
Alpha 21264 Microprocessor Data
Sheet

Order Number: EC–R4CFA–TE

Revision/Update Information: Revision 1.0, February 1999
Compaq Computer Corporation

The information in this publication is subject to change without notice.

COMPAQ COMPUTER CORPORATION SHALL NOT BE LIABLE FOR TECHNICAL OR EDITORIAL
ERRORS OR OMISSIONS CONTAINED HEREIN, NOR FOR INCIDENTAL OR CONSEQUENTIAL
DAMAGES RESULTING FROM THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL. THIS
INFORMATION IS PROVIDED “AS” IS AND COMPAQ COMPUTER CORPORATION DISCLAIMS ANY
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY AND EXPRESSLY DISCLAIMS THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR PARTICULAR PURPOSE, GOOD TITLE AND
AGAINST INFRINGEMENT.

This publication contains information protected by copyright. No part of this publication may be photocopied or
reproduced in any form without prior written consent from Compaq Computer Corporation.

© 1999 Digital Equipment Corporation.
All rights reserved. Printed in U.S.A.

The software described in this publication is furnished under a license agreement or nondisclosure agreement. The
software may be used or copied only in accordance with the terms of the agreement.

17 February 1999 – Subject to Change

COMPAQ, DIGITAL, the Compaq logo, and the DIGITAL logo registered in United States Patent and Trademark
Office.

GRAFOIL is a registered trademark of the Union Carbide Corporation. IEEE is a registered trademark of The Insti-
tute of Electrical and Electronics Engineers, Inc. Pentium is a registered trademark of Intel Corporation.

Other product names mentioned herein may be trademarks and/or registered trademarks of their respective compa-
nies.

 Table of Contents

Preface

1 Introduction

1.1 The Architecture . 1–1
1.1.1 Addressing. 1–2
1.1.2 Integer Data Types . 1–2
1.1.3 Floating-Point Data Types . 1–2
1.2 21264 Microprocessor Features . 1–3

2 Internal Architecture

2.1 21264 Microarchitecture . 2–1
2.2 Pipeline Organization . 2–2
2.3 Floating-Point Control Register . 2–5
2.4 AMASK and IMPLVER Values . 2–7
2.4.1 AMASK . 2–7
2.4.2 IMPLVER . 2–7

3 Hardware Interface

3.1 21264 Microprocessor Logic Symbol . 3–1
3.2 21264 Signal Names and Functions . 3–3
3.3 Pin Assignments . 3–8
3.4 Mechanical Specifications. 3–18
3.5 21264 Packaging . 3–19
17 February 1999 – Subject to Change iii

4 Internal Processor Registers

4.1 Ebox IPRs . 4–3
4.1.1 Cycle Counter Register – CC . 4–3
4.1.2 Cycle Counter Control Register – CC_CTL . 4–4
4.1.3 Virtual Address Register – VA . 4–4
4.1.4 Virtual Address Control Register – VA_CTL . 4–4
4.1.5 Virtual Address Format Register – VA_FORM . 4–6
4.2 Ibox IPRs . 4–7
4.2.1 ITB Tag Array Write Register – ITB_TAG . 4–7
4.2.2 ITB PTE Array Write Register – ITB_PTE . 4–7
4.2.3 ITB Invalidate All Process (ASM=0) Register – ITB_IAP. 4–8
4.2.4 ITB Invalidate All Register – ITB_IA . 4–8
4.2.5 ITB Invalidate Single Register – ITB_IS . 4–8
4.2.6 Exception Address Register – EXC_ADDR. 4–8
4.2.7 Instruction Virtual Address Format Register — IVA_FORM 4–9
4.2.8 Interrupt Enable and Current Processor Mode Register – IER_CM 4–10
4.2.9 Software Interrupt Request Register – SIRR. 4–11
4.2.10 Interrupt Summary Register – ISUM . 4–11
4.2.11 Hardware Interrupt Clear Register – HW_INT_CLR 4–13
4.2.12 Exception Summary Register – EXC_SUM. 4–14
4.2.13 PAL Base Register – PAL_BASE . 4–15
4.2.14 Ibox Control Register – I_CTL . 4–16
4.2.15 Ibox Status Register – I_STAT . 4–19
4.2.16 Icache Flush Register – IC_FLUSH. 4–20
4.2.17 Icache Flush ASM Register – IC_FLUSH_ASM . 4–20
4.2.18 Clear Virtual-to-Physical Map Register – CLR_MAP. 4–20
4.2.19 Sleep Mode Register – SLEEP . 4–20
4.2.20 Process Context Register – PCTX . 4–21
4.2.21 Performance Counter Control Register – PCTR_CTL. 4–22
4.3 Mbox IPRs . 4–24
4.3.1 DTB Tag Array Write Registers 0 and 1 – DTB_TAG0, DTB_TAG1 4–24
4.3.2 DTB PTE Array Write Registers 0 and 1 – DTB_PTE0, DTB_PTE1 4–25
4.3.3 DTB Alternate Processor Mode Register – DTB_ALTMODE 4–26
4.3.4 Dstream TB Invalidate All Process (ASM=0) Register – DTB_IAP. 4–26
4.3.5 Dstream TB Invalidate All Register – DTB_IA . 4–26
4.3.6 Dstream TB Invalidate Single Registers 0 and 1 – DTB_IS0,1 4–26
4.3.7 Dstream TB Address Space Number Registers 0 and 1 – DTB_ASN0,1 . . . 4–27
4.3.8 Memory Management Status Register – MM_STAT 4–27
4.3.9 Mbox Control Register – M_CTL . 4–28
4.3.10 Dcache Control Register – DC_CTL . 4–29
4.3.11 Dcache Status Register – DC_STAT. 4–30
4.4 Cbox CSRs and IPRs . 4–31
4.4.1 Cbox Data Register – C_DATA . 4–31
4.4.2 Cbox Shift Register – C_SHFT . 4–32
4.4.3 Cbox WRITE_ONCE Chain Description . 4–32
iv 17 February 1999 – Subject to Change

4.4.4 Cbox WRITE_MANY Chain Description . 4–37
4.4.5 Cbox Read Register (IPR) Description . 4–40

5 Privileged Architecture Library Code

5.1 PALcode Description . 5–1
5.2 PALmode Environment . 5–2
5.3 Required PALcode Function Codes . 5–3
5.4 Opcodes Reserved for PALcode . 5–3
5.4.1 HW_LD Instruction. 5–3
5.4.2 HW_ST Instruction. 5–4
5.4.3 HW_RET Instruction . 5–5
5.4.4 HW_MFPR and HW_MTPR Instructions . 5–6
5.5 Internal Processor Register Access Mechanisms. 5–7
5.5.1 IPR Scoreboard Bits . 5–8
5.5.2 Hardware Structure of Explicitly Written IPRs . 5–8
5.5.3 Hardware Structure of Implicitly Written IPRs . 5–9
5.5.4 IPR Access Ordering . 5–9
5.5.5 Correct Ordering of Explicit Writers Followed by Implicit Readers 5–10
5.5.6 Correct Ordering of Explicit Readers Followed by Implicit Writers 5–11
5.6 PALshadow Registers. 5–11
5.7 PALcode Emulation of the FPCR . 5–11
5.7.1 Status Flags. 5–12
5.7.2 MF_FPCR . 5–12
5.7.3 MT_FPCR . 5–12
5.8 PALcode Entry Points . 5–12
5.8.1 CALL_PAL Entry Points. 5–12
5.8.2 PALcode Exception Entry Points . 5–13

6 Initialization and Configuration

6.1 Power-Up Reset Flow and the RESET_L and DCOK_H Pins 6–1
6.1.1 Power Sequencing and Reset State for Signal Pins 6–3
6.1.2 Clock Forwarding and System Clock Ratio Configuration 6–5
6.1.3 PLL Ramp Up . 6–6
6.1.4 BiST and SROM Load and the TestStat_H Pin . 6–7
6.1.5 Clock Forward Reset and System Interface Initialization. 6–7
6.2 Internal Processor Register Power-Up Reset State . 6–8

7 Electrical Data

7.1 Electrical Characteristics. 7–1
7.2 DC Characteristics . 7–2
17 February 1999 – Subject to Change v

7.3 Power Supply Sequencing and Avoiding Potential Failure Mechanisms 7–5
7.4 AC Characteristics . 7–6

8 Thermal Management

8.1 Operating Temperature. 8–1
8.2 Heat Sink Specifications . 8–3
8.3 Thermal Design Considerations . 8–5

A Alpha Instruction Set

A.1 Alpha Instruction Summary. A–1
A.2 Reserved Opcodes . A–8
A.2.1 Opcodes Reserved for Compaq . A–8
A.2.2 Opcodes Reserved for PALcode . A–9
A.3 IEEE Floating-Point Instructions . A–9
A.4 VAX Floating-Point Instructions . A–11
A.5 Independent Floating-Point Instructions . A–11
A.6 Opcode Summary . A–12
A.7 Required PALcode Function Codes . A–13
A.8 IEEE Floating-Point Conformance . A–14

B Products and Documentation

Index
vi 17 February 1999 – Subject to Change

Figures

2–1 21264 Block Diagram . 2–2
2–2 Pipeline Organization . 2–3
2–3 Floating-Point Control Register . 2–5
3–1 21264 Microprocessor Logic Symbol . 3–2
3–2 Package Dimensions . 3–18
3–3 21264 Top View (Pin Down) . 3–19
3–4 21264 Bottom View (Pin Up). 3–20
4–1 Cycle Counter Register . 4–3
4–2 Cycle Counter Control Register . 4–4
4–3 Virtual Address Register . 4–4
4–4 Virtual Address Control Register. 4–5
4–5 Virtual Address Format Register (VA_48 = 0, VA_FORM_32 = 0) 4–6
4–6 Virtual Address Format Register (VA_48 = 1, VA_FORM_32 = 0) 4–6
4–7 Virtual Address Format Register (VA_48 = 0, VA_FORM_32 = 1) 4–6
4–8 ITB Tag Array Write Register . 4–7
4–9 ITB PTE Array Write Register . 4–7
4–10 ITB Invalidate Single Register. 4–8
4–11 Exception Address Register . 4–9
4–12 Instruction Virtual Address Format Register (VA_48 = 0, VA_FORM_32 = 0) . . . 4–9
4–13 Instruction Virtual Address Format Register (VA_48 = 1, VA_FORM_32 = 0) . . . 4–9
4–14 Instruction Virtual Address Format Register (VA_48 = 0, VA_FORM_32 = 1) . . . 4–10
4–15 Interrupt Enable and Current Processor Mode Register . 4–10
4–16 Software Interrupt Request Register. 4–11
4–17 Interrupt Summary Register . 4–12
4–18 Hardware Interrupt Clear Register . 4–13
4–19 Exception Summary Register . 4–14
4–20 PAL Base Register . 4–16
4–21 Ibox Control Register . 4–17
4–22 Ibox Status Register . 4–20
4–23 Process Context Register . 4–21
4–24 Performance Counter Control Register. 4–23
4–25 DTB Tag Array Write Registers 0 and 1 . 4–25
4–26 DTB PTE Array Write Registers 0 and 1. 4–25
4–27 DTB Alternate Processor Mode Register . 4–26
4–28 Dstream Translation Buffer Invalidate Single Registers . 4–27
4–29 Dstream Translation Buffer Address Space Number Registers 0 and 1. 4–27
4–30 Memory Management Status Register . 4–27
4–31 Mbox Control Register . 4–28
4–32 Dcache Control Register . 4–29
4–33 Dcache Status Register . 4–30
4–34 Cbox Data Register. 4–31
4–35 Cbox Shift Register . 4–32
4–36 WRITE_MANY Chain Write Transaction Example . 4–38
5–1 HW_LD Instruction Format . 5–4
17 February 1999 – Subject to Change vii

5–2 HW_ST Instruction Format . 5–4
5–3 HW_RET Instruction Format . 5–6
5–4 HW_MFPR and HW_MTPR Instructions Format . 5–6
6–1 Power-Up Timing Sequence . 6–3
8–1 Type 1 Heat Sink . 8–3
8–2 Type 2 Heat Sink . 8–4
8–3 Type 3 Heat Sink . 8–5
viii 17 February 1999 – Subject to Change

Tables

1–1 Integer Data Types . 1–2
2–1 Floating-Point Control Register Fields . 2–5
2–2 21264 AMASK Values . 2–7
2–3 AMASK Bit Assignments. 2–7
3–1 Signal Pin Types Definitions . 3–3
3–2 21264 Signal Descriptions . 3–3
3–3 21264 Signal Descriptions by Function . 3–6
3–4 Pin List Sorted by Signal Name . 3–8
3–5 Pin List Sorted by PGA Location . 3–12
3–6 Ground and Power (VSS and VDD) Pin List . 3–17
4–1 Internal Processor Registers . 4–1
4–2 Cycle Counter Control Register Fields Description. 4–4
4–3 Virtual Address Control Register Fields Description . 4–5
4–4 IER_CM Register Fields Description . 4–10
4–5 Software Interrupt Request Register Fields Description . 4–11
4–6 Interrupt Summary Register Fields Description . 4–12
4–7 Hardware Interrupt Clear Register Fields Description. 4–13
4–8 Exception Summary Register Fields Description . 4–15
4–9 PAL Base Register Fields Description . 4–16
4–10 Ibox Control Register Fields Description . 4–17
4–11 Ibox Status Register Fields Description . 4–20
4–12 IPR Index Bits and Register Fields . 4–21
4–13 Process Context Register Fields Description . 4–21
4–14 Performance Counter Control Register Fields Description 4–23
4–15 Performance Counter Control Register Input Select Field SL0 4–24
4–16 DTB Alternate Processor Mode Register Fields Description 4–26
4–17 Memory Management Status Register Fields Description 4–28
4–18 Mbox Control Register Fields Description. 4–29
4–19 Dcache Control Register Fields Description . 4–29
4–20 Dcache Status Register Fields Description. 4–30
4–21 Cbox Data Register Fields Description . 4–32
4–22 Cbox Shift Register Fields Description . 4–32
4–23 Cbox WRITE_ONCE Chain Order . 4–33
4–24 Cbox WRITE_MANY Chain Order . 4–38
4–25 Cbox Read IPR Fields Description . 4–40
5–1 Required PALcode Function Codes . 5–3
5–2 Opcodes Reserved for PALcode . 5–3
5–3 HW_LD Instruction Fields Descriptions . 5–4
5–4 HW_ST Instruction Fields Descriptions . 5–5
5–5 HW_RET Instruction Fields Descriptions . 5–6
5–6 HW_MFPR and HW_MTPR Instructions Fields Descriptions 5–7
5–7 Paired Instruction Fetch Order . 5–9
5–8 PALcode Exception Entry Locations . 5–13
6–1 21264 Reset State Machine Major Operations . 6–1
17 February 1999 – Subject to Change ix

6–2 Signal Pin Reset State . 6–3
6–3 Pin Signal Names and Initialization State . 6–5
6–4 Power-Up Flow Signals and Their Constraints . 6–7
6–5 Internal Processor Registers at Power-Up Reset State . 6–8
7–1 Maximum Electrical Ratings . 7–1
7–2 Signal Types . 7–2
7–3 VDD (I_DC_POWER) . 7–3
7–4 Input DC Reference Pin (I_DC_REF) . 7–3
7–5 Input Differential Amplifier Receiver (I_DA) . 7–3
7–6 Input Differential Amplifier Clock Receiver (I_DA_CLK) . 7–3
7–7 Open-Drain Output Driver (O_OD) . 7–4
7–8 Bidirectional, Differential Amplifier Receiver, Open-Drain Output Driver (B_DA_OD) 7–4
7–9 Open-Drain Driver for Test Pins (O_OD_TP) . 7–4
7–10 Bidirectional, Differential Amplifier Receiver, Push-Pull Output Driver (B_DA_PP) 7–4
7–11 Push-Pull Output Driver (O_PP) . 7–5
7–12 Push-Pull Output Clock Driver (O_PP_CLK) . 7–5
7–13 AC Specifications . 7–7
8–1 Operating Temperature at Heat Sink Center (Tc) . 8–1
8–2 qca at Various Airflows for 21264 . 8–2
8–3 Maximum Ta for 21264 @ 466 MHz with Various Airflows. 8–2
8–4 Maximum Ta for 21264 @ 500 MHz with Various Airflows. 8–2
8–5 Maximum Ta for 21264 @ 550 MHz with Various Airflows. 8–2
8–6 Maximum Ta for 21264 @ 575 MHz with Various Airflows. 8–2
8–7 Maximum Ta for 21264 @ 600 MHz with Various Airflows. 8–3
A–1 Instruction Format and Opcode Notation . A–1
A–2 Architecture Instructions . A–2
A–3 Opcodes Reserved for Compaq . A–8
A–4 Opcodes Reserved for PALcode . A–9
A–5 IEEE Floating-Point Instruction Function Codes . A–9
A–6 VAX Floating-Point Instruction Function Codes . A–11
A–7 Independent Floating-Point Instruction Function Codes . A–12
A–8 Opcode Summary . A–12
A–9 Key to Opcode Summary Used in Table A–8 . A–13
A–10 Required PALcode Function Codes . A–13
A–11 Exceptional Input and Output Conditions . A–15
x 17 February 1999 – Subject to Change

 Preface

Audience

This data sheet provides a technical overview of the Alpha 21264 microprocessor
(referred to as the 21264).

Content

This data sheet contains the following chapters and appendixes:

Chapter 1, Introduction, introduces the 21264 and provides an overview of the Alpha
architecture.

Chapter 2, Internal Architecture, describes the major hardware functions and the inter-
nal chip architecture.

Chapter 3, Hardware Interface, lists and describes the internal hardware interface sig-
nals, and provides mechanical data and packaging information, including signal pin
lists.

Chapter 4, Internal Processor Registers, lists and describes the internal processor regis-
ter set.

Chapter 5, Privileged Architecture Library Code, describes the privileged architecture
library code (PALcode).

Chapter 6, Initialization and Configuration, describes the initialization and configura-
tion sequence.

Chapter 7, Electrical Data, provides electrical data and describes signal integrity issues.

Chapter 8, Thermal Management, provides information about thermal management.

Appendix A, Alpha Instruction Set, summarizes the Alpha instruction set.

Documentation Included by Reference

The companion volume to this specification, the Alpha Architecture Handbook, Version 4,
contains the instruction set architecture. You can access this document from the follow-
ing website: ftp.digital.com/pub/Digital/info/semiconductor/
literature/dsc-library.html

Also available is the Alpha Architecture Reference Manual, Third Edition, which con-
tains the complete architecture information. That manual is available at bookstores
from the Digital Press as EQ-W938E-DP.
17 February 1999 – Subject To Change xi

Terminology and Conventions

This section defines the abbreviations, terminology, and other conventions used
throughout this document.

Abbreviations

• Binary Multiples

The abbreviations K, M, and G (kilo, mega, and giga) represent binary multiples
and have the following values.

For example:

• Register Access

The abbreviations used to indicate the type of access to register fields and bits have
the following definitions:

K = 210 (1024)
M = 220 (1,048,576)
G = 230 (1,073,741,824)

2KB = 2 kilobytes = 2 × 210 bytes
4MB = 4 megabytes = 4 × 220 bytes
8GB = 8 gigabytes = 8 × 230 bytes
2K pixels = 2 kilopixels = 2 × 210 pixels
4M pixels = 4 megapixels = 4 × 220 pixels

Abbreviation Meaning

IGN Ignore
Bits and fields specified are ignored on writes.

MBZ Must Be Zero
Software must never place a nonzero value in bits and fields spec-
ified as MBZ. A nonzero read produces an Illegal Operand excep-
tion. Also, MBZ fields are reserved for future use.

RAZ Read As Zero
Bits and fields return a zero when read.

RC Read Clears
Bits and fields are cleared when read. Unless otherwise specified,
such bits cannot be written.

RES Reserved
Bits and fields are reserved by Compaq and should not be used;
however, zeros can be written to reserved fields that cannot be
masked.

RO Read Only
The value may be read by software. It is written by hardware.
Software write operations are ignored.

RO,n Read Only, and takes the value n at power-on reset.
The value may be read by software. It is written by hardware.
Software write operations are ignored.
xii 17 February 1999 – Subject To Change

• Sign extension

SEXT(x) means x is sign-extended to the required size.

Addresses

Unless otherwise noted, all addresses and offsets are hexadecimal.

Aligned and Unaligned

The terms aligned and naturally aligned are interchangeable and refer to data objects
that are powers of two in size. An aligned datum of size 2n is stored in memory at a
byte address that is a multiple of 2n; that is, one that has n low-order zeros. For ex-
ample, an aligned 64-byte stack frame has a memory address that is a multiple of 64.

A datum of size 2n is unaligned if it is stored in a byte address that is not a multiple of
2n.

Bit Notation

Multiple-bit fields can include contiguous and noncontiguous bits contained in square
brackets ([]). Multiple contiguous bits are indicated by a pair of numbers separated by a
colon [:]. For example, [9:7,5,2:0] specifies bits 9,8,7,5,2,1, and 0. Similarly, single bits
are frequently indicated with square brackets. For example, [27] specifies bit 27. See
also Field Notation.

Caution

Cautions indicate potential damage to equipment or loss of data.

RW Read/Write
Bits and fields can be read and written.

RW,n Read/Write, and takes the value n at power-on reset.
Bits and fields can be read and written.

W1C Write One to Clear
If read operations are allowed to the register, then the value may
be read by software. If it is a write-only register, then a read oper-
ation by software returns an UNPREDICTABLE result. Software
write operations of a 1 cause the bit to be cleared by hardware.
Software write operations of a 0 do not modify the state of the bit.

W1S Write One to Set
If read operations are allowed to the register, then the value may
be read by software. If it is a write-only register, then a read oper-
ation by software returns an UNPREDICTABLE result. Software
write operations of a 1 cause the bit to be set by hardware. Soft-
ware write operations of a 0 do not modify the state of the bit.

WO Write Only
Bits and fields can be written but not read.

WO,n Write Only, and takes the value n at power-on reset.
Bits and fields can be written but not read.

