAL OPERATI&G PROCEDURES

Loadlng:

Use Absolute ‘Loader (see Chagter 6). Make sure that the
start address of the absolute loader is in the switches
when the assembler is 1oaded.:

Storage Re- PAL-11A exists in 4K and 8K versions.

quirements:

Starting

Initial
Dialogue:

Immediately upon loading, PAL-11A will be in control and
initiate dialogue.

Printout Inquiry

*S What is the input device of the Source
symbolic tape?

*B What is the output device of the Binary object
tape?

*L What is the output device of the assembly
Listing?

*T What is the output device of the symbol Table?

Each of these guestions may be answered by one of the following

characters:

Character Answer Indicated
T Teletype keyboard
L gowéspeed reader or punch
H High~-speed reader or punch
P line Printer (8K version only)

PAL-11A ASSEMBLY LANGUAGE AND ASSEMBLER

Each of these answers may be followed by other characters indicating

options:

Option Typed

S
/2
/3
JE

Function to be Performed
on pass 1
on pass 2
on pass 3
: etroré to be listed on the Teletype

on the same pass (meaningful or *B
or *L only)

Each answer is terminated by typing the RETURN key. ‘A RETURN alone as
answer -will delete the function.

bialogue during assembly:

‘Printout

EOF ?

END ?

EOM 72

Restarting:

Response

Place next tape in reader and type RETURN. A
.END statement may be forced by typing E
followed by RETURN.

Start next pass by placing flrst tape in
reader and typlng RETURN.

If lxstxng on HSP‘cr.LPT; replenish tape or
paper and type RETURN. If binary on HSP,
start assembly again. : :

Type CTRL/P. The initial dialogue will be
started again. : :

C-10

£

Ty

OIS

D.1

o

N O

APPENDIX D
TEXT EDITOR, ED-11

INPUT/OUTPUT COMMANDS

R

nT

nN

" punches the character

Rgéds,awpagewof,;§Xt from input device, and appends it to
the contents (if any) of the page buffer. Dot is moved to

- the beginning of the;page<aad Marked. (See B and M below.)

Opens the ihput;deﬁiaé when the user wishes to continue
input with a new tape in the reader.

ARGUMENTS
(n) beginning at Dot and ending

: - with nth line feed character.
Lists the character

string , {(-n) beginning with 1st character

following the (n+l)th previous
line feed and terminating at

(0) beginning with 1st character
, of current line and ending at
Dot. B .

(@) fbaqndédfbyﬁbéﬁ and the Marked
. location (see M).

/) beginning~atm,ﬂqt ..and ending
with the last character in the
page. z

string - :

Outputs a Form Feed character and four inéhes of blank
tape.

Punches four inches of Trailer (blank tape) n times.
Punches contents of the page buffer (followed by a trailer

if a form feed is present), deletes the contents of the
buffer, and reads the next page into the page buffer. It

does this n times. At completion, Dot and Mark are located
at the beginning of the page buffer.

Lists the entire line containing Dot (i.e., from previous

line feed to next line feed or form feed).

Same as -1L. If Dot is located at the beginning of a line,

this simply lists the line preceding the current line.

'Lists the line following the current line.

D-1

D.2 POINTER~-POSITIONING COMMANDS -

TEXT EDITOR, ED-11

B
E
M

n

-n

0 J

e

/

n

-n

0 A

@

/.

Moves Dot to the beginning of the page.
Moves Dot to the end of the page.

Marks the current position of Dot for later reference in a
command wusing the argument @. Certain commands implicitly

move Mark. -
(n) forward past n characters
{(-n) backward past n characters
Moves Dot: (0) to the beginning of the current line @
; (€) = to the Marked location
(/) to the end of the page
{n) forward past n ends-of-lines
{-n) to first character following the (n+l)th
' previous end-~of-line
Moves Dot: (0) to the beginning of current line .
(@) to the Marked location
(/) to the end of the page

D.3 SEARCH COMMANDS

nG
XXXX

XXXX

Gets (searches for) the nth occurrence of the specified

character string on the current page. Dot 1is set
immediately after the last character in the found text,
and the characters from the beginning of the line to Dot

are listed on the teleprinter. If the search is oy

unsuccessful, Dot will be at the end of the buffer and a
? will be printed out.

Searches the wHole file for -the next occurrence of the
specified character string. Combines G and N commands.
If search is not successful on current page, it continues
on Next page. Dot is set immediately after the last
character in the found text and the characters from the
beginning of the 1line to Dot are listed on the
teleprinter. If the Search object is not found, Dot will

- be at the end of the buffer and a ? will be printed out.
In such a case, all text scanned is copied to the output
tape.

D.4 COMMANDS TO MODIFY THE TEXT

nD
nC
XXXX

-nD
—nc
XXXX

. Changes

Character-Oriented Line-Oriented
Deletes }the following nkK Kills } the character string - #
Changes [n characters nX eXchanges beginning at Dot

XXXX ' - and ending at the
nth end-of-line.

Deletes | the previous = -nkK Kills } the character string
}n characters -nX eXchanges beginning with the

XXXX first character fol-
lowing the (n+l)th

previous end-of-line
and ending at Dot.

£

y-7

i

IR,
Fo

%

TEXT EDITOR, ED-1l

oD Deletes }the current line 0K Kills } the current line up
oC Changes f up to Dot 0X eXchanges to Dot.
XXXX XXXX
@D Deletes | The character @K Kills } the character string
ecC Changes }string begin~ 8Xx eXchanges beginning at Dot and
XXXX ning at Dot and XXXX ending at a previ-
ending at a pre- ously Marked loca-
viously Marked tion. -
location.
/D Deletes }the character /K Kills } the character
/C Changes § string begin- /X eXchanges string begin-
XXXX - ning at Dot and XXXX ning at Dot and
ending with the ending with the
last character . last character
of the page. of the page.
I Inserts the specified text. LINE PEED terminates Text Mode and
XXXX causes execution of the command. Dot 1is set to the location
immediately following the last character: inserted. If text was
inserted before the position of Mark, ED-11 performs an M
command .
SYMBOLS
Dot Location following the most recent character operated
upon.
4 Holding down the CTRL key (not the + key) in
combination with another keyboard character.
RETURN If in command mode, it executes the current command;
. goes ‘into Text Mode if required. If in Text Mode, it
* terminates the current line, enters a carriage return
and line feed into the buffer and stays in text mode.
- At all times causes - the <carriage’ to move to the
beginning of a new line. (RETURN.is often symbolized
as /).
¥ (Typing the LINE FEED key) Terminates Text Mode
, ‘unless the " first character typed in Text Mode;
executes the current command. o
CTRL/FORM A Form feed which terminates, and thus defines, a

page of the user's text.

GROUPING OF COMMANDS

No Arguments Argument n only All Arguments {(n,-n,0,8,/)

v (Verify: G {Get) A (Advance)
Lists current line) N {Next) C (Change)

< {Lists previous line) T (Trailer) D (Delete)

> (Lists next line) , J (Jump)

B (Begin} K (Killy}

E (End) L (List)

F (Form feed) P (Punch)

H (wHole) X (eXchange)

I (Insert)

M (Mark)

(8] (Open}

R (Read)

TEXT EDITOR, ED-11

- Requiring : : Line : : Character
Text Mode ; - Oriented Oriented
c (Change) A (Advance) J (Jump)
G (Get) : K (Kill) D (Delete)
H (wHole) I. (List) ‘
I (Insert) P (Punch)
X eXchange) X

eXchange) C (Change)

D.7 OPERATING PROCEDURES

D.7.1 Loadihg: Use Absolute Binary Loéder (see Chapter 5).

D.7.2 B8Storage Requirements: ED-11 uses all of core.
D.7.3 Starting: Immediately upon loading, ED-11 will be in control.

D.7.4 Initial Dialogue:

Program Types User Response

*1 : L</ (if LSR is to be used for source input)
He./ (if HSR is to be used for source input)

*0 L,J ~(if LSP is to be ﬁsed for edited output)
Ho/ (if HSP is to be used for edited output)

If the output device is the high~speed punch ' (HSP), Editor enters
command mode to accept input. Otherwise the sequence continues with:

LSP OFF? </(when LSP is off)

Upbn input of ./ from the keyboard, Editor enters command mode and is
ready to accept input. ;

D.7.5 Restarting:

Type CTRL/P twice, initiating the normal
initial dialogue. The text to be edited
should be loaded (or reloaded) at this

D-4

i

APPENDIX E
DEBUGGING OBJECT PROGRAMS ON-LINE, ODT-11 AND ODT-11X

E.1 SUMMARY OF CONTENTS

ODT indicates readiness to accept commands by typing * or by opening a
location by printing its contents.

1. 0OpT-11
Py n/ opens word n
f \ . reopens last word opened

RETURN key closes open location

+ - opens next location
t - opens previous location
« opens relatively addressed word
o, : $n/ . opens.general register n (0-7)
; n;G goes to word n and starts execution
n:B . sets breakpoint‘atfwerd,n
3B removes breakpoznt
$B/ : opens hseakpeint status word
P 'proceeds from bteakpoint, stops again on next
encounter
N
; n;P proceeds from breakpoint, stops again on nth
encounter
sM/ opens mask for word search
n;w , searches for words which match n in bits specified
in $M
n;E searches for words which address word n

n/ {(con- calculates offsets fromn tom
tents) m;0 :

$s/ opens location containing user program's status
register
$p/ opens location containing ODT's priority level

£,

DEBUGGING OBJECT PROGRAMS ON-LINE, ODT-11 AND ODT-11X

2. ODT-11X

NOTE

-If- a word is currently open, new
contents for the word may be typed
followed by any of the commands
RETURN,+,%, «or . The open word will be
modified and closed before the new
command is executed.

In addition to the commands of the regular version, the extended
version has the following: ‘ ‘

n\
\

opens byte

reopens last byte opened

6pens the absolutely addressed word

opens the word to which the branch refers

opens next location of previcus sequence

(r between 0 and 7) sets breakpoint r at word n
removes breakpoint . r

removes all breakpoirts

opens breakpoint 0 status 'word. Successive LINE
FEEDs open words for other breakpoints and single-

instruction mode.

enables Single~instruction mode (n can have 'any
value and is not significant)

in single-instruction mode, Proceeds with program
run for next n instructions before reentering ODT

(if n is missing, it is assumed to be 1)

disables Single-instruction mode

iy

~ APPENDIX F

_ LOADING AND DUMPING CORE MEMORY

F.1 THE BOOTSTRAP LOBBER

This appendix pertains only to systems with a Switch Register.

F.1l.1 Loading The Bectstxaplboader

The Bootstrap Loader;shguld:be toqgieﬁ into the highest core memory
bank. : R

xx7744 | 016701

xx7746 .. 000026
xx7750 , 012702
%xx7752 000352
xx7754 . 005211
xx7756 105711
xx7760 100376
xx7762 116162
xx7764 000002
xx7766 xx7400
xx7770 005267
xx7772 177756
xx7774 000765
xx7776 YYYYYY

xx represents the highest available memory bank. For example, the
first 1location of the loader would be one of the following, depending
on memory size, and xx in all subsequent locations would be the same
as the first.

Location Memory Bank Memory Size
017744 0 4K
037744 1 8K
057744 2 12K
077744 3 16K
117744 4 20K
137744 5 24K
157744 6 28K

The contents of location xx7776 (yyyyyy) in the Instruction column
above should contain the device status register address of the paper
tape reader to be used when 1loading the bootstrap formatted tapes
specified as follows:

Teletype Paper Tape Reader -- 177560

High-speed Paper Tape Reader -- 177550

F-1

LOADING AND DUMPING CORE MEMORY

Set SR to xx7744
Press LOAD ADDR

Load
or Verify
Instructions

P -

Load Verify

Set SR to 016 701
Lift DEP

Lift DEP

— Instruction
. . ;3.' S% rrect
" 'Sef SR to next Instruction ?
Instruction -
Lift DEP . wﬁi&m
. verified
7
v Yes
All
No Instructions
? .
Yes
1

H-0088

Figure F-1 Loading and Verifying the Bootstrap Loader

%

LOADING AND DUMPING CORE MEMORY

Cosdr nCors.
. Loader in Core =Ty see Figurs B

Set ENABLE /HALT
To HALT

:

Place Bootstrap « SRR
Tape in Code 351 must be
specified reader Lover reader sensas]

Prees LOAD ADDR

Set ENABLE /HALT
to ENABLE

'} Piess §TART

Tape Reads in

andstops .t e see Figure 5-3
At end of Date

Data is in Core

11-G087

Figure F-2 Loading Bootstrap Tapes into Core

P F.2 THE ABSOLUTE LOADER ‘
V 1. Loading the Absolute Loader
The Bootstrap Loader is used to load the Absolute Loader into
core. (See Figure F-2.) The Absolute Loader occupies
locations xx7474 through xx7743, and its starting address is
xx7500.
2. Loading with the Absolute Loader
iy
When using the Absolute Loader, there are three types of
loads available: normal, relocated to specific address, and
- continued relocation.
Optional switch register settings for the three types of loads are
listed below.

F-3

LOADING AND DUMPING CORE MEMORY

Switch Register

Type of load Bits 1-14 Bit 0
Normal _ (ignored) 0
Relocated - continue loading 0 1
where left off

Relocated - load in specified nnnnn 1l
area of core (specified address)

F.3 CORE MEMORY DUMPS

The two dump programs are

DUMPTT, which dumps the octal representation of the contents
of all or specified portions of core onto the teleprinter,
low-speed or high-speed punch, or line printer.

DUMPAB, which dumps the absolute binary code of the contents
of specified portions of core onto the low-speed (Teletype)
or high-speed punch.

Both dumps are supplied on punched paper tape in bootstrap and
absolute binary formats. The following figure summarizes loading and
using the Absolute binary tapes.

LOADING AND DUMPING CORE MEMORY

INITIALIZE

LOAD ABS
LoADER 1= -" SEE FIGURE F-2
- _,/t SET
g ENABLE/HALT
TOHALT
a HSR = 177660 (This is necessary only
pe SET xx?776 £SR = 177560 if using & readier different
= , TOSPECIFY |- ----= 9 xx 18 HIGHEST from that vsed by the
READER CORE MEMORY bootstrap losder.}
‘ BANK)
PLACE TAPE
IN READER
SETSRTO
xx7500. PRESS
LOAD ADDR
pedfud vt of CLEAR BITOQ
ADDR IN BITS 1-14f | OF SR

CONTINUING | RELOCATION

SET 8IYQ
OF SR.CLEAR
BITS 1-14

Figure F-3 Loading with the Absolute Loader

SEE FIGUREF-1 |

TOGGLE IN
BOOT LOADER

LOADING AND DUMPING CORE MEMORY

LOAD
DUMP TAPE

INITIALIZE |

b

SPECIFY
READERIN -
xx7768 ;

LSR = 177560
HSR = 1775560

xx IS HIGHEST CORE

MEMORY BANK

SEE FIGURE F-2

LOAD
ABS LOADER

|

LOAD
DUMP TAPE

3

SETSRTO
TRANSFER
" ADDRESS.

