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Preface

This manual describes the architecture, internal design, and external
interface of the Alpha 21066 and Alpha 21066A microprocessors. The Alpha
21066/21066A Microprocessors Data Sheet describes electrical, mechanical,
and thermal characteristics.

Audience
This manual is for system designers, software developers, and hardware
engineers who use the Alpha 21066 and Alpha 21066A microprocessors.

Manual Organization
This manual contains the following chapters and appendixes:

• Chapter 1, Introduction, provides an overview of the Alpha architecture. It
also briefly describes the features of the Alpha 21066 and Alpha 21066A
microprocessors.

• Chapter 2, Internal Architecture, describes the Alpha 21066 and Alpha
21066A microprocessor architecture. It also describes the instruction
pipeline and defines the scheduling and dual-issue rules.

• Chapter 3, Privileged Architecture Library Code, describes the
microprocessor’s privileged architecture library code (PALcode).

• Chapter 4, Internal Processor Registers, describes the instruction fetch
and decode unit (IDU) registers, load and store unit (LSU) registers, and
PAL_TEMP registers.

• Chapter 5, Memory Controller, describes the memory controller, supported
memories, memory operations, error handling, graphics operations,
registers, cycle timing, and interface signals.

• Chapter 6, I/O Controller, describes the I/O controller (IOC), I/O operations,
and IOC error handling, registers, and interface signals.
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• Chapter 7, Clocks, describes the clock interface, phase-locked loop (PLL),
clock frequency selection, and noise reduction requirements.

• Chapter 8, JTAG Test Port, describes the implementation of the joint
testing action group (JTAG) test port.

• Chapter 9, SROM Interface and Icache Initialization, describes the
instruction cache (Icache) initialization, using the serial ROM (SROM). It
also describes how the SROM port can be used as a serial terminal port
after the Icache is initialized.

• Appendix A, 21066A Differences, describes how the Alpha 21066A
microprocessor differs from the Alpha 21066 microprocessor.

• Appendix B, Pin Summary, summarizes the following pins: memory
controller; IOC; clock; JTAG; and instruction reference, interrupt, and
SROM interface.

• Appendix C, Internal Register Summary, summarizes the Alpha 21066
internal registers.

• Appendix D, Technical Support and Ordering Information, describes how
to obtain information and technical support, and order products and
associated literature.

Conventions
Unless otherwise noted, the following conventions are extracted from the Alpha
Architecture Reference Manual. The most recent version of that manual is the
authoritative reference for such information and may supersede information in
this document.

Abbreviations
The following abbreviations apply to binary multiples and register access:

• Binary multiples

The abbreviations K, M, and G (kilo, mega, and giga) represent binary
multiples and have the following values:

K = 210 (1024)
M = 220 (1,048,576)
G = 230 (1,073,741,824)

For example:

2 KB = 2 kilobytes = 2 � 210 bytes
4 MB = 4 megabytes = 4 � 220 bytes
8 GB = 8 gigabytes = 8 � 230 bytes
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• Register Access

The abbreviations used to indicate the type of access to register fields and
bits have the following definitions:

IGN — Ignore

Bits and fields specified as IGN are ignored when written.

MBZ — Must Be Zero

Software must never place a nonzero value in bits and fields specified
as MBZ. Such fields are reserved for future use. An illegal operand
exception occurs if the processor encounters a nonzero value in a field
specified as MBZ.

RAX — Read As UNDEFINED

Bits and fields specified as RAX are unimplemented bits of registers
that read as UNDEFINED.1

RAZ — Read As Zero

Bits and fields specified as RAZ return a zero when read.

RC — Read Clears

Bits and fields specified as RC are cleared when read. Unless otherwise
specified, such fields cannot be written.1

RES — Reserved

Bits and fields specified as RES are reserved by Digital and should not
be used.1

RO — Read Only

Bits and fields specified as RO can be read and are ignored (not written)
on write operations.1

RW — Read and Write

Bits and fields specified as RW can be read and written. Writing a zero
clears the bits.1

1 Implementation-specific or typographical convention adapted from or not specified in
the Alpha Architecture Reference Manual.
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R/W1C — Read and Write One to Clear

Bits and fields specified as R/W1C can be read. Writing a one clears
the bits.1

WA — Write Always Clears

Bits and fields specified as WA can be read. Any write clears the bits.

WO — Write Only

Bits and fields specified as WO can be written but not read. In the I/O
controller the results of reading such registers are UNPREDICTABLE.
Writing a zero clears the bits.1

X

Bits and fields specified as X return UNPREDICTABLE results when
read and are ignored on write operations.1

Aligned and Unaligned
The terms aligned and naturally aligned are interchangeable and refer to data
objects that are powers of two in size. An aligned datum of size 2n is stored
in memory at a byte address that is a multiple of 2n; that is, one that has n
low-order zeros. For example, an aligned 64-byte stack frame has a memory
address that is a multiple of 64.

A datum of size 2n is unaligned if it is stored in a byte address that is not a
multiple of 2n.

Bit Notation
Multiple-bit fields can include contiguous and noncontiguous bits contained
in angle brackets ( <> ). Multiple contiguous bits are indicated by a pair of
numbers separated by a colon ( : ). For example, <9:7,5,2:0> specifies bits
9,8,7,5,2,1, and 0. Similarly, single bit positions are frequently indicated with
angle brackets. For example, ‘‘The PAL bit (<0>) indicates PALmode to the
hardware,’’ indicates that the PAL bit is bit 0 in a register.1

Caution
Cautions indicate potential damage to equipment or loss of data.1

Chip
Unless otherwise stated, throughout this manual, the terms microprocessor
and chip mean the Alpha 21066 or the Alpha 21066A microprocessor.
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Data Units
The following data unit terminology is used throughout this manual.

Term Words Bytes Bits Other

Nibble ¼ ½ 4 —

Byte ½ 1 8 —

Tribyte 1½ 3 24 —

Word 1 2 16 —

Longword 2 4 32 —

Quadword 4 8 64 Single read fill—The cache space that can be
filled in a single read access. It takes four
read accesses to fill an onchip (I or D) cache
line.

Octaword 8 16 128 —

Hexword 16 32 256 Cache block, cache line—The space allocated
to a single Bcache block.

External
Unless otherwise stated, throughout this manual, the term external means not
contained in the Alpha 21066 or Alpha 21066A microprocessor.

Microprocessor
Unless otherwise stated, throughout this manual, the terms microprocessor
and chip mean the Alpha 21066 or the Alpha 21066A microprocessor.

Note
Notes emphasize particularly important information.1

Numbering
All numbers are decimal or hexadecimal unless otherwise indicated. In cases
of ambiguity, a subscript indicates the radix of nondecimal numbers. For
example, 19 is decimal, but 1916 and 19A are hexadecimal.1

Ranges and Extents
Ranges are specified by a pair of numbers separated by two periods ( .. ) and
are inclusive. For example, a range of integers 0..4 includes the integers 0, 1,
2, 3, and 4.

Extents are specified by a pair of numbers in angle brackets ( <> ) separated
by a colon ( : ) and are inclusive. For example, bits <7:3> specifies an extent
including bits 7, 6, 5, 4, and 3.
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Security Holes
A security hole is an error of commission, omission, or oversight in a system
that allows protection mechanisms to be bypassed.

Security holes exist when unprivileged software (that is, software running
outside of kernel mode) can:

• Affect the operation of another process without authorization from the
operating system.

• Amplify its privilege without authorization from the operating system.

• Communicate with another process, overtly or covertly, without
authorization from the operating system.

The Alpha architecture is designed to contain no architectural security holes.
Hardware (processors, buses, controllers, and so on) and software should also
be designed to avoid security holes.

Signal Names
Signal names are printed in lowercase, boldfaced type. The names of low-
asserted signals carry the suffix _l. The names of high-asserted signals have
no suffix. For example, pll_clk_in is a high-asserted signal, and pll_clk_in_l
is a low-asserted signal.

UNPREDICTABLE and UNDEFINED
Only privileged software (that is, software running in kernel mode) might
trigger UNDEFINED operations.

Either privileged or unprivileged software might trigger UNPREDICTABLE
results or occurrences.

UNPREDICTABLE results and occurrences do not disrupt the basic operation
of the processor; the processor continues to execute instructions in its normal
way.

UNDEFINED operation might halt the processor or cause it to lose
information.

A result specified as UNPREDICTABLE might acquire an arbitrary value
subject to a few constraints. Such a result might be an arbitrary function of
the input operands or of any state information that is accessible to the process
in its current access mode. UNPREDICTABLE results might be unchanged
from their previous values. Operations that produce UNPREDICTABLE
results might also produce exceptions.

UNPREDICTABLE results must not be security holes.
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Specifically, UNPREDICTABLE results must not depend on or be a function
of the contents of memory locations or registers that are inaccessible to the
current process in the current access mode.

Also, operations that might produce UNPREDICTABLE results must not:

• Write or modify the contents of memory locations or registers that are
inaccessible to the current process in the current access mode.

• Halt or hang the system or any of its components.

For example, a security hole would exist if some UNPREDICTABLE result
depended on:

• The value of a register in another process

• The contents of processor temporary registers left behind by some
previously running process

• A sequence of actions of different processes

An occurrence specified as UNPREDICTABLE might happen or not based
on an arbitrary choice function. The choice function is subject to the same
constraints as are UNPREDICTABLE results and, in particular, must not
constitute a security hole.

Results or occurrences specified as UNPREDICTABLE might vary from
moment to moment, implementation to implementation, and instruction to
instruction within implementations. Software can never depend on results
specified as UNPREDICTABLE.

Operations specified as UNDEFINED might vary from moment to moment,
implementation to implementation, and instruction to instruction within
implementations. The operation might vary in effect from nothing to stopping
system operation. UNDEFINED operations must not cause the processor to
hang; that is, reach an unhalted state from which there is no transition to a
normal state in which the machine executes instructions.
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1
Introduction

This chapter is an overview of the Alpha architecture as it is implemented in
the Alpha 21066 microprocessor (21066) and the Alpha 21066A microprocessor
(21066A). It also lists the major features of the microprocessors.

Note

The 21066–166 and 21066–100 are functionally identical—they differ
only in clock frequency (21066–166 at 166 MHz and 21066–100 at
100 MHz).

The upgraded 21066A versions (21066A–266 at 266 MHz, 21066A–233
at 233 MHz, and 21066A–100 at 100 MHz) are functionally identical
and differ only in clock frequency.

The functionality described for the 21066 is true for the 21066A, except
where the differences are explicitly detailed.

1.1 Architecture
The Alpha architecture is a 64-bit load and store RISC architecture designed
with particular emphasis on speed, multiple instruction issue, multiple
processors, and multiple operating system support.

All registers are 64 bits in length and all operations are performed between
64-bit registers. All instructions are 32 bits in length. Memory operations are
either load instructions or store instructions. All data manipulation is done
between registers.

The Alpha architecture supports the following data types:

• 8-, 16-, 32-, and 64-bit integers

• IEEE 32-bit and 64-bit floating-point formats

• VAX 32-bit and 64-bit floating-point formats
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In the Alpha architecture, instructions interact with each other only by one
instruction writing to a register or memory location and another instruction
reading from that register or memory location. Using resources in this way
makes it easy to build processors that issue multiple instructions every CPU
cycle.

The microprocessor uses a set of subroutines, called privileged architecture
library code (PALcode), that is specific to a particular Alpha operating system
implementation and hardware platform. These subroutines provide operating
system primitives for context switching, interrupts, exceptions, and memory
management. These subroutines can be invoked by hardware or CALL_PAL
instructions. CALL_PAL instructions use the function field of the instruction
to vector to a specified subroutine. PALcode is written in standard machine
code with some machine-specific extensions to provide direct access to low-level
hardware functions. PALcode supports optimizations for multiple operating
systems, flexible memory management implementations, and multi-instruction
atomic sequences.

The Alpha architecture does byte shifting and masking with normal 64-bit
register-to-register instructions; it does not include single byte load and
store instructions. The software developer must determine the precision of
arithmetic traps.

For more information about the Alpha architecture, see the Alpha Architecture
Reference Manual.

1.2 Microprocessor Features
The 21066 implementation of the Alpha architecture is a 0.65-micron, CMOS-
based, superscalar, superpipelined processor using dual-instruction issue. The
21066A is implemented in the same way, with 0.50-micron technology.

The chip incorporates a high level of system integration for best-in-class
system performance in cost-focused (21066–166, 21066A–233, and 21066A–266)
or embedded (21066–100 and 21066A–100) applications. It integrates onchip,
fully pipelined integer and floating-point processors, a high-bandwidth memory
controller, an industry-standard I/O controller (IOC), an embedded graphics
accelerator, internal instruction and data caches, and external cache control.

The microprocessor and associated PALcode implement IEEE single-precision
and double-precision, VAX F_floating and G_floating data types, and support
longword (32-bit) and quadword (64-bit) integers. Byte-manipulation
instructions provide support for byte (8-bit) and word (16-bit) operations.
Limited hardware support is also provided for the VAX D_floating data type.
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Microprocessor features include the following:

• Fully pipelined, 64-bit RISC architecture

• Supported by multiple operating systems:

– Microsoft Windows NT

– OSF/1

– OpenVMS

– VxWorks for Alpha

• Best-in-class performance:

– 266 MHz (21066A–266), 233 MHz (21066A–233), 166 MHz (21066–166),
or 100 MHz (21066–100 and 21066A–100) operation

– Superscalar, superpipelined (dual issue)

– Peak instruction execution rate of 532 MIPS (21066A–266), 466 MIPS
(21066A–233), 330 MIPS (21066-166), or 200 MIPS (21066–100 and
21066A–100)

– 0.50-micron (21066A) and 0.65-micron (21066) CMOS technology

• Pipelined onchip floating-point unit. IEEE single-precision and double-
precision, VAX F_floating and G_floating, longword and quadword data
types. Limited support for VAX D_floating data type.

• Onchip demand-paged memory management unit:

– 12-entry instruction stream translation buffer (ITB) with eight entries
for 8-KB pages and four entries for 4-MB pages

– 32-entry data stream translation buffer (DTB) with each entry able to
map a single 8-KB, 64-KB, 512-KB, or 4-MB page

– Superpage mapping

• Onchip high-bandwidth memory controller:

– Full 64-bit memory data path

– Dynamic RAM (DRAM) controller with fully programmable timing

– Optional error correction code (ECC)

– Support for up to four banks of memory with programmable timing for
each bank

– RAS/CAS memory bus to industry-standard, single inline memory
modules (SIMMs)
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• Embedded graphics accelerator:

– Onchip support for direct connection to a video RAM (VRAM) frame
buffer

– High-bandwidth memory data path to VRAM

• PCI IOC:

– 32-bit multiplexed address and data

– Industry-standard interface

– No glue logic needed to connect PCI-compliant chips

– Usable bandwidth in excess of 100 MB/s

– Burst mode read and write operations

– Asynchronous operation to CPU

– Multimaster with peer-to-peer access

– Alpha I/O-compliant

• Onchip, 8-KB, direct-mapped, write-through data cache (Dcache)

• Onchip, 8-KB, direct-mapped, instruction cache (Icache)

• Onchip control for optional, external, write-back backup cache (Bcache):

– Direct connection to external static RAMs (SRAMs) without any
external logic

– Programmable cache size and speed

• Built-in phase-locked loop (PLL):

– Frequency multiplier for low cost input clock

– Programmable multiplier values

• Serial ROM (SROM) interface:

– Loads instruction cache after reset

– Supports software-controlled serial port after initialization

• Chip- and module-level test support — JTAG (IEEE 1149)

• 3.3-V supply voltage interfaces directly to 5-V logic
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In addition, the 21066A features:

• Software-controllable power management

Programmable clock divider

Programmable override for interrupts, DMA, or both

• Parity protection on internal caches
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2
Internal Architecture

This chapter describes the chip’s microarchitecture. Much of the hardware
design is based on specific PAL functionality. The combination of
microarchitecture and PALcode (described in Chapter 3) defines the
chip’s implementation of the Alpha architecture. This chapter also describes
the instruction pipeline and defines the scheduling and dual-issue rules. This
chapter is an overview of the internal architecture and does not describe the
chip in great detail.

2.1 Overview
The chip consists of a core central processing unit (CPU), a memory controller,
and an I/O controller (IOC). The chip also contains an instruction cache
(Icache), a data cache (Dcache), and a serial read-only memory (SROM)
interface. Figure 2–1 is a block diagram of the chip.

The memory controller interfaces to the system memory and the optional,
external, backup cache (Bcache). It also contains the embedded graphics
accelerator. The memory controller and interface are described in Chapter 5.

The PCI IOC is the interface between peripheral devices, CPU, and system
memory. It is compatible with the PCI Local Bus Specification, Revision 2.0.
The IOC and interface are described in Chapter 6.

The SROM interface provides the initialization data load path from the
SROM to the Icache. Following initialization, this interface can be used as a
diagnostic port through the use of PALcode. The SROM interface and operation
are described in Chapter 9.

The interface unit connects the CPU, memory controller, IOC, and the SROM
interface (Figure 2–1). It consists of a 64-bit bidirectional data bus, address
bus, invalidate address bus, reset logic, and control.
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Figure 2–1 Microprocessor Block Diagram

Prefetcher

Resource
Conflict Divider

Multiplier
Shifter

Adder

Logic Box

Integer Floating−Point
Register Register

Integer

File (FRF)File (IRF)

Execution
Floating−Point

Unit (IEU) 
Execution
Unit (FPU)

Data Cache (Dcache)

DTB Load SiloWrite
Buffer

Address
Generator

Tag Data

Load/Store Unit (LSU)

SROM
Debug Port

PCI I/O
Controller (IOC)

Control

Address/Data

PLL Clock
Generator

Memory
Controller

Clock

SROM Clock

Address, RAS, CAS

SROM Data

Instruction

Interface
Unit

Fetch/Decode

Pipeline
Control

 Unit (IDU)

PC
Calculation

ITB

Branch
History Table Tag Data

Multiplier/
Adder

Pipeline

ECC

Data Path

Backup
Cache

Controller

Addr/Data

Addr/Data
Queue

Scatter−Gather

CPU

TLB

Interrupts

Instruction Cache (Icache)

Accelerator
Graphics

Backup Cache Tag

Memory Data/ECC

The IDU is the CPU’s central control unit. It issues instructions, maintains
the pipeline, and performs program counter (PC) calculations. The CPU also
contains four independent execution units:

• IEU

• LSU

• FPU

• Branch unit
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Each unit accepts no more than one instruction per cycle; however, correctly
scheduled code can issue two instructions to two independent units in a single
cycle.

2.2 Instruction Fetch and Decode Unit
The primary function of the IDU is to issue instructions to the IEU, LSU, and
FPU. The IDU includes the following functions:

• Prefetcher

• PC pipeline

• Two instruction translation buffers (ITBs)

• Abort logic

• Register conflict or dirty logic

• Exception logic

• Internal processor registers (IPRs)

The IDU decodes two instructions in parallel and checks that the required
resources are available for both instructions, as follows:

• If resources are available, both instructions are issued.

• If resources are available only for the second instruction, neither the first
nor the second instruction is issued.

• If the IDU issues only the first of a pair of instructions, it does not advance
another instruction to attempt a dual issue; dual issue is attempted only
on aligned quadword (8-byte) pairs.

Section 2.8.4 describes instructions that can be dual issued.
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2.2.1 Branch Prediction Logic
The branch unit, or prediction logic, is also part of the IDU. The microprocessor
offers a register-selectable choice of branch prediction strategies (Section 4.1.7).
Each instruction location in the Icache includes a single history bit to record
the outcome of branch instructions. This information can be used to predict
the result when the branch instruction is next executed. The prediction for the
first execution of a branch instruction is based on the sign of the displacement
field within the branch instruction, as follows:

• If the sign is negative, the instruction prefetcher predicts the conditional
branches to be taken.

• If the sign is positive, the instruction prefetcher predicts that the
conditional branches are not to be taken.

• Alternatively, if the history table is disabled, all branch prediction can be
based on the sign of the displacement field.

The microprocessor provides a 4-entry subroutine return stack that is
controlled by the hint bits in the BSR, HW_REI, JMP, JSR, RET, and
JSR_COROUTINE instructions. The chip also allows all branch prediction
hardware to be disabled.

Note

The 21066A implements an improved branch prediction scheme. For
details, see Section A.4.

2.2.2 Instruction Translation Buffers
The IDU includes two fully associative instruction translation buffers (ITBs):

• An 8-entry, small-page ITB for 8-KB pages

• A 4-entry, large-page ITB for 4-MB (512 � 8 KB) pages

Both translation buffers (TBs) store recently used, instruction stream (Istream)
page-table entries and use a not-last-used replacement algorithm.

In addition, both ITBs support a register-enabled extension called the
superpage. The ITB superpage mappings provide one-to-one translation
from virtual program counter bits <33:13> to physical program counter bits
<33:13> when virtual address bits <42:41> = 2. When translating through the
superpage, the address space match (ASM) bit is always set in the PTE used in
the Icache. Access to the superpage mapping is allowed only while executing
in kernel mode.
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PALcode fills and maintains the ITBs. The operating system, through PALcode,
is responsible for ensuring that virtual addresses can be mapped only through
a single ITB entry (in the large page, small page, or superpage) at the same
time.

The IDU presents the 43-bit virtual program counter (VPC) to the ITB each
cycle while not executing in PALmode. If the PTE associated with the VPC is
cached in the ITB, the IDU uses the page frame number (PFN) and protection
bits for the page that contains the VPC to complete the address translation
and access checks.

The ITBs support a single address space number (ASN) through the PTE ASM
bit. Each PTE entry in the ITB contains an ASM bit. Write operations to
the ITBASM register invalidate all entries that do not have the ASM bit set.
This is a simple way to preserve entries that map operating system regions
while invalidating all other entries. (The ITBASM register is described in
Section 4.1.5.)

For more information about TBs and PTEs, see the Alpha Architecture
Reference Manual.

2.2.3 Interrupt Logic
The IDU exception logic supports three sources of interrupts:

• Hardware interrupts

– Three level-sensitive hardware interrupts are sourced by pins irq<2:0>.

– Two internally generated interrupts respond to external interface error
conditions. These are sourced by the memory controller error status
register (ESR, Section 5.6.6) and the I/O controller status register 0
(IOC_STAT0, Section 6.4.3).

• Software interrupts

The 15 prioritized software interrupts are sourced by the software interrupt
request register (SIRR, Section 4.1.13.2).

• Asynchronous system traps (ASTs)

Four ASTs are available, one for each processor mode: user, supervisor,
executive, and kernel. These traps are sourced by the asynchronous trap
request register (ASTRR, Section 4.1.13.3).

In addition to the three level-sensitive hardware interrupts from the irq<2:0>
pins, error conditions detected in the memory controller and the IOC can
interrupt the CPU.
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The memory controller generates an interrupt if it detects any error condition,
such as a nonexistent memory access, a missed refresh cycle, an uncorrectable
ECC error, and a Bcache parity error. To return the memory subsystem to
correct operation, software must clear these error conditions by writing to the
memory controller ESR.

The I/O controller generates an interrupt to the CPU when it detects certain
error conditions. These errors are logged in the IOC_STAT0 register. To
remove the interrupt, software must write a one to the error bit in the
IOC_STAT0 register.

The memory controller and IOC error conditions and registers are described in
Chapters 5 and 6.

All interrupts can be independently masked using onchip enable registers.
In addition, AST interrupts are qualified by the current processor mode
and the current state of software interrupt enable register bit 2 (SIER,
Section 4.1.13.5). Providing distinct enable bits for each independent interrupt
source allows a flexible, software-controlled interrupt priority scheme to be
implemented in PALcode or the operating system.

For example, the microprocessor can support a 5-level interrupt priority
scheme by defining a distinct state of the hardware interrupt enable register
(HIER, Section 4.1.13.4) for each interrupt priority level (IPL). The state of the
HIER determines the current interrupt priority. The lowest IPL is produced by
enabling all five interrupts, for example bits <5:1>. The next IPL is produced
by enabling bits <5:2> and so on, to the highest IPL that is produced by
enabling only bit 5 and disabling bits <4:1>.

When all interrupt enable bits are cleared, the processor cannot be interrupted
from the hardware interrupt request register (HIRR, Section 4.1.13.1). Each
state (bits <5:1> enabled through only bit 5 enabled) represents an individual
IPL. If these states are the only states allowed in the HIER, a 5-level hardware
interrupt priority scheme can be controlled entirely by PAL software. The
scheme is extensible to provide multiple interrupt sources at the same IPL by
grouping enable bits. Groups of enable bits must be set and cleared together
to support multiple interrupts of equal priority level. This method reduces the
total available number of distinct levels.

Because enable bits are provided for all hardware, software, and AST interrupt
requests, a priority scheme can span all sources of processor interrupts.
Additional restrictions are placed on AST interrupt requests.
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Four AST interrupts are provided; one for each processor mode. The AST
interrupt requests are qualified such that AST requests that correspond to a
given mode are blocked when the processor is in a higher mode, regardless of
the state of the AST interrupt enable register (ASTER, Section 4.1.13.6). In
addition, all AST interrupt requests are qualified by SIER bit 2.

When the processor receives an interrupt request and that request is enabled
and the processor is not currently executing PALcode, the hardware reports or
delivers an interrupt to the exception logic. Before vectoring to the interrupt-
service PAL dispatch address, the pipeline is completely drained and all
outstanding Dcache fills are completed. The restart address is saved in the
exception address register (EXC_ADDR, Section 4.1.8) and the processor enters
PALmode. The cause of the interrupt can be determined by examining the
state of the interrupt request registers.

Usually, the interrupts from the irq<2:0> pins can be grouped as follows:

• Interval timer interrupts

• Halt, powerfail, ISA and EISA nonmaskable interrupts, and the PCI serr_l
signal

• ISA and EISA interrupt requests, and PCI interrupt requests

Hardware interrupt requests are level-sensitive; therefore, they can be removed
before an interrupt is serviced. If they are removed before the interrupt
request register is read, the register will return a zero value.

2.2.4 Performance Counters
An onchip performance recording mechanism counts various hardware events
and causes an interrupt upon counter overflow. Interrupts are triggered six
cycles after the event, and therefore, the exception program counter (PC) might
not reflect the exact instruction causing counter overflow.

Two counters are provided, to allow accurate comparison of two variables
under potentially nonrepeatable, experimental conditions. The events counted
include:

• Instruction issues and instruction nonissues

• Total cycles

• Pipeline dry and pipeline freeze

• Branch mispredictions and cache misses

• Counts of various instruction classes
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In addition, two external interface events (such as direct memory access [DMA]
transactions, Bcache accesses, and so on), can be counted by programming the
memory controller error address register (EAR, Section 5.6.7).

See Section 4.1.14 for more information about the performance counters.

2.3 Integer Execution Unit
The IEU contains the 64-bit integer execution data path, which includes the
following functions:

• Adder

• Logic box

• Barrel shifter

• Byte zapper

• Bypassers

• Integer multiplier

The integer multiplier retires 4 bits per cycle.

The IEU also contains the 32-entry, 64-bit integer register file (IRF). The IRF
has four read ports and two write ports to simultaneously read operands to
and write operands (results) from the IEU data path and the LSU.

2.4 Load and Store Unit
The LSU contains four major sections:

• Address translation data path, which includes the data translation buffer

• Load silo

• Write buffer

• Internal processor registers (IPRs)

The address translation data path has a displacement adder that generates
the effective virtual address (VA) for load and store instructions, and a data
translation buffer (DTB) that generates the corresponding physical address.

CPU requests fall into three classes: Dcache fills, Icache fills, and write buffer
requests. Simultaneous internal requests are resolved using a fixed priority
scheme in which Dcache fill requests are given highest priority, followed by
Icache fill requests. Write buffer requests have the lowest priority.
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Because the internal cache fill block size is 32 bytes, cache fill operations result
in four data transfers across a 64-bit bus from the memory controller to the
appropriate cache. Also, because each write buffer is 32 bytes wide, write
transactions may result in four data transfers from the write buffer to the
memory controller.

The internal processor registers (IPRs) are described in Chapter 4.

2.4.1 Data Translation Buffer
The 32-entry, fully associative data translation buffer (DTB) stores recently
used, data-stream (Dstream) page table entries (PTEs). The DTB supports
four page-size granularity options (also called granularity hints) that allow an
aligned group of 1, 8, 64, or 512 pages to be treated as a single larger page.

The DTB also supports the register-enabled superpage extension. The DTB
superpage mappings provide virtual-to-physical address translation for two
regions of the virtual address space as follows:

• In the first region, superpage mapping is enabled when VA bits
<42:41> = 2. In this mode, the entire physical address space is mapped
multiple times to the quadrant of virtual address space defined by VA
<42:41> = 2.

• In the second region, a 30-bit region of the total physical address (PA)
space defined by PA <33:30> = 0, is mapped into a single corresponding
region of virtual address space defined by VA <42:30> = 1FFE.

Superpage translation is allowed only in kernel mode. The operating system,
through PALcode, is responsible for ensuring that translation buffer entries,
including superpage regions, do not map overlapping virtual address regions at
the same time.

Each PTE in the DTB contains an ASM bit. The DTB supports a single ASN
with the PTE ASM bit. Write operations to the DTBASM register invalidate
all entries that do not have the ASM bit set. This is a simple way to preserve
entries that map operating system regions while invalidating all other entries.
(The DTBASM register is described in Section 4.2.6.)

For load and store instructions, the effective 43-bit virtual address is presented
to the DTBs. If the PTE of the supplied virtual address is cached in the DTB,
the LSU uses the page frame number (PFN) and protection bits for the page
that contains the address to complete the address translation and access
checks.

PALcode fills and maintains the DTB. (The flow for a DTB miss is described
in Chapter 3.) Note that the DTB can be filled in kernel mode by setting the
hardware enable (HWE) bit in the ICCSR (Section 4.1.7).
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For more information about translation buffers and page table entries, see the
Alpha Architecture Reference Manual.

2.4.2 Load Silos
The LSU contains a memory reference pipeline that can accept a new load or
store instruction every cycle until a Dcache fill is required. Because the Dcache
lines (blocks) are allocated only on load misses, the load and store unit can
accept a new load instruction every cycle until a load miss occurs. When a load
miss occurs, the IDU stops issuing all instructions that use the load port of the
register file or are otherwise handled by the LSU. These instructions include:
LDx, STx, HW_MTPR, HW_MFPR, FETCH, FETCH_M, RPCC, RS, RC, and
MB. They also include all memory-format branch instructions: JMP, JSR,
JSR_COROUTINE, and RET. (However, a JSR instruction with a destination
of R31 can be issued.)

Instructions are issued in pipeline stage 3 and the result of each Dcache lookup
is not known until pipeline stage 6. Therefore, there can be two instructions in
the LSU pipeline behind a load instruction that misses in the Dcache. These
two instructions are handled as follows:

• Loads that hit in the Dcache are allowed to complete (hit-under-miss).

• Loads that miss are placed in a silo and are presented in sequence after
the first load miss completes.

• Store instructions are presented to the Dcache at their normal time, with
respect to the pipeline. They are placed in a silo and presented to the write
buffer in sequence, with respect to loads that miss.

To improve performance, the IDU can restart the execution of LSU-directed
instructions before the last pending Dcache fill is complete. Dcache fill
transactions result in four data transfers from the memory controller to
the Dcache. These transfers can each be separated by one or more cycles,
depending on the characteristics of the Bcache and memory subsystems.

In the first of these four transfers, the memory controller sends the quadword
of the fill block originally requested by the CPU (it can always do this for read
operations that hit in the Bcache). Therefore, the pending load instruction that
requested the Dcache fill can finish before the Dcache fill finishes.

Dcache fill data accumulates one quadword at a time, into a pending fill
latch, rather than being written into the cache array as it is received from
the memory controller. When the load miss silo is empty and the requested
quadword for the last outstanding load miss is received, the IDU resumes
execution of LSU-directed instructions despite the still-pending Dcache fill.
When the entire cache line has been received from the memory controller, it is
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written into the Dcache data array when the array is not busy with a load or a
store instruction.

2.4.3 Write Buffer
The LSU write buffer has two purposes:

• The CPU can generate store data faster than the Bcache subsystem can
accept the data, which causes CPU stall cycles. The write buffer is a finite,
high-bandwidth resource that receives store data and reduces the number
of possible CPU stall cycles to a minimum.

• The write buffer also attempts to aggregate store data into aligned, 32-byte
cache blocks to maximize the rate at which the microprocessor can write
data into the Bcache.

The write-merging operation of the write buffer can cause the order of offchip
write operations to be different from the order in which their corresponding
store instructions were executed. In addition, the write buffer can collapse
multiple store instructions to the same location into a single offchip write
transaction. Software that requires strict write ordering or that does multiple
stores to the same location (resulting in multiple offchip write sequences), must
insert a memory barrier (MB) instruction between the store instructions of
interest.

In addition to store instructions, MB, STQ/C, STL/C, FETCH, and FETCH_M
instructions are written into the write buffer and sent offchip. Unlike store
instructions, however, these write-buffer-directed instructions are never
merged into a write buffer entry with other instructions.

Each of the four write buffer entries can store up to 32 bytes (four quadwords).
The buffer has a head pointer and tail pointer. The buffer puts new commands
into empty tail entries and takes commands out of nonempty head entries. The
head pointer increments when an entry is unloaded to the memory controller,
and the tail pointer increments when new data is put into the tail entry. The
head and tail pointers point to the same entry only when either all four entries
are empty or no entries are empty.

For example, suppose that no write operations merge with existing nonempty
entries. In that case, the ordering of write operations with respect to other
write operations will be maintained. The write buffer never reorders write
operations except to merge them into nonempty entries. After a write operation
merges into a nonempty entry, its programmed order is lost with respect to
write operations in the same slot and write operations in other slots.
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The write buffer attempts to send its head entry offchip by requesting the
memory controller when one of the following conditions is met:

• The write buffer contains at least two valid entries.

• The write buffer contains one valid entry and at least 256 CPU cycles have
elapsed since the execution of the last write-buffer-directed instruction.

• The write buffer contains an MB instruction.

• The write buffer contains an STQ/C or STL/C instruction.

• A load miss that requires the write buffer to be flushed is pending to an
address that is currently valid in the write buffer. The write buffer is
completely flushed regardless of which entry matches the address.

Note

The 21066A implements revised write buffer unload logic. For details,
see Section A.5.

2.4.3.1 Memory Barrier Instruction
The CPU will not execute load or store instructions that occur after an MB
instruction until all preceding load or store instructions have been completed.
The instructions are completed when:

• A load instruction from a memory address is complete when the memory
controller returns the requested read data to the CPU.

• A load instruction from a PCI address is complete when the requested read
data has been returned to the CPU.

• A store instruction to a memory address is complete when the write data
has been written to memory.

• A store instruction to a PCI address is complete when the write data has
been transferred to the PCI (and is not being retried).

A load or store instruction is considered complete even if error status occurs.
(See Chapter 6 for more information.)

2–12 Internal Architecture



2.5 Floating-Point Unit
The onchip, pipelined FPU can execute both IEEE and VAX floating-point
instructions. The microprocessor supports IEEE S_floating and T_floating
data types, with all rounding modes except round to ± infinity, which can be
provided in software. The microprocessor fully supports VAX F_floating and
G_floating data types and provides limited support for the VAX D_floating
format.

The FPU includes the following functions:

• A 32-entry, 64-bit floating-point register file (FRF)

• The user-accessible floating-point control register (FPCR), containing:

Round mode controls

Exception flag information

For a description of the FPCR, see the Alpha Architecture Reference
Manual.

The FPU can accept an instruction every cycle, with the exception of
floating-point divide instructions. The latency for data-dependent, nondivide
instructions is six cycles. (For more information about instruction timing, see
Section 2.7.)

For divide instructions, the FPU does not compute the inexact flag.
Consequently, the INE exception flag in the FPCR is never set for IEEE
floating-point divide using the inexact enable (/INEXACT) modifier. To deliver
IEEE compliant exception behavior, the FPU hardware always traps on
DIVS/SI and DIVT/SI instructions. This allows the arithmetic exception
handler (in either PALcode or the operating system) to identify the source of
the trap, compute the inexact flag, and deliver the appropriate exception. The
exception associated with DIVS/SI and DIVT/SI instructions is imprecise. To
ensure that the trap handler can deliver correct behavior to the user, software
must follow the software completion modifier rules specified by the Alpha
architecture.

Note

The 21066A has new floating-point divide hardware that greatly
reduces average divide latency. For more detailed information, refer to
Section A.3.

For IEEE compliance issues, see Section 2.5.1 and the Alpha Architecture
Reference Manual.
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2.5.1 IEEE Floating-Point Conformance
The microprocessor supports IEEE floating-point operations as specified by
the Alpha architecture. Support for a complete implementation of the IEEE
Standard for Binary Floating-Point Arithmetic (754-1985) is provided by a
combination of hardware and software as described in the Alpha Architecture
Reference Manual. Additional information that provides guidelines for
writing code supporting precise exception handling (necessary for complete
conformance to the standard) is in the Alpha Architecture Reference Manual.

The microprocessor implements the following functions:

• When operating without the /UNDERFLOW modifier, the microprocessor
replaces underflow results with exact zero, whether or not the correct
result would have been negative zero as defined in the IEEE standard.
This Alpha architecture value-added behavior improves performance over
either hardware or software denormal handling.

When strict IEEE compliance is required, the /UNDERFLOW modifier
is necessary and the software must provide the correct result (including
negative zero).

• The microprocessor supports infinity operands only when used in the
CMPT instruction. Other instructions using infinity operands cause invalid
operation (INV) arithmetic traps.

• NaN, denormal, or infinity (except when used in CMPT) input operands
produce INV arithmetic traps when used with arithmetic operation
instructions. CPYSE, CPYSN, FCMOV, MF_FPCR, and MT_FPCR are not
arithmetic operations and will pass NaN, denormal, and infinity values
without initiating arithmetic traps. Input operand traps take precedence
over arithmetic result traps.

• The microprocessor will not produce a NaN, denormal, or infinity result.

• The microprocessor supports IEEE normal and chopped rounding modes
in hardware. Instructions designating plus infinity and minus infinity
rounding modes cause precise exceptions to the OPCDEC PAL entry point.
This implies that the EXC_ADDR register will be loaded with the address
of the faulting instruction and all following instructions will be aborted.
Table 3–5 describes the PALcode entry points.

• The DIVS and DIVT instructions with the /INEXACT modifier report
an inexact (INE) arithmetic trap on all results of operations that do not
involve NaN, infinity, or denormal input operands. Operations using NaN,
infinity, and denormal input operands generate INV arithmetic traps.
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• Floating-point exceptions generated by the microprocessor are recorded in
the following places:

Whether or not the corresponding trap is enabled (through the
instruction modifiers), the occurrence of all detected exceptions other
than SWC are recorded in the FPCR (accessible by the MT_FPCR
and MF_FPCR instructions) records. Because this register can be
cleared only with an explicit clear command (MT_FPCR), the exception
information it records is a summary of all exceptions that have occurred
since the last clear operation.

If an exception is detected and the corresponding trap is enabled,
the microprocessor records the condition in the exception summary
register (EXC_SUM, Section 4.1.9) and initiates an arithmetic trap. As
a special case, in order to support inexact exception behavior with the
DIVS/I and DIVT/I instructions, the FPCR does not record an inexact
exception, although the microprocessor always sets the INE bit in the
EXC_SUM register during these instructions. This behavior allows
software to emulate the division instructions with accurate reporting of
potential inexact exceptions.

For more information about the FPCR, see the Alpha Architecture Reference
Manual.

2.6 Internal Cache Organization
All memory cells in the onchip Dcache and Icache are fully static, 6-transistor
CMOS structures.

2.6.1 Data Cache
The 8-KB data cache (Dcache) is a write-through, direct-mapped, read-allocate
physical cache with 32-byte blocks. When a PCI device writes to cacheable
memory, the Dcache block corresponding to the memory address is set invalid
to maintain cache coherency. The 21066A has longword parity protection.

2.6.2 Instruction Cache
The 8-KB instruction cache (Icache) is a physical direct-mapped cache. Each
cache block (line) contains the following:

• 32 bytes of Istream data

• 21-bit associated tag

• 6-bit address space number (ASN) field

• 1-bit address space match (ASM) field
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• 8-bit (21066) or 16-bit (21066A) branch history (BHT) field

The 21066A has longword parity protection.

The Icache does not contain hardware for maintaining coherency with memory
and is unaffected by any PCI write operations to the memory.

The chip also contains a single-entry Icache stream buffer and supporting logic
that reduces the performance penalty incurred by Icache misses during inline
instruction processing. Stream buffer prefetch requests never cross physical
page boundaries; instead, they wrap around to the first block of the current
page.

Note

Both the Dcache and the Icache are longword parity protected in the
21066A. Refer to Section A.2 for details.

2.7 Instruction Pipeline Organization
The microprocessor has a 7-stage pipeline for integer operate and memory
reference instructions and a 10-stage pipeline for floating-point operate
instructions. The IDU maintains the state for all pipeline stages, to track
outstanding register write operations, and to determine Icache hits and misses.

Figure 2–2 shows the integer operate, memory reference, and floating-point
operate pipelines for the IDU, IEU, LSU, and FPU. The first four stages of
all the pipelines are the same and are executed in the IDU. The last stages
are unit-specific. All of the units have bypassers that allow the results of one
instruction to be the operand of a following instruction, without writing the
results of the first instruction to a register file.
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Figure 2–2 Instruction Pipelines
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2.7.1 Instruction Pipeline Static and Dynamic Stages
The integer pipeline divides instruction processing into four static and three
dynamic stages of execution. The floating-point pipeline maintains the first
four static stages and adds six dynamic stages of execution. The first four
stages are as follows:

• Instruction fetch

• Swap

• Decode

• Issue logic

These stages are static because instructions can remain valid in the same
pipeline stage for multiple cycles while waiting for a resource or stalling for
other reasons.
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Dynamic stages always advance state and are unaffected by any stall in the
pipeline. (Pipeline stalls are also called pipeline freezes.) A pipeline freeze
can occur while either no instructions issue or one instruction of a pair issues
and the second is held at the issue stage. A pipeline freeze implies that valid
instructions are presented to be issued but cannot proceed.

Upon satisfying all issue requirements, instructions can continue through any
pipeline toward completion. Instructions cannot be held in a given pipe stage
after they are issued. The issue stage must ensure that all resource conflicts
are resolved before an instruction is allowed to continue. Only a chip-internal
abort condition can stop instructions after the issue stage.

2.7.2 Aborts
The causes for aborts are grouped into two classes:

• Exceptions (including interrupts)

• Nonexceptions

Exceptions require the pipeline to be drained of all outstanding instructions
before restarting the pipeline at a redirected address. In both classes, all
instructions that were fetched after the instruction that caused the abort
condition, must be flushed from the pipeline. This includes stopping one
instruction of a dual-issued pair when an abort condition occurs on the first
instruction of the pair.

Nonexceptions do not require the pipeline to be drained of all outstanding
instructions ahead of the aborting instruction. The pipeline can be immediately
restarted at a redirected address. Examples of nonexception abort conditions
are branch mispredictions, subroutine call or return mispredictions, and Icache
misses. Dcache misses do not produce abort conditions but can cause pipeline
freezes.

If an exception occurs, the processor aborts all instructions issued after the
excepting instruction. Due to the nature of some error conditions, this can
occur as late as the write cycle. The address of the excepting instruction is
then latched in the exception address register (EXC_ADDR, Section 4.1.8).
When the pipeline is fully drained, the processor begins to execute instructions
at the address given by the PALcode dispatch. The pipeline is drained when:

• All outstanding write operations to both the integer and floating-point
register files have completed, and arithmetic traps have been reported.

• All outstanding instructions have successfully completed memory
management and access protection traps.
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2.7.3 Nonissue Conditions
Nonissue conditions occur for the following reasons:

• The pipeline freezes when a valid instruction or pair of instructions is
prepared to issue but cannot because of a resource conflict. These types of
nonissue cycles can be minimized through code scheduling.

• The existence of pipeline bubbles when the pipeline does not contain a valid
instruction to issue.

Pipeline bubbles exist because of the abort conditions described in
Section 2.7.2. In addition, a single pipeline bubble is produced when a
branch-type instruction is predicted to be taken, including subroutine calls and
returns. Pipeline bubbles are reduced directly by the hardware through bubble
squashing but can also be effectively minimized with careful coding. Bubble
squashing is the ability of any of the first four pipeline stages to advance when
a bubble is detected in the pipeline stage immediately ahead of it while the
pipeline is otherwise frozen.

2.8 Instruction Scheduling and Issuing Rules
Sections 2.8.1 through 2.8.5 describe the instruction scheduling and issuing
rules.

2.8.1 Instruction Class Definition
This section describes the performance-related scheduling and dual-issue rules.
There are no functional dependencies related to scheduling or dual issue.
The scheduling and issuing rules are defined in terms of instruction classes.
Table 2–1 specifies all of the instruction classes and the unit that executes the
particular class.

Table 2–1 Producer–Consumer Classes

Class Unit Instructions

LD Load and store All loads

HW_MFPR, RPCC, RS, RC, and STC producers only

FETCH consumer only

ST Load and store All stores and HW_MTPR

IBR Integer execution Integer conditional branches

(continued on next page)
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Table 2–1 (Cont.) Producer–Consumer Classes

Class Unit Instructions

FBR Floating-point Floating-point conditional branches

JSR Integer execution JMP, JSR, RET, and JSR_COROUTINE

BSR and BR producer only

IADDLOG Integer execution ADDL, ADDL/V, ADDQ, and ADDQ/V

LDA and LDAH

SUBL, SUBL/V, SUBQ, SUBQ/V, S4ADDL,
S4ADDQ, S8ADDL, S8ADDQ, S4SUBL, S4SUBQ,
S8SUBL, and S8SUBQ

AND, BIC, BIS, ORNOT, and XOR

SHIFTCM Integer execution CMOVEQ, CMOVNE, CMOVLT, CMOVLE,
CMOVGT, CMOVGE, CMOVLBS, and CMOVLBC

EXTQL, EXTLL, EXTWL, EXTBL, EXTQH,
EXTLH, and EXTWH

INSQL, INSLL, INSWL, INSBL, INSQH, INSLH,
and INSWH

MSKQL, MSKLL, MSKWL, MSKBL, MSKQH,
MSKLH, and MSKWH

SLL, SRL, and SRA

ZAP and ZAPNOT

ICMP Integer execution CMPEQ, CMPLT, CMPLE, CMPULT, CMPULE, and
CMPBGE

IMULL Integer execution MULL and MULL/V

IMULQ Integer execution MULQ, MULQ/V, and UMULH

FPOP Floating-point Floating-point operates except divide

FDIV Floating-point Floating-point divide

2.8.2 Producer–Consumer Latency
The microprocessor enforces scheduling rules regarding producer–consumer
latencies. Table 2–2 shows these rules as a producer–consumer latency matrix.
Each row and column in the matrix is a class of Alpha instructions.
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Table 2–2 Producer–Consumer Latency Matrix

Consumer LD JSR IADDLOG SHIFTCM ICMP IMULL IMULQ FPOP
FDIV FDIV
F/S G/T

LD 3 3 2 2 2 21 23 X X X

ST 3 3 2/0 2/0 21/20 21/20 23/22 X/4 X/32 X/61

IBR 3 3 1 2 1 21 23 X X X

JSR 3 3 2 2 2 — — X X X

IADDLOG 3 3 1 2 2 — — X X X

SHIFTCM 3 3 1 2 2 — — X X X

ICMP 3 3 1 2 2 — — X X X

IMUL 3 3 1 2 2 21/19 23/21 X X X

FBR 3 X X X X 2 2 6 34 63

FPOP 3 X X X X 2 2 6 34 63

FDIV 3 X X X X 2 2 6 34/30 63/59

Notes for Table 2–2:

• The numbers in the matrix represent the cycles of latency. For example,
one cycle of latency is indicated by a 1 in the matrix. One cycle of
latency means that if instruction B uses the results of instruction A,
then instruction B can be issued one cycle after instruction A is issued.

• LD indicates a Dcache hit is assumed for load instructions. The latency for
Dcache miss depends on the system configuration.

• X indicates an impossible state or a state not normally encountered. For
example, a floating-point branch would not follow an integer compare.

• For the ST consumer class, two latencies (for example, 2/0) are given with
some producer classes. The first is the latency for base address of store,
and the second is the latency for store data. Floating-point results cannot
be used as the base address for load or store operations.

• Two latencies are given for IMUL followed by IMUL (for example, 21/19).
The first is the latency with data dependency; in other words, the second
IMUL uses the result from the first IMUL. The second is the multiply
latency without data dependencies.
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• Two latencies are given for FDIV followed by FDIV (for example, 34/30).
The first is the latency with data dependency; in other words, the second
FDIV uses the result from the first FDIV. The second is the divide latency
without data dependencies.

When determining latency for a given instruction sequence, the classes of each
instruction must first be identified. The following example lists the classes in
the comment field:

ADDQ R1, R2, R3 ! IADDLOG class
SRA R3, R4, R5 ! SHIFT class
SUBQ R5, R6, R7 ! IADDLOG class
STQ R7, D(R10) ! ST class

The SRA instruction consumes the result (R3) produced by the ADDQ
instruction. The matrix shows a latency of 1 associated with an IADD-SHIFT
producer–consumer pair. In other words, if the ADDQ instruction is issued in
cycle n, the SRA instruction can be issued in cycle n+1.

The SUBQ instruction consumes the result (R5) produced by the SRA
instruction. The matrix shows a latency of 2 associated with a SHIFT-IADD
producer–consumer pair. In other words, if the SRA instruction is issued in
cycle n, the SUBQ instruction can be issued in cycle n+2. The IDU injects one
no-operation (NOP) cycle in the pipeline for this case.

In the final case, the STQ instruction consumes the result (R7) produced by
the SUBQ instruction. The matrix shows a latency of 0 associated with an
IADD-ST producer–consumer pair when the result of the IADD instruction is
the store data. In other words, the SUBQ and STQ instruction pair can be
dual issued.

2.8.3 Producer–Producer Latency
Producer–producer latency (also known as write-after-write conflicts) is
restricted only by the register write order. For most instructions, this is
dictated by issue order; however, IMUL, FDIV, and LD instructions might
require more time to complete than other instructions. Therefore, to preserve
write ordering, IMUL, FDIV, and LD instructions must stall following
instructions that write the same destination register.

In general, only cases involving an intervening producer–consumer conflict are
of interest. They can commonly occur in a dual-issue situation when a register
is reused. In these cases, producer–consumer latencies are equal to or greater
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than the required producer–producer latency as determined by write ordering
and, therefore, dictate the overall latency. The following code is an example:

LDQ R2,D(R0) ; R2 destination
ADDQ R2,R3,R4 ; wr-rd conflict stalls execution waiting for R2
LDQ R2,D(R1) ; wr-wr conflict may dual issue when addq issues

2.8.4 Instruction Issue Rules
The following conditions prevent instruction issue:

• No instruction can be issued until all of its source and destination
registers are clean. In other words, all outstanding write operations to
the destination register are guaranteed to complete in issue order, and
either there are no outstanding write operations to the source registers or
those write operations can be bypassed.

• No LD, ST, FETCH, MB, RPCC, RS, RC, TRAPB, HW_MXPR, BSR, BR, or
JSR (with destination other than R31) instruction can be issued after an
MB instruction until the MB has been acknowledged on the external pin
bus.

• No IMUL instructions can be issued if the integer multiplier is busy.

• No SHIFT, IADDLOG, ICMP, or ICMOV instruction can be issued exactly
three cycles before an integer multiplication completes.

• No integer or floating-point conditional branch instruction can be issued in
the cycle immediately following a JSR, JMP, RET, JSR_COROUTINE, or
HW_REI instruction.

• No TRAPB instruction can be issued as the second instruction of a
dual-issue pair.

• No LD instructions can be issued in the two cycles immediately following
an STC instruction.

• No LD, ST, FETCH, MB, RPCC, RS, RC, TRAPB, HW_MXPR, BSR, BR,
or JSR (with destination other than R31) instruction can be issued when
the LSU is busy due to a load miss or write buffer overflow. (For more
information, see Section 2.4.3.)

• No FDIV instruction can be issued if the floating-point divider is busy.

• No floating-point operate instruction can be issued exactly five or six cycles
before a floating-point divide completes.
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2.8.5 Dual-Issue Table
Table 2–3 can be used to determine instruction pairs that can issue in a single
cycle. Instructions are dispatched using two internal data paths or buses. In
Table 2–3, the buses are referred to as IB0, IB1, and IBx.

In Table 2–3, any instruction identified with IB0 can be issued in the same
cycle as any instruction identified with IB1. An instruction that is identified as
IBx can be issued with either IB0 or IB1.

Dual issue is attempted if the input operands are available as defined by the
producer–consumer latency matrix in Table 2–2 and the following requirements
are met:

• Two instructions are contained within an aligned quadword.

• Both instructions are not in group IB0.

• Both instructions are not in group IB1.

• No more than one of the following instructions are to be issued in the same
cycle: JSR, integer conditional branch, BSR, HW_REI, BR, or floating-point
branch.

• No more than one of the following instructions are to be issued in the same
cycle: load, store, HW_MTPR, HW_MFPR, MISC, TRAPB, HW_REI, BSR,
BR, or JSR.

