
Digital Semiconductor
Alpha 21064 and Alpha 21064A
Microprocessors
Hardware Reference Manual

Order Number: EC–Q9ZUC–TE

Abstract: This document contains information about the following Alpha
microprocessors: 21064-150, 21064-166, 21064-200, 21064A-200,
21064A-233, 21064A-275, 21064A-275-PC, and 21064A-300.

Revision/Update Information: This manual supersedes the Alpha 21064
and Alpha 21064A Microprocessors Hard-
ware Reference Manual (EC–Q9ZUB–TE).

Digital Equipment Corporation
Maynard, Massachusetts

June 1996

While Digital believes the information included in this publication is correct as of the date of
publication, it is subject to change without notice.

Digital Equipment Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights, nor do
the descriptions contained in this publication imply the granting of licenses to make, use, or sell
equipment or software in accordance with the description.

© Digital Equipment Corporation 1996. All rights reserved.
Printed in U.S.A.

AlphaGeneration, Digital, Digital Semiconductor, OpenVMS, VAX, VAX DOCUMENT, the
AlphaGeneration design mark, and the DIGITAL logo are trademarks of Digital Equipment
Corporation.

Digital Semiconductor is a Digital Equipment Corporation business.

GRAFOIL is a registered trademark of Union Carbide Corporation.
Windows NT is a trademark of Microsoft Corporation.

All other trademarks and registered trademarks are the property of their respective owners.

This document was prepared using VAX DOCUMENT Version 2.1.

Contents

Preface . xix

1 Introduction to the 21064/21064A

1.1 Introduction . 1–1
1.2 The Architecture . 1–1
1.3 Chip Features . 1–2
1.4 Backward Compatibility . 1–4
1.5 Section 1.5 21064A-275-PC Differences . 1–4

2 Internal Architecture

2.1 Introduction . 2–1
2.2 21064/21064A Overview . 2–3
2.3 Ibox . 2–4
2.3.1 Branch Prediction Logic . 2–5
2.3.1.1 21064 Branch Prediction Logic . 2–5
2.3.1.2 21064A Branch Prediction Logic 2–5
2.3.1.3 21064/21064A Subroutine Return Stack 2–6
2.3.2 Instruction Translation Buffers (ITBs) 2–6
2.3.3 Interrupt Logic . 2–7
2.3.4 Performance Counters . 2–8
2.4 Ebox . 2–10
2.5 Abox . 2–10
2.5.1 Data Translation Buffer (DTB) . 2–10
2.5.2 Bus Interface Unit (BIU) . 2–12
2.5.3 Load Silos . 2–12
2.5.4 Write Buffer . 2–13
2.6 Fbox . 2–15
2.6.1 Fbox Exception Handling . 2–16
2.7 IEEE Floating-Point Conformance . 2–19
2.8 Cache Organization . 2–22

iii

2.8.1 21064/21064A Instruction Cache (Icache) 2–22
2.8.1.1 21064 Instruction Cache (Icache) 2–22
2.8.1.2 21064A Instruction Cache (Icache) 2–22
2.8.1.3 21064/21064A Icache Stream Buffer 2–22
2.8.2 21064/21064A Data Cache (Dcache) . 2–23
2.8.2.1 21064 Data Cache (Dcache) . 2–23
2.8.2.2 21064A Data Cache (Dcache) . 2–23
2.9 Pipeline Organization . 2–23
2.9.1 Static and Dynamic Stages . 2–25
2.9.2 Aborts . 2–25
2.9.3 Non-Issue Conditions . 2–26
2.10 Scheduling and Issuing Rules . 2–27
2.10.1 Instruction Class Definition . 2–27
2.10.2 Producer-Consumer Latency . 2–28
2.10.3 Producer-Producer Latency . 2–30
2.10.4 Instruction Issue Rules . 2–30
2.10.5 Dual Issue Table . 2–31
2.11 PALcode . 2–34
2.11.1 Architecturally Reserved PALcode Instructions 2–34

3 Instruction Set

3.1 Scope . 3–1
3.1.1 Instruction Summary . 3–1
3.1.2 IEEE Floating-Point Instructions . 3–7
3.1.3 VAX Floating-Point Instructions . 3–9
3.1.4 Required PALcode Function Codes . 3–10
3.1.5 Opcodes Reserved for PALcode . 3–10
3.1.6 Opcodes Reserved for Digital . 3–10

4 Privileged Architecture Library Code

4.1 Introduction . 4–1
4.2 PALcode . 4–1
4.3 PALmode Environment . 4–2
4.4 Invoking PALcode . 4–3
4.4.1 CALL_PAL Instruction . 4–5
4.5 PALcode Entry Points . 4–6
4.6 PALmode Restrictions . 4–9
4.7 Memory Management . 4–16
4.7.1 TB Miss Flows . 4–16
4.7.1.1 ITB Miss . 4–16
4.7.1.2 DTB Miss . 4–18

iv

4.8 21064/21064A Implementation of the Architecturally Reserved
Opcodes Instructions . 4–19

4.8.1 HW_MFPR and HW_MTPR Instructions 4–20
4.8.2 HW_LD and HW_ST Instructions . 4–23
4.8.3 HW_REI Instruction . 4–24
4.8.4 Required PALcode Instructions . 4–25

5 Internal Processor Registers

5.1 Introduction . 5–1
5.2 Ibox Internal Processor Registers . 5–1
5.2.1 Translation Buffer Tag Register (TB_TAG) 5–1
5.2.2 Instruction Translation Buffer Page Table Entry Register

(ITB_PTE) . 5–2
5.2.3 Instruction Cache Control and Status Register (ICCSR) 5–3
5.2.3.1 Performance Counters . 5–6
5.2.4 Instruction Translation Buffer Page Table Entry Temporary

Register (ITB_PTE_TEMP) . 5–8
5.2.5 Exceptions Address Register (EXC_ADDR) 5–9
5.2.6 Clear Serial Line Interrupt Register (SL_CLR) 5–10
5.2.7 Serial Line Receive Register (SL_RCV) 5–11
5.2.8 Instruction Translation Buffer ZAP Register (ITBZAP) 5–11
5.2.9 Instruction Translation Buffer ASM Register (ITBASM) 5–12
5.2.10 Instruction Translation Buffer IS Register (ITBIS) 5–12
5.2.11 Processor Status Register (PS) . 5–12
5.2.12 Exception Summary Register (EXC_SUM) 5–12
5.2.13 PAL_BASE Address Register (PAL_BASE) 5–14
5.2.14 Hardware Interrupt Request Register (HIRR) 5–14
5.2.15 Software Interrupt Request Register (SIRR) 5–16
5.2.16 Asynchronous Trap Request Register (ASTRR) 5–17
5.2.17 Hardware Interrupt Enable Register (HIER) 5–18
5.2.18 Software Interrupt Enable Register (SIER) 5–19
5.2.19 AST Interrupt Enable Register (ASTER) 5–20
5.2.20 Serial Line Transmit Register (SL_XMIT) 5–20
5.3 Abox Internal Processor Registers . 5–21
5.3.1 Translation Buffer Control Register (TB_CTL) 5–21
5.3.2 Data Translation Buffer Page Table Entry Register

(DTB_PTE) . 5–21
5.3.3 Data Translation Buffer Page Table Entry Temporary

Register (DTB_PTE_TEMP) . 5–22
5.3.4 Memory Management Control and Status Register

(MM_CSR) . 5–23
5.3.5 Virtual Address Register (VA) . 5–24

v

5.3.6 Data Translation Buffer ZAP Register (DTBZAP) 5–24
5.3.7 Data Translation Buffer ASM Register (DTBASM) 5–24
5.3.8 Data Translation Buffer Invalidate Single Register

(DTBIS) . 5–24
5.3.9 Flush Instruction Cache Register (FLUSH_IC) 5–24
5.3.10 Flush Instruction Cache ASM Register

(FLUSH_IC_ASM) . 5–24
5.3.11 Abox Control Register (ABOX_CTL) 5–24
5.3.12 Alternate Processor Mode Register (ALT_MODE) 5–28
5.3.13 Cycle Counter Register (CC) . 5–28
5.3.14 Cycle Counter Control Register (CC_CTL) 5–29
5.3.15 Bus Interface Unit Control Register (BIU_CTL) 5–30
5.3.16 Data Cache Status Register (DC_STAT—21064 Only) 5–35
5.3.17 Cache Status Register (C_STAT, 21064A Only) 5–35
5.3.18 Bus Interface Unit Status Register (BIU_STAT) 5–36
5.3.19 Bus Interface Unit Address Register (BIU_ADDR) 5–39
5.3.20 Fill Address Register (FILL_ADDR) . 5–40
5.3.21 Fill Syndrome Register (FILL_SYNDROME) 5–41
5.3.22 Backup Cache Tag Register (BC_TAG) 5–43
5.4 PAL_TEMP Registers . 5–44
5.5 Lock Registers . 5–44
5.6 Internal Processor Registers Reset State 5–45

6 External Interface

6.1 Introduction . 6–1
6.2 Logic Symbol . 6–1
6.3 Signal Names and Functions . 6–4
6.4 Bus Transactions . 6–14
6.4.1 Reset . 6–14
6.4.2 Fast External Cache Read Hit . 6–18
6.4.3 Fast External Cache Write Hit . 6–19
6.4.4 External Cache Write Timing (Delayed Data) 6–20
6.4.5 READ_BLOCK . 6–21
6.4.6 Shortened READ_BLOCK Transactions 6–24
6.4.7 WRITE_BLOCK . 6–24
6.4.8 Write Bandwidth in Systems Without an External Cache . . . 6–28
6.4.8.1 Write Buffer Unload Timing . 6–29
6.4.9 Shortened WRITE_BLOCK Transactions 6–29
6.4.10 LDL_L/LDQ_L and STL_C/STQ_C Transactions 6–29
6.4.10.1 Transactions Without External Cache Probe 6–29
6.4.10.2 Fast Lock Mode (21064A only) . 6–30
6.4.10.3 Noncached Loads . 6–31

vi

6.4.11 BARRIER . 6–32
6.4.12 FETCH . 6–33
6.4.13 FETCH_M . 6–34
6.5 Interface Operation . 6–34
6.5.1 Clocks . 6–34
6.5.2 21064/21064A Initialization . 6–36
6.5.3 Internal Cache/Primary Cache Invalidate 6–38
6.5.3.1 21064 Primary Cache Invalidate 6–38
6.5.3.2 21064A Primary Cache Invalidate 6–39
6.5.3.3 Backmap . 6–39
6.5.4 External Cache Control . 6–41
6.5.4.1 tagAdr RAM . 6–42
6.5.4.2 tagCtl RAM . 6–43
6.5.4.3 Data RAM . 6–44
6.5.4.4 holdReq_h and holdAck_h External Cache Access 6–45
6.5.4.5 tagOk_h and tagOk_l External Cache Access 6–46
6.5.4.6 External RAM Timing . 6–47
6.5.5 Bus Cycle Control . 6–48
6.5.5.1 Cycle Request . 6–48
6.5.5.2 Cycle Write Masks . 6–49
6.5.5.3 Cycle Acknowledgment . 6–50
6.5.5.4 Read Data Acknowledgment . 6–51
6.5.5.5 Support for Wrapped Read Transactions 6–52
6.5.5.6 Enabling the Data Bus . 6–53
6.5.5.7 Selecting Write Data . 6–54
6.5.6 64-Bit Mode . 6–54
6.5.7 Instruction Cache Initialization/Serial ROM Interface 6–56
6.5.7.1 Implementing the Serial Line Interface 6–58
6.5.8 Interrupts . 6–59
6.5.9 External Bus Interface . 6–59
6.5.9.1 Address Bus—adr_h [33:5] . 6–59
6.5.9.2 Data Bus—data_h [127:0] . 6–60
6.5.9.3 Parity/ECC Bus—check_h [27:0] 6–60
6.5.10 Performance Monitoring . 6–63
6.5.11 Various Other Signals . 6–63
6.6 Hardware Error Handling . 6–64
6.6.1 Single-bit Errors . 6–65
6.6.2 Double-bit ECC Errors . 6–66
6.6.3 BIU Single Errors . 6–67
6.6.4 Multiple Errors . 6–69
6.6.5 Cache Parity Errors—21064A Only . 6–70
6.6.5.1 Dcache Parity Errors—21064A Only 6–70
6.6.5.2 Icache Parity Errors—21064A Only 6–70

vii

7 Electrical Data

7.1 Introduction . 7–1
7.2 Absolute Maximum Ratings . 7–1
7.2.1 Absolute Operating Limits . 7–2
7.3 dc Electrical Data . 7–2
7.3.1 Power Supply . 7–2
7.3.1.1 Power Consideration . 7–2
7.3.1.2 Reference Supply . 7–3
7.3.2 Input Clocks . 7–3
7.3.3 Signal Pins . 7–4
7.3.4 dc Power Dissipation . 7–5
7.4 ac Electrical Data . 7–6
7.4.1 Reference Supply . 7–6
7.4.2 Input Clocks Frequency . 7–7
7.4.3 Test Specification . 7–9
7.4.4 Fast Cycles on External Cache . 7–10
7.4.4.1 Fast Read Cycles . 7–11
7.4.4.2 Fast Write Cycles . 7–11
7.4.5 External Cycles . 7–12
7.4.6 tagEq_l (21064 only) . 7–22
7.4.7 21064 tagOk Synchronization . 7–22
7.4.8 21064A tagOk Synchronization . 7–23
7.4.9 Tester Considerations . 7–24
7.4.9.1 Asynchronous Inputs . 7–24
7.4.9.2 Signals Timed from CPU Clock . 7–24

8 Thermal Management

8.1 Introduction . 8–1
8.2 Thermal Device Characteristics . 8–2
8.2.1 21064/21064A Die and Package . 8–2
8.2.2 Power Consideration . 8–3
8.2.3 Relationships Between Thermal Impedance and

Temperatures . 8–3
8.3 Thermal Management Techniques . 8–6
8.3.1 Thermal Characteristics with a Heat Sink and Forced

Air . 8–6
8.3.2 Heat Sink Design Considerations . 8–7
8.3.3 Package and Heat Sink Thermal Performance 8–7
8.3.3.1 Comparison of Thermal Performance of Various Heat

Sink Designs . 8–12

viii

8.3.4 Device Thermal Characteristics in Forced Air Without Heat
Sink . 8–16

8.4 Critical Parameters of Thermal Design . 8–16

9 Signal Integrity

9.1 Introduction . 9–1
9.2 Power Supply Considerations . 9–1
9.2.1 Decoupling . 9–2
9.2.2 Reference Voltage (vRef) . 9–2
9.2.3 Power Supply Sequencing . 9–3
9.3 I/O Drivers . 9–4
9.3.1 I/O Driver Pins . 9–4
9.3.1.1 Maximum Received Voltage Levels 9–5
9.3.1.2 Clamping Action of I/Os . 9–5
9.3.1.3 Pin Capacitances . 9–5
9.3.2 I/O Driver Characteristics . 9–5
9.3.2.1 Voltage/Current (VI) Curves . 9–5
9.3.2.2 Switching Characteristics . 9–7
9.4 Input Clock . 9–9
9.4.1 Clock Termination and Impedance Levels 9–9
9.4.1.1 AC Coupling . 9–11
9.4.1.2 DC Coupling . 9–11
9.5 Voltage/Current (VI) Characteristics Curves and Edge Rate

Curves . 9–12
9.5.1 VI and Edge Rate Curves—Example One 9–12
9.5.2 VI and Edge Rate Curves—Example Two 9–13
9.5.3 VI and Edge Rate Curves—Example Three 9–14
9.5.4 Graphical Representation Methods . 9–16
9.6 References . 9–16

10 Mechanical Data and Packaging Information

10.1 Introduction . 10–1
10.2 Package Information . 10–1
10.2.1 21064 Package Information . 10–1
10.2.2 21064A Package Information . 10–1
10.3 21064/21064A Signal Pin Lists . 10–5
10.4 PGA Pin List . 10–15

ix

A Designing a System with the 21064

A.1 Introduction . A–1
A.2 General Concepts . A–2
A.3 Basic 21064 Power, Input Level, and Clock Issues A–9
A.3.1 Power Supply and Input Levels . A–9
A.3.2 Input Level Sensing . A–10
A.3.3 Input Clocks . A–12
A.3.4 Unused Inputs . A–13
A.4 Booting the 21064 . A–14
A.5 Cache/Memory Interface Details . A–17
A.5.1 Bcache Timing for 21064 Access . A–18
A.5.1.1 Bcache Read Cycle . A–23
A.5.1.2 Bcache Write Cycle . A–27
A.5.2 Bcache Miss and External Request . A–31
A.5.3 Read Block Request . A–35
A.5.4 Write Block Request . A–42
A.5.5 Victim Write . A–47
A.5.6 Non-Cached Memory Write . A–50
A.6 Load Locked and Store Conditional . A–51
A.7 Special Request Cycles . A–53
A.8 DMA Access . A–54
A.9 Backmapping the Internal 21064 Dcache A–55
A.10 I/O Interface . A–56

B Technical Support and Ordering Information

B.1 Obtaining Technical Support . B–1
B.2 Ordering Digital Semiconductor Products B–1
B.3 Ordering AlphaPC64 Boards . B–2
B.4 Ordering Digital Semiconductor Literature B–2

Glossary

Index

x

Figures

2–1 Block Diagram of the 21064 . 2–2
2–2 Block Diagram of the 21064A . 2–3
2–3 21064 Floating-Point Control Register (FPCR) Format 2–16
2–4 21064A Floating-Point Control Register (FPCR) Format 2–17
2–5 Integer Operate Pipeline . 2–24
2–6 Memory Reference Pipeline . 2–24
2–7 Floating-Point Operate Pipeline . 2–24
2–8 Producer-Consumer Latency Matrix . 2–29
4–1 HW_MFPR and HW_MTPR Instruction Format 4–21
4–2 HW_LD and HW_ST Instructions Format 4–23
4–3 HW_REI Instruction Format . 4–25
5–1 Translation Buffer Tag Register . 5–2
5–2 Instruction Translation Buffer Page Table Entry Register . . . 5–3
5–3 ICCSR Register . 5–4
5–4 ITB_PTE_TEMP Register . 5–9
5–5 Exception Address Register . 5–10
5–6 Clear Serial Line Interrupt Register 5–10
5–7 Serial Line Receive Register . 5–11
5–8 Processor Status Register . 5–12
5–9 Exception Summary Register . 5–13
5–10 PAL_BASE Address Register . 5–14
5–11 Hardware Interrupt Request Register 5–15
5–12 Software Interrupt Request Register 5–16
5–13 Asynchronous Trap Request Register 5–17
5–14 Hardware Interrupt Enable Register 5–18
5–15 Software Interrupt Enable Register . 5–19
5–16 AST Interrupt Enable Register . 5–20
5–17 Serial Line Transmit Register . 5–21
5–18 Translation Buffer Control Register . 5–21
5–19 Data Translation Buffer Page Table Entry Register 5–22
5–20 Data Translation Buffer Page Table Entry Temporary

Register . 5–22
5–21 Memory Management Control and Status Register 5–23
5–22 Abox Control Register . 5–25
5–23 Alternate Processor Mode Register . 5–28

xi

5–24 Cycle Counter Register . 5–29
5–25 Cycle Counter Control Register . 5–29
5–26 21064/21064A Bus Interface Unit Control Register 5–30
5–27 Data Cache Status Register . 5–35
5–28 Cache Status Register . 5–36
5–29 Bus Interface Unit Status Register . 5–37
5–30 Bus Interface Unit Address Register 5–40
5–31 Fill Address Register . 5–40
5–32 FILL_SYNDROME Register . 5–41
5–33 Backup Cache Tag Register . 5–43
6–1 21064 Logic Symbol . 6–2
6–2 21064A Logic Symbol . 6–3
6–3 Reset Timing . 6–16
6–4 Reset Timing — End of Preload Sequence 6–17
6–5 Fast External Read Hit . 6–18
6–6 Fast External Cache Write Hit . 6–19
6–7 External Cache Write Timing . 6–20
6–8 READ_BLOCK Transaction . 6–21
6–9 Asserting dRack_h and cAck_h . 6–23
6–10 READ_BLOCK Transaction — Minimum Cycle Time 6–24
6–11 WRITE_BLOCK Transaction Timing 6–25
6–12 WRITE_BLOCK Transaction—Minimum Cycle Time 6–27
6–13 WRITE_BLOCK Transaction Timing Without an External

Cache . 6–28
6–14 BARRIER Transaction . 6–32
6–15 FETCH Transaction . 6–33
6–16 21064A Delay of sysClkOut1_h . 6–36
6–17 Icache Load Order . 6–58
6–18 ECC Code . 6–61
7–1 Clock Termination . 7–8
7–2 Input Clock Timing Diagram . 7–9
7–3 Flow-Through Delay (External Cache) 7–11
7–4 Output Delay Measurement . 7–14
7–5 Setup and Hold Time Measurement . 7–15
7–6 21064 READ_BLOCK Timing Diagram 7–16
7–7 21064A READ_BLOCK Timing Diagram 7–17
7–8 21064 WRITE_BLOCK Timing Diagram 7–18

xii

7–9 21064A WRITE_BLOCK Timing Diagram 7–19
7–10 21064 BARRIER Timing Diagram . 7–20
7–11 21064A BARRIER Timing Diagram . 7–20
7–12 21064 FETCH/FETCH_M Timing Diagram 7–21
7–13 21064A FETCH/FETCH_M Timing Diagram 7–21
7–14 Flow-Through Delay (TagOk) . 7–23
8–1 Package Components and Temperature Measurement

Locations . 8–5
8–2 Heat Sinks Dimensions . 8–7
8–3 Comparison of Dimensions for Heat Sink Designs 8–13
8–4 Microprocessor Thermal Performance 8–14
8–5 Heat Sink Maximum Ambient Temperature 8–15
9–1 High Level Output Voltage versus High Level Output

Current . 9–6
9–2 Low Level Output Voltage versus Low Level Output

Current . 9–7
9–3 Edge Rate versus Load . 9–8
9–4 Clock Current versus Clock Voltage . 9–10
9–5 Low to High Load Line Analysis . 9–15
10–1 21064 Package Dimensions . 10–2
10–2 21064A Package Dimensions . 10–3
10–3 21064A PGA Cavity Down View . 10–4
A–1 21064 External Interface . A–3
A–2 21064-Based System Block Diagram A–5
A–3 Bcache Control Logic . A–7
A–4 Lower Bcache Address . A–8
A–5 Input Reference Voltage Circuit . A–11
A–6 Input Clock Circuit . A–12
A–7 Serial ROM and Programmable Clock Inputs A–14
A–8 Example of 21064 Clock Configuration A–16
A–9 21064 BIU_CTL Internal Processor Register A–18
A–10 Bcache Access Path for 21064 . A–24
A–11 Timing Diagram for Bcache Read Access A–25
A–12 Cache Write Path for 21064 . A–27
A–13 Timing Diagram for Bcache Write Access A–28
A–14 External Cycle . A–33
A–15 Tag Control Probe Before External Cycle A–34

xiii

A–16 Tag Access and Write Circuit . A–36
A–17 Timing Diagram of READ_BLOCK Cycle A–37
A–18 Clock Skew from System to 21064 . A–39
A–19 READ_BLOCK Cycle with Write Pulse A–41
A–20 Write Pulse Circuit . A–42
A–21 Timing Diagram of WRITE_BLOCK Cycle A–44
A–22 Clock Skew from System to 21064 for Write A–46
A–23 Timing Diagram of Victim Write Cycle A–48
A–24 Address MUX for Victim Write . A–49
A–25 Timing Diagram of Direct Memory Write Cycle A–50
A–26 Tag Address Compare Circuit . A–52

Tables

1 Register Field Type Notation . xxiii
2 Register Field Notation . xxiv
2–1 Architected JSR Hint Bits . 2–6
2–2 Floating-Point Control Register Bit Descriptions 2–18
2–3 Producer-Consumer Classes . 2–27
2–4 Opcode Summary with Instruction Issue Bus 2–32
2–5 Reserved PALcode Instructions (21064/21064A Specific) 2–34
3–1 Instruction Format and Opcode Notation 3–1
3–2 Architecture Instructions . 3–2
3–3 IEEE Floating-Point Instruction Function Codes 3–7
3–4 VAX Floating-Point Instruction Function Codes 3–9
3–5 Required PALcode Function Codes . 3–10
3–6 Opcodes Specific to the 21064/21064A 3–10
3–7 Opcodes Reserved for Digital . 3–10
4–1 PALcode Entry Points . 4–7
4–2 D-stream Error PALcode Entry Points 4–8
4–3 HW_MTPR Restrictions . 4–12
4–4 HW_MTPR Cycle Delay . 4–15
4–5 Instructions Specific to the 21064/21064A 4–20
4–6 HW_MFPR and HW_MTPR Format Description 4–21
4–7 Internal Processor Register Access . 4–22
4–8 HW_LD and HW_ST Format Description 4–24
4–9 The HW_REI Format Description . 4–25

xiv

4–10 Required PALcode Instructions . 4–25
5–1 ICCSR Fields and Description . 5–4
5–2 BHE, BPE Branch Prediction Selection (Conditional

Branches Only) . 5–6
5–3 Performance Counter 0 Input Selection (in ICCSR) 5–7
5–4 Performance Counter 1 Input Selection (in ICCSR) 5–8
5–5 Clear Serial Line Interrupt Register Fields 5–11
5–6 Exception Summary Register Fields 5–13
5–7 Hardware Interrupt Request Register Fields 5–15
5–8 Hardware Interrupt Enable Register Fields 5–18
5–9 Memory Management Control and Status Register 5–23
5–10 Abox Control Register Fields . 5–25
5–11 Alternate Processor Mode Register . 5–28
5–12 Bus Interface Unit Control Register Fields 5–30
5–13 BC_SIZE . 5–34
5–14 BC_PA_DIS . 5–34
5–15 Dcache Status Register Fields . 5–35
5–16 Cache Status Register Fields . 5–36
5–17 Bus Interface Unit Status Register Fields 5–38
5–18 Syndromes for Single-Bit Errors . 5–42
5–19 Backup Cache Tag Register Fields . 5–44
5–20 Internal Process Register Reset State 5–45
6–1 Data, Address, and Parity/ECC Buses 6–4
6–2 Primary Cache Invalidate . 6–4
6–3 External Cache Control . 6–5
6–4 External Cycle Control . 6–7
6–5 Interrupts . 6–9
6–6 Instruction Cache Initialization/Serial ROM Interface 6–11
6–7 Initialization . 6–12
6–8 Fast Lock Mode Signals (21064A only) 6–12
6–9 Performance Monitoring . 6–12
6–10 Clocks . 6–13
6–11 Other Signals . 6–14
6–12 State of Pins at Reset . 6–15
6–13 Tag Control Encodings . 6–43
6–14 Cycle Types . 6–48
6–15 FETCH/FETCH_M Cycle Write Mask Addresses 6–49

xv

6–16 Acknowledgment Types . 6–50
6–17 Read Data Acknowledgment Types . 6–51
6–18 dWSel_h Byte Selection . 6–55
6–19 21064 Icache Test Modes . 6–56
6–20 21064A Icache Test Modes . 6–57
6–21 Icache Field Size . 6–58
6–22 21064A Data Protection Mode Selection 6–60
6–23 LW Parity Check Bits . 6–62
6–24 21064A Byte Parity check_h Bits . 6–62
7–1 21064/21064A Maximum Ratings . 7–1
7–2 DC Input/Output Characteristics . 7–4
7–3 testClkIn Pins State . 7–7
7–4 21064 Input Clock Timing . 7–8
7–5 21064A Input Clock Timing . 7–8
7–6 External Cycles . 7–12
7–7 tagEq_l Timing . 7–22
7–8 Asynchronous Signals During Test . 7–24
8–1 21064-150 Thermal Characteristics in a Forced-Air

Environment . 8–8
8–2 21064-166 Thermal Characteristics in a Forced-Air

Environment . 8–9
8–3 21064-200 Thermal Characteristics in a Forced-Air

Environment . 8–9
8–4 21064A-200 Thermal Characteristics in a Forced-Air

Environment . 8–10
8–5 21064A-233 Thermal Characteristics in a Forced-Air

Environment . 8–10
8–6 21064A-275 and 21064A-275-PC Thermal Characteristics in

a Forced-Air Environment . 8–11
8–7 21064A-300 Thermal Characteristics in a Forced-Air

Environment . 8–11
10–1 21064 and 21064A Pin List Differences 10–5
10–2 Data Pin List (Type B) . 10–6
10–3 Address Pin List (Type B) . 10–7
10–4 Parity/ECC Bus Pin List (Type B) . 10–8
10–5 Primary Cache Invalidate Pin List (Type I) 10–8
10–6 External Cache Control Pin List . 10–9
10–7 Interrupts Pin List (Type I) . 10–11

xvi

10–8 Instruction Cache Initialization Pin List (Type I) 10–11
10–9 Serial ROM Interface Pin List . 10–11
10–10 Initialization Pin List (Type I) . 10–11
10–11 21064 Clock Pin List . 10–12
10–12 21064A Load/Lock and Store/Conditional Fast Lock Mode . . . 10–12
10–13 Performance Monitoring Pin List . 10–12
10–14 Other Signals Pin List . 10–12
10–15 Power Pin List (Type P) . 10–13
10–16 Ground Pin List . 10–14
10–17 Spare Pin List (Type N) . 10–15
10–18 21064/21064A PGA Pin List . 10–16
A–1 System Clock Divisor . A–15
A–2 System Clock Delay . A–16
A–3 Bus Interface Unit Control Register Fields A–19
A–4 BC_SIZE . A–22
A–5 BC_PA_DIS . A–22

xvii

Preface

Audience
This reference manual is for system designers who use the Alpha 21064 or
Alpha 21064A microprocessors.

Manual Organization
The information in this manual is organized into ten chapters and two
appendixes.

The internal chip architecture, Alpha architecture instruction set, privileged
architecture code (PALcode) and internal registers are described before the
external interface. The final chapters of the manual contain electrical, thermal,
signal integrity, and mechanical information.

Appendix A contains information for designing systems using the Alpha 21064.
Appendix B contains information about technical support and ordering related
documentation. A glossary comes next followed by an index and ordering
information.

Alpha architecture information is contained in the companion volume to this
manual, the Alpha Architecture Handbook.

Terminology and Conventions
The following sections describe the terminology and conventions used in this
manual.

Microprocessor Terms
The term 21064/21064A will be used where information applies to both
the Alpha 21064 and the Alpha 21064A microprocessors. The term 21064
or 21064A will be used where information applies to only one of these
microprocessors. The term 21064A-275-PC will be used where information
applies only to that one microprocessor.

xix

Numbering
All numbers are decimal unless otherwise indicated. Where there is ambiguity,
numbers other than decimal are indicated with the name of the base following
the number in parentheses, for example FF (hex).

Security Holes
Security holes exist when unprivileged software (that is, software running
outside of kernel mode) can:

• Affect the operation of another process without authorization from the
operating system

• Amplify its privilege without authorization from the operating system

• Communicate with another process, either overtly or covertly, without
authorization from the operating system

UNPREDICTABLE and UNDEFINED
Throughout this manual, the terms UNPREDICTABLE and UNDEFINED are
used. Their meanings are quite different and must be carefully distinguished.

In particular, only privileged software (that is, software running in kernel
mode) can trigger UNDEFINED operations. Unprivileged software cannot
trigger UNDEFINED operations. However, either privileged or unprivileged
software can trigger UNPREDICTABLE results or occurrences.

UNPREDICTABLE results or occurrences do not disrupt the basic operation
of the processor; it continues to execute instructions in its normal manner. In
contrast, an UNDEFINED operation can halt the processor or cause it to lose
information.

The terms UNPREDICTABLE and UNDEFINED can be further described as
follows:

UNPREDICTABLE

• Results or occurrences specified as UNPREDICTABLE may vary from
moment to moment, implementation to implementation, and instruction to
instruction within implementations. Software can never depend on results
specified as UNPREDICTABLE.

• An UNPREDICTABLE result may acquire an arbitrary value subject to a
few constraints. Such a result may be an arbitrary function of the input
operands or of any state information that is accessible to the process in its
current access mode. UNPREDICTABLE results may be unchanged from
their previous values.

xx

Operations that produce UNPREDICTABLE results may also produce
exceptions.

• An occurrence specified as UNPREDICTABLE may happen or not based
on an arbitrary choice function. The choice function is subject to the same
constraints as are UNPREDICTABLE results and, in particular, must not
constitute a security hole.

Specifically, UNPREDICTABLE results must not depend upon, or be
a function of the contents of memory locations or registers which are
inaccessible to the current process in the current access mode.

Also, operations that may produce UNPREDICTABLE results must not:

Write or modify the contents of memory locations or registers to which
the current process in the current access mode does not have access.

Halt or hang the system or any of its components.

For example, a security hole would exist if some UNPREDICTABLE result
depended on the value of a register in another process, on the contents
of processor temporary registers left behind by some previously running
process, or on a sequence of actions of different processes.

UNDEFINED

• Operations specified as UNDEFINED may vary from moment to moment,
implementation to implementation, and instruction to instruction within
implementations. The operation may vary in effect from nothing, to
stopping system operation.

• UNDEFINED operations may halt the processor or cause it to lose
information. However, UNDEFINED operations must not cause the
processor to hang, that is, reach an unhalted state from which there is no
transition to a normal state in which the machine executes instructions.

Ranges and Extents
Ranges are specified by a pair of numbers separated by a ".." and are inclusive.
For example, a range of integers 0..4 includes the integers 0, 1, 2, 3, and 4.

Extents are specified by a pair of numbers in brackets separated by a colon and
are inclusive. For example, bits [7:3] specify an extent of bits including bits 7,
6, 5, 4, and 3.

xxi

ALIGNED and UNALIGNED
In this manual the terms ALIGNED and NATURALLY ALIGNED are used
interchangeably to refer to data objects that are powers of two in size. An
aligned datum of size 2**N is stored in memory at a byte address that is a
multiple of 2**N, that is, one that has N low-order zeros. Thus, an aligned
64-byte stack frame has a memory address that is a multiple of 64.

If a datum of size 2**N is stored at a byte address that is not a multiple of
2**N, it is called UNALIGNED.

Must Be Zero (MBZ)
Fields specified as Must Be Zero (MBZ) must never be filled by software with a
non-zero value. If the processor encounters a non-zero value in a field specified
as MBZ, a Reserved Operand exception occurs.

Should Be Zero (SBZ)
Fields specified as Should Be Zero (SBZ) should be filled by software with a
zero value. Non-zero values in SBZ fields produce UNPREDICTABLE results
and may produce extraneous instruction-issue delays.

Read As Zero (RAZ)
Fields specified as Read As Zero (RAZ) return a zero when read.

Ignore (IGN)
Fields specified as Ignore (IGN) are ignored when written.

Register Format Notation
This manual contains a number of figures that show the format of various
registers. Some registers are followed by a description of each field. The fields
on the register are labeled with either a name or a mnemonic. The description
of each field includes the name or mnemonic, the bit extent, and the type.

The ‘‘Type’’ column in the field description includes both the actual type of the
field, and an optional initialized value, separated from the type by a comma.
The type denotes the functional operation of the field, and may be one of
the values shown in Table 1. If present, the initialized value indicates that
the field is initialized by hardware to the specified value at powerup. If the
initialized value is not present, the field is not initialized at powerup.

xxii

Table 1 Register Field Type Notation

Notation Description

RW A read-write bit or field. The value may be read and written by
software.

RO A read-only bit or field. The value may be read by software. It is
written by hardware; software writes are ignored.

WO A write-only bit or field. The value may be written by soft-
ware. It is used by hardware and reads by software return an
UNPREDICTABLE result.

WZ A write bit or field. The value may be written by software. It is
used by hardware and reads by software return a 0.

W1C A write-one-to-clear bit. If reads are allowed to the register then the
value may be read by software. If it is a write-only register then a
read by software returns an UNPREDICTABLE result. Software
writes of a 1 cause the bit to be cleared by hardware. Software
writes of a 0 do not modify the state of the bit.

W0C A write-zero-to-clear bit. If reads are allowed to the register then
the value may be read by software. If it is a write-only register then
a read by software returns an UNPREDICTABLE result. Software
writes of a 0 cause the bit to be cleared by hardware. Software
writes of a 1 do not modify the state of the bit.

WA A write-anything-to-the-register-to-clear bit. If reads are allowed to
the register then the value may be read by software. If it is a write-
only register then a read by software returns an UNPREDICTABLE
result. Software write of any value to the register cause the bit to
be cleared by hardware.

RC A read-to-clear field. The value is written by hardware and remains
unchanged until read. The value may be read by software, at which
point, hardware may write a new value into the field.

xxiii

In addition to named fields in registers, other bits of the register may be
labeled with one of the three symbols listed in Table 2. These symbols denote
the type of the unnamed fields in the register.

Table 2 Register Field Notation

Notation Description

RAZ Denotes a register bit(s) that is read as a zero.

IGN Denotes a register bit(s) that is ignored on write and
UNPREDICTABLE when read if not otherwise specified.

MBZ Denotes a register bit(s) that must be a zero value.

xxiv

Alpha 21064 and Alpha 21064A Differences Sections
The Alpha 21064 and Alpha 21064A are alike in most ways but they have
some differences. Throughout this manual the bold labels 21064 and 21064A
are used to indicate that the feature or operation only applies to one of the
microprocessors.

The sections, figures, and tables where these differences occur are listed here:

• Parity and ECC features in Section 1.3

• Backward compatibility of the 21064A in Section 1.4

• 21064 Block Diagram in Figure 2–1 and 21064A Block Diagram in
Figure 2–2

• Branch prediction in Section 2.3.1.1 and Section 2.3.1.2

• Internal cache hit signals in Section 2.3.4

• Resetting the write buffer counter in Section 2.5.4

• Fbox inexact flag in Section 2.6

• Inexact disable bit added to FPCR. See Figure 2–3 and Figure 2–4

• Inexact (INE) part of IEEE floating-point conformance in Section 2.7

• Primary cache differences in Section 2.8

• FDIV F/S and FDIV G/T in Section 2.10.2

• ABOX_CTL Register [15:12] in Figure 5–22 and Table 5–10

• BIU_CTL Register [44,39,37,7:4] in Figure 5–26 and Table 5–12

• Cache status registers in Section 5.3.16 and Section 5.3.17

• Microprocessors logic symbols in Figure 6–1 and Figure 6–2

• dInvReq_h in Table 6–2

• tagAdr_h, tagEq_l and dMapWE_h in Table 6–3

• irq_h and sysClkDiv_h in Table 6–5

• icMode_h in Table 6–6

• resetSClk_h in Table 6–7

• Fast lock mode signals in Table 6–8

xxv

• Reset signal states in Section 6.4.1

• LDL_L/LDQ_L and STL_C/STQ_C transactions in Section 6.4.10

• System clock divisor and assertion delay in Section 6.5.1

• Primary cache invalidates in Section 6.5.3

• Fast lock mode effect on LDL_L/LDQ_L in Section 6.5.4

• Tristate driver note in Section 6.5.4.4

• tagOK synchronization in Section 6.5.4.5

• Check bits during reads in Section 6.5.5.2

• 21064A data protection mode selection in Section 6.5.9.3

• 21064A byte parity data protection in Table 6–24

• 20164A cache parity errors in Section 6.6.5

• Maximum electrical ratings in Table 7–1

• Reference voltage for tagOK_h and tagOK_l in Section 7.2.1 and
Section 7.4.1.

• Input clock timing in Table 7–4 and Table 7–5

• Subtable with input setup relative to sysClkOut1_h in Section 7.4.5

• READ_BLOCK Timing in Figure 7–6 and Figure 7–7

• WRITE_BLOCK Timing in Figure 7–8 and Figure 7–9

• BARRIER Timing in Figure 7–10 and Figure 7–11

• FETCH/FETCH_M Timing in Figure 7–12 and Figure 7–13

• tagEq_l in Section 7.4.6

• tagOK_h and tagOK_l synchronization in Section 7.4.7 and Section 7.4.8

• Power considerations in Section 8.2.2

• Thermal characteristics and parameters with heat sink in a forced-air
environment in Tables 8–1 through 8–3 and Tables 8–4 through 8–7

• Pin List differences in Table 10–1

xxvi

1
Introduction to the 21064/21064A

1.1 Introduction
This chapter introduces the 21064/21064A. The descriptions and lists are
meant to familiarize the reader with the microprocessors but are not in great
detail or depth. The chapter is organized as follows:

• Architecture

• Chip features

• Backward compatibility

1.2 The Architecture
The Alpha architecture is a 64-bit load/store RISC architecture designed with
particular emphasis on speed, multiple instruction issue, multiple processors,
and software migration from other operating systems.

All registers are 64 bits in length and all operations are performed between
64-bit registers. All instructions are 32 bits in length. Memory operations are
either loads or stores. All data manipulation is done between registers.

The Alpha architecture supports the following data types:

• 8-, 16-, 32- and 64-bit integers

• IEEE 32-bit and 64-bit floating-point formats

• VAX computer 32-bit and 64-bit floating-point formats

In the Alpha architecture, instructions interact with each other only by one
instruction writing to a register or memory location and another instruction
reading from that register or memory location. This use of resources makes it
easy to build implementations that issue multiple instruction cycles every CPU
cycle.

Introduction to the 21064/21064A 1–1

The 21064/21064A uses a set of subroutines, called privileged architecture
library code (PALcode), that is specific to a particular Alpha architecture
operating system implementation and hardware platform. These subroutines
provide operating system primitives for context switching, interrupts,
exceptions, and memory management. These subroutines can be invoked
by hardware or CALL_PAL instructions. CALL_PAL instructions use the
function field of the instruction to vector to a specified subroutine. PALcode
is written in standard machine code with some implementation-specific
extensions to provide direct access to low-level hardware functions. PALcode
supports optimizations for multiple operating systems, flexible memory
management implementations, and multi-instruction atomic sequences.

The Alpha architecture performs byte shifting and masking with normal 64-bit
register-to-register instructions; it does not include single byte load/store
instructions. The software implementor must determine the precision of
arithmetic traps.

For a complete introduction to the Alpha architecture, see the companion
volume, the Alpha Architecture Handbook.

1.3 Chip Features
The Alpha 21064/21064A microprocessors are some of the first in a family of
chips implementing the Alpha architecture. The 21064/21064A are CMOS
super-scalar super-pipelined microprocessors using dual instruction issue.

The 21064/21064A and associated PALcode implements IEEE single and double
precision, VAX F_floating and G_floating datatypes and supports longword
(32-bit) and quadword (64-bit) integers. Byte (8-bit) and word (16-bit) support
is provided by byte manipulation instructions. Limited hardware support is
provided for the VAX D_floating datatype.

Other 21064/21064A features include:

• 21064 peak instruction execution rate of

300 million operations per second at 150 MHz clock rate

332 million operations per second at 166 MHz clock rate

400 million operations per second at 200 MHz clock rate

• 21064A peak instruction execution rate of

466 million operations per second at 233 MHz clock rate

550 million operations per second at 275 MHz clock rate

1–2 Introduction to the 21064/21064A

• An internal clock generator providing a high-speed chip clock and a pair of
programmable system clocks with a frequency of

CPU clock/2 to CPU clock/8 for 21064

CPU clock/2 to CPU clock/17 for 21064A

• Flexible external interface supporting a complete range of system sizes and
performance levels while maintaining peak CPU execution speed

Selectable data bus width of 64 bit or 128 bit

Selectable data bus speed. For example 75 MHz to 18.75 MHz bus
speed at 150 MHz CPU clock rate

• Support for external secondary cache including programmable cache size
and speed

• An on-chip write buffer with four 32-byte entries

• An on-chip pipelined floating-point unit

• 21064 on-chip cache

An 8K byte instruction cache

An 8K byte data cache

• 21064A on-chip cache

A 16K byte instruction cache

A 16K byte data cache

• An on-chip demand paged memory management unit consisting of:

A 12-entry I-stream translation buffer (ITB) with 8 entries for 8K pages
and 4 entries for 4 MB pages

A 32-entry D-stream translation buffer (DTB) with each entry able to
map a single 8K, 64K, 512K, or 4 MB page

• Parity and ECC

21064 provides on-chip support for data bus parity and ECC

21064A provides parity for on-chip Icache and Dcache as well as
on-chip support for data bus parity and ECC

• Chip and module level test support

• 3.3-volt power supply with interface to 5-volt logic

See Chapter 7 for the 21064/21064A electrical characteristics (dc and ac).

Introduction to the 21064/21064A 1–3

1.4 Backward Compatibility
The 21064A is backward compatible with the 21064. The compatibility
includes pin layout, PALcode, and application programs.

The following restrictions apply to the compatibility between the 21064A and
21064:

• The 21064A has internal pulldown resistors on inputs which are unused
spare pins on the 21064. If these spare pins are unconnected on a module
designed for the 21064, then there will be no migration problem with these
pins.

• Two pins have been reallocated for other uses. If these pins were not
used on a module designed for the 21064, then there will be no migration
problem with these pins. On the 21064 the two pins are tagEq_l and
tagAdr_h 17; on the 21064A they are lockWE_h and lockFlag_h
respectively.

Note

See Table 10–1 for a list of pin differences between the 21064 and the
21064A.

• The behavior of the tagOK protocol on the 21064A differs from that of the
21064. Designers should investigate the effect of the change if this protocol
is used in existing 21064 modules.

1.5 Section 1.5 21064A-275-PC Differences
Except for its memory-management functions, the 21064A-275-PC is
functionally identical to the other four 21064A microprocessors. The
21064A-275-PC will only support the memory-management functions
necessary for the Windows NT operating system and other operating systems
that use the Windows NT memory-management model.

The label 21064A describes the functions and operations that are identical
for the five devices. The label 21064A-275-PC identifies information that is
unique to that one device.

1–4 Introduction to the 21064/21064A

2
Internal Architecture

2.1 Introduction
This chapter gives a system designer’s view of the 21064/21064A micro-
architecture. The chapter describes the hardware with minimal forward
references to the pipeline, discussed in Section 2.9. The scheduling and dual
issue rules are defined in Section 2.10 (the 21064/21064A processor can issue
two instructions in a single cycle). This chapter is not intended to be a detailed
hardware description of the chip.

The combination of the 21064/21064A micro-architecture and PALcode defines
the chip’s implementation of the Alpha architecture. Many hardware design
decisions were based on specific PALcode functionality. PALcode is described
in Chapter 4. If a certain piece of hardware seems to be "architecturally
incomplete", the missing functionality is implemented in PALcode. The chapter
is organized as follows:

• Overview

• Ibox

• Ebox

• Abox

• Fbox

• IEEE Floating-point Conformance

• Cache Organization

• Pipeline Organization

• Scheduling and Issuing Rules

• PALcode

Introduction to the 21064/21064A 2–1

Figure 2–1 shows a block diagram of the 21064 chip.

Figure 2–1 Block Diagram of the 21064

TAG DATA

(EBOX)

Multiplier

Adder

Shifter

Logic Box

(IBOX)

Prefetcher

Resource
Conflict

PC
Calculation

ITB

Pipeline
Control

(FBOX)

Multiplier/
Adder

Divider

Load/Store Unit (ABOX)

Write
Buffer

Address
Generator

DTB Load
Silo

Data Cache (DCACHE)

TAG DATA

Address Bus

BIU

Interrupts

Bus Control

Instruction Cache (ICACHE)

Branch
History Table

LJ-02107-TI0A

System Timing

Data Bus (128 bits)

External Cache Control

Floating-Point
Register File (FRF)

Integer Register
File (IRF)

Floating-Point
Execution Unit

Instruction
Fetch/Decode Unit

Integer
Execution Unit

2–2 Introduction to the 21064/21064A

Figure 2–2 shows a block diagram of the 21064A chip.

Figure 2–2 Block Diagram of the 21064A

Tag Data

(Ebox)

Multiplier

Adder

Shifter

Logic Box

(Ibox)

Prefetcher

Resource
Conflict

PC
Calculation

ITB

Pipeline
Control

(Fbox)

Multiplier/
Adder

Divider

Load/Store Unit (Abox)

Write
Buffer

Address
Generator

DTB Load
Silo

Data Cache (Dcache)

Tag Data

Address Bus

BIU

Interrupts

Bus Control

Instruction Cache (Icache)

Branch
History Table

System Timing

Data Bus (128 bits)

External Cache Control

Floating-Point
Register File (FRF)

Integer Register
File (IRF)

Floating-Point
Execution Unit

Instruction
Fetch/Decode Unit

Integer
Execution Unit

Parity Parity

ParityParity

MLO-012077

2.2 21064/21064A Overview
The 21064/21064A has a central control unit referred to as the Ibox. It issues
instructions, maintains the pipeline, and performs program counter (PC)
calculations.

The 21064/21064A contains on-chip instruction and data caches (Icache and
Dcache).

Introduction to the 21064/21064A 2–3

The 21064/21064A also contains four independent execution units:

• The integer execution unit (Ebox)

• The address generation, load/store and bus interface unit (Abox)

• The floating-point unit (Fbox)

• The branch logic

Each execution unit can accept at most one instruction per cycle; however if
code is correctly scheduled, the 21064/21064A can issue two instructions to two
independent units in a single cycle.

2.3 Ibox
The primary functions of the Ibox are to:

• Issue instructions

• Fetch instructions

• Decode instructions

• Pipeline control

The Ibox issues instructions to the Ebox, Abox, and Fbox. To provide those
instructions, the Ibox contains:

• The prefetcher

• PC pipeline

• ITB

• Abort logic

• Register conflict or dirty logic

• Exception logic

The Ibox decodes two instructions in parallel and checks that the required
resources are available for both instructions.

If resources are available then both instructions are issued. See Section 2.10.5
for details on instructions that can be dual issued. The Ibox does not
issue instructions out of order; if the resources are available for the second
instruction, but not for the first instruction, then the Ibox issues neither. The
resources for the first instruction must be available before the Ibox issues any
instructions. If the Ibox issues only the first of a pair of instructions, the Ibox
does not advance another instruction to attempt dual issue again. Dual issue
is only attempted on aligned quadword pairs.

2–4 Introduction to the 21064/21064A

2.3.1 Branch Prediction Logic
The Ibox contains the branch prediction logic. The 21064/21064A offers a
choice of three branch prediction strategies selectable through the ICCSR
internal processor register (IPR). The three strategies are:

• Branch will not be taken

• Branch taken is dependent on the sign of the instruction branch
displacement.

• Branch taken is dependent on the branch history table

2.3.1.1 21064 Branch Prediction Logic
The prediction for the first execution of a branch instruction is based on the
sign of the displacement field within the branch instruction itself. The branch
is taken if the bit is negative (1) and is not taken if the bit is positive (0).

The 21064 Icache records the outcome of branch instructions in a single bit
branch history table provided for each instruction location in the Icache. The
bit is set when the branch is taken and cleared when the branch is not taken.

The 21064 consults the branch history table when executing the branch
instruction.

• If the sign bit is negative, the instruction prefetcher predicts the
conditional branch to be taken.

• If the sign is positive, the instruction prefetcher predicts the conditional
branch not to be taken.

2.3.1.2 21064A Branch Prediction Logic
The 21064A Icache records the outcome of branch instructions in a 2-bit
branch history table provided for each instruction location in the Icache. The
two history bits are used as a counter: incremented each time a branch is
taken (stopping at 112) and decremented each time a branch is not taken
(stopping at 002).

The 21064A consults the branch history table when executing the branch
instruction.

• If the higher bit is set, the instruction prefetcher predicts the conditional
branch to be taken.

• If the higher bit is clear, the instruction prefetcher predicts the conditional
branch not to be taken.

Introduction to the 21064/21064A 2–5

2.3.1.3 21064/21064A Subroutine Return Stack
The 21064/21064A provides a four-entry subroutine return stack (JSR stack)
that is controlled by the hint bits in the BSR, HW_REI, and jump to subroutine
instructions (JMP, JSR, RET, or JSR_COROUTINE). The chip also provides
a means of disabling all branch prediction hardware. Table 2–1 lists the hint
bits for the JSR stack.

Table 2–1 Architected JSR Hint Bits

disp
[15:14] Meaning

Predicted Target
[15:0] JSR Stack Action

00 JMP PC + {4*disp[13:0]} –

01 JSR PC + {4*disp[13:0]} push PC

10 RET Prediction stack pop

11 JSR_COROUTINE Prediction stack pop, push PC

To control a branch, use the BHE, JSE, and BPE bits of the ICCSR IPR. See
Table 5–1.

2.3.2 Instruction Translation Buffers (ITBs)
The Ibox contains two ITBs.

• An eight-entry, fully associative translation buffer that caches recently
used instruction-stream page table entries for 8K byte pages

• A four-entry, fully associative translation buffer that supports the largest
granularity hint option (512 � 8K byte pages) as described in the Alpha
Architecture Reference Manual.

Both translation buffers use a not-last-used replacement algorithm. They are
hereafter referred to as the small-page and large-page ITBs, respectively.

In addition, the ITB includes support for an extension called the super page,
which can be enabled by the MAP bit in the ICCSR IPR. Super page mappings
provide one-to-one virtual PC [33:13] to physical PC [33:13] translation when
virtual address bits [42:41] = 2. When translating through the super page,
the PTE[ASM] bit used in the Icache is always set. Access to the super page
mapping is only allowed while executing in kernel mode.

PALcode fills and maintains the ITBs. The operating system, through PALcode,
is responsible for ensuring that virtual addresses can only be mapped through
a single ITB entry (in the large page, small page, or super page) at the same
time.

2–6 Introduction to the 21064/21064A

The Ibox presents the 43-bit virtual program counter (VPC) to the ITB each
cycle while not executing in PALmode. If the PTE associated with the VPC is
cached in the ITB, then the Ibox uses the PFN and protection bits for the page
that contains the VPC to complete the address translation and access checks.

The 21064/21064A ITB supports a single address space number (ASN) by way
of the PTE [ASM] bit. Each PTE entry in the ITB contains an address space
match (ASM) bit. Writes to the ITBASM IPR invalidate all entries that do not
have their ASM bit set. This provides a simple method of preserving entries
that map operating system regions while invalidating all others.

2.3.3 Interrupt Logic
The 21064/21064A chip supports three sources of interrupts.

• Hardware

There are six level-sensitive hardware interrupts sourced by pins.

• Software

There are fifteen software interrupts sourced by an on-chip IPR (SIRR).

• Asynchronous system trap (AST)

There are four AST interrupts sourced by a second internal IPR (ASTRR).

All interrupts are independently maskable by on-chip enable registers to
support a software-controlled mechanism for prioritization. In addition, AST
interrupts are qualified by the current processor mode and the current state of
SIER [2].

By providing distinct enable bits for each independent interrupt source, a
software-controlled interrupt priority scheme can be implemented by PALcode
or the operating system with maximum flexibility.

For example, the 21064/21064A can support a six-level interrupt priority
scheme through the six hardware interrupt request pins. This is done by
defining a distinct state of the hardware interrupt enable register (HIER)
for each interrupt priority level (IPL). The state of the HIER determines the
current interrupt priority. The lowest interrupt priority level is produced by
enabling all six interrupts, for example bits [6:1]. The next is produced by
enabling bits [6:2] and so on, to the highest interrupt priority level that is
produced by enabling only bit [6], and disabling bits [5:1]. When all interrupt
enable bits are cleared, the processor can not be interrupted from the hardware
interrupt request register (HIRR). Each state, ([6:1], [6:2], [6:3], [6:4], [6:5], [6])
represents an individual IPL. If these states are the only states allowed in the
HIER, a six-level hardware interrupt priority scheme can be controlled entirely
by PALcode software.

Introduction to the 21064/21064A 2–7

The scheme is extensible to provide multiple interrupt sources at the same
interrupt priority level by grouping enable bits. Groups of enable bits must be
set and cleared together to support multiple interrupts of equal priority level.
This method reduces the total available number of distinct levels.

Since enable bits are provided for all hardware, software, and AST interrupt
requests, a priority scheme can span all sources of processor interrupts.
The only exception to this rule is the following restriction on AST interrupt
requests:

Four AST interrupts are provided, one for each processor mode. AST
interrupt requests are qualified such that AST requests corresponding
to a given mode are blocked whenever the processor is in a higher mode
regardless of the state of the AST interrupt enable register. In addition, all
AST interrupt requests are qualified in the 21064/21064A with SIER [2].

When the processor receives an interrupt request and that request is enabled,
hardware reports or delivers an interrupt to the exception logic if the processor
is not currently executing PALcode. Before vectoring to the interrupt service
PAL dispatch address, the pipeline is completely drained and all outstanding
data cache fills are completed. The restart address is saved in the Exception
Address IPR (EXC_ADDR) and the processor enters PALmode. The cause
of the interrupt may be determined by examining the state of the interrupt
request registers.

Note

Hardware interrupt requests are level-sensitive and, therefore, may be
removed before an interrupt is serviced. If they are removed before the
interrupt request register is read, the register will return a zero value.

2.3.4 Performance Counters
The 21064/21064A contains a performance recording feature. The
implementation of this feature provides a mechanism to count various
hardware events and cause an interrupt upon counter overflow. Interrupts
are triggered six cycles after the event, and therefore, the exception program
counter may not reflect the exact instruction causing counter overflow. Two
counters are provided to allow accurate comparison of two variables under a
potentially non-repeatable experimental condition.

2–8 Introduction to the 21064/21064A

Counter inputs include:

• Issues

• Non-Issues

• Total cycles

• Pipe dry

• Pipe freeze

• Mispredicts and cache misses

• Counts for various instruction classifications

In addition, the 21064/21064A provides one chip pin input to each counter to
measure external events at a rate determined by the selected system clock
speed.

Note

These counters are controlled by the ICCSR IPR bits PCMUX1,
PCMUX0, PC1, and PC0. See Table 5–1.

The 21064A contains a mode in which dMapWE_h [1:0] are asserted during
both Icache and Dcache read operations. This makes it possible to build
external logic to record the frequency of Icache and Dcache block access. The
user may base Bcache allocation on this information to improve overall system
performance.

The mode will be entered when BIU_CTL [IMAP_EN] is set. When BIU_CTL
[IMAP_EN] is set dMapWE_h [1:0] will be asserted during Icache reads as
well as the usual assertion during Dcache reads.

When in this mode the 21064A asserts dMapWE_h 0 or dMapWE_h 1 for
D-stream Bcache reads. Which signal is asserted depends upon which half of
the 16K byte Dcache was addressed by VA 13:

• dMapWE_h 0 when VA 13 equals zero

• dMapWE_h 1 when VA 13 equals one

When in this mode the 21064A asserts either dMapWE_h 0 or dMapWE_h 1
when there is an I-stream Bcache read. Which of the two signals is asserted is
UNPREDICTABLE.

Introduction to the 21064/21064A 2–9

2.4 Ebox
The Ebox contains the 64-bit integer execution data path.

• Adder

• Logic box

• Barrel shifter

• Byte zapper

• Bypassers

• Integer multiplier

The integer multiplier retires four bits per cycle. The Ebox also contains
the 32-entry 64-bit integer register file (IRF) as shown in Figure 2–1 and
Figure 2–2. The register file has four read ports and two write ports that
allow reading operands from and writing operands (results) to both the integer
execution data path and the Abox.

2.5 Abox
The Abox contains six major sections.

• Address translation data path

• Load silo

• Write buffer

• Dcache interface

• Internal processor registers (IPRs)

• External bus interface unit (BIU)

The address translation data path has a displacement adder that generates
the effective virtual address for load and store instructions, and a translation
buffer that generates the corresponding physical address.

2.5.1 Data Translation Buffer (DTB)
The 21064/21064A contains a 32-entry, fully associative, data translation buffer
(DTB) that caches recently used data-stream page table entries (PTEs) and
supports all four variants of the granularity hint option, as described in the
Alpha Architecture Reference Manual.

2–10 Introduction to the 21064/21064A

The 21064/21064A provides an extension referred to as the superpage, which
can be enabled using ABOX_CTL [5:4]. Superpage translation is only allowed
in kernel mode. The operating system, by way of PALcode, is responsible for
ensuring that translation buffer entries, including superpage regions, do not
map overlapping virtual address regions at the same time.

Superpage mappings provide virtual to physical address translation for two
regions of the virtual address space.

Superpage mappings of one region of the virtual address space are enabled
by setting the SPE_2 bit (ABOX_CTL [5]), as described in Section 5.3.11,
Abox Control Register (ABOX_CTL). Setting the SPE_2 bit enables superpage
mapping when virtual address bits [42:41] = 2. The entire physical address
space maps multiple times to one quadrant of the virtual address space defined
by VA [42:41] = 2.

Superpage mappings of another region of the virtual address space are enabled
by setting the SPE_1 bit (ABOX_CTL [4]), as described in Section 5.3.11,
Abox Control Register (ABOX_CTL). Setting the SPE_1 bit enables superpage
mapping when virtual address bits [42:30] = 1FFE. A 30-bit region of the
total physical address space defined by PA [33:30] = 0 maps into a single
corresponding region of virtual space defined by VA [42:30] = 1FFE.

Note

For the 21064A-275-PC, the SPE_1 bit must always be set when
virtual-to-physical mapping is enabled. Operation in native mode (not
PALmode) with this bit clear will cause 21064A-275-PC operation to be
UNPREDICTABLE.

The 21064/21064A DTB supports a single address space number (ASN) with
the PTE [ASM] bit. Each PTE entry in the DTB contains an address space
match (ASM) bit. Write transactions to the DTBASM IPR invalidate all
entries that do not have their ASM bit set. This provides a simple method of
preserving entries that map operating system regions while invalidating all
others.

For load and store instructions, the effective 43-bit virtual address is presented
to the DTBs. If the PTE of the supplied virtual address is cached in the DTB,
the PFN and protection bits for the page that contains the address are used by
the Abox to complete the address translation and access checks.

Introduction to the 21064/21064A 2–11

PALcode fills and maintains the DTB. Chapter 4, Privileged Architecture
Library Code, details the DTB miss flow. The DTB can also be filled in kernel
mode by first setting the HWE bit in the ICCSR IPR before executing the
HW_MTPR instruction.

2.5.2 Bus Interface Unit (BIU)
The BIU controls the interface to the 21064/21064A pin bus. (Chapter 6
describes the pin bus). The BIU responds to three classes of CPU-generated
requests:

• Dcache fills

• Icache fills

• Write buffer-sourced commands

The BIU resolves simultaneous internal requests using a fixed priority scheme
in which Dcache fill requests are given highest priority, followed by Icache fill
requests. Write buffer requests have the lowest priority.

The BIU contains logic to directly access an external cache to service internal
cache fill requests and writes from the write buffer. The BIU services reads
and writes that do not hit in the external cache with help from external logic.

Internal data transfers between the CPU and the BIU are made through a
64-bit bidirectional bus. Since the internal cache fill block size is 32 bytes,
cache fill operations result in four data transfers across this bus from the BIU
to the appropriate cache. Also, because each write buffer entry is 32 bytes
wide, write transactions may result in four data transfers from the write buffer
to the BIU.

2.5.3 Load Silos
The Abox contains a memory reference pipeline that can accept a new load
or store instruction every cycle until a Dcache fill is required. Since the
Dcache lines are only allocated on load misses, the Abox can accept a new
instruction every cycle until a load miss occurs. When a load miss occurs the
Ibox stops issuing all instructions that use the load port of the register file or
are otherwise handled by the Abox.

These instructions include LDL_L/LDQ_L, STL_C/STQ_C, HW_MTPR, HW_
MFPR, FETCH, FETCH_M, RPCC, RS, RC, and MB. It also includes all
memory format branch instructions, JMP, JSR, JSR_COROUTINE, and RET.

However, a JSR with a destination of R31 may be issued.

2–12 Introduction to the 21064/21064A

Because the result of each Dcache lookup is known late in the pipeline (stage
[6]) and instructions are issued in pipe stage [3], there can be two instructions
in the Abox pipeline behind a load instruction that misses the Dcache. These
two instructions are handled as follows:

• Loads that hit the Dcache are allowed to complete—hit under miss.

• Load misses are placed in a silo and replayed in order after the first load
miss completes.

• Store instructions are presented to the Dcache at their normal time with
respect to the pipeline. They are placed in the silo and presented to the
write buffer in order with respect to load misses.

To improve performance, the Ibox is allowed to restart the execution of Abox
directed instructions before the last pending Dcache fill is complete. Dcache
fill transactions result in four data transfers from the BIU to the Dcache.
These transfers can each be separated by one or more cycles depending on
the characteristics of the external cache and memory subsystems. The BIU
attempts to send the quadword of the fill block that the CPU originally
requested in the first of these four transfers (it is always able to accomplish
this for reads that hit in the external cache). Therefore, the pending load
instruction that requested the Dcache fill can complete before the Dcache fill
finishes. Dcache fill data accumulates one quadword at a time into a "pending
fill" latch, rather than being written into the cache array as it is received
from the BIU. When the load miss silo is empty and the requested quadword
for the last outstanding load miss is received, the Ibox resumes execution
of Abox-directed instructions despite the still-pending Dcache fill. When the
entire cache line has been received from the BIU, it is written into the Dcache
data array whenever the array is not busy with a load or a store.

2.5.4 Write Buffer
The Abox contains a write buffer for two purposes.

• To minimize the number of CPU stall cycles by providing a high bandwidth
(but finite) resource for receiving store data.

This is required since the 21064/21064A can generate store data at the
peak rate of one quadword every CPU cycle, which is greater than the rate
at which the external cache subsystem can accept the data.

• To attempt to aggregate-store data into aligned 32-byte cache blocks to
maximize the rate at which data may be written from the BIU into the
external cache.

Introduction to the 21064/21064A 2–13

The write-merging operation of the write buffer can result in the order of off-
chip writes being different from the order in which their corresponding store
instructions were executed. Further, the write buffer may collapse multiple
stores to the same location into a single off-chip write transaction. Software
that requires strict write ordering, or that multiple stores to the same location
result in multiple off-chip write sequences, must insert a memory barrier
instruction between the store instructions of interest.

In addition to store instructions, MB, STQ_C, STL_C, FETCH, and FETCH_M
instructions are also written into the write buffer and sent off-chip. Unlike
stores, however, these write buffer-directed instructions are never merged into
a write buffer entry with other instructions.

The write buffer has four entries; each has storage for up to 32 bytes. The
buffer has a "head" pointer and "tail" pointer. The buffer puts new commands
into empty tail entries and takes commands out of nonempty head entries.
The head pointer increments when an entry is unloaded to the BIU, and the
tail pointer increments when new data is put into the tail entry. The head
and tail pointers only point to the same entry when the buffer has zero or four
nonempty entries. If no writes ever merge with existing nonempty entries,
the ordering of writes with respect to other writes will be maintained. The
write buffer never reorders writes except to merge them into nonempty entries.
Once a write merges into a nonempty slot, its "programmed" order is lost with
respect to both writes in the same slot and writes in other slots.

The write buffer attempts to send its head entry off-chip by requesting the BIU
when one of the following conditions is met:

• The write buffer contains at least two valid entries.

• The write buffer contains one valid entry and at least 256 CPU cycles have
elapsed since the execution of the last write buffer-directed instruction.
The 8-bit counter is cleared when one of the following conditions is met.

The write buffer is empty.

The write buffer unloads an entry.

21064 only—A write-merge operation is executed.

• The write buffer contains an MB, STQ_C or STL_C instruction.

• A load miss is pending to an address currently valid in the write buffer
that requires the write buffer to be flushed. The write buffer is completely
flushed regardless of which entry matches the address.

2–14 Introduction to the 21064/21064A

2.6 Fbox
The Fbox is on-chip, pipelined, and capable of executing both VAX and IEEE
floating-point instructions. IEEE floating-point datatypes S_floating and
T_floating are supported with all rounding modes except round to +=� infinity,
which can be provided in software. VAX floating-point datatypes F_floating
and G_floating are fully supported with limited support for D_floating format.

The Fbox contains:

• A 32-entry, 64-bit floating-point register file (FRF in Figure 2–1)

• A user-accessible control register, FPCR, containing:

Dynamic Rounding Mode controls

Exception flag information

The Fbox can accept an instruction every cycle, with the exception of floating-
point divide instructions. The latency for data dependent, non-divide
instructions is six cycles. For detailed information on instruction timing,
refer to Section 2.9.