!

" PRESS
LOAD ADDR

TTY OR LSP

QUTPUT
DEVICE FOR
Dump

AND START

? i
SETSR TO P SET SR TO
1776564 177564
SETSRTO .

177514
PRESS
PUNCH ON
PRESS
CONTINUE

Figure F-4

D

umping Using DUMPAB or DUM

.

PTT

P
Y

#

LOADING AND DUMPING CORE MEMORY

SETSRTO
o) FIRSTBYTE
ADDRESS
DUMPED

PRESS
CONTINUE

\
SET SR TO
LAST BYTE
ADDRESS
DUMPED

!

PRESS
CONTINUE

!

CORE IS
DUMPED

Figure F-4 (continued}.

DUMPAB

YES

()

SETSRTO
TRANSFER
ADDRESS
{TRA)

An odd transfer address
““““ causes absolute icader
to halt)

!

PRESS
CONTINUE

{

SETSRTO
TRA-1

Y

PRESS
CONTINUE

!

TRA BLOCK
{S DUMPED

DONE

Dumping Using DUMPAB or DUMPTT

imm,

" APPENDIX G

INPUT/OUTPUT PROGRAMMING, IOX
*
G.1 INSTRUCTION SUMMARY
1. Format ‘
10T ‘
5”“3 .WORD (an address)
' .BYTE (a command code, a slot number of a device)
.WORD (done address) s READR AND WRITR ONLY
2. Command Codes:
INIT =1
RESET = 2
RSTRT = 3
WAITR = 4
SEEK =5
o READ = 11
¢ : WRITE = 12
READR = 13
WRITR = 14
G.2 PROGRAM FLOW SUMMARY
1. Set up buffer header:
Location Contents
%! Buffer and Maximum number of data bytes (unsigned
Buffer+l integer)
BUFFER < Buffer+2 Mode of data (byte)
HEADER ' ' T N
Buffer+3 Status of data (byte)
Buffer+4 and Number of data bytes involved in trans-
_Buffer+5 fer (unsigned integer)

Buffer+6 Actual data begins here.

Mode Byte Format

Mode Syts Format

Bits 7 L] S 4 3 2 i o Bits
. UNFOR-

1= NO ECHO MATTED BINARY =1

0= ECHO MATTE ASCH =}

INPUT/OUTPUT PROGRAMMING, IOX

Coding Mode Byte
Formatted ASCII 0 (or 200 to suppress echo)
Formatted Binary 1
Unformatted ASCII 2 (or 202 to suppress echo)
Unformatted Binary 3

Status Byte Format

Status Byte Format

7 6 5 4 3 2 1 0
T 1 T

1= 1= 1= SEE CODES
DONE | EOM | EOF | , | |

NON-FATAL ERRORS

Coding Non-Fatal Errors

checksum error (formatted binary)
truncation of a long line
an improper mode

Lo VS]
0

2. Assign devices to slots in Device Assignmént Table:
(RESET and INIT commands)
Slot numbers are in the range 0 to 7.

Device Codes:

KBD = 1 LSP = & LPT = 10
TTY = 2 HSR = §
LSR = 3 HSP = 6
3. Use a data transfe: command to initiate the transfer.

G.3 FATAL ERRORS

Fatal errors result in a jump to 40 with RO set to the error ~code.
Rl is set to the value of the PC for error code 0. Errors 1-5 cause
Rl to be set to an IOT argument or to the instruction following the
arguments.

Fatal Error Code . Reason

0 Illegal Memory Reference, SP overflow, illegal
instruction

Illegal command
Slot out of'tange
Device out of range

Slot not inited

0 N R CR

Illegal data mode
G-2"

e

APPENDIX H

SUMMARY OF FLOATING POINT MATH PACKAGE, FPMP-11

£ T ,
This appendix lists all the global entry points of FPMP-11 and
provides a brief ‘description 6fﬁtﬁeApuf§03§330E*each,“Sectian*H,l
and H.2 are for reference when it is 'desired to ¢all FPMP-11- routines
directly (i.e., without the use of the TRAP handler). Entry names
'Preéedéd“by‘an'odtéllﬁﬁMber*ééﬁfbe*référenceé‘ﬁia “the’ TRAP handler.
‘The number is the "routine number" referred to in the FPMP-11 manual.

. 'If the number ‘is @énclosed in parentheses, the routine cannot be

2000 accessed by the present TRAP handler, but has been assigned a number
for future use. For ‘a more detailed explanation of thé Floating Point
Math Package, refer to the“EPngl; User's Manual DEC-11-NFPMA-A-D.
Examples of thg calling conventions are:

POLISH MODE: .
' JSR R4,$POLSH ;enter Polish mode
- $subrl ;call desired subroutines
~~ | . $subr2
‘$subrn’ ;call last subroutine desired
.WORD 42 :leave Polish mode
£ JSRR: . '
JSR R5,subr jcall desired subroutine
.WORD ~ argl :;subroutine argument address
.WORD arg2
%]
~ .WORD argn ;last argument
. XX: . sreturn point

SUMMARY OF FLOATING POINT MATH PACKAGE, FPMP-11

JPC: .

»

push args onto stack
JSR PC,subr

-
.

H.1 0OTs ROUTINES

These are ‘the routines taken from the FORTRAN operating time ‘system.
The codes used in the fellowlng table are:
S = Routzne is xncluded in the standard single precision tz—word)
package.
D = Routine is 1nc1uded in the standard dsuhle precision (4-word)
package. ,
SD = Routine is 1nc1uded in beth standard packages.
Octal codes shown in parentheses are not yet 1mplemented.
OCTAL § OF ' '
NAME CODE PKG ARGU MODE DESCRIPTION
SADD 14 D 2 Polish The double precision add
: : routine. Adds the top stack
item (4-words) to the second
item (4-words) and leaves the
four word sum in their place.
$ADR 12 S 2 Polish The single precision add
. routine. .Same as $ADD except
it uses 2 word numbers.

AINT 26 s 1 JSRR Returns sign of argument *
greatest real integer =
absolute value of the argument
in RO,R1.

ALOG 53 s 1 J5RR Calculates natural logarithm
of its single argument and
returns a two word result in
RO,R1.

ALOG10 54 S 1 J5RR Same as ALOG, except

: calculates base~10 logarithm.

ATAN 42 s 1 J5RR Returns the arctangent of its
argument in RO,R1.

ATAN2 (43) s +2... . JSRR Returns ARCTAN (ARG1/ARG2) in

) . RO,R1.

$CMD 16 D 2 Polish Compares top 4 word items on
the stack, flushes the two
items, and returns the
following condition codes:

4(SP) gésp N 1,2=0
4(SP) = @Sp N=

Z=1
4(SP) asp zZ=0

o,
0,

£
&

$CMR
cos
DATAN
DATAN2

DBLE

$DCI

$DCO

DCOS

DEXP

$DI

$DINT

SUMMARY OF FLOATING POINT MATH PACKAGE, FPMP-11

17

37

44

(45)

(34)

(57)

(61)

41

52

(11}

(76)

] 2
s 1
D 1
D 2
1
sD Y
SD 5
D 1
D 1
SD
D 1

Polish

JSRR

J5RR

J5RR

~ J5RR

JPC

JpC

J5RR

J5RR

Polish

Polish

Same as $SCMD except it is for
2 word arguments.

Single precision version of
DCOS.

Double precision version of
ATAN.

Double precision version of
ATAN2.

Returns in RO-R3 the double
precision equivalent of the
single precision (two word)
argument. ~

ASCII to deuble conversion.

Calling sequence:
push address of start of
ASCII field. Push length
of ASCII field in bytes.
push format scale D (from
W.D) position of assumed
decimal point (see FORTRAN
manual). Push P format
scale (see FORTRAN
manual). JSR PC,$DCI.

Returns 4 word result on top
of stack.

Double precision to ASCII

‘conversion. Calling sequence:

Push address of start of
ASCII field. Push length
in bytes of ASCII field (W
part of W.D) Push D part
of W.D position of decimal
point). Push P scale.
Push 4 word value to be
converted, lowest order
word first. JSR PC,$DCO.

Calculates the cosine of its
double precision argument and
returns the double precision
result in RO-R3.

Calculates the exponential of
its double precision argument,
and returns the double
precision result in RO-R3.

Converts double precision
number on the top of the stack
to integer. Leaves result on
stack.

OTS internal function to find
the integer part of a double
precision number.

DLOG
DLOG10

$DR
DSIN
DSQRT

$DVD

$DVI

$DVR.

$ECO

EXP

$FCALL
$FCO

FLOAT

$GCo

SUMMARY OF FLOATING POINT MATH PACKAGE, FPMP-11

55

56

{6)

40
47

23

(24)

25

(62)

51

(64)

(32)

(63)

D

D

Sb

8D

‘ SD,v

1

J5RR

J3RR

Polish

" J5RR

'JSRR

Polish

Polish

Polish

JPC

J5RR

-JPC

J5RR

JPC

Double precision (4 word)
version of ALOG.

Double precision {4 word)
version of ALOG10.

- Replaces the double precision

item at the top of the stack
with its two word, rounded

-form.

Calculates the sine of its

‘~double precision. arg. and

returns the double precision
result in RO-R3.

Calculates the square root of
its double precision arg. and
returns the double precision
result in RO-R3.

The double precision division
routine. Divides the second
4-word item on the stack by
the top item and leaves the
quotient in their place.

The integer division routine.
Calculates 2(SP)/@sp and
returns the integer quotient
on the top of the stack.

The single precision division

routine. Same as $DVD, but
for 2 word floating point
numbers.

Single precision to ASCII
conversion according to E
format. Same calling sequence
as $DCO except that a 2-word
value is to be converted.

Single precision version of
DEXP. . Returns result in
RO,R1.

Internal OTS routine.

Same as $ECO except uses F
format conversion.

Returns in RO-Rl, the real
equivalent of its integer
argument.

Same as $ECO except uses G
format conversion.

A,

g *

oy
%

$ICI

$1CO

IDINT

$ID

IFIX
INT

SINTR

$IR

S$MLD

$MLI

$MLR

$NGD

SUMMARY OF FLOATING POINT MATH PACKAGE, FPMP-11

(65)

(67)

(31)

(5)

(35)
(30}

(27)

(4)

22

(20)

21

(3)

SD

SD

SD

- JrC

JPC

JSRR

Polish

J5RR

J5RR

Polish

Polish

© Polish

Polish

Polish

Polish

ASCII to integer conversion
calling sequence:
Push address of start of
ASCII field. Push length
in bytes of ASCII field.
JSR PC,S$ICI

Returns with integer result on

top of stack.

Integer to ASCII conversion,
Calling sequence: '
Push address of ASCII
field. Push 1length in
bytes of ASCII field.
Push integer value to be
converted. JSR PC,$ICO
Error will return with C bit
set on. Ro-R3 destroyed.

Returns sign of arg * greatest
integer <= arg in RO. Arg
is double precision.

Convert full word argument on
the top of the stack to double
precision and return result as
top 4-words of stack.

Returns the truncated and
fixed real argument in RO.

Same as IDINT for single
precision args.

Same function as AINT, but
called in Polish mode with
argument and returns result on
the stack.

Convert full word argument on
the top of the stack to single
precision and return result as
top 2-words of stack.

Double precision multiply.
Replaces the top two doubles
on the stack with their
product.

Integer multiply. Replaces
the top 2 integers on the
stack with their full word
product.

Single precision multiply.
Replaces the top two singles
on the stack with their
product.

Negate the double precision
number on the top of the
stack.

$NGI

$NGR

$ocI
$0CO
SPOLSH
$SPOPR3
$POPR4
$POPR5

$PSHR1

$PSHR2
$PSHR3
$PSHR4
$PSHR5
$RCI

$RD

$RI

$SBD

SUMMARY OF FLQATINGVPGINT-MAZH‘PACKAGE,'FPHP—II

(1)

(2)

(66)

(70)

(60)

(7)

(10)

15

SD

.SD

SD

SD

Sb
SD
SD
SD

1

Polish.

Polish

JPC

JPC

Polish

Polish

Polish

Polish

Polish
Polish
Polish
Polish

JPC

Polish

Polish

Polish

Negaté the integer on the top
of the stack.

‘Negate the single precision

number on the top of the
stack.

ASCII to octal conversion.
Same call as $ICI.

Octal to ASCIY conversion.
Same call as $ICO.

Called whenever it is desired
to enter Polish mode from
normal in~line code. It must
be called via a JSR R4,$POLSH.

Internal routine to pop
2-words from the stack and
place them into RO,R1.

Internal routine to pop
4-words from the stack and
place them in RO-R3.

Internal routine to pop
4-words from the stack and
place them in registers RO-R3.

Internal routine to push the
contents of RO onto the stack.

Same as S$PSHR1.
Push RO,R1 onto stack.
Push RO-R3 onto stack.
Same as $PSHRA4.

ASCII to single precision
conversion. Same calling
sequence as $DCI. Returns
2-word result on top of stack.

Converts the single precision
number on the top of the stack
to double precision format.
Leaves result on stack.

Converts single precision
number on the top of the stack
to integer. Leaves result on
stack.

The double precision subtract
routine. Subtracts the double
pPrecision number on the top of
the stack from the second
double precision number on the
stack and leaves the result on
the top of the stack in their
place.

L

o ‘z:,'j%

-

SUMMARY OF FLOATING POINT MATH PACKAGE, FPMP-1l

$SBR 13 s polish Same as $SBD but for single
, precision. -
SIN 36 s 1 J5RR Single precision version of
; - DSIN.
SNGL (33) 1 J5RR Rounds double precision

argument to single precision.
Returns result in RO,RI1.

SQRT 46 s 1 J5RR Single precision wversion of
DSQRT.
TANH 50 s 1 J5RR Single precision hyperbolic
' ' tangent function. Returns
(EXP (2*ARG) -1/ (EXP (2*ARG) +1)
in RO,R1.

H.2 NON-OTS ROUTINES

These routines are written especially'fot FPMP-~11 and should not be
called directly by the user.

. OCTAL ;
NAME CODE PKG DESCRIPTION
SERR - SD Internal error handler.
$ERRA - SD Similar to $ERR.
S$LDR 71 S Load FLAC, single precision.
SLDD 72 D .~ Load FLAC, double precision.
$STR 73 s - Store FLAC, single precision.
$STD 74 D Store FLAC, double precision.
TRAPH - SD The TRAP handler routines and tables.

H.3 ROUTINES ACCESSED VIA TRAP HANDLER

The following is a table of the FPMP-11 routines which can be accessed
via TRAPH, the trap handiler. Each routine name {entry point) is
preceded by its TRAP code number to be used to access it, and followed
by a brief description of its operation when called via the TRAP
handler. Those entries which are preceded by an asterisk (*) perform
operations only on the FLAC, and address no operands. For example, a
?RAP call to the single precision square root routine can be coded as
ollows: '

SUMMARY OF FLOATING POINT MATH PACKAGE, FPMP-11

The net effect of the above TRAP instruction is to replace the
contents of the FLAC with its square root and then set the condition
codes to reflect the result. Note that since the FLAC is implicitly
addressed in ‘'this instruction, the TRAP call supplies no other
address. For such a TRAP call, the addressing mode bits (bits 6 and 7
of the TRAP instruction) are ignored.