Producer–consumer latencies of zero indicate that dependent operations
between these two instruction classes can dual-issue. For example, ADDQ R1,
R2, R3; STQ R3, and D(R4).
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Table 2–3 Instruction Opcode Summary with Instruction Issue Bus

00 08 10 18 20 28 30 38

0/8 PAL
IB1

LDA
IB0

INTA
IB0

MISC
IB1

LDF
IBx

LDL
IBx

BR
IB1

BLBC
IB1

1/9 Res
IB1

LDAH
IB0

INTL
IB0

HW_MFPR
IB1

LDG
IBx

LDQ
IBx

FBEQ
IB0

BEQ
IB1

2/A Res
IB1

Res
IB1

INTS
IB0

JSR
IB1

LDS
IBx

LDL_L
IBx

FBLT
IB0

BLT
IB1

3/B Res
IB1

LDQ_U
IBx

INTM
IB0

HW_LD
IB1

LDT
IBx

LDQ_L
IBx

FBLE
IB0

BLE
IB1

4/C Res
IB1

Res
IB1

Res
IB1

Res
IB1

STF
IB0

STL
IB1

BSR
IB1

BLBS
IB1

5/D Res
IB1

Res
IB1

FLTV
IB1

HW_MTPR
IB1

STG
IB0

STQ
IB1

FBNE
IB0

BNE
IB1

6/E Res
IB1

Res
IB1

FLTI
IB1

HW_REI
IB1

STS
IB0

STL_C
IB1

FBGE
IB0

BGE
IB1

7/F Res
IB1

STQ_U
IB1

FLTL
IB1

HW_ST
IB1

STT
IB0

STQ_C
IB1

FBGT
IB0

BGT
IB1

Key to abbreviations

FLTI — IEEE floating-point instruction opcodes
FLTL — Floating-point operate instruction opcodes that are data type independent
FLTV — VAX floating-point instruction opcodes
INTA — Integer arithmetic instruction opcodes
INTL — Integer logical instruction opcodes
INTM — Integer multiply instruction opcodes
INTS — Integer subtract instruction opcodes
JSR — Jump instruction opcodes
MISC — Miscellaneous instruction opcodes
PAL — PALcode instruction (CALL_PAL) opcodes
Res — Reserved for Digital

Table 2–3 lists all Alpha opcodes from 00 (CALL_PAL) through 3F (BGT).

In the table, the column headings appearing over the instructions have a
granularity of 8. The rows beneath the leftmost column supply the individual
hexadecimal number to resolve that granularity.

If an instruction column has a 0 in the right (low) hexadecimal digit, replace
that 0 with the number to the left of the backslash in the leftmost column on
the instruction’s row.

If an instruction column has an 8 in the right (low) hexadecimal digit, replace
that 8 with the number to the right of the backslash in the leftmost column.
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For example, the third row (2/A) under the 1016 column contains the symbol
INTS, representing the all-integer shift instructions. The opcode for those
instructions would then be 1216 because the 0 in 10 is replaced by the 2 in the
leftmost column.

Likewise, the third row under the 1816 column contains the symbol JSR,
representing all jump instructions. The opcode for those instructions is 1A
because the 8 in the heading is replaced by the number to the right of the
backslash in the leftmost column.

The instruction format is listed under the instruction symbol.

See the Alpha Architecture Reference Manual for more information about
instructions, their opcodes, and their definitions.

2.9 PALcode
Users and operating system developers require functions to be implemented
consistently in a family of machines. When functions conform to a common
interface, the code that uses those functions can be used on several different
implementations without modification. PALcode allows many different physical
implementations to coexist, each one adhering to the same programming
interface specification.

2.9.1 Required PALcode Instructions
The PALcode instructions listed in Table 2–4 are described in the Alpha
Architecture Reference Manual.

Table 2–4 Required PALcode Instructions

Mnemonic Type Operation

HALT Privileged Halt processor

IMB Unprivileged Istream memory barrier

2.9.2 Architecturally Reserved PALcode Instructions
The Alpha architecture provides five opcodes as implementation-specific
privileged instructions. These instructions are defined independently for each
hardware implementation of the Alpha architecture to give PALcode software
routines access to specific hardware states and functions.
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Table 2–5 lists the hardware-specific, privileged instructions that are executed
in PALmode. They produce OPCDEC exceptions if executed while not in the
PALcode environment. (See Section 3.5 for a definition of OPCDEC.) These
instructions are mapped using the architecturally reserved opcodes PAL19,
PAL1B, PAL1D, PAL1E, and PAL1F. They can be used only while executing
chip-specific PALcode.

Table 2–5 Implementation-Specific PALcode Instructions

Mnemonic Operation

HW_MTPR Move data to processor register.

HW_MFPR Move data from processor register.

HW_LD Load data from memory.

HW_ST Store data in memory.

HW_REI Return from PALmode exception.

Programming Note

PALcode uses the HW_LD and HW_ST instructions to access memory
outside the realm of normal Alpha memory management.

2.10 Physical Address Space
Internally, the chip uses a 34-bit address space divided into regions as shown
in Table 2–6. Addresses in the cacheable memory region update the optional
Bcache when referenced by the CPU. The graphics memory region supports
simple graphics operations on data. In the PCI sparse memory region,
addresses are shifted 5 bits to allow access size encodings. Addresses are not
shifted in the PCI dense memory region. PCI peripherals can access only the
cacheable and noncacheable memory regions because the IOC maps the 32-bit
PCI address to the internal address that can access only those memory spaces.
In other words, the PCI cannot access the IOC register, memory controller
register, or graphics memory regions. (The translation mechanism is described
in Chapter 6.)

Instructions cannot be executed from the upper three quadrants of memory;
that is, when address bits <33:32> = 01, 10, or 11. Instructions can be executed
from the cacheable and noncacheable regions of the lowest quadrant, in which
case they will be cached in the Icache but not the Bcache.
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Table 2–6 Physical Address Space

Address Region Address Range (<33:0>) Size

PCI dense memory 3 FFFF FFFF..3 0000 0000 4.0 GB

PCI sparse memory 2 FFFF FFFF..2 0000 0000 4.0 GB

PCI configuration 1 FFFF FFFF..1 E000 0000 0.5 GB

PCI I/O 1 DFFF FFFF..1 C000 0000 0.5 GB

PCI interrupt acknowledge and special cycle 1 BFFF FFFF..1 A000 0000 0.5 GB

IOC registers 1 9FFF FFFF..1 8000 0000 0.5 GB

Memory controller registers 1 7FFF FFFF..1 2000 0000 1.5 GB

Graphics memory� 1 1FFF FFFF..1 0000 0000 0.5 GB

Nonexistent memory (NXM) 0 FFFF FFFF..0 4000 0000 3.0 GB

Noncacheable memory 0 3FFF FFFF..0 2000 0000 0.5 GB

Cacheable memory† 0 1FFF FFFF..0 0000 0000 0.5 GB

�Only this region supports graphics functions on write operations.
†All other address regions are noncacheable.

2.11 Memory Controller
The onchip memory controller is the interface between the CPU and the
system memory and optional Bcache. It has several memory-mapped control
and status registers (CSRs) to program organization, timing, and size of
DRAM, VRAM, and Bcache SRAM. It controls CPU requests and DMA
requests (from the IOC) to and from memory and the Bcache. It also controls
VRAM shift register load and memory refresh operations.

The memory controller decodes the address of a CPU request to determine
whether the request is for memory or the IOC. It handles the access to the
memory controller registers, memory, and Bcache. If the request is directed at
the IOC, the memory controller passes control to the IOC.

The memory controller can also perform the following graphics operations:

• Dumb frame buffer operation

• Transparent stipple operation

• Write-per-bit plane masking

• Byte write operations (with external gating)

• Full and split VRAM shift-register loads
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The memory controller and its registers are described in Chapter 5.

2.12 I/O Controller
The onchip IOC is the interface between peripheral devices and the CPU and
system memory. The IOC interface protocol complies with the PCI Local Bus
Specification, Revision 2.0. All peripheral devices in systems based on the
21066 can communicate with the CPU and system memory through the IOC.
Peripheral chips using the PCI protocol can be connected directly to the chip
without any glue logic. The IOC runs asynchronously to the CPU, using the
PCI clock input.

The IOC incorporates scatter-gather mapping logic to translate 32-bit
addresses generated by PCI bus masters to the 34-bit CPU physical address
space. The IOC implements an 8-entry translation lookaside buffer (TLB)
for fast translations. Two programmable address windows, controlled by
memory-mapped IOC registers, control access from PCI peripherals to system
memory. (The IOC and its registers are described in Chapter 6.)

2.13 Lock Registers
The chip implements two registers associated with the LDQ_L, LDL_L, STQ_C,
and STL_C instructions: the lock_flag register and the locked_physical_address
register. The locked range is 32 bytes.

The lock_flag register is cleared on any of the following conditions:

• Execution of any STx_C instruction

• A DMA write operation to the locked range

• Execution of a CALL_PAL REI instruction

• The IOC is locked (Section 6.3.10)

The lock flag will not be set by any LDx_L instruction while the IOC is locked.

See the Alpha Architecture Reference Manual for more information about the
lock registers.
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3
Privileged Architecture Library Code

This chapter describes the microprocessor’s privileged architecture library code
(PALcode).

3.1 Overview
The Alpha architecture defines an innovative feature called PALcode that
allows many different physical implementations to coexist, each one adhering
to the same programming interface specification. PALcode has characteristics
that make it appear to be a combination of microcode, ROM basic input/output
operating system (BIOS), and system service routines, but it is not exactly
analogous to any of them.

The following examples list the major reasons for using PALcode. In each case,
PALcode routines provide the functions:

• Some necessary support functions are too complex to implement directly in
a processor chip’s hardware and cannot be handled by a normal operating
system software routine. Such functions include routines to fill the
translation buffer, acknowledge interrupts, and dispatch exceptions. In
some architectures, these functions are handled by microcode, but the
Alpha architecture is careful not to mandate the use of microcode for
reasonable chip implementations.

• Some functions must run atomically and involve long sequences of
instructions that may need complete access to all of the underlying
computer hardware. An example is the sequence that returns from an
exception or interrupt.

• Some instructions are necessary for backward compatibility or ease of
programming; however, they are not used often enough to dedicate them
to hardware, or are so complex that they would jeopardize the overall
performance of the computer. For example, an instruction that does
an Intel style interlocked memory access might be familiar to CISC
programmers, but it is not included in the Alpha architecture. Another
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example is the emulation of an instruction that has no direct hardware
support in a particular chip implementation.

The PALcode routines are simply programs that are invoked at specified times,
and read in as instruction stream (Istream) code in the same way that all other
Alpha code is read. After it is invoked, PALcode runs in a special environment.

3.2 PALmode Environment
PALcode runs in a special environment called PALmode, defined as follows:

• Istream memory mapping is disabled. Because the PALcode implements
translation buffer fill routines, Istream mapping cannot be enabled.

• The program has privileged access to all of the computer hardware. Most
PALcode functions are privileged and need to control the lowest levels of
the system.

• Interrupts are disabled. If a long sequence of instructions needs to be
executed atomically, interrupts cannot be allowed.

One important aspect of PALcode is that it uses normal Alpha instructions for
most of its operations; that is, the same instruction set used by nonprivileged
Alpha programs. In addition, the following instructions are available only in
PALmode:

Mnemonic Operation

HW_MTPR Move data to processor register.

HW_MFPR Move data from processor register.

HW_LD Load data from memory.

HW_ST Store data in memory.

HW_REI Return from PALmode exception.

These instructions will cause an OPCDEC exception if they are attempted
while not in PALmode. The Alpha architecture allows some flexibility in
the functions performed by these special PALmode instructions. In the
microprocessor, the special PALmode instructions perform the following
functions:

• Read or write internal processor registers (HW_MFPR, HW_MTPR).

• Perform memory load or store operations without invoking the normal
memory management routines (HW_LD, HW_ST).

• Return from an exception or interrupt (HW_REI).
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See Section 3.4 for more information about these special PALmode instructions.

When executing in PALmode, there are certain restrictions on using the
privileged instructions because PALmode gives the programmer complete
access to many of the internal details of the microprocessor.

Caution

It is possible to cause unintended side effects by writing what appears
to be perfectly acceptable PALcode. Digital recommends that most
users do not attempt to change PALcode.

See Section 3.6 for more information about PALmode restrictions.

3.3 Invoking PALcode
PALcode is invoked at specific entry points, under certain well-defined
conditions. PALcode can be thought of as a series of callable routines, with
each routine indexed as an offset from a base address. The base address of
the PALcode is programmable (stored in the PAL base address register—
PAL_BASE, Section 4.1.16) and is normally set by the system reset code. See
Section 3.5 for more information about PALcode entry points.

When an event that invokes PALcode occurs, the microprocessor first drains
the pipeline. The current program counter (PC) is loaded into the exception
address register (EXC_ADDR, Section 4.1.8), and the appropriate PALcode
routine is dispatched. These operations are performed under direct control of
the chip hardware, and place the machine in PALmode. When the HW_REI
instruction is executed at the end of the PALcode routine, the hardware
executes a jump to the address contained in the EXC_ADDR register. Bit 0 in
the EXC_ADDR register indicates PALmode to the hardware. On return from
a PALcode routine, EXC_ADDR register bit 0 is usually clear, and in that case
the hardware loads the new PC, enables interrupts, enables memory mapping,
and dispatches back to the user.

3.3.1 Hardware Dispatch to PALcode
The most basic use of PALcode is to handle complex hardware events, and it is
called automatically when the particular hardware event is sensed. This use
of PALcode is similar to the use of microcode in other architectures. There are
four major categories of hardware-initiated PALcode:

• When the microprocessor is reset, it enters PALmode and executes the
RESET PALcode. The system remains in PALmode until an HW_REI
instruction is executed and EXC_ADDR register bit 0 is cleared. The
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system then continues execution in non-PALmode (native mode). While
the initial RESET PALcode is executing, the remaining low-level system
initialization is performed, including any modification to the PALcode base
register.

• When the microprocessor detects a system hardware error, it invokes one of
several PALcode routines, depending on the type of error. Errors handled
in this way include machine checks, arithmetic exceptions, reserved or
privileged instruction decode, and data fetch errors.

• When the microprocessor senses an interrupt, it dispatches the interrupt
acknowledgment to a PALcode routine that gathers the necessary
information, then handles the situation appropriately for the particular
interrupt.

• When a data stream (Dstream) or Istream TB miss occurs, one of
several PALcode routines is called to perform the TB fill. The memory-
management algorithms or virtual-to-physical page mappings are flexible.
In the simplest case, this can be an automatic one-to-one translation from
virtual-to-physical address. In a typical operating system, these routines
reference page tables and perform the translation and fill based on the
page table contents.

These basic hardware-related functions are difficult to implement efficiently
with typical operating system service routines.

3.3.2 CALL_PAL Instruction
PALcode can also be invoked with the CALL_PAL instruction. This special
instruction dispatches to PALcode at a specific entry point by using the same
steps as hardware-activated PALcode; that is, the pipeline is drained, the
PC is saved, and the appropriate dispatch is made to an offset from the
PALcode base. The difference is that the dispatch is controlled by the program
through an instruction, rather than through a hardware event or error. Also,
CALL_PAL instructions place PC+4 in the EXC_ADDR register.

The CALL_PAL instruction format includes the OPCODE (bits <31:26>) and
the function field (bits <25:0>). The function field specifies the CALL_PAL
routine to be invoked. The microprocessor hardware dispatches support only
a subset of the possible CALL_PAL function values (Section 3.5). CALL_PAL
routines can perform different functions for different operating systems
running on the microprocessor. Unlike the basic hardware-generated PALcode,
the CALL_PAL operations are largely optional and are based on the needs of
the system implementation.
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A subtle difference exists between hardware-dispatched and CALL_PAL-
dispatched PALcode. Some form of the hardware-invoked PALcode
functions are necessary in most computer systems. For example, when the
microprocessor detects a serious system error, it dispatches to the machine
check (MCHK) PALcode entry point. The exact PALcode that resides at this
entry point can do what is reasonable, based on the needs of the system.

On the other hand, the CALL_PAL instruction dispatch is completely under
control of the executing program. If the program never executes one of the
instructions in the CALL_PAL list, that PALcode will never be run. Any
PALcode that does run, executes in PALmode under the same restrictions as
hardware-activated PALcode.

The microprocessor supports hardware dispatch for both privileged and
nonprivileged CALL_PAL instructions. That is, some of the functions that are
passed to the CALL_PAL instruction are considered special. A CALL_PAL
instruction is privileged or nonprivileged depending on whether the user can
call that particular instruction, not on the mode in which the instruction
eventually runs. Every CALL_PAL instruction dispatches to PALcode that
runs in PALmode.

The difference between privileged and nonprivileged CALL_PAL instructions is
that privileged CALL_PAL instructions can be executed only in kernel mode;
otherwise, they are vectored to 13E0 (OPCDEC, Table 3–5).

Privileged and nonprivileged CALL_PAL instructions are dispatched in
exactly the same way and, when executed, enter PALmode, perform their
function, and return to the user. The user mode is checked before execution.
If a user attempts to execute a privileged CALL_PAL instruction in any
mode other than kernel mode, an OPCDEC PALcode routine, rather than
the CALL_PAL function, is run. An OPCDEC exception is also taken if a
CALL_PAL function code that is not supported by the microprocessor hardware
dispatch is attempted.

3.4 Reserved Opcode Instructions
PALcode uses the Alpha instruction set for most operations. The
microprocessor maps the architecturally reserved opcodes (PALRES0 through
PALRES4) to:

• Special load and store instructions (HW_LD, HW_ST)

• Move-to and a move-from processor register instructions (HW_MTPR,
HW_MFPR)

• Return from a PALmode exception or interrupt instruction (HW_REI)
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These instructions produce an OPCDEC exception if executed while not in the
PALmode environment. These instructions can be executed in kernel mode if
the hardware enable (HWE) bit is set in the Icache control and status register
(ICCSR, Section 4.1.7).

Register checking and bypassing logic is provided for PALcode instructions and
for non-PALcode instructions, when using general-purpose registers.

Note

Explicit software timing is required for accessing the hardware-
specific internal processor registers (IPRs) and the PALcode temporary
(PAL_TEMP) registers. These constraints are described in Section 3.6
and Chapter 4.

3.4.1 HW_MFPR and HW_MTPR Instructions
PALcode uses the HW_MFPR and HW_MTPR instructions to move data from
and to the IPRs. The IPR specified by the PAL, ABX, IBX, and index field is
written or read with the data from the specified integer register.

Caution

Writing or reading IPRs can have side effects.

Coding restrictions (see Section 3.6) are associated with accessing various
registers. Separate bits are used to access the following registers:

• LSU registers

• IDU registers

• PAL_TEMP registers

It is possible for an HW_MTPR instruction to write multiple registers in
parallel if they both have the same index. (See Table 3–1.)

Figure 3–1 shows the HW_MFPR and HW_MTPR instruction format, and
Table 3–1 describes its fields.
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Figure 3–1 HW_MFPR and HW_MTPR Instructions Format

31 826 25 7 621 520 416 15 0

P
A
L

A
B
X

I
B
X

OPCODE RA RB IndexIGN

Table 3–1 HW_MFPR and HW_MTPR Format Description

Bits Field Description

31:26 OPCODE The opcode is either 25 (HW_MFPR) or 29 (HW_MTPR).

25:21
20:16

RA
RB

These fields contain the source (HW_MTPR) or destination
(HW_MFPR) register number. RA and RB must be identical.

15:8 IGN These bits are ignored.

7 PAL When this bit is set, the instruction is referencing a PAL
temporary (PAL_TEMP) register.�

6 ABX When this bit is set, the instruction is referencing a register in
the LSU.�

5 IBX When this bit is set, the instruction is referencing a register in
the IDU.�

4:0 Index This bit specifies the index within the group.�

�See Table 3–2.

Table 3–2 indicates how the PAL, ABX, IBX, and INDEX fields are set to access
the registers. Setting the PAL, ABX, and IBX fields to zero generates an NOP.

Table 3–2 Internal Processor Register Access

Mnemonic PAL ABX IBX Index Access Comments

TB_TAG — — 1 0 WO PALmode only

ITB_PTE — — 1 1 RW PALmode only

ICCSR — — 1 2 RW —

ITB_PTE_TEMP — — 1 3 RO PALmode only

(continued on next page)
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Table 3–2 (Cont.) Internal Processor Register Access

Mnemonic PAL ABX IBX Index Access Comments

EXC_ADDR — — 1 4 RW —

SL_RCV — — 1 5 RO —

ITBZAP — — 1 6 WO PALmode only

ITBASM — — 1 7 WO PALmode only

ITBIS — — 1 8 WO PALmode only

PS — — 1 9 RW —

EXC_SUM — — 1 10 RW —

PAL_BASE — — 1 11 RW —

HIRR — — 1 12 RO —

SIRR — — 1 13 RW —

ASTRR — — 1 14 RW —

HIER — — 1 16 RW —

SIER — — 1 17 RW —

ASTER — — 1 18 RW —

SL_CLR — — 1 19 WO —

SL_XMIT — — 1 22 WO —

TB_CTL — 1 — 0 WO —

DTB_PTE — 1 — 2 RW —

DTB_PTE_TEMP — 1 — 3 RO —

MM_CSR — 1 — 4 RO —

VA — 1 — 5 RO —

DTBZAP — 1 — 6 WO —

DTBASM — 1 — 7 WO —

DTBIS — 1 — 8 WO —

DC_STAT — 1 — 12 RO —

ABOX_CTL — 1 — 14 WO —

ALT_MODE — 1 — 15 WO —

CC — 1 — 16 RW —

CC_CTL — 1 — 17 WO —

(continued on next page)
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Table 3–2 (Cont.) Internal Processor Register Access

Mnemonic PAL ABX IBX Index Access Comments

FLUSH_IC — 1 — 21 WO —

FLUSH_IC_ASM — 1 — 23 WO —

PAL_TEMP<31:0> 1 — — 31..0 RW —

3.4.2 HW_LD and HW_ST Instructions
PALcode uses the HW_LD and HW_ST instructions to access memory outside
the realm of normal Alpha memory management. Figure 3–2 shows the
HW_LD and HW_ST instructions format, and Table 3–3 describes its fields.

Figure 3–2 HW_LD and HW_ST Instructions Format

31 26 25 21 20 16 15 14 13 12 11 0

OPCODE RA RB DISP
P
H
Y

A
L
T

R
W
C

Q
W

The effective address of these instructions is calculated as follows:

addr ( (SEXT(DISP) + RB) AND NOT (QW | 112)

Table 3–3 HW_LD and HW_ST Format Description

Bits Field Description

31:26 OPCODE The opcode is either 27 (HW_LD) or 31 (HW_ST).

25:21
20:16

RA
RB

These fields specify register numbers, interpreted as is usual for
load and store instructions.

15 PHY Physical—When this bit is set, the effective address of the
instruction is a physical address; otherwise, it is a virtual
address.�

�Physical-mode load-lock (HW_LD/L) and store-conditional (HW_ST/C) variants of the HW_LD and
HW_ST instructions can be created by setting both the PHY and ALT bits.

(continued on next page)
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Table 3–3 (Cont.) HW_LD and HW_ST Format Description

Bits Field Description

14 ALT Alternate mode—For virtual-mode HW_LD and HW_ST
instructions, this bit selects the processor mode bits that are
used for memory-management checks. When this bit is set, the
mode bits in the ALT_MODE register are used; otherwise, the
current mode bits of the processor status (PS) register are used.�

13 RWC Read-with-write check—When set, this bit enables both read and
write access checks on virtual HW_LD instructions.

12 QW Quadword—When set, this bit specifies the data length is
quadword; otherwise, the data length is longword.

11:0 DISP This field holds a 12-bit, signed, byte displacement.

�Physical-mode load-lock (HW_LD/L) and store-conditional (HW_ST/C) variants of the HW_LD and
HW_ST instructions can be created by setting both the PHY and ALT bits.

3.4.3 HW_REI Instruction
The HW_REI instruction uses the address in the EXC_ADDR register to
determine the new virtual program counter (VPC). EXC_ADDR register bit
0 indicates the state of the PALmode bit on the completion of the HW_REI
instruction. If EXC_ADDR register bit 0 is set, the processor remains in
PALmode. This allows PALcode to transition from PALmode to non-PALmode.
The HW_REI instruction can also be used to jump from PALmode to PALmode.
This allows PAL instruction flows to take advantage of the Dstream mapping
hardware in the chip, including traps.

Figure 3–3 shows the HW_REI instruction format, and Table 3–4 describes its
fields.

Figure 3–3 HW_REI Instruction Format

31 26 25 21 20 16 15 14 13 0

OPCODE RA RB 1 0 IGN

The next address and PALmode bit are calculated as follows:
VPC ( EXC_ADDR AND {NOT 3}
PALmode ( EXC_ADDR[0]
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Table 3–4 HW_REI Format Description

Bits Field Description

31:26 OPCODE The opcode is 30.

25:21
20:16

RA
RB

The register numbers contained in these fields should be 1F
(R31); otherwise, a stall may occur.

15:14 10 These bits contain the branch prediction hint. The microprocessor
pushes the contents of the EXC_ADDR register on the JSR
prediction stack. Bit 15 must be set to pop the stack to avoid
misalignment.

13:0 IGN These bits are ignored.

3.5 PALcode Entry Points
Table 3–5 lists the PALcode entry points from the highest priority (RESET) to
the lowest priority (FEN). The table defines only the entry point offset, bits
<13:0>. The new PC bits <33:14> come from the PAL_BASE register. At power
up, the PAL_BASE register value is zero.

Note

PALcode at PAL entry points of higher priority than DTB_MISS must
unlock possible locks on the memory-management control and status
register (MM_CSR, Section 4.2.9) and virtual address register (VA,
Section 4.2.8).

Table 3–5 PALcode Entry Points

Entry Name Time Offset Cause

RESET Anytime 0000 Reset.

MCHK Anytime 0020 Uncorrected hardware error.

ARITH Anytime 0060 Arithmetic exception.

INTERRUPT Anytime 00E0 Interrupt, including corrected hardware
error.

Dstream Errors Pipe stage 6 01E0, 08E0, 09E0,
11E0

See Table 3–6.

(continued on next page)
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Table 3–5 (Cont.) PALcode Entry Points

Entry Name Time Offset Cause

ITB_MISS Pipe stage 5 03E0 ITB miss.

ITB_ACV Pipe stage 5 07E0 Istream access violation.

CALL_PAL Pipe stage 5 2000, 2040, 2080,
20C0 through 3FC0

128 locations based on instruction.

OPCDEC Pipe stage 5 13E0 Reserved or privileged opcode.

FEN Pipe stage 5 17E0 Floating-point (FP) operation
attempted with:
� FP instructions disabled by the

ICCSR FPE bit
� FP IEEE round to ± infinity
� FP IEEE with data type field other

than S, T, Q

PALcode functions are implemented through the CALL_PAL instruction.
CALL_PAL instructions cause exceptions in the hardware. As with all
exceptions, hardware loads the EXC_ADDR register with a possible return
address.

CALL_PAL exceptions load the EXC_ADDR register with the address of
the instruction following the CALL_PAL instruction, not the address of the
CALL_PAL instruction. PALcode that supports the desired PALmode function
need not increment the EXC_ADDR register before executing an HW_REI
instruction to return to native mode. This feature requires special handling in
the arithmetic trap and machine check PALcode flows. (See Section 4.1.8 for
more information.)

To improve speed of execution, a limited number of CALL_PAL instructions are
directly supported in hardware with dispatches to specific address offsets.

The microprocessor provides the first 64 privileged and 64 unprivileged
CALL_PAL instructions with regions of 64 bytes. This produces hardware PAL
entry points described as follows:

• Privileged CALL_PAL instructions: 00000000..0000003F
Offset = 200016 + (<5:0> shift left 6)

• Unprivileged CALL_PAL instructions: 00000080..000000BF
Offset = 300016 + (<5:0> shift left 6)
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CALL_PAL instructions that fall outside the ranges of 00000000..0000003F and
00000080..000000BF result in an OPCDEC exception. CALL_PAL instructions
that fall within the range of 00000000..0000003F while the microprocessor is
not executing in kernel mode also result in an OPCDEC exception.

The hardware recognizes four classes of Dstream memory management errors:

• Bad virtual address (VA) (incorrect sign extension)

• Data translation buffer (DTB) miss (native mode and PALmode)

• Alignment error

• Access violation (ACV), fault on read (FOR), fault on write (FOW)

The following errors get mapped into four PAL entry points:

• UNALIGN

• DTB_MISS PALmode

• DTB_MISS native mode

• D_FAULT

Table 3–6 lists the priority of these entry points as a group. (Also see Dstream
errors, Table 3–5). A particular Dstream memory reference can generate
errors that fall into more than one of the four error classes recognized by the
hardware.

Table 3–6 Dstream Error PAL Entry Points

BAD_VA DTB_MISS UNALIGN PAL Other � Offset

1 x 1 x x 11E0 UNALIGN

1 x 0 x x 01E0 D_FAULT

0 1 x 1 x 09E0 DTB_MISS PAL

0 1 x 0 x 08E0 DTB_MISS NATIVE

0 0 1 x x 11E0 UNALIGN

0 0 0 x 1 01E0 D_FAULT

�ACV, FOR, FOW
1 = error
0 = no error
x = ignored

See Section 3.3 for more information about PALcode entry points.
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3.6 PALmode Restrictions
Many of the PALmode restrictions involve waiting n cycles before using
the results of a PAL instruction. The typical way to wait for n cycles is
to insert n instructions between two time-sensitive instructions. Because
the microprocessor can dual issue instructions, it is possible to write code
that requires 2 � n + 1 instructions to wait n cycles. Due to the resource
requirements of individual instructions and the microprocessor’s hardware
design, multiple copies of the same instruction cannot be dual issued.
Following are a few examples of the PALmode restrictions:

• As a general rule, HW_MTPR instructions require at least four cycles to
update the selected register. At least three cycles of delay must be inserted
before using the result of the register update.

The following instructions will pipeline correctly and do not require
software timing except for accesses to the TB registers:

Multiple read instructions

Multiple write instructions

A read instruction followed by write instruction

These cycles can be guaranteed by either of the following:

Including seven instructions that do not use the register in transition

Proving, through the dual-issue rules or machine state, that at least
three cycles of delay will occur

Multiple copies of an HW_MFPR instruction (used as an NOP instruction)
can be used to pad cycles after the original HW_MTPR instruction.
Multiple copies of the same instruction will never dual-issue; therefore, a
maximum of three instructions are necessary to ensure at least three cycles
of delay.

Example:

HW_MTPR Rx, HIER ; Write to HIER
HW_MFPR R31, 0 ; NOP mxpr instruction
HW_MFPR R31, 0 ; NOP mxpr instruction
HW_MFPR R31, 0 ; NOP mxpr instruction
HW_MFPR Ry, HIER ; Read from HIER

The HW_REI instruction uses the instruction translation buffer (ITB) if
the EXC_ADDR register contains a non-PALmode virtual program counter
(VPC bit 0 = 0). The previous rule implies that at least three cycles of
delay must be included after writing the ITB before executing an HW_REI
instruction to exit PALmode.
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Exceptions:

HW_MFPR instructions reading a PAL_TEMP register can never
occur exactly two cycles after an HW_MTPR instruction writing a
PAL_TEMP register. The following code solves this problem:

HW_MTPR Rx, PAL_R0 ; Write PAL temp [0]
HW_MFPR R31, 0 ; NOP mxpr instruction
HW_MFPR R31, 0 ; NOP mxpr instruction
HW_MFPR R31, 0 ; NOP mxpr instruction
HW_MFPR Ry, PAL_R0 ; Read PAL temp [0]

This code guarantees three cycles of delay between the write and the
read instructions. The cycle immediately following an HW_MTPR
instruction can also be used to execute an HW_MFPR instruction to the
same (accomplishing a swap) or a different PAL_TEMP register. The
swap operation only occurs if the HW_MFPR instruction immediately
follows the HW_MTPR instruction. This timing requires great care
and knowledge of the pipeline to ensure that the second instruction
does not stall for one or more cycles. Use of the slot to accomplish a
read from a different PAL_TEMP register requires that the second
instruction will not stall for exactly one cycle. This is much easier
to ensure. An HW_MFPR instruction can stall for a single cycle as a
result of a write-after-write conflict.

The EXC_ADDR register can be read by an HW_REI instruction two
cycles after the HW_MTPR instruction. This is equivalent to one
intervening cycle of delay. Use the following code to perform this
function:

HW_MTPR Rx, EXC_ADDR ; Write EXC_ADDR
HW_MFPR R31, 0 ; NOP cannot dual issue with
HW_REI ; either Return

• An HW_MTPR operation to the data translation buffer invalidate single
register (DTBIS, Section 4.2.7) cannot be sourced from a bypassed path.
All data being moved to the DTBIS register must be sourced directly from
the register file. One way to ensure this is to provide at least three cycles
of delay before using the result of any integer operation (except MUL) as
the source of an HW_MTPR DTBIS instruction.

Note

Do not use an MUL as the source of DTBIS data.
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Use the following code to perform this function:

ADDQ R1,R2,R3 ; source for DTBIS address
ADDQ R31,R31,R31 ; cannot dual issue with above, 1st cycle of delay
ADDQ R31,R31,R31 ; 2nd cycle of delay
ADDQ R31,R31,R31 ; 3rd cycle of delay
ADDQ R31,R31,R31 ; may dual issue with below, else 4th cycle of delay
HW_MTPR R3,DTBIS ; R3 must be in register file, no bypass possible

• At least one cycle of delay must occur after an HW_MTPR TB_CTL
instruction and before an HW_MTPR ITB_PTE or an HW_MFPR ITB_PTE
instruction. This must be done to allow setup of the ITB large page or
small page decode.

• The first cycle (the first one or two instructions) at all PALcode entry points
cannot execute a conditional branch instruction or any other instruction
that uses the JSR stack hardware, including the following instructions:

JSR
JMP
RET
JSR_COROUTINE
BSR
HW_REI
All Bxx opcodes except BR

• Table 3–7 lists the number of cycles required after an HW_MTPR
instruction and before an HW_REI instruction for the specified registers.
These cycles can be ensured by inserting one HW_MFPR R31,0 instruction
or other appropriate instructions for each cycle of delay required after the
HW_MTPR instruction.

Table 3–7 HW_MTPR Restrictions

Register
Cycles Between

HW_MTPR and HW_REI

DTBIS, ASM, ZAP 0

ITBIS, ASM, ZAP 2

HIER, SIER 3

HIRR, SIRR 3

ICCSR (FPE bit) 4

PS 5
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• When loading the cycle counter register (CC, Section 4.2.13), bits <3:0>
must be loaded with zero. Loading non-zero values in these bits can cause
an inaccurate count.

• An HW_MTPR DTBIS instruction cannot be combined with an HW_MTPR
ITBIS instruction. The hardware will not clear the ITB if both the
instruction fetch and decode unit registers and the LSU registers are
simultaneously selected. Two instructions are needed to clear each TB
individually. Use the following code to perform this function:

HW_MTPR Rx,ITBIS
HW_MTPR Ry,DTBIS

• Three cycles of delay are required between the following instructions:

HW_MTPR HIER, SIER
HW_MTPR HIRR, SIRR
HW_MTPR
HW_MTPR
HW_MTPR ALT_MODE

and
and
and
and
and

HW_MFPR HIRR, SIRR
HW_MFPR xIRR
HW_LD or HW_ST
HW_MFPR xIRR
HW_LD/HW_ST ALT_MODE

• The following operations are disabled in the cycle immediately following an
HW_REI instruction (MxPR = MTPR or MFPR):

— HW_MxPR ITB_TAG

— HW_MxPR ITB_PTE

— HW_MxPR ITB_PTE_TEMP

This rule implies that it is never a good idea to allow exceptions while
updating the ITB. The ITB register will not be written if:

* An exception interrupts the flow of the ITB miss routine and
attempts to execute an HW_REI instruction. The return address
begins with an HW_MxPR instruction to an ITB register.

* The return from the exception interrupt is predicted correctly to
avoid any delay between the two instructions.

The following code demonstrates this situation:

HW_REI ;Return from interrupt
HW_MTPR R1,ITB_TAG ;Attempts to execute very next cycle, instr ignored

• The following registers can be accessed only in PALmode:

ITB_TAG

ITB_PTE
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ITB_PTE_TEMP

If the microprocessor is not in PALmode because the hardware enable
(HWE) bit is set in the ICCSR, an HW_MTPR or HW_MFPR instruction to
or from these registers is ignored.

• When writing the PAL_BASE register, exceptions must not occur. An
exception occurring simultaneously with a write instruction to the
PAL_BASE register can leave the register in a metastable state. All
asynchronous exceptions except reset can be avoided under the following
conditions:

PALmode—Blocks all interrupts

Machine checks disabled—Blocks I/O error exceptions (through the
ABOX_CTL register or MB instruction isolation)

Not under trap shadow—Avoids arithmetic traps

The trap shadow is defined as less than:

* 3 cycles after a non-MUL integer operate that may overflow

* 22 cycles after an MULL/V instruction

* 24 cycles after an MULQ/V instruction

* 6 cycles after a non-DIV floating-point operation that may cause a
trap

* 34 cycles after a DIVF or DIVS instruction that may cause a trap

* 63 cycles after a DIVG or DIVT instruction that may cause a trap

• The sequence HW_MTPR PTE, HW_MTPR TAG is not allowed. At least
two delay cycles must occur between HW_MTPR PTE and HW_MTPR TAG
instructions. This applies to both the ITB and DTB.

• The MCHK exception service routine must check the EXC_SUM register
for simultaneous arithmetic errors. Arithmetic traps will not trigger
exceptions a second time after returning from exception service for the
machine check.

• Three cycles of delay must be inserted between HW_MFPR DTB_PTE
and HW_MFPR DTB_PTE_TEMP instructions. Use the following code to
perform this function:
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HW_MFPR Rx,DTB_PTE ; Reads DTB_PTE into DTB_PTE_TEMP register
HW_MFPR R31,0 ; First cycle of delay
HW_MFPR R31,0 ; Second cycle of delay
HW_MFPR R31,0 ; Third cycle of delay
HW_MFPR Ry,DTB_PTE_TEMP ; Read DTB_PTE_TEMP into register file Ry

• Three cycles of delay must be inserted between HW_MFPR ITB_PTE
and HW_MFPR ITB_PTE_TEMP instructions. Use the following code to
perform this function:

HW_MFPR Rx,ITB_PTE ; Reads ITB_PTE into ITB_PTE_TEMP register
HW_MFPR R31,0 ; First cycle of delay
HW_MFPR R31,0 ; Second cycle of delay
HW_MFPR R31,0 ; Third cycle of delay
HW_MFPR Ry,ITB_PTE_TEMP ; Read ITB_PTE_TEMP into register file Ry

• The content of the destination register for HW_MFPR Rx,DTB_PTE and
HW_MFPR Rx,ITB_PTE instructions is UNPREDICTABLE.

• Two HW_MFPR DTB_PTE instructions cannot be issued in consecutive
cycles. This implies that more than one instruction might be necessary
between the HW_MFPR instructions if dual issue is possible. Similar
restrictions apply to the ITB_PTE register.

• Reading the EXC_SUM register requires special timing. (See Section 4.1.9
for specific information.)

• Dstream memory management (DMM) errors occurring one cycle before
HW_MxPR instructions to the ITB_PTE will not stop the TB pointer from
incrementing to the next TB entry even though the HW_MxPR instruction
will be aborted by the DMM error. This behavior affects performance but
not functionality.

• PALcode that writes multiple ITB entries must write the entry that maps
the address contained in the EXC_ADDR register last.

• HW_ST instructions cannot be followed for two cycles by any load
instruction that may miss in the Dcache.

• Updates to the ICCSR ASN field require at least 10 cycles of delay before
entering native mode that can reference the ASN during Icache access. If
the ICCSR HWE bit is used to update the ASN field in kernel mode, it is
sufficient during this time to make all Istream references to pages with the
ASM bit set to avoid use of the ASN field.

• HW_MTPR instructions that update the TB_CTL register cannot follow
by one cycle an HW_MTPR instruction that updates the DTB_PTE or
ITB_PTE register.
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• Table 3–8 shows the delays required for HW_MTPR instructions that
update the ICCSR (ASN field), FLUSH_IC, and FLUSH_IC_ASM
registers.

Table 3–8 HW_MTPR Cycle Delay

Register Cycles Delay

ICCSR (ASN field only) 8

FLUSH_IC 9

FLUSH_IC_ASM 9

The delay ensures that the update occurs before the first instruction fetch
in native mode, because the pipeline can contain instructions that were
fetched before the update (which would remain valid during a pipeline
stall). At least one instruction must be issued during each cycle of the
delay to ensure that the pipeline is cleared of all instructions fetched prior
to the update.

If the update is performed in kernel mode using the ICCSR HWE bit, it is
sufficient during this time to make all Istream references to pages with the
ASM bit set to avoid use of the ASN field.

• Machine check exceptions taken while in PALmode can load the
EXC_ADDR register with a restart address one instruction earlier
than the correct restart address. Some HW_MxPR instructions may have
already completed execution although the restart address indicates the
HW_MxPR as the return instruction. Re-execution of some HW_MxPR
instructions can alter the machine state (that is, TB pointers, EXC_ADDR
register mask).

The mechanism that stops instruction flow during machine check
exceptions causes the machine check exception to appear as a Dstream
fault on the following instruction in the hardware pipeline. If the following
instruction is an HW_MxPR instruction, a Dstream fault will not abort
execution in all cases. The EXC_ADDR register will be loaded with
the address of the HW_MxPR instruction as if it were aborted. An
HW_REI instruction to this restart address will incorrectly re-execute this
instruction.

Machine check service routines should check for MxPR instructions at the
return address before continuing.
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3.6.1 Translation Buffer Miss Flows
Sections 3.6.1.1 and 3.6.1.2 describe hardware-specific details that are helpful
when writing ITB and DTB fill routines. The flows highlight the trade-offs
and restrictions between PALcode and hardware. The PALcode source that is
released with the chip should be referenced before any new flows are written.
The following descriptions assume the reader has a working knowledge of the
Alpha memory-management architecture.

3.6.1.1 Instruction Translation Buffer Miss
When the IDU encounters an ITB miss, it performs the following sequence:

1. Latches the VPC of the target Istream reference in the EXC_ADDR
register.

2. Flushes the pipeline of any instructions that follow the instruction that
caused the ITB miss.

3. Waits for the completion of any other instructions that may be in progress.

4. Enters PALmode.

5. Jumps to the ITB miss PALcode entry point.

The following PALcode sequence is recommended for translating the address
and filling the ITB:

1. Create some scratch area in the integer register file (IRF) by writing the
content of a few integer registers to the PAL_TEMP register file.

2. Read the target virtual address from the EXC_ADDR register.

3. Fetch the page table entry (PTE) (this can take multiple read operations)
using a physical-mode HW_LD instruction. If this PTE valid bit is clear,
either report translation not valid (TNV) or ACV, as appropriate.

4. Check the PTE valid bit because translation buffers cannot contain invalid
PTEs. Also check the ITB PTE RAM to ensure it does not hold the fault
on execute (FOE) bit. If the PTE valid bit is set and the FOE bit is clear,
PALcode can fill an ITB entry.

5. Write the original virtual address to the TB_TAG register, using an
HW_MTPR instruction. This writes the tag into a temporary register
and not into the ITB TAG field.

6. Write the PTE to the TB_CTL register to select either the large-page or
small-page TB regions. Wait at least one cycle before executing the next
step.

Privileged Architecture Library Code 3–21



7. Write the PTE to the ITB_PTE register, using an HW_MTPR instruction.
This HW_MTPR instruction causes the ITB TAG and PTE fields to be
written.

Note

The HW_MTPR instruction to the ITB_PTE register can be issued
without delay after the HW_MTPR instruction to the TB_TAG register
is issued.

8. Restore the contents of any modified integer registers to their original state
using the HW_MFPR instruction.

9. Restart the instruction stream, using the HW_REI instruction.

3.6.1.2 Data Translation Buffer Miss
When the LSU encounters a DTB miss, it performs the following sequence:

1. Latches the referenced virtual address in the virtual address register (VA,
Section 4.2.8) and latches other information about the reference in the
memory management control and status register (MM_CSR, Section 4.2.9).

2. Locks the VA register and MM_CSR against further modifications and
latches the PC of the instruction that generated the reference in the
EXC_ADDR register.

3. Drains the machine (Section 3.6.1.1).

4. Jumps to the DTB miss PALcode entry point.

Unlike ITB misses, DTB misses can occur while the CPU is executing in
PALmode. The recommended PALcode sequence for translating the address
and filling the DTB is as follows:

1. Create some scratch area in the IRF by writing the contents of a few
integer registers to the PAL_TEMP register file.

2. Read the requested virtual address from the VA register. Reading this
register unlocks the VA register and the MM_CSR. The MM_CSR is
updated only when Dstream memory-management errors occur. It retains
information about the instruction that generated the DTB miss for later
use.
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3. Fetch the PTE. This operation can require multiple read operations. If the
valid bit of the PTE is clear, either a TNV or an ACV must be reported,
unless a FETCH or FETCH_M instruction caused the DTB miss. This
can be checked in the MM_CSR OPCODE field. If the value in this field
is 1816, a FETCH or FETCH_M instruction caused this DTB miss, and
the subsequent TNV or ACV should not be reported. Therefore, PALcode
should do the following:

a. Read the value in the EXC_ADDR register.

b. Increment the value by four.

c. Write the value back to the EXC_ADDR register.

d. Execute an HW_REI instruction.

4. Write the register that holds the contents of the PTE to the DTB_CTL
register. This effectively selects one of the four possible granularity hint
sizes.

5. Write the original virtual address to the TB_TAG register. This writes the
tag into a temporary register and not into the DTB TAG field.

6. Write the PTE to the DTB_PTE register. This HW_MTPR instruction
causes the DTB TAG and PTE fields to be written.

Note

It is not necessary to delay issuing the HW_MTPR instruction to the
DTB_PTE register after the HW_MTPR instruction to the TB_TAG
register is issued.

7. Restore the contents of any modified integer registers.

8. Restart the Istream with an HW_REI instruction.
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4
Internal Processor Registers

This chapter describes the following internal processor registers (IPRs):

• IDU registers

• LSU registers

• PAL_TEMP registers

Note

The abbreviations in the Type column of the register field description
tables indicate field access behavior. The abbreviations are defined in
the Conventions section of the Preface.

The memory controller and I/O controller (IOC) control and status registers
(CSRs) are described in Chapters 5 and 6.

4.1 IDU Registers
Sections 4.1.1 through 4.1.16 describe the IDU registers.

4.1.1 Translation Buffer Tag Register
The write-only translation buffer tag (TB_TAG) register holds the tag for the
next translation buffer update operation in the instruction translation buffer
(ITB) or the data translation buffer (DTB).

The tag is written to a temporary register and not transferred to the ITB
or DTB until the ITB page table entry register (ITB_PTE, Section 4.1.2) or
the DTB page table entry register (DTB_PTE, Section 4.2.3) is written. The
entry to be written is chosen at the time of the ITB_PTE or DTB_PTE write
operation. The DTB replacement algorithm (a not-last-used algorithm or a
round-robin algorithm) is specified by the DTB round-robin enable (DTBRR) bit
in the LSU control register (ABOX_CTL, Section 4.2.1).
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The page format is determined by the granularity hints (GH) field in the
translation buffer control register (TB_CTL, Section 4.2.2).

Figure 4–1 shows the TB_TAG register formats, and Tables 4–1 and 4–2
describe its fields.

Note

The TB_TAG register is written only while in PALmode, regardless of
the state of the hardware enable (HWE) bit in the instruction cache
control and status register (ICCSR, Section 4.1.7).

Figure 4–1 TB_TAG Register Formats

22 21 0

IGNVA
<42:22>
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43 42
Large Page Format
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IGNVA
<42:13>

63

IGN

43 42
Small Page Format

Table 4–1 TB_TAG Register Small-Page Format Field Description

Bits Field Type Description

63:43 IGN WO Ignored when written.

42:13 VA<42:13> WO Virtual address bits <42:13>.

12:0 IGN WO Ignored when written.
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Table 4–2 TB_TAG Register Large-Page Format Field Description

Bits Field Type Description

63:43 IGN WO Ignored when written.

42:22 VA<42:22> WO Virtual address bits <42:22>.

21:0 IGN WO Ignored when written.

4.1.2 Instruction Translation Buffer Page Table Entry Register
The read and write instruction translation buffer page table entry (ITB_PTE)
register represents 12 page table entries split into two distinct arrays. The
first eight page table entries provide small-page (8 KB) translations and
the remaining four provide large-page (4 MB) translations. The entry to be
written is chosen by a not-last-used algorithm (implemented in hardware
independently for each array) and the granularity hints (GH) field in the
translation buffer control register (TB_CTL, Section 4.2.2).

The ITB_PTE register is written using the format described in the Alpha
Architecture Reference Manual, but some fields are ignored.

The ITB tag array is updated from the TB_TAG register (Section 4.1.1) when
the ITB_PTE register is written. Two instructions are required to read the
ITB_PTE register:

1. The first instruction sends the PTE data to the instruction translation
buffer page table entry temporary register (ITB_PTE_TEMP, Section 4.1.3).

2. The second instruction reads the ITB_PTE_TEMP register and returns the
PTE to the register file.

To access the complete set of ITB_PTE register entries, the TB entry pointer
that corresponds to the large- or small-page format (selected by the TB_CTL
register) is incremented when the ITB_PTE register is read or written.

Figure 4–2 shows the ITB_PTE register formats, and Tables 4–3 and 4–4
describe its fields.

Note

The ITB_PTE register is written only while in PALmode, regardless of
the state of the hardware enable (HWE) bit in the instruction cache
control and status register (ICCSR, Section 4.1.7).
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Figure 4–2 ITB_PTE Register Formats
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Table 4–3 ITB_PTE Register Write-Format Field Description

Bits Field Type Description �

63:53 IGN RW Ignored when written.

52:32 PFN<33:13> RW Page frame number—This field always points to a
page boundary.

31:12 IGN RW Ignored when written.

11 URE RW User read-enable—When set, this bit enables user
mode read operations. When this bit is clear, an ACV
occurs if a load or instruction fetch is attempted in
user mode.

10 SRE RW Supervisor read-enable—When set, this bit enables
supervisor mode read operations. When this bit is
clear, an ACV occurs if a load or instruction fetch is
attempted in supervisor mode.

9 ERE RW Executive read-enable—When set, this bit enables
executive mode read operations. When this bit is
clear, an ACV occurs if a load or instruction fetch is
attempted in executive mode.

8 KRE RW Kernel read-enable—When set, this bit enables kernel
mode read operations. When this bit is clear, an ACV
occurs if a load or instruction fetch is attempted in
kernel mode.

�For more information about the fields, see the Alpha Architecture Reference Manual.

(continued on next page)
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Table 4–3 (Cont.) ITB_PTE Register Write-Format Field Description

Bits Field Type Description �

7:5 IGN RW Ignored when written.

4 ASM RW Address space match—When this bit is set, this PTE
matches all address space numbers (ASNs). For a
given virtual address, this bit must be set consistently
in all processes; otherwise, the address mapping is
UNPREDICTABLE.

3:0 IGN RW Ignored when written.

�For more information about the fields, see the Alpha Architecture Reference Manual.

Table 4–4 ITB_PTE Register Read-Format Field Description

Bits Field Type Description �

63:35 RAZ RW Read as zero.

34 ASM RW See the corresponding write-format field description
(Table 4–3).

33:13 PFN<33:13> RW See the corresponding write-format field description
(Table 4–3).

12 URE RW See the corresponding write-format field description
(Table 4–3).

11 SRE RW See the corresponding write-format field description
(Table 4–3).

10 ERE RW See the corresponding write-format field description
(Table 4–3).

9 KRE RW See the corresponding write-format field description
(Table 4–3).

8:0 RAZ RW Read as zero.

�For more information about the fields, see the Alpha Architecture Reference Manual.

4.1.3 Instruction Translation Buffer Page Table Entry Temporary
Register

The instruction translation buffer page table entry temporary (ITP_PTE_TEMP)
register is a read-only holding register for ITB_PTE read data. Two
instructions are required to read the ITB_PTE register (Section 4.1.2) and
to return data to the integer register file:
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1. The first instruction reads the ITB_PTE register data to the ITB_PTE_TEMP
register.

2. The second instruction reads the ITB_PTE_TEMP register data to the
integer register file.

The ITB_PTE_TEMP register is updated on all ITB read accesses and write
accesses. A read of the ITB_PTE register to the ITB_PTE_TEMP register
should be followed closely by a read of the ITB_PTE_TEMP register to the
register file.

Note

The ITB_PTE_TEMP register is read only while in PALmode,
regardless of the state of the hardware enable (HWE) bit in the
instruction cache control and status register (ICCSR, Section 4.1.7).

The ITB_PTE_TEMP register format and fields are the same as the ITB_PTE
register read format shown in Figure 4–2 and described in Table 4–4.

4.1.4 Instruction Translation Buffer ZAP Register
A write operation to the instruction translation buffer ZAP (ITBZAP) register
invalidates all 12 ITB entries. It also resets both not-last-used (NLU) pointers
to their initial state. The ITBZAP register is written only in PALmode.