Abbreviation Meaning
17 February 1999 – Subject To Change xiii

tion.
Data Units

The following data unit terminology is used throughout this manual.

Do Not Care (X)

A capital X represents any valid value.

External

Unless otherwise stated, external means not contained in the chip.

Field Notation

The names of single-bit and multiple-bit fields can be used rather than the actual bit
numbers (see Bit Notation). When the field name is used, it is contained in square
brackets ([]). For example, RegisterName[LowByte] specifies RegisterName[7:0].

Note

Notes emphasize particularly important information.

Numbering

All numbers are decimal or hexadecimal unless otherwise indicated. The prefix 0x indi-
cates a hexadecimal number. For example, 19 is decimal, but 0x19 and 0x19A are hexa-
decimal (also see Addresses). Otherwise, the base is indicated by a subscript; for
example, 1002 is a binary number.

Ranges and Extents

Ranges are specified by a pair of numbers separated by two periods (..) and are inclu-
sive. For example, a range of integers 0..4 includes the integers 0, 1, 2, 3, and 4.

Extents are specified by a pair of numbers in square brackets ([]) separated by a colon
(:) and are inclusive. Bit fields are often specified as extents. For example, bits [7:3]
specifies bits 7, 6, 5, 4, and 3.

Register Figures

The gray areas in register figures indicate reserved or unused bits and fields.

Bit ranges that are coupled with the field name specify the bits of the named field that
are included in the register. The bit range may, but need not necessarily, correspond to
the bit Extent in the register. See the explanation above Table 4–1 for more informa

Term Words Bytes Bits Other

Byte ½ 1 8 —

Word 1 2 16 —

Longword 2 4 32 Dword

Quadword 4 8 64 2 longword
xiv 17 February 1999 – Subject To Change

cur-
Signal Names

The following examples describe signal-name conventions used in this document.

AlphaSignal[n:n] Boldface, mixed-case type denotes signal names that are
assigned internal and external to the 21264 (that is, the sig-
nal traverses a chip interface pin).

AlphaSignal_x[n:n] When a signal has high and low assertion states, a lower-
case italic x represents the assertion states. For example,
SignalName_x[3:0] represents SignalName_H[3:0] and
SignalName_L[3:0].

UNDEFINED

Operations specified as UNDEFINED may vary from moment to moment, implementa-
tion to implementation, and instruction to instruction within implementations. The
operation may vary in effect from nothing to stopping system operation.

UNDEFINED operations may halt the processor or cause it to lose information. How-
ever, UNDEFINED operations must not cause the processor to hang, that is, reach an
unhalted state from which there is no transition to a normal state in which the machine
executes instructions.

UNPREDICTABLE

UNPREDICTABLE results or occurrences do not disrupt the basic operation of the pro-
cessor; it continues to execute instructions in its normal manner. Further:

• Results or occurrences specified as UNPREDICTABLE may vary from moment to
moment, implementation to implementation, and instruction to instruction within
implementations. Software can never depend on results specified as UNPREDICT-
ABLE.

• An UNPREDICTABLE result may acquire an arbitrary value subject to a few con-
straints. Such a result may be an arbitrary function of the input operands or of any
state information that is accessible to the process in its current access mode.
UNPREDICTABLE results may be unchanged from their previous values.

Operations that produce UNPREDICTABLE results may also produce exceptions.

• An occurrence specified as UNPREDICTABLE may happen or not based on an
arbitrary choice function. The choice function is subject to the same constraints as
are UNPREDICTABLE results and, in particular, must not constitute a security
hole.

Specifically, UNPREDICTABLE results must not depend upon, or be a function of,
the contents of memory locations or registers that are inaccessible to the current
process in the current access mode.

Also, operations that may produce UNPREDICTABLE results must not:

– Write or modify the contents of memory locations or registers to which the
rent process in the current access mode does not have access, or

– Halt or hang the system or any of its components.
17 February 1999 – Subject To Change xv

For example, a security hole would exist if some UNPREDICTABLE result
depended on the value of a register in another process, on the contents of processor
temporary registers left behind by some previously running process, or on a
sequence of actions of different processes.

X

 Do not care. A capital X represents any valid value.

Revision History

The following table lists the revision history for this document.

Date Revison Comments

February 17, 1999 1.0 First release
xvi 17 February 1999 – Subject To Change

C
he

r
ro-

 par-
tware

sters.
ions.
 1
Introduction

This chapter provides a brief introduction to the Alpha architecture, Compaq’s RIS
(reduced instruction set computing) architecture designed for high performance. T
chapter then summarizes the specific features of the Alpha 21264 microprocesso
(hereafter called the 21264) that implements the Alpha architecture. Appendix A p
vides a list of Alpha instructions.

The companion volume to this specification, the Alpha Architecture Handbook, Version 4,
contains the instruction set architecture. Also available is the Alpha Architecture Refer-
ence Manual, Third Edition, which contains the complete architecture information.

1.1 The Architecture

The Alpha architecture is a 64-bit load and store RISC architecture designed with
ticular emphasis on speed, multiple instruction issue, multiple processors, and sof
migration from many operating systems.

All registers are 64 bits long and all operations are performed between 64-bit regi
All instructions are 32 bits long. Memory operations are either load or store operat
All data manipulation is done between registers.

The Alpha architecture supports the following data types:

• 8-, 16-, 32-, and 64-bit integers

• IEEE 32-bit and 64-bit floating-point formats

• VAX architecture 32-bit and 64-bit floating-point formats

In the Alpha architecture, instructions interact with each other only by one instruction
writing to a register or memory location and another instruction reading from that regis-
ter or memory location. This use of resources makes it easy to build implementations
that issue multiple instructions every CPU cycle.

The 21264 uses a set of subroutines, called privileged architecture library code (PAL-
code), that is specific to a particular Alpha operating system implementation and hard-
ware platform. These subroutines provide operating system primitives for context
switching, interrupts, exceptions, and memory management. These subroutines can be
invoked by hardware or CALL_PAL instructions. CALL_PAL instructions use the
function field of the instruction to vector to a specified subroutine. PALcode is written
in standard machine code with some implementation-specific extensions to provide
17 February 1999 – Subject To Change Introduction 1–1

The Architecture
direct access to low-level hardware functions. PALcode supports optimizations for mul-
tiple operating systems, flexible memory-management implementations, and multi-
instruction atomic sequences.

The Alpha architecture performs byte shifting and masking with normal 64-bit, regis-
ter-to-register instructions. The 21264 performs single-byte and single-word load and
store instructions.

1.1.1 Addressing

The basic addressable unit in the Alpha architecture is the 8-bit byte. The 21264 sup-
ports a 48-bit or 43-bit virtual address (selectable under IPR control).

Virtual addresses as seen by the program are translated into physical memory addresses
by the memory-management mechanism. The 21264 supports a 44-bit physical address.

1.1.2 Integer Data Types

Alpha architecture supports the four integer data types listed in Table 1–1.

Note: Alpha implementations may impose a significant performance penalty
when accessing operands that are not naturally aligned. Refer to the Alpha
Architecture Handbook, Version 4, for details.

1.1.3 Floating-Point Data Types

The 21264 supports the following floating-point data types:

• Longword integer format in floating-point unit

• Quadword integer format in floating-point unit

• IEEE floating-point formats

– S_floating

– T_floating

• VAX floating-point formats

– F_floating

– G_floating

– D_floating (limited support)

Table 1–1 Integer Data Types

Data Type Description

Byte A byte is 8 contiguous bits that start at an addressable byte boundary.
A byte is an 8-bit value.

Word A word is 2 contiguous bytes that start at an arbitrary byte boundary.
A word is a 16-bit value.

Longword A longword is 4 contiguous bytes that start at an arbitrary byte boundary.
A longword is a 32-bit value.

Quadword A quadword is 8 contiguous bytes that start at an arbitrary byte boundary.
1–2 Introduction 17 February 1999 – Subject To Change

21264 Microprocessor Features

.

1.2 21264 Microprocessor Features

The 21264 microprocessor is a superscalar pipelined processor. It is packaged in a 587-
pin PGA carrier and has removable application-specific heat sinks. A number of config-
uration options allow its use in a range of system designs ranging from extremely sim-
ple uniprocessor systems with minimum component count to high-performance
multiprocessor systems with very high cache and memory bandwidth.

The 21264 can issue four Alpha instructions in a single cycle, thereby minimizing the
average cycles per instruction (CPI). A number of low-latency and/or high-throughput
features in the instruction issue unit and the onchip components of the memory sub-
system further reduce the average CPI.

The 21264 and associated PALcode implements IEEE single-precision and double-pre-
cision, VAX F_floating and G_floating data types, and supports longword
(32-bit) and quadword (64-bit) integers. Byte (8-bit) and word (16-bit) support is pro-
vided by byte-manipulation instructions. Limited hardware support is provided for the
VAX D_floating data type.

Other 21264 features include:

• The ability to issue up to four instructions during each CPU clock cycle.

• A peak instruction execution rate of four times the CPU clock frequency.

• An onchip, demand-paged memory-management unit with translation buffer, which,
when used with PALcode, can implement a variety of page table structures and trans-
lation algorithms. The unit consists of a 128-entry, fully-associative data translation
buffer (DTB) and a 128-entry, fully-associative instruction translation buffer (ITB),
with each entry able to map a single 8KB page or a group of 8, 64, or 512 8KB
pages. The allocation scheme for the ITB and DTB is round-robin. The size of each
translation buffer entry’s group is specified by hint bits stored in the entry. The
DTB and ITB implement 8-bit address space numbers (ASN), MAX_ASN=255

• Two onchip, high-throughput pipelined floating-point units, capable of executing
both VAX and IEEE floating-point data types.

• An onchip, 64KB virtually-addressed instruction cache with 8-bit ASNs
(MAX_ASN=255).

• An onchip, virtually-indexed, physically-tagged dual-read-ported, 64KB data
cache.

• Supports a 48-bit or 43-bit virtual address (program selectable).

• Supports a 44-bit physical address.

• An onchip I/O write buffer with four 64-byte entries for I/O write transactions.

• An onchip, 8-entry victim data buffer.

• An onchip, 32-entry load queue.

• An onchip, 32-entry store queue.

• An onchip, 8-entry miss address file for cache fill requests and I/O read
transactions.

• An onchip, 8-entry probe queue, holding pending system port probe commands.
17 February 1999 – Subject To Change Introduction 1–3

21264 Microprocessor Features
• An onchip, duplicate tag array used to maintain level 2 cache coherency.

• A 64-bit data bus with onchip parity and error correction code (ECC) support.

• Support for an external second-level (Bcache) cache. The size and some timing
parameters of the Bcache are programmable.

• An internal clock generator providing a high-speed clock used by the 21264, and
two clocks for use by the CPU module.

• Onchip performance counters to measure and analyze CPU and system perfor-
mance.

• Chip and module level test support, including an instruction cache test interface to
support chip and module level testing.

• A 2.2-V external interface.

Refer to Chapter 7 for 21264 dc and ac electrical characteristics. Refer to the Alpha
Architecture Handbook, Version 4, Appendix E, for waivers and any other implementa-
tion-dependent information.
1–4 Introduction 17 February 1999 – Subject To Change

21264 Microarchitecture

tion

ware

be a
 2
Internal Architecture

This chapter provides both an overview of the 21264 microarchitecture and a system
designer’s view of the 21264 implementation of the Alpha architecture. The combina
of the 21264 microarchitecture and privileged architecture library code (PALcode)
defines the chip’s implementation of the Alpha architecture. If a certain piece of hard
seems to be “architecturally incomplete,” the missing functionality is implemented in
PALcode. Chapter 5 provides more information on PALcode.

This chapter describes the major functional hardware units and is not intended to
detailed hardware description of the chip. It is organized as follows:

• 21264 microarchitecture

• Pipeline organization

• Floating-point control register

• AMASK and IMPLVER instruction values

2.1 21264 Microarchitecture

The 21264 microprocessor is a high-performance third-generation implementation of
the Compaq Alpha architecture. The 21264 consists of the following sections, as
shown in Figure 2–1:

• Instruction fetch, issue, and retire unit (Ibox)

• Integer execution unit (Ebox)

• Floating-point execution unit (Fbox)

• Onchip caches (Icache and Dcache)

• Memory reference unit (Mbox)

• External cache and system interface unit (Cbox)

• Pipeline operation sequence
17 February 1999 – Subject To Change Internal Architecture 2–1

Pipeline Organization

ollow-
Figure 2–1 21264 Block Diagram

2.2 Pipeline Organization

The 7-stage pipeline provides an optimized environment for executing Alpha instruc-
tions. The pipeline stages (0 to 6) are shown in Figure 2–2 and described in the f
ing paragraphs.

INT
UNIT

1
(U1)

Address
ALU 1
(L1)

Address
ALU 0
(L0)

Branch
Predictor

VPC
Queue

INT
UNIT

0
(U0)

Integer Registers 1
(80 Registers)

Integer Registers 0
(80 Registers)

Ebox

FP
ADD
DIV

SQRT

FP
MUL

FP Registers
(72 Registers)

Fbox

Dual-Ported Data Cache

Physical
Address

Mbox
DTB

(64k 2-way, 128-entry)
Load

Queue
Store

Queue
Miss Address

File

Arbiter

Victim
Buffer

IOWB

Duplicate
Tag Store

Probe
Queue

Cache
Data

128

Cache
Index

20

System
bus

64

System
Address

15

128

CboxFP Instruction Queue
(15 Entries)

Integer Instruction Queue
(20 Entries)

Ibox

Decode and
Rename Registers

Retire
Unit

ITB

Predecode

Fetch Unit

Next Address

Virtual Address Four
Instructions

Instruction Cache

128

Physical
Address

Data

Data

FM-05642-AI4
2–2 Internal Architecture 17 February 1999 – Subject To Change

Pipeline Organization
Figure 2–2 Pipeline Organization

Stage 0 — Instruction Fetch

The branch predictor uses a branch history algorithm to predict a branch instruction tar-
get address.

Up to four aligned instructions are fetched from the Icache, in program order. The
branch prediction tables are also accessed in this cycle. The branch predictor uses tables
and a branch history algorithm to predict a branch instruction target address for one
branch or memory format JSR instruction per cycle. Therefore, the prefetcher is limited
to fetching through one branch per cycle. If there is more than one branch within the
fetch line, and the branch predictor predicts that the first branch will not be taken, it will
predict through subsequent branches at the rate of one per cycle, until it predicts a taken
branch or predicts through the last branch in the fetch line.

The Icache array also contains a line prediction field, the contents of which are applied
to the Icache in the next cycle. The purpose of the line predictor is to remove the pipe-
line bubble which would otherwise be created when the branch predictor predicts a
branch to be taken. In effect, the line predictor attempts to predict the Icache line which
the branch predictor will generate. On fills, the line predictor value at each fetch line is
initialized with the index of the next sequential fetch line, and later retrained by the
branch predictor if necessary.

Stage1 — Instruction Slot

The Ibox maps four instructions per cycle from the 64KB 2-way set-predict Icache.
Instructions are mapped in order, executed dynamically, but are retired in order.

Branch
Predictor

Instruction
Cache
(64KB)
(2-Set)

Integer
Register
Rename

Map

Floating-
Point

Register
Rename

Map

Integer
Issue

Queue
(20)

Integer
Register

File

Floating-
Point
Issue

Queue
(15)

Floating-
Point

Register
File

ALU
Shifter

ALU Shifter
Multiplier

ALU
Address

Address
ALU

Floating-Point
Add, Divide,

and Square Root

Floating-Point
Multiply

64KB
Data

Cache

Bus
Interface

Unit

System
Bus
(64 Bits)

Cache
Bus
(128 Bits)

Physical
Address
(44 Bits)

Four
Instructions

FM-05575.AI4

0 21 3 4 5 6
17 February 1999 – Subject To Change Internal Architecture 2–3

Pipeline Organization

ex
ne

at
d)
et

 be

 pipe-
essed.

 If the
wo
te set

t reg-
 the
for

h all
ge
s

at
as
In the slot stage the branch predictor compares the next Icache index that it generates to
the index that was generated by the line predictor. If there is a mismatch, the branch
predictor wins—the instructions fetched during that cycle are aborted, and the ind
predicted by the branch predictor is applied to the Icache during the next cycle. Li
mispredictions result in one pipeline bubble.

The line predictor takes precedence over the branch predictor during memory form
calls or jumps. If the line predictor was trained with a true (as opposed to predicte
memory format call or jump target, then its contents take precedence over the targ
hint field associated with these instructions. This allows dynamic calls or jumps to
correctly predicted.

The instruction fetcher produces the full VPC address during the fetch stage of the
line. The Icache produces the tags for both Icache sets 0 and 1 each time it is acc
That enables the fetcher to separate set mispredictions from true Icache misses.
access was caused by a set misprediction, the instruction fetcher aborts the last t
fetched slots and refetches the slot in the next cycle. It also retrains the appropria
prediction bits.

The instruction data is transferred from the Icache to the integer and floating-poin
ister map hardware during this stage. When the integer instruction is fetched from
Icache and slotted into the IQ, the slot logic determines whether the instruction is
the upper or lower subclusters. The slot logic makes the decision based on the
resources needed by the (up to four) integer instructions in the fetch block. Althoug
four instructions need not be issued simultaneously, distributing their resource usa
improves instruction loading across the units. For example, if a fetch block contain
two instructions that can be placed in either cluster followed by two instructions th
must execute in the lower cluster, the slot logic would designate that combination
EELL and slot them as UULL.

Stage 2 — Map

Instructions are sent from the Icache to the integer and floating-point register maps dur-
ing the slot stage and register renaming is performed during the map stage. Also, each
instruction is assigned a unique 8-bit number, called an inum, which is used to identify
the instruction and its program order with respect to other instructions during the time
that it is in flight. Instructions are considered to be in flight between the time they are
mapped and the time they are retired.

Mapped instructions and their associated inums are placed in the integer and floating-
point queues by the end of the map stage.

Stage 3 — Issue

The 20-entry integer issue queue (IQ) issues instruction at the rate of four per cycle.
The 15-entry floating-point issue queue (FQ) issues floating-point operate instructions,
conditional branch instructions, and store instructions, at the rate of two per cycle. Nor-
mally, instructions are deleted from the IQ or FQ two cycles after they are issued. For
example, if an instruction is issued in cycle n, it remains in the FQ or IQ in cycle n+1
but does not request service, and is deleted in cycle n+2.

Stage 4 — Register Read

Instructions issued from the issue queues read their operands from the integer and float-
ing register files and receive bypass data.
2–4 Internal Architecture 17 February 1999 – Subject To Change

Floating-Point Control Register
Stage 5 — Execute

The Ebox and Fbox pipelines begin execution.

Stage 6 — Dcache Access

Memory reference instructions access the Dcache and data translation buffers. Nor-
mally load instructions access the tag and data arrays while store instructions only
access the tag arrays. Store data is written to the store queue where it is held until the
store instruction is retired. Most integer operate instructions write their register results
in this cycle.

2.3 Floating-Point Control Register

The floating-point control register (FPCR) is shown in Figure 2–3.

Figure 2–3 Floating-Point Control Register

The floating-point control register fields are described in Table 2–1.

Table 2–1 Floating-Point Control Register Fields

Name Extent Type Description

SUM [63] RW Summary bit. Records bit-wise OR of FPCR exception bits.

INED [62] RW Inexact Disable. If this bit is set and a floating-point instruction which enables
trapping on inexact results generates an inexact value, the result is placed in the
destination register and the trap is suppressed.

31 0

LKG-10978A-98WF

63 32

INED

SUM

6162 48495051525354555658 575960

UNFD

UNDZ

DYN

IOV

UNF

OVF

DZE

INV

OVFD

DZED

INVD

INE

DNZ
17 February 1999 – Subject To Change Internal Architecture 2–5

Floating-Point Control Register
UNFD [61] RW Underflow Disable. The 21264 hardware cannot generate IEEE compliant
denormal results. UNFD is used in conjunction with UNDZ as follows:

UNDZ [60] RW Underflow to zero. When UNDZ is set together with UNFD, underflow traps are
disabled and the 21264 places a true zero in the destination register. See UNFD,
above.

DYN [59:58] RW Dynamic rounding mode. Indicates the rounding mode to be used by an IEEE
floating-point instruction when the instruction specifies dynamic rounding
mode:

IOV [57] RW Integer overflow. An integer arithmetic operation or a conversion from floating-
point to integer overflowed the destination precision.

INE [56] RW Inexact result. A floating-point arithmetic or conversion operation gave a result
that differed from the mathematically exact result.

UNF [55] RW Underflow. A floating-point arithmetic or conversion operation gave a result
that underflowed the destination exponent.

OVF [54] RW Overflow. A floating-point arithmetic or conversion operation gave a result that
overflowed the destination exponent.

DZE [53] RW Divide by zero. An attempt was made to perform a floating-point divide with a
divisor of zero.

INV [52] RW Invalid operation. An attempt was made to perform a floating-point arithmetic
operation and one or more of its operand values were illegal.

OVFD [51] RW Overflow disable. If this bit is set and a floating-point arithmetic operation gen-
erates an overflow condition, then the appropriate IEEE nontrapping result is
placed in the destination register and the trap is suppressed.

DZED [50] RW Division by zero disable. If this bit is set and a floating-point divide by zero is
detected, the appropriate IEEE nontrapping result is placed in the destination
register and the trap is suppressed.

INVD [49] RW Invalid operation disable. If this bit is set and a floating-point operate generates
an invalid operation condition and 21264 is capable of producing the correct
IEEE nontrapping result, that result is placed in the destination register and the
trap is suppressed.

Table 2–1 Floating-Point Control Register Fields (Continued)

Name Extent Type Description

UNFD UNDZ Result

0 X Underflow trap.

1 0 Trap to supply a possible denormal result.

1 1 Underflow trap suppressed. Destination is written
with a true zero (+0.0).

Bits Meaning

00 Chopped

01 Minus infinity

10 Normal

11 Plus infinity
2–6 Internal Architecture 17 February 1999 – Subject To Change

AMASK and IMPLVER Values

L
2.4 AMASK and IMPLVER Values

The AMASK and IMPLVER instructions return processor type and supported architec-
ture extensions, respectively.