All entries not marked by an asterisk require an operand when called.
The operand is addressed in one of the four addressing modes explained
in section 3.1.1. of the FPMP-11 User's Manual. The addressing mode
is specified in bit 6-7 of the TRAP instruction. ‘

{*Operahd" is the contents of the location addressed in the TRAP
call.) o

OCTAL NAME DESCRIPTION

CODE

14 SADD Double precision addition routine. Adds
operand to the FLAC. Assumes 4-word
operand. ' ,

12 $ADR Single precision addition routine. Adds
operand to the FLAC. Assumes 2-word
operand.

* 26 AINT ' Replaces contents of the FLAC by its
integer part. SIGN(FLAC) * greatest
integer <= |FLAC|] . ' Assumes 2-word
argument in FLAC.

* 53 ALOG Replaces contents of the FLAC by its

. natural logarithm. Assumes 2-word
argument in FLAC.

* 54 ALOG10 Same as ALOG, except calculates base-10

‘ log.

* Co420 ATAN Replaces contents of the FLAC by its
arctangent. Assumes 2-word argument in
FLAC.

16 $CMD Compares operand to the contents - of the
FLAC, and returns the following condition
codes.

FLAC<operand, N=1,%Z=0
FLAC=operand, N=0,2=1
FLAC>operand, N=0,2=0

Assumes 4-word operands.

17 SCMR Same as $CMD, but for 2-word operands.
* 37 cos Same as DCOS, but for 2-word argument.
* 44 DATAN Same as ATAN, but for 4-word argument.
* 52 DEXP 'Replaces the contents of the FLAC by its
exponential. Assumes 4-word argument in
the FLAC.

i

‘, ,\:ﬁ"?
o

55
56
41

40

47

23

25
51
72
71

22

21
15

13
36
46
73

74

50

SUMMARY OF FLOATING POINT MATH PACKAGE, FPMP-11

DLOG

DLOG10

DCOs

DSIN

DSQRT

$DVD

S$DVR
EXP
$LDD

$LDR

MLD

$MLR

$SBD

$SBR
SIN
SQRT

$STR

$STD

TANH

-operand location.

Same as ALOG, but for 4-word argument.
Same as ALOG10, but for 4~-word argument.
Replaces the contents of the FLAC by its
cosine. Assumes 4-~word argument in the
FLAC.

Same as DCOS, but calculates sine instead
of cosine.

Replaces the contents of the FLAC by its

square root. Assumes 4-word argument in

the FLAC.

Double precision division routine,
Divides the FLAC by the operand and
stores the result in the FLAC. Assumes
4-word operands.

Same as $DVD, but for 2-word operands.
Same as DEXP, but for 2-word argument.
Same as $LDR, but assumeé 4-word operand.

Replaces the contents of the FLAC by the
operand. Assumes 2-word operand.

bouble precision multiplication routine.
Multiplies the contents of the FLAC by
the operand and stores the result in the
FLAC. Assumes 4~word operands.

Same as S$MLD, but for 2-word operands.
The double precision subtraction routine.
Subtracts the operand from the contents
of the FLAC. Assumes a 4-~word operand.
Same as $SBD, but for 2~word operand.
Same as DSIN, but for 2-word argument.
Same as DSQRT, but for 2-word argument.
Stores the contents of the FLAC into the
The contents of the
FLAC are unchanged.

Same as $STR, but assumes 4-word operand
location.

Replaces the contents of the FLAC by its
hyperbolic tangent. Assumes 2-word
argument.

o,

APPENDIX I

TAPE DUPLICATION

Duplication of paper tapes can be accomplished via low- or high-speed
I/0 devices by toggling (as with the Bootstrap Loader) the following
program directly into memory through the Switch Register. (Refer to
Section 6.1.1 in Chapter 6 if necessary, for toggling procedure.)

1.

2.
3.

4.

Turn on appropriate device switches and place tape in desired
reader.

Set ENABLE/HALT switch to HALT.

Set Switch Register to the desired starting address and press
LOAD ADDR.

Set Switch Register to each value 1listed in the CONTENTS
column below, 1lifting the DEP switch after each setting.
(Addresses are automatically incremented.) The desired input
device (either Low- or High-Speed Reader) and output device
(Low- or High-Speed Punch] are specified in the last two
words.

ADDRESS CONTENTS
0 016700
2 000024
4 016701
6 000022
10 005210
12 105710
14 100376
16 105711
20 100376
22 022021
24 111011
26 000764
30 177560 (LSR) or 177550 (HSR)
32 177564 (LSP) or 177554 (HSP)

Set Switch Register to starting address specified in 3 above
and press LOAD ADDR.

Set ENABLE/HALT switch to ENABLE.

Press START switch.

TAPE DUPLICATION

NOTE

This program is recommended as a simple
way of duplicating the system tapes.
However, for extensive tape duplication,
the program shown in section 7.8 is
recommended.

L

' APPENDIX J ;
ASSEMBLY AND LINKING INSTRUCTIONS

J.1 SYSTEMS WITHOUT SWITCH REGISTERS

o J.1.1 I0X/IOXLPT

IOX/IOXLPT is provided in both source and relocatable object form.
Unless modifications are made to the source it is not necessary to
assemhle the source tapes. The object tape may be linked with ‘the
user's object tapes to produce an absolute tape (.LDA).

J.1.1.1 Assembling IOX - IOX consists of three source tapes (-PAl to
-PA3). These tapes are assembled together in sequence with PAL-11S.

J.1.1.2. Assembling IOXLPT - IOXLPT consists of two source tapes ({-PAl
to PAZ) “@Bese tapes are aséembled together in sequence with PAL-11S.

J.1.1.3 Linking IOX and IOXLPT - IOX and IOXLPT are linked by
LINK-118 with the user's object tapes to proauce an absolute tape.

J.1.2 ODT11X

ODT11X is provided in both source and relocatable object form. Unless
modifications ‘are made to the source, it is not necessary to assemble
the source tape. The object tape may be linked with the uSer s object
tapes to produce an absolute tape.

J.1.2.1 Assembling ODT11X - ODT11X consists of one source tape (- PAL)
which is terminated with the following:

.EOT
form feed
.END 0.0DT

When PAL-11S indicates that it has encountered the .EOT, type return
so that it will process the .END statement.

ASSEMBLY AND LINKING INSTRUCTIONS

J.1.2.2 Linking ODT1lX ~ ODT1lX is limked with user objeect tapes. It
is self starting and should be the first object tape input to LINK-11S
so that it will be the program started by the Absolute Loader when the
program is loaded.

Jtlo3 ED"].].

The ED-11 source file is available only in RT-11 format on a flexible

diskette. The RT-11 MACRO assembler is required to assemble ED-11.

The RT-11 linker (LINK) is used to produce the absolute tape.

J.1.3.1 Assembling ED-11 - The RT-11 commands to assemble ED-11 are
as follows: o

+R MACRO
*EDIT11=DX1:EDITI11

J.1.3.2 Linking ED-11 -~ The RT-11 commands to 1link ED-11 are as
follows: ~

«R LINK
*PP:EDIT11/L=EDIT11

J.1l.4 PAL-11S

The PAL-11lS source file is available only in RT-11 format on a
flexible diskette. The RT-11 MACRO assembler is required to assemble
PAL-11S. The RT11 linker (LINK) or LINK-11S may be used to produce
the absolute tape.

J.1.4.1 Assembling PAL-115 - There are three sources which are
assembled separately for PAL-11S. One of these, the symbol table
source, is available in three versions: 8K, 12K, and 16K. The RT-11
commands to assemble PAL-11S source files are as follows:

+R MACRO

*RELMEM=DX1 :RELMEM.PAL Clear Memory Program
*PSYMO8=DX1:PSYM08.PAL 8K Symbol Table
*PSYM12=DX1:PSYM12.PAL 12K Symbol Table
*PSYM16=DX1:PSYM16.PAL 16K Symbol Table
*PAL11S=DX1:PAL11S.PAL Assembler

In addition to the above, IOXLPT is used by PAL-11S. The IOXLPT
source 1is also available in RT-~11 format on a flexible diskette. The
commands to assemble IOXLPT are:

-R MACRO
*IOXLPT=DX1: IOXLPT.PAL

-4

ASSENBLY ANP LINKING INSTRUCTIONS

J.1.4.2 Liakgng PAL-11S - PAL-118 may be linked with LINK-11S or the
RT-11 linker, LINK. PAL-118 tape actually contains two programs:
RELMBM and PAL-~11S. RELMEM precedes PAL~11S on the tape.

Using LINK-118, link PAL-118 as follows:

1. Link RELMEM as a separate program and do not remove the tape
from the punch when finished. o

2. Link PAL11S.0BJ, IOXLPT.OBJ, and one of the symbol table
object tapes (PSYM08.0BJ, PSYM12.0BJ, or PSYM16.08J) in that
order. The symbol table tape is selected depending on the
size of the memory of the computer on which the program is to
be executed. If the target computer has 8K words of memory
then PSYMO8.0OBJ, if 12K then PSYM12.0BJ, and if 16K then
PSYM16.0BJ. Specify a top address of 57460 for 12K and 77460
for 16X. A '

Do mot link PAL-11S. to run above 16K. The size of the symbol
table is fixed, and there is no need to re-link at a higher
address even on laagé systems.

Using RT-11 LINK, link PAL-11S as follows:
1. Link RELMEM as a separate program as shown

.R LINK
*RELMEM/L=RELMEM

2. Link 8K, 12K, and 16K versions of PAL-11S

+R LINK

XFALOB/L/BI204=PAL11Sy IOXLPTPSYMOS
KPAL12/L/R1204=PAL11Sy IOXLPTPSYMI2
*PAL16/L/B1204=PAL 115y IOXLPT PSYM16

3. Use RT-~11 PIP to punch the tapes. Remember not to remove the
tape from the punch after punching RELMEM.

+R PIP
*¥FPI=RELMEM.LBA/B
*PFP3=PALOB.LDA/E

remove 8K PAL11S.LDA from punch

¥PF }=RELMEM.LDA/B
kPP=PAL12.LDA/R

remove 12K PAL11S.LDA from punch

XPF }=RELMEM.L.DA/B
*PPi=PAL16.LDA/B

J.1.5 LINK-118

The LINK-11S source file is available only in RT-11 format on a
flexible diskette. The RT-11 MACRO assembler is required to assemble
LINK-11S. LINK-118 is composed of two components: LINK-11S proper
and IOXLPT. See Section N.1.4.1 for instructions on how to assemble
IOXLPT using RT-11.

ASSEMBLY AND LINKING INSTRUCTIONS

J.l.5.1 Assembling LINK-11S -~ The RT-11 commands to assemble LINK-11S
follow: T . e o T L

+R MACRO

KLINKI1=DX1$LINK11

J.1.5.2 Linking LINK-11S5 - LINK-11S may be linked with LINK-11S or
the RT-11 linker, LINK. There are two object tapes which are linked

together to produce LINK-11S: LINK11.0BJ and IOXLPT.OBJ.

ﬁsing“LINK4llS’to5linx'LINK%IIS,i link the fo}lowing two tapes in
order: LINK11.0BJ and IOXLPT. If versions are desired for systems
with more than 8K, specify a top address of 57460 for 12Kk and 77460

Using RT-11 LINK to link LINK-11lS is a two step process because of a
difference in philosophy. An initial link is required which produces
a link map so that the size of LINK11S can be determined. A final
link -is then made with the information obtained in the initial link

used to compute the bottom address.
The initial link is executed as follows:

«R LINK ‘ ' ;
XeTT=LINKL11s IOXLPT

The value displayed for "HIGH LIMIT" is usedb*tb"éomPUée the bottom
address for the final link. Assume for an example that the following
was displayed: ' ‘ o o o '

HIGH LIMIT = 015572

Select 37460, 57460, or 77460 depending on whether an 8K, 12K, or 16K
top address is desired. The bottom address is computed as follows:

s

C B.=T - 4+ 1000

bottom address
top address
high limit

Where: -

w THw
nonon

L'}

37460-15572+1000

Examﬁié:
. 22666 '

‘Using the figures in the example above, the 'finé1 vlink' for an 8K

~. system would be executed as follows:

R LINK ‘ '
*PP:XB!QZééé/LyTTtﬂLINKI1vIOXLPT

As a check, examine the link map produced and Verify that the high
limit matches the one used in the calculations above. 1In the example,
the high limit value must be 37460.

£

ASSEMBLY AND LINKING INSTRUCTIONS

J.2 SYSTEMS WITH SWITCH REGISTERS

J.2.1 Assembling PAL-11A

The following procediures
tapes. An

source

for
8K version of

assembling the

tequzred, thus also" requ:tlng at’ least an 8K PDP-ll system.

The Assembler consists of two programs.

is a memory clear program and is very short (DEC-11-UPLAA-A-PAl).

secorid program 'is the Aasembler _proper, and consists of eleven

tapes (DEC-11-UPLAA-A-PA2-PAl2).

l.

2.

Generate a sufficient amount of blank leader tape.

Assembie

memory
(DEC~11-UPLAA-A-PAl)
high-speed punch.

and

clear
assign

program

the

specify the 2-pass assembly would be:

*
n

H

13l el

' D?‘

m
2

i

<

H/E

00000 ERRORS

e

source

;V(PAI assembly - lst pass)
(PAl assembly - 2nd pass)

{No errors - Do not remove

Assemble the rest of the Assembler's
PAl2) in numerical sequence.

Assign the

&|8|8h 3l leslea

g™
adindle)

tu
O
e}
“

<o}
O
m
-

Is;
O
e
B

sy
O
g
~

i
o
i
~3

o
o]
rxj
-~

[}
o]
]
LV

:

m R

H/E

binary output to

source

the binary tape from the punch.)

tapes

the high-speed punch.
‘example, the initial @ia;ogue,shqulé be answered as follows:

(Enter tape PA2 for 1st pass)

{End
{End
{End
{End

(End

(End

(End

{End
{End
{End .

of
of
of
of
of

of
of

tape

.tape

tape
tape

tape
of

ot
of

tape
tape

‘tape

tape
tape

PAZ,
pA3 r
Pa4,
PAS,
PAG,
PA7,
PAB,
PA9,

enter
enter
enter,
enter
enter

enter
.enter

enter

PA3)
PR4)
PAS)
'PA6)
PAT7)
PAB)
PA9)
PA10)

PA10, enter PAll)
PAll, anter PAl12)

MAXCL13 = kkkkkk SGIMBC = *¥dkki¥x

END 2

s

2

1]
(=}
o
~

121
O
Lo
[

rienit
OO0
jr
LM EM DY

-}
=
e
"~

{End
{End
{End
“(End
{End
. {End

(End o
" (End of
of.
of .
J=5 -

. {End
(End

of

,tapq
: s PAS,

tape
tape

PAZ,
PA3,
PA4,

PAG,

- PA7,

(End

'(Enter tape PA2 for 2nd

enter
enter
enter

enter

enter

.enter
enter

enter

PAL~11 Assembler
the PAL-11A (V007A) Assembler is

The first program, on tape 1,
The

ASCII

‘They are assembled as follows:

. tape
binary output to the

" (PA2

For example, PAL-1lA's initial dlalogue to

For

of first pass)

pass)
PA3) .
PA4)
PAS)
PA6)
PA7)
PAB)
PA9)
PAl0)

- PA10, enter PAll)
"PAll, ‘enter PAl2)

ASSEMBLY AND LINKING INSTRUCTIONS

000000 ERRORS {(End of 2nd pass}
c ;
*s

Note that at the end of the first pass there are two undefined
symbols: MAXC13 and SIMBC. These undefined symbols are resolved so
that there are no errors reported during the second pass.