4.1.5 Instruction Translation Buffer ASM Register
A write operation to the instruction translation buffer ASM (ITBASM) register
invalidates all ITB entries in which the address space match (ASM) bit equals
zero. The ITBASM register is written only in PALmode.

4.1.6 Instruction Translation Buffer Invalidate Single Register
A write operation to the instruction translation buffer invalidate single (ITBIS)
register invalidates the ITB entry that maps the virtual address held in
the integer register. The integer register is identified by the Rb field of the
HW_MTPR instruction used to perform the write operation.
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4.1.7 Instruction Cache Control and Status Register
The instruction cache control and status register (ICCSR) contains various IDU
hardware enable bits and fields.

The only architecturally defined bit in this register is the floating-point enable
(FPE) bit, which enables floating-point instructions. Hardware clears all of the
bits in this register at reset, except for the ASN field and performance counter
interrupt enable bits PC0 and PC1.

The HWE bit allows the special PALcode instructions to execute in kernel
mode. This bit is only for diagnostic routines or operating system alternative
PALcode routines. It does not allow access to the ITB registers while not in
PALmode.

Figure 4–3 shows the ICCSR formats, and Tables 4–5 and 4–6 describe its
fields.

Figure 4–3 ICCSR Formats
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Table 4–5 ICCSR Write-Format Field Description

Bits Field Type Description

63:53 MBZ RW Must be zero.

52:47 ASN<5:0> RW Address space number—This field is used in
conjunction with the Icache to further qualify cache
entries and avoid some cache flushes. The ASN
is written to the Icache during fill operations and
compared with the Istream data on fetch operations.
Mismatches invalidate the fetch without affecting the
Icache.

46 RES RW Reserved by Digital and should not be used.

45:44 PCEN RW Performance counter enable—When either bit is set,
both performance counters increment. When both bits
are clear, both performance counters are disabled.

43 RES RW Reserved by Digital and should not be used.

42 FPE RW Floating-point enable—When this bit is set, floating-
point instructions can be issued. When this bit is
clear, floating-point instructions cause FEN exceptions
(Section 3.5).

41 MAP RW Superpage map enable—When set, this bit enables
superpage Istream memory mapping of VPC<33:13>
directly to physical PC<33:13>, essentially bypassing
the ITB when VPC<42:41> = 2. Superpage mapping
is allowed only in kernel mode. The Icache ASM bit
is always set. When clear, this bit disables superpage
mapping.

40 HWE RW Hardware enable—When this bit is set, the five
PALRES instructions (Section 3.4) can be issued in
kernel mode. When this bit is clear, attempts to
execute PALRES instructions while not in PALmode
result in OPCDEC exceptions (Section 3.5).

39 DI RW Dual issue enable—When set, this bit enables
instruction dual issue. When this bit is clear, only
one instruction can be issued for each CPU cycle.

38 BHE RW Branch history enable—This bit is used in conjunction
with the BPE bit (<36>) (Table 4–7).

(continued on next page)
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Table 4–5 (Cont.) ICCSR Write-Format Field Description

Bits Field Type Description

37 JSE RW JSR stack enable—When set, this bit enables the JSR
stack to push return addresses. When this bit is clear,
the JSR stack is disabled. See the Alpha Architecture
Reference Manual for more information about the JSR
stack.

36 BPE RW Branch predict enable—This bit is used in conjunction
with the BHE bit (<38>) (Table 4–7).

35 PIPE RW When this bit is set, the pipeline proceeds normally.
When this bit is clear, all hardware-interlocked
instructions drain the machine and wait for the write
buffer to empty before issuing the next instruction.
Instructions that do not cause the pipe to drain
include HW_MTPR, HW_REI, conditional branches,
and instructions that specify R31 as a destination
register.

34:32 PCMUX1 RW Performance counter 1 multiplexer—See Section 4.1.14
for more information.

31:12 MBZ RW Must be zero.

11:8 PCMUX0 RW Performance counter 0 multiplexer—See Section 4.1.14
for more information.

7:5 MBZ RW Must be zero.

4 RES RW Reserved by Digital and should not be used.

3 PC0 RW Performance counter 0 interrupt request enable—The
PC0 interrupt request is enabled after 212 events are
counted when this bit is set, and after 216 events are
counted when this bit is clear.

2:1 MBZ RW Must be zero.

0 PC1 RW Performance counter 1 interrupt request enable—The
PC1 interrupt request is enabled after 28 events are
counted when this bit is set, and after 212 events are
counted when this bit is clear.
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Table 4–6 ICCSR Read-Format Field Description

Bits Field Type Description

63:35 RAZ RW Read as zero.

34 RES RW Reserved by Digital and should not be used.

33:28 ASN<5:0> RW See the corresponding write-format field description
(Table 4–5).

27 RES RW Reserved by Digital and should not be used.

26:25 PCEN RW See the corresponding write-format field description
(Table 4–5).

24 RES RW Reserved by Digital and should not be used.

23 FPE RW See the corresponding write-format field description
(Table 4–5).

22 MAP RW See the corresponding write-format field description
(Table 4–5).

21 HWE RW See the corresponding write-format field description
(Table 4–5).

20 DI RW See the corresponding write-format field description
(Table 4–5).

19 BHE RW See the corresponding write-format field description
(Table 4–5).

18 JSE RW See the corresponding write-format field description
(Table 4–5).

17 BPE RW See the corresponding write-format field description
(Table 4–5).

16 PIPE RW See the corresponding write-format field description
(Table 4–5).

15:13 PCMUX1 RW See the corresponding write-format field description
(Table 4–5).

12:9 PCMUX0 RW See the corresponding write-format field description
(Table 4–5).

8:3 RAZ RW Read as zero.

2 PC1 RW See the corresponding write-format field description
(Table 4–5).

1 PC0 RW See the corresponding write-format field description
(Table 4–5).

(continued on next page)
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Table 4–6 (Cont.) ICCSR Read-Format Field Description

Bits Field Type Description

0 RAZ RW Read as zero.

Table 4–7 defines the BPE and BHE bit branch selection.

Table 4–7 BPE and BHE Branch Prediction Selection

BPE BHE Prediction

0 1 or 0 Not taken

1 0 Sign of displacement

1 1 Branch history table

4.1.8 Exception Address Register
The read and write exception address (EXC_ADDR) register is used to restart
the system after exceptions or interrupts. Software can use the HW_MTPR
instruction to read and write this register, and it can also be written directly
by the hardware.

When an event that invokes PALcode occurs, the current program counter (PC)
value is loaded into the EXC_ADDR register, and the appropriate PALcode
routine is dispatched. When the HW_REI instruction is executed at the end of
the PALcode routine, the hardware executes a jump to the address contained
in the EXC_ADDR register. On return from a PALcode routine, EXC_ADDR
register bit 0 (which indicates PALmode to the hardware) is usually clear
and, in that case, the hardware loads the new PC, enables interrupts, enables
memory mapping, and dispatches back to the user in native (non-PAL) mode.

Caution

The HW_MTPR instruction can be used to update the EXC_ADDR
register while in native mode only when the PAL bit value is zero.
The combination of native mode and a PAL bit value of one causes
UNDEFINED behavior.
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CALL_PAL exceptions load the EXC_ADDR register with the PC of the
instruction following the CALL_PAL instruction. This allows CALL_PAL
service routines to return without needing to increment the value in the
EXC_ADDR register. This feature requires careful treatment in PALcode.
Arithmetic traps and machine check exceptions can prompt CALL_PAL
exceptions resulting in an incorrect value being saved in the EXC_ADDR
register.

EXC_ADDR register bit 1 takes on special meaning only in the cases of an
arithmetic trap (ARITH) or a machine check (MCHK) exception. PALcode
servicing these two exceptions must interpret bit 1 as follows:

• A zero in bit 1 indicates that the PC in <63:2> is too large by a value
of 4 bytes; subtract 4 before executing an HW_REI instruction from this
address.

• A one in bit 1 indicates that the PC in <63:2> is correct; clear bit 1.

All other PALcode entry points except RESET can expect EXC_ADDR register
bit 1 to be zero. (See Section 3.5 for more information about PALcode entry
points.)

The logic allows the following code sequence to conditionally subtract four from
the address in the EXC_ADDR register without using an additional register.
The following code sequence must be present only in arithmetic trap and
machine check flows:

HW_MFPR Rx, EXC_ADDR ;Read EXC_ADDR into GPR
SUBQ Rx, 2,Rx ;Subtract 2 causing borrow if bit [1]=0
BIC Rx, 2,Rx ;Clear bit [1]
HW_MTPR Rx, EXC_ADDR ;Write-back to EXC_ADDR

Figure 4–4 shows the EXC_ADDR register format, and Table 4–8 describes its
fields.

Figure 4–4 EXC_ADDR Format

2 1 0

P
A
L

63

I
G
N

PC
<63:2>

4–12 Internal Processor Registers



Table 4–8 EXC_ADDR Field Description

Bits Field Type Description

63:2 PC<63:2> RW This field holds the program counter value for the
instruction that did not complete its execution when
an exception or interrupt occurred.

1 IGN RW This bit is normally ignored. It has special meaning
only for arithmetic trap and machine check exceptions.

0 PAL RW When set, this bit indicates PALmode; when clear, it
indicates native mode.

4.1.9 Exception Summary Register
The exception summary (EXC_SUM) register records the types of arithmetic
traps that occurred since the last time the register was written (cleared).
When the result of an arithmetic operation produces an arithmetic trap, the
corresponding EXC_SUM register bit is set.

The register containing the result of an arithmetic operation is recorded in the
exception register write mask. The exception register write mask is a 64-bit
parameter in which each bit corresponds to a floating-point or integer general-
purpose register (F31..F0 and R31..R0). The exception register write mask is
visible only through the 1-bit window (MSK) in the EXC_SUM register. Each
read of the EXC_SUM register reads one exception register write mask bit in
the sequence F31..F0 then R31..R0. The read also clears the exception register
write mask bit. The EXC_SUM register must be read 64 times to extract and
clear the complete exception register write mask.

Any write operation to the EXC_SUM register clears bits <8:2> but does not
affect the MSK bit.

An exception register write mask bit is cleared three cycles after it is read.
Code that reads the EXC_SUM register must allow at least three cycles
between reads. This allows the exception register write mask clear and shift
operations to complete and ensures that successive bits are read.

Figure 4–5 shows the EXC_SUM register format, and Table 4–9 describes its
fields.
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Figure 4–5 EXC_SUM Register Format
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Table 4–9 EXC_SUM Register Field Description

Bits Field Type Description

63:34 RAZ RW Read as zero.

33 MSK RC Exception register write mask window.

32:9 RAZ RW Read as zero.

8 IOV WA When set, this bit indicates an overflow or integer
arithmetic overflow on an FPU convert to integer
operation.

7 INE WA When set, this bit indicates a floating-point inexact
error.

6 UNF WA When set, this bit indicates a floating-point underflow.

5 FOV WA When set, this bit indicates a floating-point overflow.

4 DZE WA When set, this bit indicates a divide-by-zero operation.

3 INV WA When set, this bit indicates an invalid operation.

2 SWC WA Software completion—When set, this bit indicates that
software completion is possible. It is set after a floating-
point instruction containing the /S modifier completes
with an arithmetic trap and all previous floating-point
instructions that trapped since the last HW_MTPR
instruction to the EXC_SUM register also contained the
/S modifier.

This bit is cleared when a floating-point instruction
without the /S modifier completes with an arithmetic
trap. The bit remains cleared regardless of additional
arithmetic traps until the register is written by an
HW_MTPR instruction. The bit is always cleared on
any HW_MTPR instruction to the EXC_SUM register.

1:0 RAZ RW Read as zero.
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4.1.10 Clear Serial Line Interrupt Register
The write-only clear serial line interrupt (SL_CLR) register clears serial line
interrupt requests and performance counter interrupt requests.

The SLC, PC1, and PC0 bits are written with a zero to clear the corresponding
interrupt request. These interrupts are enabled in the hardware interrupt
enable register (HIER, Section 4.1.13.4).

Figure 4–6 shows the SL_CLR register format, and Table 4–10 describes its
fields.

Figure 4–6 SL_CLR Register Format
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Table 4–10 SL_CLR Register Field Description

Bits Field Type Description

63:33 IGN WO Ignored when written.

32 SLC WO When written with a zero, this bit clears the serial line
interrupt request.

31:16 IGN WO Ignored when written.

15 PC1 WO When written with a zero, this bit clears the
performance counter 1 interrupt request.

14:9 IGN WO Ignored when written.

8 PC0 WO When written with a zero, this bit clears the
performance counter 0 interrupt request.

7:0 IGN WO Ignored when written.

4.1.11 Serial Line Receive Register
The serial line receive (SL_RCV) register contains a single read-only bit
(RCV). This bit and the TMT bit in the serial line transmit register (SL_XMIT,
Section 4.1.12) are used with the interrupt control registers and the sromd
and sromclk pins to provide an onchip serial line function. The RCV bit
is functionally connected to the sromd pin after the external SROM loads
the Icache. Using a software timing loop, the RCV bit can be read to receive
external data, one bit at a time. (See Chapter 9 for more information.)
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When a transition is detected on the receive line, the serial line request (SLR)
bit in the hardware interrupt request register (HIRR, Section 4.1.13.1) is set
to request a serial line interrupt. The serial line interrupt is cleared by the
SLC bit in the serial line clear register (SL_CLR, Section 4.1.10) and can be
disabled by clearing the serial line enable (SLE) bit in the hardware interrupt
enable register (HIER, Section 4.1.13.4).

Figure 4–7 shows the serial line receive register format, and Table 4–11
describes its fields.

Figure 4–7 SL_RCV Register Format
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Table 4–11 SL_RCV Register Field Description

Bits Field Type Description

63:4 RAZ RO Read as zero.

3 RCV RO Receive—This bit is functionally connected to the
sromd pin after the Icache is initially loaded from
the external SROM.

2:0 RAZ RO Read as zero.

4.1.12 Serial Line Transmit Register
The serial line transmit (SL_XMIT) register contains a single write-only bit
(TMT). This bit and the RCV bit in the serial line receive register (SL_RCV,
Section 4.1.11) are used with the interrupt control registers and the sromd
and sromclk pins to provide an onchip serial line function. The TMT bit is
functionally connected to the sromclk pin after the external SROM loads the
Icache. Using a software timing loop, the TMT bit can be written to transmit
data externally, one bit at a time. (See Chapter 9 for more information.)

Figure 4–8 shows the SL_XMIT register format, and Table 4–12 describes its
fields.
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Figure 4–8 SL_XMIT Register Format
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Table 4–12 SL_XMIT Register Field Description

Bits Field Type Description

63:5 IGN WO Ignored when written.

4 TMT WO Transmit—This bit is functionally connected to the
sromclk pin after the Icache is initially loaded from the
external SROM.

3:0 IGN WO Ignored when written.

4.1.13 Interrupt Request and Enable Registers
The interrupt request and enable registers comprise two sets of three
registers each. The read formats for the three interrupt request registers
are identical, as are the read formats for the three interrupt enable registers.
Each read/write register has a unique write format.

Table 4–13 lists the interrupt request and enable register and the sections and
figures that describe them.
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Table 4–13 Interrupt Request and Enable Registers

Register Mnemonic Access
Description
Section

Read-
Format
Figure

Write-
Format
Figure

Hardware interrupt
request register

HIRR RO 4.1.13.1 4–9 None

Software interrupt
request register

SIRR RW 4.1.13.2 4–9 4–11

Asynchronous trap interrupt
request register

ASTRR RW 4.1.13.3 4–9 4–12

Hardware interrupt
enable register

HIER RW 4.1.13.4 4–10 4–13

Software interrupt
enable register

SIER RW 4.1.13.5 4–10 4–14

Asynchronous trap interrupt
enable register

ASTER RW 4.1.13.6 4–10 4–15

Figure 4–9 shows the HIRR, SIRR, and ASTRR read format, and Figure 4–10
shows the HIER, SIER, and ASTER read format.

Figure 4–9 HIRR, SIRR, and ASTRR Read Format
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Figure 4–10 HIER, SIER, and ASTER Read Format
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Table 4–14 describes the HIRR, SIRR, and ASTRR read-format fields.

Table 4–14 HIRR, SIRR, and ASTRR Read-Format Field Description

Bits Field Type � Description

63:33 RAZ RW Read as zero.

32 UAR RW User AST request—When set, this bit indicates a user
mode asynchronous trap (AST) interrupt request. (See
Table 4–18.)

31 SAR RW Supervisor AST request—When set, this bit indicates a
supervisor mode AST interrupt request. (See Table 4–18.)

30 EAR RW Executive AST request—When set, this bit indicates an
executive mode AST interrupt request. (See Table 4–18.)

29 KAR RW Kernel AST request—When set, this bit indicates a kernel
mode AST interrupt request. (See Table 4–18.)

28:14 SIRR
<15:1>

RW Software interrupt request—When any of these bits is set,
it indicates a corresponding software interrupt request.
(See Table 4–17.)

13 SLR RW Serial line interrupt request—When set, this bit indicates
a serial line interrupt is requested (Section 4.1.11). The
SL_CLR register (Section 4.1.10) clears this interrupt.

12:10 IRQ
<2:0>

RW Interrupt request—When any of these bits is set, it
indicates an interrupt request on the corresponding
irq<2:0> pin.

9 PC0 RW Performance counter 0 interrupt request—When set, this
bit indicates a performance counter 0 interrupt is requested
(Section 4.1.7). The SL_CLR register (Section 4.1.10) clears
this interrupt.

8 PC1 RW Performance counter 1 interrupt request—When set, this
bit indicates a performance counter 1 interrupt is requested
(Section 4.1.7). The SL_CLR register (Section 4.1.10) clears
this interrupt.

7 RAZ RW Read as zero.

6 MERR RW Memory controller error interrupt request—When set,
this bit indicates a memory controller error interrupt
request. The memory controller error status register (ESR,
Section 5.6.6) clears this interrupt.

�The HIRR is read-only (RO).

(continued on next page)
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Table 4–14 (Cont.) HIRR, SIRR, and ASTRR Read-Format Field Description

Bits Field Type � Description

5 IERR RW IOC error interrupt request—When set, this bit indicates
an IOC error interrupt request. The IOC status register 0
(IOC_STAT0, Section 6.4.3) clears this interrupt.

4 RAZ RW Read as zero.

3 ATR RW AST interrupt request—This bit is set if any of the AST
request (bits <32:29>) and the corresponding enable bit
are set. This bit also requires that the processor mode be
equal to or higher than the request mode. Bit SIER2 must
be set in the software interrupt enable register (SIER,
Section 4.1.13.5) to enable AST interrupt requests.

2 SWR RW Software interrupt request—This bit is set if any software
interrupt request (bits <28:14>) and the corresponding
enable bit are set.

1 HWR RW Hardware interrupt request—This bit is set if any
hardware interrupt request (bits <13:8,6,5>) and the
corresponding enable bits are set.

0 RAZ RW Read as zero.

�The HIRR is read-only (RO).

Table 4–15 describes the HIER, SIER, and ASTER read-format fields.

Table 4–15 HIER, SIER, and ASTER Read-Format Field Description

Bits Field Type Description

63:33 RAZ RW Read as zero.

32 UAE RW User AST enable—When set, this bit indicates that user
mode AST interrupts are enabled.

31 SAE RW Supervisor AST enable—When set, this bit indicates that
supervisor mode AST interrupts are enabled.

30 EAE RW Executive AST enable—When set, this bit indicates that
executive mode AST interrupts are enabled.

29 KAE RW Kernel AST enable—When set, this bit indicates that
kernel mode AST interrupts are enabled.

(continued on next page)
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Table 4–15 (Cont.) HIER, SIER, and ASTER Read-Format Field Description

Bits Field Type Description

28:14 SIER
<15:1>

RW Software interrupt enable—When any of these bits is set,
it indicates that the corresponding software interrupt is
enabled.

13 SLE RW Serial line interrupt enable—When set, this bit indicates
that serial line interrupts are enabled.

12:10 IRQEN
<2:0>

RW Interrupt request enable—When any of these bits is set, it
indicates that interrupts are enabled on the corresponding
irq<2:0> pin.

9 PC0 RW Performance counter 0 interrupt enable—When set, this
bit indicates that performance counter 0 interrupts are
enabled.

8 PC1 RW Performance counter 1 interrupt enable—When set, this
bit indicates that performance counter 1 interrupts are
enabled.

7 RAZ RW Read as zero.

6 MEREN RW Memory controller error interrupt enable—When set, this
bit indicates that memory controller error interrupts are
enabled.

5 IEREN RW IOC error interrupt enable—When set, this bit indicates
that IOC error interrupts are enabled.

4:0 RAZ RW Read as zero.

Table 4–16 summarizes how the interrupt request and enable bits are mapped
to the registers on read and write operations.
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Table 4–16 Interrupt Request and Enable Registers Bit Map

Field

Read�

Request
Bits

Read†
Enable
Bits Write Bits

UAR
UAE
SAR
SAE
EAR
EAE
KAR
KAE

32
—
31
—
30
—
29
—

—
32
—
31
—
30
—
29

ASTRR 51
ASTER 51
ASTRR 50
ASTER 50
ASTRR 49
ASTER 49
ASTRR 48
ASTER 48

SIRR<15:0>
SIER<15:0>

28:14
—

—
28:14

SIRR 47:33
SIER 47:33

SLR
SLE

13
—

—
13

—
HIER 32

IRQ<2:0>
IRQEN<2:0>

12:10
—

—
12:10

—
—

PC0
PC1

9
8

9
8

HIER 15
HIER 8

MERR
MERREN

6
—

—
6

—
HIER 13

IERR
IERREN

5
—

—
5

—
HIER 12

ATR
SWR
HWR

3
2
1

—
—
—

—
—
—

�HIRR, SIRR, ASTRR bits
†HIER, SIER, ASTER bits

The HIRR, SIRR, SIER, ASTRR, and ASTER write formats are shown in
Figures 4–11 through 4–15 and the fields are described in Tables 4–17 through
4–21.

4–22 Internal Processor Registers



4.1.13.1 Hardware Interrupt Request Register
The read-only hardware interrupt request register (HIRR) indicates all
outstanding interrupt requests and summary bits at the time it is read. Each
bit in the HIRR corresponds to a bit that must be set in the hardware interrupt
enable register (HIER, Section 4.1.13.4) to enable an interrupt request. When
it is read, the HIRR also returns the state of software and AST interrupt
requests.

Note

When read, the HIRR can return a value of zero if the hardware
interrupt was released before the read (passive release).

All interrupt requests are blocked while executing in PALmode. (For more
information about interrupt operations, see Section 2.2.3.)

Figure 4–9 shows the HIRR format, and Table 4–14 describes its fields.

4.1.13.2 Software Interrupt Request Register
The read and write software interrupt request register (SIRR) controls software
interrupt requests. Each bit in the SIRR corresponds to a bit that must be set
in the software interrupt enable register (SIER, Section 4.1.13.5) to enable an
interrupt request. When it is read, the SIRR also returns the state of hardware
and AST interrupt requests.

All interrupt requests are blocked while executing in PALmode. (For more
information about interrupt operations, see Section 2.2.3.)

Figure 4–9 shows the SIRR read format, and Table 4–14 describes its fields.
Figure 4–11 shows the SIRR write format, and Table 4–17 describes its fields.

Figure 4–11 SIRR Write Format
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Table 4–17 SIRR Write-Format Field Description

Bits Field Type Description

63:48 IGN RW Ignored when written.

47:33 SIRR
<15:1>

RW Software interrupt request—These bits correspond to
software interrupt enable 15 through 1 in the SIER
(Section 4.1.13.5). Writing a one to any of these bits
when the corresponding enable bit is set, requests the
corresponding interrupt. Writing a zero to any of these bits
clears the corresponding interrupt request.

32:0 IGN RW Ignored when written.

4.1.13.3 Asynchronous Trap Interrupt Request Register
The read and write asynchronous trap interrupt request register (ASTRR)
contains AST interrupt request bits for each processor mode. To generate an
AST interrupt, the following must occur:

• The corresponding enable bit must be set in the asynchronous trap enable
register (ASTER, Section 4.1.13.6).

• The processor must be in the selected processor mode or a higher privileged
mode according to the current value of current mode (CM) bits in the
processor status register (PS, Section 4.1.15).

In addition, to enable AST interrupt requests, bit SIER2 must be set in the
software interrupt enable register (SIER, Section 4.1.13.5). This provides a
mechanism to lock out AST requests over certain interrupt priority levels
(IPLs).

When it is read, the ASTRR also returns the state of software and hardware
interrupt requests.

All interrupt requests are blocked while executing in PALmode. (For more
information about interrupt operations, see Section 2.2.3.)

Figure 4–9 shows the ASTRR read format, and Table 4–14 describes its fields.
Figure 4–12 shows the ASTRR write format, and Table 4–18 describes its
fields.
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Figure 4–12 ASTRR Write Format
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Table 4–18 ASTRR Write-Format Field Description

Bits Field Type Description

63:52 IGN RW Ignored when written.

51 UAR RW User mode AST request—This bit corresponds to user mode
AST interrupt enable. Writing a one to this bit when the
corresponding enable bit is set, requests the interrupt.
Writing a zero to this bit clears the interrupt.

50 SAR RW Supervisor mode AST request—This bit corresponds to
supervisor mode AST interrupt enable. Writing a one
to this bit when the corresponding enable bit is set,
requests the interrupt. Writing a zero to this bit clears
the interrupt.

49 EAR RW Executive mode AST request—This bit corresponds to
executive mode AST interrupt enable. Writing a one to this
bit when the corresponding enable bit is set, requests the
interrupt. Writing a zero to this bit clears the interrupt.

48 KAR RW Kernel mode AST request—This bit corresponds to kernel
mode AST interrupt enable. Writing a one to this bit when
the corresponding enable bit is set, requests the interrupt.
Writing a zero to this bit clears the interrupt.

47:0 IGN RW Ignored when written.

4.1.13.4 Hardware Interrupt Enable Register
The read and write hardware interrupt enable register (HIER) enables the
hardware interrupt requests described in Table 4–19. There is a one-to-one
correspondence between the interrupt request and enable bits. When set, a
bit in this register enables the corresponding interrupt request in the HIRR
(Section 4.1.13.1); otherwise, the request is disabled.

When read, the HIER returns all the interrupt enables described in Table 4–15.
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Figure 4–10 shows the HIER read format, and Table 4–15 describes its fields.
Figure 4–13 shows the HIER write format, and Table 4–19 describes its fields.

Figure 4–13 HIER Write Format
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Table 4–19 HIER Write-Format Field Description

Bits Field Type Description

63:33 IGN RW Ignored when written.

32 SLE RW Serial line interrupt enable—When set, this bit enables
serial line interrupts.

31:16 IGN RW Ignored when written.

15 PC1 RW Performance counter 1 interrupt enable—When set, this
bit enables performance counter 1 interrupts.

14 IGN RW Ignored when written.

13 MEREN RW Memory controller error interrupt enable—When set, this
bit enables memory controller error interrupts.

12 IEREN RW IOC error interrupt enable—When set, this bit enables
IOC error interrupts.

11:9 IRQEN
<2:0>

RW Interrupt request enable—When any of these bits is set,
interrupts are enabled on the corresponding irq<2:0> pin.

8 PC0 RW Performance counter 0 interrupt enable—When set, this
bit enables performance counter 0 interrupts.

7:0 IGN RW Ignored when written.

4.1.13.5 Software Interrupt Enable Register
The read and write software interrupt enable register (SIER) enables the
software interrupt requests described in Table 4–20. There is a one-to-one
correspondence between the interrupt request and enable bits. When set, a
bit in this register enables the corresponding interrupt request in the SIRR
(Section 4.1.13.2); otherwise, the request is disabled.

When read, the SIER returns all the interrupt enables described in Table 4–15.
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Figure 4–10 shows the SIER read format, and Table 4–15 describes its fields.
Figure 4–14 shows the SIER write format, and Table 4–20 describes its fields.

Figure 4–14 SIER Write Format
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Table 4–20 SIER Write-Format Field Description

Bits Field Type Description

63:48 IGN RW Ignored when written.

47:33 SIER
<15:1>

RW Software interrupt enable—When any of these bits is set,
the corresponding software interrupt is enabled.

32:0 IGN RW Ignored when written.

4.1.13.6 Asynchronous Trap Interrupt Enable Register
The read and write asynchronous trap interrupt enable register (ASTER)
enables the AST interrupt requests described in Table 4–21. There is a one-to-
one correspondence between the interrupt request and enable bits. When set,
a bit in this register enables the corresponding interrupt request in the ASTRR
(Section 4.1.13.3); otherwise, the request is disabled.

When read, the ASTER returns all the interrupt enables described in
Table 4–15.

Figure 4–10 shows the ASTER read format, and Table 4–15 describes its fields.
Figure 4–15 shows the ASTER write format, and Table 4–21 describes its
fields.
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Figure 4–15 ASTER Write Format
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Table 4–21 ASTER Write-Format Field Description

Bits Field Type Description

63:52 IGN RW Ignored when written.

51 UAE RW User AST enable—When set, this bit enables user mode
AST interrupts.

50 SAE RW Supervisor AST enable—When set, this bit enables
supervisor mode AST interrupts.

49 EAE RW Executive AST enable—When set, this bit enables executive
mode AST interrupts.

48 KAE RW Kernel AST enable—When set, this bit enables kernel mode
AST interrupts.

47:0 IGN RW Ignored when written.

4.1.14 Performance Counters
The performance counters are reset to zero at power up; otherwise, they are
never cleared. The counters count events over a long period of time relative to
the event frequency; intermediate counter values cannot be extracted.

Because the counters continuously accumulate a count of selected events,
despite interrupts being enabled, the first interrupt after selecting a new
counter input has an error boundary as large as the specified overflow range.
The overflow range is specified in bits 3 and 0 of the ICCSR (Section 4.1.7).

Some inputs can overcount events that occur simultaneously with Dstream
errors that abort the event late in the pipeline. For example, when counting
load instructions, an attempt to execute a load instruction that results in
an ITB_MISS exception increments the performance counter after the first
aborted execution attempt, and then increments the counter again after the
TB-fill routine when the load instruction reissues and completes.
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Performance counter interrupts are reported six cycles after the event
that caused the counter to overflow. Additional delay can occur before an
interrupt is serviced if the processor is executing PALcode that always disables
interrupts. Events occurring during the interval between counter overflow and
interrupt service are counted toward the next interrupt. An interrupt will be
missed only in the case of complete counter wraparound while interrupts are
disabled.

The six cycles before an interrupt is triggered implies that as many as 12
instructions might have completed before the start of the interrupt service
routine.

When counting Icache misses, intervening instructions cannot complete and the
exception PC (EXC_ADDR <63:2>, Section 4.1.8) contains the address of the
last Icache miss. Branch mispredictions allow no more than two instructions
to complete before start of the interrupt service routine.

Table 4–22 lists performance counter 0 inputs and Table 4–23 lists performance
counter 1 inputs.

Table 4–22 Counter 0 Input Selection

PCMUX0
<3:0> Input Events Counted

000X Total issues�2 Total issues divided by 2; a dual issue increments
the count by 1.

000X Pipeline dry Cycles where nothing issued due to lack of
valid Istream data. Causes include Icache fill,
mispredictions, branch delay slots, and pipeline
drain for exception.

010X Load instructions All load instructions.

011X Pipeline frozen Cycles where nothing issued due to resource
conflict.

100X Branch instructions All conditional branches, unconditional branches,
JSR, and HW_REI instructions.

1011 PALmode Cycles while executing in PALmode.

1010 Total cycles Total cycles.

110X Total nonissues�2 Total nonissues divided by 2; no issue increments
the count by 1.

X = 1 or 0

(continued on next page)
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Table 4–22 (Cont.) Counter 0 Input Selection

PCMUX0
<3:0> Input Events Counted

111X Memory controller
EAR

External interface events specified in the
memory controller EAR. (See Section 5.6.7 for
more information about the events that can be
monitored.)

X = 1 or 0

Table 4–23 Counter 1 Input Selection

PCMUX1
<2:0> Input Events Counted

000 Dcache miss Total Dcache misses.

001 Icache miss Total Icache misses.

010 Dual issues Cycles of dual issue.

011 Branch mispredic-
tions

Both conditional branch mispredictions and JSR
or HW_REI mispredictions. Conditional branch
mispredictions cause four cycles and others cause
five cycles of dry pipeline delay.

100 FP instructions Total floating-point operate instructions; that
is, not floating-point branch, load, or store
instructions.

101 Integer operate Integer operate instructions including LDA and
LDAH with destination other than R31.

110 Store instructions Total store instructions.

111 Memory controller
EAR

External interface events specified in the
memory controller EAR. (See Section 5.6.7 for
more information about the events that can be
monitored.)

4.1.15 Processor Status Register
The read and write processor status (PS) register implements the current mode
bits of the architecturally defined processor status (PS) register.
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Figure 4–16 shows the register formats, and Tables 4–24 and 4–25 describe the
fields.

Figure 4–16 PS Register Formats
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Table 4–24 PS Register Write-Format Field Description

Bits Field Type Description

63:5 IGN RW Ignored when written.

4
3

CM1
CM0

RW Current mode—The access mode of the currently
executing process is as follows:

<4:3> Mode

00
01
10
11

Kernel
Executive
Supervisor
User

2:0 IGN RW Ignored when written.

Table 4–25 PS Register Read-Format Field Description

Bits Field Type Description

63:35 RAZ RW Read as zero.

34 CM1 RW See the corresponding write-format field description
(Table 4–24).

(continued on next page)
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Table 4–25 (Cont.) PS Register Read-Format Field Description

Bits Field Type Description

33:2 RAZ RW Read as zero.

1 CM0 RW See the corresponding write-format field description
(Table 4–24).

0 RAZ RW Read as zero.

4.1.16 PAL Base Address Register
The read and write PAL base address (PAL_BASE) register contains the base
address for PALcode. Hardware clears the register at reset.

Figure 4–17 shows the PAL_BASE register format, and Table 4–26 describes
its fields.

Figure 4–17 PAL_BASE Register Format
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Table 4–26 PAL_BASE Register Field Description

Bits Field Type Description

63:34 RAZ/IGN RW Read as zero. Ignored when written.

33:14 PAL_BASE
<33:14>

RW This field holds PALcode base address bits <33:14>.

13:0 RAZ/IGN RW Read as zero. Ignored when written.

4.2 LSU Internal Processor Registers
The LSU internal processor registers are described in Sections 4.2.1 through
4.2.14.
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4.2.1 LSU Control Register
The write-only LSU control (ABOX_CTL) register is cleared when written with
a value of zero.

Figure 4–18 shows the ABOX_CTL register format, and Table 4–27 describes
its fields. The 21066A implements two additional bits that are described in
Section A.6.1.

Figure 4–18 ABOX_CTL Register Format
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Table 4–27 ABOX_CTL Register Field Description

Bits Field Type Description

63:12 MBZ WO Must be zero.

11 DFHIT WO Dcache force hit—When set, this bit forces all Dstream
references to hit in the Dcache. This bit takes
precedence over the DCEN bit (<10>). That is, when the
DFHIT bit is set and the DCEN bit is clear, all Dstream
references hit in the Dcache.

10 DCEN WO Dcache enable—When clear, this bit disables and
flushes the Dcache. When set, this bit enables the
Dcache.

9 DTBRR WO DTB round-robin enable—When this bit is set, the data
translation buffer uses a round-robin replacement
algorithm. When this bit is clear, a not-last-used
algorithm is used.

8 DCNA WO Dcache, no allocate—Normally, this bit must be zero.
When this bit is set, the Dcache line associated with a
read address is not disturbed.

(continued on next page)
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Table 4–27 (Cont.) ABOX_CTL Register Field Description

Bits Field Type Description

7 STCNR WO Store conditional, no result—Normally, this bit must be
zero. When this bit is set, it changes the way LDL_L,
LDQ_L, STL_C, and STQ_C instructions are handled as
follows:

The results written in the register specified by the
Ra field in STx_C and HW_ST/C instructions are
UNPREDICTABLE. This allows the IDU to restart
the memory reference pipeline when the STx_C is
transferred from the write buffer to the memory
controller, increasing the repetition rate with which
STx/C instructions can be processed. LDx_L, STx_
C, and HW_ST/C instructions invalidate the Dcache
line associated with their generated address. The
invalidated lines are not visible to load or store
instructions that issue in the two CPU cycles after
the LDL_L, LDQ_L, STL_C, STQ_C, or HW_ST/C is
issued.

6 MBZ WO Must be zero.

5 SPE2 WO Superpage enable 2—When set, this bit enables one-to-
one superpage mapping of Dstream virtual addresses
VA<33:13> directly to physical addresses PA<33:13>,
when virtual address VA<42:41> = 2. VA<40:34> are
ignored in this translation. Access is allowed only in
kernel mode.

4 SPE1 WO Superpage enable 1—When set, this bit enables one-to-
one superpage mapping of Dstream virtual addresses
with VA<42:30> = 1FFE to physical addresses with
PA<33:30> = 0. Access is allowed only in kernel mode.

3 ISBEN WO Icache stream buffer enable—When set, this bit enables
operation of a single-entry Icache stream buffer.

2 MBZ WO Must be zero.

1 MCEN WO Machine check enable—When this bit is set, the load
and store unit generates a machine check when the
hardware encounters errors that it cannot correct.
When this bit is cleared, uncorrectable errors do not
cause a machine check; however, the Dcache status
register (DC_STAT, Section 4.4) is updated and locked
when such errors occur.

(continued on next page)
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Table 4–27 (Cont.) ABOX_CTL Register Field Description

Bits Field Type Description

0 WBDIS WO Write buffer unload disable—When set, this bit prevents
the write buffer from sending write data to the memory
controller. This bit should be set only for diagnostics.

4.2.2 Translation Buffer Control Register
The write-only translation buffer control (TB_CTL) register contains the
granularity hint (GH) field. The GH field (<6:5>) specifies the size (number of
8-KB pages that the translation buffer can map as a single page) as follows:

GH Field
0
1
2
3

Size
1
8

64
512

The DTB supports all four sizes. The ITB supports only two sizes, as follows:

• When GH = 3, the ITB supports 4-MB (512 � 8 KB) pages.

• When GH = 2, 1, or 0, the ITB supports 8-KB pages.

The GH field affects DTB and ITB read and write operations.

Figure 4–19 shows the TB_CTL register format, and Table 4–28 describes its
field.

Figure 4–19 TB_CTL Register Format

63 7 6 5 4 0
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Table 4–28 TB_CTL Register Field Description

Bits Field Type Description

63:7 IGN WO Ignored when written.

6:5 GH WO Granularity hint.

4:0 IGN WO Ignored when written.

4.2.3 Data Translation Buffer Page Table Entry Register
The read and write data translation buffer page table entry (DTB_PTE)
register represents the 32-entry DTB. The entry to be written is chosen by a
not-last-used (NLU) algorithm implemented in the hardware.

The DTB_PTE register is written using the format described in the Alpha
Architecture Reference Manual, but some fields are ignored. The valid bit (V) is
not represented in hardware.

The DTB tag array is updated from the TB_TAG register (Section 4.1.1) when
the DTB_PTE register is written. Two instructions are required to read the
DTB_PTE register:

1. The first instruction sends the PTE data to the data translation buffer page
table entry temporary register (DTB_PTE_TEMP, Section 4.2.4).

2. The second instruction reads the DTB_PTE_TEMP register and returns the
PTE to the register file.

To access the complete set of DTB_PTE register entries, the TB entry pointer
is incremented when the DTB_PTE register is read or written.

Figure 4–20 shows the DTB_PTE register format, and Table 4–29 describes its
fields.

Figure 4–20 DTB_PTE Register Format
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Table 4–29 DTB_PTE Register Field Description

Bits Field Type Description �

63:53 IGN RW Ignored when written.

52:32 PFN
<33:13>

RW Page frame number—This field always points to a page
boundary.

31:16 IGN RW Ignored when written.

15 UWE RW User write-enable—When set, this bit enables user
mode write operations. When this bit is clear, an ACV
occurs if a store instruction is attempted in user mode.

14 SWE RW Supervisor write-enable—When set, this bit enables
supervisor mode write operations. When this bit is
clear, an ACV occurs if a store instruction is attempted
in supervisor mode.

13 EWE RW Executive write-enable—When set, this bit enables
executive mode write operations. When this bit is clear,
an ACV occurs if a store instruction is attempted in
executive mode.

12 KWE RW Kernel write-enable—When set, this bit enables kernel
mode write operations. When this bit is clear, an ACV
occurs if a store instruction is attempted in kernel mode.

11 URE RW User read-enable—When set, this bit enables user mode
read operations. When this bit is clear, an ACV occurs
if a load or instruction fetch is attempted in user mode.

10 SRE RW Supervisor read-enable—When set, this bit enables
supervisor mode read operations. When this bit is clear,
an ACV occurs if a load or instruction fetch is attempted
in supervisor mode.

9 ERE RW Executive read-enable—When set, this bit enables
executive mode read operations. When this bit is clear,
an ACV occurs if a load or instruction fetch is attempted
in executive mode.

8 KRE RW Kernel read-enable—When set, this bit enables kernel
mode read operations. When this bit is clear, an ACV
occurs if a load or instruction fetch is attempted in
kernel mode.

7:5 IGN RW Ignored when written.

�For more information about the fields, see the Alpha Architecture Reference Manual.

(continued on next page)
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Table 4–29 (Cont.) DTB_PTE Register Field Description

Bits Field Type Description �

4 ASM RW Address space match—When this bit is set, this PTE
matches all address space numbers (ASNs). For a
given virtual address, this bit must be set consistently
in all processes; otherwise, the address mapping is
UNPREDICTABLE.

3 IGN RW Ignored when written.

2 FOW RW Fault on write. This bit is set if the reference was a
write operation and the PTE FOW bit was set.

1 FOR RW Fault on read. This bit is set if the reference was a read
operation and the PTE FOR bit was set.

0 IGN RW Ignored when written.

�For more information about the fields, see the Alpha Architecture Reference Manual.

4.2.4 Data Translation Buffer Page Table Entry Temporary Register
The data translation buffer page table entry temporary (DTB_PTE_TEMP)
register is a read-only holding register for DTB_PTE read data. The following
two instructions are required to read the DTB_PTE register (Section 4.2.3) and
return data to the integer register file (IRF):

1. Read the DTB_PTE register data to the DTB_PTE_TEMP register.

2. Read the DTB_PTE_TEMP register data to the IRF.

Figure 4–21 shows DTB_PTE_TEMP register format, and Table 4–30 describes
its fields.

Figure 4–21 DTB_PTE_TEMP Register Format
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Table 4–30 DTB_PTE_TEMP Register Field Description

Bits Field Type Description �

63:35 RAZ RO Read as zero.

34 ASM RW Address space match—When this bit is set, this PTE
matches all address space numbers (ASNs). For a
given virtual address, this bit must be set consistently
in all processes; otherwise, the address mapping is
UNPREDICTABLE.

33:13 PFN
<33:13>

RW Page frame number—This field always points to a page
boundary.

12 UWE RW User write-enable—When set, this bit enables user
mode write operations. When this bit is clear, an ACV
occurs if a store instruction is attempted in user mode.

11 SWE RW Supervisor write-enable—When set, this bit enables
supervisor mode write operations. When this bit is
clear, an ACV occurs if a store instruction is attempted
in supervisor mode.

10 EWE RW Executive write-enable—When set, this bit enables
executive mode write operations. When this bit is clear,
an ACV occurs if a store instruction is attempted in
executive mode.

9 KWE RW Kernel write-enable—When set, this bit enables kernel
mode write operations. When this bit is clear, an ACV
occurs if a store instruction is attempted in kernel mode.

8 URE RW User read-enable—When set, this bit enables user mode
read operations. When this bit is clear, an ACV occurs
if a load or instruction fetch is attempted in user mode.

7 SRE RW Supervisor read-enable—When set, this bit enables
supervisor mode read operations. When this bit is clear,
an ACV occurs if a load or instruction fetch is attempted
in supervisor mode.

6 ERE RW Executive read-enable—When set, this bit enables
executive mode read operations. When this bit is clear,
an ACV occurs if a load or instruction fetch is attempted
in executive mode.

5 KRE RW Kernel read-enable—When set, this bit enables kernel
mode read operations. When this bit is clear, an ACV
occurs if a load or instruction fetch is attempted in
kernel mode.

�For more information about the fields, see the Alpha Architecture Reference Manual.

(continued on next page)
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Table 4–30 (Cont.) DTB_PTE_TEMP Register Field Description

Bits Field Type Description �

4 FOW RW Fault on write. This bit is set if the reference was a
write operation and the PTE FOW bit was set.

3 FOR RW Fault on read. This bit is set if the reference was a read
operation and the PTE FOR bit was set.

2:0 RAZ RO Read as zero.

�For more information about the fields, see the Alpha Architecture Reference Manual.

4.2.5 Data Translation Buffer ZAP Register
A write operation to the data translation buffer ZAP (DTBZAP) register
invalidates all 32 DTB entries. It also resets the not-last-used (NLU) pointer
to its initial state.

4.2.6 Data Translation Buffer ASM Register
A write operation to the data translation buffer ASM (DTBASM) register
invalidates all 32 DTB entries in which the ASM address space match (ASM)
bit is equal to zero.

4.2.7 Data Translation Buffer Invalidate Single Register
A write operation to the data translation buffer invalidate single (DTBIS)
register invalidates the DTB entry that maps the virtual address held in
the integer register. The integer register is identified by the Rb field of the
HW_MTPR instruction used to perform the write operation.

4.2.8 Virtual Address Register
When Dstream faults or DTB misses occur, the effective virtual address
associated with the fault or miss is latched in the read-only virtual address
(VA) register. The VA register and memory-management CSR (MM_CSR,
Section 4.2.9) are locked against further updates until the software reads the
VA register. The VA register is unlocked after reset. PALcode must explicitly
unlock the VA register when its entry point is higher in priority than a DTB
miss.

Figure 4–22 shows the VA register format, and Table 4–31 describes its field.
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Figure 4–22 VA Register Format

63 0

Virtual Address

Table 4–31 VA Register Field Description

Bits Field Type Description

63:0 Virtual
Address

RO This field is the effective virtual address associated with
a Dstream fault or DTB miss.

4.2.9 Memory Management Control and Status Register
When Dstream faults occur, the information about the fault is latched and
saved in the read-only memory management control and status register
(MM_CSR). The VA register (Section 4.2.8) and the MM_CSR are locked
against further updates until the software reads the VA register. PALcode
must explicitly unlock this register when the entry point of the fault is higher
in priority than a DTB miss. The MM_CSR bits are modified by the hardware
only when the register is not locked and a memory-management error or a
DTB miss occurs. The MM_CSR is unlocked after reset.

Figure 4–23 shows the MM_CSR format, and Table 4–32 describes its fields.

Figure 4–23 MM_CSR Format
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Table 4–32 MM_CSR Field Description

Bits Field Type Description

63:15 RAZ RO Read as zero.

14:9 OPCODE RO This field holds the opcode field of the faulting
instruction.

8:4 RA RO This field holds the Ra field of the faulting instruction.

3 FOW RO Fault on write—This bit is set if the reference was a
write operation and the PTE FOW bit was set.

2 FOR RO Fault on read—This bit is set if the reference was a
read operation and the PTE FOR bit was set.

1 ACV RO Access violation—This bit is set if the reference caused
an access violation.

0 WR RO Write reference—This bit is set if a write reference
caused the error.

4.2.10 Flush Instruction Cache Register
A write operation to the flush instruction cache (FLUSH_IC) register flushes
the entire instruction cache.

4.2.11 Flush Instruction Cache ASM Register
A write operation to the flush instruction cache ASM (FLUSH_IC_ASM)
register invalidates all Icache blocks in which the ASM bit is clear.

4.2.12 Alternate Processor Mode Register
The alternate processor mode (ALT_MODE) register is a write-only register.
The AM field specifies the alternate processor mode used by HW_LD and
HW_ST instructions in which the ALT bit (<14>) is set.

Figure 4–24 shows the ALT_MODE register format, and Table 4–33 describes
its fields.
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Figure 4–24 ALT_MODE Register Format

63 5 4 3 2 0
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Table 4–33 ALT_MODE Register Field Description

Bits Field Type Description

63:5 IGN WO Ignored when written.

4:3 AM WO Alternate processor mode—This field is interpreted as
follows:

<4:3> Mode

00
01
10
11

Kernel
Executive
Supervisor
User

2:0 IGN WO Ignored when written.

4.2.13 Cycle Counter Register
The microprocessor supports a cycle counter as described in the Alpha
Architecture Reference Manual. When enabled, the read and write cycle
counter (CC) register increments once each CPU cycle. The instruction,
HW_MTPR Rn, CC, writes the value in Rn bits <63:32> to CC register bits
<63:32>; CC register bits <31:0> are not changed. This register is read by the
read process cycle counter (RPCC) instruction.

Figure 4–25 shows the CC register formats, and Tables 4–34 and 4–35 describe
the fields.
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Figure 4–25 CC Register Formats
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Table 4–34 CC Register Write-Format Field Description

Bits Field Type Description

63:32 Offset RW When an HW_MTPR Rn, CC instruction writes the
CC register. This field holds the value from Rn bits
<63:32>.

31:0 IGN RW Ignored when written.

Table 4–35 CC Register Read-Format Field Description

Bits Field Type Description

63:32 Offset RW See the write-format description (Table 4–34).

31:0 Counter RW This field holds the process cycle count as defined in the
Alpha Architecture Reference Manual.

4.2.14 Cycle Counter Control Register
The cycle counter control (CC_CTL) register is a write-only register. The
instruction, HW_MTPR Rn, CC_CTL, writes the value in Rn bits <31:0> to CC
register bits <31:0>; CC register bits <63:32> are not changed and CC register
bits <3:0> must be written with zero. If Rn bit 32 is set, the cycle counter is
enabled; otherwise, it is disabled.
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Figure 4–26 shows the CC_CTL register format, and Table 4–36 describes its
fields.

Figure 4–26 CC_CTL Register Format
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Table 4–36 CC_CTL Register Field Description

Bits Field Type Description

63:33 IGN WO Ignored when written.

32 EN WO Enable—This bit is set to enable the cycle counter if Rn
bit 32 is set; otherwise, the counter is disabled.

31:0 Counter WO This field holds the value from Rn bits <31:0> when an
HW_MTPR Rn, CC_CTL instruction writes the CC_CTL
register.

4.3 PALcode Temporary Registers
The 32 PALcode temporary (PAL_TEMP<31:0>) registers provide temporary
storage for PALcode and are accessible by the HW_MFPR and HW_MTPR
instructions.

4.4 Data Cache Status Register
The read-only data cache status (DC_STAT) register is for use only by the
diagnostics and is used by the 21066. The 21066A implements the cache status
(C_STAT) register (refer to Section A.6.3).

Figure 4–27 shows the DC_STAT register format, and Table 4–37 describes its
fields.
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Figure 4–27 DC_STAT Register Format
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Table 4–37 DC_STAT Register Field Description

Bits Field Type Description

63:4 RAZ RO Read as zero.

3 DCHIT RO Dcache hit—This bit indicates whether the last load or
store instruction processed by the LSU hit (DCHIT set)
or missed (DCHIT clear) the Dcache. Loads that miss
the Dcache can be completed without requiring external
read operations.

2:0 RAZ RO Read as zero.

4.5 Internal Processor Registers Reset State
Table 4–38 lists the state of all the internal processor registers (IPRs)
immediately after reset. The table also specifies which registers must be
initialized by power-up PALcode.

Table 4–38 Internal Process Register Reset State

IPR Reset State Comments

ABOX_CTL Cleared <11:0> Write buffer enabled, machine checks
disabled, Icache stream buffer disabled,
superpages 1 and 2 disabled, and Dcache
forced hit mode off.

ALT_MODE UNDEFINED —

ASTER UNDEFINED PALcode must initialize.

ASTRR UNDEFINED PALcode must initialize.

CC UNDEFINED Cycle counter is disabled on reset.

NA = not applicable

(continued on next page)
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Table 4–38 (Cont.) Internal Process Register Reset State

IPR Reset State Comments

CC_CTL UNDEFINED —

DC_STAT UNDEFINED —

DTBASM NA —

DTBIS NA —

DTB_PTE UNDEFINED —

DTB_PTE_TEMP UNDEFINED —

DTBZAP NA On reset, PALcode must do an HW_MTPR
instruction to the DTBZAP register before
writing the DTB.

EXC_ADDR UNDEFINED —

EXC_SUM UNDEFINED PALcode must do 64 read operations to clear
the exception register write mask.

FLUSH_IC UNDEFINED —

FLUSH_IC_ASM UNDEFINED —

HIER UNDEFINED PALcode must initialize.

HIRR NA —

ICCSR Cleared except
ASN, PC0,
PC1

Floating-point disabled, single issue mode,
pipe mode enabled, JSR predictions disabled,
branch predictions disabled, branch history
table disabled, performance counters reset to
zero, performance counter 0 = total issues�2,
performance counter 1 = Dcache misses,
superpage disabled.