21064 Inexact Flag
For divide instructions, the 21064 Fbox does not compute the inexact flag.
Consequently, the INE exception flag in the FPCR register is never set for
IEEE floating-point divide using the inexact enable (/I) qualifier. To deliver
IEEE conforming exception behavior to the user, 21064 FPU hardware always
traps on DIVS/SI and DIVT/SI instructions. The intent is for the arithmetic
exception handler in either PALcode or the operating system to identify the
source of the trap, compute the inexact flag, and deliver the appropriate
exception to the user. The exception associated with DIV/SI and DIVT/SI is
imprecise. Software must follow the rules specified by the Alpha architecture
associated with the software completion modifier to ensure that the trap
handler can deliver correct behavior to the user.

21064A Inexact Flag
For divide instructions, the 21064A Fbox computes the inexact flag setting
FPCR [INE] if appropriate. The 21064A traps on DIV/SI instructions only
when the result is really inexact.

For IEEE compliance issues, see Section 2.7 and the Alpha Architecture
Reference Manual.

Introduction to the 21064/21064A 2–15

2.6.1 Fbox Exception Handling
Exceptions generated by the Fbox are recorded in two places: the
architecturally defined FPCR and the EXC_SUM register. The FPCR
records the occurrence of all exceptions that are detected (except for software
completion [SWC]), independent of whether the corresponding trap is enabled.
This register can be cleared only by way of an explicit clear command, a write
using MT_FPCR. The exception information it records is a summary of all
exceptions that occurred since the last clear command.

If any exception is detected and the trap is enabled for that exception, the Fbox
informs the Ibox. The Ibox records this information in the EXC_SUM register
and initiates an arithmetic trap.

The FPCR contains an additional field called the Dynamic Rounding Mode
(DYN) field. The Dynamic Rounding Mode field provides an alternate method
for selecting the rounding mode used for IEEE-type instructions. If the
rounding mode selected by the opcode is /D, then the rounding mode specified
by the FPCR [59:58] is used.

Figure 2–3 shows the format of the FPCR implemented by the 21064 while
Figure 2–4 shows the FPCR used by the 21064A.

Figure 2–3 21064 Floating-Point Control Register (FPCR) Format

63 62 60 0

S
U
M

RAZ/
IGN

I
O
V

I
N
E

U
N
F

O
V
F

D
Z
E

I
N
V

5859 57 56 55 54 53 52 51

RAZ/IGN
D
Y
N

MLO-007989

2–16 Introduction to the 21064/21064A

Figure 2–4 21064A Floating-Point Control Register (FPCR) Format

63 62 60 0

S
U
M

RAZ/
IGN

I
O
V

I
N
E

U
N
F

O
V
F

D
Z
E

I
N
V

5859 57 56 55 54 53 52 51

RAZ/IGN
D
Y
N

61

I
N
E
D

INVALID OPERATION

DIVISION BY ZERO

OVERFLOW

UNDERFLOW

INEXACT RESULT

INTEGER OVERFLOW

DYNAMIC ROUNDING MODE

INEXACT DISABLE

SUMMARY BIT
MLO-012203

Table 2–2 lists the bit descriptions for the FPCR.

Introduction to the 21064/21064A 2–17

Table 2–2 Floating-Point Control Register Bit Descriptions

Bit Description

63 Summary bit (SUM). Records bitwise OR of FPCR exception bits (FPCR
bits [57:52]).

62 21064A only. Inexact Disable (INED). If this bit is set and a floating-
point operation which enables trapping on inexact results generates an
inexact value the trap is suppressed.

[61:60] Reserved. Read as zero; ignored when written.

[59:58] Dynamic rounding mode (DYN). Indicates the rounding mode to be used
by an IEEE floating-point operate instruction when the instruction’s
function field specifies dynamic mode (/D). Assignments are:

DYN IEEE Rounding Mode Selected

00 Chopped

01 Minus infinity

10 Normal rounding (nearest even)

11 Plus infinity

57 Integer overflow (IOV). An integer arithmetic operation or a conversion
from floating to integer overflowed the destination precision.

56 Inexact result (INE). A floating arithmetic or conversion operation gave a
result that differed from the mathematically exact result.

55 Underflow (UNF). A floating arithmetic or conversion operation
underflowed the destination exponent.

54 Overflow (OVF). A floating arithmetic or conversion operation overflowed
the destination exponent.

53 Division by zero (DZE). An attempt was made to perform a floating divide
operation with a divisor of zero.

52 Invalid operation (INV). Attempt was made to perform a floating
arithmetic, conversion, or comparison operation, and one or more of
the operand values were illegal.

[51:0] Reserved. Read as zero; ignored when written.

2–18 Introduction to the 21064/21064A

2.7 IEEE Floating-Point Conformance
The 21064/21064A supports the IEEE floating-point operations as defined
by the Alpha architecture. Support for a complete implementation of the
IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Standard
754-1985) is provided by a combination of hardware and software as described
in the Alpha Architecture Reference Manual.

Additional information that provides guidelines for writing code supporting
precise exception handling (necessary for complete conformance to the
Standard) is in the Alpha Architecture Reference Manual.

Information specific to the 21064/21064A follows:

• Invalid operation (INV)

The invalid operation trap is always enabled. If the trap occurs, the
destination register is UNPREDICTABLE. This exception is signaled if any
VAX architecture operand is non-finite (reserved operand or dirty zero) and
the operation can take an exception (that is, certain instructions, such as
CPYS, never take an exception). This exception is signaled if any IEEE
operand is non-finite (NAN, INF, denorm) and the operation can take an
exception. This trap is also signaled for an IEEE format divide of +/- 0
divided by +/- 0. If the exception occurs, FPCR [INV] is set and the trap is
signaled to the Ibox.

• Divide by zero (DZE)

The divide-by-zero trap is always enabled. If the trap occurs, the
destination register is UNPREDICTABLE. For VAX architecture format,
this exception is signaled whenever the numerator is valid and the
denominator is zero. For IEEE format, this exception is signaled whenever
the numerator is valid and non-zero, with a denominator of +/- 0. If the
exception occurs, FPCR [DZE] is set and the trap is signaled to the Ibox.

For IEEE format divides, 0/0 signals INV, not DZE.

• Floating overflow (OVF)

The floating overflow trap is always enabled. If the trap occurs, the
destination register is UNPREDICTABLE. The exception is signaled if the
rounded result exceeds in magnitude the largest finite number which can
be represented by the destination format. This applies only to operations
whose destination is a floating-point data type. If the exception occurs,
FPCR [OVF] is set and the trap is signaled to the Ibox.

Introduction to the 21064/21064A 2–19

• Underflow (UNF)

The underflow trap can be disabled. If underflow occurs, the destination
register is forced to a true zero, consisting of a full 64 bits of zero. This is
done even if the proper IEEE result would have been -0. The exception is
signaled if the rounded result is smaller in magnitude than the smallest
finite number that can be represented by the destination format. If the
exception occurs, FPCR [UNF] is set. If the trap is enabled, the trap is
signaled to the Ibox.

• Inexact (INE)

The inexact trap can be disabled. The destination register always contains
the properly rounded result, whether the trap is enabled. The exception
is signaled if the rounded result is different from what would have been
produced if infinite precision (infinitely wide data) were available. For
floating-point results, this requires both an infinite precision exponent and
fraction. For integer results, this requires an infinite precision integer. If
the exception occurs, FPCR [INE] is set. If the trap is enabled, the trap is
signaled to the Ibox.

The IEEE-754 specification allows INE to occur concurrently with either
OVF or UNF. Whenever OVF is signaled, (if the inexact trap is enabled)
then INE is also signaled. Whenever UNF is signaled (if the inexact
trap is enabled), then INE is also signaled. The inexact trap also occurs
concurrently with integer overflow. All valid opcodes that enable INE also
enable both overflow and underflow.

If a CVTQL results in an integer overflow (IOV), FPCR [INE] is
automatically set. (The INE trap is never signaled to the Ibox because
there is no CVTQL opcode that enables the inexact trap.)

DIVx/I behavior is slightly different. If the DIVx/I instruction does not
take an input exception (that is, no INV or DZE), then the Fbox calculates
and stores the correct rounded result.

For the 21064—For DIVx without the /I qualifier FPCR [INE] is never
set.

For DIVx with the /I qualifier, FPCR [INE] is never set and an INE
trap is always signaled to the Ibox regardless of whether the result is
exact or inexact.
For the 21064A—The Fbox calculates the inexact flag, setting FPCR
[INE] if appropriate, and trapping on DVIx/SI instructions only when
the result is really inexact.

2–20 Introduction to the 21064/21064A

• Integer overflow (IOV)

The integer overflow trap can be disabled. The destination register
always contains the low order bits ([64] or [32]) of the true result (not
the truncated bits). Integer overflow can occur with CVTTQ, CVTGQ or
CVTQL. In conversions from floating to quadword integer or to longword
integer, an integer overflow occurs if the rounded result is outside the
range �263 ..263

� 1. In conversions from quadword integer to longword
integer, an integer overflow occurs if the result is outside the range �231

..231
� 1. If the exception occurs, the appropriate bit in the FPCR is set. If

the trap is enabled, the trap is signaled to the Ibox.

• Software completion (SWC)

The software completion signal is not recorded in the FPCR. The state
of software completion is recorded in the Exception Summary Register,
EXC_SUM[SWC], described in Section 5.2.12.

Floating-point exceptions generated by the 21064/21064A are recorded in two
places:

The FPCR, as defined in the Alpha architecture and accessible by the
MT/MF_FPCR instructions, records the occurrence of all exception that are
detected (except SWC), whether the corresponding trap is enabled (through
the instruction modifiers). This register can only be cleared through an
explicit clear command (MT_FPCR) so that the exception information it
records is a summary of all exceptions that have occurred since the last
clear.

In addition, if an exception is detected and the corresponding trap enabled,
the 21064/21064A records the condition in the EXC_SUM register and
initiates an arithmetic trap.

For the 21064—As a special case, to support inexact exception
behavior with the DIVS/I and DIVT/I instructions, the 21064 always
sets EXC_SUM [INE] during these instructions, although FPCR [INE]
is never set. This behavior allows software emulation of the division
instruction with accurate reporting of potential inexact exceptions.

For the 21064A—The Fbox will calculate the inexact flag, setting
FPCR [INE] if appropriate, and trapping on DVIx/SI instructions only
when the result is really inexact.

Input exceptions always take priority over output exceptions. If both exception
types occur, only the input exception is recorded in the FPCR and only the
input exception is signaled to the Ibox.

Introduction to the 21064/21064A 2–21

2.8 Cache Organization
The 21064/21064A includes two on-chip caches, an instruction cache (Icache)
and a data cache (Dcache). All memory cells in both Icache and Dcache are
fully static six transistor CMOS structures.

2.8.1 21064/21064A Instruction Cache (Icache)
The instruction caches for the 21064 and the 21064A are different so both are
described here.

2.8.1.1 21064 Instruction Cache (Icache)
The 21064 Icache is an 8-KB, physical direct-mapped cache. Icache blocks, or
lines, contain 32-bytes of instruction stream data with associated tag, plus a
6-bit ASN field (from the ICCSR IPR), a 1-bit ASM field (from the ITB_PTE
IPR), and an 8-bit branch history field per block. It does not contain hardware
for maintaining coherency with memory and is unaffected by the invalidate
bus.

2.8.1.2 21064A Instruction Cache (Icache)
The 21064A Icache is a 16-KB, physical direct-mapped cache that is addressed
using VA 13 and adr_h [12:5]. An Icache block, or line, contains 32-bytes of
instruction stream data with 8 data parity bits and a tag with one tag parity
bit. The block also contains a 6-bit ASN field (from the ICCSR IPR), a 1-bit
ASM field (from the ITB_PTE IPR), a 16-bit branch history field and a no data
parity (Nodp) bit. It does not contain hardware for maintaining coherency with
memory and is unaffected by the invalidate bus.

2.8.1.3 21064/21064A Icache Stream Buffer
The 21064/21064A also contains a single-entry Icache stream buffer that,
together with its supporting logic, reduces the performance penalty due to
Icache misses incurred during in-line instruction processing. Stream buffer
prefetch requests never cross physical page boundaries, but instead wrap
around to the first block of the current page.

2–22 Introduction to the 21064/21064A

2.8.2 21064/21064A Data Cache (Dcache)
The data caches for the 21064 and the 21064A are different so both are
described here.

2.8.2.1 21064 Data Cache (Dcache)
The 21064 Dcache contains 8 KB. It is a write-through, direct mapped, read
allocate physical cache and has 32-byte blocks. System components can keep
the Dcache coherent with memory by using the invalidate bus described in
Section 6.5.3.

2.8.2.2 21064A Data Cache (Dcache)
The 21064A 16 KB Dcache is a write-through, direct mapped, read allocated,
physical tagged cache. Each block has 32-bytes and is addressed by VA 13 and
adr_h [12:5]. External logic can keep the Dcache coherent with memory by
using the invalidate bus described in Section 6.5.3.

The 21064A Dcache has parity protection. Each cache line includes 8 data
parity bits (one per LW) and a tag parity bit.

The 21064A has both 8K byte and 16K byte Dcache modes. The mode is
selected using ABOX_CTL [DC_16K].

2.9 Pipeline Organization
The 21064/21064A has a seven-stage pipeline for integer operate and memory
reference instructions. Floating-point operate instructions progress through
a ten-stage pipeline. The Ibox maintains state for all pipeline stages to track
outstanding register writes, and determine Icache hit/miss.

Figure 2–5 through Figure 2–7 show the integer operate, memory reference,
and the floating-point operate pipelines for the Ibox, Ebox, Abox, and Fbox.
The first four cycles are executed in the Ibox and the last stages are box
specific. There are bypasses in all of the boxes that allow the results of one
instruction to be used as operands of a following instruction without having to
be written to the register file. Section 2.10 describes the pipeline scheduling
rules.

Introduction to the 21064/21064A 2–23

Figure 2–5 Integer Operate Pipeline

IF SW I0 A1 A2 WRI1

[0] [1] [2] [3] [4] [5] [6]

L J - 0 1 8 7 5 - T I 0

Stage 0: Instruction Fetch
Stage 1: Swap Dual Issue Instruction /Branch Prediction
Stage 2: Decode
Stage 3: Register file(s) access / Issue check
Stage 4: Computation cycle 1 / Ibox computes new PC
Stage 5: Computation cycle 2 / ITB look-up
Stage 6: Integer register file write / Icache Hit/Miss

Figure 2–6 Memory Reference Pipeline

IF SWAP I0 AC TB HMI1

[0] [1] [2] [3] [4] [5] [6]

LJ-01880-TI0

Stages 0–3: Same
Stage 4: Abox calculates the effective Dstream address
Stage 5: DTB look-up
Stage 6: Dcache hit/miss and load data register file write

Figure 2–7 Floating-Point Operate Pipeline

IF SW I0 F1 F2 F3I1

[0] [1] [2] [3] [4] [5] [6]

LJ-01881-TI0

F4

[7]

F5

[8]

FWR

[9]

Stages 0–3: Same
Stage 4–8: Floating-point calculate pipeline
Stage 9: Floating-point register file write

2–24 Introduction to the 21064/21064A

2.9.1 Static and Dynamic Stages
The 21064/21064A integer pipeline divides instruction processing into four
static and three dynamic stages of execution. The 21064/21064A floating-point
pipeline maintains the first four static stages and adds six dynamic stages of
execution. The first four stages consist of:

• Instruction fetch

• Swap

• Decode

• Issue logic

These stages are static because instructions can remain valid in the same
pipeline stage for multiple cycles while waiting for a resource, or stalling for
other reasons.

Dynamic stages always advance state and are unaffected by any stall in the
pipeline. (Pipeline stalls are also referred to as pipeline freezes.) A pipeline
freeze may occur while zero instructions issue, or while one instruction of a
pair issues and the second is held at the issue stage. A pipeline freeze implies
that a valid instruction or instructions are presented to be issued but cannot
proceed.

Upon satisfying all issue requirements, instructions are allowed to continue
through any pipeline toward completion. Instructions cannot be held in a given
pipe stage after they are issued. It is up to the issue stage to ensure that all
resource conflicts are resolved before an instruction is allowed to continue.
The only means of stopping instructions after the issue stage is a chip-internal
abort condition.

2.9.2 Aborts
Aborts can result from a number of causes. In general, they are grouped into
two classes:

• Exceptions (including interrupts)

• Non-exceptions

There is one basic difference between the two classes: exceptions require
that the pipeline be drained of all outstanding instructions before restarting
the pipeline at a redirected address. In both exceptions and non-exceptions,
the pipeline must be flushed of all instructions that were fetched after the
instruction that caused the abort condition. This includes stopping one
instruction of a dual-issued pair in the case of an abort condition on the first
instruction of the pair.

Introduction to the 21064/21064A 2–25

The non-exception case, however, does not need to drain the pipeline of all
outstanding instructions ahead of the aborting instruction. The pipeline
can be immediately restarted at a redirected address. Examples of non-
exception abort conditions are branch mispredictions, subroutine call/return
mispredictions, and instruction cache misses. Data cache misses do not
produce abort conditions but can cause pipeline freezes.

If an exception occurs, the processor aborts all instructions issued after the
excepting instruction as described. Due to the nature of some error conditions,
this can occur as late as the write cycle. Next, the address of the excepting
instruction is latched in the EXC_ADDR IPR. When the pipeline is fully
drained, the processor begins instruction execution at the address given by the
PALcode dispatch. The pipeline is drained when:

• All outstanding writes to both the integer and floating-point register file
have completed and arithmetic traps have been reported.

• All outstanding instructions have successfully completed memory
management and access protection traps.

2.9.3 Non-Issue Conditions
There are two basic reasons for non-issue conditions.

• A pipeline freeze when a valid instruction or pair of instructions are
prepared to issue but cannot due to a resource conflict

This type of non-issue cycle can be minimized through code scheduling.

• Pipeline bubbles when there is no valid instruction in the pipeline to issue

Pipeline bubbles exist due to abort conditions as described in Section 2.9.2.
In addition, a single pipeline bubble is produced whenever a branch-type
instruction is predicted to be taken, including subroutine calls and returns.
Pipeline bubbles are reduced directly by the hardware through bubble
squashing, but can also be effectively minimized through careful coding
practices. Bubble squashing involves the ability of the first four pipeline
stages to advance whenever a bubble is detected in the pipeline stage
immediately ahead of it while the pipeline is otherwise frozen.

2–26 Introduction to the 21064/21064A

2.10 Scheduling and Issuing Rules
Scheduling and issuing rules are covered in the sections that follow.

2.10.1 Instruction Class Definition
The scheduling and dual issue rules covered in this section are only
performance related. There are no functional dependencies related to
scheduling or dual issuing. The scheduling and issuing rules are defined
in terms of instruction classes. Table 2–3 specifies all of the instruction classes
and the box that executes the particular class.

Table 2–3 Producer-Consumer Classes

Class Name Box Instruction List

LD Abox All loads, (HW_MFPR, RPCC, RS, RC, STC producers only),
(FETCH consumer only)

ST Abox All stores, HW_MTPR

IBR Ebox Integer conditional branches

FBR Fbox Floating-point conditional branches

JSR Ebox Jump to subroutine instructions JMP, JSR, RET, or JSR_
COROUTINE, (BSR, BR producer only)

IADDLOG Ebox ADDL ADDL/V ADDQ ADDQ/V SUBL SUBL/V SUBQ SUBQ
/V S4ADDL S4ADDQ S8ADDL S8ADDQ S4SUBL S4SUBQ
S8SUBL S8SUBQ LDA LDAH AND BIS XOR BIC ORNOT
EQV

SHIFTCM Ebox SLL SRL SRA EXTQL EXTLL EXTWL EXTBL EXTQH
EXTLH EXTWH MSKQL MSKLL MSKWL MSKBL MSKQH
MSKLH MSKWH INSQL INSLL INSWL INSBL INSQH
INSLH INSWH ZAP ZAPNOT CMOVEQ CMOVNE CMOVLT
CMOVLE CMOVGT CMOVGE CMOVLBS CMOVLBC

ICMP Ebox CMPEQ CMPLT CMPLE CMPULT CMPULE CMPBGE

IMULL Ebox MULL MULL/V

IMULQ Ebox MULQ MULQ/V UMULH

FPOP Fbox Floating-point operates except divide

FDIV Fbox Floating-point divide

Introduction to the 21064/21064A 2–27

2.10.2 Producer-Consumer Latency
The 21064/21064A enforces the following issue rules regarding producer-
consumer latencies.

The scheduling rules are described as a producer-consumer matrix, shown
in Figure 2–8. Each row and column in the matrix is a class of Alpha
instructions. A number 1 in the Producer-Consumer Latency Matrix indicates
one cycle of latency. A one cycle latency means that if instruction B uses
the results of instruction A, then instruction B can be issued one cycle after
instruction A is issued.

When determining latency for a given instruction sequence, first identify the
classes of each instruction. The following example lists the classes in the
comment field:

ADDQ R1, R2, R3 ! IADDLOG class
SRA R3, R4, R5 ! SHIFT class
SUBQ R5, R6, R7 ! IADDLOG class
STQ R7, D(R10) ! ST class

The SRA instruction consumes the result (R3) produced by the ADDQ
instruction. The latency associated with an iadd-shift producer-consumer
pair as specified by the matrix is one. That means that if the ADDQ was
issued in cycle n, the SRA could be issued in cycle n+ 1:

The SUBQ instruction consumes the result (R5) produced by the SRA
instruction. The latency associated with a shift-iadd producer-consumer
pair, as specified by the matrix, is two. That means that if the SRA was issued
in cycle n, the SUBQ could be issued in cycle n +2: The Ibox injects one NOP
cycle in the pipeline for this case.

The final case has the STQ instruction consuming the result (R7) produced
by the SUBQ instruction. The latency associated with an iadd-st producer-
consumer pair, when the result of the iadd is the store data, is zero. This
means that the SUBQ and STQ instruction pair can be dual-issued, if they
were fetched in the same quadword.

The 21064A includes floating-point divide hardware that implements a
non-restoring, normalizing, variable-shift algorithm. The algorithm retires
an average of 2.4 bits per cycle. The typical divide latency, including
pipeline overhead, will be 29/25 cycles for double precision operations and
19/15 cycles for single precision operations. The worst-case values for the
21064A operations are the same as the 21064 (63/59 and 34/30), as shown in
Figure 2–8.

2–28 Introduction to the 21064/21064A

Figure 2–8 Producer-Consumer Latency Matrix

LD
(1)

JSR IADDLOG SHIFTCM ICMP IMULL IMULQ FPOP FDIV
F/S
(4)

Consumer

Producer

LD

ST (2)

IBR

JSR

IADDLOG

SHIFTCM

ICMP

IMUL

FBR

FPOP

FDIV

FDIV
G/T
(4)

(3)(3)

3 3

3 3

3 3

3 3

3 3

3 3

3 3

3 3

3 X

3 X

3 X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

2

2/0

1

2

1

1

1

1

2

2

2

2

2

2

2

2

X

X

X

X

2

2/0

2

2

2

2/0

1

2

21

21/20

21

21

21

21

21

21/19

23

23/22

23

23

23

23

23

23/21

6

6

6

X

X

X

X/4

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X/32 X/61

63

63

63/59

34

34

34/30

LJ-01973-TI0

Notes:

1. For loads, Dcache hit is assumed. The latency for a Dcache miss is
dependent on the system configuration.

2. For ST consumer class, some table entries contain 2 values in the form
A/D. The A represents the latency for base address of store and the D
represents the latency for store data. (D is known.) Floating-point results
cannot be used as the base address for load or store operations.

3. For IMULL or IMULQ followed by IMUL in the form of Y/N, the Y
represents the latency with data dependency; that is, the IMUL (N) uses
the result from Y. N is the multiply latency without data dependencies (e.g.
multiplier unit resource contention).

4. For FDIV followed by FDIV, there are two latencies given. The first
represents the latency with data dependency; the second FDIV uses the
result from the first. The second is the division latency without data
dependencies.

X indicates an impossible state, or a state not encountered under normal
circumstances. For example, a floating-point branch cannot consume data from
an integer compare.

Introduction to the 21064/21064A 2–29

2.10.3 Producer-Producer Latency
Producer-producer latency, also known as write-after write-conflicts, are
restricted only by the register write order. For most instructions, this is
dictated by issue order; however, IMUL, FDIV, and LD instructions may
require more time than other instructions to complete and, therefore, must
stall following instructions that write the same destination register to preserve
write ordering. In general, only cases involving an intervening producer-
consumer conflict are of interest. They can occur commonly in a dual issue
situation when a register is reused. In these cases, producer-consumer
latencies are equal to or greater than the required producer-producer latency
as determined by write ordering and therefore dictate the overall latency. An
example of this case is shown in the code:

LDQ R2,D(R0) ; R2 destination
ADDQ R2,R3,R4 ; wr-rd conflict stalls execution waiting for R2
LDQ R2,D(R1) ; wr-wr conflict may dual issue when ADDQ issues

2.10.4 Instruction Issue Rules
The following conditions prevent instruction issue:

• No instruction can be issued until all of its source and destination registers
are clean; in other words, all outstanding writes to the destination register
are guaranteed to complete in issue order and there are no outstanding
writes to the source registers or those writes can be bypassed.

• No LD, ST, FETCH, MB, RPCC, RS, RC, TRAPB, HW_MXPR, or BSR,
BR, JSR (with destination other than R31) can be issued after an MB
instruction until the MB has been acknowledged on the external pin bus.

• No IMUL instructions can be issued if the integer multiplier is busy.

• No SHIFT, IADDLOG, ICMP or ICMOV instruction can be issued exactly
three cycles before an integer multiplication completes.

• No integer or floating-point conditional branch instruction can be issued in
the cycle immediately following a JSR, JMP, RET, JSR_COROUTINE, or
HW_REI instruction.

• No TRAPB instruction can be issued as the second instruction of a dual
issue pair.

• No LD instructions can be issued in the two cycles immediately following
an STC.

2–30 Introduction to the 21064/21064A

• No LD, ST, FETCH, MB, RPCC, RS, RC, TRAPB, HW_MXPR or BSR,
BR, JSR (with destination other than R31) instruction can be issued when
the Abox is busy due to a load miss or write buffer overflow. For more
information see Section 2.5.3.

• No FDIV instruction can be issued if the floating-pointer divider is busy.

• No floating-point operate instruction can be issued exactly five or exactly
six cycles before a floating-point divide completes.

2.10.5 Dual Issue Table
Table 2–4 can be used to determine instruction pairs that can issue in a single
cycle. Instructions are dispatched using two internal data paths or buses. For
more information about instructions and their opcodes and definitions, refer to
the Alpha Architecture Reference Manual.

The buses are referred to in Table 2–4 as IB0, IB1, and IBx.

Any instruction identified with IB0 in the table can be issued in the same cycle
as any instruction identified with IB1. An instruction that is identified as IBx
can be issued with either IB0 or IB1.

Dual issue is attempted if the input operands are available as defined by
the Producer-Consumer Latency Matrix (Figure 2–8) and the following
requirements are met:

• Two instructions must be contained within an aligned quadword.

• The instructions must not both be in the group labeled as IB0.

• The instructions must not both be in the group labeled as IB1.

• No more than one of JSR, integer conditional branch, BSR, HW_REI, BR,
or floating-point branch can be issued in the same cycle.

• No more than one of load, store, HW_MTPR, HW_MFPR, MISC, TRAPB,
HW_REI, BSR, BR, OR JSR can be issued in the same cycle.

Note

Producer-Consumer latencies of zero indicate that dependent operations
between these two instruction classes can dual issue. For example,
ADDQ R1, R2, R3 STQ R3, D(R4).

Introduction to the 21064/21064A 2–31

Table 2–4 Opcode Summary with Instruction Issue Bus

00 08 10 18 20 28 30 38

0/8 PAL* LDA INTA* MISC* LDF LDL BR BLBC

IB1 IB0 IB0 IB1 IBx IBx IB1 IB1

1/9 Res LDAH INTL* HW_MFPR LDG LDQ FBEQ BEQ

IB1 IB0 IB0 IB1 IBx IBx IB0 IB1

2/A Res Res INTS* JSR* LDS LDL_L FBLT BLT

IB1 IB1 IB0 IB1 IBx IBx IB0 IB1

3/B Res LDQ_U INTM* HW_LD LDT LDQ_L FBLE BLE

IB1 IBx IB0 IB1 IBx IBx IB0 IB1

4/C Res Res Res Res STF STL BSR BLBS

IB1 IB1 IB1 IB1 IB0 IB1 IB1 IB1

5/D Res Res FLTV* HW_MTPR STG STQ FBNE BNE

IB1 IB1 IB1 IB1 IB0 IB1 IB0 IB1

6/E Res Res FLTI* HW_REI STS STL_C FBGE BGE

IB1 IB1 IB1 IB1 IB0 IB1 IB0 IB1

7/F Res STQ_U FLTL* HW_ST STT STQ_C FBGT BGT

IB1 IB1 IB1 IB1 IB0 IB1 IB0 IB1

Key to Opcode Summary with Instruction Issue Bus

FLTI*—IEEE floating-point instruction opcodes
FLTL*—Floating-point operate instruction opcodes
FLTV*—VAX floating-point instruction opcodes
INTA*—Integer arithmetic instruction opcodes
INTL*—Integer logical instruction opcodes
INTM*—Integer multiply instruction opcodes
INTS*—Integer shift instruction opcodes
JSR*—Jump instruction opcodes
MISC*—Miscellaneous instruction opcodes
PAL*—PALcode instruction (CALL_PAL) opcodes
Res—Reserved for Digital

Table 2–4 lists all Alpha opcodes from 00 (CALL_PAL) through 3F (BGT).

In the table, the column headings appearing over the instructions have a
granularity of 816. The rows beneath the leftmost column supply the individual
hex number to resolve that granularity.

If an instruction column has a 0 in the right (low) hex digit, replace that 0
with the number to the left of the backslash in the leftmost column on the
instruction’s row.

2–32 Introduction to the 21064/21064A

If an instruction column has an 8 in the right (low) hexadecimal digit, replace
that 8 with the number to the right of the backslash in the leftmost column.

For example, the third row (2/A) under the 1016 column contains the symbol
INTS*, representing the all-integer shift instructions. The opcode for those
instructions would then be 1216 because the 0 in 10 is replaced by the 2 in the
leftmost column.

Likewise, the third row under the 1816 column contains the symbol JSR*,
representing all jump instructions. The opcode for those instructions is 1A
because the 8 in the heading is replaced by the number to the right of the
backslash in the leftmost column.

The instruction format is listed under the instruction symbol. See the Alpha
Architecture Reference Manual for additional information.

Introduction to the 21064/21064A 2–33

2.11 PALcode
In a family of machines, both users and operating system implementors
require functions to be implemented consistently. When functions conform to
a common interface, the code that uses those functions can be used on several
different implementations without modification.

The five opcodes (PAL19, PAL1B, PAL1D, PAL1E, PAL1F) are provided by
the Alpha architecture as implementation-specific privileged instructions.
These instructions are defined independently for each Alpha hardware
implementation to provide PALcode software routines with access to specific
hardware state and functions.

2.11.1 Architecturally Reserved PALcode Instructions
The hardware-specific instructions listed in Table 2–5 are executed in the
PALcode environment. They produce OPCDEC exceptions (see Section 4.5 for
a definition of OPCDEC) if executed while not in the PALcode environment.
These instructions are mapped using the architecturally reserved opcodes
(PAL19, PAL1B, PAL1D, PAL1E, PAL1F). They can only be used while
executing chip-specific PALcode. See Section 4.8 for further information.

Table 2–5 Reserved PALcode Instructions (21064/21064A Specific)

Opcode Mnemonic Operation

PAL19 HW_MFPR Move data from processor register

PAL1B HW_LD Load data from memory

PAL1D HW_MTPR Move data to processor register

PAL1E HW_REI Return from PALmode exception

PAL1F HW_ST Store data in memory

2–34 Introduction to the 21064/21064A

3
Instruction Set

3.1 Scope
This chapter provides information about the 21064/21064A instruction set. See
the Alpha Architecture Handbook for further information.

3.1.1 Instruction Summary
Table 3–1 provides the instruction format and opcode notation used in
Table 3–2. All values are in hexadecimal radix.

Table 3–1 Instruction Format and Opcode Notation

Instruction
Format

Format
Symbol

Opcode
Notation Meaning

Branch Bra oo oo is the 6-bit opcode field.

Floating-
point

F-P oo.fff oo is the 6-bit opcode field.
fff is the 11-bit function code field.

Memory Mem oo oo is the 6-bit opcode field.

Memory/
func code

Mfc oo.ffff oo is the 6-bit opcode field.
ffff is the 16-bit function code in the
displacement field.

Memory/
branch

Mbr oo.h oo is the 6-bit opcode field.
h is the high-order two bits of the
displacement field.

Operate Opr oo.ff oo is the 6-bit opcode field.
ff is the 7-bit function code field.

PALcode Pcd oo oo is the 6-bit opcode field; the
particular PALcode instruction is
specified in the 26-bit function code
field.

Instruction Set 3–1

Table 3–2 shows architecture instructions. Table 3–3 shows qualifiers for
IEEE floating-point instructions and Table 3–4 shows qualifiers for VAX
floating-point instructions.

Table 3–2 Architecture Instructions

Mnemonic Format Opcode Description

ADDF F-P 15.080 Add F_floating
ADDG F-P 15.0A0 Add G_floating
ADDL Opr 10.00 Add longword
ADDL/V 10.40
ADDQ Opr 10.20 Add quadword
ADDQ/V 10.60
ADDS F-P 16.080 Add S_floating
ADDT F-P 16.0A0 Add T_floating
AND Opr 11.00 Logical product
BEQ Bra 39 Branch if = zero
BGE Bra 3E Branch if � zero
BGT Bra 3F Branch if > zero
BIC Opr 11.0 Bit clear
BIS Opr 11.20 Logical sum
BLBC Bra 38 Branch if low bit clear

BLBS Bra 3C Branch if low bit set
BLE Bra 3B Branch if � zero
BLT Bra 3A Branch if < zero
BNE Bra 3D Branch if 6= zero
BR Bra 30 Unconditional branch
BSR Mbr 34 Branch to subroutine
CALL_PAL Pcd 00 Trap to PALcode
CMOVEQ Opr 11.24 CMOVE if = zero
CMOVGE Opr 11.46 CMOVE if � zero
CMOVGT Opr 11.66 CMOVE if > zero
CMOVLBC Opr 11.16 CMOVE if low bit clear
CMOVLBS Opr 11.14 CMOVE if low bit set
CMOVLE Opr 11.64 CMOVE if � zero
CMOVLT Opr 11.44 CMOVE if < zero
CMOVNE Opr 11.26 CMOVE if 6= zero

CMPBGE Opr 10.0F Compare byte
CMPEQ Opr 10.2D Compare signed quadword equal
CMPGEQ F-P 15.0A5 Compare G_floating equal

(continued on next page)

3–2 Instruction Set

Table 3–2 (Cont.) Architecture Instructions

Mnemonic Format Opcode Description

CMPGLE F-P 15.0A7 Compare G_floating less than or
equal

CMPGLT F-P 15.0A6 Compare G_floating less than
CMPLE Opr 10.6D Compare signed quadword less

than or equal
CMPLT Opr 10.4D Compare signed quadword less

than
CMPTEQ F-P 16.0A5 Compare T_floating equal
CMPTLE F-P 16.0A7 Compare T_floating less than or

equal
CMPTLT F-P 16.0A6 Compare T_floating less than
CMPTUN F-P 16.0A4 Compare T_floating unordered
CMPULE Opr 10.3D Compare unsigned quadword

less than or equal
CMPULT Opr 10.1D Compare unsigned quadword

less than
CPYS F-P 17.020 Copy sign
CPYSE F-P 17.022 Copy sign and exponent

CPYSN F-P 17.021 Copy sign negate
CVTDG F-P 15.09E Convert D_floating to G_floating
CVTGD F-P 15.0AD Convert G_floating to D_floating
CVTGF F-P 15.0AC Convert G_floating to F_floating
CVTGQ F-P 15.0AF Convert G_floating to quadword
CVTLQ F-P 17.010 Convert longword to quadword
CVTQF F-P 15.0BC Convert quadword to F_floating
CVTQG F-P 15.0BE Convert quadword to G_floating
CVTQL F-P 17.030 Convert quadword to longword
CVTQL/SV 17.530
CVTQL/V 17.130
CVTQS F-P 16.0BC Convert quadword to S_floating
CVTQT F-P 16.0BE Convert quadword to T_floating
CVTST F-P 16.2AC Convert S_floating to T_floating
CVTTQ F-P 16.0AF Convert T_floating to quadword

CVTTS F-P 16.0AC Convert T_floating to S_floating
DIVF F-P 15.083 Divide F_floating
DIVG F-P 15.0A3 Divide G_floating
DIVS F-P 16.083 Divide S_floating
DIVT F-P 16.0A3 Divide T_floating

(continued on next page)

Instruction Set 3–3

Table 3–2 (Cont.) Architecture Instructions

Mnemonic Format Opcode Description

EQV Opr 11.48 Logical equivalence
EXCB Mfc 18.0400 Exception barrier
EXTBL Opr 12.06 Extract byte low
EXTLH Opr 12.6A Extract longword high
EXTLL Opr 12.26 Extract longword low
EXTQH Opr 12.7A Extract quadword high
EXTQL Opr 12.36 Extract quadword low
EXTWH Opr 12.5A Extract word high
EXTWL Opr 12.16 Extract word low
FBEQ Bra 31 Floating branch if = zero

FBGE Bra 36 Floating branch if � zero
FBGT Bra 37 Floating branch if > zero
FBLE Bra 33 Floating branch if � zero
FBLT Bra 32 Floating branch if < zero
FBNE Bra 35 Floating branch if 6= zero
FCMOVEQ F-P 17.02A FCMOVE if = zero
FCMOVGE F-P 17.02D FCMOVE if � zero
FCMOVGT F-P 17.02F FCMOVE if > zero
FCMOVLE F-P 17.02E FCMOVE if � zero
FCMOVLT F-P 17.02C FCMOVE if < zero
FCMOVNE F-P 17.02B FCMOVE if 6= zero
FETCH Mfc 18.8000 Prefetch data
FETCH_M Mfc 18.A000 Prefetch data, modify intent
INSBL Opr 12.0B Insert byte low
INSLH Opr 12.67 Insert longword high

INSLL Opr 12.2B Insert longword low
INSQH Opr 12.77 Insert quadword high
INSQL Opr 12.3B Insert quadword low
INSWH Opr 12.57 Insert word high
INSWL Opr 12.1B Insert word low
JMP Mbr 1A.0 Jump
JSR Mbr 1A.1 Jump to subroutine
JSR_COROUTINE Mbr 1A.3 Jump to subroutine return
LDA Mem 08 Load address
LDAH Mem 09 Load address high
LDF Mem 20 Load F_floating
LDG Mem 21 Load G_floating

(continued on next page)

3–4 Instruction Set

Table 3–2 (Cont.) Architecture Instructions

Mnemonic Format Opcode Description

LDL Mem 28 Load sign-extended longword
LDL_L Mem 2A Load sign-extended longword

locked
LDQ Mem 29 Load quadword

LDQ_L Mem 2B Load quadword locked
LDQ_U Mem 0B Load unaligned quadword
LDS Mem 22 Load S_floating
LDT Mem 23 Load T_floating
MB Mfc 18.4000 Memory barrier
MF_FPCR F-P 17.025 Move from FPCR
MSKBL Opr 12.02 Mask byte low
MSKLH Opr 12.62 Mask longword high
MSKLL Opr 12.22 Mask longword low
MSKQH Opr 12.72 Mask quadword high
MSKQL Opr 12.32 Mask quadword low
MSKWH Opr 12.52 Mask word high
MSKWL Opr 12.12 Mask word low
MT_FPCR F-P 17.024 Move to FPCR
MULF F-P 15.082 Multiply F_floating

MULG F-P 15.0A2 Multiply G_floating
MULL Opr 13.00 Multiply longword
MULL/V 13.40
MULQ Opr 13.20 Multiply quadword
MULQ/V 13.60
MULS F-P 16.082 Multiply S_floating
MULT F-P 16.0A2 Multiply T_floating
ORNOT Opr 11.28 Logical sum with complement
RC Mfc 18.E000 Read and clear
RET Mbr 1A.2 Return from subroutine
RPCC Mfc 18.C000 Read process cycle counter
RS Mfc 18.F000 Read and set
S4ADDL Opr 10.02 Scaled add longword by 4
S4ADDQ Opr 10.22 Scaled add quadword by 4
S4SUBL Opr 10.0B Scaled subtract longword by 4

S4SUBQ Opr 10.2B Scaled subtract quadword by 4
S8ADDL Opr 10.12 Scaled add longword by 8

(continued on next page)

Instruction Set 3–5

Table 3–2 (Cont.) Architecture Instructions

Mnemonic Format Opcode Description

S8ADDQ Opr 10.32 Scaled add quadword by 8
S8SUBL Opr 10.1B Scaled subtract longword by 8
S8SUBQ Opr 10.3B Scaled subtract quadword by 8
SLL Opr 12.39 Shift left logical
SRA Opr 12.3C Shift right arithmetic
SRL Opr 12.34 Shift right logical
STF Mem 24 Store F_floating
STG Mem 25 Store G_floating
STS Mem 26 Store S_floating
STL Mem 2C Store longword
STL_C Mem 2E Store longword conditional
STQ Mem 2D Store quadword
STQ_C Mem 2F Store quadword conditional

STQ_U Mem 0F Store unaligned quadword
STT Mem 27 Store T_floating
SUBF F-P 15.081 Subtract F_floating
SUBG F-P 15.0A1 Subtract G_floating
SUBL Opr 10.09 Subtract longword
SUBL/V 10.49
SUBQ Opr 10.29 Subtract quadword
SUBQ/V 10.69
SUBS F-P 16.081 Subtract S_floating
SUBT F-P 16.0A1 Subtract T_floating
TRAPB Mfc 18.0000 Trap barrier
UMULH Opr 13.30 Unsigned multiply quadword

high
WMB Mfc 18.44 Write memory barrier
XOR Opr 11.40 Logical difference
ZAP Opr 12.30 Zero bytes
ZAPNOT Opr 12.31 Zero bytes not

3–6 Instruction Set

3.1.2 IEEE Floating-Point Instructions
Table 3–3 lists the hexadecimal value of the 11-bit function code field for the
IEEE floating-point instructions, with and without qualifiers. The opcode for
these instructions is 1616.

Table 3–3 IEEE Floating-Point Instruction Function Codes

Mnemonic None /C /M /D /U /UC /UM /UD

ADDS 080 000 040 0C0 180 100 140 1C0
ADDT 0A0 020 060 0E0 1A0 120 160 1E0
CMPTEQ 0A5 – – – – – – –
CMPTLT 0A6 – – – – – – –
CMPTLE 0A7 – – – – – – –
CMPTUN 0A4 – – – – – – –
CVTQS 0BC 03C 07C 0FC – – – –
CVTQT 0BE 03E 07E 0FE – – – –
CVTST See below
CVTTQ See below
CVTTS 0AC 02C 06C 0EC 1AC 12C 16C 1EC
DIVS 083 003 043 0C3 183 103 143 1C3
DIVT 0A3 023 063 0E3 1A3 123 163 1E3
MULS 082 002 042 0C2 182 102 142 1C2
MULT 0A2 022 062 0E2 1A2 122 162 1E2
SUBS 081 001 041 0C1 181 101 141 1C1
SUBT 0A1 021 061 0E1 1A1 121 161 1E1

(continued on next page)

Instruction Set 3–7

Table 3–3 (Cont.) IEEE Floating-Point Instruction Function Codes

Mnemonic /SU /SUC /SUM /SUD /SUI /SUIC /SUIM /SUID

ADDS 580 500 540 5C0 780 700 740 7C0
ADDT 5A0 520 560 5E0 7A0 720 760 7E0
CMPTEQ 5A5 – – – – – – –
CMPTLT 5A6 – – – – – – –
CMPTLE 5A7 – – – – – – –
CMPTUN 5A4 – – – – – – –
CVTQS – – – – 7BC 73C 77C 7FC
CVTQT – – – – 7BE 73E 77E 7FE
CVTTS 5AC 52C 56C 5EC 7AC 72C 76C 7EC
DIVS 583 503 543 5C3 783 703 743 7C3
DIVT 5A3 523 563 5E3 7A3 723 763 7E3
MULS 582 502 542 5C2 782 702 742 7C2
MULT 5A2 522 562 5E2 7A2 722 762 7E2
SUBS 581 501 541 5C1 781 701 741 7C1
SUBT 5A1 521 561 5E1 7A1 721 761 7E1

Mnemonic None /S

CVTST 2AC 6AC

Mnemonic None /C /V /VC /SV /SVC /SVI /SVIC

CVTTQ 0AF 02F 1AF 12F 5AF 52F 7AF 72F

Mnemonic D /VD /SVD /SVID /M /VM /SVM /SVIM

CVTTQ 0EF 1EF 5EF 7EF 06F 16F 56F 76F

3–8 Instruction Set

3.1.3 VAX Floating-Point Instructions
Table 3–4 lists the hexadecimal value of the 11-bit function code field for the
VAX floating-point instructions, with and without qualifiers. The opcode for
these instructions is 1516.

Table 3–4 VAX Floating-Point Instruction Function Codes

Mnemonic None /C /U /UC /S /SC /SU /SUC

ADDF 080 000 180 100 480 400 580 500
CVTDG 09E 01E 19E 11E 49E 41E 59E 51E
ADDG 0A0 020 1A0 120 4A0 420 5A0 520
CMPGEQ 0A5 – – – 4A5 – – –
CMPGLT 0A6 – – – 4A6 – – –
CMPGLE 0A7 – – – 4A7 – – –
CVTGF 0AC 02C 1AC 12C 4AC 42C 5AC 52C
CVTGD 0AD 02D 1AD 12D 4AD 42D 5AD 52D
CVTGQ See below
CVTQF 0BC 03C – – – – – –
CVTQG 0BE 03E – – – – – –
DIVF 083 003 183 103 483 403 583 503
DIVG 0A3 023 1A3 123 4A3 423 5A3 523
MULF 082 002 182 102 482 402 582 502
MULG 0A2 022 1A2 122 4A2 422 5A2 522
SUBF 081 001 181 101 481 401 581 501
SUBG 0A1 021 1A1 121 4A1 421 5A1 521

Mnemonic None /C /V /VC /S /SC /SV /SVC

CVTGQ 0AF 02F 1AF 12F 4AF 42F 5AF 52F

Instruction Set 3–9

3.1.4 Required PALcode Function Codes
The opcodes listed in Table 3–5 are required for all Alpha architecture
implementations. The notation used is oo.ffff, where oo is the hexadecimal
6-bit opcode and ffff is the hexadecimal 26-bit function code.

Table 3–5 Required PALcode Function Codes

Mnemonic Type Function Code

DRAINA Privileged 00.0002

HALT Privileged 00.0000

IMB Unprivileged 00.0086

3.1.5 Opcodes Reserved for PALcode
The opcodes listed in Table 3–6 are reserved by the Alpha architecture to be
implementation specific. They are used by the 21064/21064A to implement
PALcode as listed in Table 3–6. See Section 4.8 for more information.

Table 3–6 Opcodes Specific to the 21064/21064A

Architecture
Mnemonic Opcode

21064/21064A
Mnemonic

Architecture
Mnemonic Opcode

21064
/21064A
Mnemonic

PAL19 19 HW_MFPR PAL1B 1B HW_LD
PAL1D 1D HW_MTPR PAL1E 1E HW_REI
PAL1F 1F HW_ST – – –

3.1.6 Opcodes Reserved for Digital
Table 3–7 lists the opcodes that are reserved for Digital.

Table 3–7 Opcodes Reserved for Digital

Mnemonic Opcode Mnemonic Opcode Mnemonic Opcode

OPC01 01 OPC02 02 OPC03 03
OPC04 04 OPC05 05 OPC06 06
OPC07 07 OPC0A 0A OPC0C 0C
OPC0D 0D OPC0E 0E OPC14 14

3–10 Instruction Set

4
Privileged Architecture Library Code

4.1 Introduction
This chapter describes the 21064/21064A privileged architecture library code
(PALcode). The chapter is organized as follows:

• Introduction

• PALcode

• PALmode Environment

• Invoking PALcode

• PALcode Environment Entry Points

• PALmode Restrictions

• Memory Management

• 21064/21064A Implementation of the Architecturally Reserved Opcodes
Instructions

4.2 PALcode
The Alpha architecture defines an innovative feature called PALcode that
allows many different physical implementations to coexist, each one adhering
to the same programming interface specification. PALcode has characteristics
that make it appear to be a combination of microcode, ROM BIOS, and system
service routines, though the analogy to any of these other items is not exact.
PALcode exists for several major reasons:

• There are some necessary support functions that are too complex to
implement directly in a processor chip’s hardware, but which cannot be
handled by a normal operating system software routine. Routines to fill
the translation buffer, acknowledge interrupts, and dispatch exceptions
are some examples. In some architectures, these functions are handled by

Privileged Architecture Library Code 4–1

microcode, but the Alpha architecture is careful not to mandate the use of
microcode so as to allow reasonable chip implementations.

• There are functions that must run atomically, yet involve long sequences of
instructions that may need complete access to all the underlying computer
hardware. An example of this is the sequence that returns from an
exception or interrupt.

• There are some instructions that are necessary for backward compatibility
or ease of programming; however, these are not used often enough
to dedicate them to hardware, or are so complex that they would
jeopardize the overall performance of the computer. For example, an
interlocked memory access instruction might be familiar to someone used
to programming on a CISC machine, but is not included in the Alpha
architecture. Another case is the emulation of an instruction that has no
direct hardware support in a particular chip implementation.

In each of these cases, PALcode routines are used to provide the function. The
routines are nothing more than programs invoked at specified times, and read
in as I-stream code in the same way that all other Alpha architecture code is
read. Once invoked, however, PALcode runs in a special mode.

4.3 PALmode Environment
PALcode runs in a special environment called PALmode, defined as follows:

• I-stream memory mapping is disabled. Because the PALcode is used to
implement translation buffer fill routines, I-stream mapping clearly cannot
be enabled. D-stream mapping is still enabled.

• The program has privileged access to all the computer hardware. Most of
the functions handled by PALcode are privileged and need control of the
lowest levels of the system.

• Interrupts are disabled. If a long sequence of instructions need to be
executed atomically, interrupts cannot be allowed.

One important aspect of PALcode is that it uses normal Alpha architecture
instructions for most of its operations; that is, the same instruction set that
non-privileged Alpha architecture programmers use. There are a few extra
instructions that are only available in PALmode, and will cause a dispatch to
the OPCDEC PALcode entry point if attempted while not in PALmode. The
Alpha architecture allows some flexibility in what these special PALmode
instructions do. On the 21064/21064A the special PALmode-only instructions
perform the following functions:

• Read or write internal processor registers (HW_MFPR, HW_MTPR)

4–2 Privileged Architecture Library Code

• Perform memory load or store operations without invoking the normal
memory management routines (HW_LD, HW_ST)

• Return from an exception or interrupt (HW_REI)

Refer to Section 4.8 for detailed information on these special PALmode
instructions.

When executing in PALmode, there are certain restrictions for using the
privileged instructions because PALmode gives the programmer complete
access to many of the internal details of the 21064/21064A.

Caution

It is possible to cause unintended side effects by writing what appears
to be perfectly acceptable PALcode. As such, PALcode is not something
that many users will want to change.

Refer to Section 4.6 for additional information on PALmode restrictions.

4.4 Invoking PALcode
PALcode is invoked at specific entry points, under certain well-defined
conditions. These entry points provide access to a series of callable routines,
with each routine indexed as an offset from a base address. The base address
of the PALcode is programmable (stored in the PAL_BASE internal processor
register), and is normally set by the system reset code. Refer to Section 4.5 for
additional information on PALcode entry points.

When an event occurs that needs to invoke PALcode, the 21064/21064A first
drains the pipeline. The current PC is loaded into the EXC_ADDR internal
processor register, and the appropriate PALcode routine is dispatched. These
operations occur under direct control of the chip hardware, and the machine is
now in PALmode.

To exit PALcode a HW_REI instruction is executed at the end of the PALcode
routine causing the hardware to execute a jump to the address contained in the
EXC_ADDR internal processor register. The LSB is used to indicate PALmode
to the hardware. Generally, upon return from a PALcode routine, the LSB is
clear, in which case the hardware will load the new PC, enable interrupts,
enable I-stream memory mapping, and dispatch back to the user.

Privileged Architecture Library Code 4–3

The most basic use of PALcode is to handle complex hardware events, and it is
called automatically when the particular hardware event is sensed. This use of
PALcode is similar to other architectures’ use of microcode. There are several
major categories of hardware-initiated invocations of PALcode:

• When the 21064/21064A is reset, it enters PALmode and executes the
RESET PALcode. The system will remain in PALmode until a HW_REI
instruction is executed with EXC_ADDR [0] clear. It then continues
execution in non-PALmode (native mode), as just described. It is during
this initial RESET PALcode execution that the rest of the low level system
initialization is performed, including any modification to the PALcode base
register.

• When a system hardware error is detected by the 21064/21064A, it invokes
one of several PALcode routines, depending upon the type of error. Errors
such as machine checks, arithmetic exceptions, reserved or privileged
instruction decode, and data fetch errors are handled in this manner.

• When the 21064/21064A senses an interrupt, it dispatches to a PALcode
routine that does the necessary information gathering, then handles the
situation appropriately for the given interrupt.

• When a D-stream or I-stream translation buffer miss occurs, one of
several PALcode routines is called to perform the TB fill. The memory
management algorithms or even the existence of a virtual to physical
page mapping is flexible. In the simplest case, this could be an automatic
one-to-one translation from virtual to physical address. On a normal
operating system these routines would consult page tables and perform the
translation and fill based upon its contents.

These elements are all very basic hardware-related functions, and would
be difficult to efficiently implement using normal operating system service
routines.

4–4 Privileged Architecture Library Code

4.4.1 CALL_PAL Instruction
As well as being invoked by hardware events, PALcode can be invoked
under software control through the CALL_PAL instruction. This is a
special instruction which causes an hardware exception. The hardware
then dispatches to PALcode at a specific entry point using the same set of
steps as the hardware-activated PALcode. That is, the pipeline is drained, the
PC is saved, and the appropriate dispatch to an offset into the PALcode base
is performed. The only difference is that the CALL_PAL instruction causes
PC + 4 to be placed in the EXC_ADDR IPR. PALcode invoked by a CALL_PAL
instruction does not increment the EXP_ADDR register before executing a
HW_REI instruction to return to native mode. This feature requires special
handling in the arithmetic trap and machine check PALcode flows. See
Section 5.2.5, EXC_ADDR for more complete information.

The CALL_PAL instruction format includes a single parameter, the function
field, that defines which PALcode routine to invoke. Only a subset of all the
possible CALL_PAL function values are supported with hardware dispatches,
in the 21064/21064A. These dispatches are described in Section 4.5. If a
CALL_PAL instruction is executed and its function field is not supported by
the 21064/21064A dispatch hardware, an OPDEC exception is taken.

There is a subtle difference between the two basic uses of PALcode: hardware-
dispatched and CALL_PAL-dispatched. The hardware-invoked PALcode
functions are necessary in some form for almost any useful computer system.
For example, when the 21064/21064A detects a serious system error, it will
dispatch to the machine check (MCHK) PALcode entry point. The exact
PALcode that resides at this entry point can do whatever is reasonable,
based upon system needs. In contrast, the functions invoked by CALL_
PAL instructions are largely optional and based upon what the system
implementation needs. CALL_PAL routines can perform different functions for
different operating systems running on the 21064/21064A.

The CALL_PAL instruction is totally under the control of the executing
program for dispatch. If the program never executes one of the instructions
that is included in the CALL_PAL list, then none of that PALcode will ever be
run. However, once the PALcode is invoked, it is executing in PALmode and is
under the same restrictions as the hardware-activated PALcode.

Privileged Architecture Library Code 4–5

The 21064/21064A supports hardware dispatch for both privileged and non-
privileged CALL_PAL instructions. That is, some of the functions that are
passed to the CALL_PAL instruction are considered special. The designation of
privileged or non-privileged refers to whether the user can call that particular
CALL_PAL, and not the mode that it eventually runs in. Without exception,
every CALL_PAL instruction will dispatch to PALcode that runs in PALmode.
Privileged CALL_PAL instructions can only be successfully executed in kernel
mode.

Privileged and non-privileged CALL_PAL instructions are dispatched in exactly
the same way. When executed, they enter PALmode, do their function and
return to the caller. Before execution a check is made to determine if the
caller is in the correct mode. If code running in non-kernel mode attempts to
execute a privileged CALL_PAL instruction, an OPCDEC PALcode routine is
run instead of the CALL_PAL function.

4.5 PALcode Entry Points
Table 4–1 prioritizes entry points from highest to lowest priority; the first row
in the table (reset) has the highest priority. The table defines only the entry
point offset, bits [13:0]. The high-order bits of the new PC (bits [33:14]) come
from the PAL_BASE register. The PAL_BASE register value at powerup is
equal to zero.

Note

PALcode at PALcode entry points of higher priority than DTB_MISS
must unlock possible MM_CSR register and VA register locks.

4–6 Privileged Architecture Library Code

Table 4–1 PALcode Entry Points

Entry Name Time Offset(Hex) Cause

RESET anytime 0000

MCHK anytime 0020 Uncorrected hardware error.

ARITH anytime 0060 Arithmetic exception.

INTERRUPT anytime 00E0 Includes corrected hardware
error.

D-stream errors pipe_stage 6 01E0, 08E0,
09E0, 11E0

See Table 4–2.

ITB_MISS pipe_stage 5 03E0 ITB miss.

ITB_ACV pipe_stage 5 07E0 I-stream access violation.

CALL_PAL pipe_stage 5 2000,2040,2080,
20C0 through 3FC0

128 locations based on
instruction bits 7, 5..0.

OPCDEC pipe_stage 5 13E0 Reserved or privileged opcode.
Reserved opcodes are listed in
Table 2–4 and marked RES.

Privileged opcodes include
both HW_x instructions and
the privileged CALL_PAL
instructions attempted when
the processor is not in kernel
mode (PS<CM1:CM0> not equal
to 0).

FEN pipe_stage 5 17E0 FP op attempted with:

FP instructions disabled by way
of the ICCSR FPE bit

FP IEEE round to +/- infinity

FP IEEE with datatype field
other than S,T,Q

To improve speed of execution, a limited number of CALL_PAL instructions are
directly supported in hardware with dispatches to specific address offsets.

The 21064/21064A provides the first 64 privileged and 64 unprivileged CALL_
PAL instructions with regions of 64 bytes. This produces hardware PALcode
entry points described as follows:

Privileged Architecture Library Code 4–7

Privileged CALL_PAL Instructions [00000000:0000003F]

Offset(Hex) = 2000 + ([5:0] shift left 6)

Unprivileged CALL_PAL Instructions [00000080:000000BF]

Offset(Hex) = 3000 + ([5:0] shift left 6)

The CALL_PAL instructions that do not fall within the ranges
[00000000:0000003F] or [00000080:000000BF] result in an OPCDEC exception.
CALL_PAL instructions that fall within the range [00000000:0000003F] while
the 21064/21064A is not executing in kernel mode will result in an OPCDEC
exception.

The hardware recognizes four classes of D-stream memory management errors:

• Bad virtual address (incorrect sign extension)

• DTB miss

• Alignment error

• Access violation (ACV), Fault on read (FOR), Fault on write (FOW)

These errors get mapped into four PALcode entry points:

• UNALIGN

• DTB_MISS PAL Mode

• DTB_MISS Native Mode

• D_FAULT

Table 4–2 lists the priority of these entry points as a group with respect to
each of the other entry points. A particular D-stream memory reference may
generate errors that fall into more than one of the four error classes which the
hardware recognizes.

Table 4–2 D-stream Error PALcode Entry Points

BAD_VA DTB_MISS UNALIGN PAL Other Offset(Hex)

1 x 1 x x 11E0 UNALIGN

1 x 0 x x 01E0 D_FAULT

0 1 x 1 x 09E0 DTB_MISS PAL

0 1 x 0 x 08E0 DTB_MISS Native

0 0 1 x x 11E0 UNALIGN

0 0 0 x 1 01E0 D_FAULT

4–8 Privileged Architecture Library Code

4.6 PALmode Restrictions
Many of the PALmode restrictions involve waiting ‘‘n’’ cycles before using
the results of a PALcode instruction. Inserting ‘‘n’’ instructions between the
two time-sensitive instructions is the typical method of waiting for ‘‘n’’ cycles.
Because the 21064/21064A can dual issue instructions it is possible to write
code that requires 2 � n+ 1 instructions to wait ‘‘n’’ cycles. Due to the resource
requirements of individual instructions and the 21064/21064A hardware
design, multiple copies of the same instruction cannot be dual issued. This
characteristic is used in some of the following examples. The following is a list
of PALmode restrictions:

1. As a general rule, HW_MTPR instructions require at least four cycles to
update the selected IPR. At least three cycles of delay must be inserted
before using the result of the register update.

The following instructions will pipeline correctly and do not require
software timing except for accesses of the TB registers:

• Multiple reads

• Multiple writes

• Read followed by write

These cycles can be guaranteed by either including seven instructions,
which do not use the IPR in transition, or proving through the dual
issue rules and/or state of the machine that at least three cycles of delay
will occur. Multiple copies of a HW_MFPR instruction (used as a NOP
instruction) can be used to pad cycles after the original HW_MTPR.
Multiple copies of the same instruction will never dual issue. Because of
this, the maximum number of instructions necessary to ensure at least
three cycles of delay is three.

Example:

HW_MTPR Rx, HIER ; Write to HIER
HW_MFPR R31, 0 ; NOP mxpr instruction
HW_MFPR R31, 0 ; NOP mxpr instruction
HW_MFPR R31, 0 ; NOP mxpr instruction
HW_MFPR Ry, HIER ; Read from HIER

The HW_REI instruction uses the Instruction Translation Buffer (ITB) if
the EXC_ADDR register contains a non-PALmode VPC, (VPC[0] = 0). By
the previous rule, it is implied that at least three cycles of delay must be
included after writing the ITB before executing a HW_REI instruction to
exit PALmode.

Privileged Architecture Library Code 4–9

Exceptions:

• HW_MFPR instructions reading a PAL_TEMP register can never occur
exactly two cycles after a HW_MTPR instruction writing a PAL_TEMP
register. The solution results in code as follows:

HW_MTPR Rx, PAL_R0 ; Write PAL temp [0]
HW_MFPR R31, 0 ; NOP mxpr instruction
HW_MFPR R31, 0 ; NOP mxpr instruction
HW_MFPR R31, 0 ; NOP mxpr instruction
HW_MFPR Ry, PAL_R0 ; Read PAL temp [0]

This code guarantees three cycles of delay after the write before the
read. It is also possible to make use of the cycle immediately following
a HW_MTPR instruction to execute a HW_MFPR instruction to the
same (accomplishing a swap) or a different PAL_TEMP register. The
swap operation only occurs if the HW_MFPR instruction immediately
follows the HW_MTPR. This timing requires great care and knowledge
of the pipeline to ensure that the second instruction does not stall for
one or more cycles. Use of the slot to accomplish a read from a different
PAL_TEMP register requires that the second instruction will not stall
for exactly one cycle. This is much easier to ensure. A HW_MFPR
instruction can stall for a single cycle as a result of a write-after-write
conflict.

• The EXC_ADDR register can be read by a HW_REI instruction only
two cycles after the HW_MTPR. This is equivalent to one intervening
cycle of delay. This translates to code as follows:

HW_MTPR Rx, EXC_ADDR ; Write EXC_ADDR
HW_MFPR R31, 0 ; NOP cannot dual issue with either
HW_REI ; Return

2. An HW_MTPR operation to the DTBIS register cannot be sourced from
a bypassed path. All data being moved to the DTBIS register must
be sourced directly from the register file. One way to ensure this is to
provide at least three cycles of delay before using the result of any integer
operation (except MUL) as the source of an HW_MTPR DTBIS.

Note

Do not use a MUL as the source of DTBIS data.

4–10 Privileged Architecture Library Code

Code for this operation is:

ADDQ R1,R2,R3 ; source for DTBIS address
ADDQ R31,R31,R31 ; cannot dual issue with above,

; 1st cycle of delay
ADDQ R31,R31,R31 ; 2nd cycle of delay
ADDQ R31,R31,R31 ; 3rd cycle of delay
ADDQ R31,R31,R31 ; may dual issue with below, else

; 4th cycle of delay
HW_MTPR R3,DTBIS ; R3 must be in register file, no

; bypass possible

3. At least one cycle of delay must occur after a HW_MTPR TB_CTL before
a HW_MTPR ITB_PTE or a HW_MFPR ITB_PTE. This must be done to
allow setup of the ITB large page or small page decode.

4. The first cycle (the first one or two instructions) at all PALcode entry points
can not execute a conditional branch instruction or any other instruction
that uses the JSR stack hardware. This includes instructions:

• JSR

• JMP

• RET

• JSR_COROUTINE

• BSR

• HW_REI

• All Bxx opcodes except BR

5. Table 4–3 lists the number of cycles required after a HW_MTPR instruction
before a subsequent HW_REI instruction for the specified IPRs. These
cycles can be ensured by inserting one HW_MFPR R31,0 instruction or
other appropriate instruction(s) for each cycle of delay required after the
HW_MTPR.

Privileged Architecture Library Code 4–11

Table 4–3 HW_MTPR Restrictions

IPR Cycles Between HW_MTPR and HW_REI

DTBIS,ASM,ZAP 0

ITBIS,ASM,ZAP 2

xIER 3

xIRR 3

ICCSR [FPE] 4

PS 5

6. When loading the CC register, bits [3:0] must be loaded with zero. Loading
non-zero values in these bits can cause an inaccurate count.

7. An HW_MTPR DTBIS cannot be combined with an HW_MTPR ITBIS
instruction. The hardware will not clear the ITB if both the Ibox and Abox
IPRs are simultaneously selected. Two instructions are needed to clear
each TB individually. Code for this operation is:

HW_MTPR Rx,ITBIS
HW_MTPR Ry,DTBIS

8. Three cycles of delay are required between:

• HW_MTPR xIER and HW_MFPR xIRR

• HW_MTPR xIRR and HW_MFPR xIRR

• HW_MTPR and HW_LD or HW_ST

• HW_MTPR and HW_MFPR xIRR

• HW_MTPR ALT_MODE and HW_LD/HW_ST ALT_MODE

9. The following operations are disabled in the cycle immediately following a
HW_REI instruction:

• HW_MxPR ITB_TAG

• HW_MxPR ITB_PTE

• HW_MxPR ITB_PTE_TEMP

This rule implies that it is not a good idea to ever allow exceptions while
updating the ITB. The ITB register will not be written if:

• An exception interrupts flow of the ITB miss routine and attempts to
REI back.

4–12 Privileged Architecture Library Code

• The return address begins with a HW_MxPR instruction to an ITB
register.

• The REI is predicted correctly to avoid any delay between the two
instructions.

The code for this operation is:

HW_REI ; return from interrupt
HW_MTPR R1,TB_TAG ; attempts to execute very next

; cycle, instr ignored

10. The following registers can only be accessed in PALmode:

• TB_TAG

• ITB_PTE

• ITB_PTE_TEMP

If the instruction HW_MTPR or HW_MFPR is to or from the previous
mentioned registers while not in PALmode by setting the HWE (hardware
enable) bit of the ICCSR, the instructions will be ignored.

11. When writing the PAL_BASE register, exceptions must be prevented. An
exception occurring simultaneously with a write to the PAL_BASE can
leave the register in a metastable state. All asynchronous exceptions but
reset can be avoided under the following conditions:

PALmode blocks all interrupts
machine checks disabled blocks I/O error exceptions
(by way of the ABOX_CTL reg or MB isolation)
Not under trap shadow avoids arithmetic traps

The trap shadow is defined as:

less than 3 cycles after a non-mul integer operate that may
overflow
less than 22 cycles after a MULL/V instruction
less than 24 cycles after a MULQ/V instruction
less than 6 cycles after a non-div fp operation that may cause
a trap
less than 34 cycles after a DIVF or DIVS that may cause a trap
less than 63 cycles after a DIVG or DIVT that may cause a trap

12. The sequence HW_MTPR PTE, HW_MTPR TAG is not allowed. At least
two null cycles must occur between HW_MTPR xxx_PTE and HW_MTPR
TB_TAG.

Privileged Architecture Library Code 4–13

13. The MCHK exception service routine must check the EXC_SUM register
for simultaneous arithmetic errors. Arithmetic traps will not trigger
exceptions a second time after returning from exception service for the
machine check.