Be sure that there is sufficient blank trailer tape on the binary
output tape before removing the assembled tape from the punch.

Normally, using high-speed paper tape input and output, this process
requires about 45 minutes. If a symbol table and 1listing are
requested, there will be about 750 symbols and about 4500 1lines of
listing.

J.2.2 Assembling ED~11

ED-11 consists of five source tapes (PAl to PAS5) which are assembled
together in sequence with 8K PAL-11A.

J.2.3 ODT-11/0DT-11X

In subsequent discussion, reference to ODT applies to both versions.
ODT is supplied on both source and absolute binary tapes.

If the program being debugged requires storage where the version of
ODT being used is normally loaded, it is necessary to reassemble ODT
after changing the starting location.

The source tape of ODT is in three segments, each separated from the
next by blank tape. The first segment contains:

.=n (standard location setting statement)
.EOT

where n=13026 for ODT-11 or n=12054 for ODT-11X. This statement tells
the Assembler to start assembling at address n. To relocate ODT to
another starting address, substitute for segment one a source tape
consisting of:

«=n (n is the new load address for ODT)
.EOT

The .EOT statement tells the Assembler‘that this is the end of the
segment but not the end of the program -~ the Assembler will stop and
wait for another tape to be placed in the reader.

The second segment of tape contains the ODT source program. This
segment is also terminated with .EOT.

The third segment of the tape consists of the statement:
.END 0O.0DT

where .END means "end of program™ and 0.0DT represents the starting
address of the program (see Section 6.2.3).

When relocating ODT, the first segment of the source tape must be
changed to reflect the desired load address. The third segment may be
changed to .END without a start address. The latter will cause the
Loader to halt upon completion of loading.

J-6

%

£

@

£)

kY

A,

ASSEMBLY AND LINKING INSTRUCTIONS

The segmentation allows the following assembly forms:

1. Assemble alcné but at a new address. A new segment one must
be generated and assembled with segments two and three.

2. Assemble immediately after the user's program to be debugged.
Assemble the tape of the user's program (ending with .EOT)
followed by ODT's segment two and either segment three or a
new segment three. : : B

3. Assemble inside the program to be debugged. Assemble the
first part of the user program (ending with .EOT) followed by
ODT's second segment followed by the second part of the user
program.

When setting locations before assembling, it must be noted that
immediately preceding ODT a minimum internal stack of 40, bytes is
required for the ODT-11 and 1169 bytes is required for ODT-11X.
Additional room must be allocated for subroutine calls and possible
interrupts while ODT is in control. Twelve bytes maximum will be used
by ODT proper for subroutine calls and interrupts, giving a minimum
safe stack space of 52 bytes for ODT-1l or 130g bytes for oDT-11X.

Once a new binary tape of ODT has been assembled, load it using the
Absolute Loader as explained in Section 6.2.2. Normally, the program
to be debugged is loaded before ODT, since ODT will automatically be
in control immediately after loading, unless the third segment of
ODT's source tape was altered before assembly. As soon as the tape is
read in, ODT will print an * on the Teletype to indicate that it is
ready for a command.

J.2.4 Assembling IOX/IOXLPT

In subsequent discussion, reference to IOX applies to both versions.
IOX is supplied on both source and absolute binary tapes.

If there is more than 4K of core available and it is desired to load
IOX (or IOXLPT) in other than the normal location, IOX must be
reassembled. .

The code

+=15100
JEOT

appears at the beginning of the first IOX tape (PAl) and contains the
starting address. Create a new tape containing the new starting
address desired; be sure to- allow enough room for 63410 words for
I0X, 72519 for IOXLPT. For example,

»=25100
+EOT

Use PAL-11A to assemble IOX and substitute the new section of tape for
the first part of the old tape (PAl). After the new section is read,
insert the I0X tape in the reader so the read head is past the ol1d
starting address and .EOT and type the RETURN key to read in the rest
of the tape.

Now read in the second tape {(PA2). An EOF? message is output at the

end of the second tape. Type the RETURN key and the END? message is
printed. Put the tapes through for the second pass of the assembler.

J=7

ASSEMBLY AND LINKING INSTRUCTIONS

IOX (IOXLPT) can also be:assembled with a user program' if desired.
The .=15100 and .EOT lines must be deleted before IOX is assembled
with a‘user program. =~ - - ' . . A ' ‘

I0X can be assembled into the program wherever desired but if it is
the first tape read by the assembler, remove it from the reader before
typing’ the RETURN key (after the EOF? message of the second tape.
IOX -and" IOXLPT have a .END code which would cause the assembly pass to
end when read). Assembling a user program and 10X together eliminates
the need to read in IOX each time the program is run.

J.2.5 Assembling and Linking PAL-11S

PAL-115 consists of two independent programs. The first program is a
memory clear program. The’'second is'the assembler. All programs are
available as ASCII source tapes, object modules and as a load module.

The memory clear program, MEMCLR, (DEC-11-UPLSA-A-PAl) consists of one
ASCII ~tape. : This ‘program should never need to be assembled. The
object module may be used when constructing a new load module of
PAL-115.

The assembler consists of three program modules which are assembled
separately " and then linked together. The first is the main program
called- PAL-11S. It consists of 13 ASCII tapes {DEC-UPLSA-A-PA2-PAl4).
The second module is the symbol table, PALSYM, which consists of 2
ASCII ' tapes (DEC-li—UPLSA*AbPA15~PA16). : The third is I0XLPT
consisting of 2 ASCII tapes (DEC-11-UPLSA-A-PA17-PA18). Also included
is PALSYM, specially created for 12K and 16K, consisting of one tape
each (DEC-11-UPLSA-A-PA19-PA20).

If changes are made in any of these modules, that module must be
assembled by PAL-11S (V003A) and the new object module can be linked
with the other object modules. It should be noted - that assembly of
these programs will result in:. L co o S

Program- Pages of Listing (Decimal) Number of Symbols (Decimal)
PAL-11S 160 756
PALSYM 11 32
IOXLPT 29 191

Also note that there will be two undefined symbols listed at the end
of pass 1. These are forward references on direct assignments which
get defined properly in pass 2.

An example’ of the<PAL—liS‘assemb1y4follows:

PAL-11S V003A

*S H
*B H
*L P o
*T p/2 (first pass on PAl)
“END ? SRLE Loow e e wy2nd pass’ én’ PALY o

- 000000 ERRORS ” R W (End of tape #1 assembly)
il e fomgnr e " (Remove tape from punch)

ASSEMBLY AND LINKING INSTRUCTIONS

PAL-11S . V003a

*S H
*B H
*L P B ‘ '
*T P/2 . D ; _ (Insert PA2 for lst pass)
" EOF ? o o : ~ (End of PA2, insert PA3)
EOF ? {(End of PA3, insert PA4)
EQF ? (End of PA4, insert PAS5)
EOF ? (End of PAS, insert PA6)
EOF ? (End of PA6, insert PA7)
EOF ? - (BEnd of PA7, insert PAB)
* EOF .? . (End of PAS8, 1nsert;PA9} '
. EOF 2 ‘(End of PA9, insert PAlD)
" EOF ? (End,offPAlﬁ, insert PAll)
EOF ? (End of PAll, insert PAl2)
,EOF ? _ (End of PAl2, insert PAl3).
EOF ? ~ (End of PAl13, insert PAl4)

 BINCNT=#**k%* SIMBC=#*h#axs " (End of PAl4 and lst pass)

END ? (Insert PA2 for 2nd pass)
EOF ? (End of PA2, insert PA3)
EOF ? (End of PA3, insert PA4)
_EOF ? (End of PA4, insert. PAS5)
EOF ? (End of PAS, insert PA6)
EOF ? (End of PA6, insert PA7)
_EQF ? (End of PA7, insert PAS8)
EOF ? (End of PA8, insert PASY)
_EOF ? (End of PA9, insert PAlQ)
EOF ? (End of PAl0, insert PAll)
EOF ? (End of PAll, insert PAl2)
EOF ? (End of PAl12, insert PAl3)
EOF ? (End of PA13, insert PAl4)

000000 ERRORS : " {(End of PAl4 adeZQé pass)
, (Remave tape from punch)’
PAL-115 V0O3A ' o

*S H

*B H

*L P \

*T P/2 . (1st pass on PAlS) .

EOF ? . (End of PAl5, insert PAl6)

END ? ' (End of PAl6, insert PAlS for 2nd pass)
EOF 2 . | (End of PAlS, 1nse:t PAlG)

000000 ERRORS T (End of 2nd pass) .

(Remove tape from punch)
PAL-115 vo03a

*S H

*B H

*L P , . : ,

*T p/2 ‘ ' ‘ (1st pass on PAl7)

EOF ? : - (End of PAl7, insert. PAl8)

QENQ ? (End of PAl8, insert PAl7 for 2nd pass)
EOF ? = (End of PAl7, insert PA18)

000000 ERRORS . (End of 2nd pa$s) :

(Remove tape from punch)
PAL-11S V003A

. *S H

*BH .

*L P

*T P/2 (Pass 1 on PAZ0)
END 2 (Pass 2 on PAZ0)
000000 ERRORS (End of pass 2)

(Remove tape from punch)

ASSEMBLY AND LINKING INSTRUCTIONS

The final load module is constrﬁcted by LINK-11S. First the memory

clear program object module is processed by the 1linker and the
resulting load module is left in the punch while the PAL-11S, PALSYM,

and IOXLPT object modules are linked to create a second load module.

The resulting tape contains two load modules. The first clears memory

and then jumps to the absolute loader to load the second.

In order to take advantage of core sizes larger than 8K, PALSYM, the
symbol table, specially created for 12K core and 16K core, and the
object modules are included with the assembler. To link for 12K {or
16K), simply substitute ' the appropriate object tape for PALSYM (use
DEC-11-UPLSA-A-~PR5 for 12K or DEC-11-UPLSA-A-PR6 for 16K) specify a

top address to LINK-11S of 57460 for 12K (77460 for 16K) and link as -
described in the preceding paragraph.

Do not relink PAL-11S to run above 16K. The size of the symbol table

is fixed, and there is no need to re-link at a higher address even on

large systems. . :

The su?plied tapes are identified as follows:

Library Code Contents
DEC-11~UPLSA-A-PAl Tape 1 of 20 } One RELMEM

Assembly (Memory Clear Program)

DEC-11-UPLSA-A-PA2 Tape 2 of 20) PAL-11S (Main Program)
DEC-11-UPLSA-A-~-PA3 Tape 3 of 20 :
DEC-11-UPLSA-A-Pa4 Tape 4 of 20

DEC~11-UPLSA-A-PAS ~ Tape 5 of 20

DEC-11-UPLSA-A-PA6 Tape 6 of 20 .
DEC~11~-UPLSA-A-PAR7 Tape 7 of 20 One

DEC-11-UPLSA-A~-PAS Tape 8 of 20 > Assembly

DEC-11~UPLSA-A~-PAQ Tape 9 of 20

DEC~11-UPLSA-A-PAl0 Tape 10 of 20

DEC~11-UPLSA-A~PAll Tape 11 of 20

DEC-11-UPLSA-A-~PAl2 Tape 12 of 20

DEC-11-UPLSA-A-PAl3 Tape 13 of 20

- DEC~11-UPLSA-A-PAl4 Tape 14 of 20

DEC?ll*UPLSA‘A“PAlS‘ Tape 15 of 20 } One PALSYM (Symbol Table) for 8K
..DEC-11-UPLSA-A~PAl6 . Tape 16 of 20 Assembly \ '

DEC11-UPLSA~A-PAl7 Tape 17 of 20} One
DEC-11-UPLSA-A-PAl8 Tape 18 of 20 Assembly IOXLPT

DEC-11-UPLSA-A-PAl9 Tape 19 of 20 One Assembly PALSYM (Symbol Table) for 12K
DEC-11-UPLSA-A-PA20 Tape 20 of 20 One Assembly PALSYM (Symbol Table) for 16X

DEC-11-UPLSA-A-PR1 Tape 1
DEC-11-UPLSA-A-PR2 Tape 2
DEC-11-UPLSA-A-PR3 Tape 3 of
DEC-11-UPLSA-A-PR4 Tape 4
DEC-11-UPLSA-A~PR5 Tape 5

6

]
L]
h OO

"RELMEM Object Module

PAL-11S Object Module

PALSYM Object Module for 8K
"IOXLPT Object Module &
PALSYM Object Module for 12K

assembler
DEC-11-UPLSA-A-PR6 Tape 6 of PALSYM Object Module for 16K
Assembler e
DEC-11-UPLSA-A-PL ; PAL-11S Load Module'

H
This tape is the concatenation of a link of the RELMEM object module
followed by a 1link of the PAL-11S, PALSYM for 8K, and IOXLPT object
modules.
J-10

ASSEMBLY AND LINKING INSTRUCTIONS

J.2.6 Assembling And Linking LINK-118

LINK-11S is available as an absolute load module (for an 8K machine),
as two object modules (for relinking) and as several ASCII source
tapes. There is one object module for the Linker and one for IOXLPT.
The supplied object modules may be relinked (using the supplied load
module) to load into any size machine larger than 8K. However, the
resulting Linker will still assume a top of memory corresponding to an
8K machine (this can be overridden in the command string options).
The assumed top of memory and reserved Absolute Loader space may be
changed by editing the first 1linker ASCII tape with ED-1l1. The
parameters to be changed are HGHMEM (high memory address +1 {always
even)) and ALODSZ (Absolute Loader size (always even)). The source
tapes for the Linker may then be assembled with PAL~11S and the new’
object module can then replace the supplied Linker object module.