ITBASM NA —

ITBIS NA —

ITB_PTE UNDEFINED —

ITB_PTE_TEMP UNDEFINED —

ITBZAP NA On reset, PALcode must do an HW_MTPR
instruction to the ITBZAP register before
writing the ITB.

MM_CSR UNDEFINED Unlocked on reset.

PAL_BASE Cleared Cleared on reset.

NA = not applicable

(continued on next page)

Internal Processor Registers 4–47



Table 4–38 (Cont.) Internal Process Register Reset State

IPR Reset State Comments

PAL_TEMP<31:0> UNDEFINED —

PS UNDEFINED PALcode must set processor status.

SIER UNDEFINED PALcode must initialize.

SIRR UNDEFINED PALcode must initialize.

SL_CLR UNDEFINED PALcode must initialize.

SL_RCV UNDEFINED —

SL_XMIT UNDEFINED PALcode must initialize. The TMT bit appears
on an external pin.

TB_TAG UNDEFINED —

TB_CTL UNDEFINED PALcode must select between small-page and
large-page DTB prior to any TB fill.

VA UNDEFINED Unlocked on reset.

NA = not applicable
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5
Memory Controller

This chapter describes the memory controller, supported memories, memory
operations, error handling, graphics operations, registers, cycle timing, and
interface signals.

5.1 Overview
The memory controller controls the external, primary system memory and
an optional, external backup cache (Bcache). The memory controller can
directly control up to 512 MB of memory, organized into four banks of dynamic
random-access memory (DRAM) or video random-access memory (VRAM), or
both, and 64 KB to 2 MB of optional, external Bcache. Dual-bank (also called
split-bank) single inline memory modules (SIMMs) are directly supported.

Each bank of memory can contain up to 16M addressable 64-bit locations. The
base address of each bank can be located anywhere within the lower half of
physical memory on naturally aligned boundaries. Each memory bank and
the Bcache can be individually configured using the bank configuration, mask,
timing registers, and the cache register. (See Section 5.6 for more information
about the memory controller registers.)

Figure 5–1 shows a typical memory system. Note that all banks of memory
need not be present in a system.
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Figure 5–1 Typical Memory System
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The memory controller performs the following functions:

• Performs read, write, longword write, byte-write (with external logic), and
write-per-bit operations to the DRAMs and VRAMs

• Controls memory refresh for the DRAMs and VRAMs
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• Uses column-address strobe before row-address strobe (CAS-before-RAS)
refreshing simultaneously on all banks

• Includes optimization for fast page-mode access

• Reads and writes the Bcache

• Supports optional error-correction code (ECC) detection and correction

• Supports graphics operations, including stipple and write-per-bit using a
plane mask register

5.1.1 Memory Partitioning
The four banks of memory can span up to 512 MB of DRAM. Each bank is
64 bits wide (excluding ECC bits) and can be any of the following sizes: 1 MB,
2 MB, 4 MB, 8 MB, 16 MB, 32 MB, 64 MB, or 128 MB. VRAM bank sizes of
1 MB, 2 MB, or 4 MB are supported. When VRAM is used in one of the banks,
the maximum memory configuration is 384 MB of DRAM and 4 MB of VRAM.

Industry-standard single-bank and dual-bank SIMMs are supported. Dual-
bank SIMMs are modules with two banks of components, requiring a separate
RAS control for each bank. They typically contain components on both sides of
the SIMM for higher component density per SIMM.

5.1.2 Programmable Configuration
The memory controller registers (Section 5.6) control the programmable
configuration parameters, including bank size, ECC, cache, external memory
timing, and several error-checking parameters.

5.1.3 Error Correction and Detection
An 8-bit ECC can be used on all memory cycles to banks that support ECC
to correct single-bit errors, detect double-bit errors, and detect 4-bit nibble
errors. Nibble error detection can be useful when using n � 4 memory parts.
The memory data bits must be wired as shown in Table 5–1 for nibble error
detection to work correctly.

Note

In some cases, more than 2 bits are in error and are not a full nibble,
but appear to be either a correctable error or not an error.
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Table 5–1 shows the memory data bit grouping for nibble error detection.

Table 5–1 Nibble Correction Bit Grouping

D0 D1 D2 D3
D4 D5 D6 D7
D8 D9 D10 D11
D12 D13 D14 D15
D16 D17 D18 D19
D20 D21 D22 D23
D24 D25 D26 D27
D28 D29 D30 D31
D32 D33 D34 D35
D36 D37 D38 D39
D40 D41 D42 D43
D44 D45 D46 D47
D48 D49 D50 D51
D52 D53 D54 D55
D56 D57 D58 E0
D59 D60 E1 E2
D61 D62 D63 E6
E3 E4 E5 E7

Table 5–2 shows how the 8-bit ECC is derived. The ones (1’s) in the table
indicate the bits that are exclusive-ORed to produce the corresponding check
bit.

Table 5–2 Error Correction Code

Check
Bit

6
3 0

E0 1101 0001 0001 0011 1110 1101 1101 1100 0011 0010 0010 1101 1110 1010 1110 0000

E1 1010 0010 0010 0100 1011 1010 1010 1011 0100 0100 0100 1011 1011 1101 1101 1000

E2 0111 1100 1100 1000 0101 0111 0111 0111 1000 1001 1001 0110 0101 0111 0011 0000

E3� 0100 1111 1111 0001 0010 0001 0001 0001 0001 0001 0001 0001 1111 0001 1111 1100

E4 1111 0101 1001 0111 0001 0100 0100 1000 0111 1101 1101 0010 0110 1000 0110 0010

E5 1111 1010 0110 1101 0100 1000 1000 0010 1101 1011 1011 0100 1001 0100 1001 0001

E6 1011 1111 0000 0100 1000 1101 0010 0100 1011 1000 0111 0111 1111 1101 0000 1111

E7� 0000 1111 0000 1111 0000 1111 0000 0000 0000 1111 0000 1111 0000 1111 1111 0111

�E3 and E7 are stored active low.
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During memory read cycles, the stored ECC is exclusive-ORed with the
expected ECC to produce an 8-bit syndrome. If the two codes match, no error
was detected. If the codes differ, the syndrome is checked to determine if the
error is correctable.

5.1.4 Graphics Features
The memory controller can perform the following simple graphics operations:

• Dumb frame buffer operation

• Transparent stipple

• Write-per-bit plane masking

• Byte write operations (with external gating)

• Full and split VRAM shift-register loads

The CPU must generate the address for all graphics operations. These
operations are programmable using the graphics control register (Section 5.6)
and are used only on writes to addresses in the graphics address region
(a noncacheable region—see Table 2–6).

5.2 Backup Cache
The memory controller supports a 64-KB, 128-KB, 256-KB, 512-KB, 1-MB,
or 2-MB Bcache. The Bcache is a direct-mapped, write-back cache with a
quadword (64-bit) block size. Data ECC and tag parity protection are optional.
The tag is compared onchip, and all control strobes for the cache static RAMs
(SRAMs) are generated onchip.

The tag stores the upper part of an address cached at a given location. Which
bits of the address are used is a function of the cache size (Section 5.6.8).
The tag also stores a dirty bit, which indicates that the data stored at that
cache location has been written more recently than the data stored at the
corresponding memory location.

The memory controller uses the Bcache so as to minimize overall memory
latency. The Bcache operates according to the following rules (see Figure 5–2):

• If the Bcache is enabled and the address is in cacheable space
(bits <33:29> = 0), the memory controller checks the cache for a hit.

If a read operation hits, the cache data is used and the DRAM is not
read.

If a read operation misses, the DRAM is read. A cache block is
allocated only if the read is from the CPU.
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If a write operation hits, the cache is updated.

If a write operation misses, a cache block is allocated only if the write
operation is from the CPU.

When a cache block is to be allocated (on either a read or write miss) and
the dirty bit is set in the block’s tag, the current contents of the block
(called a dirty victim block) are written to DRAM before the block is
allocated.

• If the Bcache is not enabled or the address is not in cacheable space, the
memory controller omits the cache access and immediately accesses the
DRAM.

The Bcache lookup is independent of page-mode operation; that is, the
Bcache is looked into prior to page-mode and non-page-mode DRAM cycles
(Section 5.3.2).

5.2.1 Backup Cache Initialization
Because the Bcache does not have valid bits, it must be initialized by software.
The Bcache is initialized by sweeping the entire cache storage space with write
operations. This is done by enabling the Bcache, clearing the parity and ECC
enable bits in the cache register (CAR, Section 5.6.8), and then writing enough
memory locations to sweep the cache’s address range. To avoid nonexistent
memory errors, the memory bank registers should be set up to span the largest
possible cache address range. After the sweep, the Bcache will have valid data
and correct tag, parity, and ECC information loaded. The parity and ECC
enable bits can then be set.

5.3 Memory Controller Operation
The memory controller decodes all addresses from the CPU and PCI direct
memory access (DMA) devices. If the address is in memory space (see
Table 2–6), the memory controller follows the sequence shown in Figure 5–2.
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Figure 5–2 Memory Controller Operation
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5.3.1 Masked Write Operations
A masked write operation is a write operation that modifies less than the full
quadword of data at an address. Masked write operations are the result of:

• Longword store instructions that did not get merged in the CPU write
buffer

• PCI DMA write operations, which can specify write-per-byte

• Write operations to graphics address space

Because ECCs cover the full quadword, masked writes operation to memory
that are protected by ECC must be handled by read-modify-write operations.
In a read-modify-write operation, the memory controller reads the memory
data, merges it internally with the write data, and then writes the result back
to memory.

Banks of DRAM or VRAM that are not protected by ECC can have write-per-
bit memories (normally VRAMs have this) or can be made byte-writable with
a minimum of external logic. Both options are enabled by bits in the bank
configuration registers (BCR3–BCR0, Section 5.6.2).

If the address is in graphics space and write-per-bit is enabled in the addressed
bank’s BCR , the memory controller drives the write-per-bit mask on the data
lines during the row address period. The write data ECC is also driven during
this operation, although it is not used by memory.

If byte write is enabled in the addressed bank’s BCR, the memory controller
drives the byte-write mask on the mem_ecc<7:0> pins during the column
address period. External logic is required to gate CAS at the DRAMs and
VRAMs. Some masked write operations to byte-writable banks are done as
read-modify-write operations. For a masked write operation to skip the read
portion, either of the following conditions must be met:

• The address is in noncacheable space.

• The address is in graphics space and the byte-write enable (BWE) bit is set
in the video and graphics control register (VGR, Section 5.6.9).

Write-per-bit mode differs from byte-write mode in that write-per-bit mode
can modify arbitrary bits, while byte-write mode can modify memory only on a
byte-resolution basis. This means that byte-write mode is normally used with
pixel depths that are integral numbers of bytes. Write-per-bit and byte-write
modes can be used simultaneously.
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The amount of time required to perform any memory operation is determined
by the values programmed into the cache and memory timing registers,
whether or not the Bcache hits, and whether or not a required DRAM operation
is done in page mode.

5.3.2 Page Mode
Page-mode cycles are cycles that do not cycle RAS to latch a new row address
into the DRAMs. Page-mode cycles can be any combination of read and write
operations. The memory controller does a page-mode cycle when RAS has been
asserted for a bank and a read or write request is made with the page the
same as when RAS was asserted. Same page is a function of DRAM column
size and is determined by comparing address bits as shown in Table 5–6.

5.3.3 Register Access
The memory controller contains the registers described in Section 5.6. The
CPU can read and write the memory controller registers but I/O devices
cannot. Table 5–3 lists the registers and their addresses.

5.4 Memory Error Conditions
The memory controller checks and logs memory error conditions. Each possible
memory error is associated with a bit in the error status register (ESR,
Section 5.6.6). When an error occurs, the associated ESR bit is set and the
address of the location with the error is stored in the error address register
(EAR, Section 5.6.7).

An interrupt is sent to the CPU when an error condition is detected. Software
must clear any error condition bits and return the memory subsystem to
correct operation. If another error occurs before the CPU clears the first error,
a multiple error bit is set, but no error-type information is saved.

Sections 5.4.1 through 5.4.5 describe the errors and the action taken for each
type of error.

5.4.1 Correctable Read Error
A correctable read error indicates that a single bit of data was corrected during
a memory read operation or during the read part of a read-modify-write cycle
of a masked write operation. The memory controller corrects the data before
sending it to the initiator of the read operation (either the CPU or a PCI
device).
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When a correctable read error is detected, the correctable error (CEE) bit is
set in the ESR and an interrupt is sent to the CPU to indicate that an error
was detected. Software must write the correct data to the address that had
the single bit error. This can be done with a LDQ_L and STQ_C instruction
sequence.

5.4.2 Uncorrectable Read Error
An uncorrectable read error occurs when the ECC logic detects an error in
more than one data bit. The initiator of the read operation (either the CPU or
a PCI device) is informed that an error occurred. (See Section 5.1.3 for more
information about ECC.)

When an uncorrectable read error is detected, the memory uncorrectable error
(UEE) bit is set in the ESR and an interrupt is sent to the CPU to indicate that
an error was detected. Software must reestablish the validity of the faulting
memory location, if possible.

5.4.3 Uncorrectable Write Error
An uncorrectable write error can occur during a read-modify-write cycle of
a masked write operation. The error is detected during the read part of
the operation. Because the write data cannot be correctly merged with the
(uncorrectable) read data, the memory write operation is aborted.

Aborting the memory write operation preserves the uncorrectable read data in
memory. A subsequent read of the location will return an uncorrectable read
status. The programmer must decide whether a failed write operation is a
fatal problem.

When this error is detected, the UEE bit is set in the ESR and an interrupt
is sent to the CPU to indicate that an error was detected. Software must
reestablish the validity of the faulting memory location, if possible.

5.4.4 Bcache Tag Parity Error
Every time the memory controller accesses the Bcache, the tag, dirty bit,
and tag parity bit are checked for odd parity. The parity is calculated on the
bc_tag<7:0> and bc_idx_tag<4:0> signals. If tag parity is enabled and the
stored parity is incorrect, a tag parity error occurs.

If a tag parity error occurs on a read operation, the initiator of the read
operation (either the CPU or a PCI device) is informed that an error occurred.

When a Bcache tag parity error is detected, the cache tag parity error (CTE)
bit is set in the ESR and an interrupt is sent to the CPU to indicate that an
error was detected. Software must reestablish Bcache coherency, if possible.
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5.4.5 Nonexistent Memory Address Error
A nonexistent memory address error occurs when a DRAM read or write
operation is attempted at an address that is not programmed in the bank
address mask registers (BMR3–BMR0, Section 5.6.3).

The memory controller allocates the Bcache on write operations. A write
operation to a nonexistent address sets the NXM bit and does not reallocate
the cache. A nonexistent dirty address in the Bcache (possibly present at chip
reset) can be evicted by setting the BMRs to expand the space that the Bcache
can address. This will allow the victim write operation to occur without error
and allow the read or write operation that initiated the victim write operation
to allocate the cache.

If the nonexistent memory address error occurs on a read operation, the
initiator of the read operation (either the CPU or a PCI device) is informed
that an error occurred.

When a nonexistent memory address error is detected, the NXM bit is set in
the ESR and an interrupt is sent to the CPU to indicate that an error was
detected.

5.5 Graphics Operations
The simple graphics functions implemented in the memory controller hardware
improve frame buffer performance.

The graphics functions are used on memory write operations when address
bits <33:29> select an address in graphics space—the graphics functions
are not enabled in any other address region (Table 2–6). The video and
graphics control register (VGR, Section 5.6.9) specifies which graphics
function is performed. Read operations to the graphics space ignore the VGR
settings—graphics operations are done only on write operations.

The memory controller supports both full and split VRAM shift-register loads.
External monitor timing logic is required to signal the memory controller
when VRAM shift-register loads need to be done. The video display pointer
(an internal linear-address generator, Section 5.6.9.1) keeps track of the video
refresh address.
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5.5.1 Simple Frame Buffer Mode
In simple frame buffer mode, the memory controller can function as
an interface to a dumb frame buffer. The plane mask register (PMR,
Section 5.6.10) masks the bits written in memory, using either write-per-
bit, byte-write, or read-modify-write operations. A bit is written only if the
corresponding PMR bit value is one.

In byte-write mode, the instruction (STL or STQ) and longword address specify
the byte mask that is driven out on the mem_ecc<7:0> pins for each byte.

5.5.2 Transparent Stipple Mode
In transparent stipple mode, CPU write cycles can conditionally substitute the
foreground data value for the frame buffer data.

The CPU write address specifies the address to be written. The write data
and PMR contents combine to mask some of the bits written in memory. The
contents of the foreground register (FOR, Section 5.6.11) is the data that is
masked and written to memory, by using either byte-write, write-per-bit, or
read-modify-write operations. A FOR bit is written to memory only if the
corresponding write data bit and PMR bit values are both one.

In byte-write mode, the instruction (STL or STQ), longword address, and
least-significant bit (LSB) of the corresponding byte-write data specify the byte
mask that is driven out on the mem_ecc<7:0> lines for each byte.

5.6 Memory Controller Registers
Sections 5.6.1 through 5.6.11 describe the memory controller registers. All the
registers are 64 bits wide and are aligned on quadword addresses. (In most of
the registers, bits <63:32> are not used.)

Before memory operations can be initiated, the registers for at least one bank
must be initialized with the correct memory parameters.

5.6.1 Programmable Timing Parameters
Some of the bank timing, global timing, and cache register fields are
programmed to the desired number of delay cycles minus one, two, or three.
For example, the following equation means that the interval Tyz (measured in
integral clock cycles) is obtained by setting BTR<n:m> to Tyz� 1:

Tyz = BTR < n : m > +1

(The relation between the field value and the measured interval is given at the
end of each timing field description in Sections 5.6.4, 5.6.5, and 5.6.8.)
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Table 5–3 lists the registers and their addresses.

Note

Table 5–3 shows the preferred address to be used when accessing
memory controller registers. While only bits <7:3> within the address
range are decoded, making each register accessible at multiple
addresses, addresses other than those listed are reserved by Digital.

Table 5–3 Memory Controller Registers

Register Mnemonic Address �

Bank configuration 0 BCR0 1 2000 0000
Bank configuration 1 BCR1 1 2000 0008
Bank configuration 2 BCR2 1 2000 0010
Bank configuration 3 BCR3 1 2000 0018
Bank address mask 0 BMR0 1 2000 0020
Bank address mask 1 BMR1 1 2000 0028
Bank address mask 2 BMR2 1 2000 0030
Bank address mask 3 BMR3 1 2000 0038
Bank timing 0 BTR0 1 2000 0040
Bank timing 1 BTR1 1 2000 0048
Bank timing 2 BTR2 1 2000 0050
Bank timing 3 BTR3 1 2000 0058
Global timing GTR 1 2000 0060
Error status ESR 1 2000 0068
Error address EAR 1 2000 0070
Cache CAR 1 2000 0078
Video and graphics control VGR 1 2000 0080
Plane mask PLM 1 2000 0088
Foreground FOR 1 2000 0090

�Hexadecimal

Note

The abbreviations in the Type column of the register field description
tables indicate field access behavior. The abbreviations are defined in
the Conventions section of the Preface.
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5.6.2 Bank Configuration Registers
Each memory bank has one bank configuration register (BCR). These registers
(BCR3–BCR0) specify the following banks:

• Base address

• Error mode

• Write mode

• Row address manipulation

The BCRs are write-only registers. At reset, the base address valid (BAV) bit
is cleared and all other bits are UNDEFINED.

Figure 5–3 shows the BCR format, and Table 5–4 describes its fields.

Figure 5–3 BCR3–BCR0 Format

63 29 928 6 520 19 15 14 13 12 11 010
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Table 5–4 BCR3–BCR0 Field Description

Bits Field Type Description

63:29 RES RAX/IGN Reserved.

28:20 Bank
Base
Address

WO This field specifies the base (starting) physical
address of the associated bank of memory. Each
bank of memory must begin on a naturally aligned
boundary. (Naturally aligned means that for a
bank with 2

n addresses, the n least significant bits
must be zero.) The bank base address is compared
to physical address bits <28:20> and masked by
the bank address mask register (BMR3–BMR0,
Section 5.6.3).

19:15 RES RAX/IGN Reserved.

(continued on next page)
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Table 5–4 (Cont.) BCR3–BCR0 Field Description

Bits Field Type Description

14 BAV WO Base address valid—This bit indicates whether
the base address is valid. To enable addressing
of the associated memory bank, this bit should
be set when the base address is written. This bit
is cleared at reset. Before setting this bit after
reset, valid information must be written in the
corresponding bank address mask register (BMR3–
BMR0, Section 5.6.3).

13 SBE WO Split bank enable—When set, this bit enables dual
(split) bank operation for the bank. This controls
RAS selection as shown in Table 5–5, using the
address bit shown in Table 5–10.

12 BWE WO Byte write-enable—When set, this bit enables
external byte masked write operations for graphics
operations. The byte mask is determined by the
graphics mode (Section 5.6.9), foreground register
(FOR, Section 5.6.11), and plane mask register
(PMR, Section 5.6.10).

The byte mask is driven on the mem_ecc<7:0> lines
and external logic is required to gate the RAM write
signals for each byte.

Note: To use byte masking, the ERM bit (<10>)
must be cleared to disable ECC for the bank.

11 WRM WO Write mode—When set, this bit enables write-per-bit
capability for the bank.

Note: To use write-per-bit, the ERM bit (<10>) must
be cleared to disable ECC for the bank.

10 ERM WO Error mode—When set, this bit enables ECC
checking and generation for each access to this
bank.

Note: Memories that use byte-write (<12>) or write-
per-bit (<11>) mode must not be programmed to use
ECC.

9:6 Row
Address
Select

WO These bits specify how the memory address is
multiplexed for this bank of memory. Table 5–6
lists the assignment of these bits for the number of
row and column addresses, and Table 5–7 shows how
the address bits are multiplexed. Column addresses
always consist of address bits <14:3>.

(continued on next page)
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Table 5–4 (Cont.) BCR3–BCR0 Field Description

Bits Field Type Description

5:0 RES RAX/IGN Reserved.

Table 5–5 shows how RAS is selected according to the split-bank enable (SBE)
bit in the BCR and the address bit listed in Table 5–10.

Table 5–5 RAS Selection

Dual-
Bank
Enable Address Bit � mem_rasa_l<3:0> mem_rasb_l<3:0>

0 1 or 0 Y N
1 0 Y N
1 1 N Y

�From Table 5–10.

Table 5–6 shows how the BCR row address select field is encoded and
interpreted.
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Table 5–6 Row Address Select Encodings

Code
Column
Address

Row
Address

Bank �

Size
Pagey

Size
Address Bits Used
For Page Compare

0000 8 9
10
11
12

128K
256K
512K

1M

256 28:11

0001 9 9
10
11
12

256K
512K

1M
2M

512 28:12

0011 10 10
11
12

1M
2M
4M

1024 28:13

0111 11 11
12

4M
8M

2048 28:14

1111 12 12 16M 4096 28:15

* Number of quadwords = 2row+col

y Number of quadwords = 2col

Table 5–7 shows how the row and column address bits are multiplexed on the
mem_addr<11:0> pins.
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Table 5–7 Row Address Bit Assignments

Number of
Row Addresses:
Column Addresses:

9 10 12
8 8 8

9 10 12
9 9 9

10 11 12
10 10 10

11 12
11 11

12
12

mem_adr11 22 22 22 22 22 22 24 24 24 25 25 25

mem_adr10 21 21 21 23 23 23 23 23 23 23 23 23

mem_adr9 20 20 20 21 21 21 21 21 21 21 21 21

mem_adr8 11 11 11 20 20 20 20 20 20 20 20 20

mem_adr7 12 12 12 12 12 12 22 22 22 22 22 22

mem_adr6 13 13 13 13 13 13 13 13 13 24 24 24

mem_adr5 14 14 14 14 14 14 14 14 14 14 14 26

mem_adr4 19 19 19 19 19 19 19 19 19 19 19 19

mem_adr3 18 18 18 18 18 18 18 18 18 18 18 18

mem_adr2 17 17 17 17 17 17 17 17 17 17 17 17

mem_adr1 16 16 16 16 16 16 16 16 16 16 16 16

mem_adr0 15 15 15 15 15 15 15 15 15 15 15 15

Addresses in italics are driven on mem_adr but are not needed by memory parts. Column addresses always
consist of address bits <14:3>.

5.6.3 Bank Address Mask Registers
Each memory bank has one bank address mask register (BMR). These registers
(BMR3–BMR0) specify the base address bits that should not be checked for an
address match.

Note

Because the physical address compare does not include bits <32:29>,
memory can be addressed at multiple addresses. Software must ensure
that this does not cause the system to malfunction.

The bank base address mask is also used with the split-bank enable (SBE) bit
in the bank configuration register (BCR, Section 5.6.2) to specify which address
bit is used to assert mem_rasa_ln or mem_rasb_ln for each bank, as shown
in Table 5–10.

These registers are UNDEFINED at reset. Valid information must be written
to these registers before setting the valid bit in the corresponding BCR.
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Figure 5–4 shows the BMR format, and Table 5–8 describes its fields.

Figure 5–4 BMR3–BMR0 Format

63 29 28 20 19 0

RESRES
Bank

Base Address
Mask

Table 5–8 BMR3–BMR0 Field Description

Bits Field Type Description

63:29 RES IGN Reserved.

28:20 Bank
Base
Address
Mask

WO This field specifies the mask to be used when matching
the memory address to the configured memory address
range. Base address bits that correspond to BMR bits
with a value of one are masked (that is, not checked).
The mask corresponds to physical address bits <28:20>
(Table 5–9).

19:0 RES IGN Reserved.

Table 5–9 shows how the bank address mask field in the BMR is set according
to memory bank size.

Table 5–9 Bank Size Mask Setting

Memory Bank Physical Address and Mask Register Bits

Size 28 27 26 25 24 23 22 21 20

1 MB 0 0 0 0 0 0 0 0 0

2 MB 0 0 0 0 0 0 0 0 1

4 MB 0 0 0 0 0 0 0 1 1

8 MB 0 0 0 0 0 0 1 1 1

16 MB 0 0 0 0 0 1 1 1 1

32 MB 0 0 0 0 1 1 1 1 1

64 MB 0 0 0 1 1 1 1 1 1

128 MB 0 0 1 1 1 1 1 1 1
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Table 5–10 shows which address bit selects RAS according to the value of the
bank address mask field in the BMR.

Table 5–10 Dual Bank Address Select

Bank Base Address Mask
BMR <28:20>

Address Bit That Selects �

mem_rasa_l n or mem_rasb_l n

001111111 26
000111111 25
000011111 24
000001111 23
000000111 22
000000011 21

�Address bit value 0 selects mem_rasa_ln and value 1 selects mem_rasb_ln (n = 3, 2, 1, or 0).
See Table 5–5.

5.6.4 Bank Timing Registers
Each memory bank has one bank timing register (BTR). These registers
(BTR3–BTR0) specify the timing parameters, in cycles, independently for each
bank. Most of the BTR fields are programmed to the desired number of delay
cycles minus one. The relation between the field value and the measured
interval is given at the end of each field description. See Section 5.6.1 for more
information.

Table 5–22 and the timing diagrams in Section 5.7 identify the timing
parameters.

The BTRs are write-only registers. All bits are UNDEFINED at reset.

Note

If bank 3 is not used, the read-to-write tristate field (<23:21>) in BTR3
must be initialized to zero.

Figure 5–5 shows the BTR format, and Table 5–11 describes its fields.
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Figure 5–5 BTR3–BTR0 Format
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Table 5–11 BTR3–BTR0 Field Description

Bits Field Type Description

63:25 RES RAX/IGN Reserved.

24 DST WO Data setup—This bit specifies the minimum
number of data setup cycles prior to asserting the
mem_cas_l signal on write operations as follows:
0 = one cycle, 1 = two cycles. The DRAM timing
parameter is tDS .

23:21 Read-
to-Write
Tristate

WO This field specifies the number of cycles required
to tristate the memory data bus when switching
from a read to a write operation. The DRAM timing
parameter is tOFF .

tOFF =cycletime = BTR < 23 : 21 > +1

20:17 CAS
Precharge

WO This field specifies the number of cycles that the
mem_cas_l signal is deasserted between page-mode
cycles. It also represents the setup time before the
mem_cas_l signal asserts the column address, write
data (during memory write operations), and write-
enable. The timing diagram parameter is T45, and
the DRAM parameter is tCP .

T45 = BTR < 20 : 17 > +1

16:12 CAS
Cycle

WO This field specifies the number of cycles that the
mem_cas_l signal is asserted. The timing diagram
parameter is T34, and the DRAM parameter is tCAC .

T34 = BTR < 16 : 12 > +1

(continued on next page)
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Table 5–11 (Cont.) BTR3–BTR0 Field Description

Bits Field Type Description

11:8 Column
Address
Setup

WO This field specifies the number of cycles between
the time that column address, write data (during
memory write operations), and write-enable are
driven and the time that the mem_cas_l signal is
asserted. The timing diagram parameter is T23, and
the DRAM parameter is tASC .

T23 = BTR < 11 : 8 >

7:4 Row
Address
Hold

WO This field specifies the number of cycles between the
time that the mem_ras_l signal is asserted and the
time that the mem_addr<11:0> pins switch from
row address to column address. The timing diagram
parameter is T12, and the DRAM parameter is tRAH .

Note: The term mem_ras_l is equivalent to the
mem_rasa_l<3:0> or mem_rasb_l<3:0> signal for
the selected bank (Section 5.8.5).

T12 = BTR < 7 : 4 > +1

3:0 Row
Address
Setup

WO This field specifies the number of cycles between
the time that the row address is driven on the
mem_addr<11:0> pins and the time that the
mem_ras_l signal is asserted. The timing diagram
parameter is T01, and the DRAM parameter is tRAS .

T01 = BTR < 3 : 0 > +1

5.6.5 Global Timing Register
The global timing register (GTR) specifies timing parameters for all four
memory banks. Most of the GTR fields are programmed to the desired number
of delay cycles minus one or two. The relation between the field value and
the measured interval is given at the end of each field description. (See
Section 5.6.1 for more information.)

Table 5–22 and the timing diagrams in Section 5.7 identify the timing
parameters.

Figure 5–6 shows the GTR format, and Table 5–12 describes its fields.

5–22 Memory Controller



Figure 5–6 GTR Format
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Table 5–12 GTR Field Description

Bits Field Type Description

63:32 RES RAX/IGN Reserved.

31:28 CAS/RAS
Setup

RW This field specifies the number of cycles between the
assertion of the mem_cas_l signal and the assertion
of the mem_ras_l signal on refresh cycles. The
number of cycles is this value plus two.

TCAS�RAS�SETUP = GTR < 31 : 28 > +2

27 RDS RW Refresh divide select—This bit specifies the prescale
divide for the refresh interval as follows: 0 = divide
by 64, 1 = divide by 512.�

26:19 Refresh
Interval

RW This field specifies the number of cycles (prescaled
by 64 or 512, as specified by the RDS bit) between
requests to perform a refresh cycle. The request
is generated internally, and the refresh occurs
at the next available free cycle; that is, after the
completion of any memory cycles in progress. The
refresh counter reloads this value when it requests
the refresh cycle. Nothing is added to this value;
therefore, a value of zero will continually refresh the
memory.�

TREFINT = GTR < 26 : 19 >

18 REN RW Refresh enable—When set, this bit enables refresh
operations for all banks. This bit is cleared at
reset. When this bit is clear, the refresh counter is
initialized to the value in the refresh interval field
(<26:19>).�

�The refresh interval and refresh divide select fields are not initialized at reset. When they are
changed, the REN bit (<18>) should be deasserted to allow them to load.

(continued on next page)
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Table 5–12 (Cont.) GTR Field Description

Bits Field Type Description

17:10 Maximum
RAS
Assertion

RW This field specifies the maximum number of cycles
(prescaled by 128) that the mem_ras_l signal can be
asserted. The mem_ras_l signal stays asserted for
page-mode cycles, which can be long, depending on
program and I/O behavior. At the assertion of the
mem_ras_l signal, this value is loaded into a down
counter and decremented once every 128 cycles. If
the count reaches zero while the mem_ras_l signal
remains asserted, the memory controller completes
the current memory cycle and then deasserts the
mem_ras_l signal. The DRAM parameter is tRAS .

tRAS (max) = GTR < 17 : 10 > +1

9:5 Minimum
RAS
Assertion

RW This field specifies the number of cycles that the
mem_ras_l signal is asserted during a refresh cycle.
The DRAM parameter is tRAS .

tRAS (min) = GTR < 9 : 5 >

4:0 RAS/CAS
Precharge

RW This field specifies the number of cycles to precharge
RAS and CAS at the end of a memory cycle. When
the precharge time has elapsed, a new memory
cycle can begin. The timing diagram parameter is
TRASprech, and the DRAM parameter is tRP .

TRASprech = GTR < 4 : 0 > +1

5.6.6 Error Status Register
The error status register (ESR) controls the error detection and correction
functions of the memory controller and holds the error status when an error
occurs.

The ECC bits are read-only and the write wrong ECC (WEC) bits are read and
write. The error status flags (CEE, UEE, CTE, MSE, MHE) can be read and
are cleared by writing a one to them; writing a zero has no effect. Reset has no
effect on this register.

Figure 5–7 shows the ESR format, and Table 5–13 describes its fields. The
21066A implements an additional bit. For a description, refer to Section A.6.4.
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Figure 5–7 ESR Format
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Table 5–13 ESR Field Description

Bits Field Type Description

Error Correction Code Bits

The following bits store the ECC read from the mem_ecc<7:0> pins. These bits are
frozen when the error address valid (EAV) bit (<0>) is set.

63
59
54
50
45
41
36
32

ECC7
ECC6
ECC5
ECC4
ECC3
ECC2
ECC1
ECC0

RO
RO
RO
RO
RO
RO
RO
RO

Write Wrong Error Correction Code Bits

The following bits are used when testing the ECC detection and correction logic. When
set to a one, the corresponding ECC check bit will be written incorrectly to memory or
cache. For normal operation, the value written into these bits should be zero.

60
51
49
48
42
40
34
33

WEC5
WEC0
WEC1
WEC4
WEC2
WEC7
WEC3
WEC6

RW
RW
RW
RW
RW
RW
RW
RW

(continued on next page)
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Table 5–13 (Cont.) ESR Field Description

Bits Field Type Description

Reserved Bits

The following bits are reserved:

62:61
58:55
53:52
47:46
44:43
39:37
35
31:20
14:13
8
6:5

RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES

RAX/IGN
RAX/IGN
RAX/IGN
RAX/IGN
RAX/IGN
RAX/IGN
RAX/IGN
RAX/IGN
RAX/IGN
RAX/IGN
RAX/IGN

Bits <19:16,15,12:9,7,4:0>

19:16 Chip ID RO This field identifies the chip. Its value is 0000 for
the 21066 and 0010 for the 21066A.

15 MBZ RW Must be zero.

12 NXM R/W1C Nonexistent memory—This bit is set when a DRAM
read or write operation is attempted at an address
that is not programmed in the bank address mask
registers (BMR3–BMR0, Section 5.6.3).

11 ICE RW Ignore correctable errors—When set, this bit
prevents the logging of correctable (soft) errors.
On a soft error with ICE set:

• The data is corrected before being used.

• The CEE and EAV bits (<1:0>) are not set.

• The error address register (EAR, Section 5.6.7)
is not frozen.

10 MHE R/W1C Multiple hard errors—When set, this bit indicates
that an additional hard (uncorrectable) error
occurred after the EAV bit (<0>) was set. The
secondary error status is not logged.

(continued on next page)
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Table 5–13 (Cont.) ESR Field Description

Bits Field Type Description

9 MSE R/W1C Multiple soft errors—When set, this bit indicates
that an additional soft (correctable) error occurred
after the EAV bit (<0>) was set. The secondary error
status is not logged.

7 CTE R/W1C Cache tag error—When set, this bit indicates that a
tag parity error was detected during a Bcache cycle.

4 SOR RO Error source—This bit indicates whether an error
occurred while accessing Bcache or memory:
0 = cache, 1 = memory. It is updated on each cycle
and frozen when the EAV bit (<0>) is set.

3 WRE RO Write error—This bit indicates whether an error
occurred during a read or write access: 0 = read,
1 = write. It is updated on each cycle and frozen
when the EAV bit (<0>) is set.

2 UEE R/W1C Uncorrectable error—This bit is set when an
uncorrectable ECC error occurs during a read or
read-modify-write operation.

1 CEE R/W1C Correctable error—This bit is set when a correctable
ECC error occurs during a read or read-modify-write
operation.

0 EAV RO Error address valid—When set, this bit indicates
that the address in the error address register (EAR,
Section 5.6.7) is a valid error address. This bit is
the logical OR of bits <12,7,2:1>. While this bit is
asserted, the memory controller asserts an interrupt
to the CPU, and bits <12,7,4:1> are frozen, as is the
EAR.

5.6.7 Error Address Register
The error address register (EAR) holds the address of a cycle that produced
an error. The address is loaded in this register on a memory cycle. If an error
occurs, this register is frozen and the error address valid (EAV) bit is set in the
error status register (ESR, Section 5.6.6).

The EAR is UNDEFINED at reset.

Figure 5–8 shows the EAR format, and Table 5–14 describes its fields.
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Figure 5–8 EAR Format
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Table 5–14 EAR Field Description

Bits Field Type Description

63:32 RES RAX/IGN Reserved.

31:29 Perf
Cnt 1
Mux

WO Performance counter 1 multiplexer—This field
selects one of eight events to be counted for
performance evaluation. The events are listed in
Table 5–15.

28:3 Quadword
Error
Address

RO This field identifies the quadword address (bits
<28:3>) where an error occurred during a memory
operation. The first address to have an error is
logged in this register and held until the EAV bit
of the error status register (ESR, Section 5.6.6) is
cleared.

2:0 Perf
Cnt 0
Mux

WO Performance counter 0 multiplexer—This field
selects one of eight events to be counted for
performance evaluation. The events are listed in
Table 5–15.

Table 5–15 lists the external interface events that can be monitored by the
performance counters. See Section 4.1.14 for more information about the
performance counters.
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Table 5–15 Performance Counter Events

Counter 0
Select Event

Counter 1
Select Event

0 Number of read operations to
Bcache from the CPU or DMA

0 Number of events from counter
0 event 0 that are also from the
CPU and Bcache hits

1 Number of write operations to
Bcache from the CPU or DMA

1 Number of events from counter
0 event 0 that are also from the
CPU and Bcache misses and
clean

2 Number of read operations to
DRAM from the CPU or DMA

2 Number of events from counter
0 event 0 that are also from the
CPU and Bcache misses and
dirty

3 Number of write operations to
DRAM from the CPU or DMA

3 Number of events from counter 0
event 0 that are also from DMA
and Bcache hits

4 Number of DRAM accesses that
do page-mode cycles

4 Number of events from counter 0
event 0 that are also from DMA
and Bcache misses

5 Number of DRAM accesses that
miss page mode�

5 Number of CPU write operations
that write less than a full
quadword

6 Number of write operations to
graphics address space

6 Number of DMA write
operations that write less than a
full quadword

7 Number of read operations to
graphics address space

7 Number of chip cycles that the
memory controller is idle†

�DRAM page-mode hit plus DRAM page-mode miss does not equal all DRAM cycles because page-mode miss
does not include DRAM accesses when the mem_ras_l signal was already deasserted.
†Idle means not accessing Bcache or DRAM or not doing a DRAM refresh or VRAM shift-register load.

5.6.8 Cache Register
The cache register (CAR) is used to configure the optional, external Bcache.
Some of the CAR fields are programmed to the desired number of delay cycles
minus one or three. The relation between the field value and the measured
interval is given at the end of each field description. (See Section 5.6.1 for
more information.)

At reset, the Bcache enable (BCE) bit is set, the power-saving (PWR) bit is
cleared, and all other bits are UNDEFINED.
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Figure 5–9 shows the CAR format, and Table 5–16 describes its fields.

Figure 5–9 CAR Format
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Table 5–16 CAR Field Description

Bits Field Type Description

63:32 RES RAX/IGN Reserved.

31 HIT RO Bcache hit—This bit indicates the hit (1) or miss
(0) status of the most recent Dstream Bcache tag
comparison. This bit is for diagnostics.

30:16 Tag RO This field contains the tag value (parity, dirty,
tag<7:0>, bc_idx_tag<4:0>) latched during the most
recent Dstream Bcache lookup. This field is for
diagnostics.

15 PWR RW Power saving—When set, this bit prevents the
memory address lines from changing until a Bcache
operation is detected. In addition, Bcache chip select
is asserted only for Bcache operations. This adds one
cycle of latency to the first read or write operation in
a sequence of Bcache operations because the address
lines are not speculatively updated.

When this bit is cleared, the memory address lines
are not held to a stable value in the absence of
Bcache operations. This bit is cleared at reset.

14 WHD RW Write hold time—This bit specifies the number of
cycles of hold time that are applied to cache write
data after the bc_we_l signal is deasserted: 0 = one
cycle, 1 = two cycles. This corresponds to timing
diagram parameter Tch.

(continued on next page)
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Table 5–16 (Cont.) CAR Field Description

Bits Field Type Description

13:11 Write
Cycle
Count

RW This field specifies, in cycles, the Bcache write speed.
The number of cycles is measured from the time that
the chip drives data and asserts the bc_we_l signal
to the time that the chip deasserts the bc_we_l
signal. The number of cycles is the value of this field
plus one. The write cycle count parameter is Twcc
and it corresponds to timing diagram parameter Tcw.

Twcc = CAR < 13 : 11 > +1

10:8 Read
Cycle
Count

RW This field specifies, in cycles, the Bcache read speed.
The number of cycles is measured from the time
that the chip drives the address to the time that
the chip latches cache data. The number of cycles
is the value of this field plus three. The read cycle
count parameter is Trcc and it corresponds to timing
diagram parameter Tca. This field is cleared at reset.

Trcc = CAR < 10 : 8 > +3

7:5 Bcache
Size

RW This field specifies the size of the Bcache according
to Table 5–17. The physical address is used as
index and tag according to Figure 5–10. This field is
cleared at reset.

4 ECE RW Enable Bcache ECC—When set, this bit enables
error detection and correction on read operations
that hit in the Bcache.

3 WWP RW Write wrong tag parity—When set, this bit causes
the tag parity to be written incorrectly. This bit is
for diagnostics.

2 ETP RW Enable tag parity check—When set, this bit enables
parity checking for the Bcache.

1 RES RAX/IGN Reserved.

0 BCE RW Bcache enable—When set, this bit enables the
Bcache. This bit is set at reset.

Table 5–17 shows the encodings for the Bcache size field in the CAR.
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Table 5–17 Bcache Size Encodings

Code Cache Size Tag Address Bits Index Address Bits

000 64 KB 28:16 15:3
001 128 KB 28:17 16:3
010 256 KB 28:18 17:3
011 512 KB 28:19 18:3
100 1 MB 28:20 19:3
101 2 MB 28:21 20:3
Unused codes are reserved.

Figure 5–10 shows how the physical address is used as the Bcache index and
tag according to cache size.

Figure 5–10 Bcache Address Partition
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Notes for Figure 5–10:

• Address bits <2:0> are not used because cache references are quadword
aligned.

• Address bits <14:3> are driven on the mem_addr<11:0> pins.

• Address bit 15 is driven on the bc_index pin.

• Address bits <20:16> are driven on the bc_idx_tag<4:0> pins and are used
as index or tag according to Table 5–26.

• Address bits <28:21> are driven on the bc_tag<7:0> pins.
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5.6.9 Video and Graphics Control Register
The video and graphics control register (VGR) is used to configure the video
memory and to control graphics operations.

The VGR is a write-only register and all bits are UNDEFINED at reset.

Figure 5–11 shows the VGR format, and Table 5–18 describes its fields.

Figure 5–11 VGR Format
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Table 5–18 VGR Field Description

Bits Field Type Description

63:22 RES IGN Reserved.

21:10 Start of
Video
Frame

WO This field specifies the frame location; that is, bits
<21:10> of the base byte address of the video frame
buffer in memory. Bits <9:0> of the address are implied
to be 0; that is, the frame buffer is aligned to 1 KB.
The video frame base address is loaded into the video
display pointer (Section 5.6.9.1) when the external
frame interrupt signal vframe_l is asserted.

9 INC WO Address increment—After a shift-register load
operation, the video display pointer (Section 5.6.9.1)
must be incremented to the address of the information
for the next display. This value specifies the video
display pointer bit to be incremented, according to
Table 5–19. The bit location that is incremented
depends on the position of the VRAM’s column most-
significant bit (MSB).

8 LDV WO Load video control—This bit determines whether the
start of video frame and INC fields are loaded. Writing
a one to this bit also loads the fields; writing a zero to
this bit has no effect on the fields.

7:4 RES IGN Reserved.

(continued on next page)
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Table 5–18 (Cont.) VGR Field Description

Bits Field Type Description

3 LDB WO Load byte write-enable—This bit determines whether
the BWE bit (<2>) is loaded. Writing a one to this bit
also loads the BWE bit; writing a zero to this bit has no
effect on the BWE bit.

2 BWE WO Byte write-enable—During graphics operations, this
bit enables the memory controller to drive a byte mask
on the mem_ecc<7:0> pins for write operations to
banks that have byte write-enable set in their bank
configuration register (BCR, Section 5.6.2).

1 LDM WO Load mode—This bit determines whether the MOD bit
(<0>) is loaded. Writing a one to this bit also loads the
MOD bit; writing a zero to this bit has no effect on the
MOD bit.

0 MOD WO Graphics mode—This bit determines the type of memory
operation on a write operation to graphics memory
space: 0 = simple mode, 1 = transparent stipple mode
(see Sections 5.5.1 and 5.5.2 for more information).

Table 5–19 shows how the VGR INC bit encoding selects the VRAM address bit
to be incremented for shift-register loads.

Table 5–19 VRAM Address Increment Encodings

Code
VRAM Bank Size

(Quadwords) Address Bit Incremented

0 128K 10
1 256K or 512K 11

5.6.9.1 Video Display Pointer
The video display pointer is a 12-bit counter that supplies the VRAM address
during video shift-register transfer cycles.

When the vframe_l signal is asserted, the video display pointer is:

1. Loaded from the VGR start of video frame field.

2. Used as the address for a full video shift-register transfer cycle.

3. Incremented twice according to the VGR INC field. (Either bit 10 or bit 11
is incremented.)
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When the vrefresh_l signal is asserted, the video display pointer is:

1. Used as the address for a split video shift-register transfer cycle.

2. Incremented once according to the VGR INC field.

The address is multiplexed according to the VRAM bank size specified in the
row address select field in the BCR (Section 5.6.2). Bits <9:0> of the video
display pointer are zero.

5.6.10 Plane Mask Register
The plane mask (PLM) register determines which bits are written during a
write or read-modify-write operation to the graphics address space.

Note

Software must write the same 32-bit value to <63:32> and <31:0>;
otherwise, plane masked operations are UNPREDICTABLE.

The PLM register is a write-only register and all bits are UNDEFINED at
reset.

Figure 5–12 shows the PLM register format, and Table 5–20 describes its
fields.

Figure 5–12 PLM Register Format
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Table 5–20 PLM Register Field Description

Bits Field Type Description

63:32 Plane
Mask

WO The bits in this field select which bits are going to be
written during a write or read-modify-write operation.

31:0 Plane
Mask

WO The bits in this field select which bits are going to be
written during a write or read-modify-write operation.
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5.6.11 Foreground Register
The foreground register (FOR) defines the foreground color for transparent
stipple operations.

Note

Software must replicate the foreground value across each half of the
foreground register (that is, the bit 0 foreground value controls bits 0
and 32, and so on).

The FOR is a write-only register and all bits are UNDEFINED at reset.

Figure 5–13 shows the FOR format, and Table 5–21 describes its fields.

Figure 5–13 FOR Format
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Table 5–21 FOR Field Description

Bits Field Type Description

63:32 Foreground WO This field replicates the value in <31:0>.

31:0 Foreground WO This field specifies the foreground value for transparent
stipple mode.

5.7 Memory Cycles
Table 5–22 describes the parameters used in the timing diagrams in
Sections 5.7.2 through 5.7.11. These parameters are programmed into the
BTR3–BTR0, GTR, and CAR as described in Section 5.6.1.

The timing diagrams assume all parameters are set to minimum values.
Larger values can be accommodated by inserting the programmed number of
cycles with the signals held constant at the levels they have reached at the end
of the interval; that is, a longer time on T01 delays the occurrence of T1—the
signals maintain the value they changed to at T0.

5–36 Memory Controller



Table 5–22 describes the memory timing parameters.

Table 5–22 Memory Timing Parameters

Parameter Events

Tca Bcache access time.

Tcw Bcache write time.

T0 Drive the row address on the mem_addr<11:0> pins.
Drive the write mask on the mem_data<63:0> pins.

T1 Assert the mem_ras_l signal for the selected bank.
Tristate the mem_data<63:0> pins for read operations.

T2 Drive the column address on the mem_addr<11:0> pins.
If write cycle, drive the mem_data<63:0> pins—see Note 1.

T3 Assert the mem_cas_l signal.

T4 Deassert the mem_cas_l signal.
If read cycle, latch the mem_data<63:0> pins.
If page-mode cycle, drive the next column address on the mem_addr<11:0>
pins.
If page-mode write cycle, drive the mem_data<63:0> pins.
If not page-mode cycle, deassert the mem_ras_l signal.

T5 Assert the mem_cas_l signal.

T6 Deassert the mem_cas_l signal.
If read cycle, latch the mem_data<63:0> pins.
Tristate the mem_data<63:0> pins.
Deassert the mem_ras_l signal—see Note 2.

Parameter Description

TminRAS The time that the mem_ras_l signal is asserted during a refresh cycle.

TRASprech RAS and CAS precharge time.

Notes for Table 5–22

1. When going from page-mode read to page-mode write operations, the
memory controller will wait tOFF (Section 5.6.4) before driving the
mem_data<63:0> and mem_ecc<7:0> pins. If tOFF is equal to or longer
than T45 (CAS precharge), CAS precharge will be T45 + 1 cycles long and
the mem_data<63:0> and mem_ecc<7:0> pins will be driven one cycle
before the mem_cas_l signal is asserted.

2. The mem_ras_l signal will deassert at T6 if there is another memory cycle
pending that is not a page-mode cycle.
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The memory cycle performed is a function of the type of memory operation
required and the state of the memory controller at the time the operation is
required. Table 5–23 describes the operations and the conditions that cause
them.

Table 5–23 Memory Operations

Type of Operation Originated By . . .

DRAM refresh An internal refresh interval counter overflow (Section 5.6.5).

Full video shift-register
transfer cycle

The assertion of the vframe_l pin (Section 5.8.19).

Split video shift-register
transfer cycle

The assertion of the vrefresh_l pin (Section 5.8.20).

Read
(cache or DRAM)

Any of the following:

• An instruction fetch

• A load instruction

• A store longword instruction to a bank that does not
support write-per-bit or byte write operations (read-
modify-write)

• A PCI device DMA read operation

• A PCI device DMA write operation of less than a full
quadword to a bank that does not support write-per-bit
or byte write operations (read-modify-write)

Write
(Cache or DRAM)

Any of the following:

• A store

• A PCI device DMA write operation

Victim write
(DRAM)

All of the following:

• A CPU read or write operation to cacheable space

• A cache miss (tag does not match)

• The cache block is dirty

(continued on next page)
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Table 5–23 (Cont.) Memory Operations

Type of Operation Originated By . . .

RAS precharge Any of the following (one or more events may occur
simultaneously):

• The next operation will be a:

Read or write operation on a DRAM page that is
different from the one for which the mem_ras_l
signal was previously asserted.

Write-per-bit operation with a mask different
from the one for which the mem_ras_l signal was
previously asserted.

Refresh cycle.

Video shift-register load (either full or split).

• The maximum RAS assertion period expired.

Table 5–24 defines the conditions that determine when read or write operations
will access the Bcache and use page-mode, write-per-bit, and byte write
operations.

Table 5–24 Memory Read and Write Options

Option Used When . . .

Cacheable The Bcache is enabled (Section 5.6.2) and the address is in
cacheable space (Table 2–6).

Page-mode access The address is on the same DRAM page as the previous cycle
(Section 5.3.2) and the maximum RAS assertion time has not
expired since the mem_ras_l signal is asserted (Section 5.6.5).

Write-per-bit The addressed memory bank has write-per-bit enabled
(Section 5.6.2) and the address is in graphics space (Table 2–6).

Byte write The address is in graphics space (Table 2–6), the addressed
memory bank has byte write enabled (Section 5.6.2), and the
byte-write-enable (BWE) bit is set in the video and graphics
control register (VGR, Section 5.6.9).
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5.7.1 Idle Cycle
An idle cycle occurs when no other cycle type in Table 5–23 is required. If the
PWR bit in the cache register is not set, the only memory controller signals
that change during the idle cycle are the mem_addr<11:0>, bc_index, and
bc_idx_tag<4:0> signals that are acting as the index. (This is done because
the index is being driven out in anticipation of an internal cache miss, to
make the Bcache latency as small as possible.) The mem_ras_l signal may
be asserted or deasserted, depending on whether or not a page-mode cycle
recently occurred. All other memory control signals are deasserted and the
mem_data<63:0> signals are floating. The idle cycle is one cycle long, but
multiple idle cycles can occur in succession. (See Section 5.6.8 for more
information about what occurs when the PWR bit is set.)
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5.7.2 RAS Precharge Timing
A RAS precharge cycle is performed when the mem_ras_l signal is asserted
and one or more of the conditions in Table 5–23 is met.