2.4.1 AMASK

The 21264 returns the AMASK instruction values provided in Table 2–2. The I_CT
register reports the 21264 pass level (see I_CTL[CHIP_ID], Section 4.2.14).

The AMASK bit definitions provided in Table 2–2 are defined in Table 2–3:

2.4.2 IMPLVER

For the 21264, the IMPLVER instruction returns the value 2.

DNZ [48] RW Denormal operands to zero. If this bit is set, treat all Denormal
operands as a signed zero value with the same sign as the Denormal operand.

Reserved [47:0]1 — —

1 Alpha architecture FPCR bit 47 (DNOD) is not implemented by the 21264.

Table 2–2 21264 AMASK Values

21264 Pass Level AMASK Value Returned

Pass 1 00116

Pass 2 30316

Table 2–3 AMASK Bit Assignments

Bit Meaning

0 Support for the byte/word extension (BWX)
The instructions that comprise the BWX extension are LDBU, LDWU, SEXTB,
SEXTW, STB, and STW.

1 Support for the square-root and floating-point convert extension (FIX)
The instructions that comprise the FIX extension are FTOIS, FTOIT, ITOFF,
ITOFS, ITOFT, SQRTF, SQRTG, SQRTS, and SQRTT.

8 Support for the multimedia extension (MVI)
The instructions that comprise the MVI extension are MAXSB8, MAXSW4,
MAXUB8, MAXUW4, MINSB8, MINSW4, MINUB8, MINUW4, PERR, PKLB,
PKWB, UNPKBL, and UNPKBW.

9 Support for precise arithmetic trap reporting in hardware. The trap PC is the same as
the instruction PC after the trapping instruction is executed.

Table 2–1 Floating-Point Control Register Fields (Continued)

Name Extent Type Description
17 February 1999 – Subject To Change Internal Architecture 2–7

 3
Hardware Interface

This chapter contains the 21264 microprocessor logic symbol and provides information
about signal names, their function, and their location. This chapter also describes the
mechanical specifications of the 21264. It is organized as follows:

• The 21264 logic symbol

• The 21264 signal names and functions

• Lists of the signal pins, sorted by name and PGA location

• The specifications for the 21264 mechanical package

• The top and bottom views of the 21264 pinouts

3.1 21264 Microprocessor Logic Symbol

Figure 3–1 show the logic symbol for the 21264 chip.
17 February 1999 – Subject To Change Hardware Interface 3–1

21264 Microprocessor Logic Symbol
Figure 3–1 21264 Microprocessor Logic Symbol

BcData_H[127:0]

BcAdd_H[23:4]

BcChec k_H[15:0]

BcDataInClk_H[7:0]

BcDataOutClk_ [3:0]x

BcDataOE_L

BcDataWr_L

21264

SysAddOut_L[14:0]

SysAddInClk_L

SysAddIn_L[14:0]

SysAddOutClk_L

SysVref

FM 05646B AI8

SysDataInClk_H[7:0]

SysChec k_L[7:0]

SysData_L[63:0]

SysDataOutClk_L[7:0]

SysDataInV alid_L

IRQ_H[5:0]

SysFillV alid_L

SysDataOutV alid_L

BcTag_H[42:20]

BcTagInClk_H

BcTagOutClk_x

BcVref

BcTagDir ty_H

BcTagParity_H

BcTagShared_H

BcTagValid_H

BcTagOE_L

BcTagWr_L

BcLoad_L

ClkIn_x

EV6Clk_x

FrameClk_x

SromClk_H

SromOE_L

TestStat_H

Tdo_H

SromData_H

Tms_H

Tdi_H

Tck_H

Trst_L

PllBypass_H

DCOK_H

Reset_L

System Interface Bcache Interface

Clocks

Miscellaneous

3.3 V

ClkFwdRst_H

MiscVref

PLL_VDD
3–2 Hardware Interface 17 February 1999 – Subject To Change

21264 Signal Names and Functions

crip-
ray
rray

3.2 21264 Signal Names and Functions

Table 3–1 defines the 21264 signal types referred to in this section.

Table 3–2 lists all signal pins in alphabetic order and provides a full functional des
tion of the pins. Table 3–4 lists the signal pins and their corresponding pin grid ar
(PGA) locations in alphabetic order for the signal type. Table 3–5 lists the pin grid a
locations in alphabetical order.

Table 3–3 lists signals by function and provides an abbreviated description.

Table 3–1 Signal Pin Types Definitions

Signal Type Definition

Inputs

I_DC_REF Input DC reference pin

I_DA Input differential amplifier receiver

I_DA_CLK Input clock pin

Outputs

O_OD Open drain output driver

O_OD_TP Open drain driver for test pins

O_PP Push/pull output driver

O_PP_CLK Push/pull output clock driver

Bidirectional

B_DA_OD Bidirectional differential amplifier receiver with open drain output

B_DA_PP Bidirectional differential amplifier receiver with push/pull output

Other

Spare Reserved to COMPAQ1

1 All Spare connections are Reserved to COMPAQ to maintain compatibility between
passes of the chip. Designers should not use these pins.

NoConnect No connection — Do not connect to these pins for any revision of the
21264. These pins must float.

Table 3–2 21264 Signal Descriptions

Signal Type Count Description

BcAdd_H[23:4] O_PP 20 These signals provide the index to the Bcache.

BcCheck_H[15:0] B_DA_PP 16 ECC check bits for BcData_H[127:0].

BcData_H[127:0] B_DA_PP 128 Bcache data signals.

BcDataInClk_H[7:0] I_DA 8 Bcache data input clocks. These clocks are used with high
speed SDRAMs, such as DDRs, that provide a clock-out with
data-output pins to optimize Bcache read bandwidths. The
21264 internally synchronizes the data to its logic with clock
forward receive circuits similar to the system interface.
17 February 1999 – Subject To Change Hardware Interface 3–3

21264 Signal Names and Functions

ne

n

red-

re-

t of
BcDataOE_L O_PP 1 Bcache data output enable. The 21264 asserts this signal dur-
ing Bcache read operations.

BcDataOutClk_H[3:0]
BcDataOutClk_L[3:0]

O_PP 8 Bcache data output clocks. These free-running clocks are dif-
ferential copies of the Bcache clock and are derived from the
21264 GCLK. Their period is a multiple of the GCLK and is
fixed for all operations. They can be configured so that their
rising edge lags BcAdd_H[23:4] by 0 to 2 GCLK cycles. The
21264 synchronizes tag output information with these clocks.

BcDataWr_L O_PP 1 Bcache data write enable. The 21264 asserts this signal when
writing data to the Bcache data arrays.

BcLoad_L O_PP 1 Bcache burst enable.

BcTag_H[42:20] B_DA_PP 23 Bcache tag bits.

BcTagDirty_H B_DA_PP 1 Tag dirty state bit. During cache write operations, the 21264
will assert this signal if the Bcache data has been modified.

BcTagInClk_H I_DA 1 Bcache tag input clock. The 21264 uses this input clock to
latch the tag information on Bcache read operations. This
clock is used with high-speed SDRAMs, such as DDRs, that
provide a clock-out with data-output pins to optimize Bcache
read bandwidths. The 21264 internally synchronizes the data
to its logic with clock forward receive circuits similar to the
system interface.

BcTagOE_L O_PP 1 Bcache tag output enable. This signal is asserted by the 21264
for Bcache read operations.

BcTagOutClk_H
BcTagOutClk_L

O_PP 2 Bcache tag output clock. These clocks “echo” the clock-for-
warded BcDataOutClk_x[3:0] clocks.

BcTagParity_H B_DA_PP 1 Tag parity state bit.

BcTagShared_H B_DA_PP 1 Tag shared state bit. The 21264 will write a 1 on this signal
line if another agent has a copy of the cache line.

BcTagValid_H B_DA_PP 1 Tag valid state bit. If set, this line indicates that the cache li
is valid.

BcTagWr_L O_PP 1 Tag RAM write enable. The 21264 asserts this signal whe
writing a tag to the Bcache tag arrays.

BcVref I_DC_REF 1 Bcache tag reference voltage.

ClkFwdRst_H I_DA 1 Systems assert this synchronous signal to wake up a powe
down 21264. The ClkFwdRst_H signal is clocked into a
21264 register by the captured FrameClk_x signals. Systems
must ensure that the timing of this signal meets 21264 requi
ments.

ClkIn_H
ClkIn_L

I_DA_CLK 2 Differential input signals provided by the system.

DCOK_H I_DA 1 dc voltage OK. Must be deasserted until dc voltage reaches
proper operating level. After that, DCOK_H is asserted.

EV6Clk_H
EV6Clk_L

O_PP_CLK 2 Provides an external test point to measure phase alignmen
the PLL.

Table 3–2 21264 Signal Descriptions (Continued)

Signal Type Count Description
3–4 Hardware Interface 17 February 1999 – Subject To Change

21264 Signal Names and Functions

d

ur-

ts

M
6

M.

4

o

FrameClk_H
FrameClk_L

I_DA_CLK 2 A skew-controlled differential 50% duty cycle copy of the
system clock. It is used by the 21264 as a reference, or fram-
ing, clock.

IRQ_H[5:0] I_DA 6 These six interrupt signal lines may be asserted by the system.
The response of the 21264 is determined by the system soft-
ware.

MiscVref I_DC_REF 1 Voltage reference for the miscellaneous pins
(see Table 3–3).

PllBypass_H I_DA 1 When asserted, this signal will cause the two input clocks
(ClkIn_x) to be applied to the 21264 internal circuits, instea
of the 21264 global clock (GCLK).

PLL_VDD 3.3 V 1 3.3-V dedicated power supply for the 21264 PLL.

Reset_L I_DA 1 System reset. This signal protects the 21264 from damage d
ing initial power-up. It must be asserted until DCOK_H is
asserted. After that, it is deasserted and the 21264 begins i
reset sequence.

SromClk_H O_OD_TP 1 Serial ROM clock. Supplies the clock that causes the SRO
to advance to the next bit. The cycle time for this clock is 25
times the cycle time of the GCLK (internal 21264 clock).

SromData_H I_DA 1 Serial ROM data. Input data line from the SROM.

SromOE_L O_OD_TP 1 Serial ROM enable. Supplies the output enable to the SRO

SysAddIn_L[14:0] I_DA 15 Time-multiplexed command/address/ID/Ack from system to
the 21264.

SysAddInClk_L I_DA 1 Single-ended forwarded clock from system for
SysAddIn_L[14:0] and SysFillValid_L.

SysAddOut_L[14:0] O_OD 15 Time-multiplexed command/address/ID/mask from the 2126
to the system bus.

SysAddOutClk_L O_OD 1 Single-ended forwarded clock output for
SysAddOut_L[14:0].

SysCheck_L[7:0] B_DA_OD 8 Quadword ECC check bits for SysData_L[63:0].

SysData_L[63:0] B_DA_OD 64 Data bus for memory and I/O data.

SysDataInClk_H[7:0] I_DA 8 Single-ended system-generated clocks for clock forwarded
input system data.

SysDataInValid_L I_DA 1 When asserted, marks a valid data cycle for data transfers t
the 21264.

SysDataOutClk_L[7:0] O_OD 8 Single-ended 21264-generated clocks for clock forwarded
output system data.

SysDataOutValid_L I_DA 1 When asserted, marks a valid data cycle for data transfers
from the 21264.

SysFillValid_L I_DA 1 When asserted, this bit indicates validation for the cache fill
delivered in the previous system SysDc command.

SysVref I_DC_REF 1 System interface reference voltage.

Table 3–2 21264 Signal Descriptions (Continued)

Signal Type Count Description
17 February 1999 – Subject To Change Hardware Interface 3–5

21264 Signal Names and Functions
Tck_H I_DA 1 IEEE 1149.1 test clock.

Tdi_H I_DA 1 IEEE 1149.1 test data-in signal.

Tdo_H O_OD_TP 1 IEEE 1149.1 test data-out signal.

TestStat_H O_OD_TP 1 Test status pin. System reset drives the test status pin low.
The TestStat_H pin is forced high at the start of the Icache
BiST. If the Icache BiST passes, the pin is deasserted at the
end of the BiST operation; otherwise, it remains high.
The 21264 generates a timeout reset signal if an instruction is
not retired within one billion cycles.
The 21264 signals the timeout reset event by outputting a 256
GCLK cycle wide pulse on TestStat_H.

Tms_H I_DA 1 IEEE 1149.1 test mode select signal.

Trst_L I_DA 1 IEEE 1149.1 test access port (TAP) reset signal.

Table 3–3 21264 Signal Descriptions by Function

Signal Type Count Description

BcVref Domain

BcAdd_H[23:4] O_PP 20 Bcache index.

BcCheck_H[15:0] B_DA_PP 16 ECC check bits for BcData_H[127:0].

BcData_H[127:0] B_DA_PP 128 Bcache data.

BcDataInClk_H[7:0] I_DA 8 Bcache data input clocks.

BcDataOE_L O_PP 1 Bcache data output enable.

BcDataOutClk_H[3:0]
BcDataOutClk_L[3:0]

O_PP 8 Bcache data output clocks.

BcDataWr_L O_PP 1 Bcache data write enable.

BcLoad_L O_PP 1 Bcache burst enable.

BcTag_H[42:20] B_DA_PP 23 Bcache tag bits.

BcTagDirty_H B_DA_PP 1 Tag dirty state bit.

BcTagInClk_H I_DA 1 Bcache tag input clock.

BcTagOE_L O_PP 1 Bcache tag output enable.

BcTagOutClk_H
BcTagOutClk_L

O_PP 2 Bcache tag output clocks.

BcTagParity_H B_DA_PP 1 Tag parity state bit.

BcTagShared_H B_DA_PP 1 Tag shared state bit.

BcTagValid_H B_DA_PP 1 Tag valid state bit.

BcTagWr_L O_PP 1 Tag RAM write enable.

BcVref I_DC_REF 1 Tag data input reference voltage.

SysVref Domain

Table 3–2 21264 Signal Descriptions (Continued)

Signal Type Count Description
3–6 Hardware Interface 17 February 1999 – Subject To Change

21264 Signal Names and Functions
SysAddIn_L[14:0] I_DA 15 Time-multiplexed SysAddIn, system-to-21264.

SysAddInClk_L I_DA 1 Single-ended forwarded clock from system for
SysAddIn_L[14:0] and SysFillValid_L.

SysAddOut_L[14:0] O_OD 15 Time-multiplexed SysAddOut, 21264-to-system.

SysAddOutClk_L O_OD 1 Single-ended forwarded-clock.

SysCheck_L[7:0] B_DA_OD 8 Quadword ECC check bits for SysData_L[63:0].

SysData_L[63:0] B_DA_OD 64 Data bus for memory and I/O data.

SysDataInClk_H[7:0] I_DA 8 Single-ended system-generated clocks for clock forwarded
input system data.

SysDataInValid_L I_DA 1 When asserted, marks a valid data cycle for data transfers to
the 21264.

SysDataOutClk_L[7:0] O_OD 8 Single-ended 21264-generated clocks for clock forwarded
output system data.

SysDataOutValid_L I_DA 1 When asserted, marks a valid data cycle for data transfers
from the 21264.

SysFillValid_L I_DA 1 Validation for fill given in previous SysDC command.

SysVref I_DC_REF 1 System interface reference voltage.

Clocks and PLL

ClkIn_H
ClkIn_L

I_DA_CLK 2 Differential input signals provided by the system.

EV6Clk_H
EV6Clk_L

O_PP_CLK 2 Provides an external test point to measure phase alignment of
the PLL.

FrameClk_H
FrameClk_L

I_DA_CLK 2 A skew-controlled differential 50% duty cycle copy of the
system clock. It is used by the 21264 as a reference, or fram-
ing, clock.

PLL_VDD 3.3 V 1 3.3-V dedicated power supply for the 21264 PLL.

MiscVref Domain

ClkFwdRst_H I_DA 1 Systems assert this synchronous signal to wake up a powered-
down 21264. The ClkFwdRst_H signal is clocked into a
21264 register by the captured FrameClk_x signals.

DCOK_H I_DA 1 dc voltage OK. Must be deasserted until dc voltage reaches
proper operating level. After that, DCOK_H is asserted

IRQ_H[5:0] I_DA 6 These six interrupt signal lines may be asserted by the system.

MiscVref I_DC_REF 1 Reference voltage for miscellaneous pins.

PllBypass_H I_DA 1 When asserted, this signal will cause the input clocks
(ClkIn_x) to be applied to the 21264 internal circuits, instead
of the 21264’s global clock (GCLK).

Table 3–3 21264 Signal Descriptions by Function (Continued)

Signal Type Count Description
17 February 1999 – Subject To Change Hardware Interface 3–7

Pin Assignments

rray
id
3.3 Pin Assignments

The 21264 package has 587 pins aligned in a pin grid array (PGA) design. There are
388 functional signal pins, 1 dedicated 3.3-V pin for the PLL, 104 ground VSS pins,
and 94 VDD pins. Table 3–4 lists the signal pins and their corresponding pin grid a
(PGA) locations in alphabetical order for the signal type. Table 3–5 lists the pin gr
array locations in alphabetical order.

Reset_L I_DA 1 System reset. This signal protects the 21264 from damage dur-
ing initial power-up. It must be asserted until DCOK_H is
asserted. After that, it is deasserted and the 21264 begins its
reset sequence.

SromClk_H O_OD_TP 1 Serial ROM clock.

SromData_H I_DA 1 Serial ROM data.

SromOE_L O_OD_TP 1 Serial ROM enable.

Tck_H I_DA 1 IEEE 1149.1 test clock.

Tdi_H I_DA 1 IEEE 1149.1 test data-in signal.

Tdo_H O_OD_TP 1 IEEE 1149.1 test data-out signal.

TestStat_H O_OD_TP 1 Test status pin.

Tms_H I_DA 1 IEEE 1149.1 test mode select signal.

Trst_L I_DA 1 IEEE 1149.1 test access port (TAP) reset signal.

Table 3–4 Pin List Sorted by Signal Name

Signal Name
PGA
Location Signal Name

PGA
Location Signal Name PGA Location

BcAdd_H_10 B30 BcAdd_H_11 D30 BcAdd_H_12 C31

BcAdd_H_13 H28 BcAdd_H_14 G29 BcAdd_H_15 A33

BcAdd_H_16 E31 BcAdd_H_17 D32 BcAdd_H_18 B34

BcAdd_H_19 A35 BcAdd_H_20 B36 BcAdd_H_21 H30

BcAdd_H_22 C35 BcAdd_H_23 E33 BcAdd_H_4 B28

BcAdd_H_5 E27 BcAdd_H_6 A29 BcAdd_H_7 G27

BcAdd_H_8 C29 BcAdd_H_9 F28 BcCheck_H_0 F2

BcCheck_H_1 AB4 BcCheck_H_10 AW1 BcCheck_H_11 BD10

BcCheck_H_12 E45 BcCheck_H_13 AC45 BcCheck_H_14 AT44

BcCheck_H_15 BB36 BcCheck_H_2 AT2 BcCheck_H_3 BC11

BcCheck_H_4 M38 BcCheck_H_5 AB42 BcCheck_H_6 AU43

BcCheck_H_7 BC37 BcCheck_H_8 M8 BcCheck_H_9 AA3

BcData_H_0 B10 BcData_H_1 D10 BcData_H_10 L3

Table 3–3 21264 Signal Descriptions by Function (Continued)

Signal Type Count Description
3–8 Hardware Interface 17 February 1999 – Subject To Change

Pin Assignments
BcData_H_100 D42 BcData_H_101 D44 BcData_H_102 H40

BcData_H_103 H42 BcData_H_104 G45 BcData_H_105 L43

BcData_H_106 L45 BcData_H_107 N45 BcData_H_108 T44

BcData_H_109 U45 BcData_H_11 M2 BcData_H_110 W45

BcData_H_111 AA43 BcData_H_112 AC43 BcData_H_113 AD44

BcData_H_114 AE41 BcData_H_115 AG45 BcData_H_116 AK44

BcData_H_117 AL43 BcData_H_118 AM42 BcData_H_119 AR45

BcData_H_12 T2 BcData_H_120 AP40 BcData_H_121 BA45

BcData_H_122 AV42 BcData_H_123 BB44 BcData_H_124 BB42

BcData_H_125 BC41 BcData_H_126 BA37 BcData_H_127 BD40

BcData_H_13 U1 BcData_H_14 V2 BcData_H_15 Y4

BcData_H_16 AC1 BcData_H_17 AD2 BcData_H_18 AE3

BcData_H_19 AG1 BcData_H_2 A5 BcData_H_20 AK2

BcData_H_21 AL3 BcData_H_22 AR1 BcData_H_23 AP2

BcData_H_24 AY2 BcData_H_25 BB2 BcData_H_26 AW5

BcData_H_27 BB4 BcData_H_28 BB8 BcData_H_29 BE5

BcData_H_3 C5 BcData_H_30 BB10 BcData_H_31 BE7

BcData_H_32 G33 BcData_H_33 C37 BcData_H_34 B40

BcData_H_35 C41 BcData_H_36 C43 BcData_H_37 E43

BcData_H_38 G41 BcData_H_39 F44 BcData_H_4 C3

BcData_H_40 K44 BcData_H_41 N41 BcData_H_42 M44

BcData_H_43 P42 BcData_H_44 U43 BcData_H_45 V44

BcData_H_46 Y42 BcData_H_47 AB44 BcData_H_48 AD42

BcData_H_49 AE43 BcData_H_5 E3 BcData_H_50 AF42

BcData_H_51 AJ45 BcData_H_52 AK42 BcData_H_53 AN45

BcData_H_54 AP44 BcData_H_55 AN41 BcData_H_56 AW45

BcData_H_57 AU41 BcData_H_58 AY44 BcData_H_59 BA43

BcData_H_6 H6 BcData_H_60 BC43 BcData_H_61 BD42

BcData_H_62 BB38 BcData_H_63 BE41 BcData_H_64 C11

BcData_H_65 A7 BcData_H_66 C9 BcData_H_67 B6

BcData_H_68 B4 BcData_H_69 D4 BcData_H_7 E1

BcData_H_70 G5 BcData_H_71 D2 BcData_H_72 H4

BcData_H_73 G1 BcData_H_74 N5 BcData_H_75 L1

Table 3–4 Pin List Sorted by Signal Name (Continued)