The tapes are identified as follows:

Library Code

DEC-11~-ULKSA-A~PAl Tape 1 of 6 LINK-11S (Main Program)
DEC-11-ULKSA~A~PA2 Tape 2 of 6 One

DEC-11-ULKSA-A-PA3 Tape 3 of & Assembly

DEC-11~ULKSA~A-PA4 Tape 4 of 6

DEC~11-ULKSA-A-PAS Tape 5 of 6 } One IOXLPT
DEC-11-ULKSA~A-~-PA® Tape 6 of 6 Assembly

DEC-11-ULKSA~A-PR1 Tape 1 of 2 LINK-11S Object Module
DEC-11-~ULKSA-A~PR2 Tape 2 of 2 I0OXLPT Object Module
DEC~11-ULKSA-A-PL ‘ LINK-118 Load Module

J-11

&
2

&

Abbreviation

ABS
A/D
ADC
ADRS
ASCII

ASL
ASR

CBR

CLv

APPENDIX K

STANDARD PDP-11 ABBREVIATIONS

Definitian

absolute ,

analog~to-digital

add carry

address

American 5tandard Code
for Information Inter-~
change

arithmetic shift left

arithmetic shift right

automatic send/receive

byte
bus address regzster
bus busy

branch if
branch if
branch if
bus grant
branch if
branch if
branch if
branch if

carry clear
carry set
equal

greater or equal
greater than
highert

higher or same

bit clear

bit set

bit’ test

branch if less or equal
branch if lower or same
branch if less than
branch if minus

branch if not equal
branch if plus

branch ‘

bus register data

bus reguest

back space

bus shift register

back space record

busy

branch if overflow clear
branch if overflow set

console bus request
clear carry

clock

clear negative
clear

clear overflow

K~1

CLZ
CMP
CNER
CNTL
COoM
COND
CONS
CONT

Cp
CSR

D
D/A
DAR
DATI
DATIP
DATO
DATOB
DBR
DCDR
DE
DEC

DEL
DEP
DEPF
DIV
DMA
DSEL
DST
DSX

EMT
ENB
EOF
EOM
ERR
EX
EXAM
EXAMF
EXEC
EXR

F
FCTN
FILO
FLG

GEN

INDIVR
INC

INCP
IND
INH
INIT
INST
INTR
INTRF
I/0
10T
I0X

STANDARD PDP-11 ABBREVIATIONS

clear zero

compare

console nonprocessor request
control

complement

condition

console

contents

continue

- central processor

control and status reglster

data

digital-to-analog

device address register

data in

data in, pause

data out

data out, byte

data buffer register

decoder

destination effective address
decrement

Digital Equipment Corp.

delay

deposit

deposit flag

divide

direct memory access

device select

destination

display, X~-deflection register

enulator trap
enable
end-of-file
end-of-medium
error

external
examine
examine flag
execute
external reset

flag (part of signal name)
function

first in,last out

flag

generator

integer divide routine
increment

increase

increment flag
indicator

inhibit

initialize

instruction

interrupt

interrupt flag
input/output :
input/output trap
input/output executive routine

K-2

)]%
e

E

IR
IRD
ISR

JMP
JSR

LIFO
LKS
LoC
LP
LSB
LSBY
LSD

MA

MBR
MEM

MOV
MSB .
MSBY
MSD
MSEL
MSYN

ND
NEG
NOR
NPG
NPR
NPRF
NS

oDT
op

OPR

PRB

PROC
PRS

PS
PTR

PTS
PUN

STANDARD PDP-11 ABBREVIATIONS

instruction register
instruction register decoder
instruction shift register

jump
jump to subroutine

last in,first out

line time clock status regxster
location

line printer

least significant bit

least significant byte

least significant digit

memory address

memory address register
memory buffer register
memory.

memory location

move

most significant bit
most significant byte
most significant digit
memory select

master sync

negative driver

negate

normalize

nonprocessor grant
nonprocessor request
nonprocessor regquest flag
negative switch

octal debugging technique
operate

operation

operator

operand

parity available -

program assembiy language

parity bit ,

program counter

positive driver-

programmed data prccessor

peripheral ,

program

paper tape punch

paper tape punch buffer register

paper tape punch status reglster

paper tape reader

paper tape reader buffer-
register :

processor ,

paper tape reader status
register

processor status

posxtzve switch

priority transfer

paper tape software system

punch

SR

SSYN
ST
STPM
‘STR
SUB
sSvC
SWAB

TA
TEMP

TKB
TKS
TP

TPS
TRT
TsC
TST

UTR
VEC

WC
WCR

XDR
XRCG
XWCG

YDR
YRCG
YWCG

STANDARD PDP-11 ABBREVIATIONS

read

reader

register

release

reset

rotate left

read-only memory
rotate right

rotate shift

return from 1nterrupt
return from subroutlne
read/write

read/write sbift reglsterA

single

selection acknowledge
SUBTRACT CARRY - ‘
single cycle '
source effective addreﬁsf
set carry

select

set negative

set overflow -

sign extend

set zero ‘
single instruction'
stack pointer

spare C
switch register
source

slave sync

start

set trap marker
strobe

subtract

service

swap byte

trap address
track address
temporary
teletype keyboard

teletype keyboard buffer register
teletype keyboard status register

teletype printer:

teletype printer status register

trace trap

timing state control
test

user trap

vector

word count
word count register

X~line driver
X-line read control group
X-line write control group

Y~line driver

Y-line read control group

Y-line write control group

K-4

.

. APPENDIX L
‘ s CQN?ﬁRE!QH TABLES
& L.1 oc’PAIe“DECf?"*iI{ g@i’;ﬁk ,‘(JV:OWE‘R’S 1008

ig 1t 2% 4 8 & 1

em 0257 0238 0259 0260 ‘0251 0282 0263
: 0246 ‘0267 0268 D65 0270 0271

0000

ogg .. |ooz0
m' 1

0 | 0024 ms 0026 0027 0028 0038 5030 1
(Octal) | (Decimai)| 0040 (0032 0033 0034 0033 0036 0037 8038 0039

0050 {0040 0041 0043 0043 0044 OD4S BOAE D047
0080 10048 0049 0050 00 0051 0052 0053 00%¢ 0055 ||
£ | Decimal 0070 j0038: m'twslwstmmi mz avmg

19000 3995|0100 oose ooss ooss cos7 oss osse oots ooti
30000 - 12208 (OMojoenz ”’?mg m 0016 0073 G078 0019

0287 0283 0284 ‘0285 0206 0287
0290 0291 0232 0293 0294 0295
0297 039& 0299 0306 03 0302 0303
60 03060307 0308 0308 10310 0311
oty M:z 0313 o34 ony: o.us’em s 031%

0500 10320 0321 0632 0323 0324 0325 0326 0327
051010128 0329 0335 0331 03320333 0334 0338
g 10336 0337 0338 0338 00 0361 0M2 0343
103440345 0346 G347 0248 :0349 0350 0151
310352 0353 0354 0355 0356 0357 0358 0358
) 16360 0361 0362 0383 0364 0365 Q366 0167
10368 0369 03790371 0372 0313 0374 0175

70000 - zw?z"t",”“' 0104 o1 !
057010376 0317 0358 0370 0380 01 0382 0383

0180|0112 0113 0114 OLES 0116
0170{0120 0471 0122 0123 DI OIS - G178 OA2Y

oz00{ 0128 0129 me o3 0132 0133 0134 0135]) 060030384 038%. 0308 o 0388 0389 6390 0391
102107 61 3% 0137 0138 0rIS 0140 0141 6142 0143 [10610, 0392 0393 0384 0395 0396 0397 04398 0299
02200144 0145 0146 0147 0148 0349 0150 0151] 0620 10400 0401 0402 0403 0404 0405 0406 0407
0230:} 0153 0153 0154 0155 0156 OI¥1. 415K D159 |1 0630 0408 0409 0419 0411 0412 0413 0414 041
02400160 0161 0182 0163 0164 OISS SIS 0167 |1 0640 /0416 0417 0418 Q419 0420 0421 D422 0423
0250|6168 0169 0170 0171 0172 0173 D174 0175 |1 0650]0424 0425 0428 0427 0426 0429 0430 0431
026010176 0377 OITH 018 0180 0181 H1SZ 0183 |} 0580 0432 0433 0434 0435 0436 0437 0438 0433
02700184 0185 0186 0I8Y 0188 0183 £130 0191 tsm.o«o 0441 0442 0443 0444 :ms 0448 0447

0300|6192 mu 0194 0195 0198 m': 3154 omigm 0449 0450 G451 0452 0453 0454 0435 :
u:;gmmcm . 0204 Q205 0108 0710 0458 ,19;5:«&9«69&5;%&53

- |032¢ 0209 02 2&&1 465 0466 0457 0468 U469 OATO 0471
0330 o0 N7 m:,a;té 9, 12} 3 Dite 0475 OAT6 G411 GATE 0479
00224 0225 0228 0228 022 81

(483 0484 0485 0488 0487
0490 1491 0492 D493 0494 0495
G498 0499 0500 0301 0502 0503
5_0308 0307 0508 0509 0510 es___j

9 i 2’” 3' ‘,‘] S 103 48 87

001 0512 0313 0514 O%1S m; 0517 0518 05 : 1400 14

1010520 0321 0322 €323 05 5& ‘f

o mw%&@a&s;

1777 1023 | 10201652 ,vos o

{Octal) | (Decimaly| 1040 o%f4 0548
1

0178 0711 0772 0713 0174 0775
aT18 o179 0180 GM1 ov82 0783)
! 0187 0788 0789 0190 0791
3 o714 07195 0798 6187 W 0199
o807 £0DY 0BO4 OFCS OROB. 080T
80y 081D 0811 0812 0813 OBI4 0815
0817 obid mi 0630 8821 0832 0823

5 D826 0BTT OO28 OM29 0830 0831

1000 | o812

;s@omz mzmzcaﬁ CA3T UA3S.
151010840 0841 0842 0843 | & wg yeiu' 0847

1130] 680G D601 0607 (RD!
1140 0808 D609 OBFC

1150|0816 0617 0818 0819
- |160]ok2e o625 0898 o8I
1170} 0633 ﬁfa 0834 L

12661 tis40 mx 0647 DA O
0648 0843 m«%ﬂ

:mmm&z ﬁ‘&i@i
0664 0665 0868 G687

@

nwmm
imm:mmmm:
12700696 0697 0698 0699

1300 L 0754 0705 0708 0TOT
13100712 OT18 0T14 ONS
1320} 0720 0721 0122 0723
1330] 0728 0129 0730 01
13401 0736 0737 0738 0139
o 1350 0744 0745 0746 0747

! 1960] 0757 0753 ‘0754 0788
1370} 0780 0761 0762 0763

1002 1003 1004 1008 1008 1007
1250 1081 1012 1013 1014 10a3
1018 1019 1020 1021 1022 1023

3 of14 0275 02180373 0378 OTVS|

CONVERSION TABLES

OCTAL-DECIMAL INTEGER CONVERSICONS (Continued)

2000 1024
to to
2777 1535
{Octal) | {Decimat)
Octal Decimal

10000 - 4096
20000 - 8192
30000 - 12288
40000 - 16384
50000 - 20480
60000 - 24576
70000 - 28672
3000 1536
to to
3777 2047

(Octal) | (Decimal)

1

5] 7

0 1 2

.3

4 5

2000
2010
2020
2030
2040

2070

2100
210

1025
1033
1041
1049
1057
1085
1073
1081

1088
1097
1105
1113
n2
1129
nn
1145

- 1153

1161
1189
nmn
1185
1193

1200

1209

1217
1225
1233
1241

1357
1265
17

104

1146

1154
1162

e

1
1186
1

1210

1218
1226

1294

1242
1250
1258

1214

1028 1030 1031
1037 1038 1039
1045 Y046 1047
1053 1054 1055
1061 1062 1083
1069 1070 1071
1077 1078 1079
1085 1086 1087

1093
1101

1004
1102 1103
1108 1310 1111
11T 1148 119
1125 1126 1127
1133 1134 1138
1AL 1342 1143
1149 1150 1151

1357 1158 1159
1165 1166 1167
1T 1T 117S
1181 1182 1183
1189 1190 119
1197 198 1199
1205 1206 1207
1213 1214 1215

1221 1223

1299 1231

123t 1259

1245 1246 1247
1254

1253 1258)
1362 :mj

1222
1230
1238

1288 2
1210 121

1a§slx2$0§

1280 292
1190
- 1298
1308
1514
1322
£330
1328

Y8
1354
1382
110

1378
1388
1354
1402

g 110
1417 1418
1435 1428
1433 14M4
1441 1442
1449 1450

1465 t466

1473 1474
1481 1482

1497 1498
1505 1506
1583 1514
1521 522

1457 3438

1489 1490 -

1283
129
1299
1307
1315
1323
133
1339

1347
1355

1285
1293
130

[} i3
1325
4333
141

1349
1357
1365
1373

1397
1405

2 1413
) 1421
1429
1431
1445
1453
1461
1469

1471
1485
1493
1501

1517
1525
1533

1381

1470
1478

1486
149¢

1510

1518
1526
1534

1303

- 1418

1%}
11}
- 14385
1463}

1207
1295

1311
1318
1327
1335
1343}

1351
1359
1367
1375
1383
1391

1407

1423
140

un

1479
1487
149%
1503
1511
1519
1521
153%

1277 18 12719)

1528 1530

5 & 1

0 1 2

1537
1545

1553 1

1561
1569
13N

1585,

1393
l“l
1617

1625

1633
1641
1649
1657

1665
1873
1681

1697
1705 1

1713
1121

1729
13
1745

1753 17

1161
1769
m
128

171
1187

17831{ 37807 2002 2033 209
1791}{3710] 2040 204 2042 3043 20

1793 1194
1808 1802
1609 810
1817 1818

1857 1858
1865 1868
1873 1814
. 18811882
. 1885 1890
1897 1398
1905 1906
1913 1914

1921 1932
193¢ 3930
1937 1938
. 1945 1946
1953 1954
1961 1962
1969 1970
1977 1978

- 1985 1985
1993 1994
2001 2002
2008 2019
201T 20:i8
. 2025 026

0

1849 1830

13

CONVERSION TABLES

OCTAL~-DECIMAL INTEGER CONVERSIORS (Continued)

[2 3] 1 2 3 4 L] s 1

; 2048 2049 20502050 m,mmmmwm,fzmm;
4010 wm«mm& ' 1 238038

2064
: ez s 5034]
404 3080 2081 2082 &S:W

2323 2324
azs 2329 23%0 2131 238
= paih S m ma
%W 60| 2066 2097 2058 2099 2100 2103103 210311 446012382 2353 2 2354 2255 2356 2337 2388

- 4096 |yo70l 2504 2105 2106 2107 2108 2108 2110 eA70| 2360 2061 2387 2363 2384 2363 1368 2367