The sequence is as follows:

1. The mem_ras_l signal is deasserted and the mem_cas_l signal, if it was
asserted, is deasserted.

2. Wait for TRASprech cycles.

Figure 5–14 shows the timing for a RAS precharge cycle.

Figure 5–14 RAS Precharge Timing
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5.7.3 DRAM Refresh Timing
A DRAM refresh cycle is performed when the refresh interval in the
global timing register (GTR, Section 5.6.5) expires. The memory controller
coordinates refresh cycles with read and write operations, such that burst
activities (for example, internal cache fills) are not disrupted by refresh cycles.
This helps increase memory bandwidth and decrease latency.

The sequence is as follows:

1. The mem_cas_l signal is asserted.

2. After T01 cycles, all mem_ras_l signals are asserted.

3. After TminRAS cycles, the mem_ras_l and mem_cas_l signals are
deasserted.

Figure 5–15 shows the timing for a DRAM refresh cycle.

Figure 5–15 DRAM Refresh Timing
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5.7.4 Full Video Shift-Register Transfer Timing
A full video shift-register transfer cycle is performed in response to the
vframe_l signal being asserted (Section 5.8.19).

The sequence is as follows:

1. The row address is driven on the mem_addr<11:0> pins and the
mem_dtoe_l signal is asserted.

2. After T01 cycles, the mem_ras_l signal is asserted.

3. After T12 cycles, the tap address is driven on the mem_addr<11:0> pins.

4. After T23 cycles, the mem_dtoe_l signal is deasserted and the mem_cas_l
signal is asserted.

5. After T34 cycles, the mem_ras_l, mem_cas_l, and mem_dtoe_l signals
are deasserted.

Figure 5–16 shows the timing for a full video shift-register transfer cycle.

Figure 5–16 Full Video Shift-Register Transfer Timing
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5.7.5 Split Video Shift-Register Transfer Timing
A split video shift-register transfer cycle is performed in response to the
vrefresh_l signal being asserted (Section 5.8.20).

The sequence is as follows:

1. The row address is driven on the mem_addr<11:0> pins and the
mem_dtoe_l and mem_dsf signals are asserted.

2. After T01 cycles, the mem_ras_l signal is asserted.

3. After T12 cycles, the tap address is driven on the mem_addr<11:0> pins
and the mem_dsf signal is deasserted.

4. After T23 cycles, the mem_dtoe_l signal is deasserted and the mem_cas_l
signal is asserted.

5. After T34 cycles, the mem_ras_l, mem_cas_l, and mem_dtoe_l signals
are deasserted.

Figure 5–17 shows the timing for a split video shift-register transfer cycle.

Figure 5–17 Split Video Shift-Register Transfer Timing
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5.7.6 Bcache Read Timing
A Bcache read cycle can occur when a read operation is required from one of
the operations in Table 5–23. The Bcache will be read first if the cacheable
cycle conditions in Table 5–24 are met.

The sequence is as follows:

1. The mem_data<63:0>, mem_ecc<7:0>, bc_tag_l, bc_dirty, and
bc_parity pins are tristated. The cache index is driven on the
mem_addr<11:0> pins. The bc_oe_l and bc_cs_l signals are asserted.

2. After Tca cycles:

• The mem_data<63:0> and mem_ecc<7:0> signals from the cache data
RAMs are latched.

• The bc_tag_l, bc_dirty and bc_parity signals from the cache tag
RAMs are latched.

• The bc_oe_l and bc_cs_l signals are deasserted.

3. The tag and parity are checked internally. If the tag matches the physical
address, the read is considered a hit.

Figure 5–18 shows the timing for a Bcache read cycle.

Figure 5–18 Bcache Read Timing
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5.7.7 Bcache Write Timing
A Bcache write cycle can occur when a write operation is required from one of
the operations in Table 5–23, or on a read operation that will allocate a block.
On a cache write operation, the index is set up in advance from either a Bcache
read or a DRAM read operation.

The sequence is as follows:

1. The mem_data<63:0>, mem_ecc<7:0>, bc_tag_l, bc_dirty, and
bc_parity pins are driven. The bc_oe_l signal is deasserted. The bc_we_l
and bc_cs_l signals are asserted. The bc_dirty signal is asserted for a
write or deasserted for a read operation.

2. After Tcw cycles, the bc_we_l and bc_cs_l signals are deasserted.

3. After one or two cycles, depending on the value of the write hold
time (WHD) bit in the cache register (CAR, Section 5.6.8), the
mem_addr<11:0>, bc_index, and bc_idx_tag<4:0> signals are changed.

Figure 5–19 shows the timing for a Bcache write cycle.

Figure 5–19 Bcache Write Timing
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5.7.8 Page-Mode Read Timing
A page-mode read cycle occurs when a read operation is required from one of
the operations in Table 5–23 and the page-mode conditions in Table 5–24 are
met.

The sequence is as follows:

1. The column address is driven on the mem_addr<11:0> pins and
the mem_dtoe_l signal is asserted. The mem_data<63:0> and
mem_ecc<7:0> pins are tristated. If the Bcache was accessed immediately
before this cycle, the bc_oe_l and bc_cs_l signals are deasserted. In
the case when the Bcache was accessed, the cache index driven on the
mem_addr<11:0> pins is the same as the column address, and the first
cycle of Figure 5–20 corresponds to the last cycle of the Bcache read
operation (Figure 5–18).

2. After T45 cycles, the mem_cas_l signal is asserted.

3. After T56 cycles, the mem_data<63:0> and mem_ecc<7:0> signals from
the DRAMs are latched and the mem_cas_l signal is deasserted. If the
conditions for RAS precharge in Table 5–23 are met, the mem_ras_l signal
is deasserted.

Figure 5–20 shows the timing for a page-mode read cycle.

Figure 5–20 Page-Mode Read Timing
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5.7.9 Non-Page-Mode Read Timing
A non-page-mode read cycle can occur when a read operation is required from
one of the operations in Table 5–23 and the page-mode conditions in Table 5–24
are not met.

The sequence is as follows:

1. The row address is driven on the mem_addr<11:0> pins. If the write-
per-bit conditions in Table 5–24 are met, the write mask is driven on the
mem_data<63:0> pins and the mem_write_l signal is asserted.

2. After T01 cycles, the mem_ras_l signal is asserted.

3. After T12 cycles, the column address is driven on the mem_addr<11:0>
pins. The mem_data<63:0> and mem_ecc<7:0> pins are tristated.

4. After T23 cycles, the mem_cas_l signal is asserted.

5. After T34 cycles, the mem_data<63:0> and mem_ecc<7:0> signals from
the DRAMs are latched and the mem_cas_l signal is deasserted. If the
RAS precharge conditions in Table 5–23 are met, the mem_ras_l signal is
deasserted.

Figure 5–21 shows the timing for a non-page-mode read cycle.

Figure 5–21 Non-Page-Mode Read Timing
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5.7.10 Page-Mode Write Timing
A page-mode write cycle can occur when a write operation is required from one
of the operations in Table 5–23 and the page-mode conditions in Table 5–24 are
met.

The sequence is as follows:

1. The column address is driven on the mem_addr<11:0> pins. Write
data and ECC are driven on the mem_data<63:0> and mem_ecc<7:0>
pins. The mem_write_l signal is asserted. If the Bcache was accessed
immediately before this cycle, the bc_oe_l and bc_cs_l signals are
deasserted. In the case when the Bcache was accessed, the cache index
driven on the mem_addr<11:0> pins is the same as the column address,
and the first cycle of Figure 5–22 corresponds to the last cycle of the Bcache
read (Figure 5–18).

2. After T45 cycles, the mem_cas_l signal is asserted.

3. After T56 cycles, the mem_cas_l and mem_write_l signals are deasserted.
If the RAS precharge conditions in Table 5–23 are met, the mem_ras_l
signal is deasserted.

Figure 5–22 shows the timing for a page-mode write cycle.

Figure 5–22 Page-Mode Write Timing
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5.7.11 Non-Page-Mode Write Timing
A non-page-mode write cycle can occur when a write operation is required from
one of the operations in Table 5–23 and the page-mode conditions in Table 5–24
are not met.

The sequence is as follows:

1. The row address is driven on the mem_addr<11:0> pins. If the write-
per-bit conditions in Table 5–24 are met, the write mask is driven on the
mem_data<63:0> pins and the mem_write_l signal is asserted.

2. After T01 cycles, the mem_ras_l signal is asserted.

3. After T12 cycles, the column address is driven on the mem_addr<11:0>
pins. The mem_write_l signal is asserted, and the mem_data<63:0> and
mem_ecc<7:0> signals are driven.

4. After T23 cycles, the mem_cas_l signal is asserted.

5. After T34 cycles, the mem_cas_l is deasserted. If the RAS precharge
conditions in Table 5–23 are met, the mem_ras_l signal is deasserted.

Figure 5–23 shows the timing for a non-page-mode write cycle.

Figure 5–23 Non-Page-Mode Write Timing
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5.8 Memory Controller Signals
Sections 5.8.1 through 5.8.20 describe the function of each memory controller
signal.

5.8.1 mem_data<63:0>
The mem_data<63:0> signals transmit data to and from memory or Bcache
and the memory controller.

During a read from the Bcache, the Bcache drives the mem_data<63:0> pins
when the bc_oe_l signal is asserted.

During a read from memory, memory (or optional transceivers) drives the
mem_data<63:0> pins when the mem_cas_l and mem_rd_oe signals are
asserted and the mem_write_l signal is not asserted.

During a write, the mem_data<63:0> pins are driven with write data by
the memory controller and are valid when either the bc_we_l signal or the
mem_cas_l, mem_wr_oe_l, and mem_write_l signals are asserted.

During a write-per-bit operation, the mem_data<63:0> pins are driven with
the write-per-bit mask by the memory controller and are valid when the
mem_ras_l, mem_wr_oe_l, and mem_write_l signals are asserted.

The mem_data<63:0> lines are weakly pulled down when a memory operation
is not in progress.

5.8.2 mem_ecc<7:0>
The mem_ecc<7:0> signals transmit the error correction codes (ECC) to and
from memory or the Bcache and the memory controller. The memory controller
generates ECC for writes and checks it for reads. The mem_ecc<7:0> signals
have the same external timing as the mem_data<63:0> signal. Memory
storage for ECC is optional, and ECC checking can be disabled using the bank
configuration registers (BCR3–BCR0, Section 5.6.2). Table 5–2 shows the
correspondence between the mem_ecc<7:0> and mem_data<63:0> signals.

The mem_ecc<7:0> signals also transmit a byte write mask for banks that
have byte write enabled in their BCR. External logic is required to gate
the DRAM write signals. When used in this way, the mem_ecc0 signal
corresponds to the mem_data<7:0> signals, the mem_ecc1 signal corresponds
to the mem_data<15:8> signals, and so on. The mask is active high; that is, a
value of one allows writing and a value of zero inhibits writing.

The mem_ecc<7:0> pins are weakly pulled down when a memory operation is
not in progress.
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5.8.3 mem_addr<11:0>
The mem_addr<11:0> signals transmit the row and column address to
memory, and the 12 least significant bits (LSBs) of the index to the Bcache
(Figure 5–10). For memory read and write operations (that is, not refresh), the
mem_addr<11:0> signals contain a valid row address when the mem_ras_l
signal is asserted and a valid column address when the mem_cas_l signal is
asserted.

5.8.4 mem_write_l
The mem_write_l signal provides the read and write control for memory
and enables the write-per-bit mask to be loaded. For a write operation
to the memory devices, the mem_write_l signal is asserted before the
mem_cas_l signal is asserted. For a read operation to the memory devices, the
mem_write_l signal is deasserted before the mem_cas_l signal is asserted.

The write-per-bit function is used to write selected bits to memory. To activate
the write-per-bit function in the DRAMs and VRAMs, the mem_write_l
signal is asserted before the mem_ras_l signal is asserted. The value in
the mem_data<63:0> bits is loaded into the memory’s internal write mask
latch. Data bits that are low when the mem_ras_l signal is asserted inhibit
subsequent write operations to that bit. Data bits that are high when the
mem_ras_l signal is asserted are modified during the write operation. If the
mem_write_l signal is deasserted when the mem_ras_l signal is asserted, the
write-per-bit capability is disabled and the write operation is performed on all
data bits.

5.8.5 mem_rasa_l<3:0> and mem_rasb_l<3:0>
Note

Where specificity is not required, the eight mem_rasa_l<3:0> and
mem_rasb_l<3:0> signals are often abbreviated to the generic term
mem_ras_l.

Each pair of mem_rasa_l<3:0> and mem_rasb_l<3:0> signals are associated
with a bank of memory. During a normal read or write operation, the assertion
of the mem_ras_l signal indicates that the mem_addr<11:0> bits contain a
valid row address. Which RAS is asserted depends on which bank is addressed,
whether or not dual bank is enabled in the BCR (Section 5.6.2), and the row
address bit shown in Table 5–5.
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During a memory refresh cycle, if the refresh enable bit is set in the
global timing register (GTR, Section 5.6.5), all mem_rasa_l<3:0> and
mem_rasb_l<3:0> outputs are asserted together. Refresh cycles are the
CAS-before-RAS type.

During VRAM shift-register loads, the mem_rasa_ln mem_rasb_ln signals
for bank n are both asserted.

5.8.6 mem_cas_l
When asserted during memory read and write operations, the mem_cas_l
signal indicates that the mem_addr<11:0>, mem_data<63:0> (for write
operations), and mem_write_l signals are valid.

During a memory refresh cycle, the mem_cas_l signal is asserted before the
mem_ras_l signal is asserted.

5.8.7 mem_dtoe_l
The multifunction mem_dtoe_l pin controls either the output enable function
for DRAMs or the shift-register load function for VRAMs.

For DRAM operations, the mem_dtoe_l signal is deasserted when the
mem_ras_l signal is asserted. To enable the memory’s data output drivers
during a read cycle, the mem_dtoe_l signal is asserted before the mem_cas_l
signal is asserted.

To indicate a shift-register load sequence to VRAMs, the mem_dtoe_l signal
is asserted before the mem_ras_l signal is asserted. Either a full or split
register-load sequence will be performed, depending on the value of the
mem_dsf signal.

5.8.8 mem_dsf
The mem_dsf special function select signal determines whether a full or split
shift-register load is to be performed, as shown in Table 5–25. The mem_dsf
signal is valid before the mem_ras_l signal is asserted when the mem_dtoe_l
signal is asserted.

Table 5–25 VRAM Shift-Register Load Selection

mem_dtoe_l mem_dsf Function at RAS Assertion

1 1 or 0 Normal read or write
0 0 Full shift-register load
0 1 Split shift-register load
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A full shift-register load cycle loads a full row of memory data into the VRAM’s
shift register. A split shift-register load cycle loads only one-half of a row into
one-half of the VRAM’s shift register. The column address MSB determines
which half of the row is to be loaded (some VRAMs control this internally).
The remaining column address bits are zeros.

5.8.9 mem_rd_oe
The mem_rd_oe signal enables the optional, external memory transceiver
to drive data from the memory parts on the mem_data<63:0> and
mem_ecc<7:0> lines. It is asserted during read cycles when the mem_cas_l
signal is asserted. If a transceiver is not used, the mem_rd_oe pin should be
ignored.

5.8.10 mem_wr_oe_l
The mem_wr_oe_l signal enables the optional, external memory transceiver to
drive data from the mem_data<63:0> and mem_ecc<7:0> pins to the memory
parts. It is asserted during write cycles when the mem_data<63:0> pins are
driven. If a transceiver is not used, the mem_wr_oe_l pin should be ignored.

5.8.11 bc_tag<7:0>
The bc_tag<7:0> signals represent the upper part of the physical address
stored in a cache block (Figure 5–10). During a Bcache lookup, the cache drives
these bits (and possibly the bc_idx_tag<4:0> bits—Section 5.8.15) with the tag
corresponding to the current index being driven on the mem_addr<11:0> pins,
the bc_index pin, and the non-tag bits of the bc_idx_tag<4:0> pins. During
a Bcache fill or write operation, the memory controller drives the upper bits of
the address on the bc_tag<7:0> pins, to be stored in the Bcache tag array.

The bc_tag<7:0> pins are weakly pulled down when a memory operation is not
in progress.

5.8.12 bc_dirty
The bc_dirty signal indicates the status of the data stored in a Bcache block.
A value of zero indicates that the cache and memory contain the same data; a
value of one indicates that the cache contains more recently written data than
memory (in other words, memory data is stale). The bc_dirty signal has the
same timing characteristics as the bc_tag<7:0> signals.

The bc_dirty pin is weakly pulled down when a memory operation is not in
progress.
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5.8.13 bc_parity
The bc_parity signal transmits the Bcache tag parity to the tag array during
cache fill and write operations and from the tag array during cache lookups.
The bc_parity signal has the same timing characteristics as the bc_tag<7:0>
signals.

The bc_parity pin is weakly pulled down when a memory operation is not in
progress.

5.8.14 bc_index
The bc_index signal transmits Bcache index bit 12 to the cache (Figure 5–10).

5.8.15 bc_idx_tag<4:0>
Each bc_idx_tag<4:0> signal can act as either an index bit or a tag bit,
depending on the size of the Bcache. The function of each bit is determined by
the size of the Bcache, as shown in Table 5–26 and Figure 5–10.

Table 5–26 Use of bc_idx_tag

bc_idx_tag<4:0>

Bcache Size 4 3 2 1 0

64 KB Tag Tag Tag Tag Tag
128 KB Tag Tag Tag Tag Index
256 KB Tag Tag Tag Index Index
512 KB Tag Tag Index Index Index

1 MB Tag Index Index Index Index
2 MB Index Index Index Index Index

If the function of the bit is index, its direction is output only; otherwise, its
direction depends on the cycle type—input during a cache lookup and output
during a cache fill or write operation.

The bc_idx_tag<4:0> pins are weakly pulled down when a memory operation
is not in progress.

5.8.16 bc_cs_l
The bc_cs_l signal is the chip select for the Bcache SRAMs. The SRAMs
are enabled when this signal is asserted; otherwise, they are disabled. The
bc_cs_l signal is deasserted when the cache is not being accessed and the
cache power-saving mode is on; that is, the PWR bit is set in the cache register
(CAR, Section 5.6.8).
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5.8.17 bc_we_l
The bc_we_l signal is asserted to write the data from the mem_data<63:0>
and mem_ecc<7:0> signals into the Bcache data SRAM array, and to write the
tag from the bc_tag<7:0>, bc_idx_tag<4:0>, bc_dirty, and bc_parity signals
into the tag SRAMs.

5.8.18 bc_oe_l
The bc_oe_l signal is the output enable for the Bcache. It enables the Bcache
SRAM array to drive data on the mem_data<63:0> and mem_ecc<7:0>
lines, and to drive tags on the bc_tag<7:0>, bc_idx_tag<4:0>, bc_dirty, and
bc_parity lines.

5.8.19 vframe_l
When the vframe_l signal is asserted, the memory controller does the
following:

1. Reloads the video display pointer (Section 5.6.9.1) with the value stored in
the start of the video frame field of the video and graphics control register
(VGR, Section 5.6.9).

2. Performs a full shift-register load cycle to the VRAM bank selected by the
start of video frame field of the VGR.

3. Increments the video display pointer twice, as specified by the address
increment (INC) field of the VGR.

The vframe_l signal is edge-sensitive. The assertion (falling) edge is captured
by an edge-detection circuit, the output of which is synchronized and allowed
to settle before being used. The edge-detection circuit is rearmed when the
shift-register load cycle is done. A subsequent assertion of the vframe_l or
vrefresh_l signal before the shift-register load cycle is completed will not be
captured.

5.8.20 vrefresh_l
When the vrefresh_l signal is asserted, the memory controller does the
following:

1. Performs a split shift-register load cycle to the VRAM bank selected by
the start of the video frame field of the video and graphics control register
(VGR, Section 5.6.9).

2. Increments the video display pointer (Section 5.6.9.1) as specified by the
INC field of the VGR.
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The vrefresh_l signal is edge-sensitive. The assertion (falling) edge is
captured by an edge-detection circuit, the output of which is synchronized and
allowed to settle before being used. The edge-detection circuit is rearmed when
the shift-register load cycle is done. A subsequent assertion of the vframe_l or
vrefresh_l signal before the shift-register load cycle is completed will not be
captured.
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6
I/O Controller

This chapter describes the I/O controller (IOC); I/O operations; and IOC error
handling, registers, and interface signals.

This chapter does not duplicate information that can be found in the PCI Local
Bus Specification, Revision 2.0.

6.1 Overview
The IOC is the interface between peripheral devices, the CPU, and system
memory. All peripheral devices in a system based on the 21066 connect to
the CPU and system memory through the IOC. The IOC interface protocol
complies with the PCI Local Bus Specification, Revision 2.0. Peripheral chips
that also comply with that specification can be connected to the IOC without
any glue logic. However, external logic is required for interrupt arbitration,
interrupt vector generation, and DMA request arbitration.

The 21066 is not a PCI peripheral. The IOC implements the functions of a
bridge between the PCI, CPU, and system memory. These functions are not
sufficient to interface the chip as a PCI peripheral component.

6.1.1 Scatter-Gather Mapping Support
The IOC incorporates scatter-gather mapping logic to translate 32-bit
addresses generated by PCI bus masters to the 34-bit CPU physical address
space. The IOC implements an 8-entry translation lookaside buffer (TLB) for
fast translations. The scatter-gather map tables are stored in system memory
and are automatically read by the IOC when a translation does not hit in the
TLB.
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6.1.2 Sparse and Dense Memory Support
The IOC supports both sparse and dense memory space.

Sparse memory space is a region in which the lower bits of the CPU address
indicate transfer size, and the address is shifted down by 5 bits during the
translation from a CPU address to a PCI address. The host address extension
register (IOC_HAE, Section 6.4.1) extends the shifted address to 32 bits.
The size of transfers in this space can be byte, word, tribyte, longword, and
quadword. The CPU references sparse address space when CPU address bits
<33:32> = 10. See Section 6.2.6.1 for more information about how the low-order
CPU address bits are encoded.

Dense memory space is a region in which only longword and quadword
transfers are supported. The CPU address is transparently mapped to the PCI
address. This uses the CPU write buffers more efficiently but restricts transfer
size capability. The CPU references dense address space when CPU address
bits <33:32> = 11. The IOC_HAE register is not required for references to this
space because the address is not shifted.

6.1.3 PCI Parity Support
The IOC supports PCI bus parity generation and checking. The agent driving
the PCI ad<31:0> signals on any given bus cycle is responsible for driving
even parity on the PCI par signal. During all phases when address or data
is transferred on the PCI, parity covers the ad<31:0> and the c_be_l<3:0>
signals. Bytes that are masked during a transfer must be driven to stable
levels and are included in the parity computation. During configuration cycles,
special cycles, or interrupt acknowledge cycles, all address lines must be driven
to stable levels and are included in the parity computation. The calculated
parity is driven on the PCI par signal in the cycle following the cycle that
transferred the address or data. PCI address and data parity errors are
reported through different pins.

Note

Because the chip does not provide an serr_l signal pin, external logic
must report serr_l assertions on one of the chip’s irq<2:0> interrupt
signal pins.

Usually, all address parity errors and data parity errors during PCI special
cycles are reported with the PCI serr_l signal. Such errors detected by the
IOC (which PCI devices would normally report on serr_l) are reported to
the CPU by an internal interrupt. External logic can report the assertion of
the serr_l signal by PCI peripherals using the chip’s interrupt signal pins
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irq<2:0>. The serr_l signal is an asynchronous PCI signal that is usually
asserted one cycle after valid parity is driven on the par signal (that is, two
cycles after valid address or data). PCI peripherals can also use the serr_l
signal to report other severe error conditions.

Data parity errors on all PCI transactions (except during special cycles) are
reported with the PCI perr_l signal. Only data parity errors are reported on
the perr_l line. The chip provides a signal pin to connect the perr_l signal
directly to the IOC. The perr_l signal is synchronous with the PCI clock. Data
parity errors are reported on the perr_l signal one cycle after valid parity is
driven on the par signal (that is, two cycles after valid data).

The IOC parity disable register (IOC_PAR_DIS, Section 6.4.8) allows parity
checking and reporting to be disabled. When this register is written, the IOC
does not log or report parity errors.

6.1.4 PCI Exclusive Access Support
The IOC supports the PCI exclusive access protocol for peripheral-initiated
transfers with system memory (also called direct memory access or DMA). The
chip cannot generate exclusive access cycles for CPU-initiated PCI transfers.

6.1.5 Clocking
With the exception of the PCI reset signal rst_l, all PCI signals are
synchronous with the PCI clock signal and are sampled on the rising edge
of the PCI clock. Timing parameters for PCI signals are also specified relative
to the rising edge of the PCI clock.

The IOC provides the pci_clk_in pin for the PCI clock input. It controls
PCI signal latching in the IOC and generates the control strobes for the IOC
outputs. The pci_clk_in signal is asynchronous to the internal CPU clock.
The PCI and CPU clock domains are synchronized in the IOC.

6.2 CPU-Initiated PCI Cycles
The IOC operates as a PCI master when the CPU executes a load or store
instruction that addresses a PCI peripheral. The IOC provides address
windows to the CPU that allow access to the PCI memory, I/O, and
configuration address spaces. The interrupt vector and special cycle register
(IOC_IACK_SC, Section 6.4.13) generates either a PCI interrupt acknowledge
cycle when read or a PCI special cycle when written.
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Table 6–1 shows the complete address translation for different cycle types.

Table 6–1 CPU-to-PCI Address Translation

Read
Write

CPU
a<33:32 31:29>

PCI
ad<31:27 26:24 23:2 1:0>

PCI
c_be_l
<3:0> Transaction

Write 11 XXX a<31:27> a<26:24> a<23:2> 00 0111 DMW
Read 11 XXX a<31:27> a<26:24> a<23:2> 00 0110 DMR
Write 10 6= 0 HAE<31:27> a<31:29> a<28:7> 00 0111 SMW
Write 10 000 00000 a<31:29> a<28:7> 00 0111 SMW
Read 10 6= 0 HAE<31:27> a<31:29> a<28:7> 00 0110 SMR
Read 10 000 00000 a<31:29> a<28:7> 00 0110 SMR
Write 01 111 00000 000 a<28:7> CFG<1:0> 1011 CFW
Read 01 111 00000 000 a<28:7> CFG<1:0> 1010 CFR
Write 01 110 00000 000 a<28:7> a<6:5> 0011 IOW
Read 01 110 00000 000 a<28:7> a<6:5> 0010 IOR
Write 01 101 HAE<31:27> a<31:29> a<28:7> 00 0001 SPC
Read 01 101 HAE<31:27> a<31:29> a<28:7> 00 0000 IAK

Key to abbreviations:

CFG—Configuration cycle type register
CFR—Configuration read
CFW—Configuration write
DMR—Dense memory read
DMW—Dense memory write
HAE—Host address extension register
IAK—Interrupt acknowledge
IOR—I/O read
IOW—I/O write
SMR—Sparse memory read
SMW—Sparse memory write
SPC—Special cycle
X—1 or 0
6= 0—Non-zero

Table 6–2 lists the supported PCI address spaces and command codes.
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Table 6–2 CPU Address Windows to PCI Address Spaces

PCI Command Code
c_be_l<3:0>

CPU Address <33:0> PCI Address Space
Read
Operations

Write
Operations

3 FFFF FFFF..3 0000 0000 Dense memory 0110 0111

2 FFFF FFFF..2 0000 0000 Sparse memory 0110 0111

1 FFFF FFFF..1 E000 0000 Configuration 1010 1011

1 DFFF FFFF..1 C000 0000 I/O 0010 0011

1 BFFF FFFF..1 A000 0000 Special cycle NA 0001

1 BFFF FFFF..1 A000 0000 Interrupt acknowledge 0000 NA

NA = not applicable

6.2.1 CPU Request Queue
The CPU request queue is used for all CPU-initiated PCI transfers and for
CPU accesses to registers that are internal to the IOC. The two-entry CPU
request queue can hold an address and up to one quadword of write data for
CPU-initiated PCI transactions as follows:

• Up to two CPU-initiated PCI write transfers

• Only one CPU-initiated PCI read transfer or one CPU access to an IOC
register (read or write)

• One CPU-initiated PCI write transfer in the first entry and one CPU-
initiated PCI read transfer or one CPU access to an IOC register in the
second entry

6.2.2 Requesting PCI Mastership
When a CPU-initiated PCI read or write cycle is queued in the IOC and the
IOC grant signal gnt_l is not asserted, the IOC asserts its bus request signal
req_l. External arbitration logic is required to arbitrate requests from the
various PCI devices in the system.

When the IOC gnt_l signal is asserted and the PCI bus is idle, the IOC
assumes bus ownership. (The PCI bus is idle when both the frame_l and
irdy_l signals are sampled deasserted.) In the next cycle, the IOC initiates a
PCI transfer (Section 6.2.5).
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The IOC automatically deasserts its req_l signal in the same cycle that it
initiates the PCI bus cycle and asserts its frame_l signal. If another request
is queued in the IOC and the IOC gnt_l signal is not asserted (that is, the
PCI bus is not parked with the CPU), the IOC will not reassert its req_l
signal until one cycle after the completion of the current IOC-initiated PCI
transaction.

6.2.3 Default Mastership (Bus Parking)
The PCI Local Bus Specification, Revision 2.0 defines bus parking as granting
the PCI bus to a device when no requests are pending.

Digital recommends that the arbiter grant bus ownership to the CPU by
asserting the IOC gnt_l signal when no devices are requesting bus mastership.
This reduces the latency for CPU-initiated PCI transfers when the bus is idle.

If the IOC is granted the bus when it is not asserting its req_l signal, it
enables the ad<31:0>, c_be_l<3:0>, and par output drivers one cycle after its
gnt_l signal is asserted to prevent the drivers from floating. If the IOC has
not initiated a PCI transfer, it tristates these output drivers one cycle after its
gnt_l signal is deasserted.

If the IOC gnt_l signal is asserted, the PCI is idle (both the frame_l and
irdy_l signals are sampled deasserted), and a request is queued in the IOC,
the IOC initiates a PCI transaction on the next PCI cycle without asserting its
req_l signal.

6.2.4 Memory Barrier Instruction Requirements
The memory barrier (MB) instruction must be used to guarantee strict write-
ordering and prevent write-merging operations in the internal CPU write
buffer when not addressing dense space. (Merging in the write buffer is
permitted for dense memory space.) When executed, the MB instruction forces
any data in the internal CPU write buffers to be flushed.

Because a shifted address is used to access PCI sparse memory spaces,
the behavior of the internal write buffer is important. Write operations to
addresses on the PCI that differ by at least a byte address will be written to
different hexword entries in the internal CPU write buffer. Write operations
to the same PCI address with different length encodings will be written to
different quadwords within the same hexword write buffer entry. However, the
IOC accepts only a longword or a quadword of data from any write buffer entry.
Therefore, to ensure correct operation, write operations to the same PCI sparse
address using different length encodings (byte, word, tribyte, and unmasked)
require the use of memory barrier instructions between each write operation.
In addition, write operations with the same length encoding to the same PCI
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byte address will get merged in the internal CPU write buffer if they are not
separated by memory barrier instructions.

6.2.5 Address Phase
All PCI transfers begin with the address phase. If the cycle immediately after
the IOC detects both a bus idle condition and the assertion of the gnt_l signal,
the IOC initiates a PCI transaction as follows:

• Drives the PCI target address on the ad<31:0> pins

• Drives a valid cycle code on the c_be_l<3:0> pins

• Asserts the frame_l signal

• Drives even parity for the address on the par pin in the next cycle

If any PCI device detects an address parity error, it reports it on the PCI serr_l
signal two cycles after the frame_l signal is asserted. (See Section 6.2.12 for
more information.)

Note

Because the chip does not provide an serr_l signal pin, external logic
must report serr_l assertions on one of the chip’s irq<2:0> interrupt
signal pins.

Configuration cycles use address stepping, which drives the address and
command for two consecutive cycles. The frame_l signal is asserted during the
second cycle.

6.2.6 Sparse Memory Space
The sparse memory space is the region in which maskable, CPU-initiated PCI
transactions occur. This region uses the low bits of the CPU address to indicate
transfer size and uses the IOC_HAE register to extend the shifted address to
cover the 32-bit PCI address space.

6.2.6.1 Generating PCI Addresses for Sparse Space
CPU physical address bits <31:7> are used for PCI address bits <26:2>. To
support various transfer size (byte enable) combinations in sparse space, the
low-order bits of the CPU physical addresses that reference PCI address spaces
are encoded as follows:

• Physical address bits <6:3> generate the PCI byte enable c_be_l<3:0>
signals. Byte enables generated by combinations of physical address bits
<6:3>, not shown in Table 6–3, are unspecified.
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• Physical address bits <4:3> also specify transfer size.

• Physical address bits <2:0> must be zero for transfers in sparse space.

Table 6–3 shows how the low-order physical address bits are used to indicate
transfer size.

Table 6–3 Byte Enable Encoding for CPU-Initiated Transfers in Sparse Space

CPU
a<6:5>

CPU
a<4:3> Size

PCI
Byte Enables �

c_be_l<3:0>

PCI
Memory Cycles

ad<1:0>

PCI
I/O Cycles

ad<1:0>
Transfer

Type

00
01
10
11

00
00
00
00

Byte
Byte
Byte
Byte

1110
1101
1011
0111

00
00
00
00

00
01
10
11

Masked
Masked
Masked
Masked

00
01
10

01
01
01

Word
Word
Word

1100
1001
0011

00
00
00

00
01
10

Masked
Masked
Masked

00
01

10
10

Tribyte
Tribyte

1000
0001

00
00

00
01

Masked
Masked

00 11 Longword 0000 00 00 Unmasked

11 11 Quadword 0000 00† 00 Unmasked

�Byte enables are active low (asserted when shown as zero).
†ad2 is 0 for the first longword and 1 for the second longword of the quadword. The quadword is normally
sent as a burst of two consecutive longwords, starting with the lower longword; in this case, only one address
(ad2 = 0) is generated. If a retry on the second longword is needed, the address would be regenerated with
ad2 = 1.

During CPU-initiated transfers to sparse memory space, the IOC forces PCI
address bits <1:0> to 00. This indicates to the target device that the transfer
will use a linearly incrementing burst order.

Although the PCI supports arbitrary byte enables, the IOC supports only the
byte-enable combinations listed in Table 6–3.

Masked Transfers: The following types of masked transfers are permitted in
sparse space:

• Longword read transfers—An LDL instruction can generate a masked PCI
read transfer with a burst length of one.

• Longword write transferss—An STL instruction must be used. The STL
instruction generates a PCI write transfer with a burst length of one.
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Unmasked Transfers: The following types of unmasked transfers are
permitted in sparse space:

• Longword read transfers—An LDL instruction can generate an unmasked
PCI read transfer with a burst length of one.

• Quadword read transfers—An LDQ instruction can generate an unmasked
PCI read transfer with a burst length of two.

• Longword write transfers—An STL instruction can generate an unmasked
PCI write transfer with a burst length of one.

• Quadword write transfers—An STQ instruction can generate an unmasked
PCI write transfer with a burst length of two.

6.2.6.2 Address Extension for Sparse Space
Because the CPU address is encoded to generate PCI byte enables, only 27
physical address bits (CPU address bits a<31:5>) can be used to generate PCI
address bits ad<26:0>, giving an effective PCI address space of 128 MB. This
128-MB address space is subdivided into a 16-MB region and a 112-MB region.
Generation of PCI address bits ad<31:27> depends on which of these regions
are referenced, as shown in Table 6–4.

Table 6–4 Host Address Extension

CPU
a<33:32>

CPU
a<31:29>

PCI
ad<31:27>

10 000 00000
10 001 IOC_HAE<31:27>
10 010 IOC_HAE<31:27>
10 011 IOC_HAE<31:27>
10 100 IOC_HAE<31:27>
10 101 IOC_HAE<31:27>
10 110 IOC_HAE<31:27>
10 111 IOC_HAE<31:27>

The 16-MB region is always mapped to the first 16 MB of the PCI address
space. This 16-MB region is referenced when CPU address bits a<31:29> are
zero. During CPU-initiated PCI transactions to this 16-MB region, PCI address
bits ad<31:27> are zero.

The 112-MB region is referenced when CPU address bits a<31:29> are non-
zero. During CPU-initiated PCI transactions to this 112-MB region, PCI
address bits ad<31:27> are generated using the host address extension (HAE)
field in the IOC_HAE register (Section 6.4.1). The HAE field allows the 112-MB
region to be relocated to the upper 112 MB of any aligned 128-MB PCI address
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segment. A value of zero in the HAE field defines a single 128-MB region,
beginning at address 0 in PCI address space.

6.2.6.3 Burst Order in Sparse Space
For sparse memory space, PCI address bits <1:0> in memory cycles specify
the burst order requested by the bus master. The microprocessor always uses
a linearly incrementing burst order. Only a CPU-initiated PCI unmasked-
quadword read or write cycle can generate a transfer with a burst length
greater than one (Section 6.2.6.6). For dense space, bursts can be greater than
one.

6.2.6.4 Unmasked Longword and Quadword Read Operations to Sparse Space
CPU-initiated PCI longword read operations are generated by executing LDL
or LDQ instructions that reference a physical address in the PCI sparse
memory space. Encoded CPU address bits <6:5> must equal 00 for a longword
and 11 for a quadword; CPU address bits <4:3> must equal 11, as specified in
Table 6–3.

Address Phase: In the address phase of a CPU-initiated PCI longword
or quadword read cycle, the IOC drives a memory read command on the
c_be_l<3:0> pins.

Address Phase + 1: In the cycle following the address phase of a longword
read cycle, the IOC deasserts the frame_l signal, asserts the PCI initiator
ready signal irdy_l, and begins to sample the target ready signal trdy_l and
address signals ad<31:0>. When the IOC samples the trdy_l signal asserted,
it latches the read data from the ad<31:0> pins.

In the cycle following the address phase of a quadword read cycle, the IOC
deasserts the frame_l signal after it samples the trdy_l signal asserted.

Address Phase + 2: In the second cycle following the address phase of a
longword read cycle, the IOC deasserts its irdy_l signal and samples the
parity data that the target is driving on the par line. The IOC returns the
longword of read data from the PCI to the CPU in the low longword of the
returned quadword.

In the second cycle following the address phase of a quadword read cycle, the
IOC latches both the upper longword on the ad<31:0> pins and the parity
associated with the first longword. Parity associated with the second longword
will appear in the third cycle. The IOC packs the two longwords of read data
into the single quadword that is returned to the CPU.

If the parity calculated by the IOC does not match the sampled parity, the IOC
uses an internal interrupt to report the error to the CPU (Section 6.2.13.1).
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Deassertion of the irdy_l signal indicates cycle completion to the PCI target
device.

6.2.6.5 Unmasked Longword Write Operations to Sparse Space
CPU-initiated PCI longword write operations are generated by executing STL
instructions that reference a physical address in the PCI sparse memory space.
Encoded CPU address bits <6:5> must equal 00 and bits <4:3> must equal 11,
as specified in Table 6–3.

Address Phase: In the address phase of a CPU-initiated PCI longword write
cycle, the IOC drives a memory write command on the c_be_l<3:0> pins.

Address Phase + 1: In the cycle following the address phase, the IOC does
the following:

• Deasserts the frame_l signal

• Asserts the PCI initiator ready signal irdy_l

• Drives valid write data on the ad<31:0> pins

• Begins to sample the target ready signal trdy_l

Address Phase + 2: In the second cycle following the address phase, the IOC
drives even parity for the ad<31:0> and c_be_l<3:0> signals on the par pin.

Target Ready + 1: In the cycle after the IOC samples the trdy_l signal
asserted, it deasserts its irdy_l signal, completing the longword write
transaction.

If the target of the write transaction detects a parity error, it asserts the
perr_l signal two cycles after it asserts the trdy_l signal. If the IOC samples
the perr_l signal asserted in this cycle (two cycles after the data transfer), it
uses an internal interrupt to report a parity error to the CPU (Section 6.2.13.2).

The IOC extracts the longword of write data for the PCI from the CPU
quadword. The upper or lower longword is indicated by CPU physical address
bit a7 (0 = low, 1 = high), which corresponds to PCI address bit ad2.

6.2.6.6 Unmasked Quadword Write Operations to Sparse Space
CPU-initiated PCI quadword write operations are generated by executing STQ
instructions that reference a physical address in the PCI sparse memory space.
Encoded CPU address bits <6:5> must equal 11 and bits <4:3> must equal 11,
as specified in Table 6–3.

The IOC always transfers the low longword of the quadword write data first,
followed by the high longword.
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Address Phase: In the address phase of a CPU-initiated PCI quadword write
cycle, the IOC drives a memory write command on the c_be_l<3:0> pins.

To complete the quadword write cycle, the IOC initiates a 2-longword burst
write cycle by using linearly incrementing burst order on the PCI.

Address Phase + 1: In the cycle following the address phase, the IOC does
the following:

• Continues to assert the frame_l signal

• Asserts the PCI initiator ready signal irdy_l

• Drives the lower longword of write data on the ad<31:0> pins

• Begins to sample the target ready signal trdy_l

Address Phase + 2: In the second cycle following the address phase, the IOC
drives even parity for the ad<31:0> and c_be_l<3:0> signals on the par pin.

First Target Ready + 1: In the cycle after the IOC samples the trdy_l signal
asserted, the IOC does the following:

• Drives the upper longword of write data on the ad<31:0> pins

• Deasserts its frame_l signal

• Continues to assert its irdy_l signal

First Target Ready + 2: In the second cycle after the IOC samples the trdy_l
signal asserted, the IOC drives even parity for the ad<31:0> and c_be_l<3:0>
signals on the par pin.

Second Target Ready + 1: In the cycle after the IOC again samples the
trdy_l signal asserted, it deasserts its irdy_l signal, completing the quadword
write transaction.

If the target of the write transaction detects a parity error on either longword,
it asserts the perr_l signal two cycles after it asserts the trdy_l signal
corresponding to the data transfer that caused the parity error. If the IOC
samples the perr_l signal asserted two cycles after either data transfer, it uses
an internal interrupt to report a parity error to the CPU (Section 6.2.13.2).
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6.2.6.7 Masked Longword Read Operations to Sparse Space
CPU-initiated PCI longword read operations are generated by executing LDL
instructions that reference a physical address in the PCI sparse memory
space. Encoded CPU address bits <4:3> must equal 00, 01, or 10. The encoded
address determines the byte mask used during the transfer, as specified in
Table 6–3.

Masked longword read operations are similar to unmasked longword read
operations (Section 6.2.6.4), except that when the IOC is asserting the irdy_l
signal, it is also asserting only the byte enables specified by the encoded
address.

6.2.6.8 Masked Longword Write Operations to Sparse Space
CPU-initiated PCI longword write operations are generated by executing
STL instructions that reference a physical address in the PCI sparse memory
space. Encoded CPU address bits <4:3> must equal 00, 01, or 10. The encoded
address determines the byte mask used during the transfer, as specified in
Table 6–3.

Masked longword write operations are similar to unmasked longword write
operations (Section 6.2.6.4), except that when the IOC is asserting the irdy_l
signal, it is also asserting only the byte enables specified by the encoded
address.

6.2.7 Dense Memory Space
The dense memory space is the region in which only unmasked longword or
quadword transfers can be specified. This memory space uses the onchip write
buffer more efficiently by condensing multiple quadword transfers into a single
burst.

6.2.7.1 Generating PCI Addresses for Dense Space
Dense memory space uses the unshifted CPU address bits a<31:0> to generate
the PCI address. Because this region has sufficient address space, the
IOC_HAE register is not needed or used to generate PCI addresses. Note that
any PCI address can be generated from dense space. Sparse space address
generation must follow the address extension described in Section 6.2.6.2.

During CPU-initiated transfers to dense memory space, the IOC forces PCI
address bits ad<1:0> to 00. This indicates to the target device that the transfer
will use a linearly incrementing burst order.

Because the address is not shifted, masked transfers are not permitted in
dense space.
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6.2.7.2 Unmasked Read Operations to Dense Space
The PCI returns an aligned quadword in response to a longword read
operation, regardless of the address alignment. The correct longword is
returned to the register file in the low 32 bits.

The PCI returns an aligned quadword in response to a quadword read
operation. The address is assumed to be quadword aligned.

6.2.7.3 Unmasked Burst Write Operations to Dense Space
Unmasked PCI write operations can transfer up to 1 hexword by executing a
combination of STL and STQ instructions with addresses that fall within an
aligned hexword. All longwords of the hexword need not be written; that is,
the software can write any longword portion of the hexword—the IOC simply
sequences through an unwritten longword by deasserting the byte enables for
that longword.

The IOC sequences through successive longwords by using a linearly
incrementing burst order on the PCI.

The IOC always transfers the low longword of a quadword first, followed by the
high longword.

Address Phase + 1: In the cycle following the address phase, the IOC does
the following:

• Continues to assert the frame_l signal

• Asserts the PCI initiator ready signal irdy_l

• Drives the first longword of write data on the ad<31:0> pins

• Begins to sample the target ready signal trdy_l

First Target Ready + 1: In the cycle after the IOC samples the trdy_l signal
asserted, the IOC does the following:

• Drives the next longword of write data on the ad<31:0> pins

• Deasserts its frame_l signal

• Continues to assert its irdy_l signal

This process continues until the last longword of the transaction.
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Second Target Ready + 1: In the cycle after the IOC again samples the
trdy_l signal asserted, it deasserts its irdy_l signal, completing the burst.

If the target of the write transaction detects a parity error on a longword,
it asserts the perr_l signal two cycles after it asserts the trdy_l signal
corresponding to the data transfer that caused the parity error. If the IOC
samples the perr_l signal asserted two cycles after a data transfer, it uses an
internal interrupt to report a parity error to the CPU (Section 6.2.13.2).

6.2.8 I/O Space Cycles
The IOC generates addresses in this region for transactions to the I/O region
specified by the PCI architecture. This region supports the same access types
and masked-address generation as sparse space (Section 6.2.6), with the
following exceptions:

• I/O space is accessed with CPU address bits a<33:32> = 01 and
a<31:29> = 110.

• PCI address bits ad<31:27> = 00000 and the IOC_HAE register is not
used.

• PCI address bits ad<1:0> come directly from physical address bits a<6:5>
during CPU-initiated PCI transfers to I/O space.

• An I/O read or write command (Table 6–2) is issued on the c_be_l<3:0>
pins coincident with a read or write operation to this region.

The I/O region supports all masked and unmasked transfers that are supported
in sparse space.

6.2.9 Configuration Cycles
The PCI architecture specifies a configuration address space for defining
configuration registers that are used to initialize and configure devices.
The IOC supports transfers to the configuration address space to access
the configuration registers. This region supports the same access types and
masked address generation as sparse space (Section 6.2.6), with the following
exceptions:

• Configuration space is accessed with CPU address bits a<33:32> = 01 and
a<31:29> = 111.

• PCI address bits ad<31:27> = 00000 and the IOC_HAE register is not
used.

• PCI address bits ad<1:0> come directly from configuration cycle type
register (IOC_CONF, Section 6.4.2) bits <1:0> during CPU-initiated PCI
transfers to configuration space.
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• A configuration space read or write command (Table 6–2) is issued on the
c_be_l<3:0> pins coincident with a read or write operation to this region.

During configuration cycles, addresses are restricted both by the encoding
requirements of PCI configuration cycles (as described in the PCI Local Bus
Specification, Revision 2.0) and by the system-dependent implementation of
PCI initialization device select (IDSEL) encoding. Configuration cycles use one
cycle of address stepping; that is, the address and command are driven for two
consecutive cycles.

6.2.10 Special Cycles and Interrupt Acknowledge Cycles
The PCI special cycle command implements a simple broadcast mech-
anism that allows the broadcast of processor status information and
sideband signaling. The command is not addressed to a specific device,
and the receivers determine whether the message applies to them.
Section 6.3.11 describes two supported sideband signals. Also see the
PCI Local Bus Specification, Revision 2.0 for more information.

6.2.10.1 Special Cycle
The CPU can initiate a special cycle transfer on the PCI by executing an STL
instruction to the interrupt vector and special cycle register (IOC_IACK_SC,
Section 6.4.13). When this register is written, the IOC initiates a PCI cycle
with a special cycle bus command. During a special cycle, the IOC generates
an unspecified address on the PCI that is ignored by the PCI devices. The
write data generated by the STL instruction passes unmodified through the
IOC to the PCI during the data phase of the special cycle. The special cycle
message is encoded in the write data as described in the PCI Local Bus
Specification, Revision 2.0.

The special cycle address region is accessed only by STL instructions. This
region supports the same write access types and masked address generation as
sparse space (Section 6.2.6), with the following exceptions:

• Write access to the IOC_IACK_SC register is enabled when CPU address
bits a<33:32> = 01 and a<31:29> = 101.

• The IOC_HAE register is used to generate PCI address bits ad<31:27>
under all circumstances.

• A special cycle command (Table 6–2) is issued on the c_be_l<3:0> pins, and
a PCI interrupt acknowledge cycle follows as a result.
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6.2.10.2 Interrupt Acknowledge Cycle
During a PCI interrupt acknowledge cycle, the IOC can acknowledge an
interrupt and receive an interrupt vector. This allows external interrupt-
arbitration hardware to supply interrupt vectors for PCI devices.

The CPU can initiate an interrupt acknowledge cycle by executing either an
LDL or an LDQ instruction, depending on the size of the returned interrupt
vector. Read access types and mask generation are identical to sparse space
(Section 6.2.6), with the following exceptions:

• Read access to the IOC_IACK_SC register is enabled when CPU address
bits a<33:32> = 01 and a<31:29> = 101.

• The IOC_HAE register is used to generate PCI address bits ad<31:27>
under all circumstances.

• An interrupt acknowledge cycle command (Table 6–2) is issued on the
c_be_l<3:0> pins, and a PCI interrupt acknowledge cycle follows as a
result.

Note

Digital recommends that software use only address 1A0000000
to reference the IOC_IACK_SC register. However, in the current
chip implementation, CPU address bits <28:0> are not decoded to
access the IOC_IACK_SC register, and any address in the range
1A0000000..1BFFFFFE0 will alias to this single register. For
implementation convenience, the chip will drive the supplied address
onto the PCI bus.

When the IOC_IACK_SC register is read, the IOC initiates a PCI cycle with
an interrupt acknowledge bus command. External interrupt-arbitration logic
must supply an interrupt vector in response to the interrupt acknowledge bus
cycle. The interrupt vector data is returned to the CPU as the IOC_IACK_SC
register read data. During an interrupt acknowledge cycle, the IOC generates
an unspecified address on the PCI that is ignored by the PCI devices.

During CPU-initiated interrupt acknowledge cycles, PCI address bits ad<31:0>
generated by the IOC are unspecified.
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6.2.11 Back-to-Back Transfers
The IOC always inserts a bus-idle (bus-turnaround) cycle following the
completion of a CPU-initiated PCI transfer. If the PCI grant signal gnt_l is
sampled asserted during the idle cycle, the IOC initiates another transfer
in the next PCI cycle without asserting the bus request signal req_l. This
sequence of two uninterrupted transfers by the IOC is a back-to-back transfer.
Because it inserts an idle cycle between back-to-back transfer cycles, the IOC
is not capable of fast back-to-back transfers.

6.2.12 PCI Address Parity
For CPU-initiated PCI transactions, the IOC calculates even parity on the
address driven on the ad<31:0> pins and the cycle command code driven on
the c_be_l<3:0> pins. It drives the calculated parity on the PCI par pin in the
next PCI clock cycle. Because the IOC is the source of the address, command
code, and parity, the IOC does not detect or report address parity errors during
CPU-initiated PCI transactions. PCI peripherals that detect PCI address
parity errors report them with the PCI serr_l signal.

Note

Because the chip does not provide an serr_l signal pin, external logic
must report serr_l assertions on one of the chip’s irq<2:0> interrupt
signal pins.

6.2.13 PCI Data Parity
For CPU-initiated PCI write transfers, the IOC generates even parity on the
write data. The PCI ad<31:0> and c_be_l<3:0> signals are included in the
parity computation.

For CPU-initiated PCI read transfers, the IOC checks for even parity on
the read data. Parity is generated and checked for all bytes of the PCI bus
(regardless of the byte-enables).

6.2.13.1 PCI Read Data Parity Errors
During a CPU-initiated PCI read data transfer, the IOC samples and calculates
even parity on the ad<31:0> and c_be_l<3:0> signals. The calculated parity is
compared to the parity received on the par pin in the PCI clock cycle following
a valid data transfer (the irdy_l and trdy_l signals are asserted). A read data
parity error is detected when the comparison fails. In such cases, the IOC
reports the error to the CPU with an internal interrupt, and logs the error
condition as described below. Additionally, the read data returned to the CPU
is flagged with an error, which causes an instruction exception.
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When bad data parity is detected, the IOC does the following:

• Sets the ERR bit (if it is not set) in the IOC status 0 register (IOC_STAT0,
Section 6.4.3).

• Sets the error CODE field to 2 (bad data parity) in the IOC_STAT0 register.