Signal Name
PGA
Location Signal Name

PGA
Location Signal Name PGA Location
17 February 1999 – Subject To Change Hardware Interface 3–9

Pin Assignments
BcData_H_76 N1 BcData_H_77 U3 BcData_H_78 W5

BcData_H_79 W1 BcData_H_8 J3 BcData_H_80 AB2

BcData_H_81 AC3 BcData_H_82 AD4 BcData_H_83 AF4

BcData_H_84 AJ3 BcData_H_85 AK4 BcData_H_86 AN1

BcData_H_87 AM4 BcData_H_88 AU5 BcData_H_89 BA1

BcData_H_9 K2 BcData_H_90 BA3 BcData_H_91 BC3

BcData_H_92 BD6 BcData_H_93 BA9 BcData_H_94 BC9

BcData_H_95 AY12 BcData_H_96 A39 BcData_H_97 D36

BcData_H_98 A41 BcData_H_99 B42 BcDataInClk_H_0 E7

BcDataInClk_H_1 R3 BcDataInClk_H_2 AH2 BcDataInClk_H_3 BC5

BcDataInClk_H_4 F38 BcDataInClk_H_5 U39 BcDataInClk_H_6 AH44

BcDataInClk_H_7 AY40 BcDataOE_L A27 BcDataOutClk_H_0 J5

BcDataOutClk_H_1 AU3 BcDataOutClk_H_2 J43 BcDataOutClk_H_3 AR43

BcDataOutClk_L_0 K4 BcDataOutClk_L_1 AV4 BcDataOutClk_L_2 K42

BcDataOutClk_L_3 AT42 BcDataWr_L D26 BcLoad_L F26

BcTag_H_20 E13 BcTag_H_21 H16 BcTag_H_22 A11

BcTag_H_23 B12 BcTag_H_24 D14 BcTag_H_25 E15

BcTag_H_26 A13 BcTag_H_27 G17 BcTag_H_28 C15

BcTag_H_29 H18 BcTag_H_30 D16 BcTag_H_31 B16

BcTag_H_32 C17 BcTag_H_33 A17 BcTag_H_34 E19

BcTag_H_35 B18 BcTag_H_36 A19 BcTag_H_37 F20

BcTag_H_38 D20 BcTag_H_39 E21 BcTag_H_40 C21

BcTag_H_41 D22 BcTag_H_42 H22 BcTagDirty_H C23

BcTagInClk_H G19 BcTagOE_L H24 BcTagOutClk_H C25

BcTagOutClk_L D24 BcTagParity_H B22 BcTagShared_H G23

BcTagValid_H B24 BcTagWr_L E25 BcVref F18

ClkFwdRst_H BE11 ClkIn_H AM8 ClkIn_L AN7

DCOK_H AY18 EV6Clk_H AM6 EV6Clk_L AL7

FrameClk_H AV16 FrameClk_L AW15 IRQ_H_0 BA15

IRQ_H_1 BE13 IRQ_H_2 AW17 IRQ_H_3 AV18

IRQ_H_4 BC15 IRQ_H_5 BB16 MiscVref AV22

NoConnect BB14 NoConnect BD2 PLL_VDD AV8

PllBypass_H BD12 Reset_L BD16 Spare E9

Table 3–4 Pin List Sorted by Signal Name (Continued)

Signal Name
PGA
Location Signal Name

PGA
Location Signal Name PGA Location
3–10 Hardware Interface 17 February 1999 – Subject To Change

Pin Assignments
Spare R5 Spare AG5 Spare BA7

Spare D38 Spare T42 Spare AG39

Spare AW41 Spare F8 Spare T4

Spare AJ1 Spare BD4 Spare E39

Spare V38 Spare AJ43 Spare BA39

Spare AT4 Spare AR3 Spare BC21

Spare BE9 SromClk_H AW19 SromData_H BC17

SromOE_L BE17 SysAddIn_L_0 BD30 SysAddIn_L_10 BB24

SysAddIn_L_1 BC29 SysAddIn_L_11 AV24 SysAddIn_L_12 BD24

SysAddIn_L_13 BE23 SysAddIn_L_14 AW23 SysAddIn_L_2 AY28

SysAddIn_L_3 BE29 SysAddIn_L_4 AW27 SysAddIn_L_5 BA27

SysAddIn_L_6 BD28 SysAddIn_L_7 BE27 SysAddIn_L_8 AY26

SysAddIn_L_9 BC25 SysAddInClk_L BB26 SysAddOut_L_0 AW33

SysAddOut_L_1 BE39 SysAddOut_L_10 BE33 SysAddOut_L_11 AW29

SysAddOut_L_12 BC31 SysAddOut_L_13 AV28 SysAddOut_L_14 BB30

SysAddOut_L_2 BD36 SysAddOut_L_3 BC35 SysAddOut_L_4 BA33

SysAddOut_L_5 AY32 SysAddOut_L_6 BE35 SysAddOut_L_7 AV30

SysAddOut_L_8 BB32 SysAddOut_L_9 BA31 SysAddOutClk_L BD34

SysCheck_L_0 L7 SysCheck_L_1 AA5 SysCheck_L_2 AK8

SysCheck_L_3 BA13 SysCheck_L_4 L39 SysCheck_L_5 AA41

SysCheck_L_6 AM40 SysCheck_L_7 AY34 SysData_L_0 F14

SysData_L_1 G13 SysData_L_10 P6 SysData_L_11 T8

SysData_L_12 V8 SysData_L_13 V6 SysData_L_14 W7

SysData_L_15 Y6 SysData_L_16 AB8 SysData_L_17 AC7

SysData_L_18 AD8 SysData_L_19 AE5 SysData_L_2 F12

SysData_L_20 AH6 SysData_L_21 AH8 SysData_L_22 AJ7

SysData_L_23 AL5 SysData_L_24 AP8 SysData_L_25 AR7

SysData_L_26 AT8 SysData_L_27 AV6 SysData_L_28 AV10

SysData_L_29 AW11 SysData_L_3 H12 SysData_L_30 AV12

SysData_L_31 AW13 SysData_L_32 F32 SysData_L_33 F34

SysData_L_34 H34 SysData_L_35 G35 SysData_L_36 F40

SysData_L_37 G39 SysData_L_38 K38 SysData_L_39 J41

SysData_L_4 H10 SysData_L_40 M40 SysData_L_41 N39

Table 3–4 Pin List Sorted by Signal Name (Continued)

Signal Name
PGA
Location Signal Name

PGA
Location Signal Name PGA Location
17 February 1999 – Subject To Change Hardware Interface 3–11

Pin Assignments
SysData_L_42 P40 SysData_L_43 T38 SysData_L_44 V40

SysData_L_45 W41 SysData_L_46 W39 SysData_L_47 Y40

SysData_L_48 AB38 SysData_L_49 AC39 SysData_L_5 G7

SysData_L_50 AD38 SysData_L_51 AF40 SysData_L_52 AH38

SysData_L_53 AJ39 SysData_L_54 AL41 SysData_L_55 AK38

SysData_L_56 AN39 SysData_L_57 AP38 SysData_L_58 AR39

SysData_L_59 AT38 SysData_L_6 F6 SysData_L_60 AY38

SysData_L_61 AV36 SysData_L_62 AW35 SysData_L_63 AV34

SysData_L_7 K8 SysData_L_8 M6 SysData_L_9 N7

SysDataInClk_H_0 D8 SysDataInClk_H_1 P4 SysDataInClk_H_2 AF6

SysDataInClk_H_3 AY6 SysDataInClk_H_4 E37 SysDataInClk_H_5 R43

SysDataInClk_H_6 AG41 SysDataInClk_H_7 AV40 SysDataInValid_L BD22

SysDataOutClk_L_0 G11 SysDataOutClk_L_1 U7 SysDataOutClk_L_2 AG7

SysDataOutClk_L_3 AY8 SysDataOutClk_L_4 H36 SysDataOutClk_L_5 R41

SysDataOutClk_L_6 AH40 SysDataOutClk_L_7 AW39 SysDataOutValid_L BB22

SysFillValid_L BC23 SysVref BA25 Tck_H BE19

Tdi_H BA21 Tdo_H BB20 TestStat_H BA19

Tms_H BD18 Trst_L AY20 — —

Table 3–5 Pin List Sorted by PGA Location

PGA
Location Signal Name

PGA
Location Signal Name

PGA
Location Signal Name

A11 BcTag_H_22 A13 BcTag_H_26 A17 BcTag_H_33

A19 BcTag_H_36 A27 BcDataOE_L A29 BcAdd_H_6

A33 BcAdd_H_15 A35 BcAdd_H_19 A39 BcData_H_96

A41 BcData_H_98 A5 BcData_H_2 A7 BcData_H_65

AA3 BcCheck_H_9 AA41 SysCheck_L_5 AA43 BcData_H_111

AA5 SysCheck_L_1 AB2 BcData_H_80 AB38 SysData_L_48

AB4 BcCheck_H_1 AB42 BcCheck_H_5 AB44 BcData_H_47

AB8 SysData_L_16 AC1 BcData_H_16 AC3 BcData_H_81

AC39 SysData_L_49 AC43 BcData_H_112 AC45 BcCheck_H_13

AC7 SysData_L_17 AD2 BcData_H_17 AD38 SysData_L_50

AD4 BcData_H_82 AD42 BcData_H_48 AD44 BcData_H_113

AD8 SysData_L_18 AE3 BcData_H_18 AE41 BcData_H_114

Table 3–4 Pin List Sorted by Signal Name (Continued)

Signal Name
PGA
Location Signal Name

PGA
Location Signal Name PGA Location
3–12 Hardware Interface 17 February 1999 – Subject To Change

Pin Assignments
AE43 BcData_H_49 AE5 SysData_L_19 AF4 BcData_H_83

AF40 SysData_L_51 AF42 BcData_H_50 AF6 SysDataInClk_H_2

AG1 BcData_H_19 AG39 Spare AG41 SysDataInClk_H_6

AG45 BcData_H_115 AG5 Spare AG7 SysDataOutClk_L_2

AH2 BcDataInClk_H_2 AH38 SysData_L_52 AH40 SysDataOutClk_L_6

AH44 BcDataInClk_H_6 AH6 SysData_L_20 AH8 SysData_L_21

AJ1 Spare AJ3 BcData_H_84 AJ39 SysData_L_53

AJ43 Spare AJ45 BcData_H_51 AJ7 SysData_L_22

AK2 BcData_H_20 AK38 SysData_L_55 AK4 BcData_H_85

AK42 BcData_H_52 AK44 BcData_H_116 AK8 SysCheck_L_2

AL3 BcData_H_21 AL41 SysData_L_54 AL43 BcData_H_117

AL5 SysData_L_23 AL7 EV6Clk_L AM4 BcData_H_87

AM40 SysCheck_L_6 AM42 BcData_H_118 AM6 EV6Clk_H

AM8 ClkIn_H AN1 BcData_H_86 AN39 SysData_L_56

AN41 BcData_H_55 AN45 BcData_H_53 AN7 ClkIn_L

AP2 BcData_H_23 AP38 SysData_L_57 AP40 BcData_H_120

AP44 BcData_H_54 AP8 SysData_L_24 AR1 BcData_H_22

AR3 Spare AR39 SysData_L_58 AR43 BcDataOutClk_H_3

AR45 BcData_H_119 AR7 SysData_L_25 AT2 BcCheck_H_2

AT38 SysData_L_59 AT4 Spare AT42 BcDataOutClk_L_3

AT44 BcCheck_H_14 AT8 SysData_L_26 AU3 BcDataOutClk_H_1

AU41 BcData_H_57 AU43 BcCheck_H_6 AU5 BcData_H_88

AV10 SysData_L_28 AV12 SysData_L_30 AV16 FrameClk_H

AV18 IRQ_H_3 AV22 MiscVref AV24 SysAddIn_L_11

AV28 SysAddOut_L_13 AV30 SysAddOut_L_7 AV34 SysData_L_63

AV36 SysData_L_61 AV4 BcDataOutClk_L_1 AV40 SysDataInClk_H_7

AV42 BcData_H_122 AV6 SysData_L_27 AV8 PLL_VDD

AW1 BcCheck_H_10 AW11 SysData_L_29 AW13 SysData_L_31

AW15 FrameClk_L AW17 IRQ_H_2 AW19 SromCLK_H

AW23 SysAddIn_L_14 AW27 SysAddIn_L_4 AW29 SysAddOut_L_11

AW33 SysAddOut_L_0 AW35 SysData_L_62 AW39 SysDataOutClk_L_7

AW41 Spare AW45 BcData_H_56 AW5 BcData_H_26

AY12 BcData_H_95 AY18 DCOK_H AY2 BcData_H_24

Table 3–5 Pin List Sorted by PGA Location (Continued)

PGA
Location Signal Name

PGA
Location Signal Name

PGA
Location Signal Name
17 February 1999 – Subject To Change Hardware Interface 3–13

Pin Assignments
AY20 Trst_L AY26 SysAddIn_L_8 AY28 SysAddIn_L_2

AY32 SysAddOut_L_5 AY34 SysCheck_L_7 AY38 SysData_L_60

AY40 BcDataInClk_H_7 AY44 BcData_H_58 AY6 SysDataInClk_H_3

AY8 SysDataOutClk_L_3 B10 BcData_H_0 B12 BcTag_H_23

B16 BcTag_H_31 B18 BcTag_H_35 B22 BcTagParity_H

B24 BcTagValid_H B28 BcAdd_H_4 B30 BcAdd_H_10

B34 BcAdd_H_18 B36 BcAdd_H_20 B4 BcData_H_68

B40 BcData_H_34 B42 BcData_H_99 B6 BcData_H_67

BA1 BcData_H_89 BA13 SysCheck_L_3 BA15 IRQ_H_0

BA19 TestStat_H BA21 Tdi_H BA25 SysVref

BA27 SysAddIn_L_5 BA3 BcData_H_90 BA31 SysAddOut_L_9

BA33 SysAddOut_L_4 BA37 BcData_H_126 BA39 Spare

BA43 BcData_H_59 BA45 BcData_H_121 BA7 Spare

BA9 BcData_H_93 BB10 BcData_H_30 BB14 NoConnect

BB16 IRQ_H_5 BB2 BcData_H_25 BB20 Tdo_H

BB22 SysDataOutValid_L BB24 SysAddIn_L_10 BB26 SysAddInClk_L

BB30 SysAddOut_L_14 BB32 SysAddOut_L_8 BB36 BcCheck_H_15

BB38 BcData_H_62 BB4 BcData_H_27 BB42 BcData_H_124

BB44 BcData_H_123 BB8 BcData_H_28 BC11 BcCheck_H_3

BC15 IRQ_H_4 BC17 SromData_H BC21 Spare

BC23 SysFillValid_L BC25 SysAddIn_L_9 BC29 SysAddIn_L_1

BC3 BcData_H_91 BC31 SysAddOut_L_12 BC35 SysAddOut_L_3

BC37 BcCheck_H_7 BC41 BcData_H_125 BC43 BcData_H_60

BC5 BcDataInClk_H_3 BC9 BcData_H_94 BD10 BcCheck_H_11

BD12 PllBypass_H BD16 Reset_L BD18 Tms_H

BD2 NoConnect BD22 SysDataInValid_L BD24 SysAddIn_L_12

BD28 SysAddIn_L_6 BD30 SysAddIn_L_0 BD34 SysAddOutClk_L

BD36 SysAddOut_L_2 BD4 Spare BD40 BcData_H_127

BD42 BcData_H_61 BD6 BcData_H_92 BE11 ClkFwdRst_H

BE13 IRQ_H_1 BE17 SromOE_L BE19 Tck_H

BE23 SysAddIn_L_13 BE27 SysAddIn_L_7 BE29 SysAddIn_L_3

BE33 SysAddOut_L_10 BE35 SysAddOut_L_6 BE39 SysAddOut_L_1

BE41 BcData_H_63 BE5 BcData_H_29 BE7 BcData_H_31

Table 3–5 Pin List Sorted by PGA Location (Continued)

PGA
Location Signal Name

PGA
Location Signal Name

PGA
Location Signal Name
3–14 Hardware Interface 17 February 1999 – Subject To Change

Pin Assignments
BE9 Spare C11 BcData_H_64 C15 BcTag_H_28

C17 BcTag_H_32 C21 BcTag_H_40 C23 BcTagDirty_H

C25 BcTagOutClk_H C29 BcAdd_H_8 C3 BcData_H_4

C31 BcAdd_H_12 C35 BcAdd_H_22 C37 BcData_H_33

C41 BcData_H_35 C43 BcData_H_36 C5 BcData_H_3

C9 BcData_H_66 D10 BcData_H_1 D14 BcTag_H_24

D16 BcTag_H_30 D2 BcData_H_71 D20 BcTag_H_38

D22 BcTag_H_41 D24 BcTagOutClk_L D26 BcDataWr_L

D30 BcAdd_H_11 D32 BcAdd_H_17 D36 BcData_H_97

D38 Spare D4 BcData_H_69 D42 BcData_H_100

D44 BcData_H_101 D8 SysDataInClk_H_0 E1 BcData_H_7

E13 BcTag_H_20 E15 BcTag_H_25 E19 BcTag_H_34

E21 BcTag_H_39 E25 BcTagWr_L E27 BcAdd_H_5

E3 BcData_H_5 E31 BcAdd_H_16 E33 BcAdd_H_23

E37 SysDataInClk_H_4 E39 Spare E43 BcData_H_37

E45 BcCheck_H_12 E7 BcDataInClk_H_0 E9 Spare

F12 SysData_L_2 F14 SysData_L_0 F18 BcVref

F2 BcCheck_H_0 F20 BcTag_H_37 F26 BcLoad_L

F28 BcAdd_H_9 F32 SysData_L_32 F34 SysData_L_33

F38 BcDataInClk_H_4 F40 SysData_L_36 F44 BcData_H_39

F6 SysData_L_6 F8 Spare G1 BcData_H_73

G11 SysDataOutClk_L_0 G13 SysData_L_1 G17 BcTag_H_27

G19 BcTagInClk_H G23 BcTagShared_H G27 BcAdd_H_7

G29 BcAdd_H_14 G33 BcData_H_32 G35 SysData_L_35

G39 SysData_L_37 G41 BcData_H_38 G45 BcData_H_104

G5 BcData_H_70 G7 SysData_L_5 H10 SysData_L_4

H12 SysData_L_3 H16 BcTag_H_21 H18 BcTag_H_29

H22 BcTag_H_42 H24 BcTagOE_L H28 BcAdd_H_13

H30 BcAdd_H_21 H34 SysData_L_34 H36 SysDataOutClk_L_4

H4 BcData_H_72 H40 BcData_H_102 H42 BcData_H_103

H6 BcData_H_6 J3 BcData_H_8 J41 SysData_L_39

J43 BcDataOutClk_H_2 J5 BcDataOutClk_H_0 K2 BcData_H_9

K38 SysData_L_38 K4 BcDataOutClk_L_0 K42 BcDataOutClk_L_2

Table 3–5 Pin List Sorted by PGA Location (Continued)

PGA
Location Signal Name

PGA
Location Signal Name

PGA
Location Signal Name
17 February 1999 – Subject To Change Hardware Interface 3–15

Pin Assignments
K44 BcData_H_40 K8 SysData_L_7 L1 BcData_H_75

L3 BcData_H_10 L39 SysCheck_L_4 L43 BcData_H_105

L45 BcData_H_106 L7 SysCheck_L_0 M2 BcData_H_11

M38 BcCheck_H_4 M40 SysData_L_40 M44 BcData_H_42

M6 SysData_L_8 M8 BcCheck_H_8 N1 BcData_H_76

N39 SysData_L_41 N41 BcData_H_41 N45 BcData_H_107

N5 BcData_H_74 N7 SysData_L_9 P4 SysDataInClk_H_1

P40 SysData_L_42 P42 BcData_H_43 P6 SysData_L_10

R3 BcDataInClk_H_1 R41 SysDataOutClk_L_5 R43 SysDataInClk_H_5

R5 Spare T2 BcData_H_12 T38 SysData_L_43

T4 Spare T42 Spare T44 BcData_H_108

T8 SysData_L_11 U1 BcData_H_13 U3 BcData_H_77

U39 BcDataInClk_H_5 U43 BcData_H_44 U45 BcData_H_109

U7 SysDataOutClk_L_1 V2 BcData_H_14 V38 Spare

V40 SysData_L_44 V44 BcData_H_45 V6 SysData_L_13

V8 SysData_L_12 W1 BcData_H_79 W39 SysData_L_46

W41 SysData_L_45 W45 BcData_H_110 W5 BcData_H_78

W7 SysData_L_14 Y4 BcData_H_15 Y40 SysData_L_47

Y42 BcData_H_46 Y6 SysData_L_15 — —

Table 3–5 Pin List Sorted by PGA Location (Continued)

PGA
Location Signal Name

PGA
Location Signal Name

PGA
Location Signal Name
3–16 Hardware Interface 17 February 1999 – Subject To Change

Pin Assignments
Table 3–6 lists the 21264 ground and power (VSS and VDD, respectively) pin list.