14. Three cycles of delay must be inserted between HW_MFPR DTB_PTE and
HW_MFPR DTB_PTE_TEMP. Code for this operation is:

HW_MFPR Rx,DTB_PTE ; reads DTB_PTE into DTB_PTE_TEMP
; register

HW_MFPR R31,0 ; 1st cycle of delay
HW_MFPR R31,0 ; 2nd cycle of delay
HW_MFPR R31,0 ; 3rd cycle of delay
HW_MFPR Ry,DTB_PTE_TEMP ; read DTB_PTE_TEMP into register

; file Ry

15. Three cycles of delay must be inserted between HW_MFPR ITB_PTE and
HW_MFPR ITB_PTE_TEMP. Code for this operation is:

HW_MFPR Rx,ITB_PTE ; reads ITB_PTE into ITB_PTE_TEMP
; register

HW_MFPR R31,0 ; 1st cycle of delay
HW_MFPR R31,0 ; 2nd cycle of delay
HW_MFPR R31,0 ; 3rd cycle of delay
HW_MFPR Ry,ITB_PTE_TEMP ; read ITB_PTE_TEMP into register

; file Ry

16. The content of the destination register for HW_MFPR Rx,DTB_PTE or
HW_MFPR Rx,ITB_PTE is UNPREDICTABLE.

17. Two HW_MFPR DTB_PTE instructions cannot be issued in consecutive
cycles. This implies that more than one instruction can be necessary
between the HW_MFPR instructions if dual issue is possible. Similar
restrictions apply to the ITB_PTE register.

18. Reading the EXC_SUM and BC_TAG registers require special timing.
Refer to Section 5.2.12 and Section 5.3.22 for specific information.

19. DMM errors occurring one cycle before HW_MxPR instructions to the
ITB_PTE will not stop the TB pointer from incrementing to the next TB
entry even though the HW_MxPR instruction will be aborted by the DMM
error. This restriction only affects performance and not functionality.

20. PALcode that writes multiple ITB entries must write the entry that maps
the address contained in the EXC_ADDR register last.

21. HW_STC instructions cannot be followed, for two cycles, by any load
instruction that may miss in the Dcache.

4–14 Privileged Architecture Library Code

22. Updates to the ASN field of the ICCSR IPR require at least 10 cycles
of delay before entering native mode that can reference the ASN during
Icache access. If the ASN field is updated in kernel mode by way of the
HWE bit of the ICCSR IPR, it is sufficient that all I-stream references
during this time be made to pages with the ASM bit set to avoid use of the
ASN.

23. HW_MTPR instructions that update the TB_CTL register cannot follow a
HW_MTPR instruction that updates the DTB_PTE or ITB_PTE register by
one cycle.

24. The HW_MTPR instructions that update the following IPRs require delays
after the instruction as shown in Table 4–4:

• ICCSR (ASN field)

• FLUSH_IC

• FLUSH_IC_ASM

The purpose of the delay is to ensure that the update occurs before the first
instruction fetch in native mode, since the pipeline may currently contain
instructions that were fetched before the update (which would remain valid
during a pipeline stall). It is necessary that at least one instruction is
issued during each cycle of the delay to ensure that the pipeline is cleared
of all instructions fetched prior to the update.

If the update is performed in kernel mode through the use of the HWE bit
of the ICCSR, it is sufficient that all I-stream references during this time
be made to pages with the ASM bit set to avoid use of the ASN.

Table 4–4 HW_MTPR Cycle Delay

IPR Cycles Delay

ICCSR (ASN field only) 8

FLUSH_IC 9

FLUSH_IC_ASM 9

25. Machine check exceptions taken while in PALmode can load the
EXC_ADDR register with a restart address one instruction earlier than the
correct restart address. Some HW_MxPR instructions may have already
completed execution even if the restart address indicates the HW_MxPR as
the return instruction. Re-execution of some HW_MxPR instructions can
alter the machine state TB pointers and the EXC_ADDR register mask.

Privileged Architecture Library Code 4–15

The mechanism used to stop instruction flow during machine check
exceptions causes the machine check exception to appear as a D-stream
fault on the following instruction in the hardware pipeline. In the event
that the following instruction is a HW_MxPR, a D-stream fault will not
abort execution in all cases. The EXC_ADDR will be loaded with the
address of the HW_MxPR instruction as if it were aborted. A HW_REI to
this restart address will incorrectly re-execute this instruction.

Machine check service routines should check for MxPR instructions at the
return address and return to the instruction following the HW_MxPR.

Note

When writing PALcode, the PALcode Violation Checker (PVC) software
tool should be used to verify that the PALcode does not violate any of
these restrictions.

4.7 Memory Management
Memory management is supported in PALcode. Hardware support for memory
management includes the Data Translation Buffer (DTB) and ITB, which are
each capable of up to four protection modes. Hardware support consists of
virtual (up to 43 bits) to physical (up to 34 bits) address translation.

4.7.1 TB Miss Flows
This section describes hardware specific details to aid the PALcode programmer
in writing ITB and DTB fill routines. These flows highlight the tradeoffs and
restrictions between PALcode and hardware. The PALcode source that is
released with the 21064/21064A should be consulted before any new flows are
written. A working knowledge of the Alpha architecture memory management
is assumed. Refer to the Alpha Architecture Reference Manual for additional
information about the Alpha architecture memory management. Also see
Section 5.3.4.

4.7.1.1 ITB Miss
When the Ibox encounters an ITB miss it:

1. Latches the VPC of the target instruction-stream reference in the
EXC_ADDR IPR.

2. Flushes the pipeline of any instructions following the instruction which
caused the ITB miss.

3. Waits for any other instructions which may be in progress to complete.

4–16 Privileged Architecture Library Code

4. Enters PALmode.

5. Jumps to the ITB miss PALcode entry point.

The recommended PALcode sequence for translating the address and filling the
ITB is as follows:

1. Create some scratch area in the integer register file by writing the contents
of a few integer registers to the PAL_TEMP register file.

2. Read the target virtual address from the EXC_ADDR.

3. Fetch the Page Table Entry (PTE) (this can take multiple reads) using a
physical-mode HW_LD instruction. If this PTE’s valid bit is clear, report
Translation Not Valid (TNV) or Access Violation (ACV) as appropriate.

4. The Alpha Architecture Reference Manual states that translation buffers
cannot contain invalid PTEs; the PTE’s valid bit must be explicitly checked
by PALcode. Since the ITB’s PTE RAM does not hold the FOE bit, the
PALcode must also explicitly check this condition. If the PTE’s valid bit is
set and FOE bit is clear, PALcode can fill an ITB entry.

5. Write the original virtual address to the TB_TAG register using
HW_MTPR. This writes the TAG into a temp register and not the actual
tag field in the ITB.

6. Write the PTE to the TB_CTL to select between the large page or small
page TB regions. Wait at least one cycle before executing the next step.

7. Write the PTE to the ITB_PTE register using HW_MTPR. This HW_MTPR
causes both the TAG and PTE fields in the ITB to be written.

Note

It is not necessary to delay issuing the HW_MTPR to the ITB_PTE
after the MTPR to the TB_TAG is issued.

8. Restore the contents of any modified integer registers from the PAL_TEMP
register file.

9. Restart the instruction stream using the HW_REI instruction.

Privileged Architecture Library Code 4–17

4.7.1.2 DTB Miss
When the Abox encounters a DTB miss it:

1. Latches the referenced virtual address in the VA IPR and other information
about the reference in the MM_CSR IPR.

Locks the VA and MM_CSR registers against further modifications.

Latches the PC of the instruction that generated the reference in the
EXC_ADDR register.

2. Drains the machine as described in Section 4.7.1.1 (steps 2 and 3).

3. Jumps to the DTB miss PALcode entry point.

Unlike ITB misses, DTB misses can occur while the CPU is executing in
PALmode. The recommended PALcode sequence for translating the address
and filling the DTB is as follows:

1. Create some scratch area in the integer register file by writing the contents
of a few integer registers to the PAL_TEMP register file.

2. Read the requested virtual address from the VA register. The act of reading
this register unlocks the VA and MM_CSR registers. The MM_CSR register
is updated only when D-stream memory management errors occur. It will
retain information about the instruction which generated the DTB miss.
This can be useful later.

3. Fetch the Page Table Entry (PTE). This operation can require multiple
reads. If the Valid bit of the PTE is clear, a Translation Not Valid (TNV)
or Access Violation (ACV) must be reported unless the instruction which
caused the DTB miss was FETCH or FETCH_M. This can be checked by
way of the opcode field of the MM_CSR register. If the value in this field is
18 (hex), then a FETCH or FETCH_M instruction caused this DTB miss.
As mandated in the Alpha Architecture Reference Manual, the subsequent
TNV or ACV should not be reported. Therefore, PALcode should:

1. Read the value in EXC_ADDR IPR.

2. Increment the value by four.

3. Write the value back to EXC_ADDR IPR.

4. Execute a HW_REI.

4–18 Privileged Architecture Library Code

4. Write the register which holds the contents of the PTE to the DTB_CTL.
This has the effect of selecting one of the four possible granularity hint
sizes.

5. Write the original virtual address to the TB_TAG register. This writes the
TAG into a temp register and not the actual tag field in the DTB.

6. Write the PTE to the DTB_PTE register. This HW_MTPR causes both the
TAG and PTE fields in the DTB to be written.

Note

It is not necessary to delay issuing the HW_MTPR to the DTB_PTE
after the MTPR to the TB_TAG is issued.

7. Restore the contents of any modified integer registers from the PAL_TEMP
register file.

8. Restart the instruction stream using the HW_REI instruction.

4.8 21064/21064A Implementation of the Architecturally
Reserved Opcodes Instructions

PALcode uses the Alpha architecture instruction set for most of its operations.
The 21064/21064A maps the architecturally reserved opcodes PAL19, PAL1B,
PAL1D, PAL1E, and PAL1F to:

• A move-to and a move-from processor register (HW_MTPR, HW_MFPR)

• A special load and store (HW_LD, HW_ST)

• A return from PALmode exception or interrupt (HW_REI)

These instructions are described further in Table 4–5. They produce an
OPCDEC exception if executed while not in the PALmode environment. If
the HWE bit of the ICCSR internal processor register (IPR) is set, these
instructions can be executed in kernel mode.

Register checking and bypassing logic is provided for PALcode instructions as
it is for non-PALcode instructions, when using general purpose registers.

Privileged Architecture Library Code 4–19

Table 4–5 Instructions Specific to the 21064/21064A

Mnemonic Type Operation

HW_MTPR PALmode, Privileged Move data to processor register

HW_MFPR PALmode, Privileged Move data from processor register

HW_LD PALmode, Privileged Load data from memory

HW_ST PALmode, Privileged Store data in memory

HW_REI PALmode, Privileged Return from PALmode exception

PALcode uses the HW_LD and HW_ST instructions to access memory outside
of the realm of normal Alpha architecture memory management.

Note

Explicit software timing is required for accessing the hardware
specific internal processor registers (IPR) and the PAL_TEMPs. These
constraints are described in the PALmode restriction and IPR sections.

4.8.1 HW_MFPR and HW_MTPR Instructions
The internal processor register (IPR) specified by the PAL, ABX, IBX, and
index field is written/read with the data from the specified integer register.

Caution

Internal processor registers can have side effects that happen as the
result of reading and writing them.

Coding restrictions (see Section 4.6) are associated with accessing various
registers. Separate bits are used to access the:

• Abox IPRs

• Ibox IPRs

• PAL_TEMPs

It is possible for an HW_MTPR instruction to write multiple registers in
parallel if they both have the same index.

4–20 Privileged Architecture Library Code

Figure 4–1 shows the HW_MFPR and HW_MTPR instruction format.
Table 4–6 lists the instruction fields.

Figure 4–1 HW_MFPR and HW_MTPR Instruction Format

00040506070815162021252631

I
B

A
B

P
AOPCODE RA RB IGN INDEX

LJ-01831-T I0

XXL

Table 4–6 HW_MFPR and HW_MTPR Format Description

Field Description

OPCODE Is either 25 (HW_MFPR) or 29 (HW_MTPR).

RA/RB Contain the source (HW_MTPR) or destination (HW_MFPR) register
number. The RA and RB fields must always be identical.

PAL If set, this HW_MFPR or HW_MTPR instruction is referencing a PAL
temporary register, PAL_TEMP.

ABX If set, this HW_MFPR or HW_MTPR instruction is referencing a
register in the Abox.

IBX If set, this HW_MFPR or HW_MTPR instruction is referencing a
register in the Ibox.

Table 4–7 indicates how the PAL, ABX, IBX, and INDEX fields are set to access
the IPRs. Setting the PAL, ABX, and IBX fields to zero generates a NOP.

Privileged Architecture Library Code 4–21

Table 4–7 Internal Processor Register Access

Mnemonic PAL ABX IBX INDEX Access Comments

TB_TAG x x 1 0 W PALmode only

ITB_PTE x x 1 1 R/W PALmode only

ICCSR x x 1 2 R/W

ITB_PTE_TEMP x x 1 3 R PALmode only

EXC_ADDR x x 1 4 R/W

SL_RCV x x 1 5 R

ITBZAP x x 1 6 W PALmode only

ITBASM x x 1 7 W PALmode only

ITBIS x x 1 8 W PALmode only

PS x x 1 9 R/W

EXC_SUM x x 1 10 R/W

PAL_BASE x x 1 11 R/W

HIRR x x 1 12 R

SIRR x x 1 13 R/W

ASTRR x x 1 14 R/W

HIER x x 1 16 R/W

SIER x x 1 17 R/W

ASTER x x 1 18 R/W

SL_CLR x x 1 19 W

SL_XMIT x x 1 22 W

TB_CTL x 1 x 0 W

DTB_PTE x 1 x 2 R/W

DTB_PTE_TEMP x 1 x 3 R

MM_CSR x 1 x 4 R

VA x 1 x 5 R

DTBZAP x 1 x 6 W

DTBASM x 1 x 7 W

DTBIS x 1 x 8 W

BIU_ADDR x 1 x 9 R

(continued on next page)

4–22 Privileged Architecture Library Code

Table 4–7 (Cont.) Internal Processor Register Access

Mnemonic PAL ABX IBX INDEX Access Comments

BIU_STAT x 1 x 10 R

DC_STAT x 1 x 12 R 21064 only

C_STAT x 1 x 12 R 21064A only

FILL_ADDR x 1 x 13 R

ABOX_CTL1 x 1 x 14 W

ALT_MODE x 1 x 15 W

CC x 1 x 16 W

CC_CTL x 1 x 17 W

BIU_CTL1 x 1 x 18 W

FILL_SYNDROME x 1 x 19 R

BC_TAG x 1 x 20 R

FLUSH_IC x 1 x 21 W

FLUSH_IC_ASM x 1 x 23 W

PAL_TEMP [31..0] 1 x x 31-00 R/W

1Versions of the 21064 where the CHIP_ID field of DC_STAT was 0002 did not implement ABOX_
CTL [9:7] and BIU_CTL [43, 42:40, 38]. PALcode for these processors is upward compatible if the
PALcode did not set these bits.

4.8.2 HW_LD and HW_ST Instructions
PALcode uses the HW_LD and HW_ST instructions to access memory outside
of the realm of normal Alpha architecture memory management. Figure 4–2
shows the HW_LD and HW_ST instructions format. Table 4–8 lists the
instruction fields.

Figure 4–2 HW_LD and HW_ST Instructions Format

001112131415162021252631

Q
W

R
W
C

A
L
T

OPCODE RA RB DISP

LJ-01832-T I0

P
H
Y

Privileged Architecture Library Code 4–23

The effective address of these instructions is calculated as follows:

addr <- (SEXT(DISP) + RB) AND NOT (QW | 11 (bin))

Table 4–8 HW_LD and HW_ST Format Description

Field Description

OPCODE Is either 27 (HW_LD) or 31 (HW_ST).

RA/RB Contain register numbers, interpreted the same as non-PALmode loads
and stores.

PHY If clear, the effective address of the HW_LD or HW_ST is a virtual
address. If set, then the effective address of the HW_LD or HW_ST is a
physical address.

ALT For virtual-mode HW_LD and HW_ST instructions, this bit selects the
processor mode bits that are used for memory management checks. If
ALT is clear, the current mode bits of the PS register are used; if ALT is
set the mode bits in the ALT_MODE IPR are used.

Physical-mode load-lock and store-conditional variants of the HW_LD
and HW_ST instructions may be created by setting both the PHY and
ALT bits.

RWC The RWC (read-with-write check) bit, if set, enables both read and write
access checks on virtual HW_LD instructions.

QW The quadword bit specifies the data length. If it is set then the length is
quadword. If it is clear then the length is longword.

DISP The DISP field holds a 12-bit signed byte displacement.

4.8.3 HW_REI Instruction
The HW_REI instruction uses the address in the Ibox EXC_ADDR register to
determine the new virtual program counter (VPC). Bit [0] of the EXC_ADDR
determines the state of the PALmode bit on the completion of the HW_REI.
If EXC_ADDR bit [0] is clear, then the processor returns to non-PALmode.
If EXC_ADDR bit [0] is set, then the processor remains in PALmode. This
allows PALcode to transition from PALmode to non-PALmode. The HW_
REI instruction can also be used to jump from PALmode to PALmode. This
allows PALcode instruction flows to take advantage of the D-stream mapping
hardware in the 21064/21064A, including traps. Figure 4–3 shows the HW_
REI instruction format. Table 4–9 lists the instruction fields.

4–24 Privileged Architecture Library Code

Figure 4–3 HW_REI Instruction Format

00131415162021252631

0OPCODE RA RB IGN

LJ-01833-T I0

1

Bits [15:14] contain the branch prediction hint bits. The 21064/21064A pushes
the contents of the EXC_ADDR register on the JSR prediction stack. Bit [15]
must be set to pop the stack to avoid misalignment.

The next address and PALmode bit are calculated as follows:

VPC <- EXC_ADDR AND {NOT 3}

PALmode <- EXC_ADDR[0]

Table 4–9 The HW_REI Format Description

Field Description

OPCODE The OPCODE field contains 30.

RA/RB Contain register numbers which should be R31 or a stall may occur.

4.8.4 Required PALcode Instructions
The PALcode instructions listed in Table 4–10 are described in the Alpha
Architecture Reference Manual.

Table 4–10 Required PALcode Instructions

Mnemonic Type Operation

HALT Privileged Halt processor

IMB Unprivileged I-stream memory barrier

Privileged Architecture Library Code 4–25

5
Internal Processor Registers

5.1 Introduction
This chapter describes the internal processor registers (IPRs) of the
21064/21064A microprocessor. This information is presented in this sequence:
Ibox and Abox Internal Processor Registers, PAL_TEMP Registers, Lock
Registers, and Internal Processor Registers Reset State.

For the 21064A-275-PC, the Abox control register SPE_1 field, described in
Section 5.3.11, functions differently from the other four 21064A chips. This
register field affects the memory-management operation mapping.

5.2 Ibox Internal Processor Registers
This section describes each Ibox internal processor register (IPR).

5.2.1 Translation Buffer Tag Register (TB_TAG)
The TB_TAG register is a write-only register that holds the tag for the
next translation buffer update operation in the Instruction Translation
Buffer (ITB) or the Data Translation Buffer (DTB). The tag is written to a
temporary register and not transferred to the ITB or DTB until the Instruction
Translation Buffer Page Table Entry (ITB_PTE) or the Data Translation Buffer
Page Table Entry (DTB_PTE) register is written. The entry to be written is
chosen at the time of the ITB_PTE or DTB_PTE write operation by a not-last-
used algorithm, implemented in hardware. Figure 5–1 shows the TB_TAG
register format.

Note

Writing to the Instruction Translation Buffer Tag array (ITB_TAG)
is only performed while in PALmode, regardless of the state of the
hardware enable (HWE) bit in the ICCSR register.

Internal Processor Registers 5–1

Figure 5–1 Translation Buffer Tag Register

002122424363

IGN VA[42:22] IGN

LJ-01834-T I0

001213424363

IGN VA[42:13] IGN

GH = 11(bin) Format (ITB only):

Small Page Format:

5.2.2 Instruction Translation Buffer Page Table Entry Register
(ITB_PTE)

The ITB_PTE register is a read/write register, representing twelve page table
entries split into two distinct arrays. The first eight page table entries provide
small page (8K byte) translations while the remaining four provide large page
(4 MB) translations. The entry to be written is chosen by a not-last-used
algorithm implemented in hardware for each array independently and the
status of the TB_CTL. Writes to the ITB_PTE register use the memory format
bit positions as described in the Alpha Architecture Reference Manual, with the
exception that some fields are ignored.

The ITB’s tag array is updated simultaneously from the TB_Tag register
when the ITB_PTE register is written. Reads of the ITB_PTE register require
two instructions. The first instruction sends the PTE data to the Instruction
Translation Buffer Page Table Entry Temporary register (ITB_PTE_TEMP)
and the second instruction, reading from the ITB_PTE_TEMP register,
returns the PTE entry to the register file. Reading or writing the ITB_PTE
register increments the TB entry pointer corresponding to the large/small
page selection indicated by the TB_CTL, which allows reading the entire set of
ITB_PTE register entries. Figure 5–2 shows the ITB_PTE register format.

Note

Reading and writing the ITB_PTE register is only performed while in
PALmode regardless of the state of the HWE bit in the ICCSR IPR.

5–2 Internal Processor Registers

Figure 5–2 Instruction Translation Buffer Page Table Entry Register

000304050708091011123132525363

A
S
M

K
R
E

E
R
E

S
R
E

U
R
E

00080910111233343563

A
S
M

K
R
E

E
R
E

S
R
E

U
R
E

RAZ

IGN

PFN[33:13]

IGNIGNIGN PFN[33:13]

RAZ

13

LJ-01835-T I0

Read Format:

Write Format:

5.2.3 Instruction Cache Control and Status Register (ICCSR)
The ICCSR register contains various Ibox hardware enables. The only
architecturally defined bit in this register is the floating-point enable (FPE),
which enables floating-point instructions. When cleared, all floating-point
instructions generate exceptions to the FEN entry point in PALcode (see
Table 4–1. Most of this register is cleared by hardware at reset. Fields that
are not cleared at reset include ASN, PC0, and PC1.

The hardware enable bit allows the special privileged architecture library
code (PALcode) instructions to execute in kernel mode. This bit is intended for
diagnostic or operating system alternative PALcode routines only. It does not
allow access to the ITB registers if not running in PALmode. Figure 5–3 shows
the ICCSR register format.

Table 5–1 lists the ICCSR register fields and a brief description. Table 5–2 lists
branch states controlled by the Branch Prediction Enable (BPE) and Branch
History Enable (BHE) bits in the ICCSR.

Internal Processor Registers 5–3

Figure 5–3 ICCSR Register

0001020304050708111231323435363738394041424347525363

P
C
1

P
C
0

R
E
S

P
I
P

B
P
E

J
S
E

B
H
E

D
I

H
W
E

M
A
P

F
P
E

MBZ
PC
MUX0
[3:0]

PC
MUX1
[2:0]

ASN[5:0]MBZ MBZ MBZ

000102030809121213151617181920212223242728343543

P
I
P

B
P
E

J
S
E

B
H
E

D
I

H
W
E

M
A
P

F
P
E

RAZ
PC
MUX0
[3:0]

PC
MUX1
[2:0]

RES
[5:2]ASN[5:0]RAZ

R
A
Z

P
C
0

P
C
1

R
E
S

33

LJ-01836-T I0A

Read Format:

Write Format:

E

E

P
C
E

444546

44454646

R
E
S

R
E
S

P
C
E

P
C
E

P
C
E

63

RAZ

Table 5–1 ICCSR Fields and Description

Field Type Description

ASN RW The ASN field is used in conjunction with the Icache to further
qualify cache entries and avoid some cache flushes. The ASN
is written to the Icache during fill operations and compared
with the I-stream data on fetch operations. Mismatches
invalidate the fetch without affecting the Icache. (See the
Alpha Architecture Reference Manual.)

RES RW,0 The RES state bits are reserved by Digital and should not be
used by software.

PCE RW If both of these bits are clear, they disable both performance
counters. If either bit is set, both performance counters will
increment in their usual fashion.

FPE RW,0 If set, floating-point instructions can be issued. If clear, floating-
point instructions cause FEN exceptions.

MAP RW,0 If set, it allows superpage I-stream memory mapping of virtual
PC [33:13] directly to Physical PC [33:13] essentially bypassing
ITB for virtual PC addresses containing virtual PC [42:41] = 2.
Superpage mapping is allowed in kernel mode only. The Icache
ASM bit is always set. If clear, superpage mapping is disabled.

(continued on next page)

5–4 Internal Processor Registers

Table 5–1 (Cont.) ICCSR Fields and Description

Field Type Description

HWE RW,0 If set, it allows the five reserved opcodes (PAL19, PAL1B,
PAL1D, PAL1E, and PAL1F) instructions to be issued
in kernel mode. If cleared, attempts to execute reserved
opcodes instructions while not in PALmode result in OPCDEC
exceptions.

DI RW,0 If set, it enables dual issue. If cleared, instructions can only
single issue.

BHE RW,0 Used in conjunction with BPE. See Table 5–2 for programming
information.

JSE RW,0 If set, it enables the JSR stack to push a return address. If
cleared, JSR stack is disabled.

BPE RW,0 Used in conjunction with BHE. See Table 5–2 for programming
information.

PIPE RW,0 If clear, it causes all hardware interlocked instructions to drain
the machine and waits for the write buffer to empty before
issuing the next instruction. Examples of instructions that
do not cause the pipe to drain include HW_MTPR, HW_REI,
conditional branches, and instructions that have a destination
register of R31. If set, pipeline proceeds normally.

PCMUX1 RW,0 See Table 5–4 for programming information.

PCMUX0 RW,0 See Table 5–3 for programming information.

PC1 RW If clear, it enables performance counter 1 interrupt request
after 212 events counted. If set, enables performance counter 1
interrupt request after 28 events counted.

PC0 RW If clear, it enables performance counter 0 interrupt request after
216 events counted. If set, it enables performance counter 0
interrupt request after 212 events counted.

Note

Using the HW_MTPR instruction to update the EXC_ADDR register
while in the native mode is restricted to bit [0] being equal to 0. The
combination of the native mode and EXC_ADDR bit [0] being equal to
one causes UNDEFINED behavior. This combination is only possible
through the use of the HWE bit.

Internal Processor Registers 5–5

Table 5–2 BHE, BPE Branch Prediction Selection (Conditional Branches
Only)

BPE BHE Prediction

0 X Not Taken

1 0 Sign of Displacement

1 1 Branch History Table

5.2.3.1 Performance Counters
The performance counters are reset to zero upon powerup. Otherwise, they are
never cleared. The counters are intended as a means of counting events over a
long period of time, relative to the event frequency. They provide no means of
extracting intermediate counter values.

The performance counters may be enabled or disabled using ICCSR [45:44]
(PCE [1:0]).

Since the counters continuously accumulate selected events, despite interrupts
being enabled, the first interrupt after selecting a new counter input has an
error bound as large as the selected overflow range. Some inputs can over
count events occurring simultaneously with D-stream errors that abort the
actual event very late in the pipeline.

For example, when counting load instructions, attempts to execute a load
resulting in a TB miss exception will increment the performance counter after
the first aborted execution attempt and again after the TB fill routine when
the load instruction reissues and completes.

Performance counter interrupts are reported six cycles after the event that
caused the counter to overflow. Additional delay can occur before an interrupt
is serviced, if the processor is executing PALcode that always disables
interrupts. Events occurring during the interval between counter overflow
and interrupt service are counted toward the next interrupt. Only in the
case of a complete counter wraparound while interrupts are disabled will an
interrupt be missed.

The six cycles before an interrupt is triggered implies that a maximum of
12 instructions may have completed before the start of the interrupt service
routine.

5–6 Internal Processor Registers

When counting Icache misses, no intervening instructions can complete
and the exception PC contains the address of the last Icache miss. Branch
mispredictions allow a maximum of only two instructions to complete before
start of the interrupt service routine.

Table 5–3 lists performance counter 0 inputs and Table 5–4 lists performance
counter 1 inputs.

Table 5–3 Performance Counter 0 Input Selection (in ICCSR)

MUX0 [3:0] Input Comment

000X Total Issues/2 Counts total issues divided by 2, dual issue
increments count by 1.

001X Pipeline Dry Counts cycles where nothing issued due to
lack of valid I-stream data. Causes include
Icache fill, misprediction, branch delay slots,
and pipeline drain for exception.

010X Load Instructions Count all Load instructions.

011X Pipeline Frozen Counts cycles where nothing issued due to
resource conflict.

100X Branch Instructions Counts all conditional branches, uncon-
ditional branches, JSR, and HW_REI
instructions.

1011 PALmode Counts cycles while executing in PALmode.

1010 Total cycles Counts total cycles.

110X Total Non-issues/2 Counts total non-issues divided by 2 ("no
issue" increments count by 1).

111X PERF_CNT_H [0] Counts external events supplied to a pin at
a selected system clock cycle interval.

Internal Processor Registers 5–7

Table 5–4 Performance Counter 1 Input Selection (in ICCSR)

MUX1 [2:0] Input Comment

000 Dcache miss Counts total Dcache misses.

001 Icache miss Counts total Icache misses.

010 Dual issues Counts cycles of Dual issue.

011 Branch Mispredicts Counts both conditional branch mispredic-
tions and JSR or HW_REI mispredictions.
Conditional branch mispredictions cost
4 cycles and others cost 5 cycles of dry
pipeline delay.

100 FP Instructions Counts total floating-point operate
instructions, that is, no FP branch, load,
or store.

101 Integer Operate Counts integer operate instructions
including LDA and LDAH with destination
other than R31.

110 Store Instructions Counts total store instructions.

111 PERF_CNT_H [1] Counts external events supplied to a pin at
a selected system clock cycle interval.

5.2.4 Instruction Translation Buffer Page Table Entry Temporary
Register (ITB_PTE_TEMP)

The ITB_PTE_TEMP register is a read-only holding register for ITB_PTE read
data. Reads of ITB_PTE register require two instructions to return data to the
register file. The two instructions are as follows:

1. Read the ITB_PTE register data to the ITB_PTE_TEMP register.

2. Read the ITB_PTE_TEMP register data to the integer register file.

The ITB_PTE_TEMP register is updated on all ITB accesses, both read and
write. A read of the ITB_PTE to the ITB_PTE_TEMP should be followed
closely by a read of the ITB_PTE_TEMP to the register file. Figure 5–4 shows
the ITB_PTE_TEMP register format.

Note

Reading the ITB_PTE_TEMP register is only performed while in
PALmode regardless of the state of the HWE bit in the ICCSR.

5–8 Internal Processor Registers

Figure 5–4 ITB_PTE_TEMP Register

00080910111233343563

A
S
M

K
R
E

E
R
E

S
R
E

U
R
E

RAZPFN[33:13]RAZ

13

LJ-01837-T I0

5.2.5 Exceptions Address Register (EXC_ADDR)
The EXC_ADDR register is a read/write register used to restart the system
after exceptions or interrupts. The register can be read and written by the
software, by way of the HW_MTPR instruction. Also, the EXC_ADDR can be
written directly to by the hardware.

The HW_REI instruction executes a jump to the address contained in the
EXC_ADDR register. The EXC_ADDR register is written by hardware after an
exception to provide a return address for PALcode.

The instruction pointed to by the EXC_ADDR register did not complete its
execution. The LSB of the EXC_ADDR register is used to indicate PALmode
to the hardware. When the LSB is clear, the HW_REI instruction executes a
jump to native (non-PAL) mode, enabling address translation.

CALL_PAL exceptions load the EXC_ADDR with the PC of the instruction
following the CALL_PAL. This function allows CALL_PAL service routines to
return without needing to increment the value in the EXC_ADDR register.

This feature requires careful treatment in PALcode. Arithmetic traps and
machine check exceptions can preempt CALL_PAL exceptions resulting in an
incorrect value being saved in the EXC_ADDR register. In the cases of an
arithmetic trap or machine check exception (only in these cases), EXC_ADDR
[1] takes on special meaning. PALcode servicing these two exceptions must:

• Interpret a 0 in EXC_ADDR [1] as indicating that the PC in EXC_ADDR
[63:2] is too large by a value of 4 bytes and subtract 4 before executing a
HW_REI from this address.

• Interpret a 1 in EXC_ADDR [1] as indicating that the PC in EXC_ADDR
[63:2] is correct and clear the value of EXC_ADDR [1].

All other PALcode entry points except reset can expect EXC_ADDR [1] to be 0.

Internal Processor Registers 5–9

The logic allows the following code sequence to conditionally subtract 4 from
the address in the EXC_ADDR register without the use of an additional
register. This code sequence must be present in arithmetic trap and machine
check flows only.

HW_MFPR Rx, EXC_ADDR ; read EXC_ADDR into GPR
SUBQ Rx, 2,Rx ; subtract 2 causing borrow if bit [1]=0
BIC Rx, 2,Rx ; clear bit [1]
HW_MTPR Rx, EXC_ADDR ; write back to EXC_ADDR

Figure 5–5 shows the exception address register format.

Figure 5–5 Exception Address Register

000163

P
A
L

I
G
N

PC[63:2]

LJ-01838-T I0

02

5.2.6 Clear Serial Line Interrupt Register (SL_CLR)
The SL_CLR is a write-only register that clears the:

• Serial line interrupt request

• Performance counter interrupt requests

• CRD interrupt request

The indicated bit must be written with a zero to clear the selected interrupt
source. Figure 5–6 shows the clear serial line interrupt register format.
Table 5–5 lists the register fields and a description.

Figure 5–6 Clear Serial Line Interrupt Register

0001020307080914151631323363

P
C
0

C
R
D

IGNIGNIGNIGNIGN
P
C
1

S
L
C

LJ-01839-T I0

5–10 Internal Processor Registers

Table 5–5 Clear Serial Line Interrupt Register Fields

Field Type Description

CRD W0C Clears the correctable read error interrupt request

PC1 W0C Clears the performance counter 1 interrupt request

PC0 W0C Clears the performance counter 0 interrupt request

SLC W0C Clears the serial line interrupt request

5.2.7 Serial Line Receive Register (SL_RCV)
The SL_RCV register contains a single read-only bit (RCV). This bit is used
with the interrupt control registers, the sRomD_h pin, and the sRomClk_h
pin to provide an on-chip serial line function. The RCV bit is functionally
connected to the sRomD_h pin after the Icache is loaded from the external
serial ROM. Using a software timing loop, the RCV bit can be read to receive
external data one bit at a time.

A serial line interrupt is requested on detection of any transition on the
receive line that sets the SLR bit in the HIRR. The serial line interrupt can be
disabled by clearing the HIER register SLE bit.

Figure 5–7 shows the Serial Line Receive Register format.

Figure 5–7 Serial Line Receive Register

0063

LJ-01840-T I0

0203

R
C
V

04

RAZRAZ

5.2.8 Instruction Translation Buffer ZAP Register (ITBZAP)
A write to this register invalidates all twelve instruction translation buffer
(ITB) entries. It also resets both the NLU pointers to their initial state. The
ITBZAP register is only written to in PALmode.

Internal Processor Registers 5–11

5.2.9 Instruction Translation Buffer ASM Register (ITBASM)
A write to this register invalidates all ITB entries, in which the ITB_PTE ASM
bit is equal to zero. The ITBASM register is only written to in PALmode.

5.2.10 Instruction Translation Buffer IS Register (ITBIS)
A write to the ITBIS register invalidates all twelve ITB entries. It also resets
both the NLU pointers to their initial state. The ITBIS register is only written
to in PALmode. This register functions the same as the ITBZAP register.

5.2.11 Processor Status Register (PS)
The PS register is a read/write register containing only the current mode bits
of the architecturally defined PS. Figure 5–8 shows the PS register format. See
the Alpha Architecture Reference Manual for additional information.

Figure 5–8 Processor Status Register

000102333463

RAZRAZ

LJ-01841-T I0

35

000203040563

IGNIGN
C
M
0

C
M
1

C
M
0

R
A
Z

C
M
1

Read Format:

Write Format:

5.2.12 Exception Summary Register (EXC_SUM)
The EXC_SUM register records the various types of arithmetic traps that
occurred since the last time the EXC_SUM was written (cleared). When
the result of an arithmetic operation produces an arithmetic trap, the
corresponding EXC_SUM bit is set.

The register containing the result of the operation is recorded in the exception
register write mask parameter, as a single bit in a 64-bit shift register
specifying registers F31-F0 and I31-I0. The EXC_SUM register provides a
one-bit window to the exception register write mask parameter. This is visible
only through the EXC_SUM register.

5–12 Internal Processor Registers

Each read to the EXC_SUM shifts one bit in order F31-F0 then I31-I0. The
read also clears the corresponding bit. The EXC_SUM must be read 64 times
to extract the complete mask and clear the entire register. If no integer traps
are present (IOV=0), only the first 32 corresponding floating-point register bits
need to be read and cleared.

Any write to EXC_SUM clears bits [8:2] and does not affect the write mask bit.

The Write Mask register bit clears three cycles after a read. Code intended to
read the register must allow at least three cycles between reads. This allows
the clear and shift operations to complete in order to ensure reading successive
bits. Figure 5–9 shows the exception summary register format. Table 5–6 lists
the register fields and descriptions.

Figure 5–9 Exception Summary Register

0001020304050607080932333463

I
N
V

D
Z
E

M
S
K

R
A
Z

S
W
C

F
O
V

U
N
F

I
N
E

I
O
V

RAZRAZ

LJ-01842-T I0

Table 5–6 Exception Summary Register Fields

Field Type Description

SWC WA Indicates software completion possible. The bit is set after a floating-point
instruction containing the /S modifier completes with an arithmetic trap
and all previous floating-point instructions that trapped since the last HW_
MTPR EXC_SUM also contained the /S modifier. The SWC bit is cleared
whenever a floating-point instruction without the /S modifier completes
with an arithmetic trap. The bit remains cleared regardless of additional
arithmetic traps until the register is written by way of an HW_MTPR
instruction. The bit is always cleared upon any HW_MTPR write to the
EXC_SUM register.

INV WA Indicates invalid operation.

DZE WA Indicates divide by zero.

FOV WA Indicates floating-point overflow.

UNF WA Indicates floating-point underflow.

INE WA Indicates floating inexact error.

IOV WA Indicates Fbox convert to integer overflow or integer arithmetic overflow.

MSK RC Exception Register Write Mask IPR window.

Internal Processor Registers 5–13

5.2.13 PAL_BASE Address Register (PAL_BASE)
The PAL_BASE register is a read/write register containing the base address for
PALcode. This register is cleared by the hardware at reset. Figure 5–10 shows
the PAL_BASE address register format.

Figure 5–10 PAL_BASE Address Register

001314333463

PAL_BASE[33:14]IGN/RAZ

LJ-01843-T I0

IGN/RAZ

5.2.14 Hardware Interrupt Request Register (HIRR)
The HIRR is a read-only register providing a record of all currently outstanding
interrupt requests and summary bits at the time of the read. For each bit of
the HIRR [5:0], there is a corresponding bit of the Hardware Interrupt Enable
register (HIER) that must be set to request an interrupt.

In addition to returning the status of the hardware interrupt requests, a read
of the HIRR returns the state of the software interrupt and AST requests.

Note

A read of the HIRR can return a value of zero if the hardware interrupt
was released before the read (passive release).

The register guarantees that the HWR bit reflects the status as shown
by the HIRR bits. All interrupt requests are blocked while executing in
PALmode. Figure 5–11 shows the hardware interrupt request register format.
Table 5–7 lists the register fields and gives a description of each. For additional
information on interrupt operations, refer to Section 2.3.3.

5–14 Internal Processor Registers

Figure 5–11 Hardware Interrupt Request Register

0001020304050708091012131428293233

P
C
1

P
C
0

U S E K
ASTRR

[3:0]

SIRR
[15:1]

HIRR
[2:0]

HIRR
[5:3]RAZ

A
T
R

S
W
R

H
W
R

R
A
Z

S
L
R

C
R
R

LJ-01844-T I0

Table 5–7 Hardware Interrupt Request Register Fields

Field Type Description

HWR RO Is set if any hardware interrupt request and correspond-
ing enable is set

SWR RO Is set if any software interrupt request and corresponding
enable is set

ATR RO Is set if any AST request and corresponding enable is set.
This bit also requires that the processor mode be equal to
or higher than the request mode. SIER 2 must be set to
allow AST interrupt requests.

CRR RO CRD correctable read error interrupt request. This
interrupt is cleared by way of the SL_CLR register.

HIRR [5:0] RO Contains delayed copies of Irq_h [5:0] pins

PC1 RO Performance counter 1 interrupt request

PC0 RO Performance counter 0 interrupt request

SLR RO Serial line interrupt request. Also see SL_RCV, SL_
XMIT, and SL_CLR

SIRR [15:1] RO Corresponds to software interrupt request 15 through 1

ASTRR [3:0] RO Corresponds to AST request 3 through 0 (USEK)

Internal Processor Registers 5–15

5.2.15 Software Interrupt Request Register (SIRR)
The SIRR is a read/write register used to control software interrupt requests.
For each bit of the SIRR, there is a corresponding bit of the Software Interrupt
Enable register (SIER) that must be set to request an interrupt. Reads of the
SIRR return the complete set of interrupt request registers and summary bits
(see Table 5–7 for details). All interrupt requests are blocked while executing
in PALmode. Figure 5–12 shows the SIRR format.

Figure 5–12 Software Interrupt Request Register

0001020304050708091012131428293233

P
C
1

P
C
0

U S E K
ASTRR

[3:0]

SIRR
[15:1]

HIRR
[2:0]

HIRR
[5:3]RAZ

A
T
R

S
W
R

H
W
R

R
A
Z

S
L
R

C
R
R

LJ-01845-T I0

0032334748

IGNSIRR[15:1]IGN

63

63

Read Format:

Write Format:

5–16 Internal Processor Registers

5.2.16 Asynchronous Trap Request Register (ASTRR)
The ASTRR is a read/write register. It contains bits to request AST
interrupts in each of the processor modes. To generate an AST interrupt,
the corresponding enable bit in the ASTER must be set. Also, the processor
must be in the selected processor mode or higher privilege as described by the
current value of the PS CM bits. AST interrupts are enabled if the SIER 2
is set. This provides a mechanism to lock out AST requests over certain IPL
levels.

All interrupt requests are blocked while executing in PALmode. Reads of the
ASTRR return the complete set of interrupt request registers and summary
bits. See Table 5–7 for details. Figure 5–13 shows the ASTRR format.

Figure 5–13 Asynchronous Trap Request Register

0001020304050708091012131428293233

P
C
1

P
C
0

U S E K
ASTRR

[3:0]

SIRR
[15:1]

HIRR
[2:0]

HIRR
[5:3]RAZ

A
T
R

S
W
R

H
W
R

R
A
Z

S
L
R

C
R
R

LJ-01846-T I0

00

IGNIGN

63

63

Read Format:

Write Format:

474849505152

U
A
R

S
A
R

E
A
R

K
A
R

Internal Processor Registers 5–17

5.2.17 Hardware Interrupt Enable Register (HIER)
The HIER is a read/write register. It is used to enable corresponding bits of the
HIRR requesting interrupt. The PC0, PC1, SLE, and CRE bits of this register
enable the:

• Performance counters

• Serial line

• Correctable read interrupts

There is a one-to-one correspondence between the interrupt requests and
enable bits. As with the reads of the interrupt request registers, reads of the
HIER return the complete set of interrupt enable registers. See Table 5–7 for
details. Figure 5–14 shows the hardware interrupt enable register format.
Table 5–8 lists the register fields and a description of each.

Figure 5–14 Hardware Interrupt Enable Register

000304050708091012131428293233

P
C
1

P
C
0

SIER
[15:1]

HIER
[2:0]

HIER
[5:3] RAZ

S
L
E

C
R
E

LJ-01847-T I0

00

IGN

63

63

Read Format:

Write Format:

3031

U
A
E

S
A
E

E
A
E

K
A
E

070809143233

P
C
0

31

S
L
E

1516

P
C
1

RAZ

02

C
R
E

IGN IGNHIER[5:0] IGN

Table 5–8 Hardware Interrupt Enable Register Fields

Field Type Description

HIER [5:0] RW Interrupt enables for pins Irq_h [5:0]

SIER [15:1] RW Corresponds to software interrupt requests 15 through 1

ASTER [3:0] RW Corresponds to ASTRR enable 3 through 0 (USEK)

PC1 RW Performance counter 1 interrupt enable

(continued on next page)

5–18 Internal Processor Registers

Table 5–8 (Cont.) Hardware Interrupt Enable Register Fields

Field Type Description

PC0 RW Performance counter 0 interrupt enable

SLE RW Serial line interrupt enable

Also see SL_RCV, SL_XMIT, and SL_CLR

CRE RW CRD correctable read error interrupt enable

This interrupt request is cleared by way of the SL_CLR
register

5.2.18 Software Interrupt Enable Register (SIER)
The SIER is a read/write register. It is used to enable corresponding bits of
the SIRR requesting interrupts. There is a one-to-one correspondence between
the interrupt requests and enable bits. As with the reads of the interrupt
request registers, reads of the SIER return the complete set of interrupt enable
registers. See Table 5–7 for details. Figure 5–15 shows the software interrupt
enable register format.

Figure 5–15 Software Interrupt Enable Register

000304050708091012131428293233

P
C
1

P
C
0

SIER
[15:1]

HIER
[2:0]

HIER
[5:3] RAZ

S
L
E

C
R
E

LJ-01848-T I0

00

IGN

63

63

Read Format:

Write Format:

3031

U
A
E

S
A
E

E
A
E

K
A
E

32334748

RAZ

IGNSIER[15:1]

Internal Processor Registers 5–19

5.2.19 AST Interrupt Enable Register (ASTER)
The ASTER is a read/write register. It is used to enable corresponding bits
of the ASTRR requesting interrupts. There is a one-to-one correspondence
between the interrupt requests and enable bits. As with the reads of the
interrupt request registers, reads of the ASTER return the complete set of
interrupt enable registers. See Table 5–7 for details. Figure 5–16 shows the
ASTER format.

Figure 5–16 AST Interrupt Enable Register

000304050708091012131428293233

P
C
1

P
C
0

SIER
[15:1]

HIER
[2:0]

HIER
[5:3] RAZ

S
L
E

C
R
E

LJ-01849-T I0

00

IGN

63

63

Read Format:

Write Format:

3031

U
A
E

S
A
E

E
A
E

K
A
E

4748

RAZ

IGN

5152 4950

U
A
E

S
A
E

E
A
E

K
A
E

5.2.20 Serial Line Transmit Register (SL_XMIT)
The SL_XMIT register contains a single write-only bit. This bit is used with
the interrupt control registers, the sRomD_h pin, and the sRomClk_h pin to
provide an on-chip serial line function. The TMT bit is functionally connected
to the sRomClk_h pin after the Icache is loaded from the external serial
ROM. Writing the TMT bit can be used to transmit data off chip, one bit at a
time under a software timing loop. Figure 5–17 shows the SL_XMIT register
format.

5–20 Internal Processor Registers

Figure 5–17 Serial Line Transmit Register

00030405

T
M
T

LJ-01850-T I0

63

IGN IGN

5.3 Abox Internal Processor Registers
The following sections describe the Abox internal processor registers.

5.3.1 Translation Buffer Control Register (TB_CTL)
The granularity hint (GH) field selects between the 21064/21064A TB page
mapping sizes. There are two sizes in the ITB and four sizes in the DTB.
When only two sizes are provided, the large-page-select (GH=11(bin)) field
selects the largest mapping size (512 * 8 KB). All other values select the
smallest (8 KB) size. The GH field affects both reads and writes to the ITB and
DTB. Figure 5–18 shows the translation buffer control register format. See the
Alpha Architecture Reference Manual for additional information.

Figure 5–18 Translation Buffer Control Register

000405060763

GH IGNIGN

LJ-01851-T I0

5.3.2 Data Translation Buffer Page Table Entry Register (DTB_PTE)
The DTB_PTE register is a read/write register representing the 32-entry
DTB. The entry to be written is chosen by a not-last-used (NLU) algorithm
implemented in the hardware. A DTB round robin (DTB_RR) algorithm
can be selected by setting ABOX_CTL [9]. Writes to the DTB_PTE use the
memory format bit positions as described in the Alpha Architecture Reference
Manual with the exception that some fields are ignored. The valid bit is not
represented in hardware.

Internal Processor Registers 5–21

The DTB’s tag array is updated simultaneously from the TB_Tag register
when the DTB_PTE register is written. Reads of the DTB_PTE require two
instructions. The first instruction sends the PTE data to the Data Translation
Buffer Page Table Entry Temporary register (DTB_PTE_TEMP). The second
instruction, reading from the DTB_PTE_TEMP register, returns the PTE entry
to the register file. Reading or writing the DTB_PTE register increments the
TB entry pointer of the DTB, which allows reading the entire set of DTB_PTE
entries. Figure 5–19 shows the DTB_PTE register format.

Figure 5–19 Data Translation Buffer Page Table Entry Register

LJ-01852-T I0

000102030405070809101112131415165253 313263

U
W
E

S
W
E

E
W
E

K
W
E

U
R
E

S
R
E

E
R
E

K
R
E

I
G
N

A
S
M

I
G
N

F
O
W

F
O
R

IGNPFN[33:13] IGNIGN

5.3.3 Data Translation Buffer Page Table Entry Temporary Register
(DTB_PTE_TEMP)

The DTB_PTE_TEMP register is a read-only holding register for DTB_PTE
read data. Reads of the DTB_PTE require two instructions to return the data
to the register file. The two instructions are as follows:

• Read the DTB_PTE register data to the DTB_PTE_TEMP register.

• Read the DTB_PTE_TEMP register data to the integer register file.

Figure 5–20 shows DTB_PTE_TEMP register format.

Figure 5–20 Data Translation Buffer Page Table Entry Temporary Register

LJ-01853-T I0

00020304050708091011121363

K
W
E

S
W
E

E
W
E

K
W
E

U
R
E

S
R
E

E
R
E

U
R
E

F
O
W

F
O
R

PFN[33:13] RAZ
A
S
M

06333435

RAZ

5–22 Internal Processor Registers

5.3.4 Memory Management Control and Status Register (MM_CSR)
When D-stream faults occur the information about the fault is latched
and saved in the MM_CSR register. The virtual address register (VA) and
MM_CSR registers are locked against further updates until the software reads
the Virtual Address register. PALcode must explicitly unlock this register
whenever its entry point is higher in priority than a DTB miss. The MM_CSR
bits are only modified by the hardware when the register is not locked and a
memory management error or a DTB miss occurs. The MM_CSR is unlocked
after reset. Figure 5–21 shows the MM_CSR register format. Table 5–9 lists
the register fields and a brief description.

Figure 5–21 Memory Management Control and Status Register

000102030408091463

F
O
W

F
O
R

LJ-01854-T I0

15

A
C
V

W
RRAOPCODERAZ

Table 5–9 Memory Management Control and Status Register

Field Type Description

WR RO Set if reference that caused error was a write.

ACV RO Set if reference caused an access violation.

FOR RO Set if reference was a read and the PTE’s FOR bit was set.

FOW RO Set if reference was a write and the PTE’s FOW bit was set.

RA RO RA field of the faulting instruction.

OPCODE RO Opcode field of the faulting instruction.

Internal Processor Registers 5–23

5.3.5 Virtual Address Register (VA)
When D-stream faults or DTB misses occur, the effective virtual address
associated with the fault or miss is latched in the read-only VA register.
The VA and MM_CSR registers are locked against further updates until
the software reads the VA register. The VA register is unlocked after reset.
PALcode must explicitly unlock this register whenever its entry point is higher
in priority than a DTB miss.

5.3.6 Data Translation Buffer ZAP Register (DTBZAP)
The DTBZAP is a pseudo-register. A write to this register invalidates all 32
DTB entries. It also resets the not-last-used (NLU) pointer to its initial state.

5.3.7 Data Translation Buffer ASM Register (DTBASM)
The DTBASM is a pseudo-register. A write to this register invalidates all 32
DTB entries in which the ASM bit is equal to zero.

5.3.8 Data Translation Buffer Invalidate Single Register (DTBIS)
A write to this pseudo-register will invalidate the DTB entry, which maps the
virtual address held in the integer register. The integer register is identified
by the Rb field of the HW_MTPR instruction, used to perform the write.

5.3.9 Flush Instruction Cache Register (FLUSH_IC)
A write to this pseudo-register flushes the entire instruction cache.

5.3.10 Flush Instruction Cache ASM Register (FLUSH_IC_ASM)
A write to this pseudo-register invalidates all Icache blocks in which the ASM
bit is clear.

5.3.11 Abox Control Register (ABOX_CTL)
Figure 5–22 shows the Abox control register format. Table 5–10 lists the
register fields and descriptions.

5–24 Internal Processor Registers

Figure 5–22 Abox Control Register 1

0001020363

MBZ

0407081112 05060910

WB_DIS

MCHK_EN

CRD_EN

IC_SBUF_EN

SPE_1

SPE_2

EMD_EN

STC_NORESULT

NCAHCE_NDISTURB

DTB_RR

DC_ENA

DC_FHIT

W
O

W
O

W
O

W
O

W
O

W
O

W
O

W
O

W
O

W
O

W
O

W
O

13

W
O

14

W
O

15

W
O

16

W
O

DC_16K

F_TAG_ERR

NOCHK_PAR

DOUBLE_INVAL
MLO-012194

Table 5–10 Abox Control Register Fields

Field Type Description

WB_DIS WO,0 Write Buffer unload Disable. When set, this bit prevents the write
buffer from sending write data to the BIU. It should be set for
diagnostics only.

MCHK_EN WO,0 Machine Check Enable. When this bit is set, the Abox generates
a machine check when errors (which are not correctable by the
hardware) are encountered. When this bit is cleared, uncorrectable
errors do not cause a machine check. However, the BIU_STAT,
DC_STAT, BIU_ADDR, and FILL_ADDR registers are updated and
locked when the errors occur.

(continued on next page)

1 Versions of the 21064 where the CHIP_ID field of DC_STAT was 0002 did not
implement ABOX_CTL [9:7]. PALcode for these processors is upward compatible if
the PALcode did not set ABOX_CTL [15:12] or ABOX_CTL [9:7].

Internal Processor Registers 5–25

Table 5–10 (Cont.) Abox Control Register Fields

Field Type Description

CRD_EN WO,0 Corrected read data interrupt enable. When this bit is set,
the Abox generates an interrupt request whenever a pin bus
transaction is terminated with a cAck_h code of SOFT_ERROR.

IC_SBUF_EN WO,0 Icache stream buffer enable. When set, this bit enables operation
of a single entry Icache stream buffer.

SPE_1 WO,0 When this bit is set, it enables one-to-one superpage mapping of
the D-stream virtual addresses with VA [42:30] = 1FFE (Hex) to
the physical addresses with PA [33:30] = 0 (Hex). Access is only
allowed in kernel mode.

Note

For the 21064A-275-PC, this bit must
always be set when virtual-to-physical
mapping is enabled. Operation in native
mode (not PALmode) with this bit clear
will cause 21064A-275-PC operation to be
UNPREDICTABLE.

SPE_2 WO,0 When this bit is set, it enables one-to-one super page mapping of
the D-stream virtual addresses with VA [33:13] directly to physical
addresses PA [33:13], if virtual address bits VA [42:41] = 2. Virtual
address bits VA [40:34] are ignored in this translation. Access is
only allowed in kernel mode.

EMD_EN WO,0 Limited hardware support is provided for big endian data formats
by way of bit [6] of the ABOX_CTL register. When set, this bit
inverts the physical address bit [2] for all D-stream references.
It is intended that the chip endian mode be selected during
initialization of PALcode only.

(continued on next page)

5–26 Internal Processor Registers

Table 5–10 (Cont.) Abox Control Register Fields

Field Type Description

STC_NORESULT2 WO,0 When clear the 21064/21064A implements lock operation in
conformance to Alpha Architecture. Cleared by chip reset.

When set the the 21064/21064A does not conform to Alpha
architecture. These listed items apply.

• The result written into the register identified by Ra in STL_
C/STQ_C and HW_ST/C instructions is UNPREDICTABLE.
This allows the Ibox to restart the memory reference pipeline
when the STL_C/STQ_C is transferred from the write buffer
to the BIU, and so increases the repetition rate with which
STL_C/STQ_C instructions can be processed.

• LDL_L/LDQ_L, STL_C/STQ_C and HW_ST/C instructions will
invalidate the Dcache line associated with their generated
address. These invalidates will not be visible to load or store
instructions that issue in the two CPU cycles after the LDL_L
/LDQ_L, STL_C/STQ_C or HW_ST/C issues.

NCACHE_
NDISTURB2

WO,0 When this bit is set, it enables a mode which make noncacheable
only those external reads for which the 21064/21064A does not
probe the external cache. This bit is cleared by chip reset. See
Section 6.4.10.3.

DTB_RR2 WO,0 When this bit is set, it selects the round robin replacement
algorithm in the DTB.

DC_ENA WO,0 Dcache enable. When clear, this bit disables and flushes the
Dcache. When set, this bit enables the Dcache.

DC_FHIT WO,0 Dcache force hit. When set, this bit forces all D-stream references
to hit in the Dcache. This bit takes precedence over DC_ENA.
That is, when DC_FHIT is set and DC_ENA is clear all D-stream
references hit in the Dcache.

DC_16K3 WO,0 21064A only. Set to select 16K byte Dcache. Clear to select 8K
byte Dcache.

F_TAG_ERR3 WO,0 21064A only. Set to generate bad Dcache tag parity on fills.

NOCHK_PAR3 WO,0 21064A only. Set to disable checking of Icache and Dcache parity.

DOUBLE_
INVAL3

WO,0 21064A only. When set, asserting dInvReq_h 0 invalidates both
Dcache blocks addressed by iAdr_h [12:5].

2ABOX_CTL [09:07] (DTB_RR, NCACHE_NDISTURB, STC_NORESULT) were not implemented in versions
of the 21064 where the CHIP_ID field of DC_STAT was 0002. PALcode for these processors is upward
compatible if the PALcode did not set ABOX_CTL [15:12] or ABOX_CTL [09:07].
3ABOX_CTL [15:12] DOUBLE_INVAL, NOCHK_PAR, F_TAG_ERR and DC_16K exist on 21064A only.

Internal Processor Registers 5–27

5.3.12 Alternate Processor Mode Register (ALT_MODE)
The ALT_MODE is a write-only register. The AM field specifies the alternate
processor mode used by HW_LD and HW_ST instructions that have their ALT
bit (bit [14]) set. Figure 5–23 shows the alternate processor mode register
format and Table 5–11 lists the register modes.

Figure 5–23 Alternate Processor Mode Register

000203040563

IGNIGN

LJ-01856-T I0

AM

Table 5–11 Alternate Processor Mode Register

ALT_MODE [4:3] Mode

0 0 Kernel

0 1 Executive

1 0 Supervisor

1 1 User

5.3.13 Cycle Counter Register (CC)
The 21064/21064A supports a cycle counter, as described in the Alpha
Architecture Reference Manual. When enabled, the CC increments once
each CPU cycle. The HW_MTPR Rn, CC writes the CC [63:32] with the value
held in the Rn [63:32]. The CC [31:0] are not changed. This register is read by
the RPCC instruction as defined in the Alpha Architecture Reference Manual.

Figure 5–24 shows the register format (top register) when read by the HW_
MFPR Rn, CC instruction and when written (bottom register) by the HW_
MTPR Rn, CC instruction.

5–28 Internal Processor Registers

Figure 5–24 Cycle Counter Register

00313263

LJ-02162-TI0

OFFSET COUNTER

00313263

OFFSET IGN

Read Format:

Write Format:

5.3.14 Cycle Counter Control Register (CC_CTL)
The HW_MTPR Rn, CC_CTL writes the CC [31:0] with the value held in
Rn [31:0]. The CC register bits [63:32] are not changed. The CC register
bits [3:0] must be written with zero. If Rn bit [32] is set, then the counter is
enabled, otherwise the counter is disabled. CC_CTL is a write-only register.
Figure 5–25 shows the register format when written by the HW_MTPR Rn,
CC_CTL instruction.

Figure 5–25 Cycle Counter Control Register

0031323363

LJ-02161-TI0

IGN

ENABLE

COUNTER

CC_CTL Register Format

Internal Processor Registers 5–29

5.3.15 Bus Interface Unit Control Register (BIU_CTL)
Figure 5–26 shows the bus interface unit control register format. Table 5–12
lists the register fields and gives a description of each.

Figure 5–26 21064/21064A Bus Interface Unit Control Register 1

2728 0001020335363763

MBZ

04303132 0708111213

BC_WE_CTL
[15:1]

BC_ENA

ECC

OE

BC_FHIT

BC_RD_SPD

BC_WR_SPD

BC_SIZE

BAD_TCP

BC_PA_DIS

BAD_DP

383940424344

SYS_WRAP

BC_BURST_SPD

BC_BURST_ALL

DELAY_WDATA

BYTE_PARITY

IMAP_EN

FAST_LOCK
MLO-012196

Table 5–12 Bus Interface Unit Control Register Fields

Field Type Description

BC_ENA WO,0 External cache enable. When this bit is cleared, the bit
disables the external cache. When the Bcache is disabled, the
BIU does not probe the external cache tag store for read/write
references; it launches a request on cReq_h immediately.

(continued on next page)

1 Versions of the 21064 where the CHIP_ID field of DC_STAT was 0002 did not
implement BIU_CTL [43, 42:40, 38, 12]. PALcode for these processors is upwards
compatible if the PALcode did not set these bits.

5–30 Internal Processor Registers

Table 5–12 (Cont.) Bus Interface Unit Control Register Fields

Field Type Description

ECC WO,0 When this bit is clear, the 21064/21064A generates/expects
parity on four of the check_h pins.
When this bit is set, the 21064/21064A generates/expects ECC
on the check_h pins.

OE WO,0 When this bit is set, the 21064/21064A does not assert its chip
enable pins during RAM write cycles, thus enabling these pins
to be connected to the output enable pins of the cache RAMs.

Caution

The output enable bit in the BIU_CTL
register (BIU_CTL [2]) must be set
if the system uses SRAMs in the
output enable mode (that is, if the
tagCEOE and/or dataCEOE signals
are connected to the output enable
input of the SRAM and the 21064
/21064A enable is always enabled). If
this bit is inadvertently cleared, the tag
and data SRAMs will be enabled during
writes, and damage can result.

BC_FHIT WO,0 External cache force hit. When this bit is set and the BC_ENA
bit is also set, all pin bus READ_BLOCK and WRITE_BLOCK
transactions are forced to hit in external cache. Tag and tag
control parity are ignored. The BC_ENA takes precedence
over BC_FHIT. When BC_ENA is cleared and BC_FHIT is set,
no tag probes occur and external requests are directed to the
cReq_h pins.

Note

The BC_PA_DIS field takes precedence
over the BC_FHIT bit.

(continued on next page)

Internal Processor Registers 5–31

Table 5–12 (Cont.) Bus Interface Unit Control Register Fields

Field Type Description

BC_RD_SPD WO,0 External cache read speed. This field indicates to the BIU the
read access time of the RAMs used to implement the off-chip
external cache, measured in CPU cycles. It should be written
with a value equal to one less than the read access time of the
external cache RAMs.

21064 access times for reads must be in the range [16:4] CPU
cycles, which means the values for the BC_RD_SPD field are
in the range of [15:3].

21064A access times for reads must be in the range [16:3]
CPU cycles, which means the values for the BC_RD_SPD field
are in the range of [15:2].

BC_WR_SPD WO,0 External cache write speed. This field indicates to the BIU the
write cycle time of the RAMs used to implement the off-chip
external cache, measured in CPU cycles. It should be written
with a value equal to one less than the write cycle time of the
external cache RAMs.

The access times for writes must be in the range [16:2] CPU
cycles, which means the values for the BC_WR_SPD field are
in the range of [15:1].

DELAY_WDATA2 WO,0 When this bit is set, it changes the timing of the data bus
during external cache writes. See Section 6.4.4.

BC_WE_CTL WO,0 External cache write enable control. This field is used to
control the timing of the write enable and chip enable pins
during writes into the data and tag control RAMs. It consists
of 15 bits, where each bit determines the value placed on the
write enable and chip enable pins during a given CPU cycle of
the RAM write access. When a given bit of the BC_WE_CTL
is set, the write enable and chip enable pins are asserted
during the corresponding CPU cycle of the RAM access. The
BC_WE_CTL bit [0] (bit [13] in BIU_CTL) corresponds to the
second cycle of the write access, BC_WE_CTL [1] (bit [14] in
BIU_CTL) to the third CPU cycle, and so on. The write enable
pins will never be asserted in the first CPU cycle of a RAM
write access.

Unused bits in the BC_WE_CTL field must be written with
zeros.

2BC_BURST_ALL, BC_BURST_SPD, SYS_WRAP, and DELAY_WDATA were not implemented in versions of
the 21064 where the CHIP_ID field of DC_STAT was 0002. PALcode which did not set these bits may be used
without change.

(continued on next page)

5–32 Internal Processor Registers

Table 5–12 (Cont.) Bus Interface Unit Control Register Fields

Field Type Description

BC_SIZE WO,0 This field is used to indicate the size of the external cache.
See Table 5–13 for the encodings.

BAD_TCP WO,0 When set, this bit causes the 21064/21064A to write bad
parity into the tag control RAM whenever it does a fast
external RAM write. (Diagnostic use only.)

BC_PA_DIS WO,0 This 4-bit field may be used to prevent the CPU chip from
using the external cache to service reads and writes based
upon the quadrant of physical address space that they
reference. The correspondence between this bit field and
the physical address space is shown in Table 5–14.

When a read or write reference is presented to the BIU the
values of BC_PA_DIS, BC_ENA, and the physical address
bits [33:32] determine whether to attempt to use the external
cache to satisfy the reference. If the external cache is not to be
used for a given reference the BIU does not probe the tag store
and makes the appropriate system request immediately. The
value of BC_PA_DIS has NO impact on which portions of the
physical address space can be cached in the primary caches.
System components control this by way of the dRAck_h field
of the pin bus.

BAD_DP WO,0 When this bit is set, the BAD_DP causes the 21064/21064A
to invert the value placed on bits [0], [7], [14] and [21] of the
check_h [27:0] field during off-chip writes. This produces
bad parity when the 21064/21064A is in parity mode, and bad
check bit codes when in ECC mode. (Diagnostic use only.)

SYS_WRAP2 WO,0 When this bit is set, it indicates that the system returns read
response data wrapped around the requested chunk. This bit
is cleared by chip reset. See Section 6.5.5.5.

BC_BURST_SPD2 WO,0 When these bits are cleared, the timing of all Bcache reads is
controlled by the value of BC_RD_SPD.
When these bits are set in 128-bit mode, the second read takes
BC_BURST_SPD+1 cycles.
When these bits are set in 64-bit mode, the second and fourth
reads take BC_BURST_SPD+1 cycles.
If BC_BURST_ALL is set, the third read takes BC_BURST_
SPD+1 cycles also. See Section 6.5.4.6.

2BC_BURST_ALL, BC_BURST_SPD, SYS_WRAP, and DELAY_WDATA were not implemented in versions of
the 21064 where the CHIP_ID field of DC_STAT was 0002. PALcode which did not set these bits may be used
without change.

(continued on next page)

Internal Processor Registers 5–33

Table 5–12 (Cont.) Bus Interface Unit Control Register Fields

Field Type Description

BC_BURST_ALL2 WO,0 In 64-bit mode this bit is set if BC_BURST_SPD should be
used to time the third (of four) RAM read cycle.

BYTE_PARITY3 WO,0 21064A only. If set when BIU_CTL ECC is cleared, external
byte parity is selected.
If set when BIU_CTL ECC is set, this bit is ignored.

IMAP_EN3 WO,0 21064A only. Set to allow dMapWE_h [1:0] to assert for
I-stream backup cache reads.

FAST_LOCK3 WO,0 21064A only. When set, FAST_LOCK mode operation is
selected. FAST_LOCK mode can only be used when BIU_CTL
[2] OE is also set indicating that OE mode Bcache RAMs are
used.

2BC_BURST_ALL, BC_BURST_SPD, SYS_WRAP, and DELAY_WDATA were not implemented in versions of
the 21064 where the CHIP_ID field of DC_STAT was 0002. PALcode which did not set these bits may be used
without change.
3BIU_CTL [44,39,37] FAST_LOCK, IMAP_EN and BYTE_PARITY exist on 21064A only.