• Logs the PCI command code of the CPU-initiated transfer in which the
error was detected into the CMD field of the IOC_STAT0 register. The
command code indicates that the error occurred during a PCI read cycle.

• Logs the starting address of the CPU-initiated PCI transfer into the ADDR
field of the IOC status 1 register (IOC_STAT1, Section 6.4.4).

The ERR bit and the logged error information are frozen until the ERR bit is
cleared by writing a one to it.

If the ERR bit was set, the IOC sets the LOST bit in the IOC_STAT0 register.
The LOST bit remains set until it is cleared by writing a one to it. The CODE
and CMD error information is logged only for the error that caused the ERR
bit to be set—such information for the second error is lost.

6.2.13.2 PCI Write Data Parity Errors
During a CPU-initiated PCI write data transfer, the IOC drives and calculates
even parity on the ad<31:0> and c_be_l<3:0> signals. The IOC drives the
calculated parity on the par pin in the PCI clock cycle after it drives the
write data. PCI devices that support parity checking calculate even parity
on received ad<31:0> and c_be_l<3:0> signals when they are the target of
PCI memory, I/O, or configuration write cycles. The target samples the par
signal one cycle after a valid data transfer (the irdy_l and trdy_l signals are
asserted). A write data parity error is detected when the calculated parity and
sampled parity comparison fails. In such cases, the target asserts perr_l in the
next cycle (two cycles after a valid data transfer). The IOC reports the error to
the CPU with an internal interrupt, and logs the error condition as described
in Section 6.2.13.1; however, in this case, the CMD field in the IOC_STAT0
register indicates that the error was generated during a PCI write cycle.

6.2.14 PCI Master Timeout
The PCI Local Bus Specification, Revision 2.0 specifies a mechanism to limit
the duration of a bus master’s burst sequence. The mechanism requires PCI
masters to implement a latency timer that counts the number of cycles since
the assertion of the frame_l signal. If the master’s latency timer expires and
the master’s gnt_l signal has been deasserted, the master must surrender
the bus. This mechanism prevents masters from holding bus ownership for
extended periods of time, but limits throughput as well as latency.
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The IOC will time out in the sixteenth cycle after the frame_l signal is
asserted.

6.2.15 PCI Target-Disconnects
The PCI Local Bus Specification, Revision 2.0 requires all PCI bus masters to
support target-disconnect cycle terminations. Target-disconnects are signaled
with the stop_l signal. The IOC will end the current transfer if it detects a
target-disconnect termination signal.

If the target-disconnect is not a target-abort and the disconnected transfer
was not completed, the IOC attempts to complete the transfer by rearbitrating
for PCI mastership and initiating a transfer starting at the address of the
next untransferred data. An error is not reported unless the PCI retry limit is
exceeded or a target-abort disconnect is detected (Sections 6.2.16 and 6.2.17).

6.2.16 PCI Retry Limit
If the PCI target of a CPU-initiated transfer retries the transfer 224

� 1 times,
a retry-timeout error is generated and the IOC deletes the CPU-initiated
transfer from its CPU request queue. If the transaction is a read operation,
UNDEFINED data is returned to the CPU with error status, which causes
an instruction exception. The IOC also reports the error to the CPU with an
internal interrupt, and logs the error condition.

The IOC does the following:

• Sets the ERR bit (if it is not set) in the IOC status 0 register (IOC_STAT0,
Section 6.4.3).

• Sets the error CODE field to 0 (retry limit) in the IOC_STAT0 register.

• Logs the PCI command code of the CPU-initiated transfer in which the
error was detected into the CMD field of the IOC_STAT0 register. The
command code indicates the type of PCI cycle in which the error occurred.

• Logs the starting address of the CPU-initiated PCI transfer into the ADDR
field of the IOC status 1 register (IOC_STAT1, Section 6.4.4).

The ERR bit and the logged error information are frozen until the ERR bit is
cleared by writing a one to it.

If the ERR bit was set, the IOC sets the LOST bit in the IOC_STAT0 register.
The LOST bit remains set until it is cleared by writing a one to it. The CODE
and CMD error information is logged only for the error that caused the ERR
bit to be set—such information for the second error is lost.

6–20 I/O Controller



6.2.17 PCI Target-Abort
A PCI target can signal the target-abort termination when a fatal error occurs
during a transaction or when the target can never respond to a transaction.
When the IOC detects a target-abort termination, it ends the transaction by
deasserting the frame_l signal and asserting the irdy_l signal, and then
deasserting the irdy_l signal one cycle later. The IOC will not retry this
access on the PCI. If the CPU-initiated access was a read operation, the
IOC returns arbitrary data with error status to the CPU, which causes an
instruction exception. The IOC also reports the error to the CPU with an
internal interrupt, and logs the error condition.

The IOC does the following:

• Sets the ERR bit (if it is not set) in the IOC status 0 register (IOC_STAT0,
Section 6.4.3).

• Sets the error CODE field to 3 (target abort) in the IOC_STAT0 register.

• Logs the PCI command code of the CPU-initiated transfer in which the
error was detected into the CMD field of the IOC_STAT0 register. The
CMD field indicates the type of PCI cycle in which the error occurred.

• Logs the starting address of the CPU-initiated PCI transfer into the ADDR
field of the IOC status 1 register (IOC_STAT1, Section 6.4.4).

The ERR bit and the logged error information are frozen until the ERR bit is
cleared by writing a one to it.

If the ERR bit was set, the IOC sets the LOST bit in the IOC_STAT0 register.
The LOST bit remains set until it is cleared by writing a one to it. The CODE
and CMD error information is logged only for the error that caused the ERR
bit to be set—such information for the second error is lost.

See the PCI Local Bus Specification, Revision 2.0 for more information about
the target-abort termination.

6.2.18 PCI Master Abort
The IOC terminates a CPU-initiated PCI transaction if no PCI device responds
by asserting devsel_l within five PCI clock cycles after the IOC asserts the
frame_l signal. The IOC will not retry this transfer on the PCI. If the CPU-
initiated access was a read operation, the IOC returns arbitrary data with
error status to the CPU, which causes an instruction exception. The IOC also
reports the error to the CPU with an internal interrupt, and logs the error
condition.
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The IOC does the following:

• Sets the ERR bit (if it is not set) in the IOC status 0 register (IOC_STAT0,
Section 6.4.3).

• Sets the error CODE field to 1 (no device) in the IOC_STAT0 register,
except for CPU-initiated PCI special cycles.

• Logs the PCI command code of the CPU-initiated transfer in which the
error was detected into the CMD field of the IOC_STAT0 register. The
command code indicates the type of PCI cycle in which the error occurred.

• Logs the starting address of the CPU-initiated PCI transfer into the ADDR
field of the IOC status 1 register (IOC_STAT1, Section 6.4.4).

The ERR bit and the logged error information are frozen until the ERR bit is
cleared by writing a one to it.

If the ERR bit was set, the IOC sets the LOST bit in the IOC_STAT0 register.
The LOST bit remains set until it is cleared by writing a one to it. The CODE
and CMD error information is logged only for the error that caused the ERR
bit to be set—such information for the second error is lost.

6.3 Peripheral-Initiated PCI Cycles
The IOC is a PCI target when it responds to cycles initiated by a PCI
peripheral device or external DMA controller operating as a bus master. The
IOC treats PCI-initiated masked read operations as unmasked read operations.
Arbitrary byte-enable combinations for PCI-initiated write transfers are
implemented by read-modify-write operations in the memory controller. PCI-
initiated transfers can target pages of memory that are mapped in cacheable
or noncacheable address spaces. The chip ensures that memory coherency is
maintained for all PCI-initiated transfers to cacheable memory.

PCI devices cannot access registers that are internal to the chip.

6.3.1 PCI Cycle Command Code Support and Aliasing
Table 6–5 lists all the PCI-initiated cycle commands. The IOC supports only
PCI-initiated memory transfers. PCI memory read and memory write cycle
commands are supported directly. Other types of PCI memory commands
are supported by aliasing them to either the memory read or memory write
command. The IOC does not support or respond to other PCI-initiated cycle
commands.
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Table 6–5 Commands for PCI-Initiated Transactions

c_be_l<3:0> PCI Command Type � Support

0000 Interrupt acknowledge Not supported
0001 Special cycle Not supported
0010 I/O read Not supported
0011 I/O write Not supported
0100 Reserved Not supported
0101 Reserved Not supported
0110 Memory read Directly supported
0111 Memory write Directly supported
1000 Reserved Not supported
1001 Reserved Not supported
1010 Configuration read Not supported
1011 Configuration write Not supported
1100 Memory read multiple Aliased to memory read command
1101 Dual address cycle Not supported
1110 Memory read line Aliased to memory read command
1111 Memory write and invalidate Aliased to memory write command

�Reserved command types are reserved in the PCI Local Bus Specification, Revision 2.0.

6.3.2 PCI Address Translation
Because the PCI uses a 32-bit address and the CPU uses a 34-bit address,
PCI addresses to which the IOC responds must be translated to an equivalent
address in the CPU address space. The IOC implements two programmable
address windows, called PCI target windows, that control PCI peripheral access
to system memory. A set of three IOC registers is associated with each PCI
target window: the window base; window mask; and translated base registers
(IOC_W_BASE<1:0>, Section 6.4.9; IOC_W_MASK<1:0>, Section 6.4.10; and
IOC_T_BASE<1:0>, Section 6.4.11).

The window mask register IOC_W_MASK provides a mask corresponding
to bits <31:20> of an incoming PCI address. The size of each window is
programmed to be from 1 MB to 4 GB by masking bits of the incoming PCI
address with the IOC_W_MASK register.

Table 6–6 shows the supported values of IOC_W_MASK register bits <31:20>;
other values are unsupported.
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Table 6–6 PCI Window Mask

IOC_W_MASK
<31:20>

Window
Size

0000 0000 0000 1 MB
0000 0000 0001 2 MB
0000 0000 0011 4 MB
0000 0000 0111 8 MB
0000 0000 1111 16 MB
0000 0001 1111 32 MB
0000 0011 1111 64 MB
0000 0111 1111 128 MB
0000 1111 1111 256 MB
0001 1111 1111 512 MB
0011 1111 1111 1 GB
0111 1111 1111 2 GB
1111 1111 1111 4 GB

IOC_W_BASE register bits <31:20> specify the target window starting address
in the PCI memory address space. The IOC_W_BASE and IOC_W_MASK
registers determine when a PCI transaction references an address in a target
window, as follows:

1. Each of the incoming PCI address bits <31:20> is exclusive-ORed with
the corresponding bit of each window base register (IOC_W_BASE1,
IOC_W_BASE0, bits <31:20>).

2. The result of each exclusive-OR is then ANDed with the complement
of the corresponding bits of the corresponding window mask register
(IOC_W_MASK1, IOC_W_MASK0, bits <31:20>).

3. The result of the AND operation for each window is then ORed to produce
a hit (match) or miss indication. If the result of the final OR is a zero for
a given window, the incoming address has hit in that PCI target window;
otherwise, it has missed in that window.

Note

The window base address must be on a naturally aligned address
boundary equal to the window size (Table 6–6). Additionally, to ensure
that only one PCI target window can match an incoming PCI address,
the PCI target windows must be programmed so that they do not
respond to overlapping PCI address ranges.
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Each target window is independently enabled when the window enable bit
(WEN) is set in the corresponding IOC_W_BASE register. The IOC responds
only to PCI-initiated transfers that hit in an enabled window. If the WEN bit
is cleared, the IOC ignores PCI-initiated transfers that hit in that window.

When a hit occurs in an enabled PCI target window, the IOC responds to
the PCI cycle by asserting the devsel_l signal. The IOC translates the
32-bit PCI address to a 34-bit CPU address. The scatter-gather (SG) bit
in the corresponding IOC_W_BASE register determines how the address
is translated. If the SG bit is clear, direct-mapped address translation is
used (Section 6.3.2.1). If the SG bit is set, scatter-gather mapped address
translation is used (Section 6.3.2.2).

6.3.2.1 Direct-Mapped Address Translation
Direct-mapped address translation is used when an incoming PCI address
hits in a PCI target window and the SG bit is not set in the corresponding
IOC_W_BASE register. The translated address is generated by concatenating
bits from the corresponding IOC_T_BASE register with bits from the incoming
PCI address. Bits <33:32> of the translated address are always zero. The
IOC_W_MASK register determines which IOC_T_BASE register bits and PCI
address bits are concatenated to form the translated address, as shown in
Table 6–7. The translated address is the starting address in system memory
for the PCI transaction.

Caution

Unused bits of the translated base register must be clear (zero) for
correct operation.
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Table 6–7 PCI Address Translation—Scatter-Gather Mapping Disabled

IOC_W_MASK Translated Address <31:0> Unused

<31:20> IOC_T_BASE PCI Address IOC_T_BASE

0000 0000 0000 <31:20> <19:0> <19:9>
0000 0000 0001 <31:21> <20:0> <20:9>
0000 0000 0011 <31:22> <21:0> <21:9>
0000 0000 0111 <31:23> <22:0> <22:9>
0000 0000 1111 <31:24> <23:0> <23:9>
0000 0001 1111 <31:25> <24:0> <24:9>
0000 0011 1111 <31:26> <25:0> <25:9>
0000 0111 1111 <31:27> <26:0> <26:9>
0000 1111 1111 <31:28> <27:0> <27:9>
0001 1111 1111 <31:29> <28:0> <28:9>
0011 1111 1111 <31:30> <29:0> <29:9>
0111 1111 1111 <31> <30:0> <30:9>
1111 1111 1111 — <31:0> <31:9>

6.3.2.2 Scatter-Gather Mapped Address Translation
Scatter-gather mapped address translation is used when an incoming PCI
address hits in a PCI target window and the SG bit is set in the corresponding
IOC_W_BASE register. The translated address is generated by table lookup.
The table is called a scatter-gather map and is stored in system memory. The
IOC combines the incoming PCI address with the corresponding IOC_T_BASE
register to generate the index address into the scatter-gather map. The
IOC_T_BASE register specifies the starting address of the scatter-gather map,
and the incoming PCI address bits are used as an offset from that address.

The size of the PCI target window, as defined by the IOC_W_MASK register,
determines the length of the scatter-gather map, as shown in Table 6–8. Each
scatter-gather map entry maps an 8-KB page of the PCI address space into an
8-KB page of the CPU address space.

The IOC_W_MASK register determines which IOC_T_BASE register bits and
PCI address bits generate the address of the scatter-gather map entry, as
shown in Table 6–8. Translated address bits <33:32> are always zero, and
because each scatter-gather map entry is a quadword (64 bits), the three
LSBs (<2:0>) of a scatter-gather map address are also always zero. The
resultant address is used to read an entry from the scatter-gather map in
system memory.
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Caution

Unused IOC_T_BASE register bits must be clear (zero) for correct
operation.

Table 6–8 Scatter-Gather Map Address

IOC_W_MASK Scatter-Gather Translated Address <31:0> Unused

<31:20> Map Size IOC_T_BASE PCI Address <2:0> IOC_T_BASE

0000 0000 0000 1 KB <31:10> <19:13> 000 None
0000 0000 0001 2 KB <31:11> <20:13> 000 <10>
0000 0000 0011 4 KB <31:12> <21:13> 000 <11:10>
0000 0000 0111 8 KB <31:13> <22:13> 000 <12:10>
0000 0000 1111 26 KB <31:14> <23:13> 000 <13:10>
0000 0001 1111 32 KB <31:15> <24:13> 000 <14:10>
0000 0011 1111 64 KB <31:16> <25:13> 000 <15:10>
0000 0111 1111 128 KB <31:17> <26:13> 000 <16:10>
0000 1111 1111 256 KB <31:18> <27:13> 000 <17:10>
0001 1111 1111 512 KB <31:19> <28:13> 000 <18:10>
0011 1111 1111 1 MB <31:20> <29:13> 000 <19:10>
0111 1111 1111 2 MB <31:21> <30:13> 000 <20:10>
1111 1111 1111 4 MB <31:22> <31:13> 000 <21:10>

The scatter-gather map entry read from system memory specifies a page
address in the 34-bit CPU address space. Because the page size is 8 KB and
translated address bits <33:32> are always zero, the page table entry (PTE)
specifies only address bits <31:13>.

Figure 6–1 shows the scatter-gather map PTE format. The scatter-gather map
PTE includes a valid bit (V). If the V bit is clear, the scatter-gather map PTE
is not valid. When the IOC encounters an invalid entry during a translation,
it logs the error condition and reports the error to the CPU with an internal
interrupt. The IOC also terminates the PCI transfer (Section 6.3.5).
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Figure 6–1 Scatter-Gather Map Page Table Entry

20 19 1 0

RES Page Address
<31:13> V

63

The page address specified by the scatter-gather map entry is used to translate
the incoming 32-bit PCI address to an equivalent 34-bit CPU address. To
generate the final translated address, bits <31:13> (the page address) are
read from the scatter-gather map PTE and concatenated with bits <12:0>
of the incoming PCI address. Address bits <33:32> are always zero. The
IOC uses this 34-bit translated address as the physical address to access a
system memory location and complete the peripheral-initiated PCI cycle. If
the memory controller does not decode the translated address, the IOC logs an
error condition and reports the error to the CPU with an internal interrupt.
The IOC also terminates the PCI transfer, by using the target-abort protocol
(Section 6.3.8.2).

6.3.3 Scatter-Gather Map Translation Buffer
The IOC implements an eight-entry translation lookaside buffer (TLB) for
scatter-gather map entries. The TLB is a fully associative cache. Each entry
in the TLB stores a PCI page address (cache tag) and the corresponding CPU
page address (cache data) from the eight most recently used scatter-gather map
entries. Each time an incoming PCI address selects a PCI target window with
scatter-gather mapping enabled, bits <31:13> of the PCI address are compared
with the PCI page addresses (cache tag) in the TLB. If a match is found, the
CPU page address is in the data of that TLB entry. This makes it unnecessary
to look in the scatter-gather map and reduces latency to increase performance.

If a match is not found in the TLB, the scatter-gather map is referenced
(Section 6.3.2.2). The data read from the scatter-gather map and the incoming
PCI page address are written over an existing TLB entry. TLB entries are
replaced (overwritten) according to a round-robin algorithm.

All entries in the TLB can be flushed by writing to the translation buffer
invalidate all register (IOC_TBIA, Section 6.4.5). Writing to the IOC_TBIA
register invalidates all TLB entries at the start of the next PCI transaction.
The TLB is also flushed if a page table read error occurs.
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If the TLB enable (TEN) bit in the translation buffer enable register
(IOC_TB_ENA, Section 6.4.6) is clear, all entries are invalidated at the
start of every subsequent PCI bus cycle (during address decoding by the IOC).
Clearing the TEN bit does not disable scatter-gather mapped translations. If
a PCI-initiated transaction requires scatter-gather map translation while the
TEN bit is clear, the IOC reads the required TLB entry from system memory
and temporarily stores the entry in the TLB for the current transaction. This
entry is invalidated at the start of any subsequent PCI transaction if the TEN
bit is not set.

6.3.4 Page Table Read Errors
A page table read error is reported if any of the following occurs:

• A scatter-gather map entry references a nonexistent address.

• The read data has an uncorrectable error.

• A cache tag parity error is detected when reading cached data.

The IOC reports the error to the CPU with an internal interrupt and logs the
error information. If the error occurs on a PCI-initiated read transfer, the IOC
terminates the PCI transaction using the target-abort protocol. If the error
occurs on a PCI-initiated write transfer, the IOC completes the bus cycle but
does not transfer the write data to memory.

When a page table read error occurs, the IOC does the following:

• Sets the ERR bit (if it is not set) in the IOC status 0 register (IOC_STAT0,
Section 6.4.3)

• Sets the error CODE field to 5 (page table read error) in the IOC_STAT0
register

• Logs starting address bits <31:13> of the incoming PCI transfer into the
P_NBR field of the IOC_STAT0 register

The ERR bit and the logged error information are frozen until the ERR bit is
cleared by writing a one to it.

If the ERR bit was set prior to this transaction, the IOC_STAT0 register LOST
bit is set. The LOST bit remains set until it is cleared by writing a one to it.
The P_NBR and CODE information is logged only for the error that caused the
ERR bit to be set—such information for the second error is lost.
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6.3.5 Invalid Page Errors
If the page table entry read from the scatter-gather map in system memory is
invalid, the IOC reports an error to the CPU with an internal interrupt and
logs the error information. If the error occurs on a PCI-initiated read transfer,
the IOC terminates the PCI transaction by using the target-abort protocol. If
the error occurs on a PCI-initiated write transfer, the IOC completes the bus
cycle but does not transfer the write data to memory.

When an invalid page error occurs, the IOC does the following:

• Sets the ERR bit (if it is not set) in the IOC status 0 register (IOC_STAT0,
Section 6.4.3)

• Sets the error CODE field to 6 (invalid page error) in the IOC_STAT0
register

• Logs starting address bits <31:13> of the incoming PCI transfer into the
P_NBR field of the IOC_STAT0 register

The ERR bit and the logged error information are frozen until the ERR bit is
cleared by writing a one to it.

If the ERR bit was set prior to this transaction, the IOC_STAT0 register LOST
bit is set. The LOST bit remains set until it is cleared by writing a one to it.
The P_NBR and CODE information is logged only for the error that caused the
ERR bit to be set—such information for the second error is lost.

6.3.6 Address Phase
When the IOC detects the assertion of the frame_l signal by an external PCI
master, it samples the address on the ad<31:0> pins and the PCI command
code on the c_be_l<3:0> pins. During the next PCI clock cycle, the IOC
decodes the address to determine whether the referenced address is in a PCI
target window and samples the address phase parity on the par pin. If the
address hits in a PCI target window, the IOC asserts the devsel_l signal in
the next PCI clock cycle (two cycles after the assertion of the frame_l signal)
to indicate to the PCI master that the IOC will respond to the PCI transaction.

6.3.6.1 PCI Address Queue
The two-entry PCI address queue can hold address and command information
for up to two PCI-initiated transactions. When the IOC samples an address,
it inserts the address and command code in its PCI address queue. When a
transaction completes, the associated address queue entry is cleared.
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Because the IOC buffers write data for PCI-initiated write transactions, a write
transaction could complete on the PCI bus while the IOC PCI write-data queue
(Section 6.3.7.1) holds write data waiting to be transferred to memory. In such
cases, the address and command information for a subsequent PCI-initiated
transaction is stored in the second entry of the IOC PCI address queue. The
second transaction will be stalled (the trdy_l signal will not be asserted) until
the buffered write transaction is completed.

6.3.6.2 Address Burst Order
The IOC supports only a linearly incrementing burst order. The initiator of
a PCI transaction specifies a linearly incrementing burst order by setting
incoming PCI address bits <1:0> to 00. The IOC allows a burst to continue
until one of the following occurs:

• A page boundary is crossed (Section 6.3.6.3).

• The target latency timeout has been exceeded (Section 6.3.9).

• An error occurs.

If incoming PCI address bits <1:0> are not 00, the initiator of the PCI
transaction did not specify a linearly incrementing order. In such cases, the
IOC completes only one data transfer. If the initiator requests a transfer with
a burst length greater than one, the IOC terminates the transfer using the PCI
target-disconnect protocol (Section 6.2.15). This forces the initiator to break
the burst transfer into multiple, single transfer cycles. Each single transfer
cycle specifies a new address, consistent with the burst order specified by the
initiator.

6.3.6.3 Page Boundary Crossing
If a PCI write burst crosses an 8-KB page boundary, the IOC will stop the
burst by using the target-disconnect protocol and by asserting the stop_l
signal. This forces PCI devices to break transfers at 8-KB page boundaries.
The IOC does not assert the PCI stop_l signal until the cycle after it asserts
the trdy_l signal that completes the transfer of the last longword address
within the current 8-KB page. An error is not generated when an 8-KB page
boundary is reached.

6.3.6.4 Address Parity Errors
If the IOC detects an address parity error during a PCI-initiated transaction,
it reports the error to the CPU with an internal interrupt and logs the error
condition. The IOC completes the PCI transaction as follows: If the error
occurred on a PCI-initiated read transfer, the IOC returns the requested read
data from memory. If the error occurred on a PCI-initiated write transfer, the
IOC does not write the data to system memory (the data is lost).
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When an address parity error occurs, the IOC does the following:

• Sets the ERR bit (if it is not set) in the IOC status 0 register (IOC_STAT0,
Section 6.4.3).

• Sets the error CODE field to 4 (address parity error) in the IOC_STAT0
register.

• Logs the PCI command code of the incoming PCI-initiated transfer in which
the error was detected into the CMD field of the IOC_STAT0 register. The
command code indicates the type of PCI cycle in which the error occurred.

• Logs the starting address of the PCI transfer into the ADDR field of the
IOC status 1 register (IOC_STAT1, Section 6.4.4).

The ERR bit and the logged error information are frozen until the ERR bit is
cleared by writing a one to it.

If the ERR bit was set prior to this transaction, the IOC_STAT0 register LOST
bit is set. The LOST bit remains set until it is cleared by writing a one to it.
The CMD and CODE information is logged only for the error that caused the
ERR bit to be set—such information for the second error is lost.

6.3.7 PCI-Initiated Write Data Transfers
On a PCI-initiated write transfer, the IOC transfers the write data it receives
from the PCI bus to system memory through the memory controller. Because
the chip uses a quadword memory organization, read-modify-write cycles must
be used to write less than a full quadword to memory.

In a given PCI-initiated bus cycle, if the first longword of write data that the
IOC receives is for an odd longword address, the memory controller performs a
read-modify-write operation to write the longword to the destination address.

If the IOC receives a longword of write data that is not the last longword of the
bus cycle and is for an even longword address, the IOC waits until it receives
the next longword before issuing a write transfer to the destination address.
In this case, the IOC packs both longwords into a single quadword and writes
the data to the destination address with a single quadword write transfer. If
either longword is masked, the memory controller performs a read-modify-write
operation to the addressed location.

If the last longword received is write data to an even longword address, the
memory controller uses a read-modify-write operation to complete the longword
transfer.
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6.3.7.1 PCI Write-Data Queue
The four-entry PCI write-data queue holds incoming data during PCI-initiated
memory write cycles. Each queue entry holds one quadword of write data. The
PCI write-data queue is not used during PCI-initiated memory read cycles.

If a PCI-initiated write-burst transfer begins on an odd longword address
boundary, only one longword of write data is stored in the upper longword of
the first queue entry. After the first data transfer of an odd longword-aligned
transfer or if the burst begins on a quadword-aligned boundary, the IOC packs
two longwords of write data into each PCI write-data queue entry. If the burst
ends on an even longword address, only one longword of data is stored in the
low longword of the last queue entry.

After each PCI write-data queue entry is successfully written to system
memory, the entry is reused to store subsequent write-burst data.

6.3.7.2 PCI-Initiated Memory Write Data Errors
The IOC does not report Bcache tag parity errors, nonexistent memory errors,
or uncorrectable read errors that occur during a memory operation resulting
from a PCI-initiated memory write transfer. The memory controller reports
such errors to the CPU.

During PCI-initiated memory write data transfers, the IOC calculates even
parity for the ad<31:0> and c_be_l<3:0> signals sampled by the IOC. The
calculated parity is compared with the parity received on the par pin in the
next PCI clock cycle. If the comparison fails, a write data parity error was
detected. The IOC asserts the perr_l signal during the next PCI clock cycle to
inform the initiator that a write data parity error was detected. The write data
with the parity error is written to memory. The IOC reports the error to the
CPU with an internal interrupt and logs the error condition.

The IOC does the following:

• Sets the ERR bit (if it is not set) in the IOC status 0 register (IOC_STAT0,
Section 6.4.3).

• Sets the error CODE field to 7 (data error) in the IOC_STAT0 register.

• Logs the PCI command code of the incoming PCI-initiated transfer in which
the error was detected into the CMD field of the IOC_STAT0 register. The
command code indicates that the error occurred during a PCI write cycle.

• Logs the PCI address of the errant longword into the ADDR field of the
IOC status 1 register (IOC_STAT1, Section 6.4.4).

The ERR bit and the logged error information are frozen until the ERR bit is
cleared by writing a one to it.
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If the ERR bit was set prior to this transaction, the IOC_STAT0 register LOST
bit is set. The LOST bit remains set until it is cleared by writing a one to it.
The CMD and CODE information is logged only for the error that caused the
ERR bit to be set—such information for the second error is lost.

6.3.8 PCI-Initiated Read Data Transfers
The IOC prefetches read data to increase the performance of PCI-initiated
burst read transfers. After the address of a PCI-initiated read transfer is
loaded into the PCI address queue (Section 6.3.6.1), the IOC begins to prefetch
quadwords from sequential memory locations.

If the PCI master attempts to continue a burst across an 8-KB page boundary,
the IOC terminates the transaction using the target-disconnect protocol when
the last longword in the 8-KB page is transferred. When the IOC prefetch
address counter reaches the last longword of an 8-KB boundary, it wraps
around to the starting address of the same 8-KB page, and the IOC continues
to prefetch data. However, the prefetched data is flushed from the IOC read-
data queue when the IOC terminates the PCI read transaction by using the
target-disconnect protocol.

The returned memory read data and associated error status is stored in the
IOC’s PCI read-data queue (Section 6.3.8.1). The IOC returns the requested
longwords of read data to the PCI initiator from the read-data queue.

Because the IOC prefetches read data, the PCI initiator can complete its
transfer while the IOC is waiting for prefetch data to be returned from
memory. If the IOC responds to another PCI transaction while prefetch read
transfers from the previous transaction are pending, the IOC buffers the new
address in the PCI address queue. The IOC does not issue any new memory
requests until all the prefetch data requested during the previous transaction
is received and flushed from the read-data queue.

6.3.8.1 PCI Read-Data Queue
The four-entry PCI read-data queue stores read data for PCI-initiated read
transfers. Each entry contains a naturally aligned quadword. The queue
allows the IOC to prefetch read data (Section 6.3.8). The queue is used for
only one bus cycle at a time and is flushed when the current PCI-initiated read
transfer is completed.
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6.3.8.2 PCI-Initiated Memory Read Data Errors
Bcache tag parity errors that occur during PCI-initiated read transfers are
reported to the CPU by the memory controller using an internal interrupt;
however, the IOC might not be notified and, in that case, complete the transfer
as normal. If the IOC is notified, it handles the error in the same way as
nonexistent memory errors and uncorrectable read errors.

Nonexistent memory errors and uncorrectable read errors that occur during
PCI-initiated read transfers are also reported to the CPU by the memory
controller by using an internal interrupt.

If the read data is driven on the PCI bus (that is, the transaction is not an
unused prefetch), the associated error status bit is checked. If the error bit is
set, the IOC will use the target-abort protocol (Section 6.2.17) to terminate the
PCI read transfer. The IOC will log the error.

The IOC does the following:

• Sets the ERR bit (if it is not set) in the IOC status 0 register (IOC_STAT0,
Section 6.4.3).

• Sets the error CODE field to 7 (data error) in the IOC_STAT0 register.

• Logs the PCI command code of the incoming PCI-initiated transfer in which
the error was detected into the CMD field of the IOC_STAT0 register. The
command code indicates that the error occurred during a PCI read cycle.

• Logs the PCI address of the errant longword into the ADDR field of the
IOC status 1 register (IOC_STAT1, Section 6.4.4).

The ERR bit and the logged error information are frozen until the ERR bit is
cleared by writing a one to it.

If the ERR bit was set prior to this transaction, the IOC_STAT0 register LOST
bit is set. The LOST bit remains set until it is cleared by writing a one to it.
The CMD and CODE information is logged only for the error that caused the
ERR bit to be set—such information for the second error is lost.

6.3.9 PCI Target Latency Timeout
If a memory operation introduces more than eight PCI cycles of latency since
the IOC last asserted the trdy_l signal for a PCI-initiated memory transfer,
the IOC terminates the transfer by using the target-disconnect protocol and
assert the stop_l signal in the next PCI cycle. Data could be transferred in the
same bus cycle in which the IOC signals a disconnect. This will occur if the
master is asserting the irdy_l signal and the IOC state changes such that it
asserts the trdy_l signal in the same cycle that it asserts the stop_l signal.
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6.3.10 PCI-Initiated Exclusive Access
The IOC supports the PCI exclusive-access protocol for PCI-initiated transfers
that access system memory through the IOC and memory controller. The IOC
considers an access to be an exclusive access and marks itself locked when the
following sequence of events occur and the stated conditions are met during a
PCI transfer.

1. The lock_l signal is sampled deasserted in the same cycle that the frame_l
signal is asserted.

2. The PCI-initiated cycle addresses a location in an enabled PCI target
window.

3. The IOC samples the lock_l signal asserted in a cycle that is subsequent
to the assertion of the frame_l signal but prior to the cycle in which the
IOC asserts the trdy_l signal.

While the IOC is locked, the internal CPU lock flag is held reset, preventing
the completion of store conditional instructions. The IOC maintains the locked
status until it samples the frame_l and lock_l signals deasserted.

While the IOC is locked, it continues to sample the lock_l signal in the same
cycle that the frame_l signal is asserted during subsequent PCI-initiated
transfers as follows:

• If the lock_l signal is sampled asserted, the transfer is a nonexclusive
access. If this nonexclusive cycle addresses a location in an enabled PCI
target window, the IOC uses the PCI target-disconnect protocol to signal a
retry, and no data is transferred.

• If the lock_l signal is sampled deasserted, the transfer is a continuation of
the exclusive access. If this exclusive access cycle addresses a location in
an enabled PCI target window, the IOC completes the access normally (the
IOC does not retry the access).

6.3.11 Guaranteed Access Arbitration
In some applications, to minimize access latency, a PCI device may need to win
arbitration for memory before initiating a PCI cycle. The IOC supports two
PCI sideband signals for memory arbitration, memreq_l and memack_l. Both
signals are synchronous to the PCI clock signal pci_clk_in.

A device wins arbitration for memory according to the following sequence:

1. The device must assert the memreq_l signal to the IOC.

2. When the IOC samples the memreq_l signal asserted, it arbitrates
(internal to the chip) for access to memory.
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3. When the IOC wins arbitration for memory, it asserts the memack_l
signal. While memack_l is asserted, the CPU is blocked from accessing
memory.

4. When the requesting device samples the memack_l signal asserted (and if
it has won arbitration for the PCI bus), it can initiate a PCI cycle without
any intervening CPU access or additional latency.

The memack_l signal remains asserted for one or more cycles after the device
deasserts the memreq_l signal. The number of cycles depends on the ratio of
the internal clock frequency to the PCI clock frequency.

To avoid buffering a large number of write operations, the IOC allows only
one longword per DMA-write transaction while memack_l is asserted. After
the first longword, the IOC terminates the transaction by using the target
disconnect protocol.

When the internal clock is 166 MHz and the PCI clock is 33 MHz, and if
memack_l is asserted before frame_l is asserted, the delay from the assertion
of frame_l to the assertion of trdy_l is less than 2 µs.

6.4 I/O Controller Registers
The IOC implements a number of registers to control its operation and
facilitate its testing. The CPU can access the IOC registers directly, but they
are not accessible from the PCI bus.

All references to the IOC registers must allow for quadword access; longword
access is not supported.

The IOC registers are described in ascending-address order in Sections 6.4.1
through 6.4.14. Unless stated otherwise, the assertion of reset_in_l does not
modify any IOC register bits and all IOC register bits are UNDEFINED after
a power-up reset.

Note

In the register field description tables, the abbreviations in the Type
column indicate field access behavior. The abbreviations are defined in
the Conventions section of the Preface.
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6.4.1 Host Address Extension Register
In the sparse memory space, the lower bits of the CPU address indicate
transfer size, and the address is shifted down by 5 bits during the translation
from CPU address to PCI address. The host address extension (IOC_HAE)
register extends the shifted address to 32 bits.

The IOC_HAE register is accessed at address 18000000016. All bits of this
register are UNDEFINED after reset.

Figure 6–2 shows the IOC_HAE register format, and Table 6–9 describes its
fields.

Figure 6–2 IOC_HAE Register Format

RES

63 0

RESHAE
<31:27>

31 27 2632

Table 6–9 IOC_HAE Register Field Description

Bits Field Type Description

63:32 RES X Reserved.

31:27 HAE<31:27> WO Host address extension—This field is used for PCI
address bits ad<31:27> during CPU-initiated PCI
transactions when CPU physical address bits <31:29>
are non-zero (see Table 6–1).

26:0 RES X Reserved.

6.4.2 Configuration Cycle Type Register
During CPU-initiated PCI configuration space transfers, the configuration cycle
type (IOC_CONF) register supplies PCI address bits ad<1:0>.

The IOC_CONF register is accessed at address 18000002016. All bits of this
register are UNDEFINED after reset.

Figure 6–3 shows the IOC_CONF register format, and Table 6–10 describes its
fields.
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Figure 6–3 IOC_CONF Register Format

63 2 1 0

RES
CFG
AD

<1:0>

Table 6–10 IOC_CONF Register Field Description

Bits Field Type Description

63:2 RES X Reserved.

1:0 CFG
AD<1:0>

WO Configuration address— This field is used as PCI
address bits ad<1:0> during CPU-initiated PCI
configuration cycles.

6.4.3 Status 0 Register
The IOC logs error information in the status 0 (IOC_STAT0) register as follows:

• If the ERR bit (<4>) is not set when an IOC error is detected, all of the
register bits are updated and the ERR bit is set.

• After the ERR bit is set, all of the register bits except the TREF, THIT, and
LOST bits (<7:5>) are frozen until software clears the ERR bit.

• If the ERR bit is set, and another IOC error is detected, the LOST bit is
set. Because the ERR bit is set, information associated with the second
error cannot be logged and is lost. The LOST bit remains set until it is
cleared by software.

The IOC_STAT0 register is accessed at address 18000004016. All bits of this
register are UNDEFINED after reset.

Figure 6–4 shows the IOC_STAT0 register format, and Table 6–11 describes its
fields.
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Figure 6–4 IOC_STAT0 Register Format
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Table 6–11 IOC_STAT0 Register Field Description

Bits Field Type Description

63:32 RES X Reserved.

31:13 P_NBR
<31:13>

RO Page number—This field stores starting address bits
ad<31:13> of a PCI-initiated transfer during which a
page table read error or invalid page table error was
detected.

12:11 RES X Reserved.

10:8 CODE
<2:0>

RO Error code—This field contains the error code for the
error condition that caused the ERR bit (<4>) to be
set. This field is encoded as follows:

Code Error Condition

CPU-Initiated Transfers

000
001
010
011

Retry limit
No device
Bad data parity
Target abort

PCI-Initiated Transfers

100
101
110
111

Bad address parity
Page table read error
Invalid page
Data error

7 TREF RO Test reference—This bit is for diagnostic testing. This
bit is set if the last PCI transaction referenced an
address in a target window. This bit is clear if the last
PCI transaction referenced an address outside of the
address ranges defined by the target windows.

(continued on next page)
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Table 6–11 (Cont.) IOC_STAT0 Register Field Description

Bits Field Type Description

6 THIT RO Test hit—This bit is for diagnostic testing. This bit
is set if the last PCI transaction that referenced an
address in a target window also hit in the translation
lookaside buffer (TLB, Section 6.3.3). This bit is clear
if the last PCI transaction that referenced an address
in a target window missed in the TLB.

5 LOST R/W1C This bit is set when an error occurs and either of the
following conditions applies:

• The ERR bit (<4>) was set before the error
occurred.

• The CODE field (<2:0>) value is 5 or 6 and
the ERR bit was set at the beginning of the
transaction that caused the error.

When set, this bit indicates that error-logging
information associated with the new error was lost.
This bit remains set until it is written with a one.

4 ERR R/W1C Error—This bit is set when the IOC logs an error.
This bit remains set until it is written with a one.

3:0 CMD
<3:0>

RO Command—When the IOC detects an error, this
field stores the PCI command code of either of the
following:

• A CPU-initiated PCI transaction during which the
error occurred.

• A PCI-initiated transaction during which the
error, other than a page table read error or invalid
page table error, occurred (see bits <31:13>).

6.4.4 Status 1 Register
The status 1 (IOC_STAT1) register stores the starting address of PCI
transactions during which the IOC detected an error other than a page
table read error or invalid page table error.

The IOC_STAT1 register is accessed at address 18000006016. All bits of this
register are UNDEFINED after reset.
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Figure 6–5 shows the IOC_STAT1 register format, and Table 6–12 describes its
fields.

Figure 6–5 IOC_STAT1 Register Format

63 0

RES
ADDR
<31:0>

32 31

Table 6–12 IOC_STAT1 Register Field Description

Bits Field Type Description

63:32 RES X Reserved.

31:0 ADDR
<31:0>

RO Address—When the IOC detects an error, this field
stores either of the following addresses (ad<31:0>):

• If the error occurred during a CPU-initiated dense-
space burst, this field contains the address of the
first longword transferred during the current bus
cycle.

• If the error is a PCI-initiated data error
(IOC_STAT0 bits <10:8> = 111), this field contains
the PCI address of the errant longword.

6.4.5 Translation Buffer Invalidate All Register
A write operation to the translation buffer invalidate all (IOC_TBIA) register
invalidates all entries in the scatter-gather map TLB at the start of the next
PCI-initiated transaction (Section 6.3.3).

The IOC_TBIA register is accessed at address 18000008016. All bits of this
register are reserved and are ignored on write operations and UNDEFINED on
read operations.
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6.4.6 Translation Buffer Enable Register
The translation buffer enable (IOC_TB_ENA) register determines whether the
scatter-gather map TLB is enabled (Section 6.3.3).

The IOC_TB_ENA register is accessed at address 1800000A0. All bits of this
register are UNDEFINED after reset.

Figure 6–6 shows the IOC_TB_ENA register format, and Table 6–13 describes
its fields.

Figure 6–6 IOC_TB_ENA Register Format
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Table 6–13 IOC_TB_ENA Register Field Description

Bits Field Type Description

63:8 RES X Reserved.

7 TEN WO TLB enable—When written with a zero, this bit disables
the scatter-gather map TLB. The TLB remains disabled
until this bit is written with a one. Disabling the TLB
does not disable scatter-gather map translations.

6:0 RES X Reserved.

6.4.7 PCI Soft Reset Register
The PCI soft reset (IOC_SFT_RST) register allows software to assert and
deassert the PCI reset signal rst_l. The required time that the rst_l signal is
asserted is system dependent and must be timed by software.

The IOC_SFT_RST register is accessed at address 1800000C0. The RST bit
(<6>) will be set after reset.

Figure 6–7 shows the IOC_SFT_RST register format, and Table 6–14 describes
its fields.
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Figure 6–7 IOC_SFT_RST Register Format
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Table 6–14 IOC_SFT_RST Register Field Description

Bits Field Type Description

63:7 RES X Reserved.

6 RST WO Reset—When this bit is written with a one, the IOC
asserts the PCI reset signal rst_l. The rst_l signal
remains asserted until this bit is written with a zero.

This bit is also set and the rst_l signal is asserted when
the chip reset signal reset_in_l is asserted.

5:0 RES X Reserved.

6.4.8 PCI Parity Disable Register
The PCI parity disable (IOC_PAR_DIS) register determines whether IOC
parity checking and associated error reporting and logging are enabled.

The IOC_PAR_DIS register is accessed at address 1800000E0. The PAR bit
(<5>) is cleared after reset.

Figure 6–8 shows the IOC_PAR_DIS register format, and Table 6–15 describes
its fields.

Figure 6–8 IOC_PAR_DIS Register Format
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Table 6–15 IOC_PAR_DIS Register Field Description

Bits Field Type Description

63:6 RES X Reserved.

5 PAR WO Parity—When set, this bit disables IOC parity checking
(comparing calculated parity to the par signal) as well
as the reporting and logging of parity errors detected by
the parity check.

In CPU-initiated PCI write transactions, the PCI target
device reports parity errors on the perr_l signal, and
the IOC logs a bad data parity error (CODE = 2) in the
IOC_STAT0 register (Section 6.4.3). This bit does not
disable such reporting.

This bit is initialized to zero.

4:0 RES X Reserved.

6.4.9 Window Base Registers
There is one window base (IOC_W_BASE) register for each PCI target
window. These registers (IOC_W_BASE1, IOC_W_BASE0) specify the starting
addresses of the PCI target windows in PCI memory address space. The
window base addresses must be on a naturally aligned address boundary
equal to the window’s size. Additionally, to ensure that only one PCI target
window can match an incoming PCI address, the PCI target windows must be
programmed so that they do not respond to overlapping PCI address ranges.
(See Section 6.3.2 for more information about using these registers.)

Software should ensure that the PCI is idle before updating these registers.

The IOC_W_BASE0 register is accessed at address 18000010016 and the
IOC_W_BASE1 register is accessed at address 18000012016. All bits of these
registers are UNDEFINED after reset.

Figure 6–9 shows the IOC_W_BASE register format, and Table 6–16 describes
its fields.
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Figure 6–9 IOC_W_BASE1–0 Registers Format
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Table 6–16 IOC_W_BASE1–0 Registers Field Description

Bits Field Type Description

63:34 RES X Reserved.

33 WEN WO Window enable—When this bit is set, the PCI target
window is enabled and responds to PCI-initiated
transfers that hit in the address range of the target
window. When this bit is clear, the PCI target window is
disabled and does not respond to PCI-initiated transfers.

32 SG WO Scatter-gather—When this bit is set, the PCI target
window uses scatter-gather mapping to translate a PCI
address to a CPU address. When this bit is clear, the
PCI target window uses direct mapping to translate a
PCI address to a CPU address.

31:20 W_BASE
<31:20>

WO Window base—This field specifies the starting address
of the PCI target window in PCI memory address space.

19:0 RES X Reserved.

6.4.10 Window Mask Registers
There is one window mask (IOC_W_MASK) register for each PCI target
window. These registers (IOC_W_MASK1, IOC_W_MASK0) provide a mask
that corresponds to incoming PCI address bits <31:20>. The mask determines
the size of the PCI target window. (See Section 6.3.2 for more information
about using these registers.)

Software should ensure that the PCI is idle before updating these registers.

The IOC_W_MASK0 register is accessed at address 18000014016 and the
IOC_W_MASK1 register is accessed at address 18000016016. All bits of these
registers are UNDEFINED after reset.

Figure 6–10 shows the IOC_W_MASK register format, and Table 6–17
describes its fields.
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Figure 6–10 IOC_W_MASK1–0 Registers Format
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Table 6–17 IOC_W_MASK1–0 Registers Field Description

Bits Field Type Description

63:32 RES X Reserved.

31:20 W_MASK
<31:20>

WO Window mask—This field specifies the size of the PCI
target window. It can also mask the address bits that
are not used when translating the PCI address to the
CPU address to determine whether an address matches
the PCI target window address range.

19:0 RES X Reserved.

6.4.11 Translated Base Registers
There is one translated base (IOC_T_BASE) register for each PCI target
window.

When direct-mapped address translation is used, the translated address is
generated by concatenating bits from an IOC_T_BASE register with bits from
the incoming PCI address. The IOC_W_MASK register determines which
IOC_T_BASE register bits and PCI address bits are concatenated to form the
translated address. The translated address is the starting address in system
memory for the PCI transaction.

When scatter-gather mapped address translation is used, the translated
address is generated by table lookup. The table (scatter-gather map) is stored
in system memory. The IOC_T_BASE register specifies the starting address
of the scatter-gather map, and the incoming PCI address bits are used as an
offset from that address. (See Sections 6.3.2.1 and 6.3.2.2 for more information
about using these registers.)

Software should ensure that the PCI is idle before updating these registers.

The IOC_T_BASE0 register is accessed at address 18000018016 and the
IOC_T_BASE1 register is accessed at address 1800001A0. All bits of these
registers are UNDEFINED after reset.
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Figure 6–11 shows the IOC_T_BASE register format, and Table 6–18 describes
its fields.

Figure 6–11 IOC_T_BASE1–0 Registers Format
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Table 6–18 IOC_T_BASE1–0 Registers Field Description

Bits Field Type Description

63:32 RES X Reserved.

31:10 T_BASE
<31:10>

WO Translation base—When scatter-gather mapping is
enabled, this field specifies the base address in system
memory for the scatter-gather map. When scatter-
gather mapping is disabled, this field and the incoming
PCI address are concatenated to form the translated
address.

9:0 RES X Reserved.

6.4.12 Translation Buffer Tag Registers
There is one translation buffer tag (IOC_TB_TAG) register for each TLB entry.
The IOC automatically updates these registers (IOC_TB_TAG7–0) when all of
the following conditions are met:

• The TEN bit is set in the IOC_TB_ENA register (Section 6.4.6).

• A PCI transaction hits in a PCI target window.

• The WEN and SG bits are both set in the IOC_W_BASE register
(Section 6.4.9) associated with the PCI target window.

The IOC_TB_TAG registers can also be written directly for diagnostic purposes.

See Section 6.3.3 for more information about the TLB.

The IOC_TB_TAG registers can be accessed at the following addresses:
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Register Address

IOC_TB_TAG0 188000000
IOC_TB_TAG1 188000020
IOC_TB_TAG2 188000040
IOC_TB_TAG3 188000060
IOC_TB_TAG4 188000080
IOC_TB_TAG5 1880000A0
IOC_TB_TAG6 1880000C0
IOC_TB_TAG7 1880000E0

All bits of these registers are UNDEFINED after reset.

Figure 6–12 shows the IOC_TB_TAG register format, and Table 6–19 describes
its fields.

Figure 6–12 IOC_TB_TAG7–0 Registers Format
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Table 6–19 IOC_TB_TAG7–0 Registers Field Description

Bits Field Type Description

63:32 RES X Reserved.

31:13 TB_TAG
<31:13>

WO Translation buffer tag—This field provides write-only
access to one of eight TLB tags.

12:0 RES X Reserved.

6.4.13 Interrupt Vector and Special Cycle Register
When the interrupt vector and special cycle (IOC_IACK_SC) register is read,
the IOC generates an interrupt acknowledge cycle on the PCI bus and returns
the vector data provided by external logic as the read data to the CPU.

When the IOC_IACK_SC register is written, the IOC generates a PCI transfer
with a special cycle command code. The data written to the register is
transferred unmodified to the PCI bus and contains the special message data.
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Note

Digital recommends that software use only address 1A0000000 to
reference the IOC_IACK_SC register. However, in the current
chip implementation, CPU address bits <28:0> are not decoded to
access the IOC_IACK_SC register, and any address in the range
1A0000000..1BFFFFFE0 will alias to this single register. For
implementation convenience, the chip will drive the supplied address
onto the PCI bus.

All bits of the IOC_IACK_SC register are UNDEFINED after reset.

Figure 6–13 shows the IOC_IACK_SC register format, and Table 6–20
describes its fields.

Figure 6–13 IOC_IACK_SC Register Format
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Table 6–20 IOC_IACK_SC Register Field Description

Bits Field Type Description

63:32 RES X Reserved.

31:0 Data RW When the IOC_IACK_SC register is read, this field
contains an interrupt vector supplied by external logic
and is returned to the CPU. When the IOC_IACK_SC
register is written, this field contains the data for a PCI
special cycle.

6.4.14 Initialization Requirements
After the system power is turned on or after a reset condition (reset_in_l is
asserted), serial ROM (SROM) code must initialize the IOC registers.

The SROM code does the following:

1. Deasserts the rst_l signal by writing zero (0) to the IOC_SFT_RST register
(Section 6.4.7).
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2. Clears the ERR and LOST bits by writing ones (1’s) to IOC_STAT0 register
bits <5:4> (Section 6.4.3).

3. Prevents the IOC from responding to itself by writing zero to the
IOC_W_BASE1 and IOC_W_BASE0 registers (Section 6.4.9).

4. Initializes the HAE<31:27> field in the IOC_HAE register (Section 6.4.1).

This level of initialization is sufficient to allow CPU-initiated PCI transfers to
operate correctly. Boot code must do additional initialization to configure the
IOC such that it can respond to PCI-initiated transfers (DMA).

6.5 I/O Controller Signal Pins
Sections 6.5.1 through 6.5.16 describe the IOC signal pins.

6.5.1 req_l
The req_l signal is asserted when the CPU needs to initiate a PCI transfer.
External arbitration logic is required.

The req_l signal is an output-only signal and can be tristated.

6.5.2 gnt_l
The gnt_l signal is asserted by external arbitration logic when the CPU is
granted ownership of the PCI bus. Digital recommends that the arbiter default
grant (park) the PCI bus to the CPU when no other device is requesting
ownership.

During configuration cycles (read or write operations), the IOC performs
address stepping (drives address and command for two PCI cycles). If the
gnt_l signal is deasserted after the IOC has driven the address and command
for one cycle but before the frame_l signal is asserted, the IOC will relinquish
the bus and wait for the gnt_l signal to be asserted and the PCI bus idle
condition.

Note

The microprocessor might never be able to complete a configuration
cycle if the minimum assertion time for the gnt_l signal is one
PCI cycle. The system designer must design around this potential
problem by giving the microprocessor adequate time to complete its
transactions. A simple solution is to specify two PCI cycles as the
minimum assertion time for the gnt_l signal.

The gnt_l signal is an input-only signal.
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6.5.3 frame_l
The frame_l signal is asserted at the beginning of a PCI transaction. It is
also used to control the number of data transfers during the transaction (burst
length). The frame_l signal is deasserted during the final data phase of a
transaction.

The frame_l signal is a bidirectional signal and can be tristated.