Table 3–6 Ground and Power (VSS and VDD) Pin List

Signal PGA Location

VSS C1 W3 AR5 G9 E17 G25 C33 AA39 BA41 R45

J1 AG3 BA5 AW9 BA17 AW25 BC33 AE39 A43 AA45

R1 AN3 C7 C19 BE25 E35 AL39 G43 AE45

AA1 AW3 J7 E11 BC19 C27 BA35 AU39 N43 AL45

AE1 BE3 R7 BA11 A21 BC27 A37 BC39 W43 AU45

AL1 E5 AA7 C13 G21 E29 G37 E41 AG43 BC45

AU1 L5 AE7 BC13 AW21 BA29 AW37 L41 AN43

BC1 U5 AU7 A15 BE21 A31 BE37 U41 AW43

A3 AC5 AW7 G15 E23 G31 C39 AC41 BE43

G3 AJ5 BC7 AY14 BA23 AW31 J39 AJ41 C45

N3 AN5 A9 BE15 A25 BE31 R39 AR41 J45

VDD B2 V4 AP6 D12 B20 H26 BD32 AM38 BB40 Y44

H2 AH4 AT6 BB12 H20 AV26 D34 AV38 F42 AF44

P2 AP4 BB6 B14 AV20 BD26 BB34 BD38 M42 AM44

Y2 AY4 B8 H14 BD20 D28 F36 D40 V42 AV44

AF2 D6 P8 AV14 F22 BB28 AY36 K40 AH42 BD44

AM2 K6 Y8 BD14 AY22 F30 B38 T40 AP42

AV2 T6 AF8 F16 A23 AY30 H38 AB40 AY42

AB6 BD8 AY16 F24 B32 P38 AD40 B44 F4

AD6 F10 D18 AY24 H32 Y38 AK40 H44 M4

AK6 AY10 BB18 B26 AV32 AF38 AT40 P44
17 February 1999 – Subject To Change Hardware Interface 3–17

Mechanical Specifications
3.4 Mechanical Specifications

This section shows the 21264 mechanical package dimensions without a heat sink. For
heat sink information and dimensions, refer to Chapter 8.

Figure 3–2 shows the package physical dimensions without a heat sink.

Figure 3–2 Package Dimensions

1/4-20 Stud (2x)

Standoff (4x)

Lid

FM-05662.AI4

2.54 mm (.100 in) Typ

587x 1.40 mm (.055 in) Typ

1.27 mm (.050 in) Typ

27.94 mm
(1.100 in)

27.94 mm
(1.100 in)

59.94 mm (2.360 in) Typ

29.62 mm
(1.180 in) Typ

25.40 mm
(1.000 in) Typ

53.85 mm
(2.120 in) Typ

1.27 mm (.050 in) Typ

4.32 mm (.170 in) Typ

1.377 mm (.055 in) Typ

.13 mm
(.005 in) R

7.62 mm (.300 in) Typ

1.905 mm (.075 in) Typ

29.62 mm
(1.180 in) Typ

BC
BB

BA
AY

AW
AV

AU
AT

AR
AP

AN
AM

AL
AK

AJ
AH

AG
AF

AE
AD

AC
AB

AA
Y

W
V

U
T

R
P

N
M

L
K

J
H

G
F

E
D

C
B

A

45434139373533312927252321191715131109070503

04 06 08 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

BC

01

02

BE
BD

B

3–18 Hardware Interface 17 February 1999 – Subject To Change

21264 Packaging

e 3–
3.5 21264 Packaging

Figure 3–3 shows the 21264 pinout from the top view with pins facing down. Figur
4 shows the 21264 pinout from the bottom view with pins facing up.

Figure 3–3 21264 Top View (Pin Down)

FM-05644.AI4

BC
BB

BA
AY

AW
AV

AU
AT

AR
AP

AN
AM

AL
AK

AJ
AH

AG
AF

AE
AD

AC
AB

AA
Y

W
V

U
T

R
P

N
M

L
K

J
H

G
F

E
D

C
B

A

01030507091113151719212325272931333537394143

42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 08 06 04 02

21264
Top View

(Pin Down)

BC

45

44

BE
BD

B

17 February 1999 – Subject To Change Hardware Interface 3–19

21264 Packaging
Figure 3–4 21264 Bottom View (Pin Up)

FM-05645.AI4

BC
BB

BA
AY

AW
AV

AU
AT

AR
AP

AN
AM

AL
AK

AJ
AH

AG
AF

AE
AD

AC
AB

AA
Y

W
V

U
T

R
P

N
M

L
K

J
H

G
F

E
D

C
B

A

45434139373533312927252321191715131109070503

04 06 08 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

21264
Bottom View

(Pin Up)

BC

01

02

BE
BD

B

3–20 Hardware Interface 17 February 1999 – Subject To Change

ugh
the
the
corre-
es
 4
Internal Processor Registers

This chapter describes 21264 internal processor registers (IPRs). They are separated
into the following circuit logic groups: Ebox, Ibox, Mbox, and Cbox.

The gray areas in register figures indicate reserved fields. Bit ranges that are coupled
with the field name specify those bits in that named field that are included in the IPR.
For example, in Figure 4–2, the field named COUNTER[31:4] contains bits 31 thro
4 of the COUNTER field from Section 4.1.1 . The bit range of COUNTER[31:4] in
IPR is also listed in the column Extent in Table 4–2. In many cases, such as this one,
bit ranges correspond. However, the bit range of the named field need not always
spond to the Extent in the IPR. For example, in Figure 4–13, the field VA[47:13] resid
in IPR IVA_FORM[37:3] under the stated conditions.

The register contents after initialization are listed in Section 6.2.

Table 4–1 lists the 21264 internal processor registers.

Table 4–1 Internal Processor Registers

Register Name Mnemonic
Index
(Binary)

Score-
Board
Bit Access

MT/MF
Issued
from
Ebox
Pipe

Latency
for MFPR
(Cycles)

Ebox IPRs

Cycle counter CC 1100 0000 5 RW 1L 1

Cycle counter control CC_CTL 1100 0001 5 W0 1L —

Virtual address VA 1100 0010 4, 5, 6, 7 RO 1L 1

Virtual address control VA_CTL 1100 0100 5 WO 1L —

Virtual address format VA_FORM 1100 0011 4, 5, 6, 7 RO 1L 1
17 February 1999 – Subject To Change Internal Processor Registers 4–1

Ibox IPRs

ITB tag array write ITB_TAG 0000 0000 6 WO 0L —

ITB PTE array write ITB_PTE 0000 0001 4, 0 WO 0L —

ITB invalidate all process (ASM=0) ITB_IAP 0000 0010 4 WO 0L —

ITB invalidate all ITB_IA 0000 0011 4 WO 0L —

ITB invalidate single ITB_IS 0000 0100 4, 6 WO 0L —

Exception address EXC_ADDR 0000 0110 — RO 0L 3

Instruction VA format IVA_FORM 0000 0111 5 RO 0L 3

Current mode CM 0000 1001 4 RW 0L 3

Interrupt enable IER 0000 1010 4 RW 0L 3

Interrupt enable and current mode IER_CM 0000 10xx 4 RW 0L 3

Software interrupt request SIRR 0000 1100 4 RW 0L 3

Interrupt summary ISUM 0000 1101 — RO — —

Hardware interrupt clear HW_INT_CLR 0000 1110 4 WO 0L —

Exception summary EXC_SUM 0000 1111 — RO 0L 3

PAL base address PAL_BASE 0001 0000 4 RW 0L 3

Ibox control I_CTL 0001 0001 4 RW 0L 3

Ibox status I_STAT 0001 0110 4 RW 0L 3

Icache flush IC_FLUSH 0001 0011 4 W 0L —

Icache flush ASM IC_FLUSH_ASM 0001 0010 4 WO 0L —

Clear virtual-to-physical map CLR_MAP 0001 0101 4, 5, 6, 7 WO 0L —

Sleep mode SLEEP 0001 0111 4, 5, 6, 7 WO 0L —

Process context register PCTX 01xn nnnn1 4 W 0L 3

Process context register PCTX 01xx xxxx 4 R 0L 3

Performance counter control PCTR_CTL 0001 0100 4 RW 0L 3

Mbox IPRs

DTB tag array write 0 DTB_TAG0 0010 0000 2, 6 WO 0L —

DTB tag array write 1 DTB_TAG1 1010 0000 1, 5 WO 1L —

DTB PTE array write 0 DTB_PTE0 0010 0001 0, 4 WO 0L —

DTB PTE array write 1 DTB_PTE1 1010 0001 3, 7 WO 0L —

DTB alternate processor mode DTB_ALTMODE 0010 0110 6 WO 1L —

DTB invalidate all process (ASM = 0) DTB_IAP 1010 0010 7 WO 1L —

DTB invalidate all DTB_IA 1010 0011 7 WO 1L —

Table 4–1 Internal Processor Registers (Continued)

Register Name Mnemonic
Index
(Binary)

Score-
Board
Bit Access

MT/MF
Issued
from
Ebox
Pipe

Latency
for MFPR
(Cycles)
4–2 Internal Processor Registers 17 February 1999 – Subject To Change

Ebox IPRs
4.1 Ebox IPRs

This section describes the internal processor registers that control Ebox functions.

4.1.1 Cycle Counter Register – CC

The cycle counter register (CC) is a read-write register. The lower half of CC is a
counter that, when enabled by way of CC_CTL[32], increments once each CPU cycle.
The upper half of the register is 32 bits of register storage that may be used as a counter
offset as described in the Alpha Architecture Handbook, Version 4 under Processor Cycle
Counter (PCC) Register.

A HW_MTPR instruction to the CC writes the upper half of the register and leaves the
lower half unchanged. The RPCC instruction returns the full 64-bit value of the register.
Figure 4–1 shows the cycle counter register.

Figure 4–1 Cycle Counter Register

Mbox IPRs (cont.)

DTB invalidate single (array 0) DTB_IS0 0010 0100 6 WO 0L —

DTB invalidate single (array 1) DTB_IS1 1010 0100 7 WO 1L —

DTB address space number 0 DTB_ASN0 0010 0101 4 WO 0L —

DTB address space number 1 DTB_ASN1 1010 0101 7 WO 1L —

Memory management status MM_STAT 0010 0111 — RO 0L 3

Mbox control M_CTL 0010 1000 6 WO 0L —

Dcache control DC_CTL 0010 1001 6 WO 0L —

Dcache status DC_STAT 0010 1010 6 RW 0L 3

Cbox IPRs

Cbox data C_DATA 0010 1011 6 RW 0L 3

Cbox shift control C_SHFT 0010 1100 6 WO 0L Ò

1When n equals 1, that process context field is selected (FPE, PPCE, ASTRR, ASTER, ASN).

Table 4–1 Internal Processor Registers (Continued)

Register Name Mnemonic
Index
(Binary)

Score-
Board
Bit Access

MT/MF
Issued
from
Ebox
Pipe

Latency
for MFPR
(Cycles)

31 0

FM-05832.AI4

OFFSET

63 32

COUNTER
17 February 1999 – Subject To Change Internal Processor Registers 4–3

Ebox IPRs

 vir-

s
4.1.2 Cycle Counter Control Register – CC_CTL

The cycle counter control register (CC_CTL) is a write-only register through which the
lower half of the CC register may be written and its associated counter enabled and dis-
abled. Figure 4–2 shows the cycle counter control register.

Figure 4–2 Cycle Counter Control Register

Table 4–2 describes the CC_CTL register fields.

4.1.3 Virtual Address Register – VA

The virtual address register (VA) is a read-only register. When a DTB miss or fault
occurs, the associated effective virtual address is written into the VA register. VA is not
written when a LD_VPTE gets a DTB miss or Dstream fault. Figure 4–3 shows the
tual address register.

Figure 4–3 Virtual Address Register

4.1.4 Virtual Address Control Register – VA_CTL

The virtual address control register (VA_CTL) is a write-only register that controls the
way in which the faulting virtual address stored in the VA register is formatted when it
is read by way of the VA_FORM register. It also contains control bits that affect the

Table 4–2 Cycle Counter Control Register Fields Description

Name Extent Type Description

Reserved [63:33] — —

CC_ENA [32] WO Counter Enable.

When set, this bit allows the cycle counter to increment.

COUNTER[31:4] [31:4] WO CC[31:4] may be written by way of this field. Write transaction
to CC_CTL result in CC[3:0] being cleared.

Reserved [3:0] — —

31 0

FM-05833.AI4

CC_ENA

63 32

COUNTER[31:4]

34

33

31 0

FM-05834.AI4

VA[63:32]

63 32

VA[31:0]
4–4 Internal Processor Registers 17 February 1999 – Subject To Change

Ebox IPRs

dress

s

l
l

gth
behavior of the memory pipe virtual address sign extension checkers and the behavior
of the Ebox extract, insert, and mask instructions. Figure 4–4 shows the virtual ad
control register.

Figure 4–4 Virtual Address Control Register

Table 4–3 describes the virtual address control register fields.

Table 4–3 Virtual Address Control Register Fields Description

Name Extent Type Description

VPTB[63:30] [63:30] WO Virtual Page Table Base.

See the VA_FORM register section for details.

Reserved [29:3] — —

VA_FORM_32 [2] WO,0 This bit is used to control address formatting when reading the
VA_FORM register. See the section on the VA_FORM register
for details.

VA_48 [1] WO,0 This bit controls the format applied to effective virtual addresse
by the VA_FORM register and the memory pipe virtual address
sign extension checkers. When VA_48 is clear, the 43-bit virtua
address format is used, and when VA_48 is set, the 48-bit virtua
address format is used.
When VA_48 is set, the sign extension checkers generate an
access control violation (ACV) if VA[63:0] ≠ SEXT (VA[47:0]).
When VA_48 is clear, the sign extension checkers generate an
ACV if VA[63:0] ≠ SEXT(VA[42:0]).

B_ENDIAN [0] WO,0 Big Endian Mode.

When set, the shift amount (Rbv[2:0]) is inverted for EXTxx,
INSxx, and MSKxx instructions. The lower bits of the physical
address for Dstream accesses are inverted based upon the len
of the reference as follows:

Byte: Invert bits [2:0]
Word: Invert bits [2:1]
Longword: Inverts bit [2]

31 0

FM-05838.AI4

VPTB[63:32]

63 32

VPTB[31:30]

232930 1

VA_FORM_32

VA_48

B_ENDIAN
17 February 1999 – Subject To Change Internal Processor Registers 4–5

Ebox IPRs
4.1.5 Virtual Address Format Register – VA_FORM

The virtual address format register (VA_FORM) is a read-only register. It contains the
virtual page table entry address derived from the faulting virtual address stored in the
VA register. It also contains the virtual page table base and associated control bits stored
in the VA_CTL register.

Figure 4–5 shows VA_FORM when VA_CTL(VA_48) equals 0 and
VA_CTL(VA_FORM_32) equals 0.

Figure 4–5 Virtual Address Format Register (VA_48 = 0, VA_FORM_32 = 0)

Figure 4–6 shows VA_FORM when VA_CTL(VA_48) equals 1 and
VA_CTL(VA_FORM_32) equals 0.

Figure 4–6 Virtual Address Format Register (VA_48 = 1, VA_FORM_32 = 0)

Figure 4–7 shows VA_FORM when VA_CTL(VA_48) equals 0 and
VA_CTL(VA_FORM_32) equals 1.

Figure 4–7 Virtual Address Format Register (VA_48 = 0, VA_FORM_32 = 1)

31 0

FM-05835.AI4

VPTB[63:33]

63 32

VA[41:13]

23

33

VA[42]

31 0

FM-05836.AI4

VPTB[63:43]

63 32

VA[41:13]

23

3337384243

SEXT(VA[47])

VA[47:42]

31 0

FM-05837.AI4

VPTB[63:32]

63 32

VPTB[31:30]

2321222930

VA[31:13]
4–6 Internal Processor Registers 17 February 1999 – Subject To Change

Ibox IPRs

B tag
4.2 Ibox IPRs

This section describes the internal processor registers that control Ibox functions.

4.2.1 ITB Tag Array Write Register – ITB_TAG

The ITB tag array write register (ITB_TAG) is a write-only register. The ITB tag array
is written by way of this register. A write transaction to ITB_TAG writes a register out-
side the ITB array. When a write to the ITB_PTE register is retired, the contents of both
the ITB_TAG and ITB_PTE registers are written into the ITB entry. The specific ITB
entry that is written is determined by a round-robin algorithm; the algorithm writes to
entry number 0 as the first entry after the 21264 is reset. Figure 4–8 shows the IT
array write register.

Figure 4–8 ITB Tag Array Write Register

4.2.2 ITB PTE Array Write Register – ITB_PTE

The ITB PTE array write register (ITB_PTE) is a write-only register through which the
ITB PTE array is written. A round-robin allocation algorithm is used. A write to the
ITB_PTE array, when retired, results in both the ITB_TAG and ITB_PTE arrays being
written. The specific entry that is written is chosen by the round-robin algorithm
described above. Figure 4–9 shows the ITB PTE array write register.

Figure 4–9 ITB PTE Array Write Register

31 0

FM-05839.AI4

VA[47:32]

63 32

VA[31:13]

1213

4748

31 0

FM-05840.AI4

PFN[43:32]

63 32

PFN[31:13]

1213

4344

34579 81011

URE

SRE

ERE

KRE

GH[1:0]

ASM

6

17 February 1999 – Subject To Change Internal Processor Registers 4–7

Ibox IPRs

an-

.

4.2.3 ITB Invalidate All Process (ASM=0) Register – ITB_IAP

The ITB invalidate all process register (ITB_IAP) is a pseudo register that, when writ-
ten to, invalidates all ITB entries whose ASM bit is clear. An explicit write to
IC_FLUSH_ASM is required to flush the Icache of blocks with ASM equal to zero.

4.2.4 ITB Invalidate All Register – ITB_IA

The ITB invalidate all register (ITB_IA) is a pseudo register that, when written to,
invalidates all ITB entries and resets the allocation pointer to its initial state. An
explicit write to IC_FLUSH is required to flush the Icache.

4.2.5 ITB Invalidate Single Register – ITB_IS

The ITB invalidate single register (ITB_IS) is a write-only register. Writing a virtual
page number to this register invalidates any ITB entry that meets one of the following
criteria:

• The ITB entry’s virtual page number matches ITB_IS[47:13] (or fewer bits if gr
ularity hint bits are set in the ITB entry) and its ASN field matches the address
space number supplied in PCTX[46:39].

• The ITB entry’s virtual page number matches ITB_IS[47:13] and its ASM bit is set

Figure 4–10 shows the ITB invalidate single register.

Figure 4–10 ITB Invalidate Single Register

Note: Because the Icache is virtually indexed and tagged, it is normally not nec-
essary to flush the Icache when paging. Therefore, a write to ITB_IS will
not flush the Icache.

4.2.6 Exception Address Register – EXC_ADDR

The exception address register (EXC_ADDR) is a read-only register that is updated by
hardware when it encounters an exception or interrupt.

EXC_ADDR[0] is set if the associated exception occurred in PAL mode. The exception
actions are listed here:

• If the exception was a fault or a synchronous trap, EXC_ADDR contains the PC of
the instruction that triggered the fault or trap.

• If the exception was an interrupt, EXC_ADDR contains the PC of the next instruc-
tion that would have executed if the interrupt had not occurred.

Figure 4–11 shows the exception address register.

31 0

FM-05841.AI4

INVAL_ITB[47:32]

63 32

INVAL_ITB[31:13]

1213

4748
4–8 Internal Processor Registers 17 February 1999 – Subject To Change

Ibox IPRs

.

.

.

Figure 4–11 Exception Address Register

4.2.7 Instruction Virtual Address Format Register — IVA_FORM

The instruction virtual address format register (IVA_FORM) is a read-only register. It
contains the virtual PTE address derived from the faulting virtual address stored in the
EXC_ADDR register, and from the virtual page table base, VA_48 and VA_FORM_32
bits, stored in the I_CTL register.

Figure 4–12 shows IVA_FORM when VA_48 equals 0 and VA_FORM_32 equals 0

Figure 4–12 Instruction Virtual Address Format Register (VA_48 = 0, VA_FORM_32 = 0)

Figure 4–13 shows IVA_FORM when VA_48 equals 1 and VA_FORM_32 equals 0

Figure 4–13 Instruction Virtual Address Format Register (VA_48 = 1, VA_FORM_32 = 0)

Figure 4–14 shows IVA_FORM when VA_48 equals 0 and VA_FORM_32 equals 1

31 0

FM-06384.AI4

PC[63:32]

63 32

PC[31:2]

12

PAL

31 0

FM-05843.AI4

VPTB[63:33]

63 32

VA[41:13]

23

33

VA[42]

31 0

FM-05844.AI4

VPTB[63:43]

63 32

VA[41:13]

23

VA[47:42]

37384243

SEXT(VA[47])
17 February 1999 – Subject To Change Internal Processor Registers 4–9

Ibox IPRs

5

s.
Figure 4–14 Instruction Virtual Address Format Register (VA_48 = 0, VA_FORM_32 = 1)

4.2.8 Interrupt Enable and Current Processor Mode Register – IER_CM

The interrupt enable and current processor mode register (IER_CM) contains the inter-
rupt enable and current processor mode bit fields. These bit fields can be written either
individually or together with a single HW_MTPR instruction. When bits [7:2] of the
IPR index field of a HW_MTPR instruction contain the value 0000102, this register is
selected. Bits [1:0] of the IPR index indicate which bit fields are to be written: bit[1]
corresponds to the IER field and bit[0] corresponds to the processor mode field. A
HW_MFPR instruction to this register returns the values in both fields. Figure 4–1
shows the interrupt enable and current processor mode register.

Figure 4–15 Interrupt Enable and Current Processor Mode Register

Table 4–4 describes the interrupt enable and current processor mode register field

Table 4–4 IER_CM Register Fields Description

Name Extent Type Description

Reserved [63:39] — —

EIEN[5:0] [38:33] RW External Interrupt Enable

SLEN [32] RW Serial Line Interrupt Enable

CREN [31] RW Corrected Read Error Interrupt Enable

PCEN[1:0] [30:29] RW Performance Counter Interrupt Enables

SIEN[15:1] [28:14] RW Software Interrupt Enables

31 0

FM-05845.AI4

VPTB[63:32]

63 32

VPTB[31:30]

2330 29 22 21

VA[31:13]

31 0

FM-05846.AI4

EIEN[5:0]

63 33

CREN

2330 29 14 13

PCEN[1:0]

3839

SLEN

32

28 12 45

SIEN[15:1]

ASTEN

CM[1:0]
4–10 Internal Processor Registers 17 February 1999 – Subject To Change

Ibox IPRs

4.2.9 Software Interrupt Request Register – SIRR

The software interrupt request register (SIRR) is a read-write register containing bits to
request software interrupts. To generate a particular software interrupt, its correspond-
ing bits in SIRR and IER[SIER] must both be set. Figure 4–16 shows the software
interrupt request register.