Table 5–13 lists the encoding for BC_SIZE. Table 5–14 lists the BIU_CTL
physical addresses.

Table 5–13 BC_SIZE

BC_SIZE Cache Size BC_SIZE Cache Size

0 0 0 128 KB 1 0 0 2 MB

0 0 1 256 KB 1 0 1 4 MB

0 1 0 512 KB 1 1 0 8 MB

0 1 1 1 MB 1 1 1 16 MB

Table 5–14 BC_PA_DIS

BIU_CTL Bits Physical Address BIU_CTL Bits Physical Address

32 PA [33:32] = 0 34 PA [33:32] = 2

33 PA [33:32] = 1 35 PA [33:32] = 3

5–34 Internal Processor Registers

5.3.16 Data Cache Status Register (DC_STAT—21064 Only)
The DC_STAT is a read-only register and is only used by the diagnostics. It
has the same address as the C_STAT register used by the 21064A.

Figure 5–27 shows the 21064 Dcache status register format. Table 5–15 lists
the register fields and gives a description of each.

Figure 5–27 Data Cache Status Register

0002030463

LJ-01858-T I0A

1415

CHIP_IDR
ORAZRAZ

DC_HIT

Table 5–15 Dcache Status Register Fields

Field Type Description

CHIP_ID RO These bits identify the devices as listed here:

• 0002—Early versions of 21064

• 1112—Production version of 21064

DC_HIT RO This bit indicates whether the last load or store
instruction processed by the Abox hit (DC_HIT set)
or missed (DC_HIT clear) the Dcache. Loads that miss
the Dcache can be completed without requiring external
reads. (Diagnostic use only.)

5.3.17 Cache Status Register (C_STAT, 21064A Only)
The C_STAT is a read-only register and is only used by the diagnostics. It has
the same address as the DC_STAT register used by the 21064.

Figure 5–28 shows the 21064A Dcache status register format. Table 5–16 lists
the register fields and gives a description of each.

Internal Processor Registers 5–35

Figure 5–28 Cache Status Register

00020363 041415

DC_HIT

R
ORAZ CHIP_IDRAZ

05

DC_ERR

IC_ERR
MLO-012195

Table 5–16 Cache Status Register Fields

Field Type Description

CHIP_ID RO These bits identify the devices as listed here:

• 0012—Early version of 21064A

• 0112—Production version of 21064A

DC_HIT RO This bit indicates whether the last load or store
instruction processed by the Abox hit (DC_HIT set)
or missed (DC_HIT clear) the Dcache. Loads that miss
the Dcache can be completed without requiring external
reads. (Diagnostic use only.)

DC_ERR RC Set by Dcache parity error.

IC_ERR RC Set by Icache parity error.

5.3.18 Bus Interface Unit Status Register (BIU_STAT)
The BIU_STAT is a read-only register.

Bits [6:0] of the BIU_STAT register are locked against further updates when
one of the following bits is set:

• BIU_HERR

• BIU_SERR

• BC_TPERR

• BC_TCPERR

5–36 Internal Processor Registers

The address associated with the error is latched and locked in the BIU_
ADDR register. Bits [6:0] of the BIU_STAT register and BIU_ADDR are also
spuriously locked when a parity error or an uncorrectable ECC error occurs
during a primary cache fill operation. The BIU_STAT bits [7:0] and BIU_
ADDR are unlocked when the BIU_ADDR register is read.

When FILL_ECC or FILL_DPERR is set, BIU_STAT bits [13:8] are locked
against further updates. The address associated with the error is latched and
locked in the FILL_ADDR register. The BIU_STAT bits [14:8] and FILL_ADDR
are unlocked when the FILL_ADDR register is read.

This register is not unlocked or cleared by reset and needs to be explicitly
cleared by PALcode.

Figure 5–29 shows the bus interface unit status register format. Table 5–17
lists the register fields and gives a description of each.

Figure 5–29 Bus Interface Unit Status Register

0002030408091011121363

LJ-02123-TI0

14

R
O

R
O

R
O

R
O RORAZ

0607

RO R
O

R
O

R
O

R
O

R
O

BIU_HERR

BIU_SERR

BC_TPERR

BC_TCPERR

BIU_CMD

FATAL 1

FILL_ECC

FILL_DPERR

FILL_IRD

FILL_QW

FATAL 2

01

FILL_CRD

R
O

Internal Processor Registers 5–37

Table 5–17 Bus Interface Unit Status Register Fields

Field Type Description

BIU_HERR RO When this bit is set, it indicates that an external cycle
was terminated with the cAck_h pins indicating HARD_
ERROR.

BIU_SERR RO When this bit is set, it indicates that an external cycle
was terminated with the cAck_h pins indicating SOFT_
ERROR.

BC_TPERR RO When this bit is set, it indicates that an external cache
tag probe encountered bad parity in the tag address
RAM.

BC_TCPERR RO When this bit is set, it indicates that an external cache
tag probe encountered bad parity in the tag control RAM.

BIU_CMD RO This field latches the cycle type on the cReq_h pins when
a BIU_HERR, BIU_SERR, BC_TPERR, or BC_TCPERR
error occurs.

FATAL1 RO When this bit is set, it indicates that an external cycle
was terminated with the cAck_h pins indicating HARD_
ERROR or that an external cache tag probe encountered
bad parity in the tag address RAM or the tag control
RAM while one of BIU_HERR, BIU_SERR, BC_TPERR,
or BC_TCPERR was already set.

FILL_ECC RO ECC error. When this bit is set, it indicates that primary
cache fill data received from outside the CPU chip
contained an ECC error.

FILL_CRD RO Correctable read. This bit only has meaning when FILL_
ECC is set. When this bit is set, it indicates that the
information latched in BIU_STAT [13:8], FILL_ADDR,
and FILL_SYNDROME relates to an error quadword
which does not contain multi-bit errors in either of its
component longwords.

FILL_DPERR RO Fill Parity Error. When this bit is set, it indicates that
the BIU received data with a parity error from outside
the CPU chip while performing either a Dcache or Icache
fill. FILL_DPERR is only meaningful when the CPU chip
is in parity mode, as opposed to ECC mode.

(continued on next page)

5–38 Internal Processor Registers

Table 5–17 (Cont.) Bus Interface Unit Status Register Fields

Field Type Description

FILL_IRD RO This bit is only meaningful when either FILL_ECC or
FILL_DPERR is set. The FILL_IRD bit is set to indicate
that the error that caused FILL_ECC or FILL_DPERR
to set occurred during an Icache fill and clear to indicate
that the error occurred during a Dcache fill.

FILL_QW RO This field is only meaningful when either FILL_ECC or
FILL_DPERR is set. The FILL_QW bit identifies the
quadword within the hexaword primary cache fill block
which caused the error. It can be used together with
FILL_ADDR [33:5] to get the complete physical address
of the bad quadword.

FATAL2 RO When this bit is set, it indicates that a primary cache
fill operation resulted in either a multi-bit ECC error or
in a parity error while FILL_ECC or FILL_DPERR was
already set.

5.3.19 Bus Interface Unit Address Register (BIU_ADDR)
The BIU_ADDR is a read-only register that contains the physical address
associated with errors reported by BIU_STAT [7:0]. Its contents are meaningful
only when one of BIU_HERR, BIU_SERR, BC_TPERR, or BC_TCPERR are
set. Reads of the BIU_ADDR register unlock both BIU_ADDR and BIU_STAT
[7:0].

The BIU_ADDR bits [33:5] contain the values of adr_h bits [33:5] associated
with the pin bus transaction that resulted in the error indicated in BIU_STAT
[7:0].

If the BIU_CMD field of the BIU_STAT register indicates that the transaction
that received the error was READ_BLOCK or load_locked, then BIU_ADDR
[4:2] are UNPREDICTABLE. If the BIU_CMD field of the BIU_STAT register
encodes any pin bus command other than READ_BLOCK or load_locked, then
BIU_ADDR bits [4:2] will contain zeros. The BIU_ADDR bits [63:34] and
BIU_ADDR bits [1:0] always read as zero. Figure 5–30 shows the bus interface
unit address register (BIU_ADDR) format.

Internal Processor Registers 5–39

Figure 5–30 Bus Interface Unit Address Register

LJ-02160-TI0

00010263 3334

RAZ ADDRESS

BIU_ADDR Register Format

R
A
Z

04

RB/LL

05

5.3.20 Fill Address Register (FILL_ADDR)
The FILL_ADDR is a read-only register that contains the physical address
associated with errors reported by BIU_STAT bits [14:8]. Its contents are
meaningful only when FILL_ECC or FILL_DPERR is set. Reads of the FILL_
ADDR unlock FILL_ADDR, BIU_STAT bits [14:8] and FILL_SYNDROME.

The FILL_ADDR bits [33:5] identify the 32-byte cache block that the CPU was
attempting to read when the error occurred.

If the FILL_IRD bit of the BIU_STAT register is clear, it indicates that the
error occurred during a D-stream cache fill. At such times, FILL_ADDR bits
[4:2] contain bits [4:2] of the physical address generated by the load instruction
that triggered the cache fill. If FILL_IRD is set, then FILL_ADDR bits [4:2]
are UNPREDICTABLE. The FILL_ADDR bits [63:34] and FILL_ADDR bits
[1:0] will read as zero. Figure 5–31 shows the fill address register (FILL_
ADDR) format.

Figure 5–31 Fill Address Register

LJ-02159-TI0

00010263

RAZ

3334

RAZ ADDRESS

Fill_ADDR Register Format

0405

PA/
UNP

5–40 Internal Processor Registers

5.3.21 Fill Syndrome Register (FILL_SYNDROME)
The FILL_SYNDROME register is a 14-bit read-only register.

If the chip is in ECC mode and an ECC error is recognized during a primary
cache fill operation, the syndrome bits associated with the bad quadword are
locked in the FILL_SYNDROME register. The FILL_SYNDROME bits [6:0]
contain the syndrome associated with the lower longword of the quadword, and
FILL_SYNDROME bits [13:7] contain the syndrome associated with the upper
longword of the quadword. A syndrome value of zero means that no errors
were found in the associated longword. See Table 5–18 for a list of syndromes
associated with correctable single-bit errors. The FILL_SYNDROME register
is unlocked when the FILL_ADDR register is read.

If the chip is in parity mode and a parity error is recognized during a primary
cache fill operation, the FILL_SYNDROME register indicates which of the
longwords in the quadword got bad parity. The FILL_SYNDROME bit [0] is
set to indicate that the lower longword was corrupted, and FILL_SYNDROME
bit [7] is set to indicate that the upper longword was corrupted. The FILL_
SYNDROME bits [13:8] and [6:1] are RAZ in parity mode. Figure 5–32 shows
the fill syndrome register format.

Figure 5–32 FILL_SYNDROME Register

000607131463

LO[6:0]HI[6:0]RAZ

LJ-01860-T I0

Internal Processor Registers 5–41

Table 5–18 Syndromes for Single-Bit Errors

Data
Bit

Syndrome
(Hex)

Data
Bit

Syndrome
(Hex)

Check
Bit

Syndrome
(Hex)

00 4F 16 0E 00 01

01 4A 17 0B 01 02

02 52 18 13 02 04

03 54 19 15 03 08

04 57 20 16 04 10

05 58 21 19 05 20

06 5B 22 1A 06 40

07 5D 23 1C

08 23 24 62

09 25 25 64

10 26 26 67

11 29 27 68

12 2A 28 6B

13 2C 29 6D

14 31 30 70

15 34 31 75

5–42 Internal Processor Registers

5.3.22 Backup Cache Tag Register (BC_TAG)
The BC_TAG is a read-only register. Unless locked, the BC_TAG register is
loaded with the results of every backup cache tag probe. When a tag or tag
control parity error or primary fill data error (parity or ECC) occurs, this
register is locked against further updates. The software may read the LSB of
this register by using the HW_MFPR instruction. Each time an HW_MFPR
from BC_TAG completes, the contents of BC_TAG are shifted one bit position
to the right, so that the entire register can be read using a sequence of HW_
MFPRs. The software may unlock the BC_TAG register using a HW_MTPR to
BC_TAG.

Successive HW_MFPRs from the BC_TAG register must be separated by at
least one null cycle. Figure 5–33 shows the backup cache tag register format.
Table 5–19 lists the register fields and gives a description of each.

Figure 5–33 Backup Cache Tag Register

000203040521222363

LJ-01861-T I0

R
O

R
O

R
ORAZ

01

R
O

R
O

R
O

TAG
[33:17]

HIT

TAGCTL_P

TAGCTL_D

TAGCTL_S

TAGCTL_V

TAGADR_P

Note

Unused tag bits in the TAG field of this register are always clear, based
on the size of the external cache as determined by the BC_SIZE field of
the BIU_CTL register.

Internal Processor Registers 5–43

Table 5–19 Backup Cache Tag Register Fields

Field Type Description

TAGADR_P RO Reflects the state of the tagAdrP_h signal of the 21064
/21064A when a tag, tag control, or data parity error
occurs.

TAG RO Contains the tag that is being currently probed.

TAGCTL_V RO Reflects the state of the tagCtlV_h signal of the 21064
/21064A when a tag, tag control, or data parity error
occurs.

TAGCTL_S RO Reflects the state of the tagCtlS_h signal of the 21064
/21064A when a tag, tag control, or parity error occurs.

TAGCTL_D RO Reflects the state of the tagCtlD_h signal of the 21064
/21064A when a tag, tag control, or data parity error
occurs.

TAGCTL_P RO Reflects the state of the tagCtlP_h signal of the 21064
/21064A when a tag, tag control, or data parity error
occurs.

HIT When set, indicates that there was a tag match when a
tag, tag control, or data parity error occurred.

5.4 PAL_TEMP Registers
The CPU chip contains 32 (64-bit) registers that are accessible by way of
the HW_MxPR instructions. These registers provide temporary storage for
PALcode.

5.5 Lock Registers
There are two registers per processor that are associated with the LDQ_
L/LDL_L and STQ_C/STL_C instructions: the lock_flag register and the
locked_physical_address register. The use of these registers is described in
the Alpha Architecture Reference Manual. These registers are required by
the architecture but are not implemented on the 21064/21064A. They must
be implemented in the application. See Section 6.4.10 for 21064/21064A lock
operation.

5–44 Internal Processor Registers

5.6 Internal Processor Registers Reset State
Table 5–20 lists the state of all the internal processor registers (IPRs)
immediately following reset. The table also specifies which registers need to be
initialized by power-up PALcode.

Table 5–20 Internal Process Register Reset State

IPR Reset State Comments

TB_TAG UNDEFINED

ITB_PTE UNDEFINED

ICCSR cleared except
ASN, PC0, PC1

Floating-point disabled, single
issue mode, Pipe mode enabled,
JSR predictions disabled, branch
predictions disabled, branch
history table disabled, performance
counters reset to zero, Perf Cnt0:
Total Issues/2, Perf Cnt1: Dcache
Misses, superpage disabled

ITB_PTE_TEMP UNDEFINED

EXC_ADDR UNDEFINED

SL_RCV UNDEFINED

ITBZAP n/a PALcode must do a ITBZAP on
reset before writing the ITB (must
do HW_MTPR to ITBZAP register).

ITBASM n/a

ITBIS n/a

PS UNDEFINED PALcode must set processor status.

EXC_SUM UNDEFINED PALcode must clear exception
summary and exception register
write mask by doing 64 reads.

PAL_BASE cleared Cleared on reset.

HIRR n/a

SIRR UNDEFINED PALcode must initialize.

ASTRR UNDEFINED PALcode must initialize.

HIER UNDEFINED PALcode must initialize.

SIER UNDEFINED PALcode must initialize.

(continued on next page)

Internal Processor Registers 5–45

Table 5–20 (Cont.) Internal Process Register Reset State

IPR Reset State Comments

ASTER UNDEFINED PALcode must initialize.

SL_XMIT UNDEFINED PALcode must initialize. Appears
on external pin.

TB_CTL UNDEFINED PALcode must select between SP
/LP DTB prior to any TB fill.

DTB_PTE UNDEFINED

DTB_PTE_TEMP UNDEFINED

MM_CSR UNDEFINED Unlocked on reset.

VA UNDEFINED Unlocked on reset.

DTBZAP n/a PALcode must do a DTBZAP on
reset before writing the DTB (must
do HW_MTPR to DTBZAP register).

DTBASM n/a

DTBIS n/a

BIU_ADDR UNDEFINED Potentially locked.

BIU_STAT UNDEFINED Potentially locked.

SL_CLR UNDEFINED PALcode must initialize.

DC_STAT UNDEFINED Potentially locked. 21064 only

C_STAT UNDEFINED Potentially locked. 21064A only

FILL_ADDR UNDEFINED Potentially locked.

ABOX_CTL cleared Write buffer enabled, machine
checks disabled, correctable read
interrupts disabled, Icache stream
buffer disabled, super pages 1 and
2 disabled, endian mode disabled,
Dcache disabled, forced hit mode
off. (STC_NORESULT disabled,
NCACHE_NDISTURB disabled)

ALT_MODE UNDEFINED

CC UNDEFINED Cycle counter is disabled on reset.

(continued on next page)

5–46 Internal Processor Registers

Table 5–20 (Cont.) Internal Process Register Reset State

IPR Reset State Comments

CC_CTL UNDEFINED

BIU_CTL cleared Bcache disabled, parity mode
enabled, chip enable asserts during
RAM write cycles, Bcache forced-
hit mode disabled. BC_PA_DIS
field cleared. BAD_TCP cleared.
BAD_DP cleared. DELAY_WDATA
cleared. SYS_WRAP cleared.

FILL_SYNDROME UNDEFINED Potentially locked.

BC_TAG UNDEFINED Potentially locked.

PAL_TEMP [31:0] UNDEFINED

Note

The Bcache parameters listed here are all undetermined on reset
and must be initialized in the BIU_CTL register before enabling the
Bcache.

• Bcache RAM read speed (BC_RD_SPD)

• Bcache RAM write speed (BC_WR_SPD)

• Bcache delay write data (DELAY_WDATA)

• Bcache write enable control (BC_WE_CTL)

• Bcache size (BC_SIZE)

Internal Processor Registers 5–47

6
External Interface

6.1 Introduction
This chapter is organized as follows:

• Introduction

• 21064 and 21064A Logic Symbols

• Signal Names and Functions

• Bus Transactions

• Interface Operation

• Hardware Error Handling

Note

Although the 21064/21064A is configured during reset to use either a
64-bit or 128-bit wide external data bus, most of this chapter describes
the chip’s operation in 128-bit mode. Section 6.5.6 describes details
specific to 64-bit mode operation.

6.2 Logic Symbol
Figure 6–1 shows the logic symbol of the 21064 while Figure 6–2 shows the
logic symbol for the 21064A.

External Interface 6–1

Figure 6–1 21064 Logic Symbol

21064

Data Control

ROM

Clocks

data_h
[127:0]

check_h
[27:0]

cWMask_h
[7:0]

adr_h
[33:5]

dMapWE_h

tagCtlS_h
tagCtlD_h
tagCtlP_h
tagCtlV_h

tagEq_l
tagCEOE_h
tagCtlWE_h

dataCEOE_h
[3:0]

dataWE_h
[3:0]

holdAck_h

cReq_h
[2:0]

sRomOE_l
sRomClk_h

cpuClkOut_h
sysClkOut2_h
sysClkOut2_l
sysClkOut1_h
sysClkOut1_l

iAdr_h
[12:5]

dInvReq_h

tagadr_h
[33:17]

tagadrP_h
tagOk_h
tagOk_l

dOE_l
dWSel_h 0
dWSel_h 1

holdReq_h

cAck_h
[2:0]

dRAck_h
[2:0]

irq_h
[5:0]

sRomD_h
icMode_h 1
icMode_h 0

reset_l
dcOk_h
clkIn_h
clkIn_l

testClkIn_h
testClkIn_l

perf_cnt_h 1
perf_cnt_h 0

vRef
eclOut_h
triState_l

cont_l

VDD
VSS

LJ-03384-TI0

6–2 External Interface

Figure 6–2 21064A Logic Symbol

21064A

Data Control

Clocks

data_h
[127:0]

check_h
[27:0]

cWMask_h
[7:0]

adr_h
[33:5]

dMapWE_h

tagCtlS_h
tagCtlD_h
tagCtlP_h

tagCtlV_h
tagCEOE_h

tagCtlWE_h

dataCEOE_h
[3:0]

dataWE_h
[3:0]

holdAck_h

cReq_h
[2:0]

sRomOE_l
sRomClk_h

cpuClkOut_h
sysClkOut2_h
sysClkOut2_l
sysClkOut1_h
sysClkOut1_l

iAdr_h
[12:5]

dInvReq_h

tagadr_h
[33:18]

tagadrP_h

tagOk_h

tagOk_l

dOE_l

dWSel_h
[1:0]

holdReq_h

cAck_h
[2:0]

dRAck_h
[2:0]

irq_h
[5:0]

sRomD_h
icMode_h

reset_l
dcOk_h
clkIn_h
clkIn_l

testClkIn_h
testClkIn_l

perf_cnt_h 1
perf_cnt_h 0

vRef
eclOut_h
triState_l

cont_l
VDD
VSS

[1:0]
[1:0]

[2:0]

lockFlag_h lockWE_h

resetSClk_h

sysClkDiv_h

MLO-012197

FASTLOCK

ROM

External Interface 6–3

6.3 Signal Names and Functions
Table 6–1 through Table 6–11 list the various signals grouped by function. The
"Type" column identifies a signal as input (I), output (O), or bidirectional (B).

Signals with an _h suffix are active (asserted) when high. Those with an _l
suffix are active (asserted) when low.

Signals which are unique to either the 21064 or 21064A are identified and the
differences stated.

Table 6–1 Data, Address, and Parity/ECC Buses

Signal Type Count Function

data_h [127:0] B 128 Bidirectional signals providing the data path
between the 21064/21064A and the system.

adr_h [33:5] B 29 Bidirectional signals providing the address path
between the 21064/21064A and the system. These
address bits provide granularity down to 32-byte
internal cache blocks.

check_h [27:0] B 28 Bidirectional signals providing a path for parity or
ECC bits between the 21064/21064A and the rest
of the system.

For data, address, and parity/ECC bus operation information, see Section 6.5.9.

Table 6–2 Primary Cache Invalidate

Signal Type Count Function

iAdr_h [12:5] I 8 Used to index blocks in the Dcache for Dcache
invalidates.

dInvReq_h I 1 21064 only—Used by external logic to invalidate
the Dcache entry indexed by iAdr_h.

dInvReq_h [1:0] I 2 21064A only—Used by external logic to invalidate
the Dcache indexed by iAdr_h. Each signal line
selects one half of the 16K byte Dcache.

For primary cache invalidate operation information, see Section 6.5.3.

6–4 External Interface

Table 6–3 External Cache Control

Signal Type Count Function

tagCEOE_h O 1 Controls tag and tag control RAM chip enable or
output enable during the 21064/21064A controlled
external cache accesses.

tagCtlWE_h O 1 Controls tag control RAM write enable during the
21064/21064A controlled transactions.

tagCtlV_h,
tagCtlS_h,
tagCtlD_h

B 3 Read/write path for external cache valid, shared,
and dirty bits.

The following combinations of the tagCtl RAM bits
are allowed. The tagCtlS_h bit can be viewed as a
write protect bit.

tagCtlV_h tagCtlS_h tagCtlD_h Status

L X X Invalid

H L L Valid,
private

H L H Valid,
private,
dirty

H H L Valid,
shared

H H H Valid,
shared,
dirty

tagCtlP_h B 1 Carries parity across tagCtlV_h, tagCtlD_h, and
tagCtlS_h.

tagAdr_h
[33:17]

I 17 21064 only – Transfers the contents of the tagAdr
RAM to the 21064’s address comparator and parity
checker.

tagAdr_h
[33:18]

I 16 21064A only— Transfers the contents of the
tagAdr RAM to the 21064A’s address comparator
and parity checker.

(continued on next page)

External Interface 6–5

Table 6–3 (Cont.) External Cache Control

Signal Type Count Function

tagAdrP_h I 1 Transfers the contents of the tagAdr RAM to the
21064/21064A’s address comparator and parity
checker.

tagOk_h,
tagOk_l

I 2 Bus interface control signals that allow external
logic to stall a CPU-controlled access to the
external cache RAMs at the last possible moment.
Synchronization of these signals with the CPU
clock differs between the 21064 and 21064A. See
Section 7.4.7 and Section 7.4.8.

tagEq_l O 1 21064 only — Asserted by the 21064 during
external cache hold if the result of tag equality
comparison is true.

dataCEOE_h
[3:0]

O 4 Controls data RAMs’ output enable or chip enable
during the 21064/21064A controlled cache accesses.

dataWE_h [3:0] O 4 Controls data RAMs’ write enable during the 21064
/21064A controlled cache accesses.

dataA_h [4:3] O 2 Controls data RAMs’ address bits [4] and [3] during
the 21064/21064A controlled cache accesses.

holdReq_h I 1 Asserted by external logic to gain access to the
external cache.

holdAck_h O 1 Asserted by the 21064/21064A to indicate that
external logic has access to the external cache.

dMapWE_h O 1 21064 only — Controls the write enable input of
the (optional) backmap RAM during the 21064
controlled external cache reads.

dMapWE_h
[1:0]

O 2 21064A only — Controls the write enable input of
the (optional) backmap RAM during the 21064A
controlled external cache reads. The signal lines
indicate which half of the 16K byte Dcache is being
allocated.

For external cache control operation information, see Section 6.5.4.

6–6 External Interface

Table 6–4 External Cycle Control

Signal Type Count Function

dOE_l I 1 Used by external logic to tell the 21064/21064A
to drive the data bus during external write
transactions.

dWSel_h [1:0] I 2 Used by external logic to tell the 21064/21064A
which part of the 32-byte block of write data should
be driven onto the data bus. The relationship
between dWSel_h [1:0] and the selected bytes of
the 32-byte block is shown below:

dWSel_h
[1:0]

Selected Bytes
(128-bit data bus)

Selected Bytes
(64-bit data bus)

0 0 [15:00] [07:00]

0 1 N/A [15:08]

1 0 [31:16] [23:16]

1 1 N/A [31:24]

dRAck_h [2:0] I 3 Inform the 21064/21064A that read data is valid on
the data bus, whether data should be cached in the
21064/21064A internal caches, and whether ECC
or parity checking should be attempted. Read data
acknowledge types are:

dRAck_h
2

dRAck_h
1

dRAck_h
0 Type

L L L IDLE

H L L OK_
NCACHE_
NCHK

H L H OK_
NCACHE

H H L OK_NCHK

H H H OK

(continued on next page)

External Interface 6–7

Table 6–4 (Cont.) External Cycle Control

Signal Type Count Function

cReq_h [2:0] O 3 Used by the 21064/21064A to specify a cycle type
at the start of an external cycle. The cycle types
are:

cReq_h
2

cReq_h
1

cReq_h
0 Type

L L L IDLE

L L H BARRIER

L H L FETCH

L H H FETCH_M

H L L READ_BLOCK

H L H WRITE_BLOCK

H H L LDL_L/LDQ_L

H H H STL_C/STQ_C

cWMask_h [7:0] O 8 Supply longword write masks to external
logic during write cycle and contains cache
miss information during other cycles (see
Section 6.5.5.2).

cAck_h [2:0] I 3 Used by external logic to acknowledge an external
cycle. Acknowledgment types are:

cAck_h
2

cAck_h
1

cAck_h
0 Type

L L L IDLE

L L H HARD_ERROR

L H L SOFT_ERROR

L H H STL_C_FAIL
/STQ_C_FAIL

H L L OK

For operation external cycle control operation information, see Section 6.5.5.

6–8 External Interface

Table 6–5 Interrupts

Signal Type Count Function

irq_h [5:0] I 6 Compose the interrupt bus, which provides six
types of external interrupts to the 21064/21064A
during normal operation and provide initialization
information at reset.

When reset_l is asserted, the irq_h 5 bit is used to
select 128-bit or 64-bit mode. If irq_h 5 is asserted
then 128-bit mode is selected.

When reset_l is asserted, the irq_h [4:3] bits
encode the delay, in CPU clock cycles, from
sysClkOut1 to sysClkOut2, as follows:

irq_h 4 irq_h 3 Delay

L L 0

L H 1

H L 2

H H 3

21064 only — When reset_l is asserted, the irq_h
[2:0] bits encode the value of the divisor used to
generate the system clock from the CPU clock, as
follows:

irq_h 2 irq_h 1 irq_h 0 Ratio

L L L 2

L L H 3

L H L 4

L H H 5

H L L 6

H L H 7

H H L 8

H H H 8

(continued on next page)

External Interface 6–9

Table 6–5 (Cont.) Interrupts

Signal Type Count Function

sysClkDiv_h1 I 1 21064A only — At reset this line provides
initialization information to the 21064A.

21064A only — When reset_l is asserted,
sysClkDiv_h and the irq_h [2:0] bits encode the
value of the divisor used to generate the system
clock from the CPU clock, as follows:

sysClkDiv_h 1 irq_h [2:0] Ratio

L L L L 2

L L L H 3

L L H L 4

L L H H 5

L H L L 6

L H L H 7

L H H L 8

L H H H 9

H L L L 10

H L L H 11

H L H L 12

H L H H 13

H H L L 14

H H L H 15

H H H L 16

H H H H 17

1sysClkDiv_h at PGA location AA16 was a spare pin on the 21064.

For interrupts operation information, see Section 6.5.8. For information on
power-up of the 21064, see Appendix A.

6–10 External Interface

Table 6–6 Instruction Cache Initialization/Serial ROM Interface

Signal Type Count Function

icMode_h [1:0] I 2 21064 only — Determines which of three Icache
initialization modes is used after reset. The 21064
implements three Icache modes to support chip
and printed circuit board level testing.

icMode_h 1 icMode_h 0 Mode

L L Serial ROM

L H Disabled

H L Digital reserved

H H Digital reserved

icMode_h [2:0] I 3 21064A only — Determines which Icache
initialization mode is used after reset. The 21064A
implements several Icache modes used by Digital
to support chip and module level testing.

icMode_h [2:0] Mode

L L L Serial ROM

L L H Disabled

Other six combina-
tions

Digital reserved

sRomOE_l O 1 In serial ROM mode, supplies the output enable to
the external serial ROM, serving both as an output
enable and as a reset.

sRomD_h I 1 In serial ROM mode, inputs external serial ROM
data to the 21064/21064A.

sRomClk_h O 1 In serial ROM mode, supplies the clock to the
external serial ROM that causes it to advance to
the next bit.

The signals sRomOE_l, sRomD_h, and
sRomClk_h also serve as simple parallel I/O
pins to drive a diagnostic terminal.

For Icache initialization/serial ROM interface operation information, see
Section 6.5.7.

External Interface 6–11

Table 6–7 Initialization

Signal Type Count Function

dcOk_h I 1 Switches clock sources between an on-chip ring
oscillator and the external clock oscillator to
provide the chip clock.

reset_l I 1 Forces the CPU into a known state.

resetSClk_h I 1 21064A only — A test signal. It forces the system
clock divider into a known state.

For initialization operation information, see Section 6.5.2.

Table 6–8 Fast Lock Mode Signals (21064A only)

Signal Type Count Function

lockWE_h1 O 1 The 21064A is able to probe Bcache for a LDxL
transaction. If there is a Bcache hit the 21064A
will assert lockWE_h allowing external logic to set
a lock flag bit and load a lock address register.

lockFlag_h2 I 1 This signal line allows external logic to indicate
the state of the lock flag bit (set or clear). When
the 21064A performs a STxC transaction it may
probe the Bcache and test this signal. If the signal
is asserted the 21064A will perform the write to
Bcache while asserting lockWE_h allowing the
external logic to clear the lock flag bit.

1lockWE_h at PGA location P24 is used for the signal tagEq_l by the 21064.
2lockFlag_h at PGA location R23 is used for the signal tagAdr_h 17 by the 21064.

Table 6–9 Performance Monitoring

Signal Type Count Function

perf_cnt_h [1:0] I 2 Provides 21064/21064A internal performance
monitoring hardware access to off-chip events.

For performance monitoring operation information, see Section 5.2.3,
Section 5.3.15 and Section 6.5.10.

6–12 External Interface

Table 6–10 Clocks

Signal Type Count Function

clkIn_h, clkIn_l I 2 Supply the 21064/21064A with a differential clock
from external logic.

testClkIn_h,
testClkIn_l

I 2 These two input signals tell the 21064/21064A
which clocks will be applied to the input clock
signal lines clkIn_h and clkIn_l.

testClkIn_h testClkIn_l Function

L L Digital
Reserved

L H Standard 2x
input clock

H L Standard 2x
input clock

H H 1x input
clock

cpuClkOut_h O 1 Supplies the internal chip clock for use by the
external interface; the low-to-high transition of
cpuClkOut_h is the ‘‘CPU clock’’ used in the
timing specification for the tagOk_h and tagOk_l
signals.

sysClkOut1_h,
sysClkOut1_l

O 2 Provide the system clock for use by the external
interface. The low-to-high transition of sysClk-
Out1_h provides the system clock used as a timing
reference throughout this document.

sysClkOut2_h,
sysClkOut2_l

O 2 Provide delayed system clock to the external
interface. The delay is between zero and three
CPU clock cycles. The delay is dependent upon the
state of irq_h [4:3] when reset_l is asserted.

For clocks operation information, see Section 6.5.1.

External Interface 6–13

Table 6–11 Other Signals

Signal Type Count Function

tristate_l I 1 The assertion of this signal forces all the 21064
/21064A signals, with the exception of cpuClkOut_
h, to the high-impedance state.

cont_l I 1 The assertion of this signal causes the 21064
/21064A to connect all signals to Vss, with the
exception of certain clock signals and vRef.

vRef I 1 Supplies a reference voltage of 1.4 V to the input
signal sense circuits.

eclOut_h I 1 Digital reserved; should be tied to Vss.

For miscellaneous signals operation information, see Section 6.5.11.

6.4 Bus Transactions
This section describes bus transactions in detail. These transactions are
described for 128-bit data bus mode; see Section 6.5.6 for more information on
64-bit bus mode.

6.4.1 Reset
External logic resets the 21064/21064A by asserting reset_l. When the 21064
/21064A detects the assertion of reset_l, it terminates all external activity, and
places the output signals on the external interface into the states shown in
Table 6–12.

Note

All of the control signals have been placed in the state that allows
external devices access to the external cache. Under normal operation,
this can only be done using the holdReq cycle.

6–14 External Interface

Table 6–12 State of Pins at Reset

Pin State Pin State

clkIn_h, clkIn_l I tagAdr_h I

testClkIn_h,testClkIn_l I tagAdrP_h I

cpuClkOut_h C tagOk_h, tagOk_l I

sysClkOut1_h,sysClkOut1_l C tagEq_l (21064 only) U

sysClkOut2_h, sysClkOut2_l C dataCEOE_h L

dcOk_h I dataWE_h L

reset_l I dataA_h [4:3] L

icMode_h I holdReq_h I

sRomOE_l H holdAck_h L

sRomD_h I cReq_h L

sRomClk_h H cWMask_h U

adr_h Z cAck_h I

data_h Z iAdr_h I

check_h Z dInvReq_h I

dOE_l I dMapWE_h L

dWSel_h I irq_h I

dRAck_h I vRef I

tagCEOE_h L eclOut_h I

tagCtlWE_h L perf_cnt_h [1:0] I

tagCtlV_h Z tristate_l I

tagCtlS_h Z cont_l I

tagCtlD_h Z tagCtlP_h Z

lockWE_h (21064A only) ? lockFlag_h (21064A only) I

sysClkDiv_h (21064A only) I resetSClk_h (21064A only) I

H = High
L = Low
U = Unpredictable
I = Chip inputs
C = Continuously cycling (clocks)
Z = Tristate

External Interface 6–15

External logic can asynchronously deassert reset_l. The 21064/21064A
contains internal logic to keep its internal reset signal asserted at least 20
CPU cycles beyond the deassertion of reset_l.

When the 21064/21064A detects reset_l going high, it can load bits from an
external serial ROM into its internal Icache, based on the value placed on

icMode_h [1:0] for the 21064
icMode_h [2:0] for the 21064A

Figure 6–3 shows the SROM timing for the first three bit samples.

Figure 6–3 Reset Timing

reset_l

sRomOE_l

sRomClk_h

Sample sRomD_h

LJ-01863-TI0

• When reset_l is asserted, sRomOE_l is deasserted and sRomClk_h is
asserted.

• The 21064/21064A’s internal reset signal remains asserted at least 20 CPU
cycles after reset_l deasserts, when sRomOe_l asserts.

• The first rising edge of sRomClk_h occurs

For the 21064, 128 CPU cycles after sRomOe_l asserts, and every 126
CPU cycles thereafter.

For the 21064A, 255 CPU cycles after sRomOe_l asserts, and every
254 CPU cycles thereafter.

• The 21064/21064A samples sRomD_h in the last half of each CPU cycle
before the rising edge of sRomClk_h.

6–16 External Interface

This sequence continues until the Icache is loaded. There are 256 blocks in the
Icache that can be loaded from the SROM. Each block contains 293 bits, 75,008
bits in all, resulting in 75,008 rising edges of sRomClk_h.

Figure 6–4 shows the end of the Icache preload sequence. The shaded area
indicates unpredictable behavior.

Figure 6–4 Reset Timing — End of Preload Sequence

CLK

sRomOe_l

sRomClk_h

Sample sRomD_h
LJ-01864-TI0

CLK refers to the 21064/21064A’s internal CPU clock and is shown as a cycle
reference.

1. The 21064/21064A samples the final serial ROM bit when sRomClk_h
rises, as shown.

2. Two CPU cycles later, the 21064/21064A deasserts sRomOe_l and drives
sRomClk_h with the value from the TMT bit of the SL_XMIT IPR. Since
this bit is not initialized by chip reset, the value driven onto sRomClk_h
is UNPREDICTABLE.

It is possible to disable the serial ROM mechanism altogether (see
Section 6.5.7). In this case, since the Icache valid bits are cleared by reset, the
first I-stream reference the 21064/21064A makes will miss the Icache and the
21064/21064A will generate an external request to address zero.

External Interface 6–17

6.4.2 Fast External Cache Read Hit
A fast external cache read consists of a probe read (overlapped with the first
data read), followed by the second data read if the probe hits.

In Figure 6–5, the external cache is using 4-cycle reads (BC_RD_SPD = 3),
4-cycle writes (BC_WR_SPD = 3), output enable control BIU_CTL [OE] = H),
and a 2-cycle write pulse centered in the 4-cycle write (BC_WE_CTL [15:1] =
LLLLLLLLLLLLLHH). The shaded areas indicate unpredictable levels.

Figure 6–5 Fast External Read Hit

L J - 0 1 8 6 5 - T I 0

0 1 2 3 4 5 6 7I n t e r n a l C l o c k

a d r _ h

t a g C E O E _ h

t a g C t l W E _ h

t a g A d r _ h

t a g C t l _ h

d M a p W E _ h

d a t a C E O E _ h

d a t a A _ h 4

d a t a W E _ h

d a t a _ h

c h e c k _ h

8

If the probe misses, then the cycle aborts at the end of clock 3.

If the probe hits and the miss address had bit 4 set, then the two data reads
would have been swapped , dataA_h 4 would have been true in cycles 0, 1, 2,
3, and would have been false in cycles 4, 5, 6, 7.

6–18 External Interface

6.4.3 Fast External Cache Write Hit
A fast external cache write consists of a probe read, followed by one or two
data writes.

Figure 6–6 assumes that the external cache is using 4-cycle reads
(BC_RD_SPD = 3), 4-cycle writes (BC_WR_SPD = 3), output enable control
(BIU_CTL [OE] = H), and a 2-cycle write pulse centered in the 4-cycle write
(BC_WE_CTL [15:1]) = LLLLLLLLLLLLLHH. The shaded areas indicate
unpredictable levels.

Figure 6–6 Fast External Cache Write Hit

0 1 2 3 4 5 6 7Internal Clock

adr_h

tagCEOE_h

tagCtlWE_h

tagAdr_h

tagCtl_h

dataCEOE_h

dataA_h4

dataWE_h

data_h

check_h

8 9 10 11

CPU

RAM

CPU

CPU CPU

12

CPU

MLO-012206

External Interface 6–19

The 21064/21064A drives the tagCtl_h signals one CPU cycle later than it
drives the data_h and check_h signals relative to the start of the write cycle.
Unlike data_h and check_h, the tagCtl_h field must be read during the tag
probe that precedes the write cycle. Because the 21064/21064A can switch
its signals to a low impedance state much more quickly than most RAMs can
switch their signals to a high impedance state, the 21064/21064A waits one
CPU cycle before driving the tagCtl_h signals in order to minimize tristate
driver overlap.

If the probe misses, then the cycle aborts at the end of clock 3.

6.4.4 External Cache Write Timing (Delayed Data)
The DELAY_WDATA bit of BIU_CTL controls the external write timing mode.
When set, DELAY_WDATA changes the timing of the data bus during external
cache writes as shown in Figure 6–7. Only the data bus timing associated with
the first RAM write sequence is affected. The 21064/21064A puts the data bus
in the high impedance state at its usual time, at the end of the second RAM
write sequence. The diagram assumes a 4-cycle cache RAM read and write.

Figure 6–7 External Cache Write Timing

adr_h

dataA_h 4

data_h (DELAY_WDATA == 0)

data_h (DELAY_WDATA == 1)

dataWe_h

Probe 1st Half Write 2nd Half Write

MLO-012207

0 1 2 3 4 5 6 7 8 9 10 11 12Internal Clock

6–20 External Interface

6.4.5 READ_BLOCK
A READ_BLOCK transaction, as shown in Figure 6–8, appears at the external
interface on external cache read misses, either because it really was a miss, or
because the external cache has not been enabled. The shaded areas indicate
unpredictable levels.

Figure 6–8 READ_BLOCK Transaction

LJ-02895-TI0A

0 1 2 3 4 5sysClkOut Cycle

sysClkOut1_h

adr_h

RAM Ctl

data_h

check_h

cReq_h [2:0]

cWMask_h

dRAck

cAck [2:0]

0

Idle

OK

Read_Block

Idle Idle

Idle Idle

Idle OK

OK

Idle

0. The cReq_h signals are always idle in the system clock cycle immediately
before the beginning of an external transaction. The adr_h signals always
change to their final value (with respect to a particular READ_BLOCK
transaction) at least one CPU cycle before the start of the transaction.

External Interface 6–21

1. The READ_BLOCK transaction begins. The 21064/21064A has already
placed the address of the block containing the miss on adr_h.

• The 21064/21064A places the quadword-within-block and the
instruction/data (I/D) indication on cWMask_h.

• The 21064/21064A places a READ_BLOCK command code on cReq_h.

• The 21064/21064A clears the RAM control signals (dataA_h [4:3],
dataCEOE_h [3:0] and tagCEOE_h) no later than one CPU cycle
after the system clock edge at which the transaction begins.

2. The external logic obtains the first 16 bytes of data. Although a single
stall cycle has been shown here, there may be no stall cycles, or many stall
cycles. Once the external logic has the first 16 bytes of data:

• External logic places the data on the data_h and check_h buses.

• External logic asserts dRAck_h to tell the 21064/21064A that the data
and check bit buses are valid.

• The 21064/21064A detects dRAck_h at the end of this cycle, and reads
in the first 16 bytes of data at the same time.

3. The external logic obtains the second 16 bytes of data. Although a single
stall cycle has been shown here, there could be no stall cycles, or many
stall cycles.

4. The external logic has the second 16 bytes of data.

• External logic places the data on the data_h and check_h buses.

• External logic asserts dRAck_h to tell the 21064/21064A that the data
and check bit buses are valid.

• The 21064/21064A detects dRAck_h at the end of this cycle, and reads
in the second 16 bytes of data at the same time.

5. External logic places an acknowledge code on cAck_h to tell the 21064
/21064A that the READ_BLOCK cycle is completed.

The 21064/21064A detects the acknowledge at the end of this cycle, and
can change the address.

6. Everything is idle. The 21064/21064A can start a new external cache cycle
at this time. This is the same as cycle 0.

Because external logic owns the RAMs (as the chip has deasserted its RAM
control signals at the start of the transaction), external logic can cache the
data by asserting its write pulses on the external cache during cycles 2 and 4.

6–22 External Interface

The 21064/21064A performs ECC checking (or parity checking) on the data
supplied to it by the data and check buses if so requested by the acknowledge
code. It is not necessary to place data into the external cache to get checking
and correction.

Note

The following restriction applies to 21064 systems using a sysClkOut
divisor equal to two and an external cache and 21064A systems using
a sysClkOut divisor equal to two with or without an external cache.

These systems must never respond to external reads by asserting
dRAck_h or cAck_h earlier than the third system clock cycle of the
transaction (see Figure 6–9).

If cReq_h [2:0] asserts in cycle 1, then system components must never
assert dRAck_h [2:0] or cAck_h [2:0] before cycle 3.

The behavior of the 21064/21064A is UNDEFINED if this restriction is
violated.

Figure 6–9 Asserting dRack_h and cAck_h

LJ-02244-TI0A

0 1 2 3Cycle

sysClkOut1_h

cReq_h

dRAck_h, cAck_h (earliest)

Minimum cycle time for an external READ_BLOCK transaction is shown in
Figure 6–10. The shaded area indicates unpredictable levels.

External Interface 6–23

Figure 6–10 READ_BLOCK Transaction — Minimum Cycle Time

0 1 2 3 0Cycle

sysClkOut1_h

adr_h

RAM Ctl

data_h

check_h

cReq_h [2:0]

cWMask_h

dRack

cAck [2:0]

OK

Read_Block

Idle Idle

LJ-03280-TI0

OKIdle Idle

6.4.6 Shortened READ_BLOCK Transactions
For I/O operations, it may be desirable to transfer only the first 16 bytes of a
READ_BLOCK transaction. This can be achieved by generating cAck after the
first dRAck, and never generating a second dRAck.

6.4.7 WRITE_BLOCK
A WRITE_BLOCK transaction appears at the external interface on external
cache write misses (either because it really was a miss, or because the external
cache has not been enabled), or on external cache write hits to shared blocks.
Figure 6–11 shows WRITE_BLOCK transaction timing. The shaded area
indicates unpredictable levels.

6–24 External Interface

Figure 6–11 WRITE_BLOCK Transaction Timing

LJ-02894-TI0A

0 1 2 3 4 5Cycle

sysClkOut1_h

adr_h

RAM Ctl

data_h

check_h

cReq_h [2:0]

cWMask_h

cAck_h [2:0]

dOE_l

dWSel_h [1]

0

Idle

OK

Write_Block

Idle

Idle

Idle

0. The cReq_h signals are always idle in the system clock cycle immediately
before the beginning of an external transaction. The adr_h pins always
change to their final value (with respect to a particular WRITE_BLOCK
transaction) at least three CPU cycles before the start of the transaction.

1. The WRITE_BLOCK cycle begins. The 21064/21064A has already placed
the address of the block on adr_h. The 21064/21064A places a WRITE_
BLOCK command code on cReq_h and the longword valid masks on
cWMask_h.

The 21064/21064A clears dataCEOE_h [3:0] at least one CPU cycle before
the start of the transaction, and clears the other RAM control signals
(dataA_h [4:3] and tagCEOE_h) at least one CPU cycle after the start of
the transaction.

2. The external logic detects the command and asserts dOE_l to tell the
21064/21064A to drive the first 16 bytes of the block onto the data bus.

External Interface 6–25

The timing shown for dOE_l is for discussion purposes—external logic can
assert dOE_l by default and only deassert it when it needs to read the data
RAMs, such as when writing back a victim block. If dOE_l were asserted
before the start of the transaction, the 21064/21064A would begin to drive
the data bus at the same time as it placed the WRITE_BLOCK command
code on cReq_h.

3. The 21064/21064A drives the first 16 bytes of write data onto the data_h
and check_h buses, and the external logic writes it into the destination.
Although a single stall cycle has been shown here, there may be no stall
cycles, or many stall cycles.

4. The external logic asserts dOE_l and dWSel_h to tell the 21064/21064A to
drive the second 16 bytes of data onto the data bus.

5. The 21064/21064A drives the second 16 bytes of write data onto the data_h
and check_h buses, and the external logic writes it into the destination.
Although a single stall cycle has been shown here, there may be no stall
cycles, or many stall cycles. In addition, the external logic places an
acknowledge code on cAck_h to tell the 21064/21064A that the WRITE_
BLOCK cycle is completed. The 21064/21064A detects the acknowledge at
the end of this cycle, and changes the address and command to their next
values. dWSel_h must be deasserted in this cycle.

6. Everything is idle. The 21064/21064A can start a new external cache
access now. This is the same as cycle 0.

Because external logic owns the RAMs (because the chip has deasserted its
RAM control signals at the beginning of the transaction), external logic can
cache the data by asserting its write pulses on the external cache during cycles
3 and 5.

The 21064/21064A performs ECC generation (or parity generation) on data it
drives onto the data bus.

Figure 6–11 shows external logic cycling through both 128-bit chunks of
potential write data; however, this need not always be the case. External
logic must pull from the 21064/21064A chip only those 128-bit chunks of data
that contain valid longwords as specified by the cWMask_h signals. The only
requirement is that if both halves are pulled from the 21064/21064A then the
lower half must be pulled before the upper half.

Minimum cycle time for an external WRITE_BLOCK transaction is shown in
Figure 6–12. (Figure 6–11 illustrates the WRITE_BLOCK transaction timing
so that the functions of the signals involved are made clear.) The shaded area
indicates unpredictable levels.

6–26 External Interface

Figure 6–12 WRITE_BLOCK Transaction—Minimum Cycle Time

LJ-02893-TI0A

0 1 2 3Cycle

sysClkOut1_h

adr_h

RAM Ctl

data_h

check_h

cReq_h [2:0]

cAck_h [2:0]

dOE_l

dWSel_h [1]

cWMask_h

0 1 2

Idle

OK

Write_Block

Idle

Idle

Idle

As shown, external logic asserts dOE_l by default, so that the 21064/21064A
drives the first half of the write buffer entry coincident with its assertion of
cReq_h in cycle 1. External logic must not assert dWsel_h [1] until after the
WRITE_BLOCK transaction begins. It asserts dWsel_h in cycle 2, samples the
second half of the write buffer entry in cycle 3, and terminates the transaction
by asserting cAck_h.

External Interface 6–27

6.4.8 Write Bandwidth in Systems Without an External Cache
To allow full 32-byte external WRITE_BLOCK transactions to complete in two
sysClk cycles in 128-bit mode, dWSel_h can be held true even when cReq_h
is idle. The 21064/21064A will only react to dWSel_h [1] when cReq_h is not
idle. This will allow the external WRITE_BLOCK transaction timing as shown
in Figure 6–13.

Figure 6–13 WRITE_BLOCK Transaction Timing Without an External Cache

LJ-02890-TI0A

0 1 2Cycle

sysClkOut1_h

adr_h

RAM Ctl

data_h

check_h

cReq_h [2:0]

cAck_h [2:0]

dOE_l

dWSel_h[1]

cWMask_h

0 1 2

Idle

OK

Write_Block

Idle

Idle

Idle

Because external logic has already asserted dOE_l, the 21064/21064A will
drive the first half of the write buffer line onto the data bus coincident with
its assertion of cReq_h in cycle 1. The 21064/21064A will ignore dWSel_h [1]
while cReq_h is idle, so its assertion will take effect in cycle 2. External logic
will latch the second half of the write buffer line in cycle 2 and terminate the
transaction in that cycle.

6–28 External Interface

6.4.8.1 Write Buffer Unload Timing
The write bandwidth at the pins is reduced when the sysClk divider is two
as the 21064/21064A produces two null sysClk cycles between each WRITE_
BLOCK transaction.

The 21064/21064A will produce only one null sysClk cycle between WRITE_
BLOCK transactions when the sysClk divider is three. Systems with a sysClk
divider of three with no external cache will benefit from this feature.

6.4.9 Shortened WRITE_BLOCK Transactions
It may be desirable to transfer only the first 16 bytes of an I/O WRITE_BLOCK
transaction. If so, terminate the transaction normally using cAck_h [2:0], but
without toggling dWSel_h [1:0].

6.4.10 LDL_L/LDQ_L and STL_C/STQ_C Transactions
The 21064/21064A support LDL_L/LDQ_L and STL_C/STQ_C transactions
which do not probe the external cache. The 21064A also supports a fast lock
mode where it does probe the external cache.

6.4.10.1 Transactions Without External Cache Probe
LDL_L/LDQ_L transactions appears at the external interface when an
interlocked load instruction is executed. The external cache is not probed.
With the exception of the command code output on the cReq signals, the LDL_
L/LDQ_L transaction is exactly the same as a READ_BLOCK transaction. See
Section 6.4.5.

An STL_C/STQ_C transaction appears at the external interface when a
conditional store instruction is executed. The external cache is not probed.
The STL_C/STQ_C transaction is the same as the WRITE_BLOCK transaction,
with the following exceptions:

0. The code placed on the cReq signal is different.

1. The cWMask field will never validate more than a single longword or
quadword of data.

2. External logic has the option of making the transaction fail by using the
cAck code of STL_C_FAIL/STQ_C_FAIL. It can do so without asserting
either dOE_l or dWSel_h.

See Section 6.4.7.

External Interface 6–29

6.4.10.2 Fast Lock Mode (21064A only)
The 21064A will probe external cache when executing both LDL_C/LDQ_C
and STL_C/STQ_C transactions. Use of this mode is only possible when the
external cache contains OE-mode RAMs and BIU_CTL [OE] is set. Setting
BIU_CTL [FAST_LOCK] causes the 21064A to enter the fast lock operating
mode.

The 21064A services LDL_L/LDQ_L instructions by performing an external
cache 32-byte read if the external cache probe hits a valid external cache block.
While accessing the data the 21064A asserts lockWE_h. External logic should
use the assertion of lockWE_h and dataCEOE_h to set the lock flag and load
the address into the lock address register. If the probe does not hit a valid
external cache block the 21064A will start a LDL_L/LDQ_L transaction on the
pin bus using cReq_h[2:0].

Note

Timing of lockWE_h is the same as dMapWE_h.

In fast lock mode the 21064A services STL_C/STQ_C instructions by
performing an external cache probe while sampling lockFlag_h. If the probe
hits a valid non-shared external cache block and lockFlag_h is asserted the
21064A will perform the external cache write. While performing the write
the 21064A will assert lockWE_h. The external logic uses the assertion of
tagWE_h and the deassertion of dataCEOE_h to clear the lock flag. If the
probe does not hit a valid non-shared external cache block the 21064A will
start a STL_C/STQ_C transaction on the pin bus using cReq_h[2:0].

Note

Timing of lockWE_h is the same as tagCtlWE_h. The timing
requirement for lockFlag_h are the same as those of tagAdr_h
[33:18].

6–30 External Interface

6.4.10.3 Noncached Loads
When ABOX_CTL [8] (NCACHE_NDISTURB) is clear external D-stream read
transactions where external logic responds on dRAck_h [2:0] indicating do not
cache cause the 21064/21064A to invalidate the Dcache line associated with the
read address.

When ABOX_CTL [8] (NCACHE_NDISTURB) is set external D-stream read
transactions where external logic responds on dRAck_h [2:0] indicating do not
cache causes the 21064/21064A to leave the Dcache line associated with the
read address undisturbed.

Also, when ABOX_CTL [8] (NCACHE_NDISTURB) is set external logic must
respond with dRAck_h [2:0] indicating do not cache on only the external reads
for which the 21064/21064A does not probe the external cache. The 21064
/21064A does not probe the external cache when:

• Servicing LDL_L/LDQ_L instructions

• Accessing a quadrant of physical address space for which the external
cache is disabled by setting BIU_CTL [BC_PA_DIS]

• The external cache is disabled completely by setting BIU_CTL [BC_ENA]

A response indicating do not cache to other types of external reads will cause
the 21064/21064A’s behavior to be UNDEFINED.

External Interface 6–31

6.4.11 BARRIER
A BARRIER transaction appears on the external interface as a result of an
MB instruction. The acknowledgment of the BARRIER transaction tells the
21064/21064A that all invalidates have been supplied to it, and that any
external write buffers have been pushed out to the coherence point. Any errors
detected during these operations can be reported to the 21064/21064A when
the BARRIER transaction is acknowledged. Figure 6–14 shows the timing of
the transaction.

Figure 6–14 BARRIER Transaction

LJ-02892-TI0A

0 1 2Cycle

sysClkOut1_h

cReq_h [2:0]

cAck_h [2:0]

3

adr_h

Idle

OK

Barrier

Idle

Idle

Idle

0. The cReq_h signals are always idle in the system clock immediately before
the beginning of an external transaction.

1. The BARRIER transaction begins. The 21064/21064A places the command
code for BARRIER onto the cReq_h outputs. The value placed on the
address bus during BARRIER transactions is UNPREDICTABLE.

2. The external logic notices the BARRIER command, and because it has
completed processing the command, it places an acknowledge code on the
cAck_h inputs.

3. The 21064/21064A detects the acknowledge on cAck_h, and removes the
command. The external logic removes the acknowledge code from cAck_h.
The cycle is finished. This is the same as cycle 0.

6–32 External Interface

6.4.12 FETCH
A FETCH transaction appears on the external interface as a result of a
FETCH instruction. The transaction supplies an address to the external logic,
which can choose to ignore it, or use it as a memory-to-cache prefetching hint.
Figure 6–15 shows the timing of the transaction. The shaded areas indicate
unpredictable levels.

Figure 6–15 FETCH Transaction

LJ-02891-TI0A

0 1 2 3Cycle

sysClkOut1_h

adr_h

RAM Ctl

cReq_h [2:0]

cAck_h [2:0]

cWMask_h

Idle

OK

Fetch

Idle

Idle

Idle

0. The cReq_h signals are always idle in the system clock cycle immediately
before the beginning of an external transaction. The adr_h signals
always change to their final value (with respect to a particular external
transaction) at least one CPU cycle before the start of the transaction.

1. The FETCH transaction begins. The 21064/21064A has already placed the
effective address of the FETCH on the address outputs. The 21064/21064A
places the command code for FETCH on the cReq_h outputs, and encodes
the quadword granularity address bits (bits [4:3]) in the cWMask_h
field. The 21064/21064A clears the RAM control signals (dataA_h [4:3],
dataCEOE_h [3:0] and tagCEOE_h) no later than one CPU cycle after
the system clock edge at which the transaction begins.

2. The external logic notices the FETCH command, and because it has
completed processing the command, it places an acknowledge code on the
cAck_h inputs.

External Interface 6–33

3. The 21064/21064A detects the acknowledge on cAck_h, and removes the
address and the command. The external logic removes the acknowledge
code from cAck_h. The cycle is finished. This is the same as cycle 0.

6.4.13 FETCH_M
A FETCH_M transaction appears on the external interface as a result of a
FETCH_M instruction. With the exception of the command code placed on
cReq_h, the FETCH_M transaction is the same as the FETCH transaction.
See Section 6.4.12.

6.5 Interface Operation
The 21064/21064A uses an external clock source to generate its internal CPU
clock. The 21064/21064A will either use the input clock frequency or divide it
by two. The clock frequency divisor, 1 or 2, is determined during reset.

Module level hardware that interfaces with the 21064/21064A need not run
at CPU clock speed. The 21064/21064A divides its CPU clock frequency to
generate systems clocks available for use by the external interface logic. The
divisor value, 2 to 8 for the 21064 and 2 to 17 for the 21064A, is determined
during reset. System designers may choose to implement an off-chip secondary
cache. The 21064/21064A hardware interface eases this task by allowing the
use of commodity static RAMs. Because building high-speed logic is very
difficult in low-end systems, the 21064/21064A controls the RAMs directly.
The chip contains a programmable external cache interface, so that system
designers can make external cache speed and configuration tradeoffs. Because
no external cache policy decisions are made by the 21064/21064A, systems
designers can choose their own cache coherence protocol.

6.5.1 Clocks
The 21064/21064A requires a differential input clock on clkIn_h and clkIn_l.
During reset testClkIn_h and testClkIn_l indicate that the input clock will
be 1x or 2x as listed here.

testClkIn_h testClkIn_l Function

L L Digital Reserved

L H Standard 2x input clock

H L Standard 2x input clock

H H 1x input clock

The preferred (normal) input clock, 2x, is twice the internal clock frequency.
The 21064/21064A divides this clock by two to generate the internal chip

6–34 External Interface

clock, called the CPU clock. The CPU clock is made available to the external
interface on cpuClkOut_h.

The 21064/21064A will also accept a 1x input clock using that input to generate
an internal clock with the same frequency as the input clock. This is usually a
slower frequency clock used by test purposes.

Note

There is a significant cycle time penalty associated with using 1x
clocks that the module designer should understand before choosing this
option.

The CPU clock is divided by a programmable value to generate a system clock.
The system clock is supplied to the external interface on sysClkOut1_h and
sysClkOut1_l. The programmable divisor is:

• From 2 to 8 for the 21064

• From 2 to 17 for the 21064A

The system clock divisor, chosen by the system designer, is selected at chip
reset for the:

• 21064 by irq_h [4:3]

• 21064A by irq_h [4:3] and sysClkDiv_h

The system clock is delayed by a programmable number of CPU clock cycles
between 0 and 3 to generate a delayed system clock, sysClkOut2_h and
sysClkOut2_l. The system clock delay, again chosen by the system designer,
is selected by irq_h [4:3] at chip reset.

The clock generator runs while the chip is held in reset, generating
cpuClkOut_h and correctly timed and positioned sysClkOut1 and
sysClkOut2.

The output of the programmable divider is symmetric if the divisor is even,
and asymmetric with sysClkOut1_h high (true) for one extra CPU cycle if the
divisor is odd.

Almost all transactions on the external interface run synchronously to the
CPU clock and phase aligned to the system clock, so the external interface
appears to be running synchronously to the system clock (most setup and hold
times are referenced to the system clock). The exceptions to this are the fast
21064/21064A controlled transactions on the external caches and the sampling

External Interface 6–35

of the tagOk_h and tagOk_l inputs, which are synchronous to the CPU clock,
but independent of the system clock.

The 21064A has an input, resetSClk_h, which is provided for test purposes
and is used to force the system clock divider into a known state. At power-up
resetSClk_h must be asserted for a minimum of 10 CPU cycles. While
resetSClk_h is asserted the system clock signals, sysClkOut1_h and
sysClkOut1_l, are deasserted as shown in Figure 6–16.

resetSClk_h should be deasserted synchronously to the internal CPU clock.
The 21064A samples resetSClk_h at the rising edge of cpuClkOut_h. The
21064A will assert sysClkOut1_h on the fifth CPU clock cycle after detecting
the deassertion of resetSClk_h.

Figure 6–16 21064A Delay of sysClkOut1_h

1 2 3 4 5

cpuClkOut_h

resetSClk_h

sysClkOut1_h

MLO-012199

6.5.2 21064/21064A Initialization
The 21064/21064A contains a ring oscillator that is switched into service
during power-up to provide an internal chip clock.

The dcOk_h Signal
The dcOk_h signal switches clock sources between the on-chip ring oscillator
and the external clock oscillator. If dcOk_h is deasserted, then the on-chip
ring oscillator feeds the clock generator, and the 21064/21064A is held in reset
independent of the state of the reset_l signal. If dcOk_h is asserted, then the
external clock oscillator feeds the clock generator. When dcOk_h is asserted
the vRef input must be valid so that inputs can be sensed.

The dcOk_h signal is special because it does not require that vRef be stable
to be sensed. It is important to emphasize the importance of driving dcOk_h
low until the voltage on vRef has stabilized. Because chip testers can apply
clocks and power to the chip at the same time, the chip tester can always drive
dcOk_h high, but the tester must drive reset_l low for a period longer than
the minimum hold time of vRef.

6–36 External Interface

The clock outputs follow the internal ring oscillator when the 21064/21064A
is running off the oscillator (as they would when real clocks are applied). The
frequency of the ring oscillator varies from chip to chip within a range of 10
MHz to 100 MHz. This corresponds to an internal CPU clock frequency range
of 5 MHz to 50 MHz. When the dcOk_h signal is deasserted, the system clock
divisor is forced to eight, and the sysClkOut2_h, sysClkOut2_l delay is forced
to three.

CAUTION

When the dcOk_h signal is generated by an RC delay, there is no
check to determine that the input clocks are really running. If power is
applied to a board in manufacturing with a missing, defective, or mis-
soldered clock oscillator, then the 21064/21064A will enter a possibly
destructive high-current state. Furthermore, if a clock oscillator fails,
then the 21064/21064A can also enter this state. Module designers
must understand the frequency and duration of such events to decide if
this is really a problem.

The reset_l Signal
The reset_l signal forces the CPU into a known state (see Section 5.6). The
signal can be asynchronous, but must be asserted at least until the assertion of
dcOk_h to guarantee that the 21064/21064A chip is properly reset.

In order to bring the chip out of internal reset at a deterministic time, the
reset_l signal can be deasserted synchronously with respect to the system
clock. See Chapter 7 for the setup and hold requirements of the reset_l signal
when used in this way.

While in reset, the 21064/21064A reads sysClkOut and external bus
configuration information off the irq_h signals; external logic should drive the
configuration information onto the irq_h signals any time reset_l is asserted.
In addition the 21064A reads sysClkOut configuration information off the
sysClkDiv_h signal; external logic should assert the sysClkOut information
onto sysClkDiv_h at all times.

Power and Other Considerations
The 21064/21064A uses a 3.3 V power supply. This voltage supply must be
stable before any input goes above 4 V.

The irq_h [5] bit is used to select 128-bit or 64-bit mode. If irq_h [5] is
asserted then 128-bit mode is selected.

External Interface 6–37

When the tristate_l signal is asserted, the chip is internally forced into the
reset state.

See Chapter 7.

6.5.3 Internal Cache/Primary Cache Invalidate
External logic must be able to invalidate primary data cache blocks to maintain
coherence. The 21064/21064A provides a mechanism to perform the necessary
invalidates, but enforces no policy as to when invalidates are needed. Simple
systems may choose to invalidate more or less blindly, and complex systems
may choose to implement elaborate invalidate filters.

There are at least three situations where entries in the on-chip Dcache may
need to be invalidated.

• When an external agent updates a block in memory (for example, an I/O
device does a DMA transfer into memory), and that block has previously
been loaded into the external cache, then the external cache block must be
either invalidated or updated. If that external cache block has previously
been loaded into the Dcache then that Dcache block must be invalidated.

• In the situation where a system is maintaining the Dcache as a subset of
the external cache, and a Dcache miss results in an external cache block
being replaced, and that external cache block has previously been loaded
into Dcache, then an invalidate is needed.

• A third case can occur if the system is maintaining the Dcache as a subset
of the external cache, and external system logic allocates blocks in the
external cache during WRITE_BLOCK transactions. In this case, the
Dcache must be invalidated when the WRITE_BLOCK command is issued.

6.5.3.1 21064 Primary Cache Invalidate
External logic invalidates an entry in the Dcache by asserting the dInvReq_
h signal. The 21064 samples dInvReq_h at every system clock. When the
21064 detects dInvReq_h asserted, it invalidates the block in the Dcache
whose index is on the iAdr_h signals.

The 21064 can accept an invalidate at every system clock.

The dInvReq_h input is synchronous, and external logic must guarantee
setup and hold with respect to the system clock. The iAdr_h inputs are also
synchronous, and external logic must guarantee setup and hold with respect to
the system clock in any cycle in which dInvReq_h is asserted.

6–38 External Interface

6.5.3.2 21064A Primary Cache Invalidate
External logic invalidates an entry in the Dcache by asserting the dInvReq_h
0 and/or dInvReq_h 1 signals. The 21064A samples dInvReq_h [1:0] at
every system clock. When either or both of dInvReq_h [1:0] are asserted,
the 21064A invalidates the blocks in the Dcache pointed to by the asserted
dInvReq_h signals and the index on iAdr_h [12:5].

Note

The IPR register bit ABOX_CTL [DOUBLE_INVAL] may be set which
has the effect of asserting dInvReq_h 1 whenever dInvReq_h 0 is
asserted.

The 21064A can accept an invalidate at every system clock.

The dInvReq_h [1:0] inputs are synchronous, and external logic must
guarantee setup and hold with respect to the system clock. iAdr_h [12:5]
are also synchronous, and external logic must guarantee setup and hold with
respect to the system clock in any cycle in which one of dInvReq_h [1:0] is
asserted.