6.5.4 ad<31:0>
PCI address and data are multiplexed on the ad<31:0> pins. During the first
clock of a PCI transaction, the byte address is driven on the ad<31:0> pins.
During subsequent clock cycles, data is driven on the ad<31:0> pins.

The ad<31:0> signals are bidirectional signals and can be tristated.

6.5.5 c_be_l<3:0>
PCI bus command codes and byte enables are multiplexed on the c_be_l<3:0>
pins. During the address cycle of a PCI transaction, the PCI bus command
code is driven on the c_be_l<3:0> pins. During data cycles, inverted byte
enables are driven on the c_be_l<3:0> pins.

The c_be_l<3:0> signals are bidirectional signals and can be tristated.

6.5.6 irdy_l
The initiator of a PCI transaction asserts the irdy_l signal to indicate its
ability to complete the current data phase of a PCI transaction. During a
read cycle, the initiator asserts the irdy_l signal to indicate that it is ready
to accept read data. During a write cycle, the initiator asserts the irdy_l
signal to indicate that it is driving valid write data on the ad<31:0> pins. The
current data phase is completed when both the trdy_l and irdy_l signals are
sampled asserted.

The irdy_l signal is a bidirectional signal and can be tristated.

6.5.7 trdy_l
The target of a PCI transaction asserts the trdy_l signal to indicate its ability
to complete the current data phase of a PCI transaction. During a read cycle,
the device asserts the trdy_l signal to indicate that valid data is being driven
onto the ad<31:0> pins. During a write cycle, the device asserts the trdy_l
signal to indicate that it is ready to accept write data. The current data phase
is completed when both the trdy_l and irdy_l signals are sampled asserted.

The trdy_l signal is a bidirectional signal and can be tristated.
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6.5.8 devsel_l
The device that is addressed by the current PCI transaction asserts the
devsel_l signal.

The devsel_l signal is a bidirectional signal and can be tristated.

6.5.9 lock_l
The lock_l signal is used to implement exclusive (atomic) access operations on
the PCI bus.

The lock_l signal is an input-only signal.

In test mode, this pin is also used to test the retry timeout counter at the chip
tester (Section 8.4.1).

6.5.10 stop_l
The target of a PCI transaction drives the stop_l signal to request that the
initiator stop the current transaction.

The stop_l signal is a bidirectional signal and can be tristated.

6.5.11 par
The par signal is the even-parity signal for the ad<31:0> and c_be_l<3:0>
signals.

The par signal is a bidirectional signal and can be tristated.

6.5.12 perr_l
The perr_l signal is asserted when a data parity error has been detected.

The perr_l signal is a bidirectional signal and can be tristated.

6.5.13 rst_l
The rst_l signal is the PCI reset signal. It is generated by the CPU. The RST
bit (<6>) in the IOC_SFT_RST register (Section 6.4.7) allows the rst_l signal to
be asserted under software control. The rst_l signal is automatically asserted
when the reset_in_l signal is asserted.

The rst_l signal is an output-only signal.
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6.5.14 pci_clk_in
The pci_clk_in signal provides timing for all transactions on the PCI bus.
All of the IOC PCI signals, except the rst_l signal, are synchronous with the
pci_clk_in signal. Inputs are sampled on the rising edge of the pci_clk_in
signal; outputs change state as a result of the rising edge of the pci_clk_in
signal.

The pci_clk_in signal is an input-only signal.

6.5.15 memreq_l
The memreq_l signal is a PCI sideband, input-only signal and is synchronous
with the pci_clk_in signal. The IOC arbitrates (internal to the chip) for access
to memory when it samples the memreq_l signal asserted. The IOC asserts
the memack_l signal when it wins arbitration for memory access.

6.5.16 memack_l
The memack_l signal is a PCI sideband, output-only signal and is synchronous
with the pci_clk_in signal. The IOC asserts the memack_l signal when it
wins arbitration (internal to the chip) for access to memory as requested
by the memreq_l signal. The memack_l signal remains asserted until the
memreq_l signal is deasserted.

The memack_l signal is tristated during reset.
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7
Clocks

This chapter describes the clock interface, the phase-locked loop (PLL), clock
frequency selection, and noise reduction requirements.

7.1 Overview
The chip implements a PLL to synthesize a high-frequency internal clock
from a low-frequency external clock. The synthesized clock is only used
internally. It has no timing relationship to the PCI bus. Furthermore, a timing
relationship should not be assumed between the synthesized clock and the
external reference clock, the internal clock, or test clock output.

7.2 Phase-Locked Loop
Figure 7–1 is a simplified diagram of the internal clock generator. The
multiplexer and PLL blocks comprise the voltage-controlled oscillator (VCO)
and related components that implement the PLL. The divide by N (�N) block
completes the PLL.

N is the frequency ratio between the VCO output and the external clock
reference driving the pll_clk_in and pll_clk_in_l pins. The �N block provides
a feedback path from the VCO output to the PLL phase-detector input. The
feedback path is programmable when the system power is turned on to select
different initial synthesis ratios for the PLL.

The PLL output is further divided by Q (�Q) to complete the internal frequency
generation process. The internal clock frequency is a multiple of the value
derived by the following equation:

(N�2Q) � external clock frequency

The final divide by 2 (�2) provides a clean 50% duty-cycle square wave to
be driven on lca_clk (the internal clock node). The test_clk_out signal is
simply driven offchip from some selected point in the global buffering between
the final multiplexer output and lca_clk. The skew between lca_clk and the
test_clk_out signal is controlled only to the extent that the rising edges are
nominally matched in simulation.
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Figure 7–1 PLL Clock Generator
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Table 7–1 lists the external values supplied on the irq<2:0> pins while the
reset_in_l signal is asserted. The values supplied on the irq<2:0> pins are
latched when the reset_in_l signal is deasserted. During and after chip reset,
these values select the N and Q values listed in Table 7–1. The N divider
starts without reset; its starting state is UNPREDICTABLE.

Table 7–1 Internal Clock Programming

irq Internal Clock Frequency � External Clock Input Frequency

<2:0> N Q pll_bypass = 0 pll_bypass = 1

000 12 3 2 1

001 12 2 3 1

010 16 2 4 1

011 10 1 5 1

100 12 1 6 1

101 14 1 7 1

110 16 1 8 1

111 18 1 9 1
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Note

The maximum internal clock frequency is determined by system
(package and power) requirements. Operating frequencies (lca_clk
speeds) from two to nine times the selected oscillator or input clock
frequency are supported. Making the pll_clk_in signal the pci_clk_in
signal eliminates the need for separate oscillators.

7.3 Clock Signal Pins
Sections 7.3.1 through 7.3.8 describe the signal pins associated with the clock
function.

7.3.1 irq<2:0>
The irq<2:0> pins are not usually part of the clock function. However, during
reset these pins are tristated to receive (through external resistors connected
to Vss or Vdd) the values that set the frequency ratio of the internal clock to
the external reference clock when the power is turned on (Section 7.2).

7.3.2 pll_bypass
When the pll_bypass signal is asserted, the frequency ratio of the internal
clock to the external reference is 1:1 and the external clock input signal
pll_clk_in drives the internal logic directly. In other words, the clock received
at the input pins is buffered to become the internal clock.

The pll_bypass signal should change state only when the reset_in_l signal is
asserted.

7.3.3 pll_clk_in, pll_clk_in_l
For normal operation, a low-frequency (less than 50 MHz), single-ended clock
is supplied to the pll_clk_in pin and an appropriate reference and bias voltage
is applied to the pll_clk_in_l pin.

To minimize jitter induced by module and package noise, the pll_clk_in and
pll_clk_in_l pins receive a high-frequency (greater than 50 MHz), differential
reference clock (logically complementary, nominal square waves).

Caution

The pll_clk_in signal must be active before power is applied to the
chip with the pll_bypass signal asserted.
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7.3.4 pll_filter
To maintain stable operation, the 0.01-µF capacitor connected between the
pll_filter pin and Vss sets the feedback-loop time constant needed to regulate
the speed with which the PLL responds to changes in frequency or operating
conditions (Figure 7–2).

Figure 7–2 PLL Reference Current and Filter Circuit
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7.3.5 pll_i_ref
The constant current that flows in the 5.1-k
 resistor connected between the
pll_i_ref pin and Vss provides the reference to the analog PLL circuits. This
reduces the variations in the speed of CMOS devices over a wide range of
process and operating conditions (Figure 7–2).

7.3.6 pll_5v
The clean +5 V supplied to the pll_5v pin is regulated internally to source the
nominal +3.3 V used by the PLL and associated logic. This onchip isolation is
required to reduce phase jitter. Decoupling capacitors for the +5 V should be
connected as close as possible to the pll_5v and Vss pins.

7.3.7 test_clk_out
The test_clk_out signal is an output reference clock to be used only for
testing the chip. Its rising edge into a 40-pF load nominally coincides with the
start of an internal microcycle. The relationship between the pll_clk_in and
test_clk_out signals can be determined following the second deassertion of the
reset_in_l signal after either a power-up or a change in the clock frequency
ratio.

For the 21066A, when pll_bypass = 0, test_clk_out is the internal clock
divided by 4; when pll_bypass = 1, test_clk_out is the same frequency as the
input clock.

This pin should not be used to drive module-level logic.
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7.3.8 reset_in_l
The reset_in_l signal is the master reset input for the chip and should be
asserted when power is first applied to the chip. When the reset_in_l signal is
asserted, certain internal chip logic is immediately initialized.

Note

Some internal state is not reset and must be handled by software when
the chip boots.

The deassertion of the reset_in_l signal is synchronized with the internal
clock. Internal chip activity starts 31 cycles after the reset_in_l signal is
deasserted.
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8
JTAG Test Port

This chapter describes the chip’s implementation of a joint testing action group
(JTAG) test port according to IEEE standard 1149.1, Standard Test Access Port
and Boundary-Scan Architecture. Information that is included in the standard
is not duplicated in this document.

8.1 Overview
The chip contains a serial-scan test port that conforms to IEEE standard
1149.1.The port consists of the 5-wire test access port (TAP), a TAP controller,
an instruction register (IR), a bypass register (BPR), and a boundary scan
register (BSR).

Note

The JTAG test access port is to be used only while the CPU is not
operating. JTAG operations can cause the chip to reset.

8.2 JTAG Signal Pins
This chapter describes the JTAG pins listed in Table 8–1.

Table 8–1 JTAG Pins

Pin Type Description

tck I Boundary scan clock
tdi I Serial boundary scan data in
tdo O Serial boundary scan data out
tms I JTAG test mode select
trst_l I JTAG TAP reset
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8.3 Test Access Port Controller
The TAP controller is a state machine that interprets the IEEE 1149.1
protocols received on the tms pin and generates the appropriate clocks and
control signals for the test features that it controls.

The tms signal changes the controller state on the rising edge of the tck
signal. In each state, the controller generates clocks and control signals that
control the operation of the test features. Test feature operations are initiated
on the rising edge of the first tck signal after entry into a state.

8.4 Instruction Register
The 5-bit instruction register (IR) resides on a scan path. It selects the test
modes and features. The IR bits are interpreted as instructions as shown in
Table 8–2. The instructions select and control the operation of the boundary
scan and bypass registers. During the capture-IR state, the shift-register stage
of the IR is loaded with 000012.

Table 8–2 describes the test modes and features selected by the IR.
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Table 8–2 JTAG Instruction Register

IR
Contents

Instruction Name
(Test Mode or State)

Test
Register
Selected Operation

00000 EXTEST� BSR External test (drives pins from the
BSR)

00001 SAMPLE BSR Samples I/O

00010 Reserved — —

00011 Reserved — —

00100 CLAMP� BPR Drives pins from the BSR and
selects the BPR for shifts

00101 HIGHZ� BPR Tristates all output and I/O pins
except the tdo pin

00110 Reserved — —

00111 Reserved — —

01000
through
11110

Private/ICMODE BPR Used for Icache initialization and
internal chip testing (Table 8–3)

11111 BYPASS BPR Selects the BPR for shifts
(Table 8–3)

�When the JTAG test port is in the EXTEST, HIGHZ, or CLAMP mode, the chip’s internal reset is
asserted. The chip remains in the reset state until the port leaves the mode.

Table 8–3 describes the test functions available when the IR contains an
ICMODE or BYPASS instruction.
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Table 8–3 JTAG ICMODE Functions

IR
<4:3>

IR
<2:0> ICMODE Function

1X 000..011 Reserved.

1X 100 Icache test read mode.

1X 101 Icache test write mode.

1X 110 Disable serial interface.

1X 111 Enable SROM Icache initialization mode.

10 100..111 Select test mode of operation for IOC synchronizers. This mode
bypasses the IOC synchronizers to make it easier to adjust the
pci_clk_in and pll_clk_in signals for synchronous operation. Bits
IR<2:0> specify one of the Icache or test modes listed in this table.

11 100..111 Select normal mode of operation for the IOC synchronizers. Bits
IR<2:0> specify one of the Icache or test modes listed in this table.

X = 1 or 0

The IR also controls the function of the lock_l and instr_ref pins during reset.

8.4.1 lock_l
During test mode, this pin is used in testing the 24-bit retry timeout counter. A
high on this pin enables testing the lower half of the counter; a low on this pin
enables testing the upper half of the counter. This test mode is programmed by
clearing IR bit 3 (IR<3> = 0). See Chapter 6 for more information about this
pin.

8.4.2 instr_ref
During reset, if IR<3> = 0 and lock_l is deasserted, this pin is driven with a
delayed noninverted PCI clock; otherwise, it is driven with a delayed, inverted
core clock. See Appendix B for more information about this pin.

8.5 Bypass Register
The 1-bit bypass register (BPR) is a shift register that implements a single-bit
serial connection through the port (chip) when no other test path is selected.
During a scan-shift operation, the BPR provides a 1-bit scan route through the
chip. It provides a way to bypass the chip’s boundary scan during module-level
and system-level testing.

8–4 JTAG Test Port



8.6 Boundary Scan Register
The boundary scan register (BSR) primarily facilitates module interconnection
testing during module manufacture or service.

The BSR is a single-shift register formed by boundary scan cells placed at most
of the chip’s signal pins. The register is accessed through the tdi and tdo pins.

8.6.1 Cells
The function of the BSR cells is determined by the associated pins, as follows:

• Input-only pins—The boundary scan cell is basically a 1-bit shift register.
The cell supports sample and shift functions.

• Output-only pins—The boundary scan cell comprises a 1-bit shift register
and an output multiplexer. The cell supports the sample, shift, and drive
output functions.

• Bidirectional pins—The boundary scan cell is identical to the output-only
pin cell, but it captures test data from the incoming data line. The cell
supports sample, shift, drive output, and hold output functions. It is used
at all I/O pins.

8.6.2 Organization
Table 8–4 lists all the signal pins in the order of the scan chain from
mem_dtoe_l through memack_l. The mem_dtoe_l pin is the first entry
in the scan chain and is the last entry scanned out. The boundary scan
register on the chip is 179 bits long.

Table 8–4 also shows the four JTAG boundary scan groups. A 1-bit group
control register (GCR) is associated with each group. The GCRs are physically
located in the chain positions shown in Table 8–4.

The following list identifies the pins associated with each GCR:

GCR1 controls scan pins 14 through 69.
GCR2 controls scan pins 71 through 89.
GCR3 controls scan pins 91 through 137.
GCR4 controls scan pins 139 through 179.

When a GCR is set to one, the bidirectional (I/O) pins in the associated group
are simultaneously tristated. At the same time, the output signals that belong
to the group and are indicated by an asterisk ( * ) are also tristated.
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Table 8–4 lists the boundary scan chain entries and signals.

Table 8–4 Boundary Scan Chain Order

Entry Signal Pin or Register Entry Signal Pin or Register

1
2
3
4
5
6
7
8
9

10
11
12
13
14
|
21
22
|
53
54
55
56
57
58
|
69
70
71
72
|
76
77
78
79
|
86
87
88
89

mem_dtoe_l
vrefresh_l
vframe_l
mem_dsf
mem_rasa_l3
mem_rasa_l2
mem_rasa_l1
mem_rasa_l0
mem_rasb_l3
mem_rasb_l2
mem_rasb_l1
mem_rasb_l0
Group control register 1
mem_ecc0

|
mem_ecc7
mem_data31

|
mem_data0
mem_rd_oe
mem_write_l
mem_wr_oe_l
mem_cas_l
mem_addr11 *

|
mem_addr0 *
Group control register 2
bc_index *
bc_idx_tag4

|
bc_idx_tag0
bc_parity
bc_dirty
bc_tag0

|
bc_tag7
bc_oe_l
bc_cs_l
bc_we_l

90
91
|
98
99
|

102
103
104
105
106
107
108
109
110
111
112
113
114

|
137
138
139

|
170
171
172
173
174
175
176
177
178
179

Group control register 3
ad0

|
ad7
c_be_l0

|
c_be_l3
lock_l
irdy_l
trdy_l
stop_l
devsel_l
perr_l
frame_l
par
gnt_l
req_l *
rst_l *
ad8

|
ad31
Group control register 4
mem_data32

|
mem_data63
reset_in_l
sromd
sromoe_l
sromclk
irq2
irq1
irq0
memreq_l
memack_l *

* Output signals tristated when the associated GCR is set.
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8.7 Initialization
The TAP controller and the instruction register output latches are initialized
when the trst_l input is asserted. The TAP controller is forced to enter the
test-logic reset state. The IR value is forced to 111112 and interpreted as
follows:

• BYPASS instruction

• Select asynchronous (normal) mode of operation for the IOC

• Enable SROM Icache initialization mode

During test-logic reset state, all JTAG logic, including the boundary scan
register, is in an inactive state; that is, the chip performs normal system
functions. The boundary scan logic is set to a passive sample (observe) mode.
The TAP controller leaves this state only when a JTAG test operation is
desired and the appropriate sequence is sent on the tms and tck pins.
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9
SROM Interface and Icache Initialization

This chapter describes instruction cache (Icache) initialization using the serial
ROM (SROM). It also describes how the SROM port can be used as a serial
terminal port after the Icache is initialized.

9.1 Overview
When the microprocessor is reset, it loads its initial Istream from a compact
SROM to start the bootstrap procedure, rather than jumping to a fixed I/O
address. The SROM interface can also be used for chip and module-level
testing. Furthermore, by using PALcode and the serial line transmit and
receive registers, the SROM port can be used to implement a diagnostic
terminal port.

9.2 Instruction Cache Initialization
The microprocessor implements several Icache initialization modes to support
normal initialization as well as chip and module-level testing. The value in the
JTAG instruction register (Section 8.4) determines which initialization mode is
used following microprocessor reset (Table 9–1). Bit 3 of the JTAG instruction
register determines whether the IOC mode of operation is synchronous or
asynchronous (normal).

When the enable SROM mode is selected, the microprocessor loads the Icache
from the external SROM before it executes its first instruction. The SROM
can contain enough code to complete the external interface configuration (for
example, setting the timing on the external cache RAMs) and diagnose the
path between the CPU chip and the memory components. After the reset_in_l
signal is deasserted, the microprocessor is in PALmode, which makes all of the
visible state within the chip accessible to the code loaded into the Icache.

Table 9–1 describes the test functions available when the JTAG instruction
register (IR) contains an ICMODE or BYPASS instruction. See Chapter 8 for
more information about the JTAG instruction register. (Table 9–1 duplicates
part of Table 8–3.)
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Table 9–1 Icache Test Modes

IR
<4:3>

IR
<2:0> Mode

1X 000..011 Reserved.

1X 100 Icache test read mode.

1X 101 Icache test write mode.

1X 110 Disable serial interface.

1X 111 Enable SROM Icache initialization mode.

10 100..111 Select synchronous mode of operation for the IOC. Bits IR<2:0>
specify one of the Icache or test modes previously listed.

11 100..111 Select asynchronous (normal) mode of operation for the IOC. Bits
IR<2:0> specify one of the Icache or test modes previously listed.

X = 1 or 0

All Icache bits are loaded through the SROM interface, including each cache
block’s tag, address space number (ASN), address space match (ASM), valid
(V) bit, and branch history table (BHT) bits. The Icache blocks are loaded in
sequential order starting with block zero and ending with block 255. The bits
within each block are serially loaded in the order shown in Figure 9–1.

In Figure 9–1, the most significant bit of each field is on the left. The serial
chain shifts right, making bit 0 of longword 0 (LW0) the first bit shifted into
the chip.

Figure 9–1 Icache Load Order

First Bit Into ChipDirection of Shift

7 0 31 03131 003131 003131 0031 0 0 20 05

LW0LW2LW4LW6TAGLW1LW3LW5LW7BHT V ASM ASN

The valid and ASM bits in each cache block must be set. The tag field must
be written with zero. Any value can be written into the BHT and ASN fields.
The Icache load timing is described in Section 9.2.1 and the SROM signals are
described in Section 9.4.
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9.2.1 Icache Load Timing
When the microprocessor detects the deassertion of the reset_in_l signal (low-
to-high transition), it loads bits from the external SROM into Icache, according
to the value of the JTAG instruction register.

9.2.1.1 First Bit Samples
Figure 9–2 shows the timing for the first bit samples. The sequence is as
follows:

1. The reset_in_l signal is asserted, the sromoe_l signal is deasserted, and
the sromclk signal is asserted.

2. The microprocessor’s internal reset signal remains asserted at least 20
CPU cycles after the reset_in_l signal is deasserted, when the sromoe_l
signal is asserted.

3. The first rising edge of the sromclk signal occurs 128 CPU cycles after the
sromoe_l signal is asserted, and every 126 CPU cycles after that.

4. The microprocessor samples the sromd signal in the last half of each CPU
cycle that occurs before the rising edge of the sromclk signal.

This sequence continues until the Icache is loaded. There are 256 blocks in the
Icache. Each block contains 293 bits, for a total of 75,008 bits, which results in
75,008 rising edges of the sromclk signal.

Although the 21066A contains additional bits in each block for parity and
branch history, these extra bits are passed over while loading the Icache from
SROM.

9.2.1.2 End of Preload Sequence
Figure 9–2 also shows the timing for the end of the preload sequence. At the
end of the Icache preload sequence, the shaded area where the sromclk signal
goes low indicates UNPREDICTABLE behavior. The clk signal represents
the microprocessor’s internal CPU clock and is shown as cycle reference. The
sequence is as follows:

1. The microprocessor samples the final SROM bit when the sromclk signal
goes high.

2. Two CPU cycles later, the microprocessor deasserts the sromoe_l signal
and drives the sromclk pin with the value from the transmit (TMT) bit
of the serial line transmit register (SL_XMIT, Section 4.1.12). Because the
XMT bit is not initialized by chip reset, the value driven on the sromclk
pin is UNPREDICTABLE.
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Figure 9–2 shows the Icache load timing.

Figure 9–2 Icache Load Timing
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9.2.2 Icache Test Modes
The Icache test-read and test-write modes give chip-tester hardware full read
and write access to the Icache. Icache test-write mode works exactly like
SROM enable mode except that bits are loaded into the Icache at a faster
rate. Icache test-read mode allows the contents of the Icache to be read in a
bit-serial way from the sromoe_l pin. These two test modes are available only
to chip-tester hardware.

To correctly reset internal pointers to the Icache after writing the Icache in
Icache test-write mode, the chip must be reset before using the Icache test-read
mode.
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9.3 Serial Line Interface
After the data from the SROM has been loaded into the Icache, the three
SROM signals (Section 9.4) become simple parallel I/O pins that can be used to
drive a diagnostic terminal.

When the SROM is not being read, the sromoe_l output signal is deasserted
(high). This means that the sromoe_l pin can be wired to the active high
enable of an RS422 receiver driving onto the sromd pin and to the active
high enable of an RS422 driver driving from the sromclk pin. The CPU
allows PALcode to read from the sromd pin and write to the sromclk pin.
This level of hardware support is sufficient to implement a software-driven
serial interface. See the serial line receive and serial line transmit register
descriptions for more information (SL_RCV, Section 4.1.11 and SL_XMIT,
Section 4.1.12).

9.4 SROM Interface Signals
Sections 9.4.1 through 9.4.3 describe the SROM interface signals.

9.4.1 sromclk
The sromclk output signal is the clock that causes the SROM to advance to
the next bit.

9.4.2 sromd
The microprocessor reads SROM data from the sromd input pin. The
read data is written to the Icache at a rate of 1 bit every 126 CPU cycles
(Figure 9–2).

9.4.3 sromoe_l
The sromoe_l signal is the SROM output enable signal. This signal serves as
both an output enable and a reset.
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A
21066A Differences

This appendix describes the new functionality of the 21066A and the
differences between the 21066A and previous implementations of the Alpha
architecture.

Two of the three versions of the 21066A microprocessors run at significantly
higher clock frequencies than their original counterparts while all three
incorporate more extensive power management features. They also implement
internal cache parity protection, new floating-point divider hardware, improved
branch prediction, and revised write-buffer unload logic.

A.1 Power Management
The 21066A supports thermal and idleness-based power management through
a programmable internal clock divider. Power dissipated by the chip is a
linear function of the internal clock frequency. The internal clock frequency
is selected at power up and the operating clock is generated by the internal
phase-locked loop (PLL) clock generator.1 This divider divides the operating
clock frequency by the divisor specified in the power management register
(PMR, Section A.6.1).

Software can specify a primary divisor and an override divisor. Each divisor
divides the operating clock by a factor of 1, 1.5, 2, 4, 8, or 16. The primary
divisor is the clock divider default and the override divisor is selected when
the 21066A detects an enabled override event. The capability to select an
override divisor allows thermal management software to operate independently
of idleness-based power management software.

Latency-critical external events such as direct memory access (DMA) and
interrupt requests are expedited by selecting the override divisor. When the
clock divider detects an external hardware interrupt (regardless of masking in
the HIER [see Section 4.1.13]) or DMA request, it switches from the primary to
the override divisor. Interrupt and DMA requests are independently enabled.

1 See Section 7.2 for more information about the PLL clock generator.

21066A Differences A–1



Upon completion of an overriding DMA access, the clock divisor is switched
from override to primary. On the other hand, upon completion of an overriding
interrupt request, the clock divisor is not switched—the override divisor
remains selected until the PMR is written.

Rather than instantaneously switching from one divisor to another, the divider
provides a gradual ramp of divisors between the current divisor and the target
divisor (Section A.1.1). This mitigates potential problems with the power
supply grid that might occur when the operating frequency is drastically
changed.

The DRAM refresh interval and maximum RAS assertion time values
programmed into the global timing register (GTR—for more information, see
Section 5.6.5) should be based on the maximum operating frequency (the
divide-by-1 frequency) of the 21066A. The refresh and RAS assertion counter
logic automatically scales the programmed counts according to the currently
selected divisor. The counter scaling logic assumes an instantaneous switch of
divisors and does not account for the ramping process. This worst-case error
between two refresh requests is no more than 2500 ns (at 200 MHz) greater
than the programmed value.

A readable 32-bit counter counts all of the cycles spent in override. This
counter facilitates fine-grained elapsed time measurements using the cycle
counter (CC—for more information, see Section 4.2.13) register reported by the
RPCC instruction.

A.1.1 Divider Ramping
In the following code sequence, the destination of the STQ instruction is the
power management register:

MB
STQ Rn,MCTL_PMR
MB

Table A–1 shows the worst-case time between issue of the second memory
barrier (MB) instruction and the resulting adjusted clock frequency.
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Table A–1 Clock Divider Latency

Maximum
Frequency

(MHz)
Current
Divisor

Target
Divisor

Clock �

Change
Latency
(Cycles)

Clock
Change
Latency

(ns)

Override†
Latency

(ns)

PLL Enabled

233 1 2 96 484 419
233 2 1 72 546 417

233 1 16 108 733 668
233 16 1 84 3161 2129

PLL Disabled (Clock Bypass Mode)

233 1 2 176 893 828
233 2 1 128 955 826

233 1 16 196 1194 1129
233 16 1 124 3429 2397

�The 21066A operating cycles are based on the output of the clock divider circuitry.
†The latency associated with override clock divisor changes.

A.1.2 PCI Clock Frequency
The PCI clock input is asynchronous to the internal CPU clock. For correct
operation, the PCI clock frequency must equal the lesser of the following:

• Less than or equal to the CPU post-divider internal operating frequency

• 33 MHz
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A.2 Internal Cache Parity
The internal instruction and data caches (Icache and Dcache) are longword
parity protected. Each cache line contains an even tag-parity bit and eight
longword even data-parity bits. The Icache tag-parity bit is calculated across
the address space number (ASN) field and address space match (ASM) bit
in addition to the tag address. The memory controller generates data parity
during fills of either cache. Each cache generates its tag parity.

Dcache and Icache parity errors set bits <4> and <5>, respectively, in the cache
status register (C_STAT, Section A.6.3), and generate a machine check if so
enabled in the load and store unit control register (ABOX_CTL, Section A.6.2).
Setting ABOX_CTL register bit <14> disables primary cache parity checking.

Icache parity errors are recoverable—the PALcode machine-check handler can
flush the Icache and return. Dcache parity errors are not recoverable.

Diagnostic code can generate bad parity by setting bit <15> in the error status
register (ESR, Section A.6.4). This causes the memory controller to generate
inverse (odd) data parity on subsequent cache fills. Internal cache tag-parity
diagnostics can set ABOX_CTL register bit <13> to generate incorrect tag
parity for both Icache and Dcache fills.

A.3 New Floating-Point Divider
The 21066A includes new floating-point divide hardware that implements
a nonrestoring, normalizing, variable-shift (maximum of 4 bits per cycle)
algorithm that retires an average of 2.4 bits per cycle. The average overall
divide latency, including pipeline overhead, is 29 cycles for double-precision
and 19 cycles for single-precision (compared to 63 and 34 cycles, respectively,
in previous implementations).

Additionally, to avoid the noncompliant (IEEE) divide behavior of previous
implementations, the new divider calculates the inexact flag, setting the
inexact (INE) bit in the floating-point control register (FPCR) if appropriate,
and trapping on DIVx/SI instructions only when the result is really inexact.3

The inexact trap disable bit (INED) has also been added to the FPCR.

3 See the Alpha Architecture Reference Manual for more information about the FPCR.
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A.4 Improved Branch Prediction
The 21066A supports an improved branch prediction scheme that uses a
2K � 2-bit history table. The table is indexed by the same bits that index
the Icache. Each 2-bit table entry behaves as a counter that increments
on branches taken (stopping at 112) and decrements on branches not-taken
(stopping at 00). If the upper bit of the counter is set, the branch is predicted
taken. The contents of the table are not disturbed by Icache fills. The 21066A
also supports a static branch-prediction mode that uses the sign bit of the
branch displacement (as in the 21066).

A.5 Revised Write-Buffer Unload Logic
The Alpha architecture requires that write operations will not be buffered
indefinitely. The write-buffer in previous implementations does not fully
comply with this requirement. In the previous implementations, the write
buffer attempts to send a buffered write offchip when one of the following
conditions is met:

• The write buffer contains two or more valid entries.

• The write buffer contains one valid entry and 256 cycles have elapsed since
the last write was executed.

This condition is implemented using an 8-bit counter. Counter overflow
signals the write buffer to send a write operation offchip. Any of the
following conditions clears the counter:

– The write buffer is empty.

– The write buffer unloads an entry.

– A write operation executes.

In the 21066A, this condition is removed from the counter’s reset
equation because it allows write operations to be buffered indefinitely
in the sadistic case of an indefinite stream of write operations that all
merge into the same 32-byte buffer entry.

• The write buffer contains an MB or STx/C instruction.

• A load miss hits an entry in the write buffer.
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A.6 Register Descriptions
Sections A.6.1 through A.6.4 describe the new 21066A power management
register and the 21066A implementation-specific differences of several other
registers. (The access codes in the type column of the field description tables
are defined in the Conventions section of the Preface.)

A.6.1 Power Management Register
The power management register (PMR) is implemented only in the 21066A.
(The PMR is ignored in the 21066; writing to it causes no side effects.) The
PMR is physically mapped to 1 2000 009816.

The PMR specifies the primary and override divisors, enables the interrupt
and DMA override divisors, and contains the override cycle counter. The PMR
can be accessed only as a quadword; accessing the individual longwords of the
register can cause UNPREDICTABLE results.

The override cycle counter (<63:48,31:16>) counts the number of cycles spent
in override mode. The value is split into odd-bit and even-bit fields because
of implementation constraints. The counter is cleared every time the PMR is
written.

If the DMA override enable bit (<7>) is set when the I/O controller sends a
request for DMA transfer service to the memory controller, the clock divisor
is switched to the value specified by the override divisor field (<5:3>). The
clock divisor is switched to the primary divisor value (<2:0>) when the memory
controller finishes the DMA request.

If the interrupt override enable bit (<6>) is set when an interrupt is requested
through the external interrupt request pins (irq<2:0>), the clock divisor is
switched to the value specified by the override divisor field (<5:3>). Interrupt
masking in the HIER has no effect on enabling the override divisor. The
override divisor remains in effect after the interrupt request is deasserted, and
continues to be used to divide the operating clock until the PMR is written.
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Figure A–1 shows the PMR format, and Table A–2 describes its fields.

Figure A–1 PMR Format

63 8 716 61548 47 5 332 31 2 0

Override
Cycle Counter

Odd Bits

Override
Cycle Counter

Even Bits
MBZ PRM

DIV
OVR
DIVMBZ

DMA OVR
INT OVR

Table A–2 PMR Field Description

Bits Field Type Description

63:48 Override
Cycle
Counter
Odd Bits

WA The 16 odd-numbered bits (31, 29,..., 1) of the
32-bit override cycle counter. Cleared when written.
Undefined at reset.

47:32 MBZ RW Must be zero.

31:16 Override
Cycle
Counter
Even Bits

WA The 16 even-numbered bits (30, 28,..., 0) of the 32-
bit override cycle counter. Cleared when written.
Undefined at reset.

15:8 MBZ RW Must be zero.

7 DMA
OVR

RW DMA override—When set, enables DMA events to cause
override divisor selection. When clear, DMA events
have no effect on the clock divisor. Cleared at reset.

6 INT OVR RW Interrupt override—When set, enables interrupts to
cause override divisor selection. When clear, interrupts
have no effect on the clock divisor. Cleared at reset.

5:3 OVR DIV RW Override divisor—Specifies the value of the override
divisor (Table A–3). Cleared at reset.

2:0 PRM DIV RW Primary divisor—Specifies the value of the primary
divisor (Table A–3). Cleared at reset.
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The override divisor field (<5:3>) specifies the value by which the internal
operating clock is divided during periods when an enabled overriding operation
is being serviced (Table A–3).

The primary divisor field (<2:0>) specifies the default value by which the
internal operating clock is divided when an override operation is not being
serviced (Table A–3).

Table A–3 shows the coding for the primary and override divisor fields.

Table A–3 Primary and Override Divisor Values

Bits
<5:3>
<2:0> Divide Internal Clock By . . .

000
001
010
011
100
101
110
111

1 (value at reset)
1.5
2
4
8
16
Reserved
Reserved
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A.6.2 Load and Store Unit Control Register
The 21066A implements two new bits (<14:13>) in the load and store unit
control (ABOX_CTL) register; otherwise, the register is the same as in the
21066 (refer to Section 4.2.1).

The write-only ABOX_CTL register is cleared when written with a value of
zero.

Figure A–2 shows the ABOX_CTL register format, and Table A–4 describes its
fields.

Figure A–2 ABOX_CTL Register Format

M
B
Z

63 9 8 7 6 5 4 3 2 111 010

MBZ

D
C
E
N

D M
B
Z

C
S
P
E
2

N

S
P
E
1A

M
C
E
N

D
F
H
I
T

D
T
B
R
R

S
T
C
N
R

I
S
B
E
N

W
B
D
I
S

M
B
Z

F TAG ERR

15 1214 13

NOCHK PAR

Table A–4 ABOX_CTL Register Field Description

Bits Field Type Description

63:15 MBZ WO Must be zero.

14 NOCHK
PAR

WO No check parity—When set, disables Dcache and Icache
parity checking. When clear, primary cache parity
checking is enabled. Cleared at reset.

This bit is implemented only in the 21066A.

13 F TAG
ERR

WO Fill tag error—When set, incorrect tag parity is
generated on Dcache and Icache fills. When clear,
normal tag parity is generated on primary cache fills.
Cleared at reset.

This bit is implemented only in the 21066A.

12 MBZ WO Must be zero.

(continued on next page)
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Table A–4 (Cont.) ABOX_CTL Register Field Description

Bits Field Type Description

11 DFHIT WO Dcache force hit—When set, this bit forces all data
stream (Dstream) references to hit in the Dcache. This
bit takes precedence over the DCEN bit (<10>). That is,
when the DFHIT bit is set and the DCEN bit is clear,
all Dstream references hit in the Dcache.

10 DCEN WO Dcache enable—When clear, disables and flushes the
Dcache. When set, enables the Dcache.

9 DTBRR WO DTB round-robin enable—When set, the data
translation buffer uses a round-robin replacement
algorithm. When clear, a not-last-used (NLU) algorithm
is used.

8 DCNA WO Dcache, no allocate—Normally, must be zero. When set,
the Dcache line associated with a read address is not
disturbed.

7 STCNR WO Store conditional, no result—Normally, must be zero.
When set, it changes the way LDL_L, LDQ_L, STL_C,
and STQ_C instructions are handled as follows:

The results written in the register specified by the
Ra field in STx_C and HW_ST/C instructions are
UNPREDICTABLE. This allows the instruction fetch
and decode unit to restart the memory reference
pipeline when the STx_C is transferred from the
write buffer to the memory controller, increasing the
repetition rate with which STx/C instructions can be
processed. LDx_L, STx_C and HW_ST/C instructions
invalidate the Dcache line associated with their
generated address. The invalidated lines are not visible
to load or store instructions that issue in the two CPU
cycles after the LDL_L, LDQ_L, STL_C, STQ_C, or
HW_ST/C instruction is issued.

6 MBZ WO Must be zero.

5 SPE2 WO Superpage enable 2—When set, enables one-to-one
superpage mapping of Dstream virtual addresses
VA<33:13> directly to physical addresses PA<33:13>,
when virtual address VA<42:41> = 2. VA<40:34> are
ignored in this translation. Access is allowed only in
kernel mode.

(continued on next page)
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Table A–4 (Cont.) ABOX_CTL Register Field Description

Bits Field Type Description

4 SPE1 WO Superpage enable 1—When set, enables one-to-one
superpage mapping of Dstream virtual addresses
with VA<42:30> = 1FFE to physical addresses with
PA<33:30> = 0. Access is allowed only in kernel mode.

3 ISBEN WO Icache stream buffer enable—When set, enables
operation of a single-entry Icache stream buffer.

2 MBZ WO Must be zero.

1 MCEN WO Machine check enable—When set, the load and store
unit generates a machine check when the hardware
encounters errors that it cannot correct. When
clear, uncorrectable errors do not cause a machine
check; however, the cache status register (C_STAT,
Section A.6.3) is updated and locked when such errors
occur.

0 WBDIS WO Write buffer unload disable—When set, prevents the
write buffer from sending write data to the memory
controller. This bit should be set only for diagnostics.
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A.6.3 Cache Status Register
The 21066A implements two new bits (<5:4>) in the read-only cache status
(C_STAT) register; otherwise, the C_STAT register is the same as the data
cache status (DC_STAT) register in the 21066 (see Section 4.4).

Figure A–3 shows the C_STAT register format, and Table A–5 describes its
fields.

Figure A–3 C_STAT Register Format
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Table A–5 C_STAT Register Field Description

Bits Field Type Description

63:6 RAZ RO Read as zero.

5 ICERR RC Icache error—When set, indicates an Icache parity error
occurred. Cleared when read.

This bit is implemented only in the 21066A.

4 DCERR RC Dcache error—When set, indicates an Dcache parity
error occurred. Cleared when read.

This bit is implemented only in the 21066A.

3 DCHIT RO Dcache hit—Indicates whether the last load or store
instruction processed by the load and store unit hit
(DCHIT set) or missed (DCHIT clear) the Dcache.
Loads that miss the Dcache can be completed without
requiring external reads.

2:0 RAZ RO Read as zero.
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A.6.4 Error Status Register
The 21066A implements one new bit (<15>) in the error status register (ESR)
and changes the interpretation of the chip ID field (<19:16>); otherwise, the
ESR is the same as in the 21066 (see Section 5.6.6).

The ESR controls the error detection and correction functions of the memory
controller and holds the error status when an error occurs.

The ECC bits are read-only and the write-wrong-ECC (WEC) bits are read and
write. The error status flags (CEE, UEE, CTE, MSE, MHE) can be read and
are cleared by writing a one to them; writing a zero has no effect. Reset has no
effect on this register.

Figure A–4 shows the ESR format, and Table A–6 describes its fields.

Figure A–4 production$:[21066a.art.ps_final]ESR Format
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Table A–6 ESR Field Description

Bits Field Type Description

Error Correction Code Bits

The following bits store the ECC read from the mem_ecc<7:0> pins. These bits are
frozen when the error address valid (EAV) bit (<0>) is set.

63
59
54
50
45
41
36
32

ECC7
ECC6
ECC5
ECC4
ECC3
ECC2
ECC1
ECC0

RO
RO
RO
RO
RO
RO
RO
RO

Write-Wrong-Error Correction Code Bits

The following bits are used when testing the ECC detection and correction logic. When
set to a one, the corresponding ECC check bit will be written incorrectly to memory or
cache. For normal operation, the value written into these bits should be zero.

60
51
49
48
42
40
34
33

WEC5
WEC0
WEC1
WEC4
WEC2
WEC7
WEC3
WEC6

RW
RW
RW
RW
RW
RW
RW
RW

Reserved Bits

The following bits are reserved:

62:61
58:55
53:52
47:46
44:43
39:37
35
31:20
14:13
8
6:5

RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES

RAX/IGN
RAX/IGN
RAX/IGN
RAX/IGN
RAX/IGN
RAX/IGN
RAX/IGN
RAX/IGN
RAX/IGN
RAX/IGN
RAX/IGN

(continued on next page)
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Table A–6 (Cont.) ESR Field Description

Bits Field Type Description

Bits <19:15,12:9,7,4:0>

19:16 Chip ID RO Identifies the chip. Its value is 0010 for the 21066A
and 0000 for the 21066.

15 ICWP RW Internal cache wrong parity—When set, forces the
incorrect parity to be written on subsequent Dcache
and Icache fills. Cleared at reset.

This bit is implemented only in the 21066A.

12 NXM R/W1C Nonexistent memory—Set when a DRAM read or
write operation is attempted at an address that is
not programmed in the bank address mask registers
(BMR<3:0>) (see Section 5.6.3)

.

11 ICE RW Ignore correctable errors—When set, prevents the
logging of correctable (soft) errors. On a soft error:

• The data is corrected before being used.

• The CEE and EAV bits (<1:0>) are not set.

• The error address register (EAR) is not frozen
(see Section 5.6.7).

10 MHE R/W1C Multiple hard errors—When set, indicates that an
additional hard (uncorrectable) error occurred after
the EAV bit (<0>) was set. The secondary error
status is not logged.

9 MSE R/W1C Multiple soft errors—When set, indicates that an
additional soft (correctable) error occurred after the
EAV bit (<0>) was set. The secondary error status is
not logged.

7 CTE R/W1C Cache tag error—When set, indicates that a tag
parity error was detected during a Bcache cycle.

4 SOR RO Error source—Indicates whether an error occurred
while accessing Bcache or memory: 0 = cache, 1 =
memory. It is updated on each cycle and frozen when
the EAV bit (<0>) is set.

(continued on next page)
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Table A–6 (Cont.) ESR Field Description

Bits Field Type Description

3 WRE RO Write error—Indicates whether an error occurred
during a read or write access: 0 = read, 1 = write. It
is updated on each cycle and frozen when the EAV
bit (<0>) is set.

2 UEE R/W1C Uncorrectable error—Set when an uncorrectable
ECC error occurs during a read or read-modify-write
operation.

1 CEE R/W1C Correctable error—Set when a correctable ECC error
occurs during a read or read-modify-write operation.

0 EAV RO Error address valid—When set, indicates that the
address in the error address register (EAR) is a
valid error address. This bit is the logical OR of bits
<12,7,2:1>. While this bit is asserted, the memory
controller asserts an interrupt to the CPU, and bits
<12,7,4:1> are frozen, as is the EAR.
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B
Pin Summary

Table B–1 is a summary of the chip pins. The pins are listed in alphabetical
order within the following groups:

• Memory controller pins

• IOC (PCI bus) pins

• Clock pins

• JTAG pins

• Instruction reference, interrupt, and SROM interface pins

Table B–1 Pin Summary

Name Qty Type Description Value at Reset

Memory Controller Pins

bc_cs_l 1 O Bcache chip select Driven, asserted

bc_dirty 1 I/O Bcache valid Tristate

bc_idx_tag<4:0> 5 I/O Bcache index or tag Tristate

bc_index 1 O Bcache index ( bit <12>) Driven, UNDEFINED

bc_oe_l 1 O Bcache output enable Driven, asserted

bc_parity 1 I/O Bcache tag parity Tristate

bc_tag<7:0> 8 I/O Bcache tag Tristate

bc_we_l 1 O Bcache write-enable Driven, deasserted

mem_addr<11:0> 12 O Row/column address, Bcache index Driven, UNDEFINED

mem_cas_l 1 O Column address strobe Driven, deasserted

Qty = Quantity
NA = Not applicable

(continued on next page)
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Table B–1 (Cont.) Pin Summary

Name Qty Type Description Value at Reset

Memory Controller Pins

mem_data<63:0> 64 I/O Memory/Bcache data Tristate

mem_dsf 1 O Disable special function Driven, deasserted

mem_dtoe_l 1 O Data transfer/output enable Driven, deasserted

mem_ecc<7:0> 8 I/O Memory/Bcache error correction
code

Tristate

mem_rasa_l<3:0>
mem_rasb_l<3:0>

8 O Row address strobes Driven, deasserted

mem_rd_oe 1 O Memory read transceiver output
enable

Driven, deasserted

mem_write_l 1 O Write-enable Driven, deasserted

mem_wr_oe_l 1 O Memory write transceiver output
enable

Driven, asserted

vframe_l 1 I Load video display pointer and
load VRAM shift register

NA

vrefresh_l 1 I Increment video display pointer
and load VRAM shift register

NA

IOC (PCI Bus) Pins

ad<31:0> 32 I/O PCI multiplexed address and data
bus

Tristate when gnt_l is
deasserted; otherwise,
UNDEFINED

c_be_l<3:0> 4 I/O PCI multiplexed cycle command
and byte enables

Tristate when gnt_l is
deasserted; otherwise,
UNDEFINED

devsel_l 1 I/O PCI device select Tristate

frame_l 1 I/O PCI cycle frame Tristate

gnt_l 1 I PCI bus grant NA

irdy_l 1 I/O PCI initiator ready Tristate

lock_l 1 I PCI lock. This pin is also used in
testing the 24-bit retry timeout
counter during test mode.

NA

Qty = Quantity
NA = Not applicable

(continued on next page)
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Table B–1 (Cont.) Pin Summary

Name Qty Type Description Value at Reset

IOC (PCI Bus) Pins

memack_l 1 O Memory access grant from IOC Tristate

memreq_l 1 I PCI request for memory access NA

par 1 I/O PCI parity data Tristate when gnt_l is
deasserted; otherwise,
UNDEFINED

pci_clk_in 1 I PCI clock input NA

perr_l 1 I/O PCI parity error Tristate

req_l 1 O PCI bus request Tristate

rst_l 1 O PCI reset Asserted

stop_l 1 I/O PCI target stop Tristate

trdy_l 1 I/O PCI target ready Tristate

Clock Pins

pll_bypass 1 I PLL bypass select NA

pll_clk_in 1 I PLL clock input NA

pll_clk_in_l 1 I PLL clock input low NA

pll_filter 1 I PLL low-pass filter capacitor NA

pll_i_ref 1 I PLL reference current NA

pll_5v 1 I PLL voltage supply NA

reset_in_l 1 I Master reset input NA

test_clk_out 1 O Output clock Driven, clocking

JTAG Pins

tck 1 I Boundary scan clock NA

tdi 1 I Serial boundary scan data in NA

tdo 1 O Serial boundary scan data out Determined by the
state of the JTAG
controllers

Qty = Quantity
NA = Not applicable

(continued on next page)
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Table B–1 (Cont.) Pin Summary

Name Qty Type Description Value at Reset

JTAG Pins

tms 1 I JTAG test mode select NA

trst_l 1 I JTAG TAP reset NA

Instruction Reference, Interrupt, and SROM Interface Pins

instr_ref 1 O This pin has dual functions.
During normal operation, it
indicates the type of current
access (instruction or data) on the
memory data bus. A high on this
pin indicates Istream reference; a
low on this pin indicates Dstream
reference.

During reset, this pin is driven
with a delayed noninverted PCI
clock or a delayed, inverted core
clock (Section 8.4.2).

Driven

irq<2:0> 3 I External interrupt request inputs.
These pins are also used to
program chip internal clock
frequency during reset.

NA

sromclk 1 O SROM clock/transmit serial data Driven high

sromd 1 I SROM data/receive serial data NA

sromoe_l 1 O SROM output enable Driven, deasserted

Qty = Quantity
NA = Not applicable
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C
Internal Register Summary

This chapter summarizes the microprocessor’s internal registers (internal
processor, memory controller, and I/O controller registers).

Table C–1 is a summary of the internal processor registers.

Table C–1 Implementation-Specific Internal Processor Registers

Mnemonic Register Name Field 1 Index 1 Reset State

Instruction Fetch and Decode Unit Registers

ASTER Asynchronous system trap interrupt
enable

IBX 18 UNDEFINED

ASTRR Asynchronous system trap request IBX 14 UNDEFINED
EXC_ADDR Exception address IBX 4 UNDEFINED
EXC_SUM Exception summary IBX 10 UNDEFINED
HIER Hardware interrupt enable IBX 16 UNDEFINED
HIRR Hardware interrupt request IBX 12 UNDEFINED
ICCSR Instruction cache control and status IBX 2 Cleared except

ASN, PC0, and
PC1 bits

ITBASM Instruction translation buffer address
space match

IBX 7 NA2

ITBIS Instruction translation buffer initial
state

IBX 8 NA2

ITB_PTE Instruction translation buffer page table
entry

IBX 1 UNDEFINED

ITB_PTE_TEMP Instruction translation buffer page table
entry temporary

IBX 3 UNDEFINED

ITBZAP Instruction translation buffer ZAP IBX 6 NA2

PAL_BASE PAL base address IBX 11 Cleared

1HW_MFPR and HW_MTPR instruction fields: PAL, ABX, IBX, and Index (<7,6,5,4:0>).
2NA = not applicable

(continued on next page)
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Table C–1 (Cont.) Implementation-Specific Internal Processor Registers

Mnemonic Register Name Field 1 Index 1 Reset State

Instruction Fetch and Decode Unit Registers

PS Processor status IBX 9 UNDEFINED
SIER Software interrupt enable IBX 17 UNDEFINED
SIRR Software interrupt request IBX 13 UNDEFINED
SL_CLR Clear serial line interrupt IBX 19 NA2

SL_RCV Serial line receive IBX 5 UNDEFINED
SL_XMIT Serial line transmit IBX 22 UNDEFINED
TB_TAG Translation buffer tag IBX 0 UNDEFINED

Load and Store Unit Registers

ABOX_CTL Load and store unit control ABX 14 UNDEFINED
ALT_MODE Alternate processor mode ABX 15 UNDEFINED
CC Cycle counter ABX 16 UNDEFINED
CC_CTL Cycle counter control ABX 17 UNDEFINED
C_STAT3 Cache status ABX 12 UNDEFINED
DC_STAT4 Data cache status ABX 12 UNDEFINED
DTBASM Data translation buffer address space

match
ABX 7 NA2

DTBIS Data translation buffer invalidate single ABX 8 NA2

DTB_PTE Data translation buffer page table entry ABX 2 UNDEFINED
DTB_PTE_TEMP Data translation buffer page table entry

temporary
ABX 3 UNDEFINED

DTBZAP Data translation buffer ZAP ABX 6 NA2

FLUSH_IC Flush instruction cache ABX 21 NA2

FLUSH_IC_ASM Flush instruction cache address space
match

ABX 23 NA2

MM_CSR Memory management control and status ABX 4 UNDEFINED
TB_CTL Translation buffer control ABX 0 UNDEFINED
VA Virtual address ABX 5 UNDEFINED

PAL Temporary Registers

PAL_TEMP<31:0> PAL_TEMP internal processor PAL 31..0 UNDEFINED

1HW_MFPR and HW_MTPR instruction fields: PAL, ABX, IBX, and Index (<7,6,5,4:0>).
2NA = not applicable
3Implemented in the 21066A only
4Implemented in the 21066 only
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Table C–2 is a summary of the memory controller registers.