Figure 4–16 Software Interrupt Request Register

Table 4–5 describes the software interrupt request register fields.

4.2.10 Interrupt Summary Register – ISUM

The interrupt summary register (ISUM) is a read-only register that records all pending
hardware, software, and AST interrupt requests that have their corresponding enable bit
set.

If a new interrupt (hardware, serial line, crd, or performance counters) occurs simulta-
neously with an ISUM read, the ISUM read returns zeros. That condition is normally
assumed to be a passive release condition. The interrupt is signaled again when the
PALcode returns to native mode. The effects of this condition can be minimized by
reading ISUM twice and ORing the results.

ASTEN [13] RW AST Interrupt Enable

When set, enables those AST interrupt requests that are also
enabled by the value in ASTER.

Reserved [12:5] — —

CM[1:0] [4:3] RW Current Mode

00 Kernel
01 Executive
10 Supervisor
11 User

Reserved [2:0] — —

Table 4–5 Software Interrupt Request Register Fields Description

Name Extent Type Description

Reserved [63:29] — —

SIR[15:1] [28:14] RW Software Interrupt Requests

Reserved [13:0] — —

Table 4–4 IER_CM Register Fields Description (Continued)

Name Extent Type Description

31 0

FM-05847.AI4

63 32

SIR[15:1]

14 1329 28
17 February 1999 – Subject To Change Internal Processor Registers 4–11

Ibox IPRs

T

he

Figure 4–17 shows the interrupt summary register.

Figure 4–17 Interrupt Summary Register

Table 4–6 describes the interrupt summary register fields.

Table 4–6 Interrupt Summary Register Fields Description

Name Extent Type Description

Reserved [63:39] — —

EI[5:0] [38:33] RO External Interrupts

SL [32] RO Serial Line Interrupt

CR [31] RO Corrected Read Error Interrupts

PC[1:0] [30:29] RO Performance Counter Interrupts

PC0 when PC[0] is set.

PC1 when PC[1] is set.

SI[15:1] [28:14] RO Software Interrupts

Reserved [13:11] — —

ASTU, ASTS [10],[9] RO AST Interrupts

For each processor mode, the bit is set if an associated AS
interrupt is pending. This includes the mode’s ASTER and
ASTRR bits and whether the processor mode value held in t
IER_CM register is greater than or equal to the value for the
mode.

31 0

FM-05849.AI4

SL

63 32

CR

14 34579 81011

PC[1:0]

SI[15:1]

ASTU

ASTS

ASTE

ASTK

630 29 28 13 2

333839

EI[5:0]
4–12 Internal Processor Registers 17 February 1999 – Subject To Change

Ibox IPRs

t clear

he

4.2.11 Hardware Interrupt Clear Register – HW_INT_CLR

The hardware interrupt clear register (HW_INT_CLR) is a write-only register used to
clear edge-sensitive interrupt requests. Figure 4–18 shows the hardware interrup
register.

Figure 4–18 Hardware Interrupt Clear Register

Table 4–7 describes the hardware interrupt clear register fields.

Reserved [8:5] — —

ASTE, ASTK [4],[3] RO AST Interrupts

For each processor mode, the bit is set if an associated AST
interrupt is pending. This includes the mode’s ASTER and
ASTRR bits and whether the processor mode value held in t
IER_CM register is greater than or equal to the value for the
mode.

Reserved [2:0] — —

Table 4–7 Hardware Interrupt Clear Register Fields Description

Name Extent Type Description

Reserved [63:33] — —

SL [32] W1C Clears serial line interrupt request

CR [31] W1C Clears corrected read error interrupt request

PC[1:0] [30:29] W1C Clears performance counter interrupt requests

MCHK_D [28] W1C Clears Dstream machine check interrupt request

Reserved [27] — —

FBTP [26] W1S Forces the next Bcache hit that fills the Icache to

generate bad Icache fill parity

Reserved [25:0] — —

Table 4–6 Interrupt Summary Register Fields Description (Continued)

Name Extent Type Description

31 0

FM-05850.AI4

SL

63 32

CR

PC[1:0]

30 29 28

33

MCHK_D

FBTP

27 26
17 February 1999 – Subject To Change Internal Processor Registers 4–13

Ibox IPRs
4.2.12 Exception Summary Register – EXC_SUM

The exception summary register (EXC_SUM) is a read-only register that contains
information about instructions that have triggered traps. The register is updated at trap
delivery time. Its contents are valid only if it is read (by way of a HW_MFPR) in the
first fetch block of the exception handler. There are three types of traps for which this
register captures related information:

• Arithmetic traps: The instruction generated an exceptional condition that should be
reported to the operating system, and/or the FPCR status bit associated with this
condition is clear and should be set by PALcode. Additionally, the REG field con-
tains the register number of the destination specifier for the instruction that trig-
gered the trap.

• Istream ACV: The BAD_IVA bit of this register indicates whether the offending
Istream virtual address is latched into the EXC_ADDR register or the VA register.

• Dstream exceptions: The REG field contains the register number of either the
source specifier (for stores) or the destination specifier (for loads) of the instruction
that triggered the trap.

Figure 4–19 shows the exception summary register.

Figure 4–19 Exception Summary Register

31 0

FM-05851.AI4

SET_IOV

SEXT(SET_IOV)

63 32

BAD_IVA

12346 57813 1214

414244 4346 454748 40

REG[4:0]

INT

IOV

INE

UNF

FOV

INV

SWC

DZE

SET_INE

SET_UNF

SET_OVF

SET_DZE

SET_INV

PC_OVFL
4–14 Internal Processor Registers 17 February 1999 – Subject To Change

Ibox IPRs

regis-
Table 4–8 describes the exception summary register fields.

4.2.13 PAL Base Register – PAL_BASE

The PAL base register (PAL_BASE) is a read-write register that contains the base phys-
ical address for PALcode. Its contents are cleared by chip reset but are not cleared after
waking up from sleep mode or from fault reset. Figure 4–20 shows the PAL base
ter.

Table 4–8 Exception Summary Register Fields Description

Name Extent Type Description

SEXT(SET_IOV) [63:48] RO, 0 Sign-extended value of SET_IOV because it is bit 47.

SET_IOV [47] RO PALcode should set FPCR[IOV].

SET_INE [46] RO PALcode should set FPCR[INE].

SET_UNF [45] RO PALcode should set FPCR[UNF].

SET_OVF [44] RO PALcode should set FPCR[OVF].

SET_DZE [43] RO PALcode should set FPCR[DZE].

SET_INV [42] RO PALcode should set FPCR[INV].

PC_OVFL [41] RO Indicates that EXC_ADDR was improperly sign extended for 48-
bit mode over/underflow IACV.

Reserved [40:14] RO, 0 Reserved for COMPAQ.

BAD_IVA [13] RO Bad Istream VA.

This bit should be used by the IACV PALcode routine to deter-
mine whether the offending I-stream virtual address is latched in
the EXC_ADDR register or the VA register. If BAD_IVA is clear,
then EXC_ADDR contains the address, if BAD_IVA is set then
VA contains the address.

REG[4:0] [12:8] RO Destination register of load or operate instruction that triggered
the trap OR source register of store that triggered the trap. These
bits may contain the Rc field of an operate instruction or the Ra
field of a load or store instruction. The value is UNPREDICTABLE
if the trap was triggered by an ITB miss, interrupt, OPCDEC, or
other non load/st/operate.

INT [7] RO Set to indicate Ebox integer overflow trap, clear to indicate Fbox
trap condition.

IOV [6] RO Indicates Fbox convert-to-integer overflow or Ebox integer over-
flow trap.

INE [5] RO Indicates floating-point inexact error trap.

UNF [4] RO Indicates floating-point underflow trap.

FOV [3] RO Indicates floating-point overflow trap.

DZE [2] RO Indicates divide by zero trap.

INV [1] RO Indicates invalid operation trap.

SWC [0] RO Indicates software completion possible. This bit is set if the
instruction that triggered the trap contained the /S modifier.
17 February 1999 – Subject To Change Internal Processor Registers 4–15

Ibox IPRs

rol
Figure 4–20 PAL Base Register

Table 4–9 describes the PAL base register fields.

4.2.14 Ibox Control Register – I_CTL

The Ibox control register (I_CTL) is a read-write register that controls various Ibox
functions. Its contents are cleared by chip reset. Figure 4–21 shows the Ibox cont
register.

Table 4–9 PAL Base Register Fields Description

Name Extent Type Description

Reserved [63:44] RO, 0 Reserved for COMPAQ.

PAL_BASE[43:15] [43:15] RW Base physical address for PALcode.

Reserved [14:0] RO, 0 Reserved for COMPAQ.

31 0

FM-05852.AI4

PAL_BASE[43:32]

63 32

PAL_BASE[31:15]

15

44 43

14
4–16 Internal Processor Registers 17 February 1999 – Subject To Change

Ibox IPRs
Figure 4–21 Ibox Control Register

Table 4–10 describes the Ibox control register fields.

Table 4–10 Ibox Control Register Fields Description

Name Extent Type Description

SEXT(VPTB[47]) [63:48] RW,0 Sign extended VPTB[47].

VPTB[47:30] [47:30] RW,0 Virtual Page Table Base. See Section 4.1.5 for details.

CHIP_ID[5:0] [29:24] RO This is a read-only field that supplies the revision ID number
for the 21264 part.
21264 pass 1 ID is 0000002.
21264 pass 2 ID is 0000012.
21264 pass 2.2 ID is 0000102.
21264 pass 2.3 ID is 0000112.

BIST_FAIL [23] RO,0 Indicates the status of BIST (set = pass, clear = fail).

0

FM-05853.AI8

SEXT(VPTB[47])

63

CHIP_ID[5:0]

1236 5789101113 12141516171819

4748

202123 222930

TB_MB_EN

MCHK_EN

CALL_PAL_R23

PCT1_EN

PCT0_EN

SINGLE_ISSUE_H

VA_FORM_32

VA_48

SL_RCV

SL_XMIT

HWE

BP_MODE[1:0]

SBE[1:0]

SDE[1:0]

SPE[2:0]

IC_EN[1:0]

SPCE

VPTB[47:32]

31

VPTB[31:30]

32

BIST_FAIL
17 February 1999 – Subject To Change Internal Processor Registers 4–17

Ibox IPRs

be
s

for-
o-

for-

e

-

n

an
TB_MB_EN [22] RW,0 When set, the hardware ensures that the virtual-mode loads
in DTB and ITB fill flows that access the page table and the
subsequent virtual mode load or store that is being retried are
‘ordered’ relative to another processor’s stores. This must
set for multiprocessor systems in which no MB instruction i
present in the TB fill flow, unless there are other mecha-
nisms present that ensure coherency.

MCHK_EN [21] RW,0 Machine check enable — set to enable machine checks.

CALL_PAL_R23 [20] RW,0 CALL_PAL linkage register. If this bit is one, the
CALL_PAL linkage register is R23; when zero, it is R27.
Coordinate setting this bit with SDE[1:0] to ensure that the
shadow register is used as the linkage register.

PCT1_EN [19] RW,0 Enable performance counter #1. If this bit is one, the per
mance counter will count if either the system (SPCE) or pr
cess (PPCE) performance counter enable is asserted.

PCT0_EN [18] RW,0 Enable performance counter #0. If this bit is one, the per
mance counter will count if EITHER the system (SPCE) or
process (PPCE) performance counter enable is set.

SINGLE_ISSUE_H [17] RW,0 When set, this bit forces instructions to issue only from th
bottom-most entries of the IQ and FQ.

VA_FORM_32 [16] RW,0 This bit controls address formatting on a read of the
IVA_FORM register.

VA_48 [15] RW,0 This bit controls the format applied to effective virtual
addresses by the IVA_FORM register and the Ibox virtual
address sign extension checkers. When VA_48 is clear, 43
bit virtual address format is used, and when VA_48 is set,
48-bit virtual address format is used. The effect of this bit o
the IVA_FORM register is identical to the effect of
VA_CTL[VA_48] on the VA_FORM register. See Section
4.1.5.
When VA_48 is set, the sign extension checkers generate
ACV if va[63:0] ≠ SEXT(va[47:0]). When VA_48 is clear,
the sign extension checkers generate an ACV if va[63:0] ≠
SEXT(va[42:0]).
This bit also affects DTB_DOUBLE Traps. If set, the DTB
double miss traps vector to the DTB_DOUBLE_4 entry
point.
DTB_DOUBLE PALcode flow selection is not affected by
VA_CTL[VA_48].

SL_RCV [14] RO When in native mode, any transition on SL_RCV,
driven from the SromData_H pin, results in a trap to
the PALcode interrupt handler. When in PALmode, all
interrupts are blocked. The interrupt routine then
begins sampling SL_RCV under a software timing
loop to input as much data as needed, using the chosen
serial line protocol.

SL_XMIT [13] WO When set, drives a value on SromClk_H.

Table 4–10 Ibox Control Register Fields Description (Continued)

Name Extent Type Description
4–18 Internal Processor Registers 17 February 1999 – Subject To Change

Ibox IPRs
4.2.15 Ibox Status Register – I_STAT

The Ibox status register (I_STAT) is a read/write-1-to-clear register that contains Ibox
status information.

Figure 4–22 shows the Ibox status register.

HWE [12] RW,0 If set, allow PALRES intructions to be executed in kernel
mode. Note that modification of the ITB while in kernel
mode/native mode may cause UNPREDICTABLE behavior.

BP_MODE[1:0] [11:10] RW,0 Branch Prediction Mode Selection.

BP_MODE[1], if set, forces all branches to be predicted to
fall through. If clear, the dynamic branch predictor is chosen.
BP_MODE[0]. If set, the dynamic branch predictor chooses
local history prediction. If clear, the dynamic branch predic-
tor chooses local or global prediction based on the state of
the chooser.

SBE[1:0] [9:8] RW,0 Stream Buffer Enable.

The value in this bit field specifies the number of Istream
buffer prefetches (besides the demand-fill) that are launched
after an Icache miss. If the value is zero, only demand
requests are launched.

SDE[1:0] [7:6] RW,0 PALshadow Register Enable.

Enables access to the PALshadow registers. If SDE[1] is set,
R4-R7 and R20-R23 are used as PALshadow registers.
SDE[0] does not affect 21264 operation.

SPE[2:0] [5:3] RW,0 Super Page Mode Enable.

Identical to the SPE bits in the Mbox M_CTL SPE[2:0]. See
Section 4.3.9.

IC_EN[1:0] [2:1] RW,3 Icache Set Enable.

At least one set must be enabled. The entire cache may be
enabled by setting both bits. Zero, one, or two Icache sets
can be enabled.
This bit does not clear the Icache, but only disables fills to
the affected set.

SPCE [0] RW,0 System Performance Counting Enable.

Enables performance counting for the entire system if indi-
vidual counters (PCTR0 or PCTR1) are enabled by setting
PCT0_EN or PCT1_EN, respectively.

Performance counting for individual processes can be
enabled by setting PCTX[PPCE].

Table 4–10 Ibox Control Register Fields Description (Continued)

Name Extent Type Description
17 February 1999 – Subject To Change Internal Processor Registers 4–19

Ibox IPRs
Figure 4–22 Ibox Status Register

Table 4–11 describes the Ibox status register fields.

4.2.16 Icache Flush Register – IC_FLUSH

The Icache flush register (IC_FLUSH) is a pseudo register. Writing to this register
invalidates all Icache blocks. The cache is flushed when the next HW_RET/STALL
instruction is retired.

4.2.17 Icache Flush ASM Register – IC_FLUSH_ASM

The Icache flush ASM register (IC_FLUSH_ASM) is a pseudo register. Writing to this
register invalidates all Icache blocks with their ASM bit clear.

4.2.18 Clear Virtual-to-Physical Map Register – CLR_MAP

The clear virtual-to-physical map register (CLR_MAP) is a pseudo register that, when
written, results in the clearing of the current map of virtual to physical registers. This
register must only be written after there are no register-borne dependencies present and
there are no unretired instructions. See an example in the PALcode restrictions.

4.2.19 Sleep Mode Register – SLEEP

The sleep mode register (SLEEP) is a pseudo register that, when written, results in the
PLL speed being reduced and the chip entering a low-power mode. This register must
only be written after a sequence of code has been run which saves all necessary state to
DRAM, flushes the caches, and unmasks certain interrupts so the chip can be woken up.

Table 4–11 Ibox Status Register Fields Description

Name Extent Type Description

Reserved [63:31] RO Reserved for COMPAQ.

DPE [30] W1C Icache data parity error

When set, this bit indicates that the Icache encountered a data parity error
on instruction fetch.

TPE [29] W1C Icache tag parity error
When set, this bit indicates that the Icache encountered a tag parity error
on instruction fetch.

Reserved [28:0] RO Reserved for COMPAQ.

31 0

FM-05854.AI8

63 32

29 2830

DPE

TPE
4–20 Internal Processor Registers 17 February 1999 – Subject To Change

Ibox IPRs

-

.
4.2.20 Process Context Register – PCTX

The process context register (PCTX) contains information associated with the context
of a process. Any combination of the bit fields within this register may be written with
a single HW_MTPR instruction. When bits [7:6] of the IPR index field of a
HW_MTPR instruction contain the value 012, this register is selected. Bits [4:0] of the
IPR index indicate which bit fields are to be written. Table 4–12 lists the correspon
dence between IPR index bits and register fields.

A HW_MFPR from this register returns the values in all of its component bit fields

Figure 4–23 shows the process context register.

Figure 4–23 Process Context Register

Table 4–13 describes the process context register fields.

Table 4–12 IPR Index Bits and Register Fields

IPR Index Bit Register Field

0 ASN

1 ASTER

2 ASTRR

3 PPCE

4 FPE

Table 4–13 Process Context Register Fields Description

Name Extent Type Description

Reserved [63:47] — —

ASN[7:0] [46:39] RW Address space number.

Reserved [38:13] — —

31 0

FM-05855.AI4

ASN[7:0]

63 32

ASTRR[3:0]

123458913 12

4647 38

ASTER[3:0]

FPE

PPCE

39
17 February 1999 – Subject To Change Internal Processor Registers 4–21

Ibox IPRs

er
ci-

t-

d
4.2.21 Performance Counter Control Register – PCTR_CTL

The performance counter control register (PCTR_CTL) is a read-write register that
controls the function of the performance counters.

Figure 4–24 shows the performance counter control register.

ASTRR[3:0] [12:9] RW AST request register—used to request AST interrupts in
each of the four processor modes.
To generate a particular AST interrupt, its corresponding
bits in ASTRR and ASTER must be set, along with the
ASTE bit in IER.
Further, the value of the current mode bits in the PS regist
must be equal to or higher than the value of the mode asso
ated with the AST request.
The bit order with this field is:

User Mode 12
Supervior Mode 11
Executive Mode 10
Kernel Mode 9

ASTER[3:0] [8:5] RW AST enable register—used to individually enable each of
the four AST interrupt requests.
The bit order with this field is:

User Mode 8
Supervisor Mode 7
Executive Mode 6
Kernel Mode 5

Reserved [4:3] — —

FPE [2] RW,1 Floating-point enable—if clear, floating-point instructions
generate FEN exceptions. This bit is set by hardware on
reset.

PPCE [1] RW Process performance counting enable.

Enables performance counting for an individual process
with counters PCTR0 or PCTR1, which are enabled by se
ting PCT0_EN or PCT1_EN, respectively.

Performance counting for the entire system can be enable
by setting I_CTL[SPCE].

Reserved [0] — —

Table 4–13 Process Context Register Fields Description (Continued)

Name Extent Type Description
4–22 Internal Processor Registers 17 February 1999 – Subject To Change

Ibox IPRs

ted
Figure 4–24 Performance Counter Control Register

Table 4–14 describes the performance counter control register fields.

Table 4–14 Performance Counter Control Register Fields Description

Name Extent Type Description

SEXT(PCTR0_CTL[47]) [63:48] RO When read, this field is sign extended from PCTR_CTL[47]. Writes
to this field are ignored.

PCTR0[19:0] [47:28] — Performance counter 0. Mode is determined by PCTR_CTL[SL0]
and operation is described in Table 4–15.

Reserved [27:26] RO Reads to this field return zero. Writes to this field are ignored.

PCTR1[19:0] [25:6] — Performance counter 1.

PCTR1 must be enabled by I_CTL[PCT1_EN] and either
I_CTL[SPCE] or PCTX[PPCE]. On overflow, an interrupt is trig-
gered at ISUM[PC1] if enabled by IER_CM[PCEN1].

When enabled, PCTR1 is incremented at each cycle by the selec
input.

Reserved [5] RO Reads to this field return zero. Writes to this field are ignored.

SL0 [4] — SL0 input select 0. Selects counter PCTR0.
0: Cycles
1: Retired instructions
See Table 4–15 for more information.

31 0

FM-05856.AI8

SEXT(PCTR0_CTL[47])

63 32

PCTR0[3:0]

46 5

4748

25262728

PCTR1[19:0]

SL0

SL1[3:0]

3

PCTR0[19:4]

12
17 February 1999 – Subject To Change Internal Processor Registers 4–23

Mbox IPRs

ent
264

4.3 Mbox IPRs

This section describes the internal processor registers that control Mbox functions.

4.3.1 DTB Tag Array Write Registers 0 and 1 – DTB_TAG0, DTB_TAG1

The DTB tag array write registers 0 and 1 (DTB_TAG0 and DTB_TAG1) are write-
only registers through which the two memory pipe DTB tag arrays are written. Write
transactions to DTB_TAG0 and DTB_TAG1 writes data to registers outside the DTB
arrays. When write transactions to the corresponding DTB_PTE registers are retired,
the contents of both the DTB_TAG and DTB_PTE registers are written into their
respective DTB arrays, at locations determined by the round-robin allocation algorithm.
Figure 4–25 shows the DTB tag array write registers 0 and 1.