The 21064A manages the 16K byte Dcache so that it never contains two
different blocks that have equal values for PA [17:13]. This ensures that the
Dcache never contains two blocks which map to the same Bcache block, for all
supported Bcache sizes.

6.5.3.3 Backmap
Systems can maintain a backmap of the contents of the primary Dcache to
improve the quality of their invalidate filtering. The 21064/21064A must
maintain the backmap for external cache read hits, because external cache
read hits are controlled totally by the 21064/21064A. External logic maintains
the backmaps for external cycles (read misses, invalidates, and so on).

The backmap is only consulted by external logic, so that its format, and
even its existence, is irrelevant to the 21064/21064A. Simple systems need
not maintain a backmap, and need not connect the backmap write pulse to
anything, and should generate extra invalidates.

External Interface 6–39

21064 Support of Backmap
The 21064 drives a write pulse onto dMapWE_h whenever it fills the on-chip
Dcache from the external cache. In 128-bit mode dMapWE_h asserts one CPU
cycle into the second (last) data read cycle, and negates one CPU cycle from the
end of that cycle. If read cycles are three CPU cycles long, then dMapWE_h is
one CPU cycle long. See Section 6.5.6 for 64-bit mode operations.

Note

This anomaly is caused by the backmap write overlapping a cycle whose
length is specified by BC_RD_SPD. If the 21064 used the standard
write pulse timing mechanism, and BC_WR_SPD were longer than
BC_RD_SPD, the address would go away in the middle of the write
cycle.

The backmap may be implemented by external logic that has the write enable
input of the Dcache backmap RAM controlled by a two-input NOR gate. One
side of the two-input NOR gate is driven by dMapWE_h, and the other input
is driven by external logic.

21064A Support of Backmap
The 21064A Dcache is viewed by external logic as a two-way set associative
cache, therefore, the 21064A external logic needs more information when
implementing a backmap.

VA 13 is used as the MSB when Dcache is addressed and external logic may
view this bit as selecting a cache set.

When the 21064A fills the on-chip Dcache from the external cache, it asserts
one of dMapWE_h [1:0]: dMapWE_h 0 if VA 13 of the load instruction
was zero and dMapWE_h 1 if VA 13 was one. During external read
transactions the 21064A will place the value of VA 13 on both cWMask_h 3
and cWMask_h 4.

In 128-bit mode dMapWE_h 1 or dMapWE_h 0 asserts one CPU cycle into
the second (last) data read cycle, and negates one CPU cycle from the end of
that cycle. If read cycles are three CPU cycles long, then dMapWE_h [1:0] is
one CPU cycle long. See Section 6.5.6 for 64-bit mode operations.

Note

This anomaly is caused by the backmap write overlapping a cycle
whose length is specified by BC_RD_SPD. If the 21064A used the
standard write pulse timing mechanism, and BC_WR_SPD were longer

6–40 External Interface

than BC_RD_SPD, the address would go away in the middle of the
write cycle.

6.5.4 External Cache Control
The 21064/21064A’s hardware interface allows system designers to build a
second level external cache. There are few restrictions regarding the size,
speed or coherence policy of the external cache. One restriction is that the
external cache must be direct mapped. The 21064/21064A always views the
external cache as having a tag for each 32-byte block (the same as the on-chip
Icache and Dcache), although this need not be so. The external cache block
size can be 32 bytes or larger.

The external cache size is selected by the BC_SIZE field in the BIU_CTL
register.

• The 21064 supports an external cache of 128 KB to 16 MB. The cache size
can increase by a factor of two starting at 128 KB.

• The 21064A supports an external cache of 256 KB to 16 MB. The cache
size can increase by a factor of two starting at 256 KB.

The external cache tag RAMs are located between the 21064/21064A’s local
address bus and its tag inputs. The external cache data RAMs are located
between the CPU’s local address bus and the CPU’s local data bus. The 21064
/21064A reads the external cache tag RAMs to determine if it can complete a
cycle without any interaction with external logic, and the 21064/21064A reads
or writes the external cache data RAMs if this is the case.

A cycle requires no interaction with external logic if:

• It is a non-LDL_L/LDQ_L read hit to a valid block.

• It is an LDL_L/LDQ_L read on a 21064A with fast lock mode enabled. See
Section 6.4.10.2.

• A non-STL_C/STQ_C write hit to a valid block for which the tag control’s S
bit is clear.

All other cycles require interaction with external logic.

All cycles require interaction with external logic if:

• The external cache is disabled (the BC_ENA bit in the BIU_CTL IPR is
cleared).

External Interface 6–41

• The physical address of the reference is in a quadrant in memory that
is not cached, that is, the appropriate bit in the BC_PA_DIS field in the
BIU_CTL IPR is set for the quadrant of the reference.

All the 21064/21064A controlled cycles on the external cache have fixed timing,
described in terms of the 21064/21064A’s internal clock. The actual timing of
the cycle is programmable by the BC_RD_SPD, BC_WR_SPD, and BC_WE_
CTL fields in the BIU_CTL IPR, allowing for much flexibility in the choice of
CPU clock frequencies and cache RAM speeds.

The external cache RAMs can be logically partitioned into three sections.

• tagAdr RAM

• tagCtl RAM

• Data RAM

Sections must not straddle physical RAM chips.

6.5.4.1 tagAdr RAM
The tagAdr RAM contains the high-order address bits associated with the
external cache block, along with a parity bit. The contents of the tagAdr RAM
are fed to the on-chip address comparator and parity checker then compared
with tagAdr_h [33:17] and tagAdrP_h.

The 21064/21064A verifies that tagAdrP_h is an EVEN parity bit over
tagAdr_h when it reads the tagAdr RAM. If the parity is wrong, the tag
probe is forced to miss, and an external transaction is initiated. If machine
checks are enabled (the MCHK_EN bit in the Abox_CTL IPR is set), the 21064
/21064A traps to PALcode.

The number of bits of tagAdr_h that participate in the address compare and
the parity check is controlled by the BC_SIZE field in the BIU_CTL IPR. The
tagAdr_h signals go down to address bit 17, allowing an external cache as
small as 128 KB.

The chip enable or output enable for the tagAdr RAM can be driven by a two-
input NOR gate. One input of the gate is driven by tagCEOE_h, and the other
input is driven by external logic. The 21064/21064A deasserts tagCEOE_h
during reset, during external cache hold, and during any external cycle. This
gives external logic control over these RAM input signals during these times.
The OE bit in the BIU_CTL IPR determines if tagCEOE_h has chip enable
timing or output enable timing.

6–42 External Interface

6.5.4.2 tagCtl RAM
The tagCtl RAM contains control bits associated with the external cache block,
along with a parity bit. The 21064/21064A reads the tagCtl RAM by way of
the three tagCtl signals to determine the state of the block. The 21064/21064A
writes the tagCtl RAM by the three tagCtl signals to make blocks dirty.

The 21064/21064A verifies that tagCtlP_h is an even parity bit over tagCtlV_
h, tagCtlS_h, and tagCtlD_h when it reads the tagCtl RAM. If the parity is
wrong, the tag probe results in a miss, and an external transaction is initiated.
If machine checks are enabled (the MCHK_EN bit in the Abox_CTL IPR is set)
the 21064/21064A traps to PALcode. The 21064/21064A computes even parity
across the tagCtlV_h, tagCtlS_h, and tagCtlD_h bits, and drives the result
onto the tagCtlP_h signal, when it writes the tagCtl RAM.

Table 6–13 shows the allowed combinations of the tagCtl RAM bits.

Note

The bias toward conditional write-through coherence is really only
in name; the tagCtlS_h bit can be viewed simply as a write protect
bit for a given external Bcache block. If the 21064/21064A gets a
hit on a write probe and the tagCtlS_h bit is set, it will initiate a
WRITE_BLOCK transaction. It is up to external hardware to re-probe
the cache to determine whether tagCtlS_h is set and then impose
whatever cache coherency policy is appropriate for the system. The
tagCtlS_h bit is ignored during read cycles.

Table 6–13 Tag Control Encodings

tagCtlV_h tagCtlS_h tagCtlD_h Meaning

L X X Invalid

H L L Valid, private

H L H Valid, private, dirty

H H L Valid, shared

H H H Valid, shared, dirty

The 21064/21064A can satisfy a read probe if the tagCtl bits indicate the entry
is valid (tagCtlV_h is asserted). The 21064/21064A can satisfy a write probe
if the tagCtl bits indicate the entry is valid and not shared (tagCtlV_h is
asserted, tagCtlS_h is deasserted).

External Interface 6–43

The chip enable or output enable for the tagCtl RAM can be driven by a two-
input NOR gate. One input of the gate is driven by tagCEOE_h, and the other
input is driven by external logic. The 21064/21064A deasserts tagCEOE_h
during reset, during external cache hold, and during any external cycle. The
OE bit in the BIU_CTL IPR determines if tagCEOE_h has chip enable timing
or output enable timing.

The write enable for the tagCtl RAM is normally driven by a two-input NOR
gate. One input of the gate is driven by tagCtlWE_h, and the other input
is driven by external logic. The 21064/21064A deasserts tagCtlWE_h during
reset, during external cache hold, and during any external cycle. The BC_WE_
CTL field in the BIU_CTL IPR determines the width of the write enable, and
its position within the write cycle.

6.5.4.3 Data RAM
The data RAM contains the actual cache data, along with any ECC or parity
bits.

The most significant bits of the data RAM address are driven by buffers
from adr_h [33:5]. The least significant bit of the data RAM address can
be driven by a two-input NOR gate. One of the inputs of the gate is driven
by dataA_h [4], and the other input is driven by external logic. The 21064
/21064A deasserts dataA_h [4] during reset, during external cache hold, and
during any external cycle.

The chip enables or output enables for the data RAM can be driven by a
two-input NOR gate. One input of the gate is driven by dataCEOE_h
[3:0], and the other input is driven by external logic. The 21064/21064A
deasserts dataCEOE_h [3:0] during reset, during external cache hold, and
during external cycles. The OE bit in the BIU_CTL IPR determines whether
dataCEOE_h [3:0] has chip enable timing or output enable timing.

The write enables for the data RAM can be driven by a two-input NOR gate.
One input of the gate is driven by dataWE_h [3:0], and the other input is
driven by external logic. The 21064/21064A deasserts dataWE_h [3:0] during
reset, during external cache hold, and during any external cycle. The BC_WE_
CTL field in the BIU_CTL IPR determines the width of the write enable, and
its position within the write cycle.

6–44 External Interface

6.5.4.4 holdReq_h and holdAck_h External Cache Access
The external caches are normally controlled by the 21064/21064A. External
logic may gain access to external cache RAMs by two methods: one uses
holdReq_h and holdAck_h and the other uses tagOk_l and tagOk_h.

The simple method for external logic to access the external caches asserting
the holdReq_h signal is described here.

When holdReq_h is asserted, the 21064/21064A does the following:

1. Finishes any external cache cycle that may be in progress

2. Tristates adr_h, data_h, check_h, tagCtlV_h, tagCtlD_h, tagCtlS_h
and tagCtlP_h

3. Deasserts tagCEOE_h, tagCtlWE_h, dataCEOE_h, dataWE_h and
dataA_h [4:3]

4. Asserts holdAck_h

The cReq_h and cWMask_h signals are not modified in any way. When
external logic is finished with the external caches it deasserts holdReq_h.
When the 21064/21064A detects the deassertion of holdReq_h it deasserts
holdAck_h and re-enables its outputs.

The holdReq_h signal is synchronous, and external logic must guarantee
setup and hold requirements with respect to the system clock. The holdAck_h
signal is synchronous to the CPU clock but phase aligned to the system clock.

The 21064/21064A generates the holdAck_h signal in a way that allows it
to be tied directly to the enable-inputs of external tristate drivers connecting
to the bidirectional pin bus signals. The 21064/21064A turns off its tristate
drivers on or before the system clock edge at which it asserts holdAck_h. The
21064 and 21064A respectively turn on their tristate drivers two and four CPU
cycles after the system clock edge at which they deassert holdAck_h.

The delay from holdReq_h assertion to holdAck_h assertion depends on the
programming of the external interface, and on exactly how the system clock is
aligned with a pending external cache cycle.

• In the best case, the external cache is idle or is just about to start a cycle,
in which case holdAck_h asserts one system clock cycle after the system
clock edge at which the 21064/21064A samples the holdReq_h assertion.

• In the worst case, the system clock edge at which the 21064/21064A
samples the holdReq_h assertion occurs one CPU clock cycle into an
external cache write probe that hits on a non shared line and requires two
RAM data cycles to complete. In this case, holdAck_h asserts at the first

External Interface 6–45

system clock edge that is at least
((BC_RD_SPD + 1) - 1) + 2*(BC_WR_SPD + 1) + 1 CPU cycles after the
system clock edge at which the 21064/21064A sampled the holdReq_h
assertion.

holdAck_h deasserts in the system clock cycle immediately following the
system clock edge at which the 21064/21064A samples the deassertion of
holdReq_h.

A holdReq_h/holdAck_h sequence can happen at any time, even in the
middle of an external transaction. The assertion of holdReq_h prevents the
21064/21064A’s BIU sequencer from starting new CPU requests. However,
the BIU sequencer initiates the external transaction by driving the cReq_h
signals to the appropriate value (despite holdReq_h’s assertion) if two things
are true:

• The BIU sequencer has already started an external cache tag probe when
holdReq_h is asserted.

• The result of the tag probe requires an external transaction to complete the
CPU’s request.

holdAck_h asserts at the next system clock edge after the tag probe completes.

Note

The 21064 waits two CPU cycles and the 21064A waits four CPU cycles
before turning on their tristate drivers after they deassert holdAck_h.
External logic must be careful about when external logic continues
with an interrupted external transaction at the end of a holdReq_h
/holdAck_h sequence.

6.5.4.5 tagOk_h and tagOk_l External Cache Access
Although using the holdReq_h and holdAck_h lines is the simplest method
for external logic to gain access to the Bcache, the fastest way for external logic
to gain access is to use the tagOk_h and tagOk_l signals. These signals allow
external logic to stall a 21064/21064A cycle on the external cache RAMs at the
last possible instant.
All tradeoffs surrounding these signals have been made in favor of high-
performance systems, making them next to impossible to use in low-end
systems.

6–46 External Interface

The tagOk_h and tagOk_l signals are synchronous and 21064 external logic
must guarantee setup and hold requirements with respect to the CPU clock.
This implies very fast logic, since the 21064 CPU clock can run at 150, 166
or 200 MHz. See Section 7.4.7 for 21064 synchronization information and
Section 7.4.8 for similar information about the 21064A.

The tagOk signals are normally asserted (that is, tagOk_h is high and
tagOk_l is low). When deasserted the tagOk signals stall a sequencer in
the 21064 bus interface unit. The 21064 does not tristate the buses that run
between the 21064 and the external cache RAMs. External logic must supply
the necessary multiplexing functions in the address and data path.

If a tagOk signal is asserted at a CPU clock edge, the external logic is making
a guarantee that:

• The tagCtl and tagAdr RAMs were owned by the 21064/21064A in the
previous BC_RD_SPD+1 CPU cycles.

• The tagCtl RAMs will be owned by the 21064/21064A in the next
BC_WR_SPD+1 cycles.

• The data RAMs were owned by the 21064/21064A in the previous
BC_RD_SPD+1 cycles.

• The data RAMs will be owned by the 21064/21064A in the next
BC_RD_SPD+1 CPU cycles or in the next 2*(BC_WR_SPD+1) CPU cycles,
whichever is longer.

The bus interface unit samples tagOk signals in the last two cycles of each
tag probe, and only proceeds if tagOk has been asserted in both of these
cycles. If the 21064/21064A samples tagOk as deasserted in either of the last
two CPU cycles of a tag probe, then it stalls until it samples tagOk true in
consecutive cycles. At that time, all of these assertions are true, which means,
in particular, that any address the 21064/21064A has been holding on the
address bus throughout this time has made it through the external cache
RAMs. The 21064/21064A then proceeds normally.

6.5.4.6 External RAM Timing
Many external static RAMs support two access times—a "long" access time
from address transition to data out, and a "short" access time from a particular
address pin transition to data out. In order to fill a primary Icache block the
21064/21064A performs two (128-bit data bus mode) or four (64-bit data bus
mode) external RAM cycles. When using RAMs which support dual access
speeds, the BIU_CTL register BC_RD_SPD field controls the "long" access and
the BC_BURST_SPD and BC_BURST_ALL fields control the "short" access
time.

External Interface 6–47

6.5.5 Bus Cycle Control
The 21064/21064A requests an external cycle when it determines that the cycle
it wants to run requires interaction with external logic.

6.5.5.1 Cycle Request
An external cycle begins when the 21064/21064A puts a cycle type onto the
cReq_h outputs. These outputs change simultaneously with the rising edge
of sysClkOut1_h. Some cycles put an address on the adr_h outputs, and
additional information (low-order address bits, I/D stream indication, write
masks) on the cWMask_h outputs.

The cycle types are shown in Table 6–14.

Table 6–14 Cycle Types

cReq_h [2] cReq_h [1] cReq_h [0] Type

L L L IDLE

L L H BARRIER

L H L FETCH

L H H FETCH_M

H L L READ_BLOCK

H L H WRITE_BLOCK

H H L LDL_L/LDQ_L

H H H STL_C/STQ_C

The MB instruction generates the BARRIER cycle. Normally, the module
acknowledges it. Modules that have write buffers between the 21064
/21064A and the memory system must drain these buffers before the cycle
is acknowledged to guarantee that machine checks caused by transport and/or
memory system errors get posted on the correct side of the MB instruction.

The FETCH and FETCH_M instructions respectively generate FETCH and
FETCH_M cycles. The address bus contains the effective address generated by
the FETCH or FETCH_M instruction. These addresses can be used by module
level prefetching logic to preload one or more cache blocks into the external
cache. Simpler systems can acknowledge the cycles without prefetching data.

The READ_BLOCK cycle is generated on read misses. External logic reads
the addressed block from memory and supplies it, 128 bits at a time, to the
21064/21064A on the data bus. External logic can also write the data into the
external cache, after perhaps writing a victim.

6–48 External Interface

The WRITE_BLOCK cycle is generated on write misses, and on writes to
shared blocks. External logic pulls the write data, 128 bits at a time, from the
21064/21064A with the data bus, and writes the valid longwords to memory.
External logic can also write the data into the external cache, after perhaps
writing a victim.

The interlocked load instructions generate the LDL_L/LDQ_L cycle. The cycle
works in the same way as a READ_BLOCK, although the external cache has
not been probed (so the external logic needs to check the external cache for
hits), and the address must be latched into a locked-address register.

The conditional store instructions generate the STL_C/STQ_C cycle. The cycle
works in the same way as a WRITE_BLOCK, although the external cache has
not been probed (so that external logic needs to check for hits), and the cycle
can be acknowledged with a failure status.

6.5.5.2 Cycle Write Masks
On WRITE_BLOCK and STL_C/STQ_C cycles the cWMask_h signals supply
longword write masks to the external logic, indicating which longwords in
the 32-byte block are valid. A cWMask_h bit is true if the longword is
valid. cWMask_h bit [0] is associated with longword 0 in the 32-byte block,
cWMask_h bit [1] is associated with longword 1 in the 32-byte block, and so
on.

WRITE_BLOCK commands can have any combination of mask bits set. STL_C
/STQ_C cycles can only have combinations that correspond to a single longword
or quadword.

See Table 6–15 for correspondence between cWMask_h [7:0] and adr_h
[4:3].

Table 6–15 FETCH/FETCH_M Cycle Write Mask Addresses

cWMask_h [7:0] 2 adr_h [4:3] 2

00000011 00

00001100 01

00110000 10

11000000 11

On READ_BLOCK and LDL_L/LDQ_L cycles the cWMask_h signals have
additional information about the transaction on them.

• cWMask_h [1:0] signals contain transaction address bits [4:3] (points to
quadword).

External Interface 6–49

• cWMask_h 5 contains address bit 2 (points to the LW).

• cWMask_h 2 is asserted for a D-stream reference, and deasserted for an
I-stream reference.

• 21064A only—cWMask_h [4:3] both indicate VA 13: one or zero.

• 21064A only—cWMask_h 6 indicates the data size (1 for LW, 0 for QW)
during LDL_L/LDQ_L and D-stream READ_BLOCK transactions.

6.5.5.3 Cycle Acknowledgment
A cycle remains on the external interface until external logic acknowledges
it by placing an acknowledgment type on the cAck_h signals. The cAck_h
inputs are synchronous, and external logic must guarantee setup and hold
requirements with respect to the system clock.

Table 6–16 shows acknowledgment types.

Table 6–16 Acknowledgment Types

cAck_h 2 cAck_h 1 cAck_h 0 Type

L L L IDLE

L L H HARD_ERROR

L H L SOFT_ERROR

L H H STL_C_FAIL/STQ_C_FAIL

H L L OK

The 21064/21064A behavior in response to cAck_h encodings, other than those
listed, is UNDEFINED.

The HARD_ERROR type indicates that the cycle has failed in some
catastrophic manner. The 21064/21064A latches sufficient state to determine
the cause of the error, and initiates a machine check.

The SOFT_ERROR type indicates that a failure occurred during the cycle,
but the failure was corrected. The 21064/21064A latches sufficient state to
determine the cause of the error, and initiates a corrected error interrupt.

The STL_C_FAIL/STQ_C_FAIL type indicates that a STL_C/STQ_C cycle has
failed. The result is UNDEFINED if this type is used on anything but an STL_
C/STQ_C cycle. Only STL_C/STQ_C transactions that are terminated with
STL_C_FAIL/STQ_C_FAIL result in a zero being written to the destination
register of the associated STL_C/STQ_C instruction.

The OK type indicates success.

6–50 External Interface

6.5.5.4 Read Data Acknowledgment
The dRAck_h signals inform the 21064/21064A if:

• Read data is valid on the data bus.

• Data should be cached.

• ECC or parity checking should be attempted.

The dRAck_h inputs are synchronous, and external logic must guarantee
setup and hold requirements with respect to the system clock. If dRAck_h is
sampled IDLE at a system clock, then the data bus is ignored. If dRAck_h
is sampled non-IDLE at a system clock, then the data bus is latched at that
system clock, and external logic must guarantee that the data meet setup and
hold with respect to the system clock.

Table 6–17 shows acknowledgment types.

Table 6–17 Read Data Acknowledgment Types

dRAck_h 2 dRAck_h 1 dRAck_h 0 Type

L L L IDLE

H L L OK_NCACHE_NCHK

H L H OK_NCACHE

H H L OK_NCHK

H H H OK

The 21064/21064A behavior in response to dRAck_h encoding, other than
those listed in Table 6–17 is UNDEFINED.

READ_BLOCK and LDL_L/LDQ_L transactions can be terminated with
HARD_ERROR status before any expected dRAck_h cycles are received.
In this event the contents of the entire internal cache block, including its tag
and valid bit, are UNPREDICTABLE. A machine check is posted if so enabled.

The 21064/21064A can use D-stream primary cache fill data as soon as it
is received, including data received in the first half of a READ_BLOCK
transaction that is later terminated with HARD_ERROR. The 21064/21064A
does not use any I-stream primary cache fill data until it successfully receives
the entire cache block.

The 21064/21064A does not change its interpretation of dRAck_h [1:0] based
on cAck_h if all expected dRAck signals are received. Therefore, external logic
must avoid caching and/or ECC/parity checking data which is known to be
invalid.

External Interface 6–51

The 21064/21064A behavior is UNDEFINED if dRAck_h is asserted in a
non-read cycle.

The 21064/21064A checks dRAck_h 0 (the bit that determines whether the
block is ECC/parity checked) when sampling each half of the 32-byte block. It
is legal, but probably not useful, to check only one half of the block.

External logic should supply the same value on dRack_h [1] (the bit that
determines whether the block should be internally cached) during both halves
of the fill sequence. External logic should never signal I-stream reads to be
noncached.

The first non-IDLE sample of dRAck_h tells the 21064/21064A to sample
data bytes 15:0, and the second non-IDLE sample of dRAck_h tells the 21064
/21064A to sample data bytes 31:16.

Note

External logic can assert the second dRAck_h and cAck_h during the
same system clock cycle, but systems will suffer from bus contention.
The 21064/21064A can launch an external cache access on the same
clock edge as it samples cAck. System logic will therefore be driving
data to the CPU when the CPU asserts dataCEOE_h.

6.5.5.5 Support for Wrapped Read Transactions
The 21064/21064A supports two modes for returning read data, depending
on the state of the SYS_WRAP bit in BIU_CTL IPR. If SYS_WRAP is clear,
read data must be returned in order from lowest address to highest address.
The first non-IDLE sample of dRAck_h tells the 21064/21064A to sample
data bytes [15:0]. The second non-IDLE sample of dRAck_h tells the 21064
/21064A to sample data bytes [31:16]. If SYS_WRAP is set, external logic must
return the 128-bit data chunk containing the requested quadword first. If
cWMask_h 1 is set, meaning address bit 4 was set in the original request,
the first non-IDLE sample of dRAck_h tells the 21064/21064A to sample data
bytes [31:16] and the second non-IDLE sample of dRAck_h tells the 21064
/21064A to sample data bytes [15:0].

The read data for 128-bit mode would be returned as shown here.

6–52 External Interface

Requested
Return Order

Address (HEX) SYS_WRAP=0 SYS_WRAP=1

0 0, 10 0, 10

1 0 0, 10 10, 0

The read data for 64-bit mode would be returned as shown here.

Requested
Return Order

Address (HEX) SYS_WRAP=0 SYS_WRAP=1

0 0, 8, 10, 18 0, 8, 10, 18

8 0, 8, 10, 18 8, 0, 18, 10

10 0, 8, 10, 18 10, 18, 0, 8

18 0, 8, 10, 18 18, 10, 8, 0

When the SYS_WRAP bit of the BIU_CTL IPR is clear, external logic can
terminate external noncached D-stream reads that request data from bytes
[15:0] by asserting cAck_h after or during the first dRack_h assertion. If the
noncached read requests data from bytes [31:16], two dRAck_h assertions are
always required.

When SYS_WRAP is set, external logic can always terminate external
noncached reads by asserting cAck_h after or during the first assertion of
dRAck_h.

6.5.5.6 Enabling the Data Bus
The dOE_l input tells the 21064/21064A if it should drive the data bus.
Because it is a synchronous input, external logic must guarantee setup and
hold with respect to the system clock.

• If dOE_l is sampled true at the end of a system clock cycle, then the
21064/21064A drives the data bus at the beginning of the next system
clock cycle, as long as it has a WRITE_BLOCK or STL_C/STQ_C request
pending. (The request can already be on the cReq signals, or it can appear
on the cReq signals at the same system clock edge as the data appears.)

• If dOE_l is sampled false at the end of a system clock cycle, then the
21064/21064A tristates the data bus at the beginning of the next system
clock cycle. For example, if dOE_l was sampled false at the end of cycle 1,
then it would be tristated during cycle 2.

External Interface 6–53

The transaction type is factored into the enable so that systems can leave
dOE_l asserted unless external logic needs to drive the data bus within the
context of a WRITE_BLOCK or STL_C/STQ_C transaction.

6.5.5.7 Selecting Write Data
The dWSel_h [1] input tells the 21064/21064A which half of the 32-byte block
of write data should be driven onto the data bus (dOE_l permitting). This is
a synchronous input, so external logic must guarantee setup and hold with
respect to the system clock.

• If dWSel_h [1] is sampled false at the end of a system clock cycle, then
bytes [15:0] are driven onto the data bus in the next system clock cycle.

• If dWSel_h [1] is sampled true at the end of a system clock cycle, then
bytes [31:16] are driven onto the data bus in the next system clock cycle.
Once dWSel_h [1] has been sampled true bytes [15:0] are lost; there is no
backing up.

In the 21064/21064A, dWSel_h [1] should only be asserted after external
logic has sampled bytes [15:0] within the WRITE_BLOCK or STL_C/STQ_C
transaction, which means that this signal should never be asserted while
cReq_h is idle.

6.5.6 64-Bit Mode
The 21064/21064A can be configured at reset to use a 64-bit wide external data
bus, in which case data_h [127:64] and check_h [27:14] are not used. These
pins are internally pulled to Vss, so no external connections to these signals
are required.

The dataA_h [3] signal is used as an additional address line for the external
cache data RAMs. Like the dataA_h [4] signal, it can drive a two-input NOR
gate, with the other input being driven by external logic. The 21064/21064A
deasserts dataA_h [3] during reset, during external cache hold, and during
any external cycle.

The dWSel_h [0] signal should be used by external logic along with the
dWSel_h [1] pin to select which quadword of a 32-byte block is driven onto
data_h [63:0] during each system clock cycle of an external WRITE_BLOCK
or STL_C/STQ_C transaction. The relationship between dWSel_h [1:0] and
the selected bytes of the 32-block block is shown in Table 6–18.

6–54 External Interface

Table 6–18 dWSel_h Byte Selection

dWSel_h [1:0] Selected Bytes

00 [07:00]

01 [15:08]

10 [23:16]

11 [31:24]

External logic must select quadwords in increasing order within the 32-byte
block, but is free to skip over any quadword which does not have corresponding
longword mask bits TRUE in cWMask_h [7:0].

In 64-bit mode, dWsel_h [1:0] should only be asserted within the context of a
WRITE_BLOCK or STL_C/STQ_C transaction.

Systems should ignore dataCEOE_h [3:2] and dataWE_h [3:2].

External cache read hit transactions are extended to consist of four cache read
cycles in 64-bit mode.

Cache Read Cycle Type

First Tag probe and data read

Second through fourth Data reads

The 21064/21064A bus interface optimizes the external cache read hit
transaction by wrapping cache read cycles around the quadword that the
21064/21064A originally requested. The dMapWE_h signal asserts one CPU
cycle into the second cache read cycle and remains asserted until one CPU
cycle before the end of the fourth cache read cycle.

External cache write hit transactions consist of one cache tag probe cycle that
is (BC_RD_SPD + 1) CPU cycles long, followed by one, two, three or four
external cache write cycles that are each (BC_WR_SPD + 1) cycles long. The
21064/21064A bus interface uses the minimum number of cache write cycles
required to write the necessary longwords within the 32-byte block.

The maximum delay from holdReq_h assertion to holdAck_h assertion in
64-bit mode is longer than in 128-bit mode. In the worst case the system
clock at which the 21064/21064A samples the holdReq_h assertion occurs
one CPU cycle into an external cache probe. In this case, the 21064/21064A
may not assert holdAck_h until the first system clock edge that is at least:
((BC_RD_SPD+1)�1) +4� (BC_WR_SPD+1) +1, or ((BC_RD_SPD+1)�1) +3�
(BC_RD_SPD+1) +1, whichever is longer.

External Interface 6–55

The guarantee external logic must make for availability of the external cache
data RAMs when asserting tagOk is different for 64-bit mode than for 128-bit
mode. In 64-bit mode, if tagOk is true at a CPU clock edge, the external logic
is guaranteeing that the:

• tagCtl and tagAdr RAMs were owned by the 21064/21064A in the previous
BC_RD_SPD+1 CPU cycles.

• tagCtl RAMs will be owned by the 21064/21064A in the next
BC_WR_SPD+1 cycles.

• Data RAMs were owned by the 21064/21064A in the previous
BC_RD_SPD+1 cycles.

• Data RAMs will be owned by the 21064/21064A in the next
3 � (BC_RD_SPD+ 1) CPU cycles or in the next 4 � (BC_WR_SPD+ 1)
CPU cycles, whichever is longer.

Noncached D-stream read transactions can be terminated early by asserting
cAck_h during or after the system clock cycle in which the 21064/21064A
samples the requested quadword.

Each quadword is parity/ECC checked based on the dRAck_h code supplied
with that quadword. The dRAck_h code returned with the first quadword of
data determines whether the block is internally cached.

6.5.7 Instruction Cache Initialization/Serial ROM Interface
The 21064/21064A implements Icache initialization modes to support normal
use along with chip and PCB level testing.

The 21064 uses the value on icMode_h [1:0] to determine which mode is used
after the 21064 is reset, as shown in Table 6–19. Unlike the value placed on
irq_h [5:0] during reset, the value placed on icMode_h [1:0] must be retained
after reset_l is deasserted.

Table 6–19 21064 Icache Test Modes

icMode_h [1] icMode_h [0] Mode

L L Serial ROM

L H Disabled

H L Digital reserved

H H Digital reserved

6–56 External Interface

The 21064A uses the value on icMode_h [2:0] to determine which mode is
used after the 21064A is reset, as shown in Table 6–20. The value placed on
icMode_h [2:0] must also be retained after reset_l is deasserted.

Table 6–20 21064A Icache Test Modes

icMode_h [2:0] Mode

L L L Serial ROM

L L H Disabled

Six other combinations Digital reserved

If the value on icMode_h selects Serial ROM Mode, the 21064/21064A
loads the contents of its internal Icache from an external serial ROM before
executing its first instruction. The serial ROM may contain enough code
to complete the configuration of the external interface (for example, setting
the timing on the external cache RAMs) and diagnose the path between the
CPU chip and the real ROM. The 21064/21064A is in PALmode following the
deassertion of reset_l—this gives the code loaded into the Icache access to all
of the visible state within the chip.

Three signals are used to interface to the serial ROM.

• The sRomOE_l output signal supplies the output enable to the ROM,
serving both as an output enable and as a reset.

• The sRomClk_h output signal supplies the clock to the ROM that causes
it to advance to the next bit.

• The sRomD_h input signal allows the 21064/21064A to read the ROM
data. In this mode the instruction cache is written at a rate of one bit
each:

126 CPU cycles for the 21064

254 CPU cycles for the 21064A

Using the icMode_h signals, the serial ROM interface can be disabled
altogether. In this case, since the Icache valid bits are cleared by reset, the
first instruction fetch will miss the Icache.

In the 21064/21064A, all Icache bits are loaded from the serial ROM interface.
The Icache blocks are loaded in sequential order starting with block zero and
ending with block 256.

External Interface 6–57

The order in which bits within each block are serially loaded is shown in
Figure 6–17 and listed, with bits per field, in Table 6–21.

Figure 6–17 Icache Load Order

LJ-01873-TI0

bht lw7 lw5 lw3 lw1 v asm lw0lw2lw4lw6tagasn

Table 6–21 Icache Field Size

Field Bits Field Bits

bht 8 asn 6

v 1 tag 21

asm 1 lw0—lw7 32 (per field)

Note

In Figure 6–17, high-order bits are on the left within each field. The
serial chain starts with bht and shifts to the right.

The valid and asm bits in each cache block must be set. The tag field must
also be written with zero. The value written into the branch history table (bht)
and address space number (asn) fields are "don’t cares."

6.5.7.1 Implementing the Serial Line Interface
Once the data in the serial ROM has been loaded into the Icache, the three
special signals become simple parallel I/O pins that can be used to drive a
diagnostic terminal. When the serial ROM is not being read, the sRomOE_l
output signal is false. This means that the sRomOE_l pin can be wired to
the active high enable of an RS422 receiver driving onto sRomD_h and to the
active high enable of an RS422 driver driving from sRomClk_h. The CPU
allows sRomD_h to be read and sRomClk_h to be written by PALcode; this is
sufficient hardware support to implement a software driven serial interface.

6–58 External Interface

6.5.8 Interrupts
The irq_h [5:0] inputs generate external interrupts to the 21064/21064A. The
six interrupts are identical, they can be asynchronous, they are level sensitive,
and they can be individually masked by PALcode.

The use of each of these interrupt requests and the priority and vector assigned
to them is controlled by PALcode and is completely controlled by the system
designer.

To aid pattern-driven chip testers, the irq_h signals can be driven
synchronously with respect to the system clock. See Section 7.4.9.1 for the
setup and hold requirements of the irq_h signals with respect to the system
clock for this case.

6.5.9 External Bus Interface
The use and operation of the address, data, and parity/ecc lines is described in
this section.

6.5.9.1 Address Bus—adr_h [33:5]
The 21064/21064A implements 34 physical address bits, enough to address
16 Gbytes of storage. The bidirectional, tristate adr_h [33:5] signals provide
a path for addresses to flow between the 21064/21064A and the rest of the
system. These address bits provide granularity down to 32-byte internal cache
blocks. In systems which implement an external cache, these signals are
generally connected by buffers to the address inputs of the cache RAMs. For
the 21064/21064A-controlled reads and writes of the external cache, further
address resolution is provided by dataA_h [4] and dataWe_h [3:0].

The adr_h [33:5] signals are also connected to external logic responding to the
21064/21064A generated requests which are not completed using the external
cache. For these transactions, longword address granularity is provided by the
cWMask_h [7:0] pins.

The address bus is normally driven by the 21064/21064A. The 21064/21064A
stops driving the address bus during reset and during external cache hold. In
the external cache hold state the address bus acts like an input.

The 21064 output tagEq_l1 is the result of an equality compare between
adr_h and tagAdr_h. Only bits that are part of the cache tag, as specified
by the BC_SIZE field of the BIU_CTL IPR, participate in the compare. The
tagEq_l signal is asserted during external cache hold only if the result of the
tag comparison is true, and the parity calculated across the appropriate bits of

1 The 21064A does not implement the signal line tagEq_l.

External Interface 6–59

tagAdr_h matches the value on tagAdrP_h. Even parity is used. tagEq_l is
deasserted when the address bus is not in the external cache hold state.

6.5.9.2 Data Bus—data_h [127:0]
The bidirectional, tristate data_h signals provide a path for data to flow
between the 21064/21064A and the rest of the system. In systems with an
external cache, these pins also connect directly to the I/O pins of the external
cache data RAMs.

The data bus is driven by the 21064/21064A when it is controlling a write cycle
on the external caches, or when some type of write cycle has been presented to
the external interface and external logic has enabled the data bus drivers (by
dOE_l).

6.5.9.3 Parity/ECC Bus—check_h [27:0]
The 21064/21064A provides longword ECC and longword parity protection for
data transferred on the data bus. The 21064A provides byte parity protection
also.

BIU_CTL [ECC] determines if the 21064 is in ECC mode or in parity mode.

BIU_CTL [BYTE_PARITY] and BIU_CTL [ECC] determine if the 21064A is in
ECC, LW parity, or byte parity mode as shown in Table 6–22.

Table 6–22 21064A Data Protection Mode Selection

BIU_CTL [BYTE_
PARITY] BIU_CTL [ECC] Protection Mode

0 0 LW parity

X 1 ECC

1 0 Byte parity

The bidirectional, tristate check_h signals provide a path for parity or ECC
bits to flow between the 21064/21064A and the rest of the system. In systems
with an external cache, these pins also connect directly to the I/O pins of the
external cache data RAMs.

6–60 External Interface

ECC Mode
If the 21064/21064A is in ECC mode, then the check_h signals carry seven
check bits for each longword on the data bus.

• Bits check_h [6:0] are the check bits for data_h [31:0].

• Bits check_h [13:7] are the check bits for data_h [63:32].

• Bits check_h [20:14] are the check bits for data_h [95:64].

• Bits check_h [27:21] are the check bits for data_h [127:96].

Figure 6–18 shows the ECC code used. Data bits [31:0] are shown across the
top of the table.

Figure 6–18 ECC Code

3 1 3 0 2 9 2 8 2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0 1 9 1 8 1 7 1 6 1 5 1 4 1 3 1 2 1 1 1 0 0 9 0 8 0 7 0 6 0 5 0 4 0 3 0 2 0 1 0 0

c 6

c 5

c 4

c 3

c 2

c 1

c 0

X O R

X N O R

X O R

X O R

X O R

X O R

X N O R

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X X X X X X X X

X X X X X X X X

X X X X X XX X X X X X

X X XX X X X X X X X X

X X X

XX XX

X X X X X X X X X X X X X X X

X X XX X X

X X X X X XX X XXXXXX X

X X X X X X X X X X

L J - 0 1 8 7 4 - T I 0

By arranging the data and check bits correctly, it is possible to arrange that
any number of errors restricted to a 4-bit group can be detected. One such
arrangement is as follows:

d 00, d 01, d 03, d 25

d 02, d 04, d 06, c 06

d 05, d 07, d 12, c 03

d 08, d 09, d 11, d 14

d 10, d 13, d 15, d 19

d 16, d 17, d 22, d 28

d 18, d 23, d 30, c 05

d 20, d 27, c 04, c 00

d 21, d 26, c 02, c 01

d 24, d 29, d 31

External Interface 6–61

LW Parity Mode
If the 21064/21064A is in longword parity mode, then four of the check_h
signals carry even parity for each longword on the data bus as indicated in
Table 6–23. The remaining check_h signals are unused.

Table 6–23 LW Parity Check Bits

Parity Bit Parity Field Parity Bit Parity Field

check_h 0 data_h [31:0] check_h 7 data_h [63:32]

check_h 14 data_h [95:64] check_h 21 data_h [127:96]

Byte Parity Mode—21064A only
When the 21064A is in byte parity mode, check_h pins carry even parity
across their associated data_h pins as shown in Table 6–24.

Table 6–24 21064A Byte Parity check_h Bits

check_h data_h check_h data_h

check_h 0 data_h [7:0] check_h 1 data_h [15:8]

check_h 2 data_h [23:16] check_h 3 data_h [31:24]

check_h 7 data_h [39:32] check_h 8 data_h [47:40]

check_h 9 data_h [55:48] check_h 10 data_h [63:56]

check_h 14 data_h [71:64] check_h 15 data_h [79:72]

check_h 16 data_h [87:80] check_h 17 data_h [95:88]

check_h 21 data_h [103:96] check_h 22 data_h [111:104]

check_h 23 data_h [119:112] check_h 24 data_h [127:120]

6–62 External Interface

6.5.10 Performance Monitoring
The perf_cnt_h [1:0] signals provide a means of giving the 21064/21064A’s
internal performance monitoring hardware access to off-chip events. These
signals are system clock synchronous inputs which can be selected by the
ICCSR IPR to be inputs to the performance counters inside the 21064/21064A
chip. If in a given system clock cycle a perf_cnt_h signal is sampled high
(true), and the signal is selected as the source of its respective performance
counter, then the counter will increment.

6.5.11 Various Other Signals
Tristate (tristate_l)
The tristate_l signal, if asserted, causes the 21064/21064A to float all of its
output and bidirectional signals with the exception of cpuClkOut_h. When
tristate_l is asserted, the 21064/21064A is forced into the reset state.

Continuity (cont_l)
The cont_l signal, if asserted, causes the 21064/21064A to connect all of
its signals to Vss, with the exception of clkIn_h, clkIn_l, testClkIn_h,
testClkIn_l, cpuClkOut_h, vRef and cont_l.

vRef
The vRef input supplies a reference voltage to the input sense circuits. If
external logic ties this to Vss + 1.4V then all inputs sense TTL levels.

eclOut_h
Output mode selection; this pin should be tied to Vss.

External Interface 6–63

6.6 Hardware Error Handling
For the following discussion the term "single-bit error" refers to a single
corrupted bit in a single longword or its associated 7-bit check field, and
the term "double-bit error" refers to two or more corrupted bits in a single
longword or its associated 7-bit check field.

When in ECC mode, the 21064/21064A generates longword ECC on writes, and
checks ECC on reads. The 21064/21064A contains hardware which can correct
all single-bit errors which are confined to a single quadword with each 32-byte
cache fill block.

Because the 21064/21064A requires complete instruction cache blocks from
which to execute instructions, Icache fill blocks containing more than one bad
quadword are not correctable in hardware, even if no longword within the
block contains more than a single bad bit.

For D-stream ECC errors the correction hardware corrects errors in the
quadword requested by the load instruction which originally invoked the fill
operation. The correction hardware sends the corrected quadword to the CPU
to satisfy the original request, invalidates the Dcache, and ensures that no
other load instructions except the one which invoked the fill are allowed to
use the data from the corrupted Dcache fill transaction. This means that the
21064/21064A can recover in hardware from all true single bit D-stream ECC
errors.

The 21064/21064A hardware can recover from the following ECC errors:

• Single-bit errors which are confined to a single aligned quadword within a
32-byte Icache fill block

• Any combination of multiple single bit errors which occur within a 32-byte
Dcache fill block

When a correctable ECC error occurs, the 21064/21064A corrects the error and
posts a corrected-read interrupt if so enabled by ABOX_CTL [CRD_EN] and
HIER [CRE]. The 21064/21064A also latches the physical address, syndrome,
and other information in its internal BIU_STAT, FILL_SYNDROME and
FILL_ADDR registers.

6–64 External Interface

The 21064/21064A hardware cannot recover from the following ECC errors:

• Double-bit errors within a single longword or its associated 7-bit check field

• Multiple single-bit errors which corrupt more than a single quadword of an
Icache fill block

When an uncorrectable ECC error occurs, the 21064/21064A traps to the
PALcode machine check handler if enabled by ABOX_CTL [MCHK_EN],
and latches information about the error in its internal BIU_STAT, FILL_
SYNDROME and FILL_ADDR registers. If the uncorrectable error is due
to single-bit errors in more than one quadword of an Icache fill block, a
correctable-read interrupt will also be posted.

While hardware cannot recover from multiple single-bit errors which corrupt
more than one aligned quadword of an Icache fill block, these errors may
often be corrected by PALcode. If the machine check occurred while the
processor was executing in native mode (as opposed to PALmode), PALcode
may be able to recover by flushing the Icache and its associated stream buffer,
scrubbing the corrupted block and returning. In effect, the combination of the
21064/21064A hardware and its associated PALcode can correct and recover
from all true single-bit errors except those in which multiple single-bit errors
corrupt more than one quadword of an Icache fill block while the processor is
in PALmode.

6.6.1 Single-bit Errors
The error-reporting effects of several single-bit ECC errors are listed here.

Single-bit I-stream ECC Error—Single Corrupted Quadword

• Correct corrupted bits

• Post corrected-read interrupt if enabled by ABOX_CTL [CRD_EN]

• BIU_STAT: FILL_ECC, FILL_IRD and FILL_CRD set

• FILL_ADDR [33:5] and BIU_STAT [FILL_QW] give bad QW’s address

• FILL_SYNDROME contains syndrome bits associated with failing
quadword

• BC_TAG holds results of external cache tag probe if external cache was
enabled for this transaction

External Interface 6–65

Single-bit I-stream ECC Error—Multiple Corrupted Quadwords
If the correction hardware receives a second corrupted quadword within an
I-stream read transaction, it posts a machine check, if enabled by ABOX_CTL
[MCHK_EN].

Single-bit D-stream ECC Error

• Correct quadword requested by CPU

• Invalidate Dcache

• Post corrected-read interrupt if enabled by ABOX_CTL [CRD_EN]

• BIU_STAT: FILL_ECC set, FILL_IRD clear, FILL_CRD set

• FILL_ADDR [33:5] and BIU_STAT [FILL_QW] give bad QW’s address

• FILL_ADDR [4:2] contain PA bits [4:2] of location that the failing load
instruction attempted to read

• FILL_SYNDROME contains syndrome bits associated with failing
quadword

• BC_TAG holds results of external cache tag probe if external cache was
enabled for this transaction

6.6.2 Double-bit ECC Errors
The error-reporting effects of several double-bit ECC errors are listed here.

Double-bit I-stream ECC Error

• Corrupted data put into Icache, block gets validated

• Machine check if enabled by ABOX_CTL [MCHK_EN]

• BIU_STAT: FILL_DPERR set, FILL_IRD set, FILL_CRD clear

• FILL_ADDR [33:5] and BIU_STAT [FILL_QW] give bad QW’s address

• FILL_SYNDROME identifies corrupted longword(s)

• BIU_ADDR, BIU_STAT [6:0] locked—contents are UNPREDICTABLE

• BC_TAG holds results of external cache tag probe if external cache was
enabled for this transaction

6–66 External Interface

Double-bit D-stream ECC Error

• Corrupted data put into register file, Dcache invalidated

• Machine check if enabled by ABOX_CTL [MCHK_EN]

• BIU_STAT: FILL_DPERR set, FILL_IRD clear, FILL_CRD clear

• FILL_ADDR [33:5] and BIU_STAT [FILL_QW] give bad QW’s address

• FILL_ADDR [4:2] contain PA bits [4..2] of location which the failing load
instruction attempted to read

• FILL_SYNDROME identifies corrupted longword(s)

• BIU_ADDR, BIU_STAT [6:0] locked—contents are UNPREDICTABLE

• BC_TAG holds results of external cache tag probe if external cache was
enabled for this transaction

6.6.3 BIU Single Errors
The error-reporting effects of several Bus Interface Unit (BIU) single errors are
listed here.

BIU: Tag Address Parity Error

• Recognized at end of tag probe sequence

• Lookup uses predicted parity so transaction misses the external cache

• BC_TAG holds results of external cache tag probe

• Machine check if enabled by ABOX_CTL [MCHK_EN]

• BIU_STAT: BC_TPERR set

• BIU_ADDR holds address

BIU: Tag Control Parity Error

• Recognized at end of tag probe sequence

• Transaction forced to miss external cache

• BC_TAG holds results of external cache tag probe

• Machine check if enabled by ABOX_CTL [MCHK_EN]

• BIU_STAT: BC_TCPERR set

• BIU_ADDR holds address

External Interface 6–67

BIU: System External Transaction Terminated with CACK_SERR

• CRD interrupt posted if enabled by ABOX_CTL [CRD_EN]

• BIU_STAT: BIU_SERR set, BIU_CMD holds cReq_h [2:0]

• BIU_ADDR holds address

BIU: System Transaction Terminated with CACK_HERR

• Machine check if enabled by ABOX_CTL [MCHK_EN]

• BIU_STAT: BIU_HERR set, BIU_CMD holds cReq_h [2:0]

• BIU_ADDR holds address

BIU: I-stream Parity Error (parity mode only)

• Data put into Icache unchanged, block gets validated

• Machine check if enabled by ABOX_CTL [MCHK_EN]

• BIU_STAT: FILL_DPERR set, FILL_IRD set

• FILL_ADDR [33:5] and BIU_STAT [FILL_QW] give bad QW’s address

• FILL_SYNDROME identifies failing longword(s)

• BIU_ADDR, BIU_STAT [6:0] locked—contents are UNPREDICTABLE

• BC_TAG holds results of external cache tag probe if external cache was
enabled for this transaction

BIU: D-stream Parity Error (parity mode only)

• Data put into Dcache unchanged, block gets validated

• Machine check if enabled by ABOX_CTL[MCHK_EN]

• BIU_STAT: FILL_DPERR set, FILL_IRD clear

• FILL_ADDR [33:5] and BIU_STAT [FILL_QW] give bad QW’s address

• FILL_ADDR [4:2] contain PA bits [4..2] of location which the failing load
instruction attempted to read

• FILL_SYNDROME identifies failing longword(s)

• BIU_ADDR, BIU_STAT [6:0] locked—contents are UNPREDICTABLE

• BC_TAG holds results of external cache tag probe if external cache was
enabled for this transaction

6–68 External Interface

6.6.4 Multiple Errors
This section describes the 21064/21064A’s response to multiple hardware
errors, that is, to errors which occur after an initial error and before execution
of the PALcode exception handler associated with that initial error.

The 21064/21064A error reporting hardware consists of two sets of independent
error reporting registers.

• BIU_STAT [7:0] and BIU_ADDR contain information about the following
hardware errors:

Correctable or uncorrectable errors reported with cAck_h [2:0] by
system components

Tag probe parity errors in the tag address or tag control fields

• BIU_STAT [14:8], FILL_ADDR and FILL_SYNDROME contain error
information about data fill errors.

The BC_TAG register contains information that can relate to any of the error
conditions listed above.

Each of the two sets of error registers can contain information about either
corrected or uncorrected hardware errors. When a hardware error occurs
information about that error is loaded into the appropriate set of error
registers and those registers are locked against further updates until PALcode
explicitly unlocks them. If a second error occurs between the time that an
initial error occurs and the time that software unlocks the associated error
reporting registers, information about the second is lost.

When the 21064/21064A recognizes the second error it still posts the required
corrected-read interrupt or machine check, however it does not over write
information previously locked in an error reporting register. If the second
hardware error is not correctable and the error reporting register normally
associated with this second error is already locked, the 21064/21064A will set
a bit to indicate that information about an uncorrectable hardware error was
lost. Each set of error reporting register has a bit to report these fatal errors.

External Interface 6–69

For example, BIU_STAT [FATAL1] is set by hardware to indicate that a tag
probe parity error or HARD_ERROR-terminated external transaction occurred
while BIU_STAT [6:0], BIU_ADDR and BC_TAG were already locked due to
some previous error. If a SOFT_ERROR-terminated transaction occurs while
these registers are locked FATAL1 is not set, however. Similarly, BIU_STAT
[FATAL2] is set by hardware to indicate that a primary cache fill received
either a parity or double bit ECC error while BIU_STAT [13:8], FILL_ADDR,
FILL_SYNDROME and BC_TAG were already locked.

BIU_STAT [FATAL2] will not be set by hardware when a primary cache fill
receives a single bit ECC error while BIU_STAT [13:8], FILL_ADDR, FILL_
SYNDROME and BC_TAG are already locked.

6.6.5 Cache Parity Errors—21064A Only
The 21064A supports cache parity for data and tag on both Icache and Dcache.

6.6.5.1 Dcache Parity Errors—21064A Only
Dcache parity errors are nonrecoverable. In the event of a Dcache parity error
the 21064A will set C_STAT [DC_ERR] and will initiate a machine check if
enabled by ABOX_CTL [MCHK_EN].

6.6.5.2 Icache Parity Errors—21064A Only
Icache parity errors encountered while the 21064A is executing native mode
instructions are recoverable. In the event of an Icache parity error, the 21064A
will set C_STAT[IC_ERR] and will initiate a machine check if enabled by
ABOX_CTL[MCHK_EN]. When the 21064A performs any machine check,
regardless of cause, it flushes the Icache. PALcode can log the error and return
to executing native mode instructions.

Icache parity errors encountered while the 21064A is executing PALcode
available from Digital are not recoverable. PALcode available from Digital
does not protect the EXC_ADDR register from being written (over the return
address) if a machine check exception occurs.

Some Icache parity errors encountered while the 21064A is executing custom
PALcode, written by the user with the help of Digital, could be recoverable.
The return address in the EXC_ADDR register should be saved soon after
entering any PALcode routine. You must measure degraded performance of
the custom PALcode routine against the increased level of protection from
nonrecoverable Icache parity errors. Protection cannot be absolute because
instructions up to and including the instruction that saves the return address
in the EXC_ADDR register are exposed to nonrecoverable parity errors.

6–70 External Interface

7
Electrical Data

7.1 Introduction
This chapter lists maximum power and maximum temperature ratings and
includes ac and dc electrical data for the Alpha 21064/21064A microprocessors.

7.2 Absolute Maximum Ratings
Table 7–1 lists the maximum ratings for the 21064/21064A microprocessor.

Table 7–1 21064/21064A Maximum Ratings

Characteristics Ratings

Storage temperature -55° C to 125° C (-67° F to 257° F)

Supply voltage Vss -0.5 V, Vdd 3.6 V

Junction operating temperature 90° C (194° F)

Voltage applied to pins
3 V tolerant pins
5 V tolerant pins

-0.5 V to Vdd + 0.5 V
-0.5 V to 5.5 V

Maximum power See Section 7.3.4

Caution

Stress beyond the absolute maximum rating can cause permanent
damage to the 21064/21064A. Exposure to absolute maximum rating
conditions for extended periods of time can affect the 21064/21064A
reliability.

Electrical Data 7–1

7.2.1 Absolute Operating Limits
All of the 21064/21064A inputs can be driven to a 5 V nominal level by external
logic except for the following:

• clkIn_h and clkIn_l

• testclkIn_h and testclkIn_l

• tagOk_h and tagOk_l (21064 only)1

• dcOk_h

• eclOut_h

• tristate_l

• cont_l

The 21064/21064A provides no clamping of positive input voltages on 5 V
capable pins. In no case can an input transient exceed 6.5 V (above Vss) for
reasons of device reliability.

7.3 dc Electrical Data
The 21064/21064A microprocessor uses CMOS/TTL voltages levels.

7.3.1 Power Supply
In CMOS mode the Vss pins are connected to 0.0 V and the Vdd pins are
connected to 3.3 V nominal +/- 5%.

7.3.1.1 Power Consideration
Caution

To prevent damage to the 21064/21064A, it is important that the Vdd
power supply be stable before any of its input or bidirectional pins be
allowed to rise above 4.0 V.

To help meet this requirement, the assertion levels of the 21064/21064A’s input
pins are arranged so that their default state is electrically low. This makes
them active high, with the exception of tagOk_l and dOE_l, which are true
(low) by default.

1 In the 21064A tagOk_h and tagOk_l are reference to vRef and may be driven to a
5 V nominal level by external logic.

7–2 Electrical Data

Once power has been applied and vRef has met its hold time, the majority
of input pins can be driven by 5.0 V (nominal) signals without damaging the
21064/21064A.

Once power has been applied, input and bidirectional pins can be driven to a
maximum dc voltage of 5.5 V without damaging the 21064/21064A. It is not
necessary to use static RAMS with 3.3 V outputs.

7.3.1.2 Reference Supply
The vRef analog input should be connected to a 1.4 V +/-10% reference supply.
See Section 7.4.1.

The reference supply (vRef) is an analog reference voltage used by the 21064
/21064A input buffers of all signals except:

• clkIn_h and clkIn_l

• testclkIn_h and testclkIn_l

• tagOk_h and tagOk_l (21064 only)1

• dcOk_h

• eclOut_h

• tristate_l

• cont_l

7.3.2 Input Clocks
The clkIn_h and clkIn_l are differential signals generated from an external
oscillator circuit. The signals can be ac coupled (if Vcc to the oscillator is
greater than Vdd), with nominal dc bias of Vdd/2 set by a high-impedance
(that is greater than 1k ohm) resistive network on the chip. The signals need
not be ac coupled if Vdd is used as the Vcc supply to the oscillator. Also, see
Section 7.4.2.

1 In the 21064A tagOk_h and tagOk_l are reference to vRef.

Electrical Data 7–3

7.3.3 Signal Pins
The 21064/21064A input pins are CMOS inputs that use standard TTL levels,
set by vRef. Table 7–2 lists the dc input/output characteristics.

There are some signals that are sampled before vRef is stable. They cannot
be driven above the power supply (Vdd). The signals are dcOk_h, tristate_l
(3.3 V), cont_l (3.3 V), and eclOut_h (GND).

The 21064/21064A output pins are 3.3 V CMOS output that can be driven
between Vdd and Vss. Timing is specified to standard TTL levels.

Table 7–2 DC Input/Output Characteristics

Symbol Description Min Max Units
Test
Conditions

Vdd Power supply voltage 3.135 3.465 V –

Vih High-level input voltage
(except dcOk_h and cont_l)

2.0 – V –

Vihs High-level input voltage
(static pins dcOk_h and cont_l)

2.7 – V –

Vil Low-level input voltage – 0.8 V –

Voh High-level output voltage
Ioh = 100 �A

2.4 – V –

Vol Low-level output voltage
Iol = 3.2 mA

– 0.4 V –

Vdiffc Differential clock input swing
(duty cycle 45–55%)

300 mV 3.0 V –

Iil Input leakage current
(except eclOut_h)

–100 100 �A 0<Vin<Vdd V

Iel Input leakage current
(eclOut_h)

–150 150 �A 0<Vin<Vdd V

Ioz Output leakage current (tristate) –100 100 �A –

Icin Clock input leakage –4 4 mA 0<Vin<3.465 V

Note

Values in this table are valid only for Vref = 1.4 V.

7–4 Electrical Data

7.3.4 dc Power Dissipation
The formulas for calculating Idd (Max) and Idd (Peak) at varying frequencies
and values of Vdd for the 21064 and 21064A are listed here:

• 21064

Idd(Max) = (116mA=V + 10:5mA=V �MHz � f) � V dd

Idd(Peak) = (116mA=V + 12:9mA=V �MHz � f) � V dd

• 21064A

Idd(Max) = (116mA=V + 9:56mA=V �MHz � f) � V dd

Idd(Peak) = (116mA=V + 11:5mA=V �MHz � f) � V dd

f is the CPU frequency in MHz.
V dd is the power supply voltage in volts.

Using the values calculated for Idd (Max) and Idd (Peak) it is then possible to
calculate Power (Max) and Power (Peak) using the formulas formulas listed
here.

• Using the listed values for the 21064:

f = 200 MHz (period is 5.0 ns) V dd = 3.465 V (Max)

The calculations would be:

Idd(Max) = 116 � 3:465 + 10:5 � 3:465 � 200 = 7678mA = 7:678A

Power(Max) = V dd � Idd(Max) = 3:465 � 7:678 = 26:6W

Idd(Peak) = 116 � 3:465 + 12:9 � 3:465 � 200 = 9342mA = 9:342A

Power(Peak) = V dd � Idd(Peak) = 3:465 � 9:342 = 32:36W

• Using the listed values for the 21064A:

f = 275 MHz (period is 3.64 ns) V dd = 3.465 V (Max)

The calculations would be:

Idd(Max) = 116 � 3:465 + 9:56 � 3:465 � 275 = 9511mA = 9:511A

Power(Max) = V dd � Idd(Max) = 3:465 � 9:511 = 32:95W

Idd(Peak) = 116 � 3:465 + 11:5 � 3:465 � 275 = 11360mA = 11:36A

Power(Peak) = V dd � Idd(Peak) = 3:465 � 11:36 = 39:36W

Note

Idd (Max) is used by thermal engineers.
Idd (Peak) is used by power supply designers to compute peak power.

Electrical Data 7–5

7.4 ac Electrical Data
This section contains the ac characteristics for the 21064/21064A.

The 21064/21064A does provide silicon diode clamping of negative input
transients.

Note

It is recommended that clamping current not exceed 25 mA per pin,
nor should clamping charge exceed 50 pC per pin per transition.
This is most important when large numbers of inputs participate
simultaneously.

7.4.1 Reference Supply
Upon power-on, reset_l can not be sampled until vRef is stable. There is a
large internal capacitance on vRef. There is a RC delay between vRef pin and
the input buffers. Systems must not assert dcOk_h until a suitable interval
following the stability of the vRef source. This interval is specified as the
greater of 1 µs and 10 nF * Zout, when Zout is the vRef source impedance.

7–6 Electrical Data

7.4.2 Input Clocks Frequency
The clkIn_h and clkIn_l input clocks have differential inputs.

Generally, the designer will apply standard 2x input clocks to the pin of
clkIn_h and clkIn_l.

The 21064/21064A input clock circuit also allows for applications that require
it to run on 1x input clocks (150 MHz input clocks on a 21064 150 MHz
implementation).

To use the 21064/21064A with 1x input clocks, the designer need only to
drive the 1x clock inputs into the clkIn_h,l pins and tie testClkIn_h and
testClkIn_l to logic 1.

Note

Driving a clock into testClkIn pins will result in unpredictable behavior.

Electrically, the circuitry attached to the testClkIn pins is identical to the
circuitry attached to the tristate pin. The same restrictions that are listed in
Section 7.3 for the tristate pin apply to the testClkIn pins.

Table 7–3 lists the possible states of the testClkIn pins and the resulting
functions.

Table 7–3 testClkIn Pins State

testClkIn_h testClkIn_l Functions

0 0 Reserved for Digital

0 1 Standard 2x input clocks applied to ClkIn
pins

1 0 Standard 2x input clocks applied to ClkIn
pins

1 1 1x input clocks applied to ClkIn pins

The termination on these signals are designed to be compatible with system
oscillators of arbitrary dc bias. Figure 7–1 shows clock termination.

Electrical Data 7–7

Figure 7–1 Clock Termination

50 Ω10 pf

PADPIN To Diff Amp

33 pf

50 Ω10 pf

PADPIN

High Z
(Approx. 700 Ω)

High Z
(Approx. 700 Ω)

To Diff Amp

20 pf

LJ-03926.AI

21064 21064A

Vbias = (Vdd-Vss)/2 Vbias = (Vdd-Vss)/2

The chip provides a 50 ohm termination (approximate) for the purpose of
impedance matching for those systems that drive input clocks across long
etches. The chip uses a high impedance bias driver that allows a clock source
of arbitrary dc bias to be ac coupled to the clock input. The peak-to-peak
amplitude of the clock source must be between 0.6 V and 3.0 V, as seen by the
21064/21064A. Either a "square-wave" or a sinusoidal source can be used.

Table 7–4 and Table 7–5 list the input clock cycle times for 21064/21064A
speed bins. These periods equal one-half the corresponding CPU cycle times.

Table 7–4 21064 Input Clock Timing

Name
21064-AA
(21064-150)

21064-CA
(21064-166)

21064-BA
(21064-200)

clkIn period min 3.3 ns 3.0 ns 2.5 ns

clkIn symmetry 50%+/-10% 50%+/-10% 50%+/-10%

Table 7–5 21064A Input Clock Timing

Name
21064-BB
(21064A-233)

21064-DB
(21064A-275)

clkIn period min 2.15ns 1.82 ns

clkIn symmetry 50%+/-10% 50%+/-10%

7–8 Electrical Data

Figure 7–2 shows the timing diagram for the input clock .

Figure 7–2 Input Clock Timing Diagram

CYCLE

50%

10%

CYCLE

50%

10%

clkIn_h

clkIn_l

LJ-02774-TI0

t

t

7.4.3 Test Specification
The method of specification of the 21064/21064A timing parameters is
constrained by VLSI tester limitations. Timing of the 21064/21064A inputs
must be specified with respect to vRef crossings (set to midpoint on the tester),
because the relatively slow tester-driven edges would otherwise distort the
measured results.

The 21064/21064A generates the clocks with which the following times are
specified:

• Setup

• Hold

• Delay

The drivers of these clocks are nominally identical to the signal drivers, with
identical timing from the 21064/21064A internal timebase. Therefore, output
delay is largely a matter of skew, independent of loads provided the loads
are identical. Setup and hold times depend on the loads on the outgoing
clocks. The test load most closely approximates a linear transmission line
with modest end-of-line capacitance. The tester compensates for its nominal
transmission delay through software. Therefore, the most appropriate clock
load for purposes of specification is a modest lumped capacitance at the clock
pin. This load, chosen as 15pF to approximate a worst-case end-of-line load
on a system module, is taken as the standard load for all outputs (except
cpuClkOut_h).

Electrical Data 7–9

Note

System designers are responsible for adding (to setup times) or
subtracting (from hold times) the additional delay appropriate to their
systems.

The timing for all output signals, including clocks (except cpuClkOut_h) are
specified with respect to their crossings of the midpoint from Vss to Vdd into a
15pF lumped capacitive load at the package pin. The "20/80" transition time of
each signal into an open load is specified as less than 1.0 ns.

Note

The cpuClkOut_h signal and low-going bidirectional signals driven
from 5 V are excepted. It is only the open load transition time
specification that cannot be tested on a production basis, but margin
should be adequate.

As a measure of output impedance, each output (except cpuClkOut_h) is
specified to drive its pin to a dc value not more than 50% nor less than 35%
from its intended rail when loaded by 50 ohms to the opposite rail. Timing for
all input signals (except tagOk_h and tagOk_l) are specified with respect to
the point at which they cross vRef at the 21064/21064A pin, assuming a skew
rate of at least 1 V/ns at this point.

7.4.4 Fast Cycles on External Cache
From a system standpoint, fast cycles on the external cache are completely
unclocked.

7–10 Electrical Data

7.4.4.1 Fast Read Cycles
External logic must meet the maximum flow-through delay, as defined with
respect to Figure 7–3.

Figure 7–3 Flow-Through Delay (External Cache)

External

Logic

Address

Control

Data

21064/
21064A

Pin

Address

Control

21064/
21064A

Pin

21064/
21064A

Pin

GND

15pf

MLO-012200

Address - refers to adr_h and dataA-h

Control - refers to dataCEOE_h and tagCEOE_h

Data - refers to data_h, check_h, tagAdr_h, and tagCtl_h

Assume that address/control is driven from the same internal clock edge in the
two cases shown in Figure 7–3. External flow-through delay (propagation
delay) is defined as the delay between address/control valid to the 15pF
standard load in the case on the left and data valid to the 21064/21064A
(using a vRef threshold) in the case on the right. It cannot exceed the fast
read cycle time:

• (BC_RD_SPD+1 CPU cycle) less 4.5 ns for the 21064

• (BC_RD_SPD+1 CPU cycle) less 4.0 ns for the 21064A

The 21064/21064A guarantees that its address drivers are enabled at least one
CPU cycle prior to a fast cache access, such that adr_h does not need to be
pulled down from 5 V during the cycle.

7.4.4.2 Fast Write Cycles
External logic must guarantee that fast writes complete. Data, address,
and control (including dataWE_h and tagCtlWE_h) are driven by the
21064/21064A with identical timing from its internal clock. The timing of
dMapWE_h during Dcache read hits is specified in the same way.