Table C–2 Memory Controller Registers

Mnemonic Register Name
Address
(Hexadecimal) Reset State

BCR0 Bank configuration 0 1 2000 0000 BAV bit = 0, all other bits are
UNDEFINED

BCR1 Bank configuration 1 1 2000 0008 BAV bit = 0, all other bits are
UNDEFINED

BCR2 Bank configuration 2 1 2000 0010 BAV bit = 0, all other bits are
UNDEFINED

BCR3 Bank configuration 3 1 2000 0018 BAV bit = 0, all other bits are
UNDEFINED

BMR0 Bank mask 0 1 2000 0020 UNDEFINED
BMR1 Bank mask 1 1 2000 0028 UNDEFINED
BMR2 Bank mask 2 1 2000 0030 UNDEFINED
BMR3 Bank mask 3 1 2000 0038 UNDEFINED
BTR0 Bank timing 0 1 2000 0040 UNDEFINED
BTR1 Bank timing 1 1 2000 0048 UNDEFINED
BTR2 Bank timing 2 1 2000 0050 UNDEFINED
BTR3 Bank timing 3 1 2000 0058 UNDEFINED
GTR Global timing 1 2000 0060 REN bit = 0, all other bits are

UNDEFINED
ESR Error status 1 2000 0068 UNDEFINED
EAR Error address 1 2000 0070 UNDEFINED
CAR Cache control 1 2000 0078 BCE bit = 1, Bcache size = 0 (64 KB),

PWR bit = 0, and Bcache read cycle
count field = 0 (that is, speed is
three cycles). All other bits are
UNDEFINED.

VGR Video and graphics
control

1 2000 0080 UNDEFINED

PLM Plane mask 1 2000 0088 UNDEFINED
FOR Foreground 1 2000 0090 UNDEFINED
PMR� Power management 1 2000 0098 DMA_OVR = 0, INT_OVR = 0,

OVR_DIV = 0, PRM_DIV = 0, all other
bits are UNDEFINED.

�Implemented in 21066A only.
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Table C–3 is a summary of the I/O controller registers.

Programming Note

The IOC register address (34-bit) range is 180000000 through
1BFFFFFFF, and the IOC registers are sparsely populated in this
range. Although the IOC internally decodes only a subset of the
34-bit address to access the IOC registers, Digital recommends that
programs use only the addresses specified in Table C–3 to ensure
correct operation in future implementations.

Table C–3 I/O Controller Registers

Mnemonic Register Name Address
Reset State and
Required Initialization

IOC_HAE Host address extension 1 8000 0000 UNDEFINED
IOC_CONF Configuration cycle type 1 8000 0020 UNDEFINED
IOC_STAT0 Status 0 1 8000 0040 UNDEFINED
IOC_STAT1 Status 1 1 8000 0060 UNDEFINED
IOC_TBIA Translation buffer

invalidate all
1 8000 0080 The TLB is UNDEFINED and

must be initialized by software.
IOC_TB_ENA Translation buffer enable 1 8000 00A0 UNDEFINED
IOC_SFT_RST PCI soft reset 1 8000 00C0 The soft reset bit, and

consequently the PCI rst_l
signal, will be asserted during
and after reset until modified
by writing to this register.

IOC_PAR_DIS Parity disable 1 8000 00E0 The parity disable bit is cleared
to enable parity checking and
reporting after reset.

IOC_W_BASE0 Window base 0 1 8000 0100 UNDEFINED. SROM boot code
must initialize the window
enable (WEN) and scatter-
gather (SG) bits.

IOC_W_BASE1 Window base 1 1 8000 0120 UNDEFINED. SROM boot code
must initialize the window
enable (WEN) and scatter-
gather (SG) bits.

IOC_W_MASK0 Window mask 0 1 8000 0140 UNDEFINED
IOC_W_MASK1 Window mask 1 1 8000 0160 UNDEFINED
IOC_T_BASE0 Translated base 0 1 8000 0180 UNDEFINED

(continued on next page)
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Table C–3 (Cont.) I/O Controller Registers

Mnemonic Register Name Address
Reset State and
Required Initialization

IOC_T_BASE1 Translated base 1 1 8000 01A0 UNDEFINED
IOC_TB_TAG0 Translation buffer tag 0 1 8100 0000 UNDEFINED
IOC_TB_TAG1 Translation buffer tag 1 1 8100 0020 UNDEFINED
IOC_TB_TAG2 Translation buffer tag 2 1 8100 0040 UNDEFINED
IOC_TB_TAG3 Translation buffer tag 3 1 8100 0060 UNDEFINED
IOC_TB_TAG4 Translation buffer tag 4 1 8100 0080 UNDEFINED
IOC_TB_TAG5 Translation buffer tag 5 1 8100 00A0 UNDEFINED
IOC_TB_TAG6 Translation buffer tag 6 1 8100 00C0 UNDEFINED
IOC_TB_TAG7 Translation buffer tag 7 1 8100 00E0 UNDEFINED
IOC_IACK_SC Interrupt vector and special

cycle

� UNDEFINED

�Any quadword-aligned address in the range 1A0000000..1BFFFFFE0.
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D
Technical Support and Ordering

Information

D.1 Technical Support
If you need technical support or help deciding which literature best meets your
needs, call the Digital Semiconductor Information Line:

United States and Canada
Outside North America

1–800–332–2717
+1–508–628–4760

D.2 Ordering Digital Semiconductor Products
To order the Alpha 21066 or Alpha 21066A microprocessors, contact your local
distributor.

You can order the following semiconductor products from Digital:

Product Order Number

Alpha 21066–100 Microprocessor 21066–CA

Alpha 21066–166 Microprocessor 21066–AA

Alpha 21066A–233 Microprocessor 21066–AB

Alpha 21066A–100 Microprocessor 21066–CB

Alpha 21066A–266 Microprocessor 21066–DB
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D.3 Ordering Associated Literature
The following table lists some of the available Digital Semiconductor literature.
For a complete list, contact the Digital Semiconductor Information Line.

Title Order Number

Alpha Architecture Reference Manual1 EY–L520E–DP–YCH

Alpha 21066/21066A Microprocessors Data Sheet EC–QC4HA–TE

1To order and purchase the Alpha Architecture Reference Manual, call 1–800–DIGITAL from
the U.S. or Canada, or contact your local Digital office, or technical or reference bookstore where
Digital Press books are distributed by Prentice Hall.

D.4 Ordering Third-Party Literature
You can order the following third-party literature directly from the vendor.

Title Vendor

PCI Local Bus Specification, Revision 2.0 PCI Special Interest Group
1–800–433–5177 (U.S.)
1–503–797–4207 (International)
1–503–234–6762 (FAX)
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A
Abbreviations

binary multiples, xviii
kilobyte, megabyte, and gigabyte, xviii
register-access, defined, xix

Abort
instruction pipeline, 2–18
PCI master, 6–21
PCI target, 6–21

Access
internal processor registers, 3–7
register-access abbreviations, defined, xix
violation (ACV), 3–21, 3–23, 4–4

bit, 4–42
ad<31:0> signals, 6–52
ADDR—error address field, 6–42
Address

bank
address mask registers (BMR3–

BMR0), 5–18
base address field, 5–14
base address valid (BAV) bit, 5–15

burst order, PCI, 6–31
configuration address (CFG AD) field,

6–39
error address

(ADDR) field, 6–42
register (EAR), 5–27

extension for sparse space, 6–9
host address extension

(HAE) field, 6–38
(IOC_HAE) register, 6–38
table, 6–9

Address (cont’d)
increment

display pointer increment (INC) bit,
5–33

VRAM encodings, 5–34
map

PCI spaces, 6–4
physical, 2–27

parity
errors, PCI, 6–31
PCI, 6–18

partition, Bcache, 5–32
PCI addresses for

dense space, 6–13
sparse space, 6–7

phase
CPU-initiated PCI cycles, 6–7
PCI-initiated PCI cycles, 6–30

quadword error address field, 5–28
queue, PCI, 6–30
register

PAL base address (PAL_BASE), 4–32
virtual address (VA), 4–40

row address select field, 5–15
scatter-gather map, 6–27
space

map, PCI, 6–4
map, physical, 2–27
match (ASM) bit, 2–4, 4–5, 4–38,

4–39
number (ASN), 2–5
number (ASN) field, 4–8
physical, 2–27

stepping, 6–7, 6–16
translation
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Address
translation (cont’d)

base (T_BASE) field, 6–48
CPU-to-PCI address translation, 6–4
PCI, 6–23
PCI direct-mapped, 6–25
PCI scatter-gather mapped, 6–26

window
base (W_BASE) field, 6–46
mask, 6–23

windows to PCI address spaces, 6–4
Aligned convention, xx
Alpha documentation, D–2
Alternate processor mode

(ALT_MODE) register, 4–42
(AM) field, 4–43

Arbitration
external logic, 6–1, 6–5, 6–51
PCI bus mastership, 6–5

Architecturally reserved PALcode
instructions, 2–26

Architecture
Alpha overview, 1–1
chip microarchitecture, 2–1
internal, 2–1

ARITH PALcode entry point, 3–11
Associated literature, D–2
Asynchronous system trap (AST), 2–5

interrupt request (ATR) bit, 4–20
Asynchronous trap (AST)

interrupt enable register (ASTER), 4–27
interrupt request register (ASTRR), 4–24

B
Back-to-back PCI transfers, 6–18
Backup cache (Bcache), 2–1, 5–5

address partition, 5–32
block, defined, xxi
cache register (CAR), 5–29
enable

(BCE) bit, 5–31
ECC (ECE) bit, 5–31
tag parity check (ETP) bit, 5–31

HIT bit, 5–30
initialization, 5–6

Backup cache (Bcache) (cont’d)
line, defined, xxi
read

cycle count field, 5–31
timing, 5–45

size
encodings, 5–31
field, 5–31

tag
field, 5–30
parity error, 5–10

write
cycle count field, 5–31
hold time (WHD) bit, 5–30
timing, 5–46
wrong tag parity (WWP) bit, 5–31

BAD_VA PALcode entry point, 3–13
Bank

address
mask registers (BMR3–BMR0), 5–18
select, dual, 5–20

base address
field, 5–14
mask field, 5–19
valid (BAV) bit, 5–15

configuration registers (BCR3–BCR0),
5–14

timing registers (BTR3–BTR0), 5–20
bc_cs_l signal, 5–55
bc_dirty signal, 5–54
bc_idx_tag<4:0> signals, 5–55
bc_index signal, 5–55
bc_oe_l signal, 5–56
bc_parity signal, 5–55
bc_tag<7:0> signals, 5–54
bc_we_l signal, 5–56
Block

Bcache, defined, xxi
diagram of chip, 2–1

Boundary scan
group, 8–5
order, 8–6
register (BSR), 8–5

cells, 8–5
organization, 8–5
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Branch
history

(BHT) field, 2–16
enable (BHE) bit, 4–8

predict enable (BPE) bit, 4–9
prediction

logic, 2–4
selection, 4–11

unit, 2–4
Burst

order
address burst order, 6–31
in sparse space, 6–10

writes
page boundary crossing, 6–31
to dense space, 6–14

Bus
See also PCI
parking, 6–6
turnaround cycle, 6–18

Bypass register (BPR), 8–4
Byte

defined, xxi
enable encoding for sparse space, 6–8
write, 5–8

enable (BWE) bit, BCR, 5–15
enable (BWE) bit, VGR, 5–34
external logic, 5–8
load byte write-enable (LDB) bit,

5–34

C
Cache

See also Backup cache (Bcache)
See also Data cache (Dcache)
See also Instruction cache (Icache)
organization, 2–15
register (CAR), 5–29
status register (C_STAT), A–12
tag error (CTE) bit, 5–27

CALL_PAL
instruction, 3–4

defined, 1–2
PALcode entry point, 3–12

CAS/RAS setup field, 5–23
Caution convention, xx
Chip

alias for 21066, xx, xxi
alias for 21066A, xx
block diagram, 2–1

Clear serial line interrupt (SL_CLR) register,
4–15

Clock, 7–1
generator, 7–1
phase-locked loop (PLL), 7–1
signals, 7–3

See also Signal descriptions
CODE—error code field, 6–40
Column address

setup field, 5–22
strobe (CAS)

CAS-before-RAS refresh, 5–3
CAS/RAS setup field, 5–23
cycle field, 5–21
precharge field, 5–21
RAS/CAS precharge field, 5–24

Command
(CMD) field, 6–41
codes, PCI cycle, 6–22
PCI-initiated transactions, 6–22

Configuration
address (CFG AD) field, 6–39
cycle type (IOC_CONF) register, 6–38
cycles, 6–15
PCI configuration address space, 6–5

Conventions, xviii
aligned, xx
binary multiples, xviii
bit notation, xx
byte abbreviations, xviii
caution, xx
chip, xx
data units, xxi
extents, xxi
external, xxi
field abbreviations, xviii
ignore (IGN), xix
microprocessor, xxi
must be zero (MBZ), xix
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Conventions (cont’d)
note, xxi
numbering, xxi
ranges, xxi
read

and write (RW), xix
and write one to clear (R/W1C), xx
as undefined (RAX), xix
as zero (RAZ), xix
clears (RC), xix
only (RO), xix

register-access abbreviations, defined, xix
reserved (RES), xix
security holes, xxii
signal names, xxii
unaligned, xx
UNDEFINED, xxii
UNPREDICTABLE, xxii
write

always clears (WA), xx
only (WO), xx

X, xx
Correctable

error (CEE) bit, 5–27
read error, 5–9

Counter field
CC register, 4–44
CC_CTL register, 4–45

CPU
address windows to PCI address spaces,

6–4
CPU-initiated PCI cycles, 6–3
CPU-to-PCI address translation, 6–4
overview, 2–1
request queue, 6–5

Current mode
(CM) field, 4–31
0 (CM0) bit, 4–32
1 (CM1) bit, 4–31

Cycle counter
(CC) register, 4–43
control (CC_CTL) register, 4–44

c_be_l<3:0> signals, 6–52

D
Data

cache (Dcache)
enable (DCEN) bit, 4–33
fill, 2–10
force hit (DFHIT) bit, 4–33
hit (DCHIT) bit, 4–46, A–12
load silos, 2–10
no allocate (DCNA) bit, 4–33
overview, 2–15
status register (DC_STAT), 4–45

parity
PCI, 6–18
read data parity errors, 6–18
write data parity errors, 6–19

setup (DST) bit, 5–21
translation buffer (DTB), 2–9

ASM (DTBASM) register, 4–40
fill, 2–10
invalidate single (DTBIS) register,

4–40
miss flow, 3–22
page table entry (DTB_PTE) register,

4–36
page table entry temporary

(DTB_PTE_TEMP) register,
4–38

round-robin (DTBRR) enable bit,
4–33

ZAP (DTBZAP) register, 4–40
types, 1–1, 1–2
units, defined, xxi

DATA—interrupt vector and special cycle
data field, 6–50

DCNA bit, 4–33
Default PCI mastership, 6–6
Dense memory space, 6–2, 6–13

PCI addresses, 6–13
unmasked

burst writes, 6–14
reads, 6–14
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devsel_l signal, 6–53
Direct memory access (DMA), 6–3
Direct-mapped address translation, 6–25
Dirty

logic, 2–3
victim block, 5–6

Disconnect, PCI target, 6–20
Divide by zero (DZE) bit, 4–14
Documentation, D–2
Dstream

errors PALcode entry point, 3–11, 3–13
BAD_VA, 3–13
DTB_MISS NATIVE, 3–13
DTB_MISS PAL, 3–13
D_FAULT, 3–13
UNALIGN, 3–13

memory management (DMM) errors,
3–19

DTB
See also Data translation buffer (DTB)
DTB_MISS

NATIVE PALcode entry point, 3–13
PAL PALcode entry point, 3–13

Dual
bank

address select, 5–20
enable (SBE) bit, 5–15

issue
(DI) enable bit, 4–8
table, 2–24

Dynamic RAM (DRAM)
See Memory

D_FAULT PALcode entry point, 3–13

E
Enable

Bcache ECC (ECE) bit, 5–31
cycle counter register (EN) bit, 4–45
tag parity check (ETP) bit, 5–31

Entry points
See PALcode entry points

Error
address

(ADDR) field, 6–42

Error
address (cont’d)

quadword error address field, 5–28
register (EAR), 5–27
valid (EAV) bit, 5–27

Bcache tag parity, 5–10
cache tag error (CTE) bit, 5–27
code (CODE) field, 6–40
codes, I/O controller, 6–40
correctable

error (CEE) bit, 5–27
read error, 5–9

correction code (ECC)
bits, 5–25, A–14

(ERR) bit, 6–41
ignore correctable errors (ICE) bit, 5–26
memory error conditions, 5–9
mode (ERM) bit, 5–15
multiple

hard errors (MHE) bit, 5–26
soft errors (MSE) bit, 5–27

nonexistent memory
address, 5–11
(NXM) bit, 5–26

PCI
address parity, 6–31
memory read data, 6–35
memory write data, 6–33
read data parity, 6–18
write data parity, 6–19

scatter-gather map
invalid page, 6–30
page table read, 6–29

source (SOR) bit, 5–27
status register (ESR), 5–24
uncorrectable

error (UEE) bit, 5–27
read error, 5–10
write error, 5–10

write
error (WRE) bit, 5–27
reference (WR) bit, 4–42
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Events counted by performance counters,
5–29

Exception
address (EXC_ADDR) register, 4–11
register write mask, 4–13

(MSK) window bit, 4–14
return from exception or interrupt

instruction (HW_REI), 3–10
summary (EXC_SUM) register, 4–13

Exclusive access, PCI, 6–3, 6–36
Executive mode, 2–5

AST enable (EAE) bit, 4–20, 4–28
AST request (EAR) bit, 4–19, 4–25
read-enable (ERE) bit, 4–4, 4–37, 4–39
write-enable (EWE) bit, 4–37, 4–39

Extents convention, xxi
External

arbitration logic, 6–1, 6–5, 6–51
byte write logic, 5–8
cache

See Backup cache (Bcache)
interrupt logic, 6–17, 6–49, 6–50
interrupts, 2–5
memory transceivers, 5–51, 5–54
serr_l logic, 6–2, 6–7, 6–18
to 21066, xxi

F
Fault

on read (FOR) bit, 4–38, 4–40, 4–42
on write (FOW) bit, 4–38, 4–40, 4–42

Features summary, 1–2
FEN PALcode entry point, 3–12
Fill

data translation buffer (DTB), 2–10
instruction translation buffer (ITB), 2–5

Floating-point
control register (FPCR), 2–13
data types, 1–2
enable (FEN) bit, 4–8
IEEE conformance, 2–14
overflow (FOV) bit, 4–14
register file (FRF), 2–13
underflow (UNF) bit, 4–14

Floating-point (cont’d)
unit (FPU) overview, 2–13

Flush instruction cache
ASM (FLUSH_IC_ASM) register, 4–42
(FLUSH_IC) register, 4–42

Foreground
field, 5–36
register (FOR), 5–36

frame_l signal, 6–52
Full video shift-register transfer timing,

5–43

G
Global timing register (GTR), 5–22
gnt_l signal, 6–51
Granularity hint (GH) field, 4–35, 4–36
Graphics

features, 5–5
foreground register (FOR), 5–36
mode (MOD) bit, 5–34
operations, 5–11

simple frame buffer mode, 5–12
transparent stipple mode, 5–12

plane mask register (PLM), 5–35
video and graphics control register (VGR),

5–33
Group control register (GCR), 8–5
Guaranteed access arbitration, 6–36

H
Hardware

enable (HWE) bit, 4–8
interrupt

enable register (HIER), 4–25
request (HWR) bit, 4–20
request register (HIRR), 4–23
signals irq<2:0>, 2–5, 7–3

interrupts, 2–5
Hexword, defined, xxi
HIT bit, 5–30
Hit-under-miss, 2–10
Host address extension

(HAE) field, 6–38
(IOC_HAE) register, 6–38
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Host address extension (cont’d)
table, 6–9

HW_LD instruction, 3–9
HW_LD/L instruction, 3–10
HW_MFPR instruction, 3–6
HW_MTPR instruction, 3–6
HW_MxPR

See also HW_MFPR instruction
See also HW_MTPR instruction
defined, 3–17

HW_REI instruction, 3–10
HW_ST instruction, 3–9
HW_ST/C instruction, 3–10

I
I/O controller (IOC), 6–1

See also PCI
back-to-back transfers, 6–18
bus parking, 6–6
clocking, 6–3
configuration cycles, 6–15
CPU request queue, 6–5
CPU-initiated PCI cycles, 6–3
CPU-to-PCI address translation, 6–4
default PCI mastership, 6–6
dense

See also Dense memory space
PCI dense memory address space,

6–5
error

codes, 6–40
interrupt enable (IEREN) bit, 4–21,

4–26
interrupt request (IERR) bit, 4–20

I/O space cycles, 6–15
interrupt acknowledge cycles, 6–16
interrupts, 2–6
memory barrier instruction requirements,

6–6
overview, 2–29
peripheral-initiated PCI cycles, 6–22
registers, 6–37

See also Registers
initialization requirements, 6–50

I/O controller (IOC) (cont’d)
requesting PCI mastership, 6–5
scatter-gather mapping, 6–1
signals, 6–51

See also Signal descriptions
sparse

See also Sparse memory space
PCI sparse memory address space,

6–5
special cycles, 6–16
windows to PCI address spaces, 6–4

I/O space
cycles, 6–15
PCI I/O address space, 6–5

Idle cycle
memory, 5–40
PCI, 6–18

IEEE floating-point conformance, 2–14
Ignore

correctable errors (ICE) bit, 5–26
(IGN) convention, xix

Illegal operand exception, xix
Implementation-specific PALcode

instructions, 2–27, 3–2
INC—display pointer address increment bit,

5–33
Inexact error (INE) bit, floating-point, 4–14
Initialization

See also Reset
Bcache, 5–6
Icache, 9–1
JTAG test access port, 8–7
requirements, I/O controller registers,

6–50
Input/output controller

See I/O controller (IOC)
Instruction

See also Instructions
cache (Icache)

control and status register (ICCSR),
4–7

initialization, 9–1
load order, 9–2
load timing, 9–3
overview, 2–15
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Instruction
cache (Icache) (cont’d)

stream buffer, 2–16
stream buffer enable (ISBEN) bit,

4–34
test modes, 9–1, 9–4

CALL_PAL instruction, 3–4
defined, 1–2

class definition, 2–19
fetch and decode unit

overview, 2–3
registers, 4–1

See also Registers
load (HW_LD), 3–9
load-lock (HW_LD/L), 3–10
memory barrier (MB), 2–12
move

from processor (HW_MFPR), 3–6
to processor (HW_MTPR), 3–6

nonissue conditions, 2–19
opcode summary with instruction issue

bus, 2–24
pipeline

aborts, 2–18
bubble, 2–19
figure, 2–16
freeze, 2–18
organization, 2–16
(PIPE) normal bit, 4–9
stall, 2–18
static and dynamic stages, 2–17

register (IR), JTAG, 8–2
return from exception or interrupt

(HW_REI), 3–10
scheduling and issuing rules, 2–19
store (HW_ST), 3–9
store-conditional (HW_ST/C), 3–10
translation buffer (ITB), 2–4

ASM (ITBASM) register, 4–6
fill, 2–5
invalidate single (ITBIS) register,

4–6
large page, 2–4
miss flow, 3–21

Instruction
translation buffer (ITB) (cont’d)

page table entry (ITB_PTE) register,
4–3

page table entry temporary (ITB_
PTE_TEMP) register, 4–5

small page, 2–4
ZAP (ITBZAP) register, 4–6

Instructions
See also Instruction
dual issue table, 2–24
length, 1–1
PALcode

architecturally reserved instructions,
2–26

implementation-specific instructions,
2–27, 3–2

required instructions, 2–26
producer–consumer

classes, 2–19
latency, 2–20

producer–producer latency, 2–22
reserved opcode, 3–5
scheduling and issuing rules, 2–23

instr_ref signal, 8–4, B–4
Integer

execution unit
overview, 2–8

overflow (IOV) bit, 4–14
register file (IRF), 2–8

Interface unit, 2–1
Internal processor registers (IPR), 4–1

See also Registers
access, 3–7
reset state, 4–46, C–1
summary, C–1

Interrupt
See also Interrupts
acknowledge cycles, 6–16
enable and request registers, 4–17
executive mode AST

enable (EAE) bit, 4–20, 4–28
request (EAR) bit, 4–19, 4–25

I/O controller
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Interrupt
I/O controller (cont’d)

error interrupt enable (IEREN) bit,
4–21, 4–26

error interrupt request (IERR) bit,
4–20

INTERRUPT PALcode entry point, 3–11
kernel mode AST

enable (KAE) bit, 4–20, 4–28
request (KAR) bit, 4–19, 4–25

logic overview, 2–5
memory controller

error interrupt enable (MEREN) bit,
4–21, 4–26

error interrupt request (MERR) bit,
4–19

performance counter 0 (PC0)
clear bit, 4–15
enable bit, 4–21, 4–26
request bit, 4–19

performance counter 1 (PC1)
clear bit, 4–15
enable bit, 4–21, 4–26
request bit, 4–19

priority level (IPL), 2–6
request

and enable registers, 4–17
enable (IRQEN) field, 4–21, 4–26
irq<2:0> signals, 2–5, 7–3
(IRQ<2:0>) field, 4–19

return from exception or interrupt
instruction (HW_REI), 3–10

serial line
clear (SLC) request bit, 4–15
clear (SL_CLR) register, 4–15
enable (SLE) bit, 4–21, 4–26
request (SLR) bit, 4–19

supervisor mode AST
enable (SAE) bit, 4–20, 4–28
request (SAR) bit, 4–19, 4–25

user mode AST
enable (UAE) bit, 4–20, 4–28
request (UAR) bit, 4–19, 4–25

vector

Interrupt
vector (cont’d)

and special cycle (IOC_IACK_SC)
register, 6–49

DATA field, 6–50
INTERRUPT PALcode entry point, 3–11
Interrupts

See also Interrupt
asynchronous system trap (AST), 2–5

request (ATR) bit, 4–20
asynchronous trap (AST) interrupt

enable register (ASTER), 4–27
request register (ASTRR), 4–24

error
See Error

external, 2–5
logic, 6–17, 6–49, 6–50

hardware, 2–5
interrupt enable register (HIER),

4–25
interrupt request register (HIRR),

4–23
request (HWR) bit, 4–20

I/O controller, 2–6
memory controller, 2–6
software, 2–5

interrupt enable (SIER) field, 4–21,
4–27

interrupt enable register (SIER),
4–26

interrupt request (SIRR) field, 4–19,
4–24

interrupt request register (SIRR),
4–23

request (SWR) bit, 4–20
Invalid

(INV) operation bit, 4–14
page errors, 6–30

Invoking PALcode, 3–3
IOC

See Input/output controller (IOC)
irdy_l signal, 6–52
irq<2:0> signals, 7–3
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Issuing and scheduling rules, 2–19, 2–23
ITB

See also Instruction translation buffer
(ITB)

ITB_ACV PALcode entry point, 3–12
ITB_MISS PALcode entry point, 3–12

J
Joint testing action group (JTAG)

See also Test
port

signals, 8–1
See also Signal descriptions

test
access port (TAP) controller, 8–2
access port (TAP) initialization, 8–7
port, 8–1
port registers, 8–2

See also Registers
JSR stack enable (JSE) bit, 4–9

K
Kernel mode, 2–5

AST enable (KAE) bit, 4–20, 4–28
AST request (KAR) bit, 4–19, 4–25
read-enable (KRE) bit, 4–4, 4–37, 4–39
write-enable (KWE) bit, 4–37, 4–39

L
Large page instruction translation buffer,

2–4
Latency

instruction
producer–consumer, 2–20
producer–producer, 2–22

timer, PCI, 6–19
Line, Bcache, defined, xxi
Literature, D–2
Load

and store unit
control (ABOX_CTL) register, 4–33
overview, 2–8

Load
and store unit (cont’d)

registers, 4–32
See also Registers

byte write-enable (LDB) bit, 5–34
graphics mode (LDM) bit, 5–34
instruction

(HW_LD), 3–9
lock (HW_LD/L), 3–10

silos, 2–10
video control (LDV) bit, 5–33

Lock registers
locked_physical_address, 2–29
lock_flag, 2–29

lock_l signal, 6–53, 8–4
Longword

defined, xxi
masked

reads to sparse space, 6–13
writes to sparse space, 6–13

unmasked
reads to sparse space, 6–10
writes to sparse space, 6–11

LOST—lost error logging information bit,
6–41

M
Machine check enable (MCEN) bit, 4–34
MAP—superpage map enable bit, 4–8
Masked

longword
reads to sparse space, 6–13
writes to sparse space, 6–13

write operations, 5–8
Master abort, PCI, 6–21
Maximum RAS assertion field, 5–24
MCHK PALcode entry point, 3–11
memack_l signal, 6–54
Memory

bank
See Bank

barrier (MB) instruction, 2–11, 2–12
requirements, 6–6

controller, 5–1
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Memory
controller (cont’d)

error interrupt enable (MEREN) bit,
4–21, 4–26

error interrupt request (MERR) bit,
4–19

graphics features, 5–5
interrupts, 2–6
operation, 5–6
operation flow, 5–6
overview, 2–28
register access, 5–9
registers, 5–12

See also Registers
signals, 5–51

See also Signal descriptions
cycles, 5–36

Bcache read timing, 5–45
Bcache write timing, 5–46
DRAM refresh timing, 5–42
full video shift-register transfer

timing, 5–43
idle cycle, 5–40
non-page-mode read timing, 5–48
non-page-mode write timing, 5–50
page-mode read timing, 5–47
page-mode write timing, 5–49
RAS precharge timing, 5–41
split video shift-register transfer

timing, 5–44
dense

See Dense memory space
error conditions, 5–9

Bcache tag parity error, 5–10
correctable read error, 5–9
nonexistent memory address, 5–11
uncorrectable read error, 5–10
uncorrectable write error, 5–10

error correction and detection, 5–3
management control and status register

(MM_CSR), 4–41
masked write operations, 5–8
operations table, 5–38
page mode, 5–9
partitioning, 5–3

Memory (cont’d)
read and write options table, 5–39
sparse

See Sparse memory space
timing parameters, 5–12, 5–37

bank timing registers (BTR3–BTR0),
5–20

cache register (CAR), 5–29
CAS cycle, 5–21
CAS precharge, 5–21
CAS/RAS setup, 5–23
column address setup, 5–22
data setup, 5–21
global timing register (GTR), 5–22
maximum RAS assertion, 5–24
minimum RAS assertion, 5–24
RAS/CAS precharge, 5–24
read cycle count, 5–31
read to write tristate, 5–21
refresh interval, 5–23
row address hold, 5–22
row address setup, 5–22
write cycle count, 5–31
write hold time, 5–30

transceivers, optional, 5–51
memreq_l signal, 6–54
mem_addr<11:0> signals, 5–52
mem_cas_l signal, 5–53
mem_data<63:0> signals, 5–51
mem_dsf signal, 5–53
mem_dtoe_l signal, 5–53
mem_ecc<7:0> signals, 5–51
mem_rasa_l<3:0> signals, 5–52
mem_rasb_l<3:0> signals, 5–52
mem_ras_l, defined, 5–22, 5–52
mem_rd_oe signal, 5–54
mem_write_l signal, 5–52
mem_wr_oe_l signal, 5–54
Microarchitecture description, 2–1
Microprocessor

alias for 21066, xx, xxi
alias for 21066A, xx
features summary, 1–2
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Minimum RAS assertion field, 5–24
Miss flow

data translation buffer, 3–22
instruction translation buffer, 3–21

MOD—graphics mode bit, 5–34
Mode

See also Executive mode
See also Kernel mode
See also Supervisor mode
See also User mode
alternate processor mode

(ALT_MODE) register, 4–42
(AM) field, 4–43

current mode
(CM) field, 4–31
(CM0) bit, 4–32
(CM1) bit, 4–31

error mode (ERM) bit, 5–15
graphics mode (MOD) bit, 5–34
Icache test modes, 9–1, 9–4
memory page mode, 5–9
PALmode, 3–2
processor, 2–5
simple frame buffer mode, 5–12
transparent stipple mode, 5–12
write mode (WRM) bit, 5–15

Move
from processor instruction (HW_MFPR),

3–6
to processor instruction (HW_MTPR), 3–6

MSK—exception register write mask window
bit, 4–14

Multiple
hard errors (MHE) bit, 5–26
soft errors (MSE) bit, 5–27

Must be zero (MBZ) convention, xix

N
Nibble

correction bit grouping, 5–4
defined, xxi
errors, 5–3

Non-page mode
read timing, 5–48
write timing, 5–50

Nonexistent memory
address error, 5–11
(NXM) bit, 5–26

Nonissue conditions, 2–19
Not-last-used (NLU)

algorithm, 4–36
pointers, 4–6, 4–40

Note convention, xxi
Numbering convention, xxi

O
Octaword, defined, xxi
Offset field, CC register, 4–44
OPCDEC PALcode entry point, 3–12
OPCODE field, 4–42
Optional

cache
See Backup cache (Bcache)

memory transceivers, 5–51, 5–54
Ordering products, D–1

P
Page

boundary crossing, 6–31
frame number (PFN), 2–5

field, 4–4, 4–37, 4–39
mode, 5–9

read timing, 5–47
write timing, 5–49

number (P_NBR) field, 6–40
table

entry (PTE), 2–4
read errors, 6–29

PAL
base address (PAL_BASE)

field, 4–32
register, 4–32

mode bit, 4–13
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PALcode, 3–1
defined, 1–2
entry points, 3–11

ARITH, 3–11
BAD_VA, 3–13
CALL_PAL, 3–12
Dstream errors, 3–11, 3–13
DTB_MISS NATIVE, 3–13
DTB_MISS PAL, 3–13
D_FAULT, 3–13
FEN, 3–12
INTERRUPT, 3–11
ITB_ACV, 3–12
ITB_MISS, 3–12
MCHK, 3–11
OPCDEC, 3–12
RESET, 3–11
UNALIGN, 3–13

hardware dispatch, 3–3
instructions

architecturally reserved, 2–26
CALL_PAL, 3–4
implementation-specific, 2–27, 3–2
required, 2–26
reserved opcode, 3–5

invoking, 3–3
overview, 2–26
temporary registers (PAL_TEMP<31:0>),

4–45
PALmode, 3–2

internal processor register access, 3–7
restrictions, 3–14

par signal, 6–53
Parity

bc_parity signal, 5–55
disable, PCI, (IOC_PAR_DIS) register,

6–44
enable tag parity check (ETP) bit, 5–31
error

Bcache tag, 5–10
PCI address, 6–31
PCI read data, 6–18
PCI write data, 6–19

par signal, 6–53
(PAR) bit, 6–45

Parity (cont’d)
PCI, 6–2

address, 6–18
data, 6–18

write wrong tag parity (WWP) bit, 5–31
Parts

ordering, D–1
PC—program counter field, 4–13
PCI

See also I/O controller
address

burst order, 6–31
parity, 6–18
phase PCI-initiated cycles, 6–30
phase, CPU-initiated cycles, 6–7
queue, 6–30
translation, 6–23

addresses
dense space, 6–13
sparse space, 6–7

back-to-back transfers, 6–18
burst order in sparse space, 6–10
bus parking, 6–6
configuration

address space, 6–5
cycles, 6–15

CPU address windows to PCI address
spaces, 6–4

CPU-initiated cycles, 6–3
CPU-to-PCI address translation, 6–4
cycle command codes, 6–22
data parity, 6–18
default mastership, 6–6
dense memory address space, 6–5
direct-mapped address translation, 6–25
exclusive access, 6–3, 6–36
external arbitration logic, 6–5
guaranteed access arbitration, 6–36
I/O

address space, 6–5
space cycles, 6–15

interrupt
acknowledge address space, 6–5
acknowledge cycles, 6–16
vector DATA field, 6–50
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PCI (cont’d)
latency timer, 6–19
masked longword

reads to sparse space, 6–13
writes to sparse space, 6–13

master
abort, 6–21
timeout, 6–19

memory
read data errors, 6–35
write data errors, 6–33

parity, 6–2
disable (IOC_PAR_DIS) register,

6–44
peripheral-initiated cycles, 6–22
read data

parity errors, 6–18
queue, 6–34
transfers, 6–34

requesting PCI mastership, 6–5
retry limit, 6–20
scatter-gather

map address, 6–27
map invalid page errors, 6–30
map page table entry, 6–27
map page table read errors, 6–29
map translation buffer, 6–28
mapped address translation, 6–26

signals, 6–51
See also Signal descriptions

soft reset (IOC_SFT_RST) register, 6–43
sparse memory address space, 6–5
special

cycle address space, 6–5
cycle DATA field, 6–50
cycles, 6–16

target
abort, 6–21
disconnect, 6–20
latency timeout, 6–35

unmasked
longword reads to sparse space, 6–10
longword writes to sparse space,

6–11

PCI
unmasked (cont’d)

quadword reads to sparse space,
6–10

quadword writes to sparse space,
6–11

window mask, 6–23
write data

parity errors, 6–19
queue, 6–33
transfers, 6–32

pci_clk_in signal, 6–54
Performance counter

0
input selection, 4–29
multiplexer (PCMUX0) field, 4–9
multiplexer field, 5–28
(PC0) clear interrupt request bit,

4–15
(PC0) interrupt enable bit, 4–21,

4–26
(PC0) interrupt request bit, 4–19
(PC0) interrupt request enable bit,

4–9
1

input selection, 4–30
multiplexer (PCMUX1) field, 4–9
multiplexer field, 5–28
(PC1) clear interrupt request bit,

4–15
(PC1) interrupt enable bit, 4–21,

4–26
(PC1) interrupt request bit, 4–19
(PC1) interrupt request enable bit,

4–9
description, 2–7, 4–28
enable (PCEN) field, 4–8
events counted, 5–29

Peripheral-initiated PCI cycles, 6–22
perr_l signal, 6–53
Phase-locked loop (PLL), 7–1

clock generator, 7–1
Physical address space, 2–27

table, 2–27
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Pins
See also Signal descriptions
summary, B–1

PIPE—pipeline normal bit, 4–9
Pipeline

See Instruction pipeline
Plane mask

field, 5–35
register (PLM), 5–35

pll_5v signal, 7–4
pll_bypass signal, 7–3
pll_clk_in signal, 7–3
pll_clk_in_l signal, 7–3
pll_filter signal, 7–4
pll_i_ref signal, 7–4
Power saving (PWR) bit, 5–30
Privileged architecture library

See PALcode
See PALmode

Processor status (PS) register, 4–30
Producer–consumer

classes, 2–19
latency, 2–20

Producer–producer latency, 2–22, 3–15
Program counter (PC), 2–2

field, 4–13
virtual (VPC), 2–5

Programmable memory timing parameters
See Memory timing parameters

Q
Quadword

defined, xxi
error address field, 5–28
unmasked

reads to sparse space, 6–10
writes to sparse space, 6–11

R
RA—register Ra field, 4–42
Ranges convention, xxi
RAS/CAS precharge field, 5–24
RCV—serial line receive bit, 4–16
Read

as undefined (RAX) convention, xix
as zero (RAZ) convention, xix
clears (RC) convention, xix
cycle count field, 5–31
data

parity errors, 6–18
queue, 6–34
transfers, PCI-initiated, 6–34

enable
executive mode (ERE) bit, 4–4, 4–37,

4–39
kernel mode (KRE) bit, 4–4, 4–37,

4–39
supervisor mode (SRE) bit, 4–4,

4–37, 4–39
user mode (URE) bit, 4–4, 4–37, 4–39

error
correctable, 5–9
memory read data, 6–35
page table, 6–29
uncorrectable, 5–10

fill, single, xxi
masked longword to sparse space, 6–13
only (RO) convention, xix
options table, memory, 5–39
timing

Backup cache (Bcache), 5–45
non-page mode, 5–48
page mode, 5–47

to write tristate field, 5–21
unmasked

longword to sparse space, 6–10
quadword to sparse space, 6–10
to dense space, 6–14

write
one to clear (R/W1C) convention, xx
(RW) convention, xix
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Refresh
divide select (RDS) bit, 5–23
enable (REN) bit, 5–23
interval field, 5–23
timing, 5–42

Registers
access abbreviations, defined, xix
alternate processor mode (ALT_MODE),

4–42
asynchronous trap

interrupt enable (ASTER), 4–27
interrupt request (ASTRR), 4–24

bank
address mask (BMR3–BMR0), 5–18
configuration (BCR3–BCR0), 5–14
timing (BTR3–BTR0), 5–20

boundary scan (BSR), 8–5
bypass (BPR), 8–4
cache (CAR), 5–29
cache status (C_STAT), A–12
clear serial line interrupt (SL_CLR), 4–15
configuration cycle type (IOC_CONF),

6–38
cycle counter

(CC), 4–43
control (CC_CTL), 4–44

data cache status (DC_STAT), 4–45
data translation buffer

ASM (DTBASM), 4–40
invalidate single (DTBIS), 4–40
page table entry (DTB_PTE), 4–36
page table entry temporary

(DTB_PTE_TEMP), 4–38
ZAP (DTBZAP), 4–40

error
address (EAR), 5–27
status (ESR), 5–24

exception
address (EXC_ADDR), 4–11
summary (EXC_SUM), 4–13

floating-point control (FPCR), 2–13
flush instruction cache

ASM (FLUSH_IC_ASM), 4–42
(FLUSH_IC), 4–42

foreground (FOR), 5–36

Registers (cont’d)
global timing (GTR), 5–22
group control (GCR), 8–5
hardware interrupt

enable (HIER), 4–25
request (HIRR), 4–23

host address extension (IOC_HAE), 6–38
I/O controller, 6–37

initialization requirements, 6–50
instruction (IR), JTAG, 8–2
instruction cache control and status

(ICCSR), 4–7
instruction translation buffer

ASM (ITBASM), 4–6
invalidate single (ITBIS), 4–6
page table entry (ITB_PTE), 4–3
page table entry temporary

(ITB_PTE_TEMP), 4–5
ZAP (ITBZAP), 4–6

internal processor (IPR), 4–1
interrupt

request and enable, 4–17
vector and special cycle

(IOC_IACK_SC), 6–49
length, 1–1
locked_physical_address, 2–29
lock_flag, 2–29
LSU control (ABOX_CTL), 4–33
memory controller, 5–12

timing parameters, 5–12
memory management control and status

(MM_CSR), 4–41
PAL base address (PAL_BASE), 4–32
PALcode temporary (PAL_TEMP<31:0>),

4–45
parity disable, PCI, (IOC_PAR_DIS),

6–44
plane mask (PLM), 5–35
processor status (PS), 4–30
reset state, 4–46, C–1
serial line

clear (SL_CLR) interrupt, 4–15
receive (SL_RCV), 4–15
transmit (SL_XMIT), 4–16

soft reset, PCI, (IOC_SFT_RST), 6–43
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Registers (cont’d)
software interrupt

enable (SIER), 4–26
request (SIRR), 4–23

status
0 (IOC_STAT0), 6–39
1 (IOC_STAT1), 6–41

translated base (IOC_T_BASE), 6–47
translation buffer

control (TB_CTL), 4–35
enable (IOC_TB_ENA), 6–43
invalidate all (IOC_TBIA), 6–42
tag (IOC_TB_TAG7–0), 6–48
tag (TB_TAG), 4–1

video and graphics control (VGR), 5–33
virtual address (VA), 4–40
window

base (IOC_W_BASE), 6–45
mask (IOC_W_MASK), 6–46

Related documentation, D–2
Requesting PCI mastership, 6–5
Required PALcode instructions, 2–26
req_l signal, 6–51
Reserved

opcode instructions, 3–5
(RES) convention, xix

Reset
See also Initialization
internal processor registers reset state,

4–46
internal registers reset state, C–1
(RST) bit, 6–44

RESET PALcode entry point, 3–11
reset_in_l signal, 7–5
Retry limit, PCI, 6–20
Return from exception or interrupt

instruction (HW_REI), 3–10
Row address

hold field, 5–22
select

encodings, 5–16
field, 5–15

setup field, 5–22
strobe (RAS)

CAS-before-RAS refresh, 5–3

Row address
strobe (RAS) (cont’d)

CAS/RAS setup field, 5–23
maximum assertion, 5–24
minimum assertion, 5–24
precharge timing, 5–41
RAS/CAS precharge field, 5–24
selection, 5–16

rst_l signal, 6–53

S
Scatter-gather

map
address, 6–27
invalid page errors, 6–30
page table entry, 6–27
page table read errors, 6–29
translation buffer, 6–28

mapped address translation, 6–26
mapping, 6–1
(SG) bit, 6–46

Scheduling and issuing rules, 2–19
Security holes convention, xxii
Semiconductor Information Line, D–1
Serial line

interface description, 9–5
interrupt

clear (SLC) bit, 4–15
clear (SL_CLR) register, 4–15
enable (SLE) bit, 4–21, 4–26
request (SLR) bit, 4–19

receive
(RCV) bit, 4–16
(SL_RCV) register, 4–15

transmit
(SL_XMIT) register, 4–16
(TMT) bit, 4–17

Serial ROM (SROM)
interface, 9–1
signals, 9–5

See also Signal descriptions
timing, 9–4
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serr_l signal, external logic required, 6–2,
6–7, 6–18

Sideband signals, PCI, 6–36
Signal descriptions

clock, 7–3
pll_5v, 7–4
pll_bypass, 7–3
pll_clk_in, 7–3
pll_clk_in_l, 7–3
pll_filter, 7–4
pll_i_ref, 7–4
reset_in_l, 7–5
test_clk_out, 7–4

I/O controller, 6–51
ad<31:0>, 6–52
c_be_l<3:0>, 6–52
devsel_l, 6–53
frame_l, 6–52
gnt_l, 6–51
irdy_l, 6–52
lock_l, 6–53, 8–4
memack_l, 6–54
memreq_l, 6–54
par, 6–53
pci_clk_in, 6–54
perr_l, 6–53
req_l, 6–51
rst_l, 6–53
serr_l, 6–2
stop_l, 6–53
trdy_l, 6–52

instr_ref, 8–4, B–4
interrupt

irq<2:0>, 7–3
JTAG, 8–1

tck, 8–1
tdi, 8–1
tdo, 8–1
tms, 8–1
trst_l, 8–1

memory controller, 5–51
bc_cs_l, 5–55
bc_dirty, 5–54
bc_idx_tag<4:0>, 5–55
bc_index, 5–55

Signal descriptions
memory controller (cont’d)

bc_oe_l, 5–56
bc_parity, 5–55
bc_tag<7:0>, 5–54
bc_we_l, 5–56
mem_addr<11:0>, 5–52
mem_cas_l, 5–53
mem_data<63:0>, 5–51
mem_dsf, 5–53
mem_dtoe_l, 5–53
mem_ecc<7:0>, 5–51
mem_rasa_l<3:0>, 5–52
mem_rasb_l<3:0>, 5–52
mem_ras_l, defined, 5–22, 5–52
mem_rd_oe, 5–54
mem_write_l, 5–52
mem_wr_oe_l, 5–54
vframe_l, 5–56
vrefresh_l, 5–56

SROM, 9–5
sromclk, 9–5
sromd, 9–5
sromoe_l, 9–5

Signals
naming convention, xxii
summary, B–1

Simple frame buffer mode, 5–12
Single read fill, xxi
Small page instruction translation buffer,

2–4
Soft

error, 5–26
reset, PCI, (IOC_SFT_RST) register,

6–43
Software

completion bit (SWC), 4–14
interrupt

enable (SIER) field, 4–21, 4–27
enable register (SIER), 4–26
request (SIRR) field, 4–19, 4–24
request (SWR) bit, 4–20
request register (SIRR), 4–23

interrupts, 2–5
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SOR—error source bit, 5–27
Sparse memory space, 6–2, 6–7

address extension, 6–9
burst order, 6–10
byte enable encoding, 6–8
masked

longword reads, 6–13
longword writes, 6–13

PCI addresses, 6–7
unmasked

longword reads, 6–10
longword writes, 6–11
quadword reads, 6–10
quadword writes, 6–11

Special
cycle

DATA field, 6–50
PCI address space, 6–5

cycles, 6–16
Split

bank enable (SBE) bit, 5–15
video shift-register transfer timing, 5–44

SROM
See Serial ROM (SROM)

sromclk signal, 9–5
sromd signal, 9–5
sromoe_l signal, 9–5
Start of video frame field, 5–33
Static RAM (SRAM)

See Backup cache (Bcache)
Status

0 (IOC_STAT0) register, 6–39
1 (IOC_STAT1) register, 6–41

Stipple mode, 5–12
stop_l signal, 6–53
Store

conditional, no result (STCNR) bit, 4–34
instruction

conditional (HW_ST/C), 3–10
(HW_ST), 3–9

Superpage
data translation buffer, 2–9
enable

1 (SPE1) bit, 4–34
2 (SPE2) bit, 4–34

Superpage (cont’d)
instruction translation buffer, 2–4
map (MAP) enable bit, 4–8

Supervisor mode, 2–5
AST enable (SAE) bit, 4–20, 4–28
AST request (SAR) bit, 4–19, 4–25
read-enable (SRE) bit, 4–4, 4–37, 4–39
write-enable (SWE) bit, 4–37, 4–39

T
Tag field, Bcache, 5–30
Target

abort, PCI, 6–21
disconnect, PCI, 6–20
latency timeout, 6–35

tck signal, 8–1
tdi signal, 8–1
tdo signal, 8–1
Technical support, D–1
Test

See also Joint testing action group (JTAG)
access port (TAP), 8–7

controller, 8–2
hit (THIT) bit, 6–41
port, 8–1
reference (TREF) bit, 6–40

test_clk_out signal, 7–4
Third-party documentation, D–2
Timing

See Memory timing parameters
tms signal, 8–1
TMT—serial line transmit bit, 4–17
Translated base (IOC_T_BASE) registers,

6–47
Translation

not valid (TNV), 3–21, 3–23
Translation base (T_BASE) field, 6–48
Translation buffer

control register (TB_CTL), 4–35
data

See Data translation buffer (DTB)
enable (IOC_TB_ENA) register, 6–43
instruction
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Translation buffer
instruction (cont’d)

See Instruction translation buffer
(ITB)

invalidate all (IOC_TBIA) register, 6–42
miss flows, 3–21

data translation buffer, 3–22
instruction translation buffer, 3–21

tag
(IOC_TB_TAG7–0) registers, 6–48
register (TB_TAG), 4–1
(TB_TAG) field, 6–49

Translation lookaside buffer (TLB), 6–28
enable (TEN) bit, 6–43
scatter-gather map, 6–28

Transparent stipple mode, 5–12
trdy_l signal, 6–52
Tribyte, defined, xxi
trst_l signal, 8–1

U
UNALIGN PALcode entry point, 3–13
Unaligned convention, xx
Uncorrectable

error (UEE) bit, 5–27
read error, 5–10
write error, 5–10

UNDEFINED convention, xxii
Underflow (UNF)—floating-point underflow

bit, 4–14
Unmasked

burst writes to dense space, 6–14
longword

reads to sparse space, 6–10
writes to sparse space, 6–11

quadword
reads to sparse space, 6–10
writes to sparse space, 6–11

reads to dense space, 6–14
UNPREDICTABLE convention, xxii
User mode, 2–5

AST enable (UAE) bit, 4–20, 4–28
AST request (UAR) bit, 4–19, 4–25
read-enable (URE) bit, 4–4, 4–37, 4–39
write-enable (UWE) bit, 4–37, 4–39

V
vframe_l signal, 5–56
Victim

block, 5–6
write, 5–11, 5–38

Video
and graphics control register (VGR), 5–33
display pointer, 5–34

address increment (INC) bit, 5–33
load video control (LDV) bit, 5–33
RAM (VRAM) address increment

encodings, 5–34
shift-register transfer timing, 5–43, 5–44
start of video frame field, 5–33

Virtual
address

(VA) field, 4–2
(VA) register, 4–40

program counter (VPC), 2–5
vrefresh_l signal, 5–56

W
Window

base
(IOC_W_BASE) registers, 6–45
(W_BASE) field, 6–46

enable (WEN) bit, 6–46
mask

(IOC_W_MASK) registers, 6–46
(W_MASK) field, 6–47

Word, defined, xxi
Write

always clears (WA) convention, xx
buffer, 2–11

unload disable (WBDIS) bit, 4–35
byte, external logic, 5–8
cycle count field, 5–31
data

parity errors, 6–19
queue, 6–33
transfers, PCI-initiated, 6–32

enable
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Write
enable (cont’d)

byte (BWE) bit, BCR, 5–15
byte (BWE) bit, VGR, 5–34
executive mode (EWE) bit, 4–37,

4–39
kernel mode (KWE) bit, 4–37, 4–39
supervisor mode(SWE) bit, 4–37,

4–39
user mode (UWE) bit, 4–37, 4–39

error
memory write data, 6–33
uncorrectable, 5–10
(WRE) bit, 5–27

hold time (WHD) bit, 5–30
masked, 5–8

longword to sparse space, 6–13
merge, 2–11
mode (WRM)—write-per-bit enable bit,

5–15
only

(WO) convention, xx

options table, memory, 5–39
page boundary crossing, 6–31
reference (WR) error bit, 4–42
timing

Backup cache (Bcache), 5–46
non-page mode, 5–50
page mode, 5–49

unmasked
burst to dense space, 6–14
longword to sparse space, 6–11
quadword to sparse space, 6–11

victim, 5–11, 5–38
wrong

ECC (WEC<7:0>) bits, 5–25, A–14
tag parity (WWP) bit, 5–31

Write-after-write conflict, 2–22, 3–15
Write-per-bit, 5–8

enable bit (WRM), 5–15

X
X register-access abbreviation, xx
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