€50012368 2369 2310 2371 212 2313 2N 2
451012276 2077 2378 t}?i :m !ﬂi nsn
4520|2384 2385 2386 3 389 2390 2391]
45301 2302 2393 2394 zas m mi 2098 + B
{4540} 2400 2401 2402 2403 2

mi 8. |4rool 2102 2113 20142115 2116 2017 2018 2118
50000 - 20480 | 4110 2120 2121 2122 2133 2124 2125 2126 2127
60000 - 24576 | 4120 2128 2129 2030 283t 21322133 M 2135}
70000 . 28672 | 4130 2136 2137 213821392140 2141 2142 2143
a4} 21442145 2146 2147 2148 21492150 2151 2405 2406 2607(
4150] 2152 2153 2154 2185-2156 2157 2138 21594550, 2408 2409 2410 3411 3«3 2413 2414 2018
160 2160 2161 2162 2163 2464 2185 268 2167|5601 2416 2017 2018 2410 2420 2421 M2 M
4170} 2168 2169 2170 2171 2172 2173 2174 2175 14570| 2424 2425 2426 2427 2428 3429 2430 24N

- lazool 2176 2177 2178 2179 2180 2181 N2 21831 4800 | 2432 2433 2434 2435 2436 2437 W u»
S, 4210} 2184 2185 2186 2187 2188 2189 2190 2191 tm}ts«n 2441 2442 2643 2444 2585 2446 2447
AN ¥ & 21822193 2194 2395 2196 3&?" 2198 2199|4820 12448 2448 2450 us; 2452 2453 2454 2455
4230} 2200 2201 2202 2203 ‘2204 2205 2306 2207 {4630 {2456 2457 2458 2459 2450 2481 2462 2483
Ja200} 2208 2209 2210 22 112212 2713 2214 2215| 148402464 2065 2466 2487 2468 2459 2470 2471
23162207 228 Y 2220 1N 2 22231 {4850 2472 2473 T4 2475 2476 HTT U MDD
| 9224 2225 2226 2227 2228 2229 2330 2231|4650, 2480 2481 2482 2483 2484 2485 2488 2487
az70} 2232 1133 223 N 2236 2237 2238 2229][4670 2488 2489 2450 2491 2392 2493 2494 2495]

4300 1 2240 2241 2242 2243 2244 25 26 4700 2496 2497 2498 2499 2500 2501 2502 2503
31012248 12749 2250 2251 2252 2253 2254 22551{4T10 2504 2505 2506 2507 2508 2509 2510 311
432012256 12257 2258 2259 2260 226t 2262 47202512 2513 1534 2315 2518 2517 2518 2519
4330} 7264 2265 2266 m’ 2268 2269 2270 433612520 2521 2532 2923 2524 IMS 2518 2537

gLIviy 2 { ’ 4740|3528 2529 2530 2531 2532 2533 25M 2538
4350 2280 “2281 2282 m3 253“ 2785 2386 2287) [4750| 2536 2537 2538 4539 2540 $943 2542 2543
43601 228872289 2290 729] 2292 2283 2284 dlaroi2534 2545 2548 2547 2348 2549 2550 21551
43701 2296 2297 22982298 2300 2301 2302 2303, 1471012552 2553 2353% 2555 2558 7351 2958 2558

P in,;::tsﬁria:sscsst

2560 |3000|2580 2561 2562 2563 25642565 2566 2567 [S600 2816 2017 2818 2819 2820 382 2022 933
- 010125682569 2570 2%71 2572 2573 2534 2378 541012824 2825 2826 2827 2828 2829 2830 28N
o7 [0 2518 2317 BN :m mn 3541 5B 256 [5420[2832 2833 283¢ 2835 2036 2837 2038 203
(Decimal) 3534 2585 2306 2587 2588 2509 7390 2591| |5430[2840 2841 2842 2843 2044 2845 2046 2047
5040 2594 mmtmm smzmamw:mzmmswm
26407 2603 2604 J60% 3608 26007 15450 2856 28 8 2859 2860 ‘2862
5080 mmemzmzmzmms,wmzmmmﬁv oétm:un:m
5016 uxs 2617 2618 2819 2620 260 2622 26231 547012872 2873 3874 2875 ;ns nn 2878 28N

St@ﬁk!!!l 2625 2626 2627 2523 24‘8 % 2631] [5500 | 2080 2881 2887 2883 2884 2885 2886 2087

5000

5777
(Octal)

Is116 12632 2633 2634 2625 2636 5510
5120|2640 2641 2642 2663 2644 am 246 26471 |35

513012648 2649 2650 2651 2652 2653 2654 26551|5
s140 12856 2657 2658 2638 2660 2661 3882 2663 1554
5150|7664 2665 2666 2667 2668 2689 2670 2671} |53
5160|2672 2673 2674 2615 2616 63T 2678 2679} |356C
S170| 2660 2681 2882 2683 2604 2655 2685 2687

s200 |2688 2689 2690 2691 2692 2603 2604 2695(}5
5210|2696 2697 2696 2699 2700 2701 2102 270336
52202704 2705 2706 2707 2108 2109 3710 2T11}{88R0 7
3 213 2Me NS 26 T INB 2T19| IS8
s240 12720 2721 2722 2923 2724 375 2726 2727)SME
525017728 2729 2730 2731 2T 34 2735
326017736 2737 2738 2130 2
527012744 2745 216 2T N7

530012952 2753 2734 2155 0 % | 14
tsm?w 2761 2762 2763 2764 2785 1768 27671187
5330 12748 2769 2770 27U 2172 2713 7

13016 3017 301e 3019 3020 302t 022 3023

CONVERSION TABLES

OCTAL~DECIMAL INTEGER CONVERSIONS {Concluded)

6000

to
6777
{Octal)

7000
to

to
7777 4095

{Octat) (Decmm) '

i 2

4

L 1

358 bty
(Decimal) [8030

6330 13218
8230 | 3224
6240 [3302

- |6150 | 3140
i C!‘ﬁ;SﬂiC

0270 | 3236
8300 ' 3264
6310 13272
8320 | 3280
6330 3288 :
$240 : 3296
4355 3304
6360 13312
6370 3320

W7¢

W8 079

3108
i
e
a2
3135

o2
Ny
s
3126
nxn

3143
sy
3159
3167
s
318y
3191
3199

3207
s
3223
2n
3239
3247
3258
e

42
3150
350
3166
M
e
3is0
398

3208
324

1un
2279,
1281

3303
Ing
e
3327

3584

2

3]
M!zﬁﬂ%%&ﬂﬂﬂﬁ

0

2

3

4

&]

6

7

3328
3344

3
g

3360
3368
3316
3384

‘3392
3400

6470

€500
6510
6520

6540, 3424
6580 N
8580 3440
6570 3448

|
6600 3456
8610 3464
§820' 3472
6630 3480
6640 7 3488

mm 3504

8700 3520
s710/ 3528
8720
6730
8150
750
760!

B4

1568

352

3408 -
83301 3416

6850 3496
68?0‘3512v

3538

3582
3560

3576 3

- 3929
3336

128
36
3368
mnm

13385

3393
3401
3409
ar
3425

3433
3441

3443
3457

F34T3

3330

36

3354

3363
3770
3378
3388

3384

3402

‘3410

His

(3426

434
3442
3450

3458

3486 -

TR
3482
‘3480

-3508

3514

3530
3538
1948
J354
3582
1570
3578

33313332 /3333 330
339

3340

B8
- 3356
13364

Iz

Ao
3388

3396
3404

az

3420
3428
s
3444
3452

1460
3468
78

3464

3492

3500

3508
3516

3524

3532

3540
3548
3558
3584

3572

3580

3341
3349
337
<3385
s
X381
3389

3
3405
3413

a2
e

un

344
3453

3461

3489
1
13485
3493
3501

3509

B

3525
3533
31
‘3549
3587
35865
3573

3581

3342
3350

3358

3368
374
-3382
3390

3398
3408
L4
422
3430
3438
3446
3454

3462
3470
478

3486

3494

-3502

510
3518

3526
3534

3542
3550

3558
3566

3574

3582

3338
3343
338+
3389
3367
3375
3383
3w

ine}
3407
348
3423]
33
U
3447
2455

3463
un
Ty
3487
3485
3503
I8
3519

3527
535
3543
3551
3558
587
3575,
3583

e770; 35

$

[

1

400 |
410
420
?iaa‘

4013
076
s

3e4s
3853
aae
3889
3817
3885
3893
3801
3909
3T
3925

3933

I
3948
3957
‘3965

311
3981
3989
3987
400%
4013
4021
w028

037
4045
4083
408}
089
w1
4084 4085

3846
3854
3862
3870
3878
asse
3894
3902

3910
3918
3926
1934
1942
39%0
3958
3966

874

3982

3990
1998
4006
4014
1022
4030

4038
4046

4054

4062

4070

4078
4006

Qﬂﬁ! 4093 4084

3847
38$d
3863
387
3819
3887
3895
3863,

o

CONVERSION TABLES

L.2 POWERS OF TWO

-2

-85

~oNZES

Ze853R3RE

H ~aBEEERRAIRR

. ~o8R3B3RZRIRIRE

L.a83RRIVARSTRENEEY

sammammmwmmwmmmmmwwmm

,sammmmmwmmmmmmmmmmmmwmmm

ZRERERSRREIVEBERETIERRREES
snmmwmmmmmewmemmmmmmmwmm:mmm

n8S83808870R 288358388835 0R82RERE
sammmmmmmmmmmmwmmmmmmmmwmmmmmmmmmmmw

LB EEIREREIYRS2EIRETIL 39 REIRINTEREIRR
snmmmmmwmmmmmmmmmmmmmmmmwwmmmmmmmmmmmmmmmw
sammmmwmmmmmmwmwmmmmmmmmmmmmmmmmmmmmmmwwmmmmm

s sammmmmmmmmwmmmmmmwmmmmmmwmmmmmmmmwmwmmmmmmwmwwm

o ;snmmmmmmmmmwﬁ%mm%m%wmwmmmwwmmmmmmmmmmmmmmmmmwmmmmmm
ssmmmwmmwmmmmmmmemwmmmmmmmmmmmmmmmmmmmmmmwmmmmmmmmmmw

88

A&
47
48
9
50
51
52
53
54
55
36
57
58
59
&0

§35382F3385388
32538RRE 2SR5
2ER3IFLPEIH3E2R855

2 g 25 33RIEERBRRIRRRA
SevengRYEFARBRILL2ASE
BRARELLEE 1

L-5

CONVERSION ‘TABLES

L.3 SCALES OF NOTATION

L.3.1 2¥ 1n Decimal

x 2* x 2 X o
0.001 1.00069 33874 62581 001 1.0069%5 55500 56719 0. 1.07177 34625 36293
0002 1.00138 72557 11335 002 1.01395 94797 90029 o2 1.14869 $3549 97035
0003 1.00208 16050 79633 003 102101 21257 07193 0.3 123114 44133 44916
0004 100277 64359 01078 004 102811 38266 56067 04 131950 79107 72894
0005 1.00347 17485 005 103526 49238 41377 0.5 141421 35623 73095
0.006 100416 75432 38973 006 1.04246 57608 41121 08 151571 65665 10398
S Lamomh g fh losay 8 6O Ee
0.009 100625 78234 97782 0.09 1.06437 01824 53360 09 186606 59830 73615
+n
L.3.2 10 In Octal
100 n 10+ 10 n 1
1 0 1.000 000 000 000 00O 006 12 , 10 - 0.
12 1 0.063 146 314 631 463 146 31 i 351 gnz,;:i % 1? ,0.383 % %
144 2 0005 075 341 217 270 243 16 432 451 210.000 12 0.000 000 000
750 3 0000 406 111 564 570 651 77 ‘221411 634 520 000 13 ' 0.000 000 000
23 420 4 0.000 032 155 613 530 704 15 2 657 142 036 440 000 14 0.000°000 000
303 240 5 0.000 002 476 132 610 706 64 {327 724 461 500 000 15 0.000
3 641 100 6 0.000 000 206 157 364 055 37 434 157 115 760200 000 16 0.000 % 2%
48 113 200 7 0.000 000 015 327 745 152 75 5 432127 413-542 400 000 17 0.000 099 998
575 360 400 & 0.000 000 001 257 143 06 67 405 553 164 731.000 000 18 0.000 000 000
7 346 545 9 0.000 000 000 104 560 276 41
L.3.3 n Log 2 and 10 In Decimal
n nioge 2 n logy 10 n nioge 2 n logz 10
i 0.36102 99957 1.32192 80949 s 1.80617 99740 19.93136 85693
2 0.60205 99913 6854385 61898 7 210720 23.25349. 25342 ;
I ipmome s iy P oipmoas Ei i
5 150814 99783 . 16.60964 04744 10 3.01029 99566 33.21928 09489
L.3.4 Addition and Multiplication, Binary and Octal
Addition Multiplication
, Binary Scale .
Ce40= 0 o 0xX0=0
o+1=z'{o=x OXx1=1%X0=0
1+1=10 1x1=}
Octal Scale
oflor o2 03 o4 05 06 o7 1}02 03 o4 05 06 o7
102 03 o4 05 06 07 10 204 06 10 12 14 16
2{03 04 0% 06 07 10 11 306 11 14 17 22 2%
3/04 05 06 07 10 11 12 4110 14 20 24 30 234
4]o5s 06 o7 10 1 12 13 st12 17 24 31 36 43
slo6 07 10 11 12 13 14 6§14 22 30 36 44 s2
607 10 11 1z 13 14 1S 7116 25 34 43 52 61
7i10 11 12 13 14 15 16

8838 23888 7
3838 gszag
-
QD Huﬂﬂg

—&g—- AN~

B

AT
E .

L.3.5 Mathematical

CONVERSION TABLES

Constants In Octal

inmr =
logrn =

v10 =

3.11037
0.24276

1.61337

1.11206
1.51544

3.12305

552421,
301556,
611067,
404435,
163223,

407267,

loge e
jog: @

log: 10

it

2.55760

It

0.27426

/e = 1.51411

= 0.33626

]

1.34252

= 3.24464

521305,
530661,
230704+
754251,
166245,

741136,

<2
it

5
<
i

logry =
V2 =
in2 =

in10 =

0.44742 147707,

-~ 0.43127 233602,

— 0.62573 030645,

1.32404 746320,

0.54271

2.23273

027760,

067355,

APPENDIX M

NOTE TO USERS OF SERIAL LA30 AND 600, 1200, AND 2400 BAUD VT05'S

#

v The serial LA30 requires that filler characters follow each <carriage
return; the 600, 1200, and 2400 baud VT05's require that filler
characters follow each line feed. The following table 1lists the
filler characters needed. The byte at location 44 has been
established as the filler count and the byte at location 43g contains
the character to be filled. These locations are initially set to zero

P by PAL-11A and ED-11 to allow normal operation of the program.
£ Depending on the terminal, change the locations as follows:
LOC 44 LOC 45 Resulting Word (binary)
LA30 011 015 0000110100001001
VT05 600 Baud 001 012 0000101000000001
vT05 1200 Baud 002 - 012 0000101000000010
o, VT05 2400 Baud 004 012 0000101000000100
‘ The proper binary word can be stored at location 44 by using the
console switches as described in section 2.1.2 of this manual.
Furthermore, users with a 2400 baud VT05 should avoid the use of
vertical tab characters in their programs. Vertical tabs will not be
properly filled and may cause characters to be lost.
Once the changes have been made, the program may be dumped to paper
tape by using the bootstrap version of DUMPAB (see section 6.3 in this
manual). However, since programs change each time a new version is
released, it ~is necessary to have a program iisting to determine the
P exact memory limits to be dumped.
| The above changes only affect output to the console teleprinter.
Users of IOX or IOXLPT source tapes will find the byte at location 44
tagged "I.44:" and the byte at location 45 tagged "I.45:". These
locations are defined near the end of the second source tape and can
be changed to appropriate values using ED-11.
. . ODT-11 uses the locations (44 and 45) but does not set them to zero

initially.