SL1[3:0] [3:0] — SL1 input select 1. Selects counter PCTR1.

Table 4–15 Performance Counter Control Register Input Select Field SL0

SL0[0]
Bit Value Meaning

0 Counts cycles.

1 Counts retired instructions.

PCTR0 is incremented by up to 8 retired instructions per cycle when enabled via I_CTL[PCT0_EN]
and either I_CTL[SPCE] or PCTX[PPCE]. On overflow, an interrupt is triggered at ISUM[PC0] if
enabled via IER_CM[PCEN0].

The 21264 can retire up to 11 instructions per cycle, which exceeds PCTR0’s maximum increm
of 8 per cycle. However, in aggregate counting mode, no retires go uncounted because the 21
cannot sustain 11 retires/cycle, and the 21264 corrects PCTR0 in subsequent cycles.

A squashed instruction does not count as a retire.

Table 4–14 Performance Counter Control Register Fields Description (Continued)

Name Extent Type Description

Bit Value Meaning

0000 Counter 1 counts cycles.
0001 Counter 1 counts retired conditional branches.
0010 Counter 1 counts retired branch mispredicts.
0011 Counter 1 counts retired DTB single misses * 2.
0100 Counter 1 counts retired DTB double double

misses.
0101 Counter 1 counts retired ITB misses.
0110 Counter 1 counts retired unaligned traps.
0111 Counter 1 counts replay traps.
4–24 Internal Processor Registers 17 February 1999 – Subject To Change

Mbox IPRs

26
Figure 4–25 DTB Tag Array Write Registers 0 and 1

4.3.2 DTB PTE Array Write Registers 0 and 1 – DTB_PTE0, DTB_PTE1

The DTB PTE array write registers 0 and 1 (DTB_PTE0 and DTB_PTE1) are registers
though which the DTB PTE arrays are written. The entries to be written are chosen by a
round-robin allocation scheme. Write transactions to the DTB_PTE registers, when
retired, result in both the DTB_TAG and DTB_PTE arrays being written. Figure 4–
shows the DTB PTE array write registers 0 and 1.

Figure 4–26 DTB PTE Array Write Registers 0 and 1

31 0

FM-05857.AI4

VA[47:32]

63 32

VA[31:13]

13

4748

12

31 0

FM-05858.AI4

PA[43:13]

63 32

UWE

12346 5789101113 12141516171819

525355 5457 56585961 6062 414244 4346 45474850 4951 3940 3738 3536 3334

202123 2225 24262729 2830

SWE

EWE

KWE

URE

SRE

ERE

KRE

GH[1:0]

ASM

FOW

FOR
17 February 1999 – Subject To Change Internal Processor Registers 4–25

Mbox IPRs

ter.

d

 is
4.3.3 DTB Alternate Processor Mode Register – DTB_ALTMODE

The DTB alternate processor mode register (DTB_ALTMODE) is a write-only register
whose contents specify the alternate processor mode used by some HW_LD and
HW_ST instructions. Figure 4–27 shows the DTB alternate processor mode regis

Figure 4–27 DTB Alternate Processor Mode Register

Table 4–16 describes the DTB_ALTMODE register fields.

4.3.4 Dstream TB Invalidate All Process (ASM=0) Register – DTB_IAP

The Dstream translation buffer invalidate all (ASM=0) process register (DTB_IAP) is a
write-only pseudo register. Write transactions to this register invalidate all DTB entries
in which the address space match (ASM) bit is clear.

4.3.5 Dstream TB Invalidate All Register – DTB_IA

The Dstream translation buffer invalidate all register (DTB_IA) is a write-only pseudo
register. Write transactions to this register invalidate all DTB entries and reset the DTB
not-last-used pointer to its initial state.

4.3.6 Dstream TB Invalidate Single Registers 0 and 1 – DTB_IS0,1

The Dstream translation buffer invalidate single registers (DTB_IS0 and DTB_IS1) are
write-only pseudo registers through which software may invalidate a single entry in the
DTB arrays. Writing a virtual page number to one of these registers invalidates any
DTB entry in the corresponding memory pipeline which meets one of the following cri-
teria:

• The DTB entry’s virtual page number matches DTB_IS[47:13] and its ASN fiel
matches DTB_ASN[63:56].

• The DTB entry’s virtual page number matches DTB_IS[47:13] and its ASM bit
set.

Table 4–16 DTB Alternate Processor Mode Register Fields Description

Name Extent Type Description

Reserved [63:2] — —

ALT_MODE[1:0] [1:0] RW Alt_Mode:
 ALT_MODE[1:0] Mode

00 Kernel
01 Executive
10 Supervisor
11 User

31 0

FM-05859.AI4

63 32

ALT_MODE[1:0]

12
4–26 Internal Processor Registers 17 February 1999 – Subject To Change

Mbox IPRs

uffer
Figure 4–28 shows the Dstream translation buffer invalidate single registers.

Figure 4–28 Dstream Translation Buffer Invalidate Single Registers

4.3.7 Dstream TB Address Space Number Registers 0 and 1 – DTB_ASN0,1

The Dstream translation buffer address space number registers (DTB_ASN0 and
DTB_ASN1) are write-only registers that should be written with the address space
number (ASN) of the current process. Figure 4–29 shows the Dstream translation b
address space number registers 0 and 1.

Figure 4–29 Dstream Translation Buffer Address Space Number Registers 0 and 1

4.3.8 Memory Management Status Register – MM_STAT

The memory management status register (MM_STAT) is a read-only register.
When a Dstream TB miss or fault occurs, information about the error is latched in
MM_STAT. MM_STAT is not updated when a LD_VPTE gets a DTB miss instruction.
Figure 4–30 shows the memory management status register.

Figure 4–30 Memory Management Status Register

31 0

FM-05839.AI4

VA[47:32]

63 32

VA[31:13]

1213

4748

31 0

FM-05861.AI4
ASN[7:0]

63 325556

31 0

FM-05862.AI4

63 32

123491011

DC_TAG_PERR

OPCODE[5:0]

FOW

FOR

ACV

WR
17 February 1999 – Subject To Change Internal Processor Registers 4–27

Mbox IPRs

rom

 the
 a

ail-

c-
Table 4–17 describes the memory management status register fields.

Note: The Ra field of the instruction that triggered the error can be obtained f
the Ibox EXC_SUM register.

4.3.9 Mbox Control Register – M_CTL

The Mbox control register (M_CTL) is a write-only register. Its contents are cleared by
chip reset. Figure 4–31 shows the Mbox control register.

Figure 4–31 Mbox Control Register

Table 4–17 Memory Management Status Register Fields Description

Name Extent Type Description

Reserved [63:11] — —

DC_TAG_PERR [10] RO This bit is set when a Dcache tag parity error occurred during
initial tag probe of a load or store instruction. The error created
synchronous fault to the D_FAULT PALcode entry point and is
correctable. The virtual address associated with the error is av
able in the VA register.

OPCODE[5:0] [9:4] RO Opcode of the instruction that caused the error.
HW_LD is displayed as 3 and HW_ST is displayed as 7.

FOW [3] RO This bit is set when a fault-on-write error occurs during a write
transaction and PTE[FOW] was set.

FOR [2] RO This bit is set when a fault-on-read error occurs during a read
transaction and PTE[FOR] was set.

ACV [1] RO This bit is set when an access violation occurs during a transa
tion. Access violations include a bad virtual address.

WR [0] RO This bit is set when an error occurs during a write transaction.

31 0

FM-05863B.AI7

63 32

1234

SPE[2:0]
4–28 Internal Processor Registers 17 February 1999 – Subject To Change

Mbox IPRs

de

–32

6]

1]

).

0]
Table 4–18 describes the Mbox control register fields.

Note: Super page accesses are only allowed in kernel mode. Non-kernel mo
references to super pages result in access violations.

4.3.10 Dcache Control Register – DC_CTL

The Dcache control register (DC_CTL) is a write-only register that controls Dcache
activity. The contents of DC_CTL are initialized by chip reset as indicated. Figure 4
shows the Dcache control register.

Figure 4–32 Dcache Control Register

Table 4–19 describes the Dcache control register fields.

Table 4–18 Mbox Control Register Fields Description

Name Extent Type Description

Reserved [63:4] — —

SPE[2:0] [3:1] WO,0 Super page mode enables.

SPE[2], when set, enables super page mapping when VA[47:4
= 2. In this mode, VA[43:13] are mapped directly to PA[43:13]
and VA[45:44] are ignored.

SPE[1], when set, enables super page mapping when VA[47:4
= 7E16. In this mode, VA[40:13] are mapped directly to
PA[40:13] and PA[43:41] are copies of PA[40] (sign extension

SPE[0], when set, enables super page mapping when VA[47:3
= 3FFFE16. In this mode, VA[29:13] are mapped directly to
PA[29:13] and PA[43:30] are cleared.

Reserved [0] — —

Table 4–19 Dcache Control Register Fields Description

Name Extent Type Description

Reserved [63:8] — —

DCDAT_ERR_EN [7] WO,0 Dcache data ECC and parity error enable.

DCTAG_PAR_EN [6] WO,0 Dcache tag parity enable.

31 0

FM-05864.AI4

63 32

12346 57

DCDAT_ERR_EN

DCTAG_PAR_EN

F_BAD_DECC

F_BAD_TPAR

F_HIT

SET_EN[1:0]

8

17 February 1999 – Subject To Change Internal Processor Registers 4–29

Mbox IPRs

nd

s of
-

g

ond
i-
4.3.11 Dcache Status Register – DC_STAT

The Dcache status register (DC_STAT) is a read-write register. If a Dcache tag parity
error or data ECC error occurs, information about the error is latched in this register.
Figure 4–33 shows the Dcache status register.

Figure 4–33 Dcache Status Register

Table 4–20 describes the Dcache status register fields.

F_BAD_DECC [5] WO,0 Force Bad Data ECC. When set, ECC data is not written into
the cache along with the block that is loaded by a fill or store.
Writing data that is different from that already in the block will
cause bad ECC to be present. Since the old ECC value will
remain, the ECC will be bad.

F_BAD_TPAR [4] WO,0 Force Bad Tag Parity. When set, this bit causes bad tag parity to
be put into the Dcache tag array during Dcache fill operations.

Reserved [3] — —

F_HIT [2] WO,0 Force Hit. When set, this bit causes all memory space load a
store instructions to hit in the Dcache, independent of the
Dcache tag address compare. F_HIT does not force the statu
the block to register as DIRTY (the tag status bits are still con
sulted), so stores may still generate offchip activity.
In this mode, only one of the two sets may be enabled, and ta
parity checking must be disabled (set DCTAG_PER_EN to
zero).

SET_EN[1:0] [1:0] WO,3 Dcache Set Enable. At least one set must be enabled.

Table 4–20 Dcache Status Register Fields Description

Name Extent Type Description

Reserved [63:5] — —

SEO [4] W1C Second error occured. When set, this bit indicates that a sec
Dcache store ECC error occurred within 6 cycles of the prev
ous Dcache store ECC error.

Table 4–19 Dcache Control Register Fields Description (Continued)

Name Extent Type Description

31 0

FM-05865.AI4

63 32

12345

SEO

ECC_ERR_LD

ECC_ERR_ST

TPERR_P1

TPERR_P0
4–30 Internal Processor Registers 17 February 1999 – Subject To Change

Cbox CSRs and IPRs

a
4.4 Cbox CSRs and IPRs

This section describes the Cbox CSRs and IPRs.

The Cbox configuration registers are split into three shift register chains:

• The hardware allocates 367 bits for the WRITE_ONCE chain, of which the 21264
uses 303 bits. During hardware reset (after BiST), 367 bits are always shifted into
the WRITE_ONCE chain from the SROM, MSB first, so that any unused bits are
shifted out the end of the WRITE_ONCE chain.

• A 36-bit WRITE_MANY chain that is loaded using MTPR instructions to the Cbox
data register. Six bits of information are shifted into the WRITE_MANY chain dur-
ing each write transaction to the Cbox data register.

• A 60-bit Cbox ERROR_REG chain that is read by using MFFR instructions from
the Cbox data register in combination with MTPR instructions to the Cbox shift
register. Each write transaction to the Cbox shift register destructively shifts six bits
of information out of the Cbox error register.

4.4.1 Cbox Data Register – C_DATA

Figure 4–34 shows the Cbox data register.

Figure 4–34 Cbox Data Register

ECC_ERR_LD [3] W1C ECC error on load. When set, this bit indicates that a single-bit
ECC error occurred while processing a load from the Dcache
or any fill.

ECC_ERR_ST [2] W1C ECC error on store. When set, this bit indicates that an ECC
error occurred while processing a store.

TPERR_P1 [1] W1C Tag parity error — pipe 1. When set, this bit indicates that a
Dcache tag probe from pipe 1 resulted in a tag parity error.
The error is uncorrectable and results in a machine check.

TPERR_P0 [0] W1C Tag parity error — pipe 0. When set, this bit indicates that
Dcache tag probe from pipe 0 resulted in a tag parity error.
The error is uncorrectable and results in a machine check.

Table 4–20 Dcache Status Register Fields Description

Name Extent Type Description

31 0

FM-05866.AI4

63 32

6 5

C_DATA[5:0]
17 February 1999 – Subject To Change Internal Processor Registers 4–31

Cbox CSRs and IPRs

,

e
Table 4–21 describes the Cbox data register fields.

4.4.2 Cbox Shift Register – C_SHFT

Figure 4–35 shows the Cbox shift register.

Figure 4–35 Cbox Shift Register

Table 4–22 describes the Cbox shift register fields.

4.4.3 Cbox WRITE_ONCE Chain Description

The WRITE_ONCE chain order is contained in Table 4–23. In the table:

• Many CSRs are duplicated for ease of hardware implementation. These CSRs are
indicated in italics. They must be written with values that are identical to the values
written to the original CSRs.

• Only a brief description of each CSR is given.

• The order of multibit vectors is [MSB:LSB], so the LSB is first bit in the Cbox
chain.

Table 4–21 Cbox Data Register Fields Description

Name Extent Type Description

Reserved [63:6] — —

C_DATA[5:0] [5:0] RW Cbox data register. A HW_MTPR instruction to this register
causes six bits of data to be placed into a serial shift register.
When the HW_MTPR instruction is retired, the data is shifted
into the Cbox. After the Cbox shift register has been accessed
performing a HW_MFPR instruction to this register will return
six bits of data.

Table 4–22 Cbox Shift Register Fields Description

Name Extent Type Description

Reserved [63:1] — —

C_SHIFT[0] [0] W1 Writing a 1 to this register bit causes six bits of Cbox IPR data
to shift into the Cbox data register. Software can then use a
HW_MFPR read operation to the Cbox data register to read th
six bits of data.

31 0

FM-06118.AI4

63 32

C_SHIFT[0]

1

4–32 Internal Processor Registers 17 February 1999 – Subject To Change

Cbox CSRs and IPRs
Table 4–23 describes the Cbox WRITE_ONCE chain order from LSB to MSB.

Table 4–23 Cbox WRITE_ONCE Chain Order

Cbox WRITE_ONCE Chain Description

32_BYTE_IO[0] Enable 32_BYTE I/O mode.

SKEWED_FILL_MODE[0] Asserted when Bcache is at 1.5X ratio.

SKEWED_FILL_MODE[0] Duplicate of prior bit.

DCVIC_THRESHOLD[7:0] Threshold of the number of Dcache victims that will accumulate
before streamed write transactions to the Bcache are initiated. The
Cbox can accumulate up to six victims for streamed Dcache pro-
cessing. This register is programmed with the decoded value of the
threshold count.

BC_CLEAN_VICTIM[0] Enable clean victims to the system interface.

SYS_BUS_SIZE[1:0] Size of SysAddOut and SysAddOut buses.

SYS_BUS_FORMAT[0] Indicates system bus format.

SYS_CLK_RATIO[4:1] Speed of system bus.
Code Multiplier
0001 1.5X
0010 2.0X
0100 2.5X
1000 3.0X

DUP_TAG_ENABLE[0] Enable duplicate tag mode in the 21264.

PRB_TAG_ONLY[0] Enable probe-tag only mode in the 21264.

FAST_MODE_DISABLE[0] When asserted, disables fast data movement mode.

BC_RDVICTIM[0] Enables RdVictim mode on the pins.

BC_CLEAN_VICTIM[0] Duplicate CSR.

RDVIC_ACK_INHIBIT Enable inhibition of incrementing acknowledge counter for RdVic
commands.

SYSBUS_MB_ENABLE Enable MB commands offchip.

SYSBUS_ACK_LIMIT[0:4] Sysbus acknowledge limit CSR.

SYSBUS_VIC_LIMIT[0:2] Limit for victims.

BC_CLEAN_VICTIM[0] Duplicate CSR.

BC_WR_WR_BUBBLE[0] Write to write GCLK bubble.

BC_RD_WR_BUBBLES[0:5] Read to write GCLK bubbles for the Bcache interface.

BC_RD_RD_BUBBLE[0] Read to read GCLK bubble for banked Bcaches.

BC_SJ_BANK_ENABLE Enable bank mode for Bcache.

BC_WR_RD_BUBBLES[0:3] Write to read GCLK bubbles.

DUP_TAG_ENABLE Duplicate CSR.

SKEWED_FILL_MODE Duplicate CSR.

BC_RDVICTIM Duplicate CSR.
17 February 1999 – Subject To Change Internal Processor Registers 4–33

Cbox CSRs and IPRs
SKEWED_FILL_MODE Duplicate CSR.

BC_RDVICTIM Duplicate CSR.

BC_CLEAN_VICTIM Duplicate CSR.

DUP_TAG_MODE Duplicate CSR.

SKEWED_FILL_MODE Duplicate CSR.

ENABLE_PROBE_CHECK Enable error checking during probe processing.

SPEC_READ_ENABLE[0] Enable speculative references to the system port.

SKEWED_FILL_MODE Duplicate CSR.

SKEWED_FILL_MODE Duplicate CSR.

MBOX_BC_PRB_STALL Must be asserted when BC_RATIO = 4.0X, 5.0X, 6.0X, 7.0X, or
8.0X.

BC_LAT_DATA_PATTERN[0:31] Bcache data latency pattern.

BC_LAT_TAG_PATTERN[0:23] Bcache tag latency pattern.

BC_RDVICTIM Duplicate CSR.

ENABLE_STC_COMMAND[0] Enable STx_C instructions to the pins.

BC_LATE_WRITE_NUM[0:2] Number of Bcache clocks to delay the data for Bcache write com-
mands.

BC_CPU_LATE_WRITE_NUM[0:1] Number of GCLK cycles to delay the Bcache clock/data from
index.

BC_BURST_MODE_ENABLE[0] Burst mode enable signal.

BC_PENTIUM_MODE[0] Enable Pentium mode RAM behavior.

SKEWED_FILL_MODE Duplicate CSR.

BC_FRM_CLK[0] Force all Bcache transactions to start on rising edges of the A
phase of a GCLK.

BC_CLK_DELAY[0:1] Delay of Bcache clock for 0,0,1,2 GCLK phases.

BC_DDMR_ENABLE[0] Enables the rising edge of the Bcache forwarded clock (always
enabled).

BC_DDMF_ENABLE[0] Enable the falling edge of the Bcache forwarded clock (always
enabled).

BC_LATE_WRITE_UPPER[0] Asserted when (BC_LATE_WRITE_NUM > 3) or
((BC_LATE_WRITE_NUM = 3) and
(BC_CPU_LATE_WRITE_NUM > 1)).

BC_TAG_DDM_FALL_EN[0] Enables the update of the 21264 Bcache tag outputs based on the
falling edge of the forwarded clock.

BC_TAG_DDM_RISE_EN[0] Enables the update of the 21264 Bcache tag outputs based on the
rising edge of the forwarded clock.

BC_CLKFWD_ENABLE[0] Enable clock forwarding on the Bcache interface.

BC_RCV_MUX_CNT_PRESET[0:1] Initial value for the Bcache clock forwarding unload pointer FIFO.

Table 4–23 Cbox WRITE_ONCE Chain Order (Continued)

Cbox WRITE_ONCE Chain Description
4–34 Internal Processor Registers 17 February 1999 – Subject To Change

Cbox CSRs and IPRs
BC_LATE_WRITE_UPPER[0] Duplicate CSR.

SYS_DDM_FALL_EN[0] Enables the update of the 21264 system outputs based on the fall-
ing edge of the system forwarded clock.

SYS_DDM_RISE_EN[0] Enables the update of the 21264 system outputs based on the rising
edge of the system forwarded clock.

SYS_CLKFWD_ENABLE[0] Enables clock forwarding on the system interface.

SYS_RCV_MUX_CNT_PRESET[0:1] Initial value for the system clock forwarding unload pointer FIFO.

SYS_CLK_DELAY[0:1] Delay of 0 to 2 phases between the forwarded clock out and
address/data.

SYS_DDMR_ENABLE[0] Enables the rising edge of the system forwarded clock (always
enabled).

SYS_DDMF_ENABLE[0] Enables the falling edge of the system forwarded clock (always
enabled).

BC_DDM_FALL_EN[0] Enables update of data/address on the rising edge of the system
forwarded clock.

BC_DDM_RISE_EN[0] Enables the update of data/address on the falling edge of the sys-
tem forwarded clock.

BC_CLKFWD_ENABLE Duplicate CSR.

BC_RCV_MUX_CNT_PRESET[0:1] Duplicate CSR.

BC_CLK_DELAY[0:1] Duplicate CSR.

BC_DDMR_ENABLE Duplicate CSR.

BC_DDMF_ENABLE Duplicate CSR.

SYS_DDM_FALL_EN Duplicate CSR.

SYS_DDM_RISE_EN Duplicate CSR.

SYS_CLKFWD_ENABLE Duplicate CSR.

SYS_RCV_MUX_CNT_PRESET[0:1] Duplicate CSR.

SYS_CLK_DELAY[0:1] Duplicate CSR.

SYS_DDMR_ENABLE Duplicate CSR.

SYS_DDMF_ENABLE Duplicate CSR.