Electrical Data 7–11

7.4.5 External Cycles
All external cycle timing is referenced to the rising edge of sysClkOut1_h.
The minimum values for output delay are negatives, reflecting the fact that
data can switch before sysClkOut1_h. This is possible because there is no
cause-effect relationship between the system clock outputs and data. The
system clock outputs are described as data pins that happen to switch in a
fixed pattern.

Output enable time is defined as output delay from a high impedance state. It
can generally exceed standard output delay because it can entail pulling the
signal down from a 5 V level.

Address enable timing is relevant only for systems using the holdReq protocol
with two CPU cycles per system cycle. All bidirectional lines can be considered
enabled or disabled simultaneously with the rising edge of sysClkOut1_h.
Table 7–6 lists the referenced times to sysClkOut1_h.

Table 7–6 External Cycles

Name Minimum Maximum Units

Output Enable, sysClkOut1_h to

adr_h -1.0 2.0 ns

data_h
(WRITE_BLOCK)

-1.0 2.0 ns

check_h
(WRITE_BLOCK)

-1.0 2.0 ns

Output Delay, sysClkOut1_h to

adr_h -1.0 1.0 ns

data_h
(WRITE_BLOCK)

-1.0 1.0 ns

check_h
(WRITE_BLOCK)

-1.0 1.0 ns

cReq_h -1.0 1.0 ns

cWMask_h -1.0 1.0 ns

holdAck_h -1.0 1.0 ns

Note: This timing is valid by design.

(continued on next page)

7–12 Electrical Data

Table 7–6 (Cont.) External Cycles

Name Minimum Maximum Units

Input Setup relative to sysClkOut1_h 21064 (21064A)

cAck_h 9.3 (7.0) – ns

dRAck_h 9.3 (7.0) – ns

dWSel_h 9.3 (7.0) – ns

dOE_l 9.3 (7.0) – ns

holdReq_h 4.8 (3.8) – ns

dInvReq_h 4.5 (3.5) – ns

iAdr_h 4.5 (3.5) – ns

data_h
(READ_BLOCK)

3.5 (2.5) – ns

check_h
(READ_BLOCK)

3.5 (2.5) – ns

perf_cnt_h 4.5 (3.5) – ns

Input Hold relative to sysClkOut1_h

cAck_h 0 – ns

dRAck_h 0 – ns

dWSel_h 0 – ns

dOE_l 0 – ns

holdReq_h 0 – ns

dInvReq_h 0 – ns

iAdr_h 0 – ns

data_h
(READ_BLOCK)

0 – ns

check_h
(READ_BLOCK)

0 – ns

perf_cnt_h 0 – ns

Electrical Data 7–13

Figure 7–4 shows the 21064/21064A output delay measurement.

Figure 7–4 Output Delay Measurement

50%

Delay

50% Valid Signal

LJ-02424-TI0

Note

This delay could be positive or negative.

7–14 Electrical Data

Figure 7–5 shows the 21064/21064A setup and hold time measurement.

Figure 7–5 Setup and Hold Time Measurement

LJ-02423-TI0

50%

Set-up Hold

Valid Signal 50%50%

Electrical Data 7–15

Figure 7–6 shows the 21064 READ_BLOCK timing diagram.

Figure 7–6 21064 READ_BLOCK Timing Diagram

LJ-02900-TI0

adr_h[33:05]

sysClkOut1_h

data_h[127:0]

check_h[27:0]

cReq_h[2:0]

cAck_h[2:0]

dRack_h[2:0]

Times in ns

3.5

3.5

9.3

-1.0/+1.0

1

2

0 1 2 3 4 5 0

-1.0/+1.0

-1.0/+1.0

Idle Read_Block Idle

9.3
OKIdle Idle3

1 tcycle ± 1.0 ns, where tcycle = period of cpuClkOut_h

2 Indicates minimum/maximum

3 Minimum setup time shown. All hold times are a minimum of 0.0 ns.

7–16 Electrical Data

Figure 7–7 shows the 21064A READ_BLOCK timing diagram.

Figure 7–7 21064A READ_BLOCK Timing Diagram

adr_h[33:05]

sysClkOut1_h

data_h[127:0]

check_h[27:0]

cReq_h[2:0]

cAck_h[2:0]

dRack_h[2:0]

Times in ns

2.5

2.5

7.0

-1.0/+1.0

1

2

0 1 2 3 4 5 0

-1.0/+1.0

-1.0/+1.0

Idle READ_BLOCK Idle

7.0
OKIdle Idle3

MLO-012073

1 tcycle ± 1.0 ns, where tcycle = period of cpuClkOut_h

2 Indicates minimum/maximum

3 Minimum setup time shown. All hold times are a minimum of 0.0 ns.

Electrical Data 7–17

Figure 7–8 shows the 21064 WRITE_BLOCK timing diagram.

Figure 7–8 21064 WRITE_BLOCK Timing Diagram

LJ-02899-TI0A

adr_h[33:05]

sysClkOut1_h

data_h[127:0]

check_h[27:0]

cReq_h[2:0]

dOE_l

-1.0/2.0

9.3

-1.0/+1.0

cWMask_h[7:0]

dWSel_l[1:0]

9.3

Times in ns

cAck_h[2:0]

9.3

-1.0/2.0

-1.0/+1.0

1

2

3

0 1 2 3 4 5 0

-1.0/+1.0

-1.0/+1.0

-1.0/+1.0

Idle

OK

Write_Block

Idle

Idle

Idle

1 3x tcycle ± 1.0 ns, where tcycle = period of cpuClkOut_h

2 Indicates minimum/maximum

3 Minimum setup time shown. All hold times are a minimum of 0.0 ns.

7–18 Electrical Data

Figure 7–9 shows the 21064A WRITE_BLOCK timing diagram.

Figure 7–9 21064A WRITE_BLOCK Timing Diagram

adr_h[33:05]

sysClkOut1_h

data_h[127:0]

check_h[27:0]

cReq_h[2:0]

dOE_l

-1.0/2.0

7.0

-1.0/+1.0

cWMask_h[7:0]

dWSel_l[1:0]

7.0

Times in ns

cAck_h[2:0]

7.0

-1.0/2.0

-1.0/+1.0

1

2

3

0 1 2 3 4 5 0

-1.0/+1.0

-1.0/+1.0

-1.0/+1.0

Idle

OK

WRITE_BLOCK

Idle

Idle

Idle

MLO-012074

1 3x tcycle ± 1.0 ns, where tcycle = period of cpuClkOut_h

2 Indicates minimum/maximum

3 Minimum setup time shown. All hold times are a minimum of 0.0 ns.

Electrical Data 7–19

Figure 7–10 shows the 21064 BARRIER timing diagram.

Figure 7–10 21064 BARRIER Timing Diagram

LJ-02897-TI0A

sysClkOut1_h

adr_h

cReq_h[2:0]

Times in ns

-1.0/+1.0

9.3

0 1 2 0

Idle

OK

Barrier

Idle

Idle

Idle

1

22
cAck_h[2:0]

1 Indicates minimum/maximum

2 Minimum setup time shown. All hold times are a minimum of 0.0 ns.

Figure 7–11 shows the 21064A BARRIER timing diagram.

Figure 7–11 21064A BARRIER Timing Diagram

sysClkOut1_h

adr_h

cReq_h[2:0]

Times in ns

-1.0/+1.0

7.0

0 1 2 0

Idle

OK

BARRIER

Idle

Idle

Idle

1

22
cAck_h[2:0]

MLO-012075

1 Indicates minimum/maximum

2 Minimum setup time shown. All hold times are a minimum of 0.0 ns.

7–20 Electrical Data

Figure 7–12 shows the 21064 FETCH/FETCH_M timing diagram.

Figure 7–12 21064 FETCH/FETCH_M Timing Diagram

LJ-02898-TI0A

adr_h[33:05]

sysClkOut1_h

cReq_h[2:0]

cAck_h[2:0]

Times in ns

-1.0/+1.0

9.3

0 1 2 0

-1.0/+1.0

Idle

OK

Fetch

Idle

Idle

Idle

1

3

2

1 tcycle ±1.0 ns, where tcycle = period of cpuClkOut_h

2 Indicates minimum/maximum

3 Minimum setup time shown. All hold times are a minimum of 0.0 ns.

Figure 7–13 shows the 21064A FETCH/FETCH_M timing diagram.

Figure 7–13 21064A FETCH/FETCH_M Timing Diagram

adr_h[33:05]

sysClkOut1_h

cReq_h[2:0]

cAck_h[2:0]

Times in ns

-1.0/+1.0

7.0

0 1 2 0

-1.0/+1.0

Idle

OK

FETCH

Idle

Idle

Idle

1

3

2

MLO-012076

1 tcycle ±1.0 ns, where tcycle = period of cpuClkOut_h

2 Indicates minimum/maximum

3 Minimum setup time shown. All hold times are a minimum of 0.0 ns.

Electrical Data 7–21

7.4.6 tagEq_l (21064 only)
Active during external cache hold, the timing of tagEq_l is specified when its
inputs become valid at the 21064 pins.

Table 7–7 lists the 21064 tagEq_l timing.

Table 7–7 tagEq_l Timing

Name Min Max Units

Delay, adr_h -> tagEq_l — Tcyc/2 + 17.0 ns

Delay, tagAdr_h -> tagEq_l — Tcyc/2 + 17.0 ns

Note

The delay to tagEq_l is a function of the chip cycle time (Tcyc). At
6.6 ns cycle time, this delay is 20.3 ns.

The signal line tageq_l is not implemented in the 21064A.

7.4.7 21064 tagOk Synchronization
The cpuClkOut_h signal is to be used only by a synchronizer in 21064
systems using the tagOk protocol. In order to accommodate ECL levels,
the driver consists of only a PMOS pullup device. ECL 100K levels can be
constructed with a 50 ohm resistor in series with the driver and a 100 ohm
resistor between the load and Vdd minus 2 volts. CMOS Vdd must equal Vcc
in this scheme.

Note

The connections to the 21064/21064A must be electrically short to
ensure good signal integrity and maintain a stable circuit impedance.

The 21064 receives the tagOk_h and tagOk_l signals directly from the final
stage of a synchronizer, which is clocked by cpuClkOut_h. As in the case of
fast external cache cycles, the system must meet a maximum flow-through
delay. This delay is defined in Figure 7–14.

7–22 Electrical Data

Figure 7–14 Flow-Through Delay (TagOk)

21064
PIN

LJ-01879-TI0

21064
PIN

10pf

21064
PIN

cpuClkOut_h

Control

External

Logic

cpuClkOut_h

tagOk_h,_1

50 ohms

100 ohms

Vdd-2.OV

The cpuClkOut_h signal is driven from the same 21064 internal clock edge in
the two cases shown in Figure 7–14. External flow-through delay is defined as
the delay between cpuClkOut_h valid to the 10pF ECL "standard" load in the
case on the left and tagOk_h and tagOk_l valid to the 21064 in the case on
the right. It can not exceed the nominal CPU cycle time minus 3.9 ns.

Note

Resistors on the printed circuit board are considered as part of the
external logic in the circuit on the right (Figure 7–14).

The cpuClkOut_h signal is considered valid when it crosses the ECL
threshold Vbb (equal to roughly Vcc minus 1.3V). The tagOk_h or tagOk_l
signal is considered valid when the differential lines cross each other.

7.4.8 21064A tagOk Synchronization
The 21064A includes an on-chip synchronizer circuit for tagOk_h and tagOk_l
which will add a worst case delay of three CPU clock cycles to the path.

tagOk_h and tagOk_l are both single-ended inputs referenced to Vref.

Systems which use tagOk_h should tie tagOk_l to Vss.
Systems which use tagOk_l should tie tagOk_h to Vdd.
Systems which do not use the tagOK signal lines should tie tagOk_h to Vdd
and tagOk_l to Vss.

Electrical Data 7–23

7.4.9 Tester Considerations
Timing characteristics which should be considered when planning to test the
21064/21064A are presented in this section.

7.4.9.1 Asynchronous Inputs
The following signals are asynchronous:

• reset_l

• irq_h

• sRomD_h (when in software-controlled UART mode)

For test purposes, these signals should be driven synchronously with
sysClkOut1_h with the timing given in Table 7–8.

Note

These parameters are given with respect to the rising edge of
sysClkOut1_h.

Table 7–8 Asynchronous Signals During Test

Name Min Max Units

Setup, reset_l -> sysClkOut1_h 5.0 — ns

Setup, irq_h -> sysClkOut1_h 5.0 — ns

Hold, irq_h -> sysClkOut1_h 0 — ns

Setup, sRomD_h -> sysClkOut1_h 5.0 — ns

Hold, sRomD_h -> sysClkOut1_h 0 — ns

7.4.9.2 Signals Timed from CPU Clock
It is expected that speed testing will be done with the test clock equal to
system clock (sysClkOut1_h). Fast external cache operation and serial ROM
operation are timed from the internal CPU clock. Therefore, the following
transactions can occur at different time points within a tester cycle from one
cycle to the next:

• Input sampling

• Output enabling

• Switching

7–24 Electrical Data

The number of such points is finite, equal to the number of CPU cycles per
tester cycle.

For any given transaction, each signal will have its standard external cycle
timing with respect to the rising edge of sysClkOut1_h or to a phantom edge
offset from sysClkOut1_h by exactly an integer number of CPU cycles.

Note

The following signals have the same delay timing as adr_h:

• dataA_h

• dataCEOE_h

• dataWE_h

• tagCEOE_h

• tagCtlWE_h

• dMapWE_h

Outputs can be sampled deterministically with appropriate placement of the
tester strobe, and inputs can be received deterministically with appropriate
placement of the edge of the driving signal.

Bidirectional signals present a different problem. The tester can enable
or disable a given driver at just one point within its cycle. It must in the
worst case drive an input beyond its 21064/21064A sample point by at least
(N-1) CPU cycles. (N is the number of CPU cycles per system cycle.) In the
worst case, the 21064/21064A will enable its drivers just one CPU cycle after
sampling (for example, tagCtl_h following probe write).

The serial ROM outputs sRomOE_l and sRomClk_h can be strobed with the
same timing as the data_h pins when driven by the 21064/21064A. The serial
ROM input sRomD_h can be switched with the same timing used in serial
port mode.

Note

SPICE simulation models are available for 21064/21064A I/Os.

Electrical Data 7–25

8
Thermal Management

8.1 Introduction
This chapter describes the thermal issues that should be considered by a
designer when using the 21064/21064A. The chapter is organized as follows:

• Introduction

• Thermal Device Characteristics

• Thermal Management Techniques

• Critical Parameters of Thermal Design

Note

The overall enclosure and power supply must be designed to handle the
maximum power value, as stated in Section 7.2.

All necessary information to design a printed circuit board (PCB) or system
for the adequate cooling of the 21064/21064A can be found in the following
sections.

Note

The combination of airflow, heat sink design, and the package thermal
characteristics must be considered when calculating the power
dissipation to not exceed the maximum junction temperature (Tj).

Thermal Management 8–1

The 21064/21064A is specified with a maximum power dissipation for a
recommended:

• Maximum junction temperature

• Thermal resistance from die junction to case

• Thermal resistance from case to ambient

This chapter provides a method of evaluating the environment, specifically air
flow and ambient temperature requirements. It also provides the designer with
the information to design a cooling method that meets the thermal performance
requirements, depending upon the constraints of the PCB environment.

8.2 Thermal Device Characteristics
The 21064/21064A is a high performance chip that has some stringent thermal
characteristics which need to be considered when evaluating a method of
cooling the device.

8.2.1 21064/21064A Die and Package
The 21064/21064A is packaged in 431 pin alumina-ceramic (cavity-down)
package. This cavity-down design allows the die to be attached to the top
surface of the package, which increases the ability of the die to dissipate
the heat through the package and attached heat sink surface. A metal slug
with two mounting studs is brazed on the ceramic package for the heat sink
assembly. The slug is 3.18 cm (1.25 in) in diameter and 0.089 cm (0.035 in)
thick. The package has mounting pads for 28 capacitors on the top surface that
limits the heat sink contact area to 3.18 cm (1.25 in) in diameter. The specific
dimensions of the heat sink should be determined by the designer to meet the
thermal requirements, based upon the:

• Available room in the system

• Ambient temperature

• Air flow in the system

8–2 Thermal Management

8.2.2 Power Consideration
The 21064/21064A has a maximum power rating, which varies directly with
the operating frequency. The approximate power dissipation for the 21064/
21064A (f equals the frequency in MHz) can be calculated as follows:

21064-150 Power = (21:0=150) � f

21064-166 Power = (22:5=166) � f

21064-200 Power = (27:0=200) � f

21064A-200 Power = (24:0=200) � f

21064A-233 Power = (28:0=233) � f

21064A-275 and 21064A-275-PC Power = (33:0=275) � f

21064A-300 Power = (36:0=300) � f

8.2.3 Relationships Between Thermal Impedance and Temperatures
The junction to ambient and junction to case thermal resistance values are
used as measures of device thermal performance. These parameters are
defined by the following equations:

�ja = (Tj � Ta)=P

�jc = (Tj � Tc)=P

�ja = �jc+ �ca

An alternative equation is: Tj = Ta+ P � �ja

In the equations,

� ja is the junction to ambient thermal resistance (C/W).

� jc is the junction to case thermal resistance (C/W). � jc is defined from the
device junction to the center of the heat sink.

� ca is the case to ambient thermal resistance (C/W).

Tj is the maximum junction temperature and Ta is the ambient
temperature.

Tc is the case temperature at a predefined location (° C). Tc is defined
as the heat sink temperature assuming a GRAFOIL pad is used as the
interface material with proper heat sink assembly procedure.

P is the power dissipation in watts (W).

C/W degrees centigrade per watt.

Thermal Management 8–3

� jc is a measure of package internal thermal resistance from the silicon die
to the package exterior. This value is strongly dependent upon packaging
materials, thermal conductivities, and package geometry and is therefore
generally fixed. � ca values include the conductive and convective thermal
resistance from package exterior to the ambient air. � ca values depend on
package geometry as well as environmental conditions such as flow rate and
coolant physical properties.

The components and locations for temperature measurements are listed as
follows:

1 Heat sink temperature (Ths)

2 Case temperature (Tc)

3 Junction temperature (Tj)

4 Package lid

5 Alpha 21064 or Alpha 21064A

6 Package

7 GRAFOIL

8 Heat sink

9 Nut

Figure 8–1 labels all the components of the package and the locations for
temperature measurements.

The total thermal resistance of a package, � ja, is a combination of its two
components, � jc and � ca. These components represent the barrier to heat
flow from the semiconductor junction to the package surface (� jc) and from
the surface to the outside ambient (� ca). � jc is device related and it cannot
be influenced by the user but � ca can be controlled by the user. Good thermal
management by the user can significantly reduce � ca achieving either a lower
junction temperature or allowing a higher ambient operating temperature for a
given air flow condition. � ca can be reduced by applying thermal management
techniques.

8–4 Thermal Management

Figure 8–1 Package Components and Temperature Measurement Locations

9

8

7

6

5

4

1

2

3

LJ-02416-TI0

Thermal Management 8–5

8.3 Thermal Management Techniques
There are a number of thermal management techniques developed to keep � ca
very low. The following thermal management techniques are either being used
or being considered in the industry:

• Forced air cooling

• Liquid cooling

• Heatpipe cooling

• Air or liquid impingement cooling

• Immersion cooling

• Peltier cooling

• Refrigeration cooling

Only the forced air cooling method is described in this section because of its
wide use in the industry. It is one of the most inexpensive methods and a
simple thermal management technique.

8.3.1 Thermal Characteristics with a Heat Sink and Forced Air
In choosing a heat sink, the designer must consider many factors:

• Heat sink size

• Material

• Method of attachment

• Interface material

• Heat sink orientation

Package orientation with respect to the air flow direction is very critical as the
designed heat sinks are bidirectional. The package must be oriented so the air
flow direction is parallel to the direction of heat sink fins.

The heat sink size is an important parameter in heat sink design. A large
heat sink will provide better cooling. The most benefit of a large heat sink (of
the bidirectional fin type) would be at lower air flow conditions. In about 100
lfpm air flow, the difference in value of � ja with and without the heat sink is
approximately four times, which decreases to two times at 1000 lfpm.

8–6 Thermal Management

8.3.2 Heat Sink Design Considerations
The surface of the heat sink pedestal that mates to the package must have
a high degree of planarity and a specification needs to be determined for the
planarity of the surface. Sufficient space between fins will increase the heat
sink effectiveness as well as reduce the pressure head requirement. The heat
sink base and fin thicknesses must be designed to minimize the spreading
resistance in the heat sink material.

8.3.3 Package and Heat Sink Thermal Performance
Figure 8–2 shows two examples of heat sinks which may be used to help cool
the 21064/21064A. The primary heat sink (number 2 in Figure 8–2) is available
from Digital. The pedestal, which is 3.18 cm (1.25 in) in diameter and 0.178
cm (0.070 in) thick, makes contact with the slug on the package. The heat sink
is machined and made of an aluminum alloy.

Figure 8–2 Heat Sinks Dimensions

0.190
0.050 (12 plcs)

0.130

0.070

21

MLO-012865

7.48 cm
(2.945 in)

7.48 cm
(2.945 in)

6.83 cm
(2.690 in)

6.83 cm
(2.690 in)

2.16 cm
(0.850 in)

2.16 cm
(0.850 in)

4.12 cm
(1.620 in) 3.43 cm

(1.350 in)

3.18 cm
(1.250 in)

3.18 cm
(1.250 in)
DiameterDiameter

Thermal Management 8–7

Although there are several ways to attach a heat sink to the package, the
21064/21064A uses a separable heat sink attached with two aluminum nuts.
A GRAFOIL pad is used as the interface material between the package and
the heat sink to reduce the contact thermal resistance. A wet contact (thermal
grease) has been avoided for the ease of heat sink assembly. Table 8–1 shows
the thermal test results of this heat sink assembly. It shows � jc, � ca, and
� ja as measured, along with the maximum ambient temperature in order to
maintain the maximum specified die temperature of:

• 90°C (194°F) for 21064-200

• 90°C (194°F) for 21064-150 and 21064-166

• 90°C (194°F) for 21064A-233 and 21064A-275

Table 8–1, Table 8–2, and Table 8–3 show the thermal characteristics for the
21064.

Table 8–1 21064-150 Thermal Characteristics in a Forced-Air Environment

21064 at 150 MHz — Tc=75°C (167°F)

Heat Sink 1 Heat Sink 2

Air Velocity Power TaMax �ca TaMax �ca

100 lfpm 21.0 W 48.8°C (119.8°F) 1.25 C/W 40.4°C (104.7°F) 1.65 C/W

200 lfpm 21.0 W 57.2°C (135.0°F) 0.85 C/W 49.8°C (121.6°F) 1.20 C/W

400 lfpm 21.0 W 62.4°C (144.3°F) 0.60 C/W 57.2°C (135.0°F) 0.85 C/W

600 lfpm 21.0 W 64.1°C (147.4°F) 0.52 C/W 61.4°C (142.5°F) 0.65 C/W

1000 lfpm 21.0 W 66.6°C (151.9°F) 0.40 C/W 63.2°C (145.8°F) 0.56 C/W

Table constants and abbreviations

Tj is 90°C (194°F).
�jc is 0.7 C/W.
lfpm is linear feet per minute.

8–8 Thermal Management

Table 8–2 21064-166 Thermal Characteristics in a Forced-Air Environment

21064 at 166 MHz — Tc=72°C (161.6°F)

Heat Sink 1 Heat Sink 2

Air Velocity Power TaMax �ca TaMax �ca

100 lfpm 22.5 W 43.9°C (111.0°F) 1.25 C/W 34.9°C (94.8°F) 1.65 C/W

200 lfpm 22.5 W 52.9°C (127.2°F) 0.85 C/W 45.0°C (113.0°F) 1.20 C/W

400 lfpm 22.5 W 58.5°C (137.3°F) 0.60 C/W 52.9°C (127.2°F) 0.85 C/W

600 lfpm 22.5 W 60.3°C (140.5°F) 0.52 C/W 57.4°C (135.3°F) 0.65 C/W

1000 lfpm 22.5 W 63.0°C (145.4°F) 0.40 C/W 59.4°C (138.9°F) 0.56 C/W

Table constants and abbreviations

Tj is 90°C (194°F).
�jc is 0.7 C/W.
lfpm is linear feet per minute.

Table 8–3 21064-200 Thermal Characteristics in a Forced-Air Environment

21064 at 200 MHz — Tc=70°C (158.0°F)

Heat Sink 1 Heat Sink 2

Air Velocity Power TaMax �ca TaMax �ca

100 lfpm 27.0 W 36.3°C (97.3°F) 1.25 C/W 25.5°C (77.9°F) 1.65 C/W

200 lfpm 27.0 W 47.1°C (116.8°F) 0.85 C/W 37.6°C (97.7°F) 1.20 C/W

400 lfpm 27.0 W 53.8°C (128.8°F) 0.60 C/W 47.1°C (116.8°F) 0.85 C/W

600 lfpm 27.0 W 56.0°C (132.8°F) 0.52 C/W 52.5°C (126.5°F) 0.65 C/W

1000 lfpm 27.0 W 59.2°C (138.6°F) 0.40 C/W 54.9°C (130.8°F) 0.56 C/W

Table constants and abbreviations

Tj is 90°C (194°F).
�jc is 0.7 C/W.
lfpm is linear feet per minute.

Thermal Management 8–9

Table 8–4, Table 8–5, Table 8–6, and Table 8–7 show the thermal
characteristics for the 21064A.

Table 8–4 21064A-200 Thermal Characteristics in a Forced-Air Environment

21064A-200—Tc= 73.0°C (167.4°F)

Heat Sink 1 Heat Sink 2

Air Velocity Power TaMax �ca TaMax �ca

100 lfpm 24.0 W 43.0°C (109.4°F) 1.25 C/W 33.4°C (92.1°F) 1.65 C/W

200 lfpm 24.0 W 52.6°C (126.7°F) 0.85 C/W 44.2°C (111.6°F) 1.20 C/W

400 lfpm 24.0 W 58.6°C (137.5°F) 0.60 C/W 52.6°C (126.7°F) 0.85 C/W

600 lfpm 24.0 W 60.5°C (140.9°F) 0.52 C/W 57.4°C (135.3°F) 0.65 C/W

1000 lfpm 24.0 W 63.4°C (146.1°F) 0.40 C/W 59.6°C (139.3°F) 0.56 C/W

Table constants and abbreviations

Tj is 90°C (194°F).
�jc is 0.7 C/W.
lfpm is linear feet per minute.

Table 8–5 21064A-233 Thermal Characteristics in a Forced-Air Environment

21064A-233—Tc=71.0°C (159.8°F)

Heat Sink 1 Heat Sink 2

Air Velocity Power TaMax �ca TaMax �ca

100 lfpm 28.0 W 36.0°C (96.8°F) 1.25 C/W 24.8°C (76.6°F) 1.65 C/W

200 lfpm 28.0 W 47.2°C (117.0°F) 0.85 C/W 37.4°C (99.3°F) 1.20 C/W

400 lfpm 28.0 W 54.2°C (129.6°F) 0.60 C/W 47.2°C (117.0°F) 0.85 C/W

600 lfpm 28.0 W 56.4°C (133.5°F) 0.52 C/W 52.8°C (127.0°F) 0.65 C/W

1000 lfpm 28.0 W 59.8°C (139.6°F) 0.40 C/W 55.3°C (131.5°F) 0.56 C/W

Table constants and abbreviations

Tj is 90°C (194°F).
�jc is 0.7 C/W.
lfpm is linear feet per minute.

8–10 Thermal Management

Table 8–6 21064A-275 and 21064A-275-PC Thermal Characteristics in a Forced-Air
Environment

21064A-275 and 21064A-275-PC—Tc=67.0°C (152.6°F)

Heat Sink 1 Heat Sink 2

Air Velocity Power TaMax �c TaMax �ca

100 lfpm 33.0 W 25.8°C (78.4°F) 1.25 C/W — —

200 lfpm 33.0 W 39.0°C (102.2°F) 0.85 C/W 27.4°C (81.3°F) 1.20 C/W

400 lfpm 33.0 W 47.2°C (117.0°F) 0.60 C/W 39.0°C (102.2°F) 0.85 C/W

600 lfpm 33.0 W 49.8°C (121.6°F) 0.52 C/W 45.6°C (114.0°F) 0.65 C/W

1000 lfpm 33.0 W 53.8°C (128.8°F) 0.40 C/W 48.5°C (119.3°F) 0.56 C/W

Table constants and abbreviations

Tj is 90°C (194°F).
�jc is 0.7 C/W.
lfpm is linear feet per minute.

Table 8–7 21064A-300 Thermal Characteristics in a Forced-Air Environment

21064A-300—Tc=65.0°C (149.0°F)

Heat Sink 1 Heat Sink 2

Air Velocity Power TaMax �ca TaMax �ca

100 lfpm 36.0 W 20.0°C (68.0°F) 1.25 C/W — —

200 lfpm 36.0 W 34.4°C (93.9°F) 0.85 C/W 21.8°C (71.2°F) 1.20 C/W

400 lfpm 36.0 W 43.4°C (110.1°F) 0.60 C/W 34.4°C (93.9°F) 0.85 C/W

600 lfpm 36.0 W 46.3°C (115.3°F) 0.52 C/W 41.6°C (106.9°F) 0.65 C/W

1000 lfpm 36.0 W 50.6°C (123.1°F) 0.40 C/W 44.8°C (112.6°F) 0.56 C/W

Table constants and abbreviations

Tj is 90°C (194°F).
�jc is 0.7 C/W.
lfpm is linear feet per minute.

Thermal Management 8–11

Note

The values in Tables 8–4 through 8–7 are based upon the assumption
that maximum power for the microprocessors will be as follows:

• 24.0 W for 21064A-200

• 28.0 W for 21064A-233

• 33.0 W for 21064A-275 and 21064A-275-PC

• 36.0 W for 21064A-300

8.3.3.1 Comparison of Thermal Performance of Various Heat Sink Designs
One heat sink has been chosen as the primary design (which is available from
Digital); others have been characterized. The other two designs are shown with
different form factors and are targeted for relatively high air velocity systems
with tighter printed circuit board spacing.

Figure 8–3 compares the overall dimensions of the three heat sinks designs.
As shown in Figure 8–3:

• Heat sink number 2 is relatively smaller (in all 3 dimensions) than the
primary heat sink (heat sink number 1). However, it has more fins (17 fins
compared to 12 fins).

• Heat sink number 2 can be used in relatively high air velocity systems
where the spacing between the adjacent fins can be reduced. The extra fins
provide more surface area.

• Heat sink number 3 is very short compared to the primary heat sink 1 .
It is also significantly wider and longer than the primary heat sink. Heat
sink number 3 can be used in systems where the printed circuit board
spacing is very tight. The penalty for the use of this heat sink is that the
large footprint required for the heat sink consumes printed circuit board
space. This heat sink can be used only in high air velocity systems.

From the design and the performance of the three heat sinks, it can be seen
that by sacrificing height, either the large heat sink (XY dimensions) must be
used or the air flow must be increased or the ambient temperature must be
kept lower or some combination.

8–12 Thermal Management

Figure 8–3 Comparison of Dimensions for Heat Sink Designs

2.690

2.690 0.850

0.190
0.050 (12 plcs)

1.3500.130

0.070 1.250

2.37

2.37

0.150 0.850

0.050 (17 plcs)
0.095

3.545

3.545

0.035 (12 plcs)

0.095
0.200

0.350 2.565

3.545
LJ-02425-TI0

1 2

3

Thermal Management 8–13

Figure 8–4 compares the thermal performance of a microprocessor using
the three different heat sinks. Figure 8–5 compares the maximum ambient
temperature allowed in a system as a function of air velocity using the three
heat sinks.

Figure 8–4 Microprocessor Thermal Performance

LJ-02245-TI0

1200

2.90

2.70

2.50

2.30

2.10

1.90

1.70

1.50
1000800600400200

heatsink #3
heatsink #2
heatsink #1

T
H

E
T

A
 j-

a
 (

C
/W

)

Air Velocity (lfpm)

8–14 Thermal Management

Figure 8–5 Heat Sink Maximum Ambient Temperature

LJ-02246-TI0

1200

50

45

40

35

30

25

20
1000800600400200

heatsink #3
heatsink #2
heatsink #1

M
a

xi
m

u
m

 A
m

b
ie

n
t

(C
)

Air Velocity (lfpm)

Thermal Management 8–15

Observing Figure 8–4 and Figure 8–5, it can be seen that as the air velocity
increases, the benefit of the primary heat sink (heat sink number 1) over the
other two heat sinks is reduced.

As shown in Figure 8–4, the difference in the � ja value between the primary
heat sink and heat sink number 3 is about 0.75 C/W at 400 lfpm, which reduces
to 0.4 C/W at 1000 lfpm.

From these figures, it can be seen that the primary heat sink design is the
most effective at low air velocity. It is useful for desktop applications where air
flow is low but space is usually available. Heat sink number 2 and heat sink
number 3 are more useful for applications where space can be a problem but
air flow can be much higher.

More heat sink options are available at high air velocity. High air velocity
systems not only allow more heat sink options, but they can allow higher
system ambient temperature as well.

High air velocity systems will allow more trade-offs in the:

• Heat sink design

• Printed circuit board spacing

• Maximum ambient temperature

8.3.4 Device Thermal Characteristics in Forced Air Without Heat Sink
As a reference point, without heat sink, � ja was measured at 3.35 C/W at 1000
lfpm air velocity. This would require a maximum ambient temperature of 8° C
(46.4° F) to cool the 23 watt device, which clearly indicates why a heat sink is
required.

8.4 Critical Parameters of Thermal Design
As the adequate cooling of the 21064/21064A is essential, sufficient attention
must be given to the system thermal design. The critical parameters of the
system thermal design and verification are listed next.

8–16 Thermal Management

• Print circuit board component placement:

Orient the 21064/21064A on the printed circuit board (PCB) with the
heat sink fins aligned with the air flow direction.

Avoid preheating ambient air. Place the 21064 /21064A on the PCB so
that inlet air is not preheated by any other PCB components.

Do not place other high power devices in the vicinity of the 21064
/21064A.

Do not restrict the air flow across the 21064/21064A heat sink.
Placement of other devices must allow for maximum system air flow in
order to maximize the performance of the heat sink.

• System verification test:

All the thermal verification data provided in this section are based on very
controlled environment.

Note

System verification tests are highly recommended.

There could be some secondary heat losses to the PCB and the surrounding
components which could vary from system to system. The effect of the
secondary heat losses is usually small. The thermal resistance numbers
should be verified in the system. The following items should be measured
in the system to predict more accurate device junction temperature.

The local air velocity should be measured in the vicinity of the 21064
/21064A. The local air velocity at the heat sink in the system might be
different from the bulk system air velocity.

The temperature at the center of the heat sink pedestal should be
measured in the actual system environment. The junction temperature
should be calculated by adding junction to heat sink temperature rise
from Table 8–1 or Table 8–4. This will provide more accurate junction
temperature estimates for the given system. The data provided in
Table 8–1 or Table 8–4 should be used as reference only.

Thermal Management 8–17

9
Signal Integrity

9.1 Introduction
This chapter describes the signal integrity issues that should be considered by
a designer when using the 21064/21064A.

Note

The eclOut_h signal should be connected to Vss, and vRef should be
connected to 1.4 V.

Note

SPICE simulation models are available for 21064/21064A I/Os.

This chapter is organized as follows:

• Power Supply Considerations

• I/O Drivers

• Input Clock

• Voltage/Current (VI) Characteristics Curves and Edge Rate Curves

• References

9.2 Power Supply Considerations
For correct operation of the 21064/21064A, all of the Vss pins must be
connected to ground and all of the Vdd pins must be connected to a 3.3 V ±5%
power source. This source voltage should be guaranteed (even under transient
conditions) at the 21064/21064A pins, and not just at the printed circuit board
(PCB) edge.

Signal Integrity 9–1

Plus 5 V is not used in the 21064/21064A. The voltage difference between the
Vdd pins and Vss pins must never be greater than 3.6 V. See Section 7.2.

9.2.1 Decoupling
Adequate power supply decoupling capacitance is required on the PCB to
supply the 21064/21064A’s transient currents. The total capacitance should
be no less than 2uF. Many small, valued, surface-mount capacitors should
be used. These capacitors should be physically placed as close to the 21064
/21064A package power pins as possible.

Note

It is recommended that 20 ceramic 0.1uF surface-mount capacitors be
placed on the PCB in the open area of the PGA pin field, under the
PGA itself.

Use capacitors that are as physically small as possible. Connect the capacitors
directly to the 21064/21064A Vdd and Vss pins (or to their own down by way of
the power and ground plane) by short (0.64 cm (0.25 in) or less) surface etch.
The small capacitors generally have better electrical characteristics than the
larger units, and will more readily fit close to the PGA pin field.

9.2.2 Reference Voltage (vRef)
Most input and I/O pins use the voltage on the vRef pin circuit to set the input
receiver threshold voltage level. The following pins are exceptions:

o clkIn_h and clkIn_l

o testclkIn_h and testclkIn_l

o tagOk_h and tagOk_l1

o dcOk_h

o eclOut_h

o tristate_l

o cont_l

For correct operation of the input buffers, a 1.4 V (+/- 10%) reference voltage
must be connected to the vRef pin.

1 In the 21064A, tagOk_h and tagOk_l are referenced to vRef and may be driven to
a 5 V nominal level by external logic.

9–2 Signal Integrity

The impedance of the vRef voltage source is not critical to vRef signal
integrity because it is filtered on the 21064/21064A. Also see Section 7.4.1.

A voltage divider made from a 150 Ohm resistor to the Vdd supply, and a 110
Ohm resistor to Vss will produce a good low impedance source for vRef.

9.2.3 Power Supply Sequencing
Although the 21064/21064A uses a 3.3 V (nominal) power source, most of the
other logic on the printed circuit board probably requires a 5 V power supply.
These 5 V devices can damage the 21064/21064A’s I/O circuits if the 5 V power
source powering the PCB logic and the Vdd supply feeding the 21064/21064A
are not sequenced correctly.

Caution

To avoid damaging the 21064/21064A’s I/O circuits, the I/O pin voltages
must not exceed 4 V until the Vdd supply is at least 3 V or greater.

This rule can be satisfied if the Vdd and the 5 V supplies come up together,
or if the Vdd supply comes up before the 5 V supply is asserted. Bringing
the lower voltage up before the higher voltage is the opposite of the way that
CMOS systems with multiple power supplies of different voltages are usually
sequenced, but it is required for the 21064/21064A.

A three-terminal voltage regulator can be used to make 3.3 V Vdd from the 5 V
supply, provided the output of the regulator (Vdd) tracks the 5 V supply with
only a small offset. The requirement is that when the 5 V supply reaches 4 V,
Vdd must be 3 V or higher. While the 5 V supply is below 4 V, Vdd can be less
than 3 V.

All 5 V sources on the 21064/21064A’s I/O pins should be disabled if the power
supply sequencing is such that the 5 V supply will exceed 4 V before the Vdd
is at least 3 V. The 5 V sources should remain disabled until the Vdd power
supply is equal to or greater than 3 V.

Disabling all 5 V sources can be very difficult because there are so many
possible sneak paths. Inputs, for example, on bipolar TTL logic can be a source
of current, and will put a voltage across a 21064/21064A I/O pin high enough
to violate the (no higher than 4 V until there is 3 V) rule. TTL outputs are
specified to drive a logic one to at least 2.4 V, but usually drive voltages much
higher. CMOS logic and CMOS SRAMs usually drive "full rail" signals that
match the value of the 5 V power supply.

Signal Integrity 9–3

Another concern is parallel (DC) terminations or pullups connected between
the 21064/21064A and the 5 V supply. The Vdd supply should be used to power
parallel terminations. This is one reason that the vRef generation circuit
should be connected to the Vdd supply and not the 5 V supply.

Disabling the 5 V outputs of PCB logic is generally possible, but raises the
PCB complexity and can reduce system performance by increasing critical
path timing. If the 5 V logic device has an enable pin, circuits (such as power
supply supervisor chips) on the PCB can monitor the Vdd and 5 V supplies.
When the supervision circuit detects that 5 V is increasing from zero while the
Vdd supply is below 3V, the power supply supervisor circuit produces a disable
signal to force all PCB logic with 5 V outputs into the high impedance state.
This technique won’t prevent bipolar TTL inputs from acting as a 5 V source,
but it can be used to disable sources such as cache RAM outputs.

9.3 I/O Drivers
This section describes the 21064/21064A I/O pins.

9.3.1 I/O Driver Pins
All I/O pins, and most input-only pins, are 5 V tolerant. This means that once
Vdd is equal to or exceeds 3 V, logic signals from 5 V logic can be received
safely, even if the signals exceed Vdd. The input-only pins that can not be
exposed to voltages greater than Vdd are:

• tagOk_h and tagOk_l1

• testClkIn_h and testClkIn_l

• clkIn_h and clkIn_l

• dcOk_h

• tristate_l

• cont_l

• eclOut_h

1 In the 21064A, tagOk_h and tagOk_l are referenced to vRef.

9–4 Signal Integrity

9.3.1.1 Maximum Received Voltage Levels
The voltage appearing on any of the 21064/21064A 5 V tolerant I/O pins must
not exceed 4 V until the Vdd supply voltage exceeds 3 volts. I/O pin voltages
can be allowed to reach 5.5 V (DC) once the 21064/21064A power supply
reaches 3 V or greater. Transients (due to ringing) up to 6.5 V are permitted
for periods less than 10% of the driven waveforms total period.

I/O pins that are not 5 V tolerant are designed to connect to a 3 V signal.
These pins must not be exposed to DC values greater than 3.6 V, or transients
higher than 4.5 V. Transients between 3.6 V and 4.5 V are permitted, but must
be less than 10% of the driven waveforms total period.

9.3.1.2 Clamping Action of I/Os
The normal parasitic diode to Vdd typically present on CMOS outputs is not
present in the 21064/21064A. The printed circuit board designer should not rely
on the 21064/21064A I/O pins to clamp high going signal ringing or overshoots
to the Vdd rail. There is a parasitic diode between the output and Vss, so low
going overshoots below the Vss rail will be clamped to about -500 mV.

9.3.1.3 Pin Capacitances
Each 21064/21064A I/O pin can be modeled as a lumped 10 pF capacitor load
in series with a 30 nH inductor. This does not apply to clock input pins.

9.3.2 I/O Driver Characteristics
The driver characteristics of I/O pins is described in this section.

9.3.2.1 Voltage/Current (VI) Curves
Figure 9–1 and Figure 9–2 show typical high and low level output charac-
teristics of the 21064/21064A I/O pins. Figure 9–1 shows the characteristics
for a typical 21064/21064A I/O pullup, while Figure 9–2 shows the pulldown.
Under no load conditions the pullup pulls the pins to the Vdd rail, and the
pulldown pulls to the Vss rail. The VI curves can be used to predict the output
levels when the I/O pins are under DC load (DC noise margins). They can
be used graphically to perform a load line analysis by use of ladder diagrams
or Bergeron diagrams. See Section 9.6 for additional information on these
diagrams.

Positive current flow is assumed in both graphs: Figure 9–1 shows the sourcing
ability of a 21064/21064A I/O pin, while Figure 9–2 shows the I/O pins sinking
ability.

Signal Integrity 9–5

Individual I/O pins are able to source and sink very high currents, but steady
state pin currents should not exceed those shown in Section 7.2.

Figure 9–1 High Level Output Voltage versus High Level Output Current

L J - 0 2 1 1 0 - T I 0

0 1 0 2 0 3 0 4 0 5 0 6 0

l o h (m A)

V
o

h
 (

V
o

lt
s

)

3 . 5

3 . 0

2 . 5

2 . 0

1 . 5

1 . 0

0 . 5

0 . 0

9–6 Signal Integrity

Figure 9–2 Low Level Output Voltage versus Low Level Output Current

L J - 0 2 1 0 8 - T I 0

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0
l o l (m A)

5 . 0

4 . 5

4 . 0

3 . 5

3 . 0

2 . 5

2 . 0

1 . 5

1 . 0

0 . 0

V
o

l
(V

o
lt

s
)

0 . 5

9.3.2.2 Switching Characteristics
It is important for a designer to know the 21064/21064A output edge rate
characteristics because they are used to decide if a driven line is electrically
long. Electrically long lines will behave as transmission lines and can no
longer be analyzed as lumped elements. Reflections will travel up and down a
transmission line, causing signals to overshoot the Vdd and Vss rails, and to
undershoot below logic threshold levels. The severity of the reflections depends
on the degree of mismatch between the impedance of the transmission line and
the impedances at the source and at the load. Bergeron diagrams (Section 9.6)
or lattice diagrams (Section 9.6) can be used to predict the severity of the
reflections. The need for terminations can be determined from this analysis.

Signal Integrity 9–7

A line is electrically long when its electrical length (Tpd) is greater than one
tenth of the rise time of the edge sent down the line. This rule is overly
conservative if the source impedance is closely matched to the line impedance.
The impedance of the 21064/21064A I/O pads is process dependent, but will be
approximately 40 Ohms.

Figure 9–3 Edge Rate versus Load

L J - 0 2 1 1 2 - T I 0

1 0 2 0 3 0 4 0 5 0 6 0

l o h (m A)

E
d

g
e

 R
a

te
 (

n
S

)

5

4

3

2

1

0

L o w t o H i g h

H i g h t o L o w

Figure 9–3 is a plot of the typical fastest edge rate (measured from the 10% to
90% points of the signal swing) from the 21064/21064A against lumped load.
Both the pullup (labeled ‘‘Low to High’’) and the pulldown (labeled ‘‘High to
Low’’) characteristics are shown.

9–8 Signal Integrity

Lumped loads in excess of 40 pF should not be driven by the 21064/21064A,
but are shown in Figure 9–3 for completeness.

9.4 Input Clock
A differential system clock is required to run the 21064/21064A. The system
clock is connected to the clock input pins clkIn_h and clkIn_l. These pins are
self-biasing, and can be capacitively coupled to the clock source on the PCB or
they can be directly driven. The oscillator must have a duty cycle of 55%/45%
or tighter.

9.4.1 Clock Termination and Impedance Levels
The clock input pins appear as a 50 Ohm series termination resistor connected
to a high impedance voltage source. The voltage source produces a nominal
voltage value of Vdd/2. The source has an impedance of a few thousand Ohms.
This voltage is called the self-bias voltage and sources current when the
applied voltage at the clock input pins is less than the self-bias voltage. It
sinks current when the applied voltage exceeds the self-bias voltage.

Figure 9–4 shows the input current requirements for the clock inputs (clkIn_h
and clkIn_l). Negative currents indicate that the clkIn_h and clkIn_l pins
are sourcing positive currents into the clock pins.

Very little current is required for small signal swings near the self-bias point,
but as the applied voltage swing increases, the input current requirements
increase.

Signal Integrity 9–9

Figure 9–4 Clock Current versus Clock Voltage

L J - 0 2 1 0 9 - T I 0

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0

c l k _ i n V o l t a g e (V o l t s)

c
lk

_
in

 C
u

rr
e

n
t

(m
A

)

1 . 5

1 . 0

0 . 5

0 . 0

- 0 . 5

- 1 . 0

- 1 . 5

- 2 . 0

- 2 . 5

9–10 Signal Integrity

9.4.1.1 AC Coupling
Using series coupling (blocking) capacitors makes the 21064/21064A clock
input pins insensitive to the oscillators DC level. When connected this way,
oscillators with any DC offset relative to Vss can be used provided they can
drive a signal into the clkIn_h and clkIn_l pins with a peak-to-peak level of
at least 600 mV, but no greater than 3.0 V peak-to-peak.

The value of the coupling capacitor is not overly critical. However, it should
be sufficiently low impedance at the clock frequency so that the oscillators
output signal (when measured at the clkIn_h and clkIn_l pins) is not
attenuated below the 600 mV peak-to-peak lower limit. For sine waves or
oscillators producing nearly sinusoidal (pseudo square wave) outputs, 220 pF is
recommended at 250 MHz. A high quality dielectric such as NPO is required
to avoid dielectric losses.

Figure 9–4 can be used to determine the oscillators output requirements when
the oscillator is ac coupled. The capacitor will center the clock signal around
the clock inputs self-bias point, so oscillators that produce a small swing will
not have to drive much current into the pins. The self-bias point can be found
from Figure 9–4 by noting where the pin current is zero.

9.4.1.2 DC Coupling
If the clock is direct coupled (the blocking capacitor not used) it must provide a
swing above and below the self-biasing point by at least 300 mV (for a 600 mV
peak-to-peak signal).

Caution

Verify that the clock inputs are not driven below Vss or above Vdd.

If the oscillator output swings from Vss to Vdd, it must be capable of sourcing
over 1 mA and sinking nearly 2.5 mA.

Signal Integrity 9–11

9.5 Voltage/Current (VI) Characteristics Curves and Edge
Rate Curves

This section has examples of using the VI characteristic curves and the edge
rate curves described in Section 9.3.2.

9.5.1 VI and Edge Rate Curves—Example One
Assume that a 21064/21064A I/O pin is driving a 10 pF load. This load is
connected to the I/O pin by an etch that has zero length. To determine what
the driven signal is like:

1. Determine if the total driven load is greater than the 40 pF suggested
upper bound for a 21064/21064A pin. In this example, the total load is 10
pF, well below the suggested 40 pF limit. If the load had been connected to
the pin by an etch with a length greater than zero, then the capacitance of
the etch would also have to be included. In this example there is no etch
capacitance to be concerned with.

2. Check to see if the load is connected to the pin by transmission lines.
Transmission line behavior occurs when the line is electrically long. The
onset of long line behavior is often estimated for calculation purposes by
assuming that it occurs when the one-way electrical length of the line is
one tenth or more longer than the rise time (edge rate) of the signal on
the line. If a line is long, a load line analysis can be used to determine the
voltages on the line and at the loads.

Figure 9–1 and Figure 9–2 can be used in that analysis. If the line is not
long, the load voltages will be the voltage produced by the driver as it
charges the load capacitances. The rate of this charging can be determined
from Figure 9–3.

In this example, the etch length between the load and the pin is zero, so no
transmission line behavior exists. By examining Figure 9–3, you can see that
the high-to-low transition will take about 800 ps, and the low-to-high about
1.1 ns.

9–12 Signal Integrity

9.5.2 VI and Edge Rate Curves—Example Two
Connect the 10 pF load to the pin using an etch of one inch in length. Assume
that the etch is an embedded microstrip with:

• Z0 (characteristic impedance) of 64 Ohms

• C0 (capacitance per unit length) of 2.5 pF/inch

• A one way propagation delay (Tpd) of 160 ps/inch

To determine how the driven signal from the 21064/21064A will behave:

1. Ensure that the total capacitance is the sum of the 10 pF load and the etch
capacitance (1 inch of etch, or 2.5 pF). In this case, the total capacitance
is 12.5 pF. The 12.5 pF is below the 40 pF suggested limit, making this
configuration acceptable.

2. Check to see if the etch is long enough to act as a transmission line.

Figure 9–3 shows that the 21064/21064A will move a 12.5 pF load in
about 850 ps on a high going edge. Use the high-to-low curve because that
transition is sharper than the low-to-high.

3. Apply the one tenth rise time rule to the 850 ps edge. Conclude that under
these conditions, lines longer than 85 ps (or about half an inch at 160
ps/inch) will be long. The one-inch etch is longer than the half-inch length
used to gauge long line behavior for this load. It can be assumed that the
line is indeed long and will act as a transmission line.

At this point circuit simulation can be performed to obtain the precise behavior,
or a load line analysis can be used to determine the voltage levels initially
transmitted down the line.

Signal Integrity 9–13

9.5.3 VI and Edge Rate Curves—Example Three
Assume that a line has been determined to be long. Determine the magnitude
of the voltage launched down the line on low-to-high transition.

Because the line is long, the impedance of the 21064/21064A output pin and
the impedance of the line will act as a voltage divider to the wave launched
down the line. All practical lines will have an impedance on the same order
of magnitude as the output impedance of the 21064/21064A output pin. The
driven voltage level will initially be less than the value of Vdd. This reduced
level will create a plateau voltage at the pin output (and will be sensed by any
logic devices connected to the pin at this point) until modified by the reflections
returned from the load located at the far end of the line. If the initial plateau
voltage at the 21064/21064A pin (called the near end) is less than a valid logic
level, any devices connected there will have to wait until enough reflections
have been returned to cause the near end voltage to exceed the required logic
level. This can lead to a situation where the loads at the far end of the line
will switch before the loads at the near end (those closer to the 21064/21064A
I/O pin).

A simple load-line analysis can be made without much effort to determine the
magnitude of the first plateau voltage. Perform one of the following graphical
representation methods if the effects of reflections are to be investigated:

• Ladder diagrams

• Bergeron diagrams

• Circuit simulation

These methods are briefly described in Section 9.5.4.

To determine the magnitude of the near-end plateau, a load line is
superimposed (drawn) on the I/O pins VI characteristic. Figure 9–5 shows
load lines for 50, 64 and 72 Ohm impedances superimposed on the VI curve
shown in Figure 9–1. The operating point for the I/O driver/transmission line
system occurs where the load line crosses the VI curve. For example, if the
21064/21064A is connected to a 64 Ohm etch as in Example 3, the first plateau
will occur at about 1.8 V (and the pin will be sourcing about 28 mA at that
point).

Constructing the load line is easy. Pick a pair of voltages and compute the
currents that the impedance will draw at those voltages. Then plot the points
on the VI curve, and draw a line between them. For simplicity, zero volts can
be used for the second point.

9–14 Signal Integrity

Figure 9–5 Low to High Load Line Analysis

L J - 0 2 1 1 1 - T I 0

0 1 0 2 0 3 0 4 0 5 0 6 0

l o h (m A)

V
o

h
 (

V
o

lt
s

)

3 . 5

3 . 0

2 . 5

2 . 0

1 . 5

1 . 0

0 . 5

0 . 0

Z 0 = 7 2
Z 0 = 6 4

Z 0 = 5 0

Signal Integrity 9–15

9.5.4 Graphical Representation Methods
Ladder diagrams are sometimes called "line charts" or "reflection charts."
Ladder diagrams are a convenient way to record the voltage steps along a
transmission line created by reflections due to impedance mismatches. They
require the user to know the value for the reflection coefficient of the source
and the load. Ladder diagrams have the advantage over Bergeron diagrams at
being able to predict voltage levels at points anywhere along a transmission
line, including points other than the source and load. Use 40 Ohms for
the source impedance of the 21064/21064A when computing the source end
reflection coefficient.

Ladder diagrams are not as useful in situations where the source or load
impedances are changing or are non-linear. This is often the case when
working with CMOS. In situations where the load or driver impedance is
non-linear, Bergeron diagrams can be used to determine voltage levels due to
ringing and overshoots at either end of the line. Figure 9–1 and Figure 9–2
can be used for the 21064/21064A’s output characteristics when plotting the
load lines on a Bergeron plot. The inputs (except for the clock inputs) can be
assumed to have an impedance of 175 Ohms.

If a number of layout scenarios are to be examined, circuit simulation should
be used rather than performing a ladder or Bergeron analysis. Accuracy will
improve over the Bergeron analysis, but the real advantage is speed. A circuit
simulation can save a great deal of time for the designer who is interested in
examining the differences between different layout topologies, including the
response of networks that have stubs or complex signal treeing.

9.6 References
Additional information on Bergeron diagrams and ladder diagrams can be
found in the following documents:

1. Lines, Waves and Antennas (Brown et al., Copyright 1973 Wiley & Sons)

2. Fairchild ECL Data Book (Copyright 1977, Fairchild)

3. Motorola MECL System Designers Handbook (Copyright 1988, Motorola)

4. The ALS/AS Logic Data Book (Copyright 1986 Texas Instruments)

9–16 Signal Integrity

10
Mechanical Data and Packaging

Information

10.1 Introduction
This chapter provides detailed information on the chip package and the
complete pinout for the 21064/21064A.

10.2 Package Information
Package information for both the 21064 and the 21064A are included in this
section.

10.2.1 21064 Package Information
Figure 10–1 shows the 21064 package physical dimensions without heat sink
and Figure 10–3 shows the PGA locations.

10.2.2 21064A Package Information
Figure 10–2 shows the 21064A package physical dimensions without heat sink
and Figure 10–3 shows PGA locations. The PGA locations are identical for the
21064 and the 21064A.

Mechanical Data and Packaging Information 10–1

Figure 10–1 21064 Package Dimensions

Standoff (4x)

Capacitors (0x)

E+

Heat Slug Base Area

23x 2.54 mm (.100 in) Typ

Lid

Pin 1 431x 1.65 mm
(.065 in) Typ

1.27 mm (.050 in) Typ
4.95 mm (.195 in) Typ

.89 mm (.035 in) Typ

10-32 Stud (2x)

AD
AC
AB
AA

Y
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

23x 2.54 mm (.100 in) Typ

29.21 mm
(1.150 in)

29.21 mm
(1.150 in)

61.72 mm
(2.430 in) Typ

30.86 mm
(1.215 in) Typ

30.86 mm
(1.215 in) Typ

Braze Pad

21.59 mm
(.850 in) Typ

31.75 mm
(1.250 in) Typ

.46 mm
(.018 in) Typ

.025 mm
(.001 in)
Minimum

6.35 mm
(.250 in) Typ

1.78 mm
(.070 in) Typ

Radius

MLO-012208

10–2 Mechanical Data and Packaging Information

Figure 10–2 21064A Package Dimensions

Standoff (4x)

Capacitors (0x)

E45

Heat Slug Base Area

23x 2.54 mm (.100 in) Typ

Lid

Pin 1 431x 1.65 mm
(.065 in) Typ

1.27 mm (.050 in) Typ
4.95 mm (.195 in) Typ

.89 mm (.035 in) Typ

10-32 Stud (2x)

AD
AC
AB
AA

Y
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

23x 2.54 mm (.100 in) Typ

29.21 mm
(1.150 in)

29.21 mm
(1.150 in)

61.72 mm
(2.430 in) Typ

30.86 mm
(1.215 in) Typ

30.86 mm
(1.215 in) Typ

Braze Pad

21.59 mm
(.850 in) Typ

31.75 mm
(1.250 in) Typ

.46 mm
(.018 in) Typ

.025 mm
(.001 in)
Minimum

6.35 mm
(.250 in) Typ

1.78 mm
(.070 in) Typ

Radius

MLO-012009

Mechanical Data and Packaging Information 10–3

Figure 10–3 21064A PGA Cavity Down View

AD

AC

AB

AA

Y

W
V

U

T

R

P

N

M

L

K

J

H

G

F

E

D
C

B

A

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01

21064A
Top View

(Pin Down)

MLO-012007

10–4 Mechanical Data and Packaging Information

10.3 21064/21064A Signal Pin Lists
The 21064 and 21064A pin lists are identical except for the nine pins listed in
Table 10–1. These differences are also identified where they occur in all tables
in this section of the manual.

Table 10–1 21064 and 21064A Pin List Differences

21064A Name 21064 Name Type PGA Location

icMode_h 21 spare 1 I AD7

dInvReq_h 11 spare 3 I C24

dInvReq_h 0 dInvReq_h I AD9

resetSClk_h1 spare 6 I AA11

sysClkDiv_h1 spare 8 I AA16

dMapWE_h 11 spare 0 O M24

dMapWE_h 0 dMapWE_h O L24

lockWE_h tagEq_l O P24

lockFlag_h tagAdr_h 17 I R23

1Has internal pulldown drawing a maximum current of 200 uA at 2.4V dc

Table 10–2 through Table 10–17 contain the pin list in functional groups.

The key for the signal type is listed here.

• B = Bidirectional

• I = Input

• N = Not connected

• P = Power or ground

• O = Output

Mechanical Data and Packaging Information 10–5

Table 10–2 Data Pin List (Type B)

Signal
Name

PGA
Location

Signal
Name

PGA
Location

Signal
Name

PGA
Location

data_h 127 A23 data_h 126 C21 data_h 125 B21

data_h 124 C20 data_h 123 D19 data_h 122 A18

data_h 121 C17 data_h 120 A17 data_h 119 C16

data_h 118 D15 data_h 117 E14 data_h 116 C14

data_h 115 E13 data_h 114 C13 data_h 113 A13

data_h 112 C12 data_h 111 E12 data_h 110 B11

data_h 109 A10 data_h 108 D10 data_h 107 B9

data_h 106 D9 data_h 105 C8 data_h 104 A7

data_h 103 C7 data_h 102 D6 data_h 101 B5

data_h 100 A4 data_h 99 C4 data_h 98 A3

data_h 97 A2 data_h 96 C3 data_h 95 F4

data_h 94 D1 data_h 93 F3 data_h 92 F1

data_h 91 G3 data_h 90 J4 data_h 89 J1

data_h 88 K3 data_h 87 K1 data_h 86 L4

data_h 85 M4 data_h 84 M2 data_h 83 N1

data_h 82 N4 data_h 81 P1 data_h 80 P3

data_h 79 P5 data_h 78 R3 data_h 77 T3

data_h 76 U1 data_h 75 U4 data_h 74 V2

data_h 73 V4 data_h 72 W3 data_h 71 Y2

data_h 70 AB1 data_h 69 AB2 data_h 68 Y4

data_h 67 AB3 data_h 66 AA4 data_h 65 AC4

data_h 64 AB5 data_h 63 D20 data_h 62 A22

data_h 61 A21 data_h 60 A20 data_h 59 C19

data_h 58 D17 data_h 57 B17 data_h 56 D16

data_h 55 A16 data_h 54 C15 data_h 53 D14

data_h 52 A14 data_h 51 D13 data_h 50 B13

data_h 49 A12 data_h 48 D12 data_h 47 A11

data_h 46 C11 data_h 45 C10 data_h 44 A9

(continued on next page)

10–6 Mechanical Data and Packaging Information

Table 10–2 (Cont.) Data Pin List (Type B)

Signal
Name

PGA
Location

Signal
Name

PGA
Location

Signal
Name

PGA
Location

data_h 43 C9 data_h 42 A8 data_h 41 D8

data_h 40 B7 data_h 39 D7 data_h 38 A5

data_h 37 C5 data_h 36 D5 data_h 35 B3

data_h 34 D4 data_h 33 A1 data_h 32 E4

data_h 31 E3 data_h 30 E1 data_h 29 F2

data_h 28 G4 data_h 27 G1 data_h 26 J3

data_h 25 K4 data_h 24 K2 data_h 23 L5

data_h 22 L3 data_h 21 M3 data_h 20 M1

data_h 19 N3 data_h 18 N5 data_h 17 P2

data_h 16 P4 data_h 15 R1 data_h 14 R4

data_h 13 T4 data_h 12 U3 data_h 11 V1

data_h 10 V3 data_h 9 W1 data_h 8 Y1

data_h 7 Y3 data_h 6 AC1 data_h 5 AA3

data_h 4 AD2 data_h 3 AD3 data_h 2 AB4

data_h 1 AD4 data_h 0 AA5 – –

Table 10–3 Address Pin List (Type B)

Signal
Name

PGA
Location Type

Signal
Name

PGA
Location Type

adr_h 33 AD17 adr_h 32 AB17 adr_h 31 AA17

adr_h 30 AD18 adr_h 29 AC18 adr_h 28 AB18

adr_h 27 AA18 adr_h 26 AD19 adr_h 25 AB19

adr_h 24 AA19 adr_h 23 AD20 adr_h 22 AC20

adr_h 21 AB20 adr_h 20 AD21 adr_h 19 AD22

adr_h 18 AB21 adr_h 17 AA20 adr_h 16 AC22

adr_h 15 AA21 adr_h 14 AB22 adr_h 13 AD23

adr_h 12 AD24 adr_h 11 AA22 adr_h 10 AC24

adr_h 9 AB24 adr_h 8 Y21 adr_h 7 AA23

(continued on next page)

Mechanical Data and Packaging Information 10–7

Table 10–3 (Cont.) Address Pin List (Type B)

Signal
Name

PGA
Location Type

Signal
Name

PGA
Location Type

adr_h 6 AA24 adr_h 5 Y22 – –

Table 10–4 Parity/ECC Bus Pin List (Type B)

Signal
Name

PGA
Location Type

Signal
Name

PGA
Location Type

check_h 27 A6 check_h 26 B15 check_h 25 D18

check_h 24 D11 check_h 23 C22 check_h 22 D21

check_h 21 B19 check_h 20 AA1 check_h 19 L1

check_h 18 H2 check_h 17 T1 check_h 16 C1

check_h 15 B1 check_h 14 H4 check_h 13 C6

check_h 12 A15 check_h 11 C18 check_h 10 E11

check_h 9 A24 check_h 8 B24 check_h 7 A19

check_h 6 W4 check_h 5 M5 check_h 4 H1

check_h 3 T2 check_h 2 D2 check_h 1 D3

check_h 0 H3 – – – –

Table 10–5 Primary Cache Invalidate Pin List (Type I)

Signal
Name

PGA
Location

Signal
Name

PGA
Location

Signal
Name

PGA
Location

iAdr_h 12 AB7 iAdr_h 11 AC8 iAdr_h 10 AA7

iAdr_h 9 AD6 IAdr_h 8 AC6 iAdr_h 7 AB6

iAdr_h 6 AA6 iAdr_h 5 AD5 – –

dInvReq_h1 AD9 dInvReq_h 12 C24 – –

1dInvReq_h for 21064—dInvReq_h 0 for 21064A
221064A only—spare 3 on 21064

10–8 Mechanical Data and Packaging Information

Table 10–6 External Cache Control Pin List

Signal
Name

PGA
Location Type

Signal
Name

PGA
Location Type

tagCEOE_h N24 O tagCtlWE_h H22 O

tagCtlV_h R24 B tagCtlD_h P21 B

tagCtlS_h P20 B tagCtlP_h P22 B

tagadr_h 33 Y24 I tagadr_h 32 W22 I

tagadr_h 31 W23 I tagadr_h 30 W24 I

tagadr_h 29 V21 I tagadr_h 28 V22 I

tagadr_h 27 V24 I tagadr_h 26 U21 I

tagadr_h 25 U22 I tagadr_h 24 U23 I

tagadr_h 23 U24 I tagadr_h 22 T21 I

tagadr_h 21 T22 I tagadr_h 20 T24 I

tagadr_h 19 R21 I tagadr_h 18 R22 I

tagadr_h 171 R23 I tagadrP_h W21 I

tagOk_h N21 I tagOk_l N20 I

tagEq_l2 P24 O – – –

dataCEOE_h 3 H21 O dataCEOE_h 1 G23 O

dataCEOE_h 2 G24 O dataCEOE_h 0 G22 O

dataWE_h 3 L23 O dataWE_h 1 L21 O

dataWE_h 2 L22 O dataWE_h 0 L20 O

dataA_h 4 N22 O dataA_h 3 N23 O

121064 only—used for lockFlag_h input on 21064A
221064 only—used for lockWE_h output on 21064A

(continued on next page)

Mechanical Data and Packaging Information 10–9

Table 10–6 (Cont.) External Cache Control Pin List

Signal
Name

PGA
Location Type

Signal
Name

PGA
Location Type

holdReq_h F24 I holdAck_h G21 O

dMapWE_h3 L24 O dOE_l D24 I

dMapWE_h 14 M24 O – – –

dWSel_h 1 E23 I dWSel_h 0 E22 I

dRAck_h 2 D22 I dRAck_h 0 C23 I

dRAck_h 1 E21 I – – –

cReq_h 2 M22 O cReq_h 0 M20 O

cReq_h 1 M21 O – – –

cWMask_h 7 K24 O cWMask_h 6 K22 O

cWMask_h 5 K21 O cWMask_h 4 J24 O

cWMask_h 3 J23 O cWMask_h 2 J22 O

cWMask_h 1 J21 O cWMask_h 0 H24 O

cAck_h 2 F22 I cAck_h 0 E24 I

cAck_h 1 F21 I – – –

321064 name—named dMapWE_h 0 on 21064A
421064A only—spare 0 on 21064

10–10 Mechanical Data and Packaging Information

Table 10–7 Interrupts Pin List (Type I)

Signal
Name

PGA
Location

Signal
Name

PGA
Location

Signal
Name

PGA
Location

irq_h 5 AA15 irq_h 4 AB15 irq_h 3 AD15

irq_h 2 AC14 irq_h 1 AD14 irq_h 0 AD13

Table 10–8 Instruction Cache Initialization Pin List (Type I)

Signal
Name

PGA
Location

Signal
Name

PGA
Location

Signal
Name

PGA
Location

icMode_h 21 AD7 icMode_h 1 AD12 icMode_h 0 AB14

121064A only—spare 1 on 21064

Table 10–9 Serial ROM Interface Pin List

Signal
Name

PGA
Location Type

Signal
Name

PGA
Location Type

sRomOE_l AB10 O sRomD_h AB9 I

sRomClk_h AC10 O – – –

Table 10–10 Initialization Pin List (Type I)

Signal
Name

PGA
Location

Signal
Name

PGA
Location

Signal
Name

PGA
Location

dcOk_h AB12 reset_l AB8 reset_SClk_h1 AA11

121064A only—spare 6 on 21064

Mechanical Data and Packaging Information 10–11

Table 10–11 21064 Clock Pin List

Signal
Name

PGA
Location Type

Signal
Name

PGA
Location Type

clkIn_h W12 I clkIn_l W13 I

testClkIn_h W9 I testClkIn_l W10 I

cpuClkOut_h AB11 O sysClkDiv_h1 AA11 I

sysClkOut1_h AA12 O sysClkOut1_l AA13 O

sysClkOut2_h AA9 O sysClkOut2_l AA10 O

121064A only—spare 8 21064

Table 10–12 21064A Load/Lock and Store/Conditional Fast Lock Mode

Signal
PGA
Location Type Signal

PGA
Location Type

lockFlag_h1 R23 O lockWE_h2 P24 O

121064A only—tagEq_l on 21064
221064A only—tagAdr_h 17 on 21064

Table 10–13 Performance Monitoring Pin List

Signal
Name

PGA
Location Type

Signal
Name

PGA
Location Type

perf_cnt_h 1 AC16 I perf_cnt_h 0 AB16 I

Table 10–14 Other Signals Pin List

Signal
Name

PGA
Location Type

Signal
Name

PGA
Location Type

triState_l AB13 I vRef AA8 I

cont_l AA14 I eclOut_h AD8 I

10–12 Mechanical Data and Packaging Information

Table 10–15 Power Pin List (Type P)

Signal
Name

PGA
Location

Signal
Name

PGA
Location

Signal
Name

PGA
Location

Vdd plane B2 Vdd plane N2 Vdd plane B6

Vdd plane N19 Vdd plane B10 Vdd plane P6

Vdd plane B14 Vdd plane R5 Vdd plane B18

Vdd plane R19 Vdd plane B22 Vdd plane T6

Vdd plane D23 Vdd plane T20 Vdd plane E2

Vdd plane T23 Vdd plane E5 Vdd plane U2

Vdd plane E7 Vdd plane U5 Vdd plane E9

Vdd plane U19 Vdd plane E15 Vdd plane V6

Vdd plane E17 Vdd plane V20 Vdd plane E19

Vdd plane W5 Vdd plane F6 Vdd plane W7

Vdd plane F8 Vdd plane W11 Vdd plane F10

Vdd plane W15 Vdd plane F12 Vdd plane W17

Vdd plane F14 Vdd plane W19 Vdd plane F16

Vdd plane Y6 Vdd plane F18 Vdd plane Y8

Vdd plane F20 Vdd plane Y10 Vdd plane G5

Vdd plane Y12 Vdd plane G19 Vdd plane Y14

Vdd plane H6 Vdd plane Y16 Vdd plane H20

Vdd plane Y18 Vdd plane H23 Vdd plane Y20

Vdd plane J2 Vdd plane Y23 Vdd plane J5

Vdd plane AA2 Vdd plane J19 Vdd plane AC3

Vdd plane K6 Vdd plane AC7 Vdd plane K20

Vdd plane AC11 Vdd plane L19 Vdd plane AC15

Vdd plane M6 Vdd plane AC19 Vdd plane M23

Vdd plane AC23 – – – –

Mechanical Data and Packaging Information 10–13

Table 10–16 Ground Pin List

Signal
Name

PGA
Location

Signal
Name

PGA
Location

Signal
Name

PGA
Location

Vss plane B4 Vss plane N6 Vss plane B8

Vss plane P19 Vss plane B12 Vss plane P23

Vss plane B16 Vss plane R2 Vss plane B20

Vss plane R6 Vss plane B23 Vss plane R20

Vss plane C2 Vss plane T5 Vss plane E6

Vss plane T19 Vss plane E8 Vss plane U6

Vss plane E10 Vss plane U20 Vss plane E16

Vss plane V5 Vss plane E18 Vss plane V19

Vss plane E20 Vss plane V23 Vss plane F5

Vss plane W2 Vss plane F7 Vss plane W6

Vss plane F9 Vss plane W8 Vss plane F11

Vss plane W14 Vss plane F13 Vss plane W16

Vss plane F15 Vss plane W18 Vss plane F17

Vss plane W20 Vss plane F19 Vss plane Y5

Vss plane F23 Vss plane Y7 Vss plane G2

Vss plane Y9 Vss plane G6 Vss plane Y11

Vss plane G20 Vss plane Y13 Vss plane H5

Vss plane Y15 Vss plane H19 Vss plane Y17

Vss plane J6 Vss plane Y19 Vss plane J20

Vss plane AB23 Vss plane K5 Vss plane AC2

Vss plane K19 Vss plane AC5 Vss plane K23

Vss plane AC9 Vss plane L2 Vss plane AC13

Vss plane L6 Vss plane AC17 Vss plane M19

Vss plane AC21 – – – –

10–14 Mechanical Data and Packaging Information

Table 10–17 Spare Pin List (Type N)

Signal
Name

PGA
Location

Signal
Name

PGA
Location

Signal
Name

PGA
Location

spare 81 AA16 spare 7 AD16 spare 61 AA11

spare 5 AC12 spare 4 AD11 spare 31 C24

spare 2 AD10 spare 11 AD7 spare 01 M24

121064 only—used for other signals on 21064A

10.4 PGA Pin List
Table 10–18 lists the 21064/21064A pinout in two alphabetic sequences of PGA
location, A to Y then AA to AD.