M-1

~

;»::r,%,wg

T

)

APPENDIX N

USING THE ABSOLUTE LOADER ON PDP-11'S WITHOQUT SWITCH REGISTERS

This appendix describes the procedures for loading and using the
Absoclute Loader on PDP-11's without switch registers. The procedures
are divided into LSI-11, M8301-YB bootstrap 1loader, and M%301l-¥YA
bootstrap ' loader. Chapter 6 describes the procedures for machines
with switch registers.

The following are instructions for loading and using the Absolute
Loader on an LSI-11.

1. Press the BOOT/INIT switch on the LSI-11 front panel to
enable the bootstrap loader. An @ prints at the terminal.

2. Place the Absolute Loader tape (DEC~11-UABLB~A-PO} in the
reader.

3. Type the status register address of the input device and L to
load the Absolute Loader.

For example, when leading from the console ' terminal paper
tape reader, type: :

@177560L

When the tape has been read, an @ followed by the start
address of the Absolute Loader prints at the terminal.

For example, on a machine with 8K memory, type:
@177560L

The Absolute Loader prints the address of the Absolute
Loader:

237500

4. Place the tape to be loaded via the Absolute Loader in the
reader.

5. Select the type of loading from the following:
a. Normal Loading

For normal loading, type the address of the BAbsolute
Loader {(printed at the terminal), followed by G, e.g.,

@xxx500G

USING THE ABSOLUTE LOADER ON PDP-11'S WITHOUT SWITCH REG

where xxx is the memory size of the system and is:

XXX Memory Size
017 4K
037 8K
057 12K
077 16K
117 20K
137 ‘ 24K
157 28K

For example, in an 8K system, type:

2375006

Normal loading can also be achieved by typing the P
command, e.q.,

ep
Relocated Loading

Type the software switch register value and deposit the
relocation value as follows:

@xxx516/yyyyyy zzzzzzs'/
@xxx500G :

or type:

@xxx516/YyyYYV 22222z’
er

where xxx516 is dependent on memory size and is the
address of the software switch register, yyyyyy is the
0ld content of the switch register, and zzzzzz is the new
relocation value.

The value of zzzzzz is explained in Section 6.2.2 for the
value of the switch register for relocated loading. For
example, in an 8K system, the dialogue would be:

‘%37516/yyyyyy ZZZZZZ./

The following is an example of a normal load on an 8K
machine. -

;boot system and put Absolute Loader
;in reader

@177560L ;Absolute Loader tape is read
837500 ;put tape to be loaded in reader
ap ;tape is read in.

The following is an example of a relocated load on an 8K
machine: ’ :

;boot system
8177560L ;put Absolute Loader tape
€37500 ;in reader
€37516/000000 1001 ;put tape in reader
ep ;tape is read

USING THE ABSOLUTE LOADER ON PDP-11'S WITHOUT SWITCH REG

To continue loading, change 1001 in the above example to
1.

If more tapes are to be loaded as explained in Section 6.2.2,
put the next tape in the reader ané repeat section a or b of
item 5.

If the tape is not self-starting, the halt address of the
Absolute Loader 1is printed, followed by an @. Type the
starting address followed by a G to start the program.

€37500
@xxxxxxG

where xxxxxx is the starting address of the program.

N.2 M9301-YB BOOTSTRAF LOADER

" The following are instructions for loading and using the Absolute

Loader on a PDP-11 (e.g., PDP-~11/04) without a switch register.

l‘

3.

Press the BOOT/INIT switch on the PDP-11 front panel to
enable the bootstzap loader. A $ and four numbers print at

- the terminal. The four numbers are the values of RO, R4, RéG,

and the PC, respectively.
For example:

0077400 012450 000546 004054
s .

—

Place}the Absolute Loader (DEC—11~UABLB—A~PG) in the reader.

Type the device code {PR for the PCll,hiqh~speed reader or TT
for the terminal reader) to lcad the Absolute Loader.

$PR./
or
$TT L
when the tape has read in, the machine halts.

Place the tape to be loaded by the Absolute Loader in the
reader. .

Select the type of loading from the following:
a. Normal Loading

For normal loading, press the CONT switch on the PDP-11
front panel.

b. Relocated Loading

1) Press the BOOT/INIT switch: a § followed by the four
~ numbers explained in item prints at the terminal.

2) Load the a&éress of the software switch register as
follows: '

$L xxx516./
N-3

USING THE ABSOLUTE LOADER ON PDP~11'S WITHOUT SWITCH REG

3)

4)

5)

Deposit the relocation value in the software switch
register as follows:

$D YYYYYY</

where yyyyyy is the value explained in Section 6.2.2
for relocated loading.

Load the starting address of the Absolute Loader as
follows: -

SL XXX500«’

Type S to start running the Absoclute Loader.
$5./

6. If more tapes are to be loaded as explained in Section 6.2.2,
put the next tape in the reader and repeat section a or b of

item 5.

7. - If the tape is not self—starting}'

a. - Press the BOOT/INIT switch.

b. Load the starting address- of the p:ogxam with the L
command, i.e., ‘

SL xxxxxx4/

c. Start the program with the S command:

$s</

Thé following are examples for PDP-11 with 16K words of memory.

Relocated - continuous loading:

$L 775164/

$D 1./

$L 775004/

$5</

Relocated - load in specified area of core:

$L 775164/
$D 1001,/
$L 775004/

$s+/

N.3 M3301-YA BOOTSTRAP LOADER

The instructions for loading and using the Absolute Loader on a PDP-11
{e.g., PDP-11/04) without a switch register but with a console
terminal are the same as described in Section 0.2.

USING THE ABSOLUTE LOADER ON PDP-11'S WITHOUT SWITCH REG

£ PDP-11's without console terminals may only be loaded with normal
loading methods. See the M9301 Maintenance Hanual for instructions on
placing the address of the paper tape bootstrap in the micro switch on
the M9301 module. The following instructions are for PDP-1l's without
console terminals.
1. Place the Absolute Loader tape (DEC-11-UABLB-A-PO) in the
reader.
2. Press the BOOT/INIT sw1tch. Wwhen the tape has read in, the
machine halts.
®
3. Place the self-starting tape to be loaded by the Absolute
Loader in the reader.
4. Press the CONT switch.
i N

s

4

Fa

Abbreviations, stanaaxd
PDP-11, K~1

Absolute and relocatable
program sections,
LINK-11l8, 3-2

Absolute axyresezqns, PAL-llS,
i-9

Absolute Loader, el,.ﬁ~10; -3

PAL-11S, 1-24

Accessing internal regxatezs,
QW"]-]—; 5"5)

Adding devices to IOX, 7-21

Address Mode syntax,

PAL-11A, C-2
PAL~-11S, B-2

Addressing,

PAL~11S, 1-12 ;

Altering register contents.
9-6

Arithmetic and logical
operators,

PAL"}.}-A’ 2"“8
PAL~11S5, 1-8
ASCII,
character set, A-1
conversion, PAL-11A, 2-8
conversion, PAL-11lS, 1-8
.ASCII directive,
PAL~11A, 2-17
PAL~11S8, 1-21.

.ASECT and .CSECT program
section directives,
PAL-11lS, 1-19

Assembler directives,

PAIA"llA' 2~ 3; 2-15
PAL-118, 1-18, B-8

Assembly and linking instruc-
tions, J-1 , ,

Assembly dialogue, PAL-1lA,
2-23 ' '

Assembly listing,

PAL~11A, 2-24
PAL-11S, 1-30
Assembly Location Counter,
PAL~11A, 2-8
PAL-11S, 1-10

Assignment, direct,

PAL~11£, 2~ 5

Autodecrament Mode ,

PAL~11lA, 2-~11

PAL~118, 1-14
Autoincrement Mode,

PAL~11A, 2-10

PAL~1lA deferred, 2-11

PAL~11S8, 1~-13

INDEX

Blan§ :geratcr field, PAL-11A,
Bootstrap Loader, 6-1, F-1
loading and verifying the, 6-7
Bootstrap tapes, loading into '
core, 6-8
Bootstraps, paper tape, 6-2
Breakpoints,
opT-11, 5-6
opr~11X, 5-12, 5-14
Buffer arrangement in data
transfer command, 7-4
Buffer size, IO0OX, 7-5
Buffering, double, 7-15
Byte count, IOX, 7-8
BYTE directive,
PAL~-11A, 2-17
PAL~118, 1-21
Byte offset, PAL-11S5, 1-17

Calculating offsets,
opr-11, 5-9
ODT-llX, 5~11
Changing, opening, and cles;ng
locations,
opT-11, 5-4
opT-11X, 5-10
Character location pointer (Dot),
ED-11, 4-2
Character set,
ASCII, A-1
PAL"'II.A; 2"'2
PAL“‘:LIS; 1-2
Closing, opening, and changing
locations,
ODT‘llf 5“‘4
opTr-11X, 5-10
Codes, PAL~11A error, 2-25
Coding techniques, 9-6
cammgnds and functions, 0DT-11,
-3
Command delimiters, ED-11, 4-2
Ccmmznd Meode and Text Mode, ED-11,
1
Command properties, 1Lne~or1entad,
Commands, ED~11l, 4~-4
to modify the text, 4-8
+to move Dot and Mark, 4-6
Comments,
pAL“llS ’ 1"4
Communication and data flow,
opTr-11%, 5-15
Communication with IOX, 7-1

Index-1

INDEX (Cont.)

Conditional assembly directives,
PAL-11s, 1-23

Control format, PAL-118, 1-4

Conversion, PAL-11S ASCII, 1-8

Conversion tables, L-1

Core memory dumps, 6-14, F-4

Counter, PAL~11lS program, 1-12

Creating a paper tape, ED-11,
4-11

CTRL/U, PAL-11S, 1-24

Data transfer commands,
buffer arrangement in, 7-4
device conflicts in, 7-12

Data transfers, I0X, 7~11

Decimal numbers, PAL-11S, 1-8

Deferred Autodecrement Mode,
PAL~11lAa, 2-11
PAL-11S, 1-14 ,

Deferred Autoincrement Mode,
PAL~11A, 2-11
PAL-11S5, 1-13

Deferred Immediate (Absolute)

and Immediate Mode, PAL-11A,
2-12
Deferred Index Mode,
PAL-11A, 2-12
PAL~-11S, 1-14
Deferred Register Mode, PAL-11S,
1-13
Deferred Relative and Relative
Mode, PAL~11A, 2-13
Device Assignment Table, IOX,
7-3 '
Device conflicts in data
transfer commands, 7-12
Device Interrupt Table (DIT),
7-20
Device Status Table, (DST),
7-21

Dialogue,

PAL-11A assembly, 2~23
PAL-1lA initial, 2-18
PAL~11S initial, 1-24

Direct assignment,
PAL~11A, 2-5
PAL"].IS ’ 1‘6

Directives,

PAL-11A .ASCII, 2-17
PAL~-11A .BYTE, 2~17
PAL-11A .END, 2-16
PAL-11lA .EOT, 2-15
PAL~-11lA .EVEN, 2-16
PAL-11A .WORD, 2-16
PAL~11S .ASCII, 1-21
PAL~11S .ASECT, 1-19
PAL-11lS8S .BYTE, 1-21

Directives (cont.),
PAL-11S .CSECT, 1-19
PAL-115 .END, 1-20
PAL-11S .EOT, 1-20
PAL~-11S .EVEN, 1~20
PAL-11S .GLOBL, 1-18
PAL-11S .LIMIT, 1-23
PAL~-11S .RAD50, 1-22
PAL~118 .TITLE, 1-18
PAL-11S .WORD, 1-20 , ,
Directory, PAL-11S global symbol,
1-30 :
Done bit, 10X, 7-7
(Dot) character ‘location pointer,
ED-11, 4-2
Double buffering, 7-15
Dumps,
core memory, 6-14, F-4
output formats, 6-17
storage maps, 6-17
Duplication, tape, I-1

ED—ll r
Character location pointer,
(Dot), 4-2

command delimiters, 4-2 ‘
Command Mode and Text Mode, 4-1
commands, 4-4

commands to modify the text, 4-8

commands to move Dot and Mark,
4~6

creating a paper tape, 4-11

editing example, 4-12

error corrections, 4-10

grouping of commands, D-3 ,

input and output commands, 4-4,
- l .

line-oriented command properties,

4-3
Mark, 4-3
operating procedures, 4-10, D-4
page buffer, 4-3
pointer~-positioning commands,
D-2
restarting, 4-11 ,
search commands, 4-7, D-2
software error halts, 4-17
starting, 4-11
symbols, D-3 ;
Editing example, ED-11, 4-12
Editor (ED-11), PAL~11S, 1-2
.END directive,
PAL-11A, 2-16
PAL-11S, 1-20
End-of-File Bit, I0X, 7-7

Index-2

™

#

o

INDEX (Cont.)