The key for the signal type is listed here.

• B = Bidirectional

• I = Input

• N = Not connected

• P = Power or Ground

• O = Output

Mechanical Data and Packaging Information 10–15

Table 10–18 21064/21064A PGA Pin List

PGA
Location Type Name

PGA
Location Type Name

A1 B data_h 33 A2 B data_h 97

A3 B data_h 98 A4 B data_h 100

A5 B data_h 38 A6 B check_h 27

A7 B data_h 104 A8 B data_h 42

A9 B data_h 44 A10 B data_h 109

A11 B data_h 47 A12 B data_h 49

A13 B data_h 113 A14 B data_h 52

A15 B check_h 12 A16 B data_h 55

A17 B data_h 120 A18 B data_h 122

A19 B check_h 7 A20 B data_h 60

A21 B data_h 61 A22 B data_h 62

A23 B data_h 127 A24 B check_h 9

B1 B check_h 15 B2 P Vdd plane

B3 B data_h 35 B4 P Vss plane

B5 B data_h 101 B6 P Vdd plane

B7 B data_h 40 B8 P Vss plane

B9 B data_h 107 B10 P Vdd plane

B11 B data_h 110 B12 P Vss plane

B13 B data_h 50 B14 P Vdd plane

B15 B check_h 26 B16 P Vss plane

B17 B data_h 57 B18 P Vdd plane

B19 B check_h 21 B20 P Vss plane

B21 B data_h 125 B22 P Vdd plane

B23 P Vss plane B24 B check_h 8

C1 B check_h 16 C2 P Vss plane

C3 B data_h 96 C4 B data_h 99

C5 B data_h 37 C6 B check_h 13

C7 B data_h 103 C8 B data_h 105

(continued on next page)

10–16 Mechanical Data and Packaging Information

Table 10–18 (Cont.) 21064/21064A PGA Pin List

PGA
Location Type Name

PGA
Location Type Name

C9 B data_h 43 C10 B data_h 45

C11 B data_h 46 C12 B data_h 112

C13 B data_h 114 C14 B data_h 116

C15 B data_h 54 C16 B data_h 119

C17 B data_h 121 C18 B check_h 11

C19 B data_h 59 C20 B data_h 124

C21 B data_h 126 C22 B check_h 23

C23 I dRAck_h 0 C24 N spare 31

D1 B data_h 94 D2 B check_h 2

D3 B check_h 1 D4 B data_h 34

D5 B data_h 36 D6 B data_h 102

D7 B data_h 39 D8 B data_h 41

D9 B data_h 106 D10 B data_h 108

D11 B check_h 24 D12 B data_h 48

D13 B data_h 51 D14 B data_h 53

D15 B data_h 118 D16 B data_h 56

D17 B data_h 58 D18 B check_h 25

D19 B data_h 123 D20 B data_h 63

D21 B check_h 22 D22 I dRAck_h 2

D23 P Vdd plane D24 I dOE_l

E1 B data_h 30 E2 P Vdd plane

E3 B data_h 31 E4 B data_h 32

E5 P Vdd plane E6 P Vss plane

E7 P Vdd plane E8 P Vss plane

E9 P Vdd plane E10 P Vss plane

E11 B check_h 10 E12 B data_h 111

E13 B data_h 115 E14 B data_h 117

1spare 3 for 21064— dInvReq_h 1 for 21064A

(continued on next page)

Mechanical Data and Packaging Information 10–17

Table 10–18 (Cont.) 21064/21064A PGA Pin List

PGA
Location Type Name

PGA
Location Type Name

E15 P Vdd plane E16 P Vss plane

E17 P Vdd plane E18 P Vss plane

E19 P Vdd plane E20 P Vss plane

E21 I dRAck_h 1 E22 I dWSel_h 0

E23 I dWSel_h 1 E24 I cAck_h 0

F1 B data_h 92 F2 B data_h 29

F3 B data_h 93 F4 B data_h 95

F5 P Vss plane F6 P Vdd plane

F7 P Vss plane F8 P Vdd plane

F9 P Vss plane F10 P Vdd plane

F11 P Vss plane F12 P Vdd plane

F13 P Vss plane F14 P Vdd plane

F15 P Vss plane F16 P Vdd plane

F17 P Vss plane F18 P Vdd plane

F19 P Vss plane F20 P Vdd plane

F21 I cAck_h 1 F22 I cAck_h 2

F23 P Vss plane F24 I holdReq_h

G1 B data_h 27 G2 P Vss plane

G3 B data_h 91 G4 B data_h 28

G5 P Vdd plane G6 P Vss plane

G19 P Vdd plane G20 P Vss plane

G21 O holdAck_h G22 O dataCEOE_h 0

G23 O dataCEOE_h 1 G24 O dataCEOE_h 2

H1 B check_h 4 H2 B check_h 18

H3 B check_h 0 H4 B check_h 14

H5 P Vss plane H6 P Vdd plane

H19 P Vss plane H20 P Vdd plane

H21 O dataCEOE_h 3 H22 O tagCtlWE_h

(continued on next page)

10–18 Mechanical Data and Packaging Information

Table 10–18 (Cont.) 21064/21064A PGA Pin List

PGA
Location Type Name

PGA
Location Type Name

H23 P Vdd plane H24 O cWMask_h 0

J1 B data_h 89 J2 P Vdd plane

J3 B data_h 26 J4 B data_h 90

J5 P Vdd plane J6 P Vss plane

J19 P Vss plane J20 P Vss plane

J21 O cWMask_h 1 J22 O cWMask_h 2

J23 O cWMask_h 3 J24 O cWMask_h 4

K1 B data_h 87 K2 B data_h 24

K3 B data_h 88 K4 B data_h 25

K5 P Vss plane K6 P Vdd plane

K19 P Vss plane K20 P Vdd plane

K21 O cWMask_h 5 K22 O cWMask_h 6

K23 P Vss plane K24 O cWMask_h 7

L1 B check_h 19 L2 P Vss plane

L3 B data_h 22 L4 B data_h 86

L5 B data_h 23 L6 P Vss plane

L19 P Vdd plane L20 O dataWE_h 0

L21 O dataWE_h 1 L22 O dataWE_h 2

L23 O dataWE_h 3 L24 O dMapWE_h2

M1 B data_h 20 M2 B data_h 84

M3 B data_h 21 M4 B data_h 85

M5 B check_h 5 M6 P Vdd plane

M19 P Vss plane M20 O cReq_h 0

M21 O cReq_h 1 M22 O cReq_h 2

M23 P Vdd plane M24 N spare 03

N1 B data_h 83 N2 P Vdd plane

N3 B data_h 19 N4 B data_h 82

2dMapWE_h for 21064— dMapWE_h 0 for 21064A
3spare 0 for 21064— dMapWE_h 1 for 21064A

(continued on next page)

Mechanical Data and Packaging Information 10–19

Table 10–18 (Cont.) 21064/21064A PGA Pin List

PGA
Location Type Name

PGA
Location Type Name

N5 B data_h 18 N6 P Vss plane

N19 P Vdd plane N20 I tagOk_l

N21 I tagOk_h N22 O dataA_h 4

N23 O dataA_h 3 N24 O tagCEOE_h

P1 B data_h 81 P2 B data_h 17

P3 B data_h 80 P4 B data_h 16

P5 B data_h 79 P6 P Vdd plane

P19 P Vss plane P20 B tagCtlS_h

P21 B tagCtlD_h P22 B tagCtlP_h

P23 P Vss plane P24 O tagEq_l4

R1 B data_h 15 R2 P Vss plane

R3 B data_h 78 R4 B data_h 14

R5 P Vdd plane R6 P Vss plane

R19 P Vdd plane R20 P Vss plane

R21 I tagadr_h 19 R22 I tagadr_h 18

R23 I tagadr_h 175 R24 B tagCtlV_h

T1 B check_h 17 T2 B check_h 3

T3 B data_h 77 T4 B data_h 13

T5 P Vss plane T6 P Vdd plane

T19 P Vss plane T20 P Vdd plane

T21 I tagadr_h 22 T22 I tagadr_h 21

T23 P Vdd plane T24 I tagadr_h 20

U1 B data_h 76 U2 P Vdd plane

U3 B data_h 12 U4 B data_h 75

U5 P Vdd plane U6 P Vss plane

U19 P Vdd plane U20 P Vss plane

U21 I tagadr_h 26 U22 I tagadr_h 25

4tagEq_l for 21064— lockWE_h for 21064A
5tagadr_h 17 for 21064— lockFlag_h for 21064A

(continued on next page)

10–20 Mechanical Data and Packaging Information

Table 10–18 (Cont.) 21064/21064A PGA Pin List

PGA
Location Type Name

PGA
Location Type Name

U23 I tagadr_h 24 U24 I tagadr_h 23

V1 B data_h 11 V2 B data_h 74

V3 B data_h 10 V4 B data_h 73

V5 P Vss plane V6 P Vdd plane

V19 P Vss plane V20 P Vdd plane

V21 I tagadr_h 29 V22 I tagadr_h 28

V23 P Vss plane V24 I tagadr_h 27

W1 B data_h 9 W2 P Vss plane

W3 B data_h 72 W4 B check_h 6

W5 P Vdd plane W6 P Vss plane

W7 P Vdd plane W8 P Vss plane

W9 I testClkIn_h W10 I testClkIn_l

W11 P Vdd plane W12 I clkIn_h

W13 I clkIn_l W14 P Vss plane

W15 P Vdd plane W16 P Vss plane

W17 P Vdd plane W18 P Vss plane

W19 P Vdd plane W20 P Vss plane

W21 I tagadrP_h W22 I tagadr_h 32

W23 I tagadr_h 31 W24 I tagadr_h 30

Y1 B data_h 8 Y2 B data_h 71

Y3 B data_h 7 Y4 B data_h 68

Y5 P Vss plane Y6 P Vdd plane

Y7 P Vss plane Y8 P Vdd plane

Y9 P Vss plane Y10 P Vdd plane

Y11 P Vss plane Y12 P Vdd plane

Y13 P Vss plane Y14 P Vdd plane

Y15 P Vss plane Y16 P Vdd plane

Y17 P Vss plane Y18 P Vdd plane

(continued on next page)

Mechanical Data and Packaging Information 10–21

Table 10–18 (Cont.) 21064/21064A PGA Pin List

PGA
Location Type Name

PGA
Location Type Name

Y19 P Vss plane Y20 P Vdd plane

Y21 B adr_h 8 Y22 B adr_h 5

Y23 P Vdd plane Y24 I tagadr_h 33

AA1 B check_h 20 AA2 P Vdd plane

AA3 B data_h 5 AA4 B data_h 66

AA5 B data_h 0 AA6 I iAdr_h 6

AA7 I iAdr_h 10 AA8 I vRef

AA9 O sysClkOut2_h AA10 O sysClkOut2_l

AA11 N spare 66 AA12 O sysClkOut1_h

AA13 O sysClkOut1_l AA14 I cont_l

AA15 I irq_h 5 AA16 N spare 87

AA17 B adr_h 31 AA18 B adr_h 27

AA19 B adr_h 24 AA20 B adr_h 17

AA21 B adr_h 15 AA22 B adr_h 11

AA23 B adr_h 7 AA24 B adr_h 6

AB1 B data_h 70 AB2 B data_h 69

AB3 B data_h 67 AB4 B data_h 2

AB5 B data_h 64 AB6 I iAdr_h 7

AB7 I iAdr_h 12 AB8 I reset_l

AB9 I sRomD_h AB10 O sRomOE_l

AB11 O cpuClkOut_h AB12 I dcOk_h

AB13 I triState_l AB14 I icMode_h 0

AB15 I irq_h 4 AB16 I perf_cnt_h 0

AB17 B adr_h 32 AB18 B adr_h 28

AB19 B adr_h 25 AB20 B adr_h 21

AB21 B adr_h 18 AB22 B adr_h 14

AB23 P Vss plane AB24 B adr_h 9

6spare 6 for 21064— resetSClk_h for 21064A
7spare 8 for 21064— sysClkDiv_h for 21064A

(continued on next page)

10–22 Mechanical Data and Packaging Information

Table 10–18 (Cont.) 21064/21064A PGA Pin List

PGA
Location Type Name

PGA
Location Type Name

AC1 B data_h 6 AC2 P Vss plane

AC3 P Vdd plane AC4 B data_h 65

AC5 P Vss plane AC6 I iAdr_h 8

AC7 P Vdd plane AC8 I iAdr_h 11

AC9 P Vss plane AC10 O sRomClk_h

AC11 P Vdd plane AC12 N spare 5

AC13 P Vss plane AC14 I irq_h 2

AC15 P Vdd plane AC16 I perf_cnt_h 1

AC17 P Vss plane AC18 B adr_h 29

AC19 P Vdd plane AC20 B adr_h 22

AC21 P Vss plane AC22 B adr_h 16

AC23 P Vdd plane AC24 B adr_h 10

AD2 B data_h 4 AD3 B data_h 3

AD4 B data_h 1 AD5 I iAdr_h 5

AD6 I iAdr_h 9 AD7 N spare 18

AD8 I eclOut_h AD9 I dInvReq_h9

AD10 N spare 2 AD11 N spare 4

AD12 I icMode_h 1 AD13 I irq_h 0

AD14 I irq_h 1 AD15 I irq_h 3

AD16 N spare 7 AD17 B adr_h 33

AD18 B adr_h 30 AD19 B adr_h 26

AD20 B adr_h 23 AD21 B adr_h 20

AD22 B adr_h 19 AD23 B adr_h 13

AD24 B adr_h 12 – – –

8spare 1 for 21064— icMode_h 2 for 21064A
9dInvReq_h for 21064— dInvReq_h 0 for 21064A

Mechanical Data and Packaging Information 10–23

A
Designing a System with the 21064

A.1 Introduction
This appendix provides a basic description of how to integrate the Alpha
21064 microprocessor chip into a printed circuit board (PCB) or system. It
describes how the processor reacts to the chip reset condition, and explains
how to connect and control the chip interface signals. The 21064 chip allows
maximum flexibility while providing the ability to easily create a computing
system with generally available PCB parts.

The examples in the text are used to clarify meaning only; what is described
is not the only way to use the chip. An attempt has been made to describe
real, usable circuits and techniques, but the chip is flexible and the designer
is encouraged to investigate other implementations. Chapter 1 through
Chapter 10 describes the details and additional features of the chip.

The following major topics are described in this appendix:

• General Concepts

• Basic Power, Input Level, and Clock Issues

• Booting the 21064

• Cache/Memory Interface Details

• Load Locked and Store Conditional

• Special Request Cycles

• DMA Access

• Backmapping the Internal 21064 Dcache

• I/O Interface

Designing a System with the 21064 A–1

A.2 General Concepts
Some important design concepts common to many 21064-based system designs
are described in this section. The chip external interface is flexible and
mandates few design rules, leaving open a wide range of prospective systems.
Figure A–1 is a diagram of the 21064 external interface, showing the major
signal groups.

A system designed with the 21064 chip can be divided into three major
sections:

• 21064 processor itself

• System control logic

• External backup cache

The chip interface provides address and control signals, and transfers data
through a 128-bit bidirectional data bus.

The Bcache is optional, though most systems will see a performance benefit if
it is included.

The signals between the three parts is shown in Figure A–1. Chapter 6
describes the function and purpose of the signals.

The processor controls the Bcache when its initial tag probe finds that the
information is valid and unshared. The Bcache access is under control of the
CPU, and the external system logic is not involved. The processor starts an
external cycle when:

• The CPU does a Bcache probe and misses.

• A lock-associated command is invoked.

• A Bcache write is directed at a shared block.

• The Bcache is turned off.

• The CPU addresses a non-cached quadrant of memory.

During the external cycle, the Bcache is controlled by the system logic. The
system logic either returns the data to or accepts the data from the processor
(depending upon the cycle type), and acknowledges the cycle to give control
back to the CPU. If the cycle necessitates a Bcache fill, it is up to the system
logic to load the data into the Bcache RAMs, the upper address bits (with good
parity) into the tag address RAMs, and the proper valid and parity bits into
the tag control RAMs.

A–2 Designing a System with the 21064

Figure A–1 21064 External Interface

INT CONTROL

DMA CONTROL

INTERFACE CONTROL

INVALIDATE DCACHE

ADDR DECODE

TAG CONTROL

DATA CONTROL

sysClkOut

irq_h[5:0]

holdAck_h
holdReq_h

cReq_h[2:0]
dRack_h[2:0]

cAck_h[2:0]

iAdr_h[12:5]
dInvReq_h

adr_h[33:5]
dataA_h[4:3]

dataCEOE_h[3:0]
dataWE_h[3:0]

tagCEOE_h
tagCtlWE_h

tagCtl(VSDP)_h

tagAdr_h[33:n]
tagAdrP_h

dWSel_h[1:0]
dOE_l

data_h[127:0]
check_h[27:0]

cWMask_h[7:0]

TAG
ADDR
RAMS

TAG
CTL

RAMS

DATA
RAMS

LJ-02816-TI0

BCACHE CONTROL

21064 SYSTEM
LOGIC

BCACHE

Designing a System with the 21064 A–3

To help design engineers create high performance systems more easily, the
Bcache is controlled by the 21064 during probes that hit (except for writes
directed at a shared cache block). This allows off-the-shelf SRAMs to be
connected to the chip without many extra components. The Bcache interface
signals are programmable through an internal processor register (IPR), so
that the Bcache size, access speed, and write timing can be set with complete
flexibility.

This external cache control is performed without affecting the internal CPU
clock speed. That is, the 21064 can be running at its nominal 6.6 ns internal
cycle time, but the Bcache can run slower if required without slowing down the
internal timing. There are two internal caches in the 21064 chip: an I-stream
read-only cache (Icache) and a D-stream write-through cache (Dcache). The
speed of the Bcache does not affect the internal caches, which use the internal
clock.

Figure A–2 is a block diagram of a system that can be created using the 21064
microprocessor. The major sections are shown, along with many of the buses
that would run through such a system. In the center of the diagram is the
external interface control, which directs the other system logic subsections that
interface to memory, I/O, Bcache, and so on.

The Bcache, when included in a system, can be as small as 128 KB or as
large as 16 MB. The size is under program control. The adr_h [33:5] bus in
Figure A–2 is shown partitioned into an [index] field and a [tag] field. The size
of each field depends upon the Bcache size. The smallest Bcache (128 KB) uses
adr_h [16:5] to index into the cache block, and the tag field would be adr_h
[33:17]. Only those bits that are actually needed for the amount of potentially
cached system main memory need to be stored in the Bcache tag, although
the 21064 uses all the relevant tag address bits for that Bcache size on its tag
compare. A larger Bcache uses more index bits and fewer tag address bits.

On an external request (read or write), the 21064 sends out the address and
cycle type (and data for a write cycle), then waits until the system logic sends
back the acknowledge handshake that the cycle is complete. On a read request
cycle, the system logic tags each data word as it comes back with information
about whether the data should be checked for ECC (or parity, depending upon
which mode of operation has been selected for the chip), and whether the data
should be cached inside the chip. On a write request, the system logic merely
notifies the chip that the write has been accepted for processing.

A–4 Designing a System with the 21064

Figure A–2 21064-Based System Block Diagram

E
X

T
E

R
N

A
L

IN
T

E
R

F
A

C
E

C
O

N
T

R
O

L
L

O
G

IC

I/
O

C
O

N
T

R
O

L
L

O
G

IC

M
E

M
O

R
Y

C
O

N
T

R
O

L
L

O
G

IC

L
O

C
K

L
O

G
IC

I/
O

 B
U

S

sy
sC

lk
O

u
t1

_
h

cR
e

q
_

h
[2

:0
]

d
R

A
ck

_
h

[2
:0

]

cA
ck

_
h

[2
:0

]

B
C

A
C

H
E

D
A

T
A

A
D

W
E

/O
E

a
d

r_
h

[in
d

e
x]

d
a

ta
A

_
h

[4
]

D
Q

Q
D

a
d

r_
h

[in
d

e
x]

a
d

r_
h

[t
a

g
]

ta
g

a
d

r_
h

P
A

R
G

E
N

D
M

A

A
D

D
R

T
A

G
A

D
R

A
D

W
E

/O
E

T
A

G
C

T
L

A
D

W
E

/O
E

ta
g

A
d

r_
h

C
A

C
H

E
C

O
N

T
R

O
L

L
O

G
IC

B
C

A
C

H
E

C
O

N
T

R
O

L
S

IG
N

A
L

S

C
T

L

m
e

m
_

d
a

ta
<

>

D
A

T
A

T
R

A
N

S
C

E
IV

E
R

S

ta
g

C
tl_

h

a
d

r_
h

[in
d

e
x]

a
d

r_
h

[3
3

:5
]

C
T

L

C
T

L

ra
m

_
a

d
d

r
<

>

m
e

m
_

ra
s_

l

m
e

m
_

ca
s_

l
m

e
m

_
w

e
_

l

M
E

M
O

R
Y

A
R

R
A

Y

d
a

ta
_

h
[1

2
7

:0
]

ch
e

ck
_

h
[2

7
:0

]

iA
d

r_
h

[1
2

:5
]2
1

0
6

4

cl
kl

n
_

h

cl
kl

n
_

h

sR
o

m
D

_
h

sR
o

m
C

lk
_

h

sR
o

m
O

E
_

I

re
se

t_
I

d
cO

k_
h

S
E

R
IA

L
R

O
M

O
S

C

LJ-02093-TI0

C
T

L

Designing a System with the 21064 A–5

The Bcache is shared between the 21064 and the system logic. Although the
processor directly manipulates the Bcache for read and write hits, it is up to
the system logic to:

• Fill the Bcache with memory data.

• Load the tag address and tag address parity.

• Load tag control bits and parity on fills (valid and non-dirty).

• Write data back to memory when necessary.

• Probe the Bcache for lock/unlock transactions.

• Probe and control the Bcache for DMA transactions.

The Bcache control signals are therefore under potential control of the 21064
or the system logic. When the CPU chip determines that an external cycle is
necessary, it drives the Bcache control signals to false. This allows the system
logic to read and write the Bcache RAMs. Figure A–3 shows the expected
configuration for the Bcache. The figure shows a data line, but the tag address
and control lines are expected to be connected similarly.

The signal mem_data in Figure A–3 is a bidirectional memory data bus
that connects to the main storage. When it is necessary to load the contents
of memory into the Bcache, the system logic drives the memory bus control
signals such that a read cycle is performed. In this example, the signal read_
mem_L is being used to drive the Bcache (and 21064) data bus. The system
logic appropriately drives the Bcache RAM write enable signal, and once the
data is stable on the data_h [x] bus, it is strobed into the Bcache.

When the Bcache contents need to be written back to memory, the system
logic controls the RAM output enable signal to access the Bcache data. The
signal read_mem_L is then de-asserted, and the memory control signals also
correctly tristate the mem_data bus so that the data can be written to the
memory storage elements. The system logic must de-assert the 21064 signal
dOE_l so that the CPU does not drive the data_h [x] lines.

A–6 Designing a System with the 21064

Figure A–3 Bcache Control Logic

WE
A

D

LJ-02100-TI0

OE

SYSTEM

LOGIC

data_h[x]

adr_h[x]

dOE_L

cReq_h[2:0]
sysClkOut1_h
dRack_h[2:0]

cAck_h[2:0]

dataCEOE_h[x]

21064

read_mem_L

mem_data <x>

BCACHE
RAM

dataWE_h[x]

Designing a System with the 21064 A–7

Figure A–4 Lower Bcache Address

WE
A

D

LJ-02815-TI0

OE

SYSTEM

LOGIC

data_h[x]

dOE_L

cReq_h[2:0]
sysClkOut1_h
dRack_h[2:0]

cAck_h[2:0]

dataCEOE_h[x]

21064

read_mem_L

mem_data <x>

BCACHE
RAM

dataWE_h[x]

dataA_h[4]

The Bcache consists of 32-byte blocks. As such, the 21064 supplies address
bits [33:5] to select which Bcache block is currently being accessed. The CPU
data bus is 16 bytes wide, and thus each Bcache cycle requires two accesses.
The CPU outputs the signal dataA_h [4] to control which 16-byte data half is
being written to or read from.

Figure A–4 shows the expected configuration for the lower address bit. As with
the chip output enable and write pulse, the lower Bcache address bit is under
control of either the 21064 or the system logic. When the CPU is in external
system logic mode, it drives the dataA_h [4] signal low (along with the other
Bcache control signals).

Some general cycle types, including timing diagrams, are described in later
sections to better explain how a 21064-based system functions.

A–8 Designing a System with the 21064

A.3 Basic 21064 Power, Input Level, and Clock Issues
This section provides an overview of these issues, and some example circuits
that can be used.

A.3.1 Power Supply and Input Levels
The 21064 is powered from a +3.3 V supply (+/- 5%), but can drive and accept
CMOS/TTL-compatible levels once the chip has been correctly stabilized. It
is mandatory that no input or bidirectional pin be allowed to rise above 4.0 V
until the 3.3 V power to the chip is stable.

Caution

Failure to follow this rule can damage the chip.

Although power sequencing can be used to ensure that this restriction is met,
the rule itself does not mandate power sequencing. It only means that other
module parts capable of driving the input pins of the 21064 must be kept
from doing so until the 21064 has stable power. In practice this can often be
accomplished by keeping the potentially offending outputs in tristate until the
21064 has a stable +3.3 V voltage. For example, a dcOK signal can be used
to prevent components such as SRAMs, MUXes, and buffers from driving the
chip.

There are some caveats associated with this approach. The dcOK signal might
be generated from the central power supply, whereas the +3.3 V might be
generated as a by-product of another voltage (perhaps the +5 V supply). If the
regulator that creates the 3.3 V is faulty, the dcOK signal might allow the
inputs of the 21064 to be driven, possibly damaging the chip. A power supply
supervisor, actually sampling the +3.3 V and generating a tristate enable based
upon it, is a safer approach.

There are other potential voltage paths that must be removed if power
sequencing is not used. Termination resistors or pullups to +5 V can be a
source of voltage to the 21064 input pins, as can some bipolar TTL inputs
(since they can source current). Care must be taken to eliminate all potential
21064 input voltage sources if power supply sequencing is not used.

Designing a System with the 21064 A–9

A.3.2 Input Level Sensing
The 21064 uses a reference input pin, vRef, to supply the threshold level for
all chip inputs except:

• clkIn_h and clkIn_l

• testclkIn_h and testclkIn_l

• tagOk_h and tagOk_l

• dcOk_h

• eclOut_h

• tristate_l

• cont_l

These pins should never be driven at a higher voltage than the 21064 power
supply. Since the nominal voltage to the chip is 3.3 V, care must be taken
if any of these signals are generated from logic that has a 5 V supply. Note
especially that dcOk_h is one of the signals that must never be driven higher
than the nominal 3.3 V level, since it is likely that it will be generated from a
higher voltage.

A–10 Designing a System with the 21064

Figure A–5 Input Reference Voltage Circuit

LJ-02817-TI0

vRef

GND

110 ohms

150 ohms

+3.3V

The input pin vRef should be connected to a stable 1.4 V (+/-10%) source.
The circuit shown in Figure A–5 can be used to supply this voltage level.
vRef has a large capacitance on it inside the chip, and there is an RC delay
between its pin and the other input buffers. Therefore, dcOk_h should not be
asserted until there has been enough time for the vRef input to stabilize. See
Section 6.5.2 for more information about the assertion of dcOk_h.

Note that reset_l is one of the input pins that uses vRef for its threshold level,
so it cannot be relied upon until vRef is stable. Because of dcOk_h being false
(low), the chip is kept in reset mode.

Designing a System with the 21064 A–11

A.3.3 Input Clocks
The 21064 expects differential clock signals between 0.6 V and 3.0 V for the
clkIn_h and clkIn_l inputs. A correctly terminated pseudo-ECL oscillator
can be ac-coupled to the clock inputs for this purpose. Using a pseudo-ECL
oscillator means you do not have to design a special ECL power supply to clock
the chip. Figure A–6 is an example of a working circuit. Note that the series
capacitor should use an NPO dielectric.

Figure A–6 Input Clock Circuit

Pseudo-ecl

Oscillator

+5 V

100 100
5% 5%

OSC H

OSC L

GND

Clkln_h

Clkln_l

220pf
NPO

150
5%

150
5%

Ω Ω

Ω Ω
220pf
NPO

MLO-012141

For up to 200 MHz (translating to a 10 ns internal CPU clock cycle), a lower-
cost 10K-series oscillator can work fine. Greater than that speed, a 100K-series
oscillator should be used.

Due to internal chip circuitry, the test clock input signals (testClkIn_h and
testClkIn_l) should be pulled to the appropriate level using small resistors
(100 ohms maximum). testClkIn_h should be pulled high (that is, to 3.3 V
through a small resistor) and testClkIn_l should be pulled low (to ground).

A–12 Designing a System with the 21064

A.3.4 Unused Inputs
There are several inputs that are not used in a 21064-based system, but must
be tied off either high or low. The following inputs should be pulled to 3.3 V
through a resistor:

• tagOk_h (unless using the tagOk function)

• tristate_l

• cont_l

• perfCntIn_h [1:0] (unless using the performance counter inputs)

Note

Any input on the 21064 that is pulled high must use the +3.3 V rail,
and not the +5 V rail.

The following inputs should be pulled to ground:

• tagOk_l (unless using the tagOk function)

• dWSel [0] (unless in 64-bit data bus mode)

• eclOut_h

• icMode_h [1:0]

The tagOk_h and tagOk_l signals are used to stall the 21064 so that the
Bcache can be controlled by the system logic. They are optimized for very high
performance systems, and are not included in this appendix. See Chapter 6
for more details about the signals and their use. This appendix includes the
simpler holdReq_h method for the system logic to take control of the Bcache
(see Section A.8).

Designing a System with the 21064 A–13

A.4 Booting the 21064
The 21064 uses a flexible method to bootstrap the processor. Instead of always
jumping to a fixed I/O address upon reset, the chip can load its initial I-stream
from a compact serial ROM (SROM). As well, the configuration of the external
interface is programmable by setting up certain input pins at reset time.
Figure A–7 shows how the serial ROM and the configuration inputs are used
at reset time.

Figure A–7 Serial ROM and Programmable Clock Inputs

LJ-02104-TI0

0

1

0

1

0

1

irq_h[5]

irq_h[4:3]

irq_h[2:0]

Data

OE

CLK

VCC
VPP

GND
CE

+5v

GND

RESET_L

64/128 BIT

SYSCLK2 DELAY

EXTERNAL CLOCK DIVIDE

NORMAL INTERRUPTS

DCOK L

sRomD_h

sRomOE_I

sRomClk_h

21064

TRISTATE UNTIL
POWER IS STABLE

DCOK L

A–14 Designing a System with the 21064

While the 21064 is in reset mode, the interrupt request input lines irq_h [5:0]
are inspected to determine how the chip should configure the external interface
logic. There are three configurable areas:

• The 21064 can accommodate either a high-performance 128-bit external
data bus or a lower-cost 64-bit data bus. irq_h [5] determines which of
the two is selected, and is asserted high to choose the 128-bit mode. This
appendix describes the 21064 in 128-bit mode.

• The external interface runs synchronously to the external system clock,
sysClkOut1_h. This external clock is generated from the internal clock,
which can be divided by any value from 2 to 8 generating sysClkOut1_h.
For example, the 21064 chip running at its nominal 6.6 ns internal clock
cycle time can be divided by 4 to allow an external interface to run at
26.4 ns. irq_h [2:0] selects the external interface division factor. Table A–1
is a chart of the clock divisor decode.

Table A–1 System Clock Divisor

irq_h [2] irq_h [1] irq_h [0] Ratio

0 0 0 2

0 0 1 3

0 1 0 4

0 1 1 5

1 0 0 6

1 0 1 7

1 1 0 8

1 1 1 8

• The external interface logic is supplied with two differential clocks from
the 21064:

sysClkOut1_h and sysClkOut1_l

sysClkOut2_h and sysClkOut2_l

Each external clock runs at the external cycle time selected. sysClkOut2
can also be delayed from sysClkOut1 by a programmable value selected
from irq_h [4:3]. The second clock can be delayed from 0 to 3 internal
CPU clocks based upon this selection. Table A–2 lists the delay times
possible and their decode meaning.

Designing a System with the 21064 A–15

Table A–2 System Clock Delay

irq_h [4] irq_h [3] Delay

0 0 0

0 1 1

1 0 2

1 1 3

Figure A–8 shows how the clock configuration works. The input clock that is
provided to the 21064 chip is divided by 2 to create the internal CPU clock.
The CPU clock is the reference to all the other clocks that the chip outputs.
In the example, the clock divisor is 4, so the system output clocks run at 1/4
of the internal CPU clock time. The figure shows that sysClkOut2 has been
delayed by 1 CPU clock from sysClkOut1. Since the external output clocks
are differential, a two-phase clock is also available by using sysClkOut1_h
and sysClkOut1_l.

Figure A–8 Example of 21064 Clock Configuration

L J - 0 2 1 0 5 - T I 0

1 2 3 4 5 6 7

s y s C l k O u t 1 _ h

s y s C l k O u t 2 _ h

c l k l n _ h

c p u C l k

D I V I D E B Y 4

D E L A Y O F 1 C P U C L O C K

Note

Figure A–8 is only meant to show the general method by which the
clocks are created within the 21064. The phase relationships shown,
especially between clkIn_h and cpuClk, are not guaranteed.

A–16 Designing a System with the 21064

When the reset_l signal de-asserts, the serial ROM is loaded into the processor
Icache. The CPU controls the output enable and the clock for the ROM, and
accepts the bit serial data. Chapter 6 provides information about the timing
of the SROM control signals. After the SROM data has been loaded into the
Icache, the processor jumps to location 0, which hits inside the Icache. The
SROM code is expected to perform chip and system initialization, preparing
the system for external operation.

After the SROM code has been executed, it is assumed that the external
interface is ready to supply I-stream data to the 21064 processor. The Bcache
can be on or off at this point (in fact, there is no need to have a Bcache if the
user has no performance reason to include it). A general system might include
a more complete boot/diagnostic ROM (BDROM) after the SROM has done its
job.

Once the 21064 is executing in I-stream mode from an external interface, it
expects full 32-byte fills. The normal data path of the 21064 is 128 bits (16
bytes), so two complete fill cycles are necessary to provide the 32 bytes of data.
The BDROM code can be loaded and executed in several ways, though the
suggested method is to move the BDROM code into RAM memory, then execute
it from there. This can be easily handled by the serial ROM, which can read
the BDROM byte-by-byte, pack it into appropriate memory words, move it into
main memory, then jump to it in RAM.

A.5 Cache/Memory Interface Details
The Bcache subsystem is carefully integrated into the 21064, therefore
the Bcache SRAMs can be directly controlled by the 21064 interface, and
the Bcache data lines are connected to the 21064 data bus, as shown in
Figure A–2.

The Bcache is organized into 32-byte blocks, with parity or ECC on 4-byte
(32-bit) segments. When the Bcache is enabled, the 21064 generally probes
it for each memory access (lock-related cycles are an exception). The tag and
control SRAMs are first enabled at the appropriate address, and if the probe
finds a valid match the cycle finishes without performing a main memory read
or write cycle. The first 128-bit (16-byte) data segment is read at the same
time as the Bcache tag probe, and is ready if the probe is successful. The
21064 then reads the second 128-bit segment. If the internal cache is enabled,
the data is saved inside the chip.

The Bcache is best utilized in writeback mode, which means that both reads
and writes are normally serviced from the Bcache without external logic
intervention. This implies that the Bcache has the only valid copy of a data
block after it’s been modified. The 21064 manipulates the Bcache DIRTY bit to

Designing a System with the 21064 A–17

signify that the block has been written since it was initially read from memory.
There is a method that the system logic can use to force non-writeback
behavior, but its use is beyond the scope of this appendix.

A.5.1 Bcache Timing for 21064 Access
The Bcache timing is under complete control of the user through the BIU_CTL
internal processor register (IPR). Figure A–9 shows the layout of this register,
which is normally set up as part of the chip initialization code. The number of
internal CPU cycles to allocate for Bcache reads and writes can be specified,
along with the exact representation of where the Bcache write pulse is asserted
for Bcache writes.

Figure A–9 21064 BIU_CTL Internal Processor Register 1

2728 0001020335363738

MBZ

04

LJ-01857-T I0A

303132 0708111213

BC_WE_CTL
[15:1]

BC_ENA

ECC

OE

BC_FHIT

BC_RD_SPD

DELAY_WDATA

BC_SIZE

BAD_TCP

BC_PA_DIS

BAD_DP

BC_WR_SPD

394042434463

SYS_WRAP

BC_BURST_SPD

BC_BURST_ALL

M
B
Z

M
B
Z

1 Previous versions of the 21064 did not implement BIU_CTL [43, 42:40, 38, 12].
PALcode for these previous processors is upwards compatible if the PALcode did not
set these bits.

A–18 Designing a System with the 21064

The register fields shown in Figure A–9 are described in Table A–3.

Table A–3 Bus Interface Unit Control Register Fields

Field Type Description

BC_ENA WO,0 External cache enable. When this bit is cleared, the bit
disables the external cache. When the Bcache is disabled, the
BIU does not probe the external cache tag store for read/write
references; it launches a request on cReq_h immediately.

ECC WO,0 When this bit is set, the 21064 generates/expects ECC on the
check_h pins. When this bit is cleared, the 21064 generates
/expects parity on four of the check_h pins.

OE WO,0 When this bit is set, the 21064 does not assert its chip enable
pins during RAM write cycles, thus enabling these pins to be
connected to the output enable pins of the cache RAMs.

Caution

The output enable bit in the BIU_CTL
register (BIU_CTL [2]) must be set if
the system uses SRAMs in the output
enable mode (that is, if the tagCEOE
and/or dates signals are connected
to the output enable input of the
SRAM and the 21064 enable is always
enabled). If this bit is inadvertently
cleared, the tag and data SRAMs will
be enabled during writes, and damage
can result.

(continued on next page)

Designing a System with the 21064 A–19

Table A–3 (Cont.) Bus Interface Unit Control Register Fields

Field Type Description

BC_FHIT WO,0 External cache force hit. When this bit is set and the BC_ENA
bit is also set, all pin bus READ_BLOCK and WRITE_BLOCK
transactions are forced to hit in external cache. Tag and tag
control parity are ignored. The BC_ENA takes precedence
over BC_FHIT. When BC_ENA is cleared and BC_FHIT is set,
no tag probes occur and external requests are directed to the
cReq_h pins.

Note

The BC_PA_DIS field takes precedence
over the BC_FHIT bit.

BC_RD_SPD WO,0 External cache read speed. This field indicates to the BIU the
read access time of the RAMs used to implement the off-chip
external cache, measured in CPU cycles. It should be written
with a value equal to one less the read access time of the
external cache RAMs.

The access times for reads must be in the range [16:4] CPU
cycles, which means the values for the BC_RD_SPD field are
in the range of [15:3].

BC_WR_SPD WO,0 External cache write speed. This field indicates to the BIU
the write cycle time of the RAMs used to implement the off-
chip external cache, measured in CPU cycles. It should be
written with a value equal to one less the write cycle time of
the external cache RAMs.

The access times for writes must be in the range [16:2] CPU
cycles, which means the values for the BC_WR_SPD field are
in the range of [15:1].

DELAY_WDATA WO When this bit is set, it changes the timing of the data bus
during external cache writes. This bit is not initialized by
chip reset. See Section 6.4.4.

(continued on next page)

A–20 Designing a System with the 21064

Table A–3 (Cont.) Bus Interface Unit Control Register Fields

Field Type Description

BC_WE_CTL WO,0 External cache write enable control. This field is used to
control the timing of the write enable and chip enable pins
during writes into the data and tag control RAMs. It consists
of 15 bits, where each bit determines the value placed on the
write enable and chip enable pins during a given CPU cycle of
the RAM write access. When a given bit of the BC_WE_CTL
is set, the write enable and chip enable pins are asserted
during the corresponding CPU cycle of the RAM access. The
BC_WE_CTL bit [0] (bit [13] in BIU_CTL) corresponds to the
second cycle of the write access, BC_WE_CTL [1] (bit [14] in
BIU_CTL) to the third CPU cycle, and so on. The write enable
pins will never be asserted in the first CPU cycle of a RAM
write access.

Unused bits in the BC_WE_CTL field must be written with
zeros.

BC_SIZE WO,0 This field is used to indicate the size of the external cache.
See Table A–4 for the encodings.

BAD_TCP WO,0 When set, this bit causes the 21064 to write bad parity into
the tag control RAM whenever it does a fast external RAM
write. (Diagnostic use only.)

BC_PA_DIS WO,0 This 4-bit field may be used to prevent the CPU chip from
using the external cache to service reads and writes based
upon the quadrant of physical address space that they
reference. The correspondence between this bit field and
the physical address space is shown in Table A–5.

When a read or write reference is presented to the BIU the
values of BC_PA_DIS, BC_ENA, and the physical address
bits [33:32] determine whether to attempt to use the external
cache to satisfy the reference. If the external cache is not to be
used for a given reference the BIU does not probe the tag store
and makes the appropriate system request immediately. The
value of BC_PA_DIS has NO impact on which portions of the
physical address space can be cached in the primary caches.
System components control this by way of the dRAck_h field
of the pin bus.

BAD_DP WO,0 When this bit is set, the BAD_DP causes the 21064 to invert
the value placed on bits [0], [7], [14] and [21] of the check_h
[27:0] field during off-chip writes. This produces bad parity
when the 21064 is in parity mode, and bad check bit codes
when in ECC mode. (Diagnostic use only.)

(continued on next page)

Designing a System with the 21064 A–21

Table A–3 (Cont.) Bus Interface Unit Control Register Fields

Field Type Description

SYS_WRAP2 WO,0 When this bit is set, it indicates that the system returns read
response data wrapped around the requested chunk. This bit
is cleared by chip reset.

BC_BURST_SPD2 WO,0 When these bits are cleared, this field is ignored. Bcache is
timed as it always is.
When these bits are set in 128-bit mode, the second half of
read takes BC_BURST_SPD+1 cycles.
When these bits are set in 64-bit mode, the second and fourth
reads take BC_BURST_SPD+1 cycles.
If BC_BURST_ALL is set, the third read takes BC_BURST_
SPD+1 cycles also.

BC_BURST_ALL2 WO,0 In 64-bit mode this bit is set if BC_BURST_SPD should be
used to time the third (of four) RAM read cycle.

2BC_BURST_ALL, BC_BURST_SPD, SYS_WRAP, and DELAY_WDATA were not implemented in previous
21064 chip designs. PALcode which did not set these bits may be used without change.

Table A–4 lists the encoding for BC_SIZE. Table A–5 lists the BIU_CTL
physical addresses.

Table A–4 BC_SIZE

BC_SIZE Cache Size BC_SIZE Cache Size

0 0 0 128 KB 1 0 0 2 MB

0 0 1 256 KB 1 0 1 4 MB

0 1 0 512 KB 1 1 0 8 MB

0 1 1 1 MB 1 1 1 16 MB

Table A–5 BC_PA_DIS

BIU_CTL Bits Physical Address BIU_CTL Bits Physical Address

32 PA [33:32] = 0 33 PA [33:32] = 1

34 PA [33:32] = 2 35 PA [33:32] = 3

A–22 Designing a System with the 21064

Note

Writing ones to the BC_PA_DIS bit causes reads and writes to the
corresponding physical address ranges not to be mapped into the
external Bcache.

A.5.1.1 Bcache Read Cycle
For a Bcache read cycle, the access/cycle time is determined by adding the
complete address or control path from the 21064 output pins until the data
is valid at the 21064 data bus input pins. There is a 4.5 ns data setup
requirement inside the 21064 that must also be considered. A system designed
with the 21064 must provide access to the Bcache address and control signals
from the printed circuit board (PCB) logic, so there is a NOR-type gate in the
path. Furthermore, the 21064 output buffers are characterized driving a 40 pF
load, so any large fanout must be accomplished without exceeding this value.
This usually means that buffers should be added to the address and control
paths.

An example of a Bcache read access time calculation is provided here to clarify
the steps. Figure A–10 shows the general circuit assumed for this example.
The address path drive signals are normally treated as transmission lines in
a real high-performance Bcache. In the example, the address buffer has a
specified propagation delay of 5 ns. One of the address lines is a fast, high-
drive capability NOR-gate, and for our purposes is treated like the address
buffer. Many devices specify the maximum propagation delay with only one
output switching, and in the case of an address buffer all the outputs might
switch simultaneously. To account for this, extra buffer delay should be added
to the assumed propagation delay through the device. For this example, the
5 ns buffer delay takes this into account. Figure A–10 does not show any
termination on tADR2, while in a real system some kind of parallel or series
termination would be needed. A few general points about termination are
described in this document. The best way to determine the actual delay time
associated with tADR2, and to decide on the type of termination and the
component values, is to use an analog simulation program such as SPICE.

Designing a System with the 21064 A–23

Figure A–10 Bcache Access Path for 21064

OE
A

D
OE

A

D
OE

A

D

FROM SYSTEM
LOGIC

TO/FROM
OTHER

SYSTEM
LOGICtDAT

tADR1 tBUF tADR2

TO OTHER SYSTEM LOGIC

adr_h[index]

dataCEOE_h[x]

data_h[x]
data_h[x + 1]
data_h[x + 2]

21064

LJ-02775-TI0

tACC

tSU

If parallel termination is used (ac termination at the end of the line can be
used with TTL drivers), then the address buffer must be able to drive a low
impedance line to a proper level on the incident wave. If your driver cannot do
this, or if your simulation finds that this is not the best termination method,
then a series termination resistor should be used. Series termination usually
implies that the delay time is increased due to the necessary reflection for a
correct signal level.

All the calculations shown are based upon the stated assumptions. The system
or board designer is responsible for analyzing any particular implementation,
and determining the correct delays and signal integrity issues. The purposes
of this example are to show a general Bcache circuit that can be implemented
with the 21064, and to explain how to program the IPR that controls the
Bcache. Faster and slower systems can be built with the 21064 processor.

The SRAMs in the example have a specified access time of 20 ns from address
stable to data valid at their output pins. SRAM devices often have a faster
specification from output enable to data valid, and it is assumed that the
address path, not the output enable path, is the critical one. The designer
should ensure that this is true for any specific implementation. The output
enable path can be analyzed similarly to the address path. The general
components of delay for this calculation are:

A–24 Designing a System with the 21064

tADR1 [delay from CPU to input of address buffer]
tBUF [buffer gate delay]
tADR2 [address delay from buffer to SRAM inputs]
tACC [SRAM access time from address valid to data valid]
tDAT [data return path from SRAM to 21064 input pins]
tSU [internal 21064 data setup time]

Figure A–11 Timing Diagram for Bcache Read Access

LJ-02814-TI0

1 2 3 4 5 6

adr_h[33:5]

dataCEOE_h[x]

data_h[x]

6.6ns

tACC
tDAT

tSU

X

tADR1
+

tBUF
+

tADR2

Figure A–11 is a timing diagram showing the 21064 signals and their delay
components. The valid data cannot be sampled until the point labeled ‘‘X’’
in the figure. Chapter 6 provides more detailed timing diagrams of the fast
Bcache access path. The Bcache probe and each data read access would
have the timing shown in Figure A–11, and they are controlled by the same
programmable BIU_CTL field.

The three unknown delay components are the address paths (tADR1, tADR2)
and the data return path (tDAT). The tDAT depends on the edge rate of
the SRAM output, the length of the data line, and the other loads that are
connected to the data line. As such, it is impossible to specify a ‘‘normal’’ delay
time. For this exercise, it is assumed to be 2 ns.

The address delay path from the 21064 address output to the buffer (tADR1) is
similar to the data path. It is unlikely to be a classical transmission line, due
to the line length in relation to the edge rate of the 21064 output. However,
other loads are on the address line, and the etch itself causes a delay of
approximately 160 ps to 200 ps per inch. For this example, tADR1 is specified
as 2 ns.

Designing a System with the 21064 A–25

The path tADR2 needs a more classical transmission line analysis, since the
buffers have a fast switching time in relation to the line length. Even if the
address drivers can switch the line to an appropriate level on the incident
wave, the wave propagates along the transmission line more slowly than if it
was unloaded. Each SRAM contributes some capacitance to the line, which
slows the wave down according to the next formula:

tPL = tPD * SQRT(1+Ca/Co)

tPL The loaded propagation delay per unit length

tPD The propagation delay per unit length of the unloaded line

Ca The added capacitance per unit length due to the SRAM inputs

Co The unloaded transmission line capacitance per unit length

In this example, it takes the wave 2 ns to reach the last SRAM address input,
where there is no reflection. If the address driver cannot switch the line on
the incident wave, a series termination scheme is used instead, and the delay
value might be higher.

The full trip from address valid at the 21064 output pin to data valid at the
21064 input pin (plus data setup) is:

2 ns tADR1
5 ns tBUF
2 ns tADR2

20 ns tACC
2 ns tDAT
4.5 ns tSU

35.5 ns

These numbers apply to this example only. If the designer uses different
buffers, or splits the address drivers differently, or uses drivers that cannot
switch the low impedance line on the incident wave, the analysis changes
accordingly. We assume that the 21064 is using an internal cycle time of
6.6 ns, which means that the chip must allocate 6 cycles for the Bcache read
given the conditions specified. This is programmed into the BIU_CTL register
by setting the BC_RD_SPD field to 5, since the actual cycle count is one more
than the one specified in the register. This value works for any round trip
delay that is less than or equal to 39.6 ns.

It should be noted that using SRAMs with an access time of 17 ns reduces the
number of internal CPU cycles to 5, assuming that everything else remains
constant.

A–26 Designing a System with the 21064

A.5.1.2 Bcache Write Cycle
A fast CPU-activated Bcache write cycle can be similarly analyzed. The BC_
WR_SPD field in the BIU_CTL register should be programmed so that the
SRAM write cycle finishes, and the BC_WE_CTL field should place the write
pulse so that the timing and width do not violate the SRAM specifications.

Figure A–12 Cache Write Path for 21064

A

D

A

D

A

D

FROM SYSTEM
LOGIC

TO/FROM
OTHER

SYSTEM
LOGICtDAT

tADR1 tBUF tADR2

TO OTHER SYSTEM LOGIC

adr_h[index]

data_h[x]
data_h[x + 1]
data_h[x + 2]

21064

LJ-02776-TI0

tSU

tWE2

tWE1
tNOR

WE WE WE
dataWE_h[4]

An example of this calculation is provided next. Figure A–12 shows the circuit
that is assumed for the Bcache write path.

Designing a System with the 21064 A–27

Figure A–13 Timing Diagram for Bcache Write Access

LJ-01996-TI0

1 2 3 4 5 6

adr_h[33:5]

dataWE_h[x]

data_h[x]

6.6ns

Z

7

tAW
tADR1

+
tBUF

+
tADR2

tWE1
+

tNOR
+

tWE2
YX

Figure A–13 shows a timing diagram of the write path signals as viewed from
the 21064. Chapter 6 provides a detailed timing diagram of a fast Bcache write
access. The tag probe follows the timing for a fast Bcache read, and each write
access follows the timing as shown in Figure A–13. The write pulse cannot
assert until point ‘‘X’’ in the figure, and it cannot de-assert until point ‘‘Y’’ in
the figure. The cycle cannot end until point ‘‘Z’’ in the figure.

In this example, the minimum write pulse width for the SRAM (tWM) is 15 ns.
The 21064 can have 1 ns of skew between the rising and falling edges of the
pulse it generates. Furthermore, although the rise and fall delays through the
NOR gate in the figure should be close, some skew must be added to account
for:

• Potential input threshold differences inside the SRAM

• Differences that result in a rise propagation delay that is different than the
fall propagation delay

In the example, 2 ns of skew were added between the rising and falling edges
of the write pulse (1 ns for the 21064, and 1 ns for the logic and threshold
differences). The following SRAM specifications are used in this example:

A–28 Designing a System with the 21064

tWC = 20 ns [Write cycle time]
tWP = 15 ns [Write pulse width]
tDW = 8 ns [Data setup time to write pulse de-assertion]
tDH = 0 ns [Data hold time from write pulse de-assertion]
tAW = 15 ns [Address setup time to write pulse de-assertion]
tWR = 0 ns [Address hold time from write pulse de-assertion]
tAS = 0 ns [Address setup time to write pulse assertion]

These specifications are only a subset of the total device specifications for a
real device, and are used to show the general technique used to determine
how to program the BIU_CTL IPR. Designers should closely analyze their own
systems, including the device support logic, etch paths, and RAM specifications,
in order to determine exactly which paths are critical. This should include
running SPICE, or some other accurate analog simulator, to determine the
delay times and transmission properties of the signals involved.

The first BIU_CTL field to calculate is the BC_WE_CTL, which determines
where the write enable pulse is asserted. The field is 15 bits wide, and each bit
represents an internal CPU cycle that asserts the write enable pulse (starting
with the second cycle, since the first cycle never drives the write enable pulse).

The write enable pulse has to provide enough setup time for both the address
and data paths. The most stringent of the two determines how early the write
enable pulse can be de-asserted, which further limits how early the write cycle
can end. First calculate how early the write enable pulse can be de-asserted
(point ‘‘Y’’ in Figure A–13), based upon the address path. The address delay
calculation is similar to the read case, and it should be added to the address
setup time as follows:

2 ns tADR1
5 ns tBUF
2 ns tADR2

15 ns tAW for SRAM

24 ns

By this calculation then, the earliest that the write pulse can be de-asserted
is 24 ns from the start of the write cycle, based upon the address setup
requirement.

The next calculation determines how early the write enable pulse can be
de-asserted, based upon the data setup requirement. There are two types of
‘‘data’’ that need setup and hold time for the write cycle. The actual Bcache
data is the first type, and the tag control inputs (VALID, DIRTY, SHARED,
and PARITY) are the second type. The 21064 drives the tag control inputs one
CPU cycle later than the actual data, and we assume that they are the critical
path. The chip provides stable data at most 2.5 ns after the nominal edge that

Designing a System with the 21064 A–29

drives the data (in this case, tag control) lines. We assume that the data take
2 ns to get to the SRAMs and be stable. If the CPU clock cycle is 6.6 ns, then
the earliest that the write pulse can de-assert is calculated as follows:

6.6 ns [1 CPU clock cycle]
2.5 ns [21064 data stable time]
2.0 ns tDAT
8.0 ns tDW for SRAM

19.1 ns

Since the value of 19.1 ns is less than the previously calculated value of 24 ns,
it would appear that in this example the address path is the critical one. The
write pulse cannot de-assert until 24 ns after the start of the write cycle. The
minimum pulse width is specified to be 15 ns, which must be extended to
(15 + 2 =) 17 ns to account for the pulse width skew in the 21064 and the
external logic (calculated previously in this section). At an internal 6.6 ns CPU
cycle time, 3 cycles must be used for the write pulse.

Since the earliest that the write pulse can de-assert is 24 ns after the start of
the write cycle, the latest that it can assert (in order to meet that de-assertion
time) is (24� 17 =) 7 ns after the cycle start. We should now determine if other
factors allow the write enable pulse to start that early. We see that it cannot,
and then calculate how early it can start, and with what effect on the rest of
the cycle.

We have specified here that the write pulse cannot assert until the address is
stable (tAS), and this puts a bound on how early the write pulse is asserted. It
was determined previously that the address reaches the last SRAM (tADR1 +

tBUF + tADR2 = 2 + 5 + 2 =) 9 ns after the start of the cycle. Since there is
also 1 ns of skew between the address signal and the write pulse signal coming
from the 21064, the real minimum time is (9 + 1 =) 10 ns from the cycle start.

The earliest that the 21064 can assert the write pulse is 10 ns after the cycle
start, which puts it past the start of the second CPU cycle. The earliest that
the write enable pulse can assert is the start of the third CPU cycle, which
appears (6:6 � 2 =) 13.2 ns into the Bcache write. To meet the minimum pulse
width while asserting at the start of the third CPU cycle, the pulse must
extend until the end of the fifth CPU cycle. The BC_WE_CTL field should be
programmed to be 000000000001110 (bin). This means that the write pulse
remains asserted until (6:6ns � 5 =) 33 ns into the Bcache write, which puts it
beyond the 24 ns address stable setup limit previously calculated. Everything
works out for this example.

A–30 Designing a System with the 21064

The other programmable field of interest in the BIU_CTL is the BC_WR_SPD
field, which determines the entire write cycle time. The write pulse itself is
de-asserted at the end of the fifth CPU cycle into the Bcache write in this
example, which means it nominally de-asserts (6:6 � 5 =) 33 ns from the start
of the cycle. It might be 1 ns later than that due to 21064 output skew. There
is also a NOR gate in the path (tNOR), and some wire travel time associated
with the signal (tWE1 and tWE2).

There are three components of delay for the write enable pulse. The two write
delay components (tWE1 and tWE2) might or might not be transmission lines.
Designers should analyze the particular implementation to see what the correct
configuration should be, and if one of them is a transmission line it should be
terminated appropriately (this analysis is similar to the address calculation in
the previous section).

We assume that tWE1 is 1 ns, tNOR is 5 ns, and tWE2 is 2 ns for this example.
The latest that the write pulse can de-assert at the last SRAM (and thus the
earliest that the cycle can end) is:

33 ns [nominal write pulse de-assertion from start of write]
1 ns [21064 skew from nominal edge]
1 ns tWE1
5 ns tNOR
2 ns tWE2

42 ns

At a 6.6 ns cycle time this translates to 7 cycles, so the value of 6 should
be programmed into the BC_WR_SPD field (this cycle value is always 1 less
than the actual write cycle time). The nominal write cycle speed is 46.2 ns for
this example. As with the read cycle, note here that if the write enable pulse
requirement was shorter (11 ns rather than 15 ns), the fast Bcache write could
be reduced to 6 cycles.

A.5.2 Bcache Miss and External Request
An initial Bcache fill operation is executed when the 21064 attempts to read
or write a block that misses in the Bcache (the write fill operation assumes a
write-allocate Bcache policy). The miss can be caused for several reasons:

• The Bcache block for that index is not valid.

• The Bcache block for that index is valid, but the tag misses.

Designing a System with the 21064 A–31

The first scenario is the simplest. When a Bcache probe results in a miss, an
external READ_BLOCK or WRITE_BLOCK operation is initiated by the 21064
external interface logic. The READ_BLOCK and WRITE_BLOCK external
cycles are the most basic method of transferring data between the 21064 and
the system, and are discussed in some detail in this appendix.

The command is initiated when the 21064 places the appropriate code on
the cReq_h [2:0] lines during the rising edge of sysClkOut1_h. Timing for
external cycles is synchronous to sysClkOut1_h, and all setup and hold times
are referenced to the rising edge of this clock.

The 21064 control signals change simultaneously with sysClkOut1_h, and
therefore cannot be sampled on that same edge. In general, this is only a
concern for those lines that are used to determine if a cycle should begin, such
as the request lines cReq_h [2:0] (the holdAck_h line is also in this category,
as explained later). A delayed version of cReq_h [2:0], perhaps sampled
by sysClkOut2_h, should be used to feed any state machines that run on
sysClkOut1_h if they use the request lines.

Note

The signals adr_h [33:5], data_h [127:0], and check_h [27:0] are
only synchronous to sysClkOut1_h during an external cycle. During
the time that the cReq_h [2:0] field is IDLE, the signals can change
without regard to the clocks that drive the external system logic.
During the time that the field cReq_h [2:0] is not IDLE (that is,
non-zero), the signals conform to the setup and hold times specified in
Chapter 7 of this manual.

The signals cReq_h [2:0], holdAck_h, and cWMask_h [7:0] are
always synchronous to the external system clocks, even during those
times when no external cycle is in progress. The signals always
conform to the ac specifications in Chapter 7 of this manual.

A–32 Designing a System with the 21064

Figure A–14 External Cycle

LJ-02777-TI0

1 2 3 4 5 6

sysClkOut1_h

cReq_h[2:0]

cAck_h[2:0]

sysClkOut2_h

del_cReq_h[2:0]

IDLE EXTERNAL CYCLE TYPE NEW CYCLE

OK

IDLE

IDLE EXTERNAL CYCLE TYPE NEW CYCLEIDLE

IDLEIDLE

Figure A–14 shows the relationship between the signals and the external
system clocks. The 21064 places the external cycle type on the cReq_h [2:0]
lines at the start of cycle 1 in the figure. sysClkOut2_h is used to sample the
request lines, and the system logic uses this delayed version to start its state
machines at the start of cycle 2. After the external logic has performed the
appropriate function, it changes the cAck_h [2:0] lines, which are sampled by
the 21064 at the start of cycle 5. The CPU removes the request lines at that
same time, and could start a Bcache access immediately (at the start of cycle
5). The earliest that the CPU can start another external cycle is one system
clock cycle later, at the start of cycle 6 (as shown).

It is important to keep in mind how quickly a Bcache access could begin once
the 21064 senses that the external cycle is over. If the external logic is driving
the data lines when the 21064 samples the cAck_h [2:0] lines and determines
that the cycle is over, the 21064 could start its Bcache access by turning on
the SRAMs. If the cache RAMs turn on fast enough, and if the system logic
continues to drive the data lines too long, there will be contention on the data
lines. This effect is worse if the version of sysClkOut1_h that is distributed
to the system logic is delayed by the version used by the 21064 (many clock
buffers have a latency delay associated with them). The designer should
ensure that the data lines are not being driven when cAck_h [2:0] notifies the
21064 that the external cycle is over.

Note

The Bcache dataA_h [4] control line, shared by the external system
logic and the 21064, must also be de-asserted before transferring
Bcache control back to the CPU. If this address line is allowed to linger

Designing a System with the 21064 A–33

past the time that the 21064 senses the acknowledge on cAck [2:0] the
next Bcache access by the CPU might return the wrong data.

In the example, the Bcache block is invalid, but the external logic would have
no way to know that. So, the external logic must have some way to determine
if the current Bcache block occupant needs to be written back to the main
memory. One method to do this is to have the system logic perform its own
Bcache tag probe. Only the VALID and DIRTY bits need to be inspected, so the
external logic probe does not have to wait the entire time necessary to compare
the tag address field in the Bcache.

A critical path in this external logic probe is the SRAM output enable circuitry.
The 21064 leaves the Bcache RAMs disabled after its own probe, and the
external logic must drive the output enable again in order to inspect the
VALID and DIRTY bits. One way to do this is to allow an early version of
the cReq_h [2:0] signals to turn on the SRAM output enables by default,
assuming that a probe will be necessary. For those cycles where the external
logic later needs to write the Bcache, another logic path is necessary to turn
the output enable back off. The de-assertion path is not time-critical, but does
need to be implemented for cache fill operations.

Figure A–15 Tag Control Probe Before External Cycle

LJ-02778-TI0

1 2 3 4 5 6

adr_h[33:5]

7

sysClkOut1_h

del_cReq_h[2:0]

dInvReq_h

cAck_h[2:0]

sys_tagCEOE_h[x]

tagCtlVSDP_h

EXTERNAL CYCLE TYPE IDLE

IDLEIDLE OK

A–34 Designing a System with the 21064

Figure A–15 shows the timing for the entire cycle, including the tag control
check. The figure shows the delayed cReq_h [2:0] lines changing state at
the start of cycle 1, and the tag probe occurring during that cycle. The signal
sys_tagCEOE_h [x] is the system logic version of the 21064 tagCEOE_h [x]
signal. It is the other input to the NOR gate shown in Figure A–3. That
nomenclature is used throughout this appendix.

In this case, the Bcache block is invalid, so no victim write needs to be
performed. Section A.5.5 explains the details of a victim write. If the Bcache
probe found that the block was valid but not dirty (that is, it had not been
modified since being read from main memory), then the outcome is the same.
In both cases, the block can safely be invalidated without a victim write.

Figure A–15 shows the tag inspection being implemented in one cycle, so that
the read command can start at the beginning of cycle 2. This might not be
possible on any particular implementation, and must be carefully analyzed
to ensure that the data is stable when the clock asserts in the system control
logic.

The external cycle (READ_BLOCK or WRITE_BLOCK) overwrites the data
in the Bcache, and asserts the dInvReq_h signal if appropriate during the
fill, so the internal Dcache block is invalidated later. The lower address bits
are directly connected to the iAdr_h [12:5] invalidate address input lines in
this example; that ensures that the correct cache block is invalidated. Some
implementations might require better control over the invalidate bus, and
must ensure that the iAdr_h lines accurately reflect the lower index value on
the asserting edge of sysClkOut1_h that samples dInvReq_h.

A.5.3 Read Block Request
If the external cycle is a READ_BLOCK, a 32-byte block of memory information
is returned to the 21064. The external logic has complete control of the
21064 interface during the transfer. The data is returned to the 21064 and
simultaneously loaded into the Bcache. It is the external logic that writes the
data into the Bcache during the read cycle, and not the 21064.

The minimum amount of data that can be written to the Bcache is 32 bytes,
but the system logic controls the Bcache until the cAck_h [2:0] lines are
changed from their IDLE state. As such, it can load and validate more than
that if the system designer believes prefetching more blocks is appropriate.
Any prefetching must be done in 32-byte increments.

The external logic is responsible for loading the tag address and the tag control
fields of the Bcache (with correct parity on both) along with the data. The tag
control field should be written as VALID and CLEAN.

Designing a System with the 21064 A–35

Figure A–16 Tag Access and Write Circuit

WE
A

D WE
A

D

LJ-01999-TI0

OE OE

SYSTEM

LOGIC

PARITY

GEN

load_tag_l

tagAdrP_h
tagAdr_h[x]

adr_h[x]

dOE_L

cReq_h[2:0]
sysClkOut1_h
dRack_h[2:0]

cAck_h[2:0]

tagCEOE_h

adr_h[tag]

21064

Figure A–16 shows an example of the logic that is expected for tag address
control. One of the tagAdr_h lines is shown connected to its Bcache RAM. All
the tag address lines in use by the implementation go to the parity generator.
The tagAdr_h [tag] signals and the tagAdrP_h parity lines are all driven by
tristate buffers. On probe reads, the SRAM output enable allows the Bcache to
drive the signals, where they are compared by the 21064 or the system logic.
On a fill operation, the load_tag_l signal in Figure A–16 causes the Bcache
tag RAMs to be loaded with the upper address bits. The load_tag_l signal is
not part of the 21064 external interface, but rather is a signal created for this
particular example to show how the system interface might perform the task.
Notice that the RAM write enable input is not connected to the 21064, since
the processor never writes those RAMs.

A–36 Designing a System with the 21064

Figure A–17 Timing Diagram of READ_BLOCK Cycle

LJ-02779-TI0

1 2 3 4 5 6

adr_h[33:5]

7

sysClkOut1_h

del_cReq_h[2:0]

dInvReq_h

cAck_h[2:0]

IDLE

IDLEIDLE OK

dRack_h[2:0]

data_h[127:0]
check_h[27:0]

sys_dataA_h[4]

sys_dataWE_h[x]

tagAdr_h[33:17]
tagCltVSDP_h

sys_tagCtlWE_h[x]

IDLEIDLEIDLE OKOK

READ_BLOCK

IF I-STREAM

LO DATA HIGH DATA

TAG + VALID/CLEAN

As each data word is returned to the 21064, the dRack_h [2:0] field is changed
from IDLE to non-IDLE. Normally, the non-IDLE state is OK, which instructs
the 21064 to both check the ECC (or parity) on the returned data and cache
the data internally. Chapter 6 provides more information on the dRack_h
[2:0] field. Figure A–17 is a timing diagram for a READ_BLOCK data transfer,
showing the 21064 control signals.

Note

All I-stream read accesses (recognized by cWMask_h [2] as false
during the cycle) must return each dRack_h [2:0] with a cached
status.

Designing a System with the 21064 A–37

The data in the example is assumed to be ready at the start of cycles 4 and
6, but in another implementation the data might be ready before or after that
time. The dRack_h [2:0] lines should change to the non-IDLE state whenever
the data is ready, with enough setup time so that the lines are sensed by the
21064 at the assertion of sysClkOut1_h. The cAck_h [2:0] lines can also
change to their non-IDLE state (signifying the end of the cycle) during the last
dRack_h [2:0] data phase if desired. As previously stated, care must be taken
to prevent tristate overlap if the cAck_h [2:0] lines are asserted coincidentally
with the last data dRack_h [2:0].

The timing of the Bcache write signal might be tight in relation to the data
arriving from the memory. If the memory is a DRAM array, for example, the
CAS signal should be de-asserted as quickly as possible after the DRAM data
is stable, in order to start the next memory access during a page mode read.
The Bcache, however, might need the data held stable. Using a bidirectional
clocked memory data transceiver, as shown in Figure A–2, can help in some
cases.

Figure A–17 shows the dInvReq_h signal asserting, which invalidates the
internal Dcache block corresponding to the lower index bits in the address.
This is only needed if the external data fetch is for I-stream (indicated by a
false cWMask_h [2] on READ_BLOCK cycles), and if the internal Dcache
is being kept as a subset of the Bcache. The block that is being filled into
the Bcache might be in the Dcache, and it is not otherwise invalidated on an
I-stream fetch.

The 21064 can potentially drive its own Bcache control signals a few CPU
cycles into the external cycle. As such, the Bcache SRAMs might still be
driving the data bus as the external cycle starts. On a read cycle, the system
logic might turn on its own data transceivers early in the access, and should
be aware that a system cycle should be allowed before this is done. This
eliminates any tristate overlap between the SRAMs and the data transceiver.

For a system without a Bcache, the 21064 signals would be the same as
Figure A–17, but none of the Bcache related lines would be asserted by the
system logic. If the system has a Bcache but it is not enabled, the external
system logic needs to have some mechanism to turn off the Bcache fill logic,
since the 21064 does not broadcast its internal Bcache enable signal to the
external interface.

If the read cycle is to an area of memory that has been defined as I/O, it is
likely that another bus is involved with the transfer. In this case, the timing
is also similar, and the Bcache control signals are also not asserted. A further
modification in this case might be to change the dRack_h [2:0] field to indicate

A–38 Designing a System with the 21064

that no error checking be performed and that the data should not be loaded
into the internal chip Dcache.

Note

All I-stream read accesses (recognized by cWMask_h [2] being false
during the cycle) must return each dRack_h [2:0] with a cached
status.

Figure A–18 Clock Skew from System to 21064

LJ-02780-TI0

dRack_h[2:0]

buf_sysClkOut1_h

data_h[x]

sysClkOut1_h

LOGIC

FLOP

D Q

buf sysClkOut1_h

CLOCK BUFFERS SYSTEM LOGIC

sysClkOut1_h

VALID

The 21064 system clocks, such as sysClkOut1_h, are specified to drive only
40 pF. Because of this, clock buffers are normally used to drive the system
logic. The clock buffers might add skew between the 21064 and the system
logic. Figure A–18 shows a timing diagram and a small circuit section that
might be used to create the signals in the diagram. The buffered version of
the system clock buf_sysClkOut1_h drives the system state machines that
eventually cause the data_h lines to be valid at the 21064 input pins.

Designing a System with the 21064 A–39

The data_h must be setup at least 3.5 ns before the assertion of
sysClkOut1_h. In this example, the delay of the buffer must be added to
that setup time, since the 21064 sees its reference clock some time before
the system logic. This delay should include the entire path for the buffered
clocks, including wire delay, device propagation delay, simultaneous switching
increases, transmission line effects, and so on. The example in Figure A–18
shows only one instance of this consideration. Others must be analyzed based
upon the implementation.

It should be noted here that the skew helps signals like dRack_h [2:0] and
cAck_h [2:0], since they can be asserted on the system logic version of the
clock and meet both the setup and hold times in reference to the 21064.

A–40 Designing a System with the 21064

Figure A–19 READ_BLOCK Cycle with Write Pulse

LJ-02781-TI0

1 2 3 4 5 6

adr_h[33:5]

sysClkOut1_h

del_cReq_h[2:0]

dInvReq_h

cAck_h[2:0]

IDLE

IDLEIDLE OK

dRack_h[2:0]

data_h[127:0]
check_h[27:0]

sys_dataA_h[4]

sys_dataWE_h[x]

tagAdr_h[33:17]
tagCltVSDP_h

sys_tagCtlWE_h[x]

IDLEIDLEIDLE OKOK

READ_BLOCK

IF I-STREAM

LO DATA HIGH DATA

TAG + VALID/CLEAN

sys_tagWE_en_h

sys_dataWE_en_h

If the external timing allows it, a write pulse can be created by delaying
sysClkOut2_h by 1 CPU cycle, and by using sysClkOut1_h to create an
enable signal for it. Figure A–19 shows a READ_BLOCK cycle with a cache
fill that uses a write pulse to load the Bcache. The signal sys_dataWE_en_h
enables sysClkOut2_h when the Bcache needs to be written.

Designing a System with the 21064 A–41

Figure A–20 Write Pulse Circuit

LJ-02858-TI0

D

CLOCK BUFFERS

SYSTEM LOGIC
sysClkOut1_h

sysClkOut2_h sys_dataWE_h

sys_dataWE_en_h
STATE MACHINE

FLOP

Q

D

FLOP

Q

Figure A–20 is an example of how the write pulse can be created, showing
the circuit paths of interest. The clock buffers are shown that are expected to
drive the system logic, in part to show that skew must be carefully considered
if a write pulse-like scheme is attempted. If the clock buffers add enough
delay to the path, and the delayed version of the clock is used to create the
sys_dataWE_en_h signal, the leading edge of the enable can overlap with
sysClkOut2_h. To prevent this from happening, a non-buffered version
of sysClkOut1_h might be used to create sys_dataWE_en_h. The same
argument applies to the tag control write pulse.

A.5.4 Write Block Request
If the external cycle is a WRITE_BLOCK, the system logic must perform
a different set of functions. The initial tag probe must still be done by the
external logic, and it is still assumed here that the current block is either not
valid, or it is valid but not dirty (no victim write needed).

If it is assumed that the Bcache is used as a writeback cache (the normal
mode), and that the design is using a write-allocate Bcache policy, then the
write data should go into the Bcache, even though an external WRITE_BLOCK
cycle is being executed. The most reasonable way to accomplish this is to read
the entire block from memory into the Bcache, then write the masked 8-byte
into that same Bcache block. For systems without a Bcache, the external
memory should be writable on 4-byte (32-bit) boundaries, since the Bcache
merge could not then be performed.

A–42 Designing a System with the 21064

The 21064 is attempting to perform a WRITE_BLOCK cycle in this case,
and doesn’t even know about the memory read cycle. The dRack_h [2:0]
and cAck_h [2:0] signals should remain IDLE throughout the read transfer.
During the fill operation, the dInvReq_h signal should be asserted if the
old Bcache block was valid, since the internal Dcache might also have the
replaced block valid. As a practical matter, the entire Bcache is valid shortly
after system initialization, so every read fill on behalf of a write cycle must
assert dInvReq_h, unless a Dcache backmap can be consulted to determine
the block’s validity.

After the read has been accomplished and the main memory data has been
placed in the Bcache block, the system logic should cycle the 21064 through
its write data by using the dWSel_h [1] line. The 21064 input signal dOE_l
is used to instruct the chip to drive the data lines for the write portion of the
cycle. Only the masked 4-byte segments should have their write enable inputs
asserted during the cycle, based upon the cWMask_h [7:0] signals. The lower
128 bits of data (during which dataA_h [4] is low) are controlled by cWMask_
h [3:0], and the upper 128 bits of data (during which dataA_h [4] is asserted
high) are controlled by cWMask_h [7:4]. Within each data section, the lower
bits in the cWMask_h field control the lower 4-byte segment. For example,
cWMask_h [0] controls bits [31:0], cWMask_h [1] controls bits [63:32], and so
on.

Note

The signal dWSEL_h must not be asserted during the same cycle that
cAck_h notifies the 21064 that the external access is over.

Designing a System with the 21064 A–43

Figure A–21 Timing Diagram of WRITE_BLOCK Cycle

LJ-02782-TI0

1 2 3 4 5 6

adr_h[33:5]

7

sysClkOut1_h

del_cReq_h[2:0]

cAck_h[2:0]

IDLE

IDLEIDLE OK

data_h[127:0]
check_h[27:0]

sys_dataA_h[4]

sys_dataWE_h[x]

tagAdr_h[33:17]
tagCltVSDP_h

sys_tagCtlWE_h[x]

WRITE_BLOCK

LO DATA HIGH DATA

TAG + VALID/DIRTY

dOE_l

dWSel_h[1]

After the entire read and write cycle has finished, the tag control should be
written as VALID and DIRTY, and the tag address should be written with
the correct upper address bits. Figure A–21 shows the Bcache write portion
of the WRITE_BLOCK cycle. The read portion looks like Figure A–17, except
that the CPU acknowledge signals should not be changed from IDLE, and the
dInvReq_h signal should be asserted.

Note when the data actually changes relative to the signals dWSel_h and
dOE_l. All the signals are synchronous to the leading edge of sysClkOut1_h,
so the inputs are not acted upon until the next system clock edge. The end
of the external write in Figure A–21 is the start of cycle 7, at which time the
21064 removes the address and potentially starts the next Bcache probe.

Note

The signals adr_h [33:5], data_h [127:0], and check_h [27:0] are
only synchronous to sysClkOut1_h during an external cycle. During

A–44 Designing a System with the 21064

the time that the cReq_h [2:0] field is IDLE, the signals can change
without regard to the clocks that drive the external system logic.
During the time that the field cReq_h [2:0] is not IDLE (that is,
non-zero), they conform to the setup and hold times specified in the ac
specifications in Chapter 7 of this manual.

The signals cReq_h [2:0], holdAck_h, and cWMask_h [7:0] are
always synchronous to the external system clocks, even during those
times when no external cycle is in progress. They always conform to
the ac specifications in Chapter 7.

There are several techniques that can be used on the write cycle:

• The cWMask_h [7:0] signals can be inspected, and if they are asserted the
read portion of the cycle does not have to be performed. In this case, every
byte is written anyway, so the Bcache write cycle can be performed from
the start. If this optimization is taken, it is important that any necessary
functions normally performed during a read fill are still performed. For
example, the tag address and control SRAMs must still be loaded with
the new block address. If this is normally done during the read fill, that
function must be duplicated for this situation. Also, the internal Dcache
invalidate signal dInvReq_h must be asserted if the current Bcache block
is being replaced. This function might also be performed during a read fill,
and needs to be duplicated here when appropriate.

• The tag Bcache RAMs don’t have to be written on both the read and write
portions of the cycle. It may be easier to do it during the read cycle so
that it is the same as a normal read. The same caveats apply to this
optimization as the last one. If the Bcache tag SRAMs are loaded only
during the read, then the read fill cannot be eliminated without adding
that function to the write as well.

• Both 128-bit data segments don’t need to be written if the lower mask bits
show that there are no 4-byte segments enabled. The signal dWSel_h [1]
can be asserted earlier to write the upper 128 bits only. If both segments
are written, however, the lower address must be written before the upper
address (as shown in Figure A–21).

Designing a System with the 21064 A–45

Figure A–22 Clock Skew from System to 21064 for Write

LJ-02859-TI0

buf_sysClkOut1_h

data_h[x]

sysClkOut1_h

LOGIC

buf sysClkOut1_h

CLOCK BUFFERS SYSTEM LOGIC

sysClkOut1_h

dOE_L

FLOP

D
Q

As with the read cycle, the write cycle must take into account the clock skew
between the 21064 and the system logic. Figure A–22 shows an example of a
potential problem. The 21064 signal dOE_l is asserted by the system logic to
instruct the chip to drive the data_h lines during the write cycle. But dOE_l
is sampled by the chip on the earlier, unbuffered version of sysClkOut1_h. In
the figure, the data is removed on the asserting edge of sysClkOut1_h, which
might be too soon. If the system logic uses its version of buf_sysClkOut1_h
to sample the write data, then it should cause dOE_l to remain asserted low
one extra cycle to accommodate the clock skew. This same argument applies to
dWSel_h [1].

A–46 Designing a System with the 21064

Note

On a Bcache probe and miss, control is not passed to the system logic
instantaneously. The 21064 de-asserts its Bcache output enable signals
at least 1 CPU cycle before it begins an external write cycle. The path
from the 21064 to the SRAMs should be kept as short as possible to
minimize the chance that the SRAMs are still driving their outputs
onto the data lines when the 21064 turns on its own data drivers for
the write cycle. This is discussed in more detail in the application
note Designing a Memory/Cache Subsystem for the Alpha 21064
Microprocessor.

A.5.5 Victim Write
The second possibility for the original Bcache miss is that the data currently
occupying the Bcache block is VALID and DIRTY, but the upper address bits
do not match the tag address. The 21064 activates the external logic with a
READ_BLOCK or WRITE_BLOCK, just as in the previous description. When
the external logic does the Bcache VALID/DIRTY probe, however, the outcome
is different. Since the data in the Bcache block has been modified since it was
read from the main memory, it must be written back to memory before the
external read or write cycle can continue. The act of writing the block back to
memory is called a victim write.

Designing a System with the 21064 A–47

Figure A–23 Timing Diagram of Victim Write Cycle

LJ-02783-TI0

1 2 3 4 5 6

adr_h[33:5]

7

sysClkOut1_h

del_cReq_h[2:0]

cAck_h[2:0]

IDLE

data_h[127:0]
check_h[27:0]

sys_dataA_h[4]

sys_dataCEOE_h[x]

tagAdr_h[33:17]

sys_tagCEOE_h

LO DATA HIGH DATA

IDLE

EXTERNAL CYCLE

UPPER ADDRESS BITS

dRack_h[2:0]

The external control logic for a victim write is straightforward. The 128-bit
data segments are read from the Bcache, and the data is sent to the external
memory. After the victim is safely back in memory, the READ_BLOCK or
WRITE_BLOCK is performed, exactly as described in the previous sections.
Some time during the entire cycle (including the victim write and subsequent
read or write cycle), the internal Dcache line must be invalidated, or updated
with the new tag and data information. On a D-stream read cycle, this
happens during the read fill operation. On I-stream read cycles and on read fill
operations on behalf of write cycles, the dInvReq_h signal should be asserted
to invalidate the internal Dcache block for that index.

Figure A–23 shows the victim write cycle. The tag address is used as the high
memory address bits for the write, so the sys_tagCEOE_h signal is asserted
to enable their outputs. The Bcache data RAMs are enabled, and each data
segment is selected in turn by sys_dataA_h [4]. In this example, two cycles
are necessary for the main memory to be written. If the memory is slower,

A–48 Designing a System with the 21064

more cycles should be allocated. At the start of cycle 7, the actual read or write
cycle proceeds.

Figure A–24 Address MUX for Victim Write

adr_h[33:17]

tagAdr_h[33:17]

victim_write_h

adr_h[16:5]

DMA_cycle_h

mem_addr_h[33:5]

0

1

LJ-02097-TI0

A MUX gate is needed to choose between the normal 21064 memory write and
the victim write, where the upper address bits are taken from the tag field
of the Bcache. Figure A–24 shows the expected circuit. Normally, the MUX
selects the adr_h lines, but during victim write cycles the tagAdr_h lines are
chosen as the memory address. The figure also shows that the entire address
bus should have the ability to tristate for DMA access. During DMA transfers,
the 21064 is forced off the address lines, and the external logic controls the
entire address. The MUX and tristatable gate can be one physical device.

The signals victim_write_h and DMA_cycle_h are expected to be created by
the system logic. They do not originate from the 21064. The tag address field
in Figure A–24 is shown for the smallest Bcache size. Other Bcache sizes have
different relative widths for the tag and index fields.

For high performance systems, a victim queue (or silo) is an option. Instead
of writing the victim and reading the new data word serially, the Bcache and
the memory can be read simultaneously. The information in the Bcache can be
stored in a silo while the memory data is loaded into the Bcache. The silo can
then be used to write the previous Bcache contents to memory. This has the
effect of reducing the read latency on the miss and subsequent fill operation.

Designing a System with the 21064 A–49

A.5.6 Non-Cached Memory Write
There might be non-cached memory space in your 21064 system design. When
that area is a write target, the data should bypass the Bcache and be written
directly to the system memory. If non-cacheable memory is included in the
system, it is best to make it writable on 4-byte segments. Otherwise, a full
read/modify/write cycle is needed to store non-fully masked data.

A memory write on a system that allows masking on 4-byte segments is
only a minor variant on the victim write function. The difference is that
the information to be written to memory is coming from the 21064 rather
than the Bcache. The Bcache is not invoked at all in this situation, and the
dWSEl_h [1] signal is used to instruct the 21064 which 128-bit data segment
to provide.

Figure A–25 Timing Diagram of Direct Memory Write Cycle

LJ-02784-TI0

1 2 3 4 5 6

adr_h[33:5]

7

sysClkOut1_h

del_cReq_h[2:0]

cAck_h[2:0]

IDLE

IDLEIDLE OK

data_h[127:0]
check_h[27:0]

WRITE_BLOCK

LO DATA HIGH DATA

dOE_l

dWSel_h[1]

dram_addr_h

dram_ras_l

dram_cas_l

dram_we_l

A–50 Designing a System with the 21064

Figure A–25 shows the timing for such a write cycle. In this example, a more
complete memory control flow is shown. The memory is a DRAM array, and a
representative set of memory control signals are provided. The designer should
work out the exact timing on a particular implementation in order to ensure
that the memory parts are accessed within specification.

The adr_h lines should be stable at the start of the cycle, since they are
changed by the 21064 before the cycle is started. If the DRAM address MUX
points to the row address by default, the memory control can assert RAS at
the start of the cycle. At the end of the cycle, the DRAM RAS precharge time
must be accounted for. The 21064 allows at least one idle cycle after it senses
cAck_h as non-IDLE before it starts the next external command (although a
Bcache cycle can proceed immediately). In the example, RAS de-asserts at the
start of cycle 6, which means that it cannot re-assert until the start of cycle 8.
The changing of cAck_h so that it is sensed at the start of cycle 7 meets the
RAS precharge time for the part in this implementation.

A.6 Load Locked and Store Conditional
The 21064 provides the ability to perform locked memory accesses through
the LDxL (Load_Locked) and STxC (Store_Conditional) cycle command pair.
The LDxL command forces the 21064 to bypass the Bcache and request data
directly from the external memory interface. The memory interface logic must
set a special interlock flag as it returns the data, and may optionally keep the
locked address.

The data requested for the LDxL access might be in the Bcache, since it
has not been probed, so the external memory logic must do its own probe
to determine where to obtain the information. In previous descriptions, the
system logic only had to probe the tag control VALID and DIRTY RAMs to
determine if a victim write was necessary. For the LDxL and STxC probe, the
entire tag address must be compared, since the data that is being accessed
might be in the Bcache.

Figure A–26 shows a diagram of the probe and compare logic. On the initial
request (the cReq_h[2:0] lines specify that the external LDxL must be
performed), the system logic enables the tag RAMs and compares them to the
tag field of the address for the 21064. If they compare and the block is valid,
the data requested is already in the Bcache. If the tag compare also shows
that the block is dirty, then the only place the data resides is in the Bcache.

Designing a System with the 21064 A–51

Figure A–26 Tag Address Compare Circuit

A
D

LJ-02099-TI0

OE

SYSTEM

LOGIC

tagAdr_h[tag]

adr_h[33:5]

cReq_h[2:0]

cAck_h[2:0]

adr_h[tag]
21064

A
D

OE

LOCK

FLAG

&

ADDRESS

SET LOCK

CLR LOCK

LOCKED

TAG
CONTROL
COMPARE

tag_hit_h

valid_and_dirty_h
SYSTEM

LOGIC

A

B

A=B

adr_h[index]

There are two choices:

• The data can be accessed from the Bcache.

• The data can be written back to memory, then accessed from there.

If the tag compares and the block is valid, but it is not dirty, then both the
Bcache and the memory contain the data. It can be accessed from either place.
If the tag fails or the block is not valid, then the data is only available from
memory and must be accessed from there. In all the above cases, a flag must
be set that signifies the location is locked.

A–52 Designing a System with the 21064

Every design needs to provide a lock flag, but the amount of address
information latched is completely up to the designer. On a uniprocessor
system that does not expect much lock contention, simply having the lock flag
with no address information might be enough. If any device accesses a memory
location, the flag can be cleared, which causes the subsequent store cycle to
fail. On a multiprocessor system that expects real lock contention, lock address
information can be saved so that different processors can lock different areas.

The Alpha Architecture Reference Manual discusses the guidelines that pertain
to the lock and its associated address information.

The store_conditional instruction is executed by the 21064 to clear the lock
(and to find out if the code that was executed did so without contention). It is
a write-type request, where the processor again bypasses the Bcache without
a probe. If no other access has been made to the locked data, the STxC is
treated similarly to a regular external memory write, though the Bcache must
be probed by the system logic to determine where the most up-to-date data is
located. The locked flag is also cleared.

If the Bcache probe finds that the data is both valid and dirty, the choices are
similar to the read case:

• The data can be written into the Bcache, using the cWMask_h [7:0] to
determine which 4-byte segments should be modified. The STxC command
never validates more than a single 4-byte or 8-byte segment of data, and
this can be used to optimize the cycle if desired.

• The data can be written back to memory with a victim write, and modified
there.

If the locked flag is cleared before the start of the STxC cycle, meaning that
the data location has been written between the LDxL and STxC commands,
the external memory logic must return a special acknowledge code that notifies
the 21064 of this fact. In this case, no Bcache probe or actual external cycle
needs to be performed.

A.7 Special Request Cycles
There are some external request cycles that might not actually perform any
work, but must still provide the 21064 with an acknowledge. BARRIER,
FETCH, and FETCH_M cycles are described in the Alpha 21064 and Alpha
21064A Microprocessors Hardware Reference Manual, and perform a system-
specific function. When they are sensed by the external control logic, the
system must minimally acknowledge on cAck_h with an OK code.

Designing a System with the 21064 A–53

Note

The address that accompanies the BARRIER cycle (invoked by the MB
instruction) is undefined in the Alpha architecture, and thus not under
program control in the 21064. As such, a decode of the BARRIER
instruction must not include any conditional filtering based on a
particular memory or I/O address range, since the BARRIER address
can take any value.

A.8 DMA Access
There are situations where a device connected to an I/O bus needs direct access
to the 21064 cache/memory subsystem. In the most general case the data could
be in the Bcache, which is described in this section.

There are several ways that the external logic can perform a DMA access, the
most straightforward of which is the use of the holdReq_h line. When a DMA
device requires access to the 21064 cache/memory subsystem, it can notify the
chip of that fact by asserting the holdReq_h signal. The 21064 replies to this
request by asserting the holdAck_h signal. This signifies that the 21064 is
no longer asserting the address, data, or Bcache control signals. The entire
memory subsystem and Bcache are now under control of the external system
logic.

The signal holdAck_h changes simultaneously with sysClkOut1_h. As such
it should be sampled on an edge other than sysClkOut1_h if used as an
input into state machines that run on sysClkOut1_h. This is similar to how
cReq_h [2:0] must be used, as shown in Figure A–14.

If it is assumed that the DMA target data (read or write) might be in the
Bcache, the external logic must do a Bcache probe. This is similar to the probe
necessary to determine if the data is in the Bcache when a LDxL or STxC is
executed. The tag address and control RAMs should be compared to determine
if the requested data is in the Bcache, and if it is dirty. The DMA logic can use
the LDxL/STxC compare logic shown in Figure A–26, or it can duplicate that
logic for its own comparison.

The 21064 provides a third option for the tag address comparison, and this is
the tagEq_l signal. When the chip is in holdReq_h mode, the adr_h [33:5]
signals become inputs. The DMA device can drive its address on those lines
and simultaneously enable the tag address RAMs. If the tag address compares
with good parity, the signal tagEq_l will be asserted low.

A–54 Designing a System with the 21064

For DMA read cycles where the probe shows that the data is valid in the
Bcache, the choices are similar to what they were for the LDxL/STxC probe.
If the data is valid but not dirty, it can be accessed from wherever it is most
convenient. If the data is valid and dirty, it can be accessed directly from the
Bcache or written back to memory and accessed there.

For a DMA write that hits in the Bcache, there are several choices:

• The data can be written directly into the Bcache with the correct ECC
or parity. In this case, the tag control should be made DIRTY, and the
dInvReq_h signal should invalidate the cache line in the internal Dcache.

• The data can be written back to memory with a victim write, and it can
be modified there. The dInvReq_h signal should be asserted during the
victim write or the DMA memory write to invalidate any stale Dcache data.

If the Bcache probe misses, or if the DMA access is defined to be only in the
memory, then it is most sensibly accessed or modified there.

After the read or write cycle is complete, the holdReq_h signal can be de-
asserted, which causes the 21064 to de-assert the holdAck_h signal. The
21064 then takes control of the bus again, after a short delay.

There is one subtlety that should be mentioned here in regard to DMA access
design. The 21064 might be in the middle of its own external (non-Bcache)
access when it receives the holdReq_h request signal. If this happens, the
chip might be waiting for data, and has really only stalled the external cycle.
As such, the data and cycle acknowledge signals are ‘‘live.’’ The external logic
must be careful not to assert the dOE_l, dWSEL_h, dRack_h, or cAck_h
signals during its access cycle. Furthermore, there is a 2-CPU cycle delay
between the time that the 21064 de-asserts the holdAck_h signal and when
it re-enables its own address and data lines. This must be factored into the
external logic for cycles that continue after the DMA stall.

To simplify the design, it is possible to filter the holdReq_h signal going to
the 21064. If the external logic ensures that the holdReq_h signal only gets
to the 21064 between cycles, then the problem of external cycles stalling in the
middle is eliminated.

A.9 Backmapping the Internal 21064 Dcache
The 21064 provides the ability to keep a ‘‘backmap’’ of the internal Dcache tag
address in external logic. In effect, the module adds enough extra information
about the Dcache tag address to filter the invalidates that are sent to the
21064 Dcache. This can be used in multiprocessor systems or to filter DMA
writes.

Designing a System with the 21064 A–55

The processor outputs the signal dMapWE_h when it loads a block into the
Dcache. This is meant to control an external memory array that takes the
address from the appropriate adr_h lines and updates the external tag address
memory location.

The external tag address does not have to contain the entire Dcache tag
field, but rather needs only the difference between the Bcache and Dcache tag
widths. If the Dcache is being kept as a subset of the Bcache, and if the Bcache
is first probed, then the Dcache backmap is only responsible for knowing if a
Bcache hit is also a Dcache hit.

A.10 I/O Interface
The input/output function of the 21064 is in some ways a subset of the memory
function. I/O is normally not cached, so the probe misses, or is not performed
at all, for that memory quadrant. The access goes directly to the external
interface bus as a READ_BLOCK or WRITE_BLOCK.

On a read cycle, the data is returned as in the memory access already
described, with the dRack_h [2:0] signals indicating that the data should
be neither error-checked nor cached inside the chip. Since the return data
is under complete control of the system interface logic, the Bcache is not
filled. On a write cycle, the steps are similar to a direct memory write cycle.
The external logic can take the appropriate number of data words, then
acknowledge the cycle.

The Alpha architecture provides an approach to I/O called a ‘‘mailbox.’’ A
description of the read or write is set up in memory. The description includes
the full address, data, and mask information. A special mailbox register is
then accessed to invoke the I/O transaction. This approach implies a smart I/O
controller, and allows access to the full address range of the I/O bus.

If the mailbox option is not implemented, there are some techniques that can
be employed when interfacing the 21064 to an I/O bus:

• Address or data bits can be used to create byte masks and encode system
level functions.

• The 21064 address lines adr_h can be shifted right when accessing
external buses that need the lower address bits. So, for example, adr_h
[20:5] can translate to I/O address bits [15:0].

• Reads and writes to I/O space can use the low bytes for all transactions,
rather than pack the data into the appropriate field within the 32-byte
block.

• The cWMask_h field can normally be ignored for I/O writes.

A–56 Designing a System with the 21064

B
Technical Support and Ordering

Information

B.1 Obtaining Technical Support
If you need technical support or help deciding which literature best meets your
needs, call the Digital Semiconductor Information Line:

United States and Canada
Outside North America

1–800–332–2717
+1–508–628–4760

B.2 Ordering Digital Semiconductor Products
To order the Alpha 21064 and 21064A microprocessors and related products,
contact your local distributor.

You can order the following semiconductor products from Digital:

Product Order Number

Alpha 21064A–200 Microprocessor 21064–AB

Alpha 21064A–233 Microprocessor 21064–BB

Alpha 21064A–275 Microprocessor 21064–DB

Alpha 21064A–275-PC Microprocessor 21064–P1

Alpha 21064A–300 Microprocessor 21064–EB

AlphaPC64 Evaluation Board 275-MHz Kit 21A02–03

AlphaPC64 Evaluation Board Design Kit 21A02–13

Alpha Evaluation Board Software Developer’s Kit 21B02–02

DECchip 21064 Evaluation Board Design Package 21A01–13

Heat Sink Assembly 2106H–AA

Designing a System with the 21064 B–1

B.3 Ordering AlphaPC64 Boards
To order an AlphaPC64 board, contact your local distributor.

Board Product Order Number

AlphaPC64 Board1 21A02–A3

AlphaPC64 Board2 (2MB Level 2 Cache) 21A02–A4

AlphaPC64 Board2 (512KB Level 2 Cache) 21A02–A5

1Alpha 21064A microprocessors, main memory, and level 2 cache must be purchased separately.
2Alpha 21064A microprocessors and main memory must be purchased separately.

B.4 Ordering Digital Semiconductor Literature
The following table lists some of the available Digital Semiconductor literature.
For a complete list, contact the Digital Semiconductor Information Line.

Title Order Number

Alpha 21064A Microprocessors Data Sheet EC–QFGKB–TE

PALcode for Alpha Microprocessors System Design Guide EC–QFGLB–TE

Designing a Memory/Cache Subsystem for the
DECchip 21064 Microprocessor: An Application Note

EC–N0301-72

Designing a System with the DECchip 21064
Microprocessor: An Application Note

EC–N0107–72

Calculating a System I/O Address for the DECchip 21064
Evaluation Board: An Application Note

EC–N0567–72

DECchip 21064 Bus Transactor User’s Guide EC–N0448–72

Alpha Microprocessors Evaluation Board Debug Monitor
User’s Guide

EC–QHUVC–TE

AlphaPC64 Evaluation Board User’s Guide EC–QGY2C–TE

AlphaPC64 Evaluation Board Read Me First EC–QGY3C–TE

PALcode for Alpha Microprocessors System Design Guide EC–QFGLB–TE

Alpha Microprocessors SROM Mini-Debugger User’s
Guide

EC–QHUXA–TE

Alpha Microprocessors Evaluation Board Software Design
Tools User’s Guide

EC–QHUWA–TE

B–2 Designing a System with the 21064

Glossary

Abort

The unit stops the operation it is performing, without saving status, and
begins to perform some other operation.

Abox

This section of the processor unit performs address translation, interfaces to
the pin bus, and performs several other functions. Also called load/store unit.

Aligned

A datum of size 2**N is stored in memory at a byte address that is a multiple
of 2**N (that is, one that has N low-order zeros).

ANSI

American National Standards Institute, an organization that develops and
publishes standards for the computer industry.

ASM

address space match—defined by Alpha architecture

ASN

address space number—defined by Alpha architecture

Assert

To cause a signal to change to its logical true state.

AST

See asynchronous system trap.

Glossary–1

Asynchronous System Trap (AST)

A software-simulated interrupt to a user-defined routine. ASTs enable a user
process to be notified asynchronously, with respect to that process, of the
occurrence of a specific event. If a user process has defined an AST routine
for an event, the system interrupts the process and executes the AST routine
when that event occurs. When the AST routine exits, the system resumes
execution of the process at the point where it was interrupted.

autoboot

The process by which the system boots automatically.

Backmap

A memory unit which is used to note addresses of valid entries within a cache.

Bandwidth

Bandwidth is often used to express ‘‘high rate of data transfer’’ in an I/O
channel. This usage assumes that a wide bandwidth may contain a high
frequency, which can accommodate a high rate of data transfer.

Barrier Transaction

A transaction on the external interface as a result of an MB instruction.

Bcache

A second, very fast memory that is used in combination with slower
large-capacity memories.

bht

See branch history table.

Bidirectional

Flowing in two directions. The buses are bidirectional; they carry both input
and output signals.

Bit

Binary digit. The smallest unit of data in a binary notation system, designated
as 0 or 1.

BIU

See Bus Interface Unit.

Glossary–2

Block Exchange

Memory feature that improves bus bandwidth by paralleling a cache victim
write-back with a cache miss fill.

Boot

Short for bootstrap. Loading an operating system into memory is called
booting.

Branch history table

A table in the Icache that has an entry associated with each instruction. The
entry has one bit for the 21064 and two bits for the 21064A. The entry is used
by the 21064/21064A when predicting branch action.

Buffer

An internal memory area used for temporary storage of data records during
input or output operations.

Bugcheck

A software condition, usually the response to software’s detection of an
‘‘internal inconsistency,’’ which results in the execution of the system bugcheck
code.

Bus

A group of signals that consists of many transmission lines or wires. It
interconnects computer system components to provide communications paths
for addresses, data, and control information.

Bus Interface Unit

Logic unit which provides 21064 processor with interface to pin bus. The bus
interface unit is a part of the Abox.

Byte

Eight contiguous bits starting on an addressable byte boundary. The bits are
numbered right to left, 0 through 7.

byte granularity

Memory systems are said to have byte granularity if adjacent bytes can be
written concurrently and independently by different processes or processors.

Cache

See Cache memory.

Glossary–3

Cache block

The fundamental unit of manipulation in a cache. Also known as cache line.

Cache hit

The status returned when a logic unit probes a cache memory and finds a valid
cache entry at the probed address.

Cache Interference

The result of an operation that adversely affects the mechanisms and
procedures used to keep frequently used items in a cache. Such interference
may cause frequently used items to be removed from a cache or incur
significant overhead operations to ensure correct results. Either action
hampers performance.

Cache line

The fundamental unit of manipulation in a cache. Also known as cache block.

Cache Line Buffer

A buffer used to store a block of cache memory.

Cache memory

A small, high-speed memory placed between slower main memory and the
processor. A cache increases effective memory transfer rates and processor
speed. It contains copies of data recently used by the processor and fetches
several bytes of data from memory in anticipation that the processor will
access the next sequential series of bytes.

Cache miss

The status returned when a logic unit probes a cache memory and does not
find a valid cache entry at the probed address.

CALL_PAL Instructions

Special instructions used to invoke PALcode.

Central Processing Unit (CPU)

The unit of the computer that is responsible for interpreting and executing
instructions.

Glossary–4

CISC

Complex instruction set computer. An instruction set consisting of a large
number of complex instructions that are managed by microcode. Contrast with
RISC.

Clean

In the cache of a system bus node, refers to a cache line that is valid but has
not been written.

Clock

A signal used to synchronize the circuits in a computer

CMOS

Complementary metal-oxide semiconductor. A silicon device formed by a
process that combines PMOS and NMOS semiconductor material.

Conditonal Branch Instructions

Instructions that test a register for positive/negative or for zero/nonzero. They
can also test integer registers for even/odd.

Control and Status Register (CSR)

A device or controller register that resides in the processor’s I/O space. The
CSR initiates device activity and records its status.

CPU

See central processing unit.

CSR

See control and status register.

Cycle

One clock interval.

Data Bus

The bus used to carry data between the 21064 and external devices. Also
called the pin bus.

Dcache

Data cache. A cache reserved for storage of data. The Dcache does not contain
instructions.

Glossary–5

Direct-mapping Cache

A cache organization in which only one address comparison is needed to locate
any data in the cache, because any block of main memory data can be placed
in only one possible position in the cache.

Direct Memory Access (DMA)

Access to memory by an I/O device that does not require processor intervention.

Dirty

One status item for a cache block. The cache block is valid and has been
written so that it may differ from the copy in system main memory.

Dirty Victim

Used in reference to a cache block in the cache of a system bus node. The
cache block is valid but is about to be replaced due to a cache block resource
conflict. The data must therefore be written to memory.

Dual Issue

Two instructions are issued, in parallel, during the same microprocessor cycle.
The instructions use different resources and so do not conflict.

Ebox

The Ebox contains the 64-bit integer execution data path.

ECC

Error correction code. Code and algorithms used by logic to facilitate error
detection and correction. See also ECC error.

ECC error

An error detected by ECC logic, to indicate that data (or the protected ‘‘entity’’
has been corrupted. The error may be correctable (ECC error) or uncorrectable
(ECCU error).

Fbox

The unit within the 21064 which performs floating-point calculations.

Firmware

Machine instructions stored in hardware.

Glossary–6

Floating-point

A number system in which the position of the radix point is indicated by the
exponent part and another part represents the significant digits or fractional
part.

Granularity

A characteristic of storage systems that defines the amount of data that
can be read and/or written with a single instruction, or read and/or written
independently. VAX systems have byte or multibyte granularities, whereas
disk systems typically have 512-byte or greater granularities. For a given
storage device, a higher granularity generally yields a greater throughput.

Hardware Interrupt Request (HIR)

An interrupt generated by a peripheral device.

High-impedance State

An electrical state of high resistance to current flow, which makes the device
appear not physically connected to the circuit.

Hit

See cache hit.

Ibox

A logic unit within the 21064 which fetches, decodes and issues instructions. It
also controls the microprocessor pipeline.

Icache

Instruction cache. A cache reserved for storage of instructions.

Internal Processor Register (IPR)

A register internal to the CPU chip.

Latency

The amount of time it takes the system to respond to an event.

Load/Store Architecture

A characteristic of a machine architecture where data items are first loaded
into a processor register, operated on, and then stored back to memory.
No operations on memory other than load and store are provided by the
instruction set.

Glossary–7

longword

Four contiguous bytes starting on an arbitrary byte boundary. The bits are
numbered from right to left, 0 through 31.

machine check

An operating system action triggered by certain system hardware-detected
errors that can be fatal to system operation. Once triggered, machine check
handler software analyzes the error.

Masked write

A write cycle that only updates a subset of a nominal data block.

MBO

See must be one.

MBZ

See must be zero.

MIPS

Millions of instructions per second.

Miss

See cache miss.

Module

A board on which logic devices (such as transistors, resistors, and memory
chips) are mounted and connected to perform a specific system function.

Multiprocessing

A processing method that replicates the sequential computer and interconnects
the collection so that each processor can execute the same or a different
program at the same time.

Must Be One (MBO)

A field that must be supplied as one.

Must Be Zero (MBZ)

A field that is reserved and must be supplied as zero. If examined, it must be
assumed to be undefined.

Glossary–8

Naturally Aligned

See aligned.

Naturally Aligned Data

Data stored in memory such that the address of the data is evenly divisible by
the size of the data in bytes. For example, an aligned longword is stored such
that the address of the longword is evenly divisible by 4.

Octaword

Sixteen contiguous bytes starting on an arbitrary byte boundary. The bits are
numbered from right to left, 0 through 127.

OpenVMS Operating System

Digital’s open version of the VMS operating system, which runs on Alpha
archictecture machines.

Operand

The data or register upon which an operation is performed.

PALcode

Alpha Privileged Architecture Library code, written to support Alpha
architecture processors. PALcode implements architecturally defined behavior.

PALmode

A special environment for running PALcode routines.

Parameter

A variable that is given a specific value that is passed to a program before
execution.

Parity

A method for checking the accuracy of data by calculating the sum of the
number of ones in a piece of binary data. Even parity requires the correct
sum to be an even number, odd parity requires the correct sum to be an odd
number.

Pipeline

A CPU design technique whereby multiple instructions are simultaneously
overlapped in execution.

Glossary–9

Primary Cache

The cache that is the fastest and closest to the processor.

The first-level cache, located on the CPU chip, composed of the D-cache and
the I-cache.

Program Counter

That portion of the CPU that contains the virtual address of the next
instruction to be executed. Most current CPUs implement the program counter
(PC) as a register. This register may be visible to the programmer through the
instruction set.

Pulldown Resistor

A resistor placed between a signal line and a negative voltage.

Pullup Resistor

A resistor placed between a signal line to a positive voltage.

Quadword

Eight contiguous bytes starting on an arbitrary byte boundary. The bits are
numbered from right to left, 0 through 63.

READ_BLOCK

A transaction where the 21064 requests that an external logic unit fetch read
data.

Read Data Wrapping

System feature that reduces apparent memory latency by allowing read data
cycles to differ the usual low-to-high sequence. Requires cooperation between
the 21064 and external hardware.

Read Stream Buffers

Arrangement whereby each memory module independently prefetches DRAM
data prior to an actual read request for that data. Reduces average memory
latency while improving total memory bandwidth.

Register

A temporary storage or control location in hardware logic.

Glossary–10

Reliability

The probability a device or system will not fail to perform its intended
functions during a specified time interval when operated under stated
conditions.

reset

An action which causes a logic unit to interrupt the task it is performing and
go to its’ initialized state.

RISC

Reduced instruction set computer. A computer with an instruction set that is
reduced in complexity.

ROM

Read-only memory.

SBO

Should be one.

SBZ

Should be zero.

serial ROM

Serial read-only memory.

SROM

See serial ROM.

Stack

An area of memory set aside for temporary data storage or for procedure and
interrupt service linkages. A stack uses the last-in/first-out concept. As items
are added to (pushed on) the stack, the stack pointer decrements. As items are
retrieved from (popped off) the stack, the stack pointer increments.

Glossary–11

Static Stage

The 21064 integer pipeline divides instruction processing into four static
and three dynamic stages of execution. The 21064 floating point pipeline
implements the first four static stages and six dynamic stages of execution.
The four static stages consist of:

• Instruction fetch

• Swap

• Decode

• Issue logic

Superpipelined

Describes a pipelined machine that has a larger number of pipe stages and
more complex scheduling and control. See also pipeline.

Superscalar

Describes a machine that issues multiple independent instructions per clock
cycle.

Tristate

Refers to a bused line that has three states: high, low, and high-impedance.

Unaligned

A datum of size 2**N stored at a byte address that is not a multiple of 2**N.

Unconditional Branch Instructions

Instructions that write a return address into a register.

Undefined

An operation that may halt the processor or cause it to lose information. Only
privileged software (that is, software running in kernel mode) can trigger an
undefined operation.

Unpredictable

Results or occurrences that do not disrupt the basic operation of the processor;
the processor continues to execute instructions in its normal manner.
Privileged or unprivileged software can trigger unpredictable results or
occurrences.

Glossary–12

Victim

Used in reference to a cache block in the cache of a system bus node. The
cache block is valid but is about to be replaced due to a cache block resource
conflict.

Virtual Cache

A cache that is addressed with virtual addresses. The tag of the cache is a
virtual address. This process allows direct addressing of the cache without
having to go through the translation buffer making cache hit times faster.

Word

Two contiguous bytes (16 bits) starting on an arbitrary byte boundary. The bits
are numbered from right to left, 0 through 15.

Write Back

A cache management technique in which write operation data is written into
cache but is not written into main memory in the same operation. This may
result in temporary differences between cache data and main memory data.
Some logic unit must maintain coherency between cache and main memory.

Write Data Wrapping

System feature that reduces apparent memory latency by allowing write data
cycles to differ the usual low-to-high sequence. Requires cooperation between
the 21064 and external hardware.

Write Through

A cache management technique in which a write operation to cache also causes
the same data to be written in main memory.

WRITE_BLOCK

A transaction where the 21064 requests that an external logic unit process
write data.

Glossary–13

Index

21064
block diagram, 2–2
initialization, 6–36

A
21064/21064a

IEEE floating-point conformance, 2–19
21064A

block diagram, 2–3
initialization, 6–36

21064/21064A
architecture, 2–3
die, 8–2
differences, xxv
package, 8–2
PALcode instructions, 2–34

21064A BARRIER Timing, 7–20
21064/21064A Features, 1–2
21064A FETCH/FETCH_M Timing, 7–21
21064A Icache

test modes, 6–57
21064A Logic Symbol, 6–3
21064A Package Dimensions, 10–3
21064A READ_BLOCK Timing, 7–17
21064A WRITE_BLOCK Timing, 7–19
Aborts, 2–25
Abox, 2–10, 5–21

data translation buffer, 2–10
load silos, 2–12
write buffer, 2–13

Abox Control Register, 5–24
Abox Internal Processor Register, 5–21

Abox IPRs, 5–21
ABOX_CTL Register, 5–24
Absolute maximum rating, 7–1
AC Coupling, 9–11
Address bus

operation, 6–59
Address Enable Timing, 7–12
adr_h

operation, 6–59
Alpha

architecture, 1–1, 2–1
documentation, B–2
PALcode instructions, 2–34

Alpha Architecture, 4–1
Alternate Processor Mode Register, 5–28
ALT_MODE Register, 5–28
Ambient Temperature

maximum, 8–14
Associated literature, B–2
AST Interrupt Enable Register, 5–20
ASTER Register, 5–20
ASTRR Register, 5–17
Asynchronous Inputs, 7–24
Asynchronous Trap Request Register, 5–17

B
Backmap operation, 6–39
Backup Cache

tag register, 5–43
Backward compatibility of 21064A, 1–4
21064 BARRIER Timing, 7–20
BARRIER transaction, 6–32

Index–1

BC_TAG Register, 5–43
Bergeron diagrams, 9–5, 9–16
BIU, 2–12
BIU Single Errors, 6–67

D-stream parity mode, 6–68
I-stream parity mode, 6–68
tag address parity, 6–67
tag control parity, 6–67
transaction terminated with CACK_

HERR, 6–68
transaction terminated with CACK_SERR,

6–68
BIU_ADDR Register, 5–39
BIU_CTL Register, 5–30
BIU_STAT Register, 5–36
Block diagram

21064, 2–2
21064A, 2–3

Branch history table, 6–58
Branch prediction logic, 2–5
Bus Cycle Control

operation, 6–48
Bus Interface Unit, 2–12
Bus Interface Unit Address Register, 5–39
Bus Interface Unit Control Register, 5–30
Bus Interface Unit Status Register, 5–36

C
Cache Organization, 2–22

21064A Dcache
21064A Icache
data cache
Dcache
21064 Dcache
Icache
21064 Icache
Icache stream buffer
instruction cache

Cache Parity Errors (21064A only), 6–70
Dcache, 6–70
Icache, 6–70

Cache Status Register, 5–35

cAck_h
description, 6–8
operation, 6–50

CALL_PAL, 5–9
CALL_PAL Instruction, 4–5
CC Register, 5–28
CC_CTL Register, 5–29
check_h

operation, 6–60
Circuit Simulation, 9–16
Clear Serial Line Interrupt Register, 5–10
clkIn

description, 6–12
operation, 6–34

Clocks
clkIn_h, clkIn_l, 7–3
description, 6–12
operation, 6–34

cont_l
description, 6–13
operation, 6–63

Conventions, xix
Microprocessor labels, xix
Numbering, xx
Unpredictable and undefined, xx

CPU Clock, 7–24
cpuClkOut

description, 6–12
operation, 6–35

cReq_h
description, 6–7
operation, 6–48

cWMask_h
description, 6–8
operation, 6–49

Cycle acknowledgment operation, 6–50
Cycle Counter Control Register, 5–29
Cycle Counter Register, 5–28
Cycle request operation, 6–48
Cycle write masks operation, 6–49
C_STAT Register, 5–35

Index–2

D
data bus

64-bit mode, 6–1
128-bit mode, 6–1
64-bit mode operation, 6–54

Data bus
enable, 6–53
operation, 6–60

Data cache, 2–22
Data Cache, 2–23
Data Cache Status Register, 5–35
Data RAM operation, 6–44
Data translation buffer, 2–10
Data Translation Buffer ASM Register, 5–24
Data Translation Buffer Invalidate Single

Register, 5–24
Data Translation Buffer Page Table Entry

Register, 5–21
Data Translation Buffer Page Table Entry

Temporary Register, 5–22
Data Translation Buffer ZAP Register, 5–24
Data, Address, and Parity/ECC Signals, 6–4
dataA_h

description, 6–6
dataCEOE_h

description, 6–6
dataWE_h

description, 6–6
data_h

operation, 6–60
DC Coupling, 9–11
dc Electrical Data, 7–2
Dcache, 2–23
dcOk_h

description, 6–11
operation, 6–36

DC_STAT Register, 5–35
Decoupling, 9–2
Design Considerations

heat sink, 8–7
dInvReq_h (21064)

description, 6–4

dInvReq_h [1:0] (21064A)
description, 6–4

dMapWE_h
description, 6–6

dMapWE_h [1:0]
description, 6–6

Documentation, B–2
dOE_l

description, 6–7
operation, 6–53

Double-bit ECC errors, 6–66
D-stream, 6–67
I-stream, 6–66

dRack_h
operation, 6–51

dRAck_h
description, 6–7

DTB, 2–10
DTB Miss, 4–18
DTBASM Register, 5–24
DTBIS Register, 5–24
DTBZAP Register, 5–24
DTB_PTE Register, 5–21
DTB_PTE_TEMP Register, 5–22
Dual issue rules, 2–31
dWSel_h

description, 6–7
operation, 6–54

E
Ebox, 2–10
eclOut_h

description, 6–13
operation, 6–63

Edge Rate Curves, 9–12
example one, 9–12
example three, 9–14
example two, 9–13

Electrical Data
ac, 7–6
ac operating limits, 7–2
dc, 7–2
dc input/output characteristics, 7–4
dc power dissipation, 7–5

Index–3

Electrical Data (cont’d)
external cycle timing, 7–12
input clock frequency, 7–7
reference supply, 7–6
test specification, 7–9

Environment Instructions
PALcode, 4–19

Exception Summary Register, 5–12
Exceptions Address Register, 5–9
EXC_ADDR Register, 5–9
EXC_SUM Register, 5–12
External bus interface operation, 6–59
External cache

transactions without probe, 6–29
External cache access

holdReq_h and holdAck_h method, 6–45
tagOk_h and tagOk_l method, 6–46
tagOk_h and tagOk_l synchronization,

7–22, 7–23
External cache control

operation, 6–41
signals, 6–5

External cache write timing (delayed data),
6–20

External cycle control
signals, 6–7

External Cycles, 7–12
address enable timing, 7–12
output delay timing, 7–12
output enable timing, 7–12

External interface, 6–1

F
Fast Cycles

external cache, 7–10
read, 7–11
write, 7–11

Fast external cache read hit transaction,
6–18

Fast external write hit transaction, 6–19
Fast lock mode (21064A only), 6–30
Fbox, 2–15

21064A inexact flag
exception handling

Fbox (cont’d)
21064 inexact flag

FETCH transaction, 6–33
21064 FETCH/FETCH_M Timing, 7–21
FETCH_M transaction, 6–34
Fill Address Register, 5–40
Fill Syndrome Register, 5–41
FILL_ADDR Register, 5–40
FILL_SYNDROME Register, 5–41
Floating-Point Control Register

21064
21064A
Bit descriptions
FPCR, 2–16

Flow-through Delay, 7–11
external, 7–23
external cache, 7–11
maximum, 7–22

Flush Instruction Cache ASM Register,
5–24

Flush Instruction Cache Register, 5–24
FLUSH_IC Register, 5–24
FLUSH_IC_ASM Register, 5–24
Forced air, 8–6

G
Graphical Representation, 9–16

H
Hardware error handling, 6–64

can recover, 6–64
cannot recover, 6–65

Hardware Interrupt Enable Register, 5–18
Hardware Interrupt Request Register, 5–14
Heat Sink, 8–6
Heat Sink Design

dimensions, 8–12
HIER Register, 5–18
High Level Output

current, 9–5
voltage, 9–5

Index–4

HIRR Register, 5–14
holdAck_h

description, 6–6
holdReq_h

description, 6–6
holdReq_h and holdAck_h

accessing external logic, 6–45
HW_LD, 4–19
HW_LD Instruction, 4–3, 4–23
HW_MFPR, 4–19

Instructions, 4–20
HW_MFPR Instruction, 4–2
HW_MTPR, 4–19

Instructions, 4–20
restrictions, 4–11

HW_MTPR Instruction, 4–2
HW_REI, 4–19
HW_REI Instruction, 4–3, 4–24
HW_ST, 4–19
HW_ST Instruction, 4–3, 4–23

I
I/O Drive

characteristics, 9–5
switching characteristics, 9–7
VI curves, 9–5

I/O Drivers, 9–4
characteristics, 9–4
clamping action, 9–5
maximum received voltage levels, 9–5
pin capacitances, 9–5

iAdr_h
description, 6–4

Ibox, 2–4, 5–1
21064A branch prediction logic
21064 branch prediction logic
branch prediction logic, 2–5
instruction translation buffers, 2–6
Subroutine return stack, 2–6
super page, 2–6
virtual program counter, 2–7

Ibox Internal Processor Registers, 5–1

Icache, 2–4, 2–22
load order, 6–58
loading, 6–17
serial line interface, 6–58

21064 Icache
test modes, 6–56

Icache initialization
description, 6–10
operation, 6–56

ICCSR Register, 5–3
icMode_h

description, 6–10
operation, 6–56

Idd
maximum, 7–5
peak, 7–5

IEEE Floating-point conformance, 2–19
Initialization, 6–36
Initialization signals

description, 6–11
Input Clock

ac coupling, 9–11
coupling, 9–9
cycle time, 7–8
dc coupling, 9–11
duty cycle, 9–9
frequency, 7–7
impedance levels, 9–9
termination, 9–9
timing diagram, 7–9

Instruction
format and opcode notation, 3–1
IEEE floating-point summary, 3–7
opcodes reserved for Digital, 3–10
opcodes reserved for PALcode, 3–10
required PALcode instructions, 3–10
summary, 3–1
summary list, 3–2
VAX floating-point summary, 3–9

Instruction cache, 2–4, 2–22
Instruction Cache Control and Status

Register, 5–3
Instruction class definition, 2–27

Index–5

Instruction issue rules, 2–30
Instruction Translation Buffer ASM Register,

5–12
Instruction Translation Buffer IS Register,

5–12
Instruction Translation Buffer Page Table

Entry Register, 5–2
Instruction Translation Buffer Page Table

Entry Temporary Register, 5–2, 5–8
Instruction Translation Buffer Tag Register,

5–1
Instruction Translation Buffer ZAP register,

5–11
Instruction translation buffers, 2–6
Interface Operation, 6–34
Interface Timing, 7–24

asynchronous inputs, 7–24
referenced to CPU clock, 7–24

Internal cache/primary cache invalidate,
6–38

Internal Processor Register Access, 4–21
Internal Processor Registers

reset state, 5–45
Interrupt logic, 2–7
Interrupts

description, 6–8
operation, 6–59

IPR Access, 4–21
IPRs

reset state, 5–45
irq_h

description, 6–9
operation, 6–59

ITB Miss, 4–16
ITBASM Register, 5–12
ITBIS Register, 5–12
ITBs, 2–6
ITBZAP Register, 5–11
ITB_PTE Register, 5–2
ITB_PTE_TEMP Register, 5–2, 5–8
ITB_TAG Register, 5–1

L
Ladder Diagrams, 9–5, 9–16
LDL_L/LDQ_L

transactions, 6–29
LDQ_L/LDL_L Instruction, 5–44
Literature, B–2
Load silos, 2–12
Lock Registers, 5–44
Lock transactions, 6–29

M
Maximum power, 7–1
Maximum ratings, 7–1
Maximum temperature, 7–1
Maximum voltage, 7–1
Memory management, 4–16
Memory Management Control and Status

Register, 5–23
Memory management, TB miss flow, 4–16
MM_CSR Register, 5–23
Multiple Errors, 6–69

N
Non-issue Conditions, 2–26
Noncached loads, 6–31

O
Ordering products, B–1
Output Delay Measurement, 7–14
Output Delay Timing, 7–12
Output Edge Rate, 9–7
Output Enable Timing, 7–12

P
21064 Package Dimensions, 10–1
PALcode

CALL_PAL Instruction, 4–5
description, 4–1
entry points, 4–6

Index–6

PALcode (cont’d)
hardware implementation of HW_LD and

HW_ST instructions, 4–23
hardware implementation of HW_MFPR

and HW_MTPR instructions, 4–20
hardware implementation of HW_REI

instruction, 4–24
hardware implementation of instructions,

4–19
internal processor register access, 4–21
introduction, 4–1
invoke, 4–3
PALmode environment, 4–2

PALcode Entry Points
D-stream error, 4–8

PALcode instructions, 2–34
PALcode Instructions

required, 4–25
PALmode, 4–2

environment, 4–2
HW_MTPR cycle delay, 4–15
HW_MTPR restrictions, 4–11
memory management, 4–16
restrictions, 4–9

PAL_BASE Address Register, 5–14
PAL_BASE Register, 4–3, 5–14
PAL_TEMP Registers, 5–44
Parity/ECC bus

operation, 6–60
Parts

ordering, B–1
Performance counters, 2–8
Performance Counters

0 input selection, 5–7
1 input selection, 5–7
use and operation, 5–6

Performance monitoring
operation, 6–63
signals, 6–12

perf_cnt_h
description, 6–12
operation, 6–63

PGA Cavity, 10–4

Pipeline
floating-point operate
integer operate
memory reference
static and dynamic stages
aborts, 2–25
non-issue conditions, 2–26
organization, 2–23

Power
maximum, 7–5
peak, 7–5

Power considerations, 6–37, 7–2, 8–3
Power Dissipation, 8–3

dc, 7–5
Power Supply, 7–2

considerations, 9–1
decoupling, 9–2
sequencing, 9–3

Primary Cache Invalidate
21064, 6–38
21064A, 6–39

Primary cache invalidate signals, 6–4
Processor Status Register, 5–12
Producer-consumer classes, 2–27
Producer-consumer latency, 2–28

matrix, 2–28
Producer-producer latency, 2–30
Propagation Delay, 7–11
PS Register, 5–12

R
Ranges and extents, xxi
Read data acknowledgment operation, 6–51
21064 READ_BLOCK Timing, 7–16
READ_BLOCK transaction, 6–21
Reference Supply, 7–3, 7–6
Reference Voltage, 9–2
Register field type notation, xxii
Related documentation, B–2
Reset pin state, 6–15
Reset timing, 6–16

Index–7

reset_l
operation, 6–37

reset_l, 6–16
Reset_l

description, 6–11
transaction, 6–14

S
Scheduling and issuing rules, 2–27
Secondary cache, 6–34
Serial line interface operation, 6–58
Serial Line Receive Register, 5–11
Serial Line Transmit Register, 5–20
Serial ROM interface

description, 6–10
operation, 6–56

Setup and Hold Time Measurement, 7–15
Shortened READ_BLOCK transactions,

6–24
Shortened WRITE_BLOCK transactions,

6–29
SIER Register, 5–19
Signal Integrity, 9–1
Signal Pin Lists, 10–5

21064A Load/Lock and Store/Conditional
Fast Lock Mode Pin List, 10–12

21064/21064A PGA Pin List, 10–16
Address Pin List, 10–7
21064 Clock Pin List, 10–12
Data Pin List, 10–6
differences between 21064 and 21064A,

10–5
External Cache Control Pin List, 10–8
Ground Pin List, 10–14
Initialization Pin List, 10–11
Instruction Cache Initialization Pin List,

10–11
Interrupts Pin List, 10–11
key for signal type, 10–5
Other Signals Pin List, 10–12
Parity/ECC Bus Pin List, 10–8
Performance Monitoring Pin List, 10–12
Power Pin List, 10–13
Primary Cache Invalidate Pin List, 10–8

Signal Pin Lists (cont’d)
Serial ROM Interface Pin List, 10–11
Spare Pin List, 10–15

Signal Pins
dc input/output characteristics, 7–4
electrical operating limits, 7–2
external cycle timing, 7–12
reference supply (vRef), 7–3

Signals
clocks, 6–12
data, address, and parity/ECC, 6–4
external cache control, 6–5
external cycle control, 6–7
fast lock mode (21064A only), 6–12
initialization, 6–11
instruction cache initialization, 6–10
interrupt, 6–8
names and functions, 6–4
other, 6–13
performance monitoring, 6–12
primary cache invalidate, 6–4
serial ROM interface, 6–10

Single errors
I-stream ECC in multiple quadwords,

6–66
I-stream ECC in one quadword, 6–65

Single-bit errors, 6–65
SIRR, 5–16
SIRR Register, 5–16
SL_CLR Register, 5–10
SL_RCV Register, 5–11
SL_XMIT Register, 5–20
Software Interrupt Enable Register, 5–19
Software Interrupt Request Register, 5–16
SPICE simulation models, 7–25, 9–1
sRomClk_h

description, 6–11
sRomD_h

description, 6–11
sRomOE_l

description, 6–11
STL_C/STQ_C

transactions, 6–29

Index–8

STQ_C/STL_C Instruction, 5–44
Super page, 2–6
sysClkOut1

description, 6–12
operation, 6–35

sysClkOut2
description, 6–12
operation, 6–35

T
tagAdr

description, 6–5
tagAdr RAM operation, 6–42
tagCEOE_h

description, 6–5
tagCtl

description, 6–5
tagCtl RAM operation, 6–43
tagEq_l, 6–59

operation
description, 6–6

tagEq_l Timing, 7–22
tagOk

accessing external cache, 6–46
description, 6–6
synchronization, 7–22, 7–23

tagOk synchronization
21064, 7–22
21064A, 7–23

TB Miss Flow, 4–16
DTB miss, 4–18
ITB miss, 4–16

TB_CTL Register, 5–21
TB_TAG Register, 5–1
Temperature, 8–3
Terminology, xix

Microprocessor labels, xix
Numbering, xx
Unpredictable and undefined, xx

Test specification, 7–9
testClkIn

description, 6–12

Thermal Characteristics
forced air without heat sink, 8–16
heat sink and forced air, 8–6

Thermal Design
critical parameters, 8–16

Thermal Device Characteristics, 8–2
Thermal Impedance, 8–3
Thermal Management

21064A thermal characteristics, 8–10
attaching heat sink to the package, 8–8
critical parameters, 8–16
forced air without heat sink, 8–16
heat sink design considerations, 8–7
heat sink selection, 8–12
heat sink size, 8–6
package and heat sink thermal

performance, 8–7
package orientation, 8–6
techniques, 8–6
21064 thermal characteristics, 8–8

Thermal Performance, 8–14
heat sink, 8–7
heat sink selection, 8–12
package, 8–7

Thermal Resistance
junction to ambient, 8–3
junction to case, 8–3

Transactions
bus, 6–14

Translation Buffer Control Register, 5–21
Translation Buffer Tag Register, 5–1
tristate_l

description, 6–13
operation, 6–63

V
VA Register, 5–24
VI Characteristics Curves, 9–12

example one, 9–12
example three, 9–14
example two, 9–13

VI Curves, 9–5

Index–9

Virtual Address Register, 5–24
Virtual program counter, 2–7
Voltage/Characteristics Curves, 9–12
Voltage/Current Curves, 9–5
vRef, 7–3, 7–6, 9–2

description, 6–13
operation, 6–63

W
Wrapped read transactions, 6–52
Write bandwidth without external cache,

6–28
Write Buffer, 2–13
Write buffer unload timing, 6–29
Write data select operation, 6–54
21064 WRITE_BLOCK Timing, 7–18
WRITE_BLOCK transaction, 6–24

Index–10