.EOT directive,
PAL~11A, 2-15
PAL~11S, 1-20
Error codes,
on; 7"'6
PAL~11A, 2-7, 2-25, C-8
PAL-11S, 1-31, B-10
Error corrections, ED~11, 4-10
Frror detection, ODT-11X, 5-13
Error halts, PAL-1lA software,
2~26

"Erroxr procedure and messages,

LINK-11S8, 3~7
Error, Q, PAL~11S8, 1-2
.EVEN directive,
PAL-11A, 2~-16
"PAL~118, 1-20
Example of program using IOX,
7-17 :
Expressions,
absolute, PAL~11lS, l*
external, PAL-11lS, 1-9
mode. of, PAL-11S, 1-9
PMA‘-llA' 2 7
PAL~11lS, 1-7 -
" relocatable, PAL—llS 1-9
External expression, PAL-lls,
1-9
External symbol, PAL-11lS, 1-5

Fatal errors, 10X, 7-17, G-2
Fields, PAL-11A instruction
operand, 2-14 '
Format control,’
PAL~11A, 2-4
PAL*llS. 1“4
Format, PAL-11S statement, 1-2
Forms, PAL-11A instruction,
2-14
FPMP-~11 ¥
non-0TS routmnes, H*?
OTS routines, H-2
routines accessed via trap
handler, H-7
sunmmary, H-1
Functions and commands, ODT-11,;
5-3

General registers, PAL-11lS,
1-6 '
Global symbol directory,
PAL~11S, 1-30 ,
Global symbols,
LINK~11S, 3-2
PAL~11S, 1-5

.GLOBL directive, PAL-11lS, 1-18
Grouping of commands, ED-11, D=3

Halts, PAL-11lA scftware error,
2-26 :

Immediate and Deferred Immediate
_(Absolute) Mode,
PAL-11a, 2-12
PAL-11lS, 1-15
Index Mode,
PAL~11A, 2-11
PAL~-11S8, 1-14
Initial dialogue,
PAL-11A, 2~18
PAL-11S, 1-24
Initial operating procedures,
PAL-11Aa, C-9
PAL-118, B-1l1
Initialization, 7-4
Input and output, LINK-118, 3-3
Input/output cammands, ED-11, 4-4,
b-1
Instruction forms,
PAL~11A, 2-14
PAL-118, 1-17
Instruction mnemonlc, PAL~11A,
2-3
Instruction operand fielﬁs,
PAL~-11A, 2-14
PAL~-118, 1-17
Instruction summary, IOX, G-1
Instructions,
Assembly and linking, J-1
PAL~-11lA, C-3
PAL-11S, B-2
Integer conversions, octal-decimal,
-1 .
Internal information, IOX, 7-19
Internal registers, accessing,
opT-11, 5-6
Internal symbol, PAL-11lS, 1-5
Introduction, 0DT-11, 5-1
I0%,
adding devices to, 7-21
buffer size, 7-5
byte count, 7-8
communication with, 7-1
data transfers, 7-11
device assignment table, 7-3
Done Bit, 7-7
End~of-File Bit, 7-7
End-of-Medium Bit, 7-7
error codes, 7-6
example of program using, 7-17

Index~3

INDEX (Cont.)

I0X (cont.),
fatal errors, 7-17, G-2
instruction summary, G~1
internal information, 7-19
Mode Byte, 7~5
modes, 7-8
program flow summary, G-1
reenabling the reader and

restarting, 7-16

Status Byte, 7- 6
using, 7-3

Label,
PAL~-11A, 2-3
.LIMIT directive, PAL-11S, 1~23
Line-coriented command
properties, ED-11l, 4-3
LINK~118,
absolute and relocatable
program sections, '3~2
error procedure and
‘mess8ages, 3-7
global symbols, 3-2
input and output, 3-3
load map, 3-4
load modules, 3-3
loading and command string,
3-5
objeect module, 3-3
operating procedures, 3-5
Linking and assembly instruc-
tions, J~1
Linking and relocation,
PAL~11S, 1-11
Listing, assembly,
PAL-11A, 2-24
PAL-11S, 1-30
Load map, LINK~11S, 3-4
Load modules, LINK-11lS, 3-3
Loader,
Absolute, 6~1, 6-10, F-3
Bootstrap, 6-1, F-1
PAL~11S Absolute, 1-24
Loading,
bootstrap tapes into cora,
6-8
PAL~11A, 2~18
PAL-11S, 1-24
unused trap vectors, 9-5
Loading and command string,
LINK-~11l8, 3-5
Loading and verifylng the
Bootstrap Loader, 6«7
Location counter, PAL—lls,
assembly, 1- 10

Logical and arithmetic operators,
PAL-11lAa, 2-8
PAL~11S, 1-8

Mark, ED-11, 4-3
Mathematical constants in octal,
-7
Mnemonic, PAL-11lA instruction,
2=-3
Mode,
I0x, 7-8
PAL~-11A, Autodecrement, 2-11
PAL-11A, Autoincrement Deferred,
2-11 :
PAL-11A, Deferred Autodecrement,
2~-11 : i !
PAL-11A, Deferred Index, 2~12
PAL~11A, Immediate and Deferred
Immediate (Absolute), 2-12
PAL-11A, Index, 2-11
PAL-11A, Relative and Deferred
Relative, 2-13
Mode Byte, 10X, 7-5
Mode of expressions, PAL—llS, 1-9

Negative numbers, PAL-11S, 1-8
Non-OTS routines, FPMP-11, H-7
Notation, scales of, L-6
Numbers,

decimal, PAL~1lS, 1-8

negative, PAL-11S, 1-8

octal, PAL-11S, 1-8

PAL~11lA, 2-7

positive, PAL-11S, 1-8

Object module, LINK~118, 3-3
Object module output, PAL~11S,

1-30

Octal-decimal integer conversxans,
L-1

Octal numbers, PAL-lls 1-8

oDT,

command syntax, 5=-2
priority level, 5-~10
opT-11,

accessing internal reglsters,
5~6 ,

breakpoxnts, 5-6

calculating offsets, 5-9

commands and functions, 5-3

introduction, 5-1

opening, changing, and clcsing
locations, 5-4

Index~4

i

ol

%%
e

INDEX (Cont.)

OoDT-11 {(cont.},
operating procedures, 5-20
running the program, 5-7
searches, 5-8, 5-18
starting and restarting, 5-21
summary, E~1
teletype 1ntexrupt, 5=-10
ODT"':L:LXy
breakpoints, 5-12, 5-14
caleulating offsets, 5-11
communication and éata flow,
5~15
error detection, 5-13
opening, changing, and
' clusing locations, 5~10 .
progfzmmxng censideratians,
5..
szngle»!nstruction Ma&e,
5-12
Offsets,
calculating, 0ODT-11l, 5-9
caleulating, ODT-11X, 5-11
PAL-118 byte, 1-17
One device, single buffer
transfer on, 7-14
Opening, changing, and closing
locations,
opT~11, 5-4
opr-11X, 5-10
Operand,
PAL~11A, 2-3
PAIJ“'llS' 1-4
Operand fields, Lnstruetxon,
PAL~11lA, 2-14
PAL~11S, 1-17
Operating procadures,
ED-11, 4-10, D-4
LINK“‘llS; 3“‘
opr-11, 5-20
PAL~11A, 2-17
PAL~11A xnitlal, c-9
PAL-~118, 1-24 '
PAL~11S initial, B—ll
Operator,
PAL~11A, 2-3
PAL~118, 1-3
Operators, . .
PAL~11A, arithmetic and
logical, 2-8
PAL~11S, arithmetic and
logical, 1-8
OTS routines, FPMP-11, H-2
Output formats, dumps, 6-17
Output, PAL-11S object module,
1-30 , ; ,

Page size,

pAL—llA ’ 2”’4
PAL-118, 1-4

PRL“‘ 1 lA ’

Address Mode syntax, C-2
addressing, 2-9 '
arithmetic and loglcal operators,
2-8
ASCII conversion, 2-8
.ASCII directive, 2-17
assembler directives, 2-3, 2-15
assembly alalogue. 2-23
assembly listing, 2-24
Assembly Location Counter, 2-8
Autodecrement Mode, 2-11
Autoincrement Mode, 2-10
blank operator field, 2-~16
.BYTE directive, 2-17
character set, 2-2
comments, 2-4
Deferred Autodecrement Hoﬁe,
2-11 :
Deferred Antolncrement Mode,
2-11
peferred Index Mode, 2-12
direct assignment, 2-5
.END directive, 2-16
.EOT directive, 2-15
error code, 2-7
error codes, 2-25, C-8
.EVEN directive, 2»16
expressions, 2-7
format control, 2-4
Immediate and Deferred Immediate
(Absolute) Mode, 2-12
Index Mode, 2~11
initial dialogue, 2-18
initial cperating procedures,
c-9
ingtruction forms, 2-14
instruction mnemonic, 2-3
instruction operand fzel&s, 2-14
instructions, C-3
label, 2-3
loading, 2-18
numbers, 2-7 -
operand, 2-3
operating procedures, 2-17
operator, 2-3
page size, 2-4
permanent symbols, 2-5
Program Counter, 2-9 -
Register Mode, 2~10
register symbols, 2-6
Relative and Deferred Relative
Mode, 2-13
software error halts, 2-26
special characters, C-1
statements, 2-2 -

INDEX (Cont.)

user-defined symbols, 2-5
.WORD directive, 2-16
PAL~11S
absolute expression, 1-9
Absolute Loader, 1-24
Address Mode syntax, B-2
addressing, 1-12
ASCII conversion, 1-8
.ASCII directive, 1-21
assembler directives, 1-18,
B-8
assembly listing, 1-30
Autodecrement Mode, 1-14
Autoincrement Mode, 1-13
.BYTE directive, 1-21
byte offset, 1-17
character set, 1-2
comments, 1-4
-conditional assembly direc-
tives, 1-23
control format, 1-4
CTRL/U, 1-24
decimal numbers, 1-8
Deferred Autodecrement
Mode, 1-14 , ,
Deferred Autoincrement
Mode, 1-13 ; ,
Deferred Index Mode, 1-~14
Deferred Register Mode, 1-13
direct assignment, 1-6
Editor (ED-11}), 1-2
.END directive, 1-20
<EOT directive, 1-20
error codes, 1l-31, B-10
.EVEN dlrectlve, 1-20
expressions, 1-7
external symbol, 1-5
general registers, 1-6
global symbol, 1-5

global symbol alrectory, 1-30

.GLOBL directive, 1-18
Immediate and Deferred

Immediate (Absolute) Modes,

1-15
Index Mode, 1~14
initial dialogue, 1-24

initial operating procedures,

"B-11
instruction forms, 1~17
instruction operand fields,
1-17
instructions, B—2
internal symbol, 1-5
label, 1-3
.LIMIT directive, 1-23
loading, 1-24 .
negative numbers, 1-8
object module output, 1-30

PAL~11S (cont.),
octal numbers, 1-8
operand, 1-4 « :
operating procedures, 1-24
operator, 1-3
page size, 1-4
permanent symbols, 1-5
positive numbers, 1-8
Program Counter, 1-12 ,
program section directives

(.ASECT and .CSECT), 1~-19

.RAD50 directive, 1-22
Register Mode, 1~12
register symbols, 1-6

Relative and Deferred Relative

Modes, 1-15 .
relocatable expression, 1-9
relocation and linking, 1-11
relocation directory, 1-31
RUBOUT, 1-24
software error halts, 1-32
statement format, 1~2
statements, 1-2
symbol table, 1-5
symbols, 1~5
terminators, B-1
text block, 1-31
.TITLE directive, 1-18
truncation, 1-8
user—defined symbols, 1-5
.WORD directive, 1-20

Paper tape bootstraps, 6-2
Permanent symbols,
PAL-11A, 2-5
PAL-11S, 1-5 ~ ,
Pointer-positioning commands,
ED-11, D-2

Posgition-independent code, writing,

9-1

Positive numbers, PAL-11lS, 1-8
Powers of two, L-5 ,
Priority level, ODT, 5-10
Program Counter,

PAL~11A, 2-~9

PAL-11S, 1-12
Program flow summary, IOX, G-1
Program section directives

(.ASECT and .CSECT) PAL-11S,

1-19
Programming conslderatlons,
OoDT-11X, 5-14

Q error, PAL-11S, 1-2

Index~6

£

INDEX (Cont.)

.RAD50 directive, PAL~1lS, 1-22 Storage maps, dumps, 6-17
Real-time capability, 7-1 Subroutines, 9-7
Reenabling the reader and Summary,
restarting, IOX, 7-16 FPMP-11, H-1
Register contents, altering, opT-11, E-1
9-6 Symbol,
Register Mode, external, PAL-118, 1-5
PAL-11lA, 2-10 global, PAL-11S, 1-5
PAL~11S, 1-12 internal, PAL~11S8, 1-5
Register symbols, Symbol table, PAL-118, 1-5
PAL~11A, 2-6 Symbols,
PAL~11S, 1-6 ED-11, D-3
Registers, general, PAL-11S, PAL-11A permanent, 2-5
. 1-6 PAL-11lA register, 2-6
5@%3 : Relative and Deferred Relative PAL~-11A user-defined, 2-5
i Mode, PAL-11S8, 1-5
PAL-11A, 2~13 permanent, PAL-11S8, 1-5
PAL~11S, 1-15 register, PAL-118, 1-6
Relocatable expression, user-defined, PAL~11lS, 1-5

PAL~118, 1-9
Relocation and linking,
PAL~11S, 1-11

Relocation directory, PAL-11lS, Table, symbol, PAL~11lS, 1-5
1-31 Tables, conversion, L-1
Restarting and starting ODT-11, Tape duplication, 1-1
e 5=~21 Techniques, coding, 9-6
LI Restarting ED-11, 4-11 : Teletype interrupt, ODT-11, 5-19
Routines accessed via trap Perminators, PAL~11S, B-1l
handler, FPMP-11, H-7 Text block, PAL-118, 1-31
Running the program, ODT-11, Trap vectors, loading unused, 9-5
5-T7 Truncation, PAL-118, 1-8
Two, powers of, L-5
Scales of notation, L-6
- Search commands, ED-11, 4-7, Unused trap vectors, loading, 9-5
£ b-2 User-defined symbols,
i Searches, ODT-11l, 5-8, 5-18 PAL-11A, 2-5
Single buffer transfer on PAL~-118, 1-5
one device, 7-14 _ Using IOX, 7-3

Single~Instruction Mode,
opT-11X%, 5-12
Software error halts, R .
ED~11, 4-17 Verifying and loading the boot-
PAL-11lA, 2-26 strap loader, 6-~7
PAL-11l8, 1-32
Special characters, PAL-11A,

Cc-1 :
Standard PDP-11 abbreviations, .WORD directive,
XK-1 PAL-11a, 2-16
Starting and restarting ODT-11, PAL~118, 1-20
5~21 Writing position-independent
Starting ED-11, 4-11 ; code, 9-1
Statement format, PAL~11lS, 1-2
Statements,
A PAL-11A, 2-2

oy

PAL~11S, 1-2
Status Byte, IOX, 7-6

Index~7

PDP-11 Paper Tape
Software Handbook
DEC~11~XPTSA-B-D

READER'S COMMENTS

NOTE: This form is for document comments only. Problems
with software should be reported on a Software
Problem Report (SPR) form.

Did you find errors in this manual? If so, specify by page.

U R B e e B B B e i e

Did you find this manual understandable, usable, and well~organized?
Please make suggestions for improvement.
o
£
2
£
3@
A [}
‘ 5 Is there sufficient documentation on associated system programs
o required for use of the software described in this manual? If not,
g what material is missing and where should it be placed?
© . o
2 :
-

~ Please indicate the type of user/reader that you most nearly represent.

Agsenbly language programmer

Higher-level language programmer

Occasional programmer (experienced)

User with little programming experience

Student programmer

Non-programmexr interestaﬁLih]¢¢mputer;concepts and capabilities

0o0o0o0o0

&Qééé , ' ’ Date
“‘Organization
Street
City k State Zip Code
or
Country

If you require a written reply, please check here. Cj

. e e - e e e e e e ek e R e e e e O w il mm o S e seed S SN A e e e o e e e e e

s

Fold Here

Do Not Tear - Fold Here and Staple

FIRST CLASS
PERMIT NO., 33
MAYNARD, MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

dlilgliltiall

Software Communications
P, O, Box F
Maynard, Massachusetts 01754