BC_DDM_FALL_EN Duplicate CSR.

BC_DDM_RISE_EN Duplicate CSR.

BC_CLKFWD_ENABLE Duplicate CSR.

BC_RCV_MUX_CNT_PRESET[0:1] Duplicate CSR.

SYS_DDM_FALL_EN Duplicate CSR.

SYS_DDM_RISE_EN Duplicate CSR.

SYS_CLKFWD_ENABLE Duplicate CSR.

SYS_RCV_MUX_CNT_PRESET[0:1] Duplicate CSR.

Table 4–23 Cbox WRITE_ONCE Chain Order (Continued)

Cbox WRITE_ONCE Chain Description
17 February 1999 – Subject To Change Internal Processor Registers 4–35

Cbox CSRs and IPRs
SYS_CLK_DELAY[0:1] Duplicate CSR.

SYS_DDMR_ENABLE Duplicate CSR.

SYS_DDMF_ENABLE Duplicate CSR.

BC_DDM_FALL_EN Duplicate CSR.

BC_DDM_RISE_EN Duplicate CSR.

BC_CLKFWD_ENABLE Duplicate CSR.

BC_RCV_MUX_CNT_PRESET[0:1] Duplicate CSR.

BC_CLK_DELAY[0:1] Duplicate CSR.

BC_DDMR_ENABLE Duplicate CSR.

BC_DDMF_ENABLE Duplicate CSR.

SYS_DDM_FALL_EN Duplicate CSR.

SYS_DDM_RISE_EN Duplicate CSR.

SYS_CLKFWD_ENABLE Duplicate CSR.

SYS_RCV_MUX_CNT_PRESET[0:1] Duplicate CSR.

SYS_CLK_DELAY[1:0] Duplicate CSR.

SYS_DDMR_ENABLE Duplicate CSR.

SYS_DDMF_ENABLE Duplicate CSR.

BC_DDM_FALL_EN Duplicate CSR.

BC_DDM_RISE_EN Duplicate CSR.

BC_CLKFWD_ENABLE Duplicate CSR.

BC_RCV_MUX_CNT_PRESET[1:0] Duplicate CSR.

SYS_CLK_DELAY[0:1] Duplicate CSR.

SYS_DDMR_ENABLE Duplicate CSR.

SYS_DDMF_ENABLE Duplicate CSR.

SYS_DDM_FALL_EN Duplicate CSR.

SYS_DDM_RISE_EN Duplicate CSR.

SYS_CLKFWD_ENABLE Duplicate CSR.

SYS_RCV_MUX_CNT_PRESET[0:1] Duplicate CSR.

CFR_GCLK_DELAY[0:3] Number of GCLK cycles to delay internal ClkFwdRst.

CFR_EV6CLK_DELAY[0:2] Number of EV6Clk_x cycles to delay internal ClkFwdRst.

CFR_FRMCLK_DELAY[0:1] Number of FrameClk_x cycles to delay internal ClkFwdRst.

BC_LATE_WRITE_NUM[0:2] Duplicate CSR.

BC_CPU_LATE_WRITE_NUM[1:0] Duplicate CSR.

JITTER_CMD[0] Add one GCLK cycle to the SYSDC write path.

Table 4–23 Cbox WRITE_ONCE Chain Order (Continued)

Cbox WRITE_ONCE Chain Description
4–36 Internal Processor Registers 17 February 1999 – Subject To Change

Cbox CSRs and IPRs
4.4.4 Cbox WRITE_MANY Chain Description

The WRITE_MANY chain order is contained in Table 4–24. Note the following:

• Many CSRs are duplicated for ease of hardware implementation. These CSR names
are indicated in italics and have two leading asterisks.

• Only a brief description of each CSR is given.

• The order of multibit vectors is [MSB:LSB], so the LSB is first bit in the Cbox
chain.

FAST_MODE_DISABLE[0] Duplicate CSR.

SYSDC_DELAY[3:0] Number of GCLK cycles to delay SysDc fill commands before
action by the Cbox.

DATA_VALID_DLY[1:0] Number of Bcache clock cycles to delay signal SysDataInValid
before sample by the Cbox.

BC_DDM_FALL_EN Duplicate CSR.

BC_DDM_RISE_EN Duplicate CSR.

BC_CPU_CLK_DELAY[0:1] Delay of Bcache clock for 0, 1, 2, 3 GCLK cycles.

BC_FDBK_EN[0:7] CSR to program the Bcache forwarded clock shift register feed-
back points.

BC_CLK_LD_VECTOR[0:15] CSR to program the Bcache forwarded clock shift register load
values.

BC_BPHASE_LD_VECTOR[0:3] CSR to program the Bcache forwarded clock b-phase enables.

SYS_DDM_FALL_EN Duplicate CSR.

SYS_DDM_RISE_EN Duplicate CSR.

SYS_CPU_CLK_DELAY[0:1] Delay of 0..3 GCLK cycles between the forwarded clock out and
address/data.

SYS_FDBK_EN[0:7] CSR to program the system forwarded clock shift register feed-
back points.

SYS_CLK_LD_VECTOR[0:15] CSR to program the system forwarded clock shift register load val-
ues.

SYS_BPHASE_LD_VECTOR[0:3] CSR to program the system forwarded clock b-phase enables.

SYS_FRAME_LD_VECTOR[0:4] CSR to program the ratio between frame clock and system for-
warded clock.

Table 4–23 Cbox WRITE_ONCE Chain Order (Continued)

Cbox WRITE_ONCE Chain Description
17 February 1999 – Subject To Change Internal Processor Registers 4–37

Cbox CSRs and IPRs

ain.
Table 4–24 describes the Cbox WRITE_MANY chain order from LSB to MSB.

Figure 4–36 shows an example of PALcode used to write to the WRITE_MANY ch

Figure 4–36 WRITE_MANY Chain Write Transaction Example
;
; Initialize the Bcache configuration in the Cbox
;
; BC_ENABLE = 1
; INIT_MODE = 0
; BC_SIZE = 0xF
; INVALID_TO_DIRTY_ENABLE = 3

Table 4–24 Cbox WRITE_MANY Chain Order

Cbox WRITE_MANY Chain Description

BC_ENABLE[0] Enable the Bcache

INIT_MODE[0] Enable initialize mode

BC_SIZE[3:0] Bcache size

BC_ENABLE Duplicate CSR

BC_ENABLE Duplicate CSR

BC_SIZE[0:3] Duplicate CSR

BC_ENABLE1

1 MBZ during initialization mode.

Duplicate CSR

BC_ENABLE1 Duplicate CSR

BC_ENABLE1 Duplicate CSR

INVAL_TO_DIRTY_ENABLE[1] WH64 acknowledges

ENABLE_EVICT Enable issue evict

BC_ENABLE Duplicate CSR

INVAL_TO_DIRTY_ENABLE[0] WH64 acknowledges

BC_ENABLE Duplicate CSR

BC_ENABLE Duplicate CSR

BC_ENABLE Duplicate CSR

SET_DIRTY_ENABLE[0] SetDirty acknowledge programming

INVAL_TO_DIRTY_ENABLE[0] Duplicate CSR

SET_DIRTY_ENABLE[2:1] SetDirty acknowledge programming

BC_BANK_ENABLE[0] Enable bank mode for Bcache

BC_SIZE[0:3] Duplicate CSR

INIT_MODE Duplicate CSR

BC_WRT_STS[0:3] Write status for Bcache in initialize-mode (Valid, Dirty, Shared,
Parity)
4–38 Internal Processor Registers 17 February 1999 – Subject To Change

Cbox CSRs and IPRs
; ENABLE_EVICT = 1
; SET_DIRTY_ENABLE = 6
; BC_BANK_ENABLE = 1
; BC_WRT_STS = 0
;
; The value for the write_many chain is based on Table 4–24.
;
; The value is sampled from MSB, 6 bits at a time, as it is written
; to EV6__DATA. Therefore, before the value can be shifted in, it must be
; inverted on a by 6 basis. The code then writes out 6 bits at a time,
; shifting right by 6 after each write.
;
; So the following transformation is done on the write_many value:
;
; [35:30]|[29:24]|[23:18]|[17:12]|[11:06]|[05:00] =>
; [05:00]|[11:06]|[17:12]|[23:18]|[29:24]|[35:30]
;
; WRITE_MANY chain = 0x07FBFFFFD
; value to be shifted in = 0xF7FFEFFC1
;
; Before the chain can be written, I_CTL[SBE] must be disabled,
; and the code must be forced into the Icache.
;

ALIGN_CACHE_BLOCK <^x47FF041F>; align with nops

mb ; wait for MEM-OP’s to complete
lda r0, ^x0086(r31) ; load I_CTL.....
hw_mtpr r0, EV6__I_CTL ;SDE=2, IC_EN=3, SBE=0
br r0, . ; create dest address

addq r0, #17, r0 ; finish computing dest address
hw_mtpr r31, EV6__IC_FLUSH ; flush the Icache
bne r31, . ; separate retires
hw_jmp_stall (r0) ; force flush

ALIGN_CACHE_BLOCK <^x47FF041F> ; align with nops

bc_config:
mb ; pull this block in Icache
lda r1, ^xFFC1(r31) ; data[15:00] = 0xFFC1
ldah r0, ^x7FFE(r31) ; data[31:16] = 0x7FFE
zap r1, #^x0c, r1 ; clear out bits [31:16]

bis r1, r0, r1 ; or in bits [31:16]
addq r31, #6, r0 ; shift in 6 x 6 bits

bc_config_shift_in:
hw_mtpr r1, EV6__DATA ; shift in 6 bits
subq r0, #1, r0 ; decrement R0

beq r0, bc_config_done ; done if R0 is zero
17 February 1999 – Subject To Change Internal Processor Registers 4–39

Cbox CSRs and IPRs

 LSB
srl r1, #6, r1 ; align next 6 bits
br r31, bc_config_shift_in ; continue shifting

bc_config_done:
hw_mtpr r31, <EV6__MM_STAT ! 64> ; wait until last shift

beq r31, bc_config_end ; predicts fall thru
br r31, .-4 ; predict infinite loop
bis r31, r31, r31 ; nop
bis r31, r31, r31 ; nop

bc_config_end:

4.4.5 Cbox Read Register (IPR) Description

The Cbox read register is read 6 bits at a time. Table 4–25 shows the ordering from
to MSB.

Table 4–25 Cbox Read IPR Fields Description

Name Description

C_SYNDROME_1[7:0] Syndrome for upper QW in OW of victim that was scrubbed.

C_SYNDROME_0[7:0] Syndrome for lower QW in OW of victim that was scrubbed.
4–40 Internal Processor Registers 17 February 1999 – Subject To Change

Cbox CSRs and IPRs
C_STAT[4:0]

C_STS[3:0] If C_STAT equals xxx_MEM_ERR or xxx_BC_ERR, then C_STS contains the
status of the block as follows; otherwise, the value of C_STS is X:

C_ADDR[6:42] Address of last reported ECC or parity error. If C_STAT value is
DSTREAM_DC_ERR, only bits 6:19 are valid.

Table 4–25 Cbox Read IPR Fields Description (Continued)

Name Description

Bits Error Status

0 0 0 0 0 Either no error, or error on a speculative load, or
a Bcache victim read due to a Dcache/Bcache miss

0 0 0 0 1 BC_PERR (Bcache tag parity error)

0 0 0 1 0 DC_PERR (duplicate tag parity error)

0 0 0 1 1 DSTREAM_MEM_ERR

0 0 1 0 0 DSTREAM_BC_ERR

0 0 1 0 1 DSTREAM_DC_ERR

0 0 1 1 X PROBE_BC_ERR

0 1 0 0 0 Reserved

0 1 0 0 1 Reserved

0 1 0 1 0 Reserved

0 1 0 1 1 ISTREAM_MEM_ERR

0 1 1 0 0 ISTREAM_BC_ERR

0 1 1 0 1 Reserved

1 XXXX DOUBLE_BIT_ERROR

Bit Value Status of Block

7:4 Reserved

3 Parity

2 Valid

1 Dirty

0 Shared
17 February 1999 – Subject To Change Internal Processor Registers 4–41

l
 5
Privileged Architecture Library Code

This chapter describes the 21264 privileged architecture library code (PALcode). The
chapter is organized as follows:

• PALcode description

• PALmode environment

• Required PALcode function codes

• Opcodes reserved for PALcode

• Internal processor register access mechanisms

• PALshadow registers

• PALcode emulation of FPCR

• PALcode entry points

5.1 PALcode Description

PALcode is macrocode that provides an architecturally-defined, operating-system-spe-
cific programming interface that is common across all Alpha microprocessors. The
actual implementation of PALcode differs for each operating system. PALcode runs
with privileges enabled, instruction stream (Istream) mapping disabled, and interrupts
disabled. PALcode has privilege to use five special opcodes that allow functions such as
physical data stream (Dstream) references and internal processor register (IPR) manip-
ulation.

PALcode can be invoked by the following events:

• Reset

• System hardware exceptions (MCHK, ARITH)

• Memory-management exceptions

• Interrupts

• CALL_PAL instructions

PALcode has characteristics that make it appear to be a combination of microcode,
ROM BIOS, and system service routines, though the analogy to any of these other
items is not exact. PALcode exists for several major reasons:

• There are some necessary support functions that are too complex to implement
directly in a processor chip’s hardware, but that cannot be handled by a norma
operating system software routine. Routines to fill the translation buffer (TB),
17 February 1999 – Subject To Change Privileged Architecture Library Code 5–1

PALmode Environment
acknowledge interrupts, and dispatch exceptions are some examples. In some archi-
tectures, these functions are handled by microcode, but the Alpha architecture is
careful not to mandate the use of microcode so as to allow reasonable chip imple-
mentations.

• There are functions that must run atomically, yet involve long sequences of instruc-
tions that may need complete access to all of the underlying computer hardware.
An example of this is the sequence that returns from an exception or interrupt.

• There are some instructions that are necessary for backward compatibility or ease
of programming; however, these are not used often enough to dedicate them to
hardware, or are so complex that they would jeopardize the overall performance of
the computer. For example, an instruction that does a VAX style interlocked mem-
ory access might be familiar to someone used to programming on a CISC machine,
but is not included in the Alpha architecture. Another example is the emulation of
an instruction that has no direct hardware support in a particular chip implementa-
tion.

In each of these cases, PALcode routines are used to provide the function. The routines
are nothing more than programs invoked at specified times, and read in as Istream code
in the same way that all other Alpha code is read. Once invoked, however, PALcode
runs in a special mode called PALmode.

5.2 PALmode Environment
PALcode runs in a special environment called PALmode, defined as follows:

• Istream memory mapping is disabled. Because the PALcode is used to implement
translation buffer fill routines, Istream mapping clearly cannot be enabled. Dstream
mapping is still enabled.

• The program has privileged access to all of the computer hardware. Most of the
functions handled by PALcode are privileged and need control of the lowest
levels of the system.

• Interrupts are disabled. If a long sequence of instructions need to be executed
atomically, interrupts cannot be allowed.

An important aspect of PALcode is that it uses normal Alpha instructions for most of its
operations; that is, the same instruction set that nonprivileged Alpha programmers use.
There are a few extra instructions that are only available in PALmode, and will cause a
dispatch to the OPCDEC PALcode entry point if attempted while not in PALmode. The
Alpha architecture allows some flexibility in what these special PALmode instructions do.
In the 21264, the special PALmode-only instructions perform the following functions:

• Read or write internal processor registers (HW_MFPR, HW_MTPR)

• Perform memory load or store operations without invoking the normal memory-
management routines (HW_LD, HW_ST)

• Return from an exception or interrupt (HW_RET)

When executing in PALmode, there are certain restrictions for using the privileged
instructions because PALmode gives the programmer complete access to many of the
internal details of the 21264. Refer to Section 5.4 for information on these special
PALmode instructions.
5–2 Privileged Architecture Library Code 17 February 1999 – Subject To Change

Required PALcode Function Codes

 is
t

-spe-

 pro-
e-
Lcode

mal
ata
Caution: It is possible to cause unintended side effects by writing what appears to be
perfectly acceptable PALcode. As such, PALcode is not something that
many users will want to change.

5.3 Required PALcode Function Codes

Table 5–1 lists opcodes required for all Alpha implementations. The notation used
oo.ffff, where oo is the hexadecimal 6-bit opcode and ffff is the hexadecimal 26-bi
function code.

5.4 Opcodes Reserved for PALcode

Table 5–2 lists the opcodes reserved by the Alpha architecture for implementation
cific use. These opcodes are privileged and are only available in PALmode.

These instructions generally produce an OPCDEC exception if executed while the
cessor is not in PALmode. If I_CTL[HWE] is set, these instructions can also be ex
cuted in kernel mode. Software that uses these instructions must adhere to the PA
restrictions listed in this section.

5.4.1 HW_LD Instruction

PALcode uses the HW_LD instruction to access memory outside the realm of nor
Alpha memory management and to perform special Dstream load transactions. D
alignment traps are disabled for the HW_LD instruction.

Figure 5–1 shows the HW_LD instruction format.

Table 5–1 Required PALcode Function Codes

Mnemonic Type Function Code

DRAINA Privileged 00.0002

HALT Privileged 00.0000

IMB Unprivileged 00.0086

Table 5–2 Opcodes Reserved for PALcode

Mnemonic Opcode
Architecture
Mnemonic Function

HW_LD 1B PAL1B Dstream load instruction

HW_ST 1F PAL1F Dstream store instruction

HW_RET 1E PAL1E Return from PALcode routine

HW_MFPR 19 PAL19 Copies the value of an IPR into an integer GPR

HW_MTPR 1D PAL1D Writes the value of an integer GPR into an IPR
17 February 1999 – Subject To Change Privileged Architecture Library Code 5–3

Opcodes Reserved for PALcode

mal
. Data
ST

ess

d

Figure 5–1 HW_LD Instruction Format

Table 5–3 describes the HW_LD instruction fields.

5.4.2 HW_ST Instruction

PALcode uses the HW_ST instruction to access memory outside the realm of nor
Alpha memory management and to do special forms of Dstream store instructions
alignment traps are inhibited for HW_ST instructions. Figure 5–2 shows the HW_
instruction format.

Figure 5–2 HW_ST Instruction Format

Table 5–3 HW_LD Instruction Fields Descriptions

Extent Mnemonic Value Description

[31:26] OPCODE 1B16 The opcode value.

[25:21] RA — Destination register number.

[20:16] RB — Base register for memory address.

[15:13] TYPE 0002 Physical — The effective address for the HW_LD instruction is physical.

0012 Physical/Lock — The effective address for the HW_LD instruction is
physical. It is the load lock version of the HW_LD instruction.

0102 Virtual/VPTE — Flags a virtual PTE fetch (LD_VPTE). Used by trap logic
to distinguish a single TB miss from a double TB miss. Kernel mode acc
checks are performed.

1002 Virtual — The effective address for the HW_LD instruction is virtual.

1012 Virtual/WrChk — The effective address for the HW_LD instruction is
virtual. Access checks for fault-on-read (FOR), fault-on-write (FOW), rea
and write protection.

1102 Virtual/Alt — The effective address for the HW_LD instruction is virtual.
Access checks use DTB_ALT_MODE IPR.

1112 Virtual/WrChk/Alt — The effective address for the HW_LD instruction is
virtual. Access checks for FOR, FOW, read and write protection. Access
checks use DTB_ ALT_MODE IPR.

[12] LEN 0

1

Access length is longword.

Access length is quadword.

[11:0] DISP — Holds a 12-bit signed byte displacement.

31 26 25 21 20 16 15 13 1112 0

FM-05654.AI4

TYPE

LEN

DISPRBRAOPCODE

31 26 25 21 20 16 15 13 1112 0

FM-05654.AI4

TYPE

LEN

DISPRBRAOPCODE
5–4 Privileged Architecture Library Code 17 February 1999 – Subject To Change

Opcodes Reserved for PALcode

RB
lue

k

n-
e set

struc-

ow
on
INT

r
ly.
Table 5–4 describes the HW_ST instruction fields.

5.4.3 HW_RET Instruction

The HW_RET instruction is used to return instruction flow to a specified PC. The
field of the HW_RET instruction specifies an integer GPR, which holds the new va
of the PC. Bit [0] of this register provides the new value of PALmode after the
HW_RET instruction is executed. Bits [15:14] of the instruction determine the stac
action.

Normally the HW_RET instruction succeeds a CALL_PAL instruction, or a trap ha
dler that pushed its PC onto the prediction stack. In this mode, the HINT should b
to ‘10’ to pop the PC and generate a predicted target address for the HW_RET in
tion.

In some conditions, the HW_RET instruction is used in the middle of a PALcode fl
to cause a group of instructions to retire. In these cases, if the HW_RET instructi
does not have a corresponding instruction that pushed a PC onto the stack, the H
field should be set to ‘00’ to keep the stack from being modified.

In the rare circumstance that the HW_RET instruction might be used like a JSR o
JSR_COROUTINE, the stack can be managed by setting the HINT bits according

Figure 5–3 shows the HW_RET instruction format.

Table 5–4 HW_ST Instruction Fields Descriptions

Extent Mnemonic Value Description

[31:26] OPCODE 1F16 The opcode value.

[25:21] RA — Write data register number.

[20:16] RB — Base register for memory address.

[15:13] TYPE 0002 Physical — The effective address for the HW_ST instruction is
physical.

0012 Physical/Cond — The effective address for the HW_ST
instruction is physical. Store conditional version of the HW_ST
instruction. The lock flag is returned in RA. Refer to PALcode
restrictions for correct use of this function.

0102 Virtual — The effective address for the HW_ST instruction is
virtual.

1102 Virtual/Alt — The effective address for the HW_ST instruction is
virtual. Access checks use DTB_ ALT_MODE IPR.

All others Unused.

[12] LEN 0

1

Access length is longword.

Access length is quadword.

[11:0] DISP — Holds a 12-bit signed byte displacement.
17 February 1999 – Subject To Change Privileged Architecture Library Code 5–5

Opcodes Reserved for PALcode

r reg-
inte-

into
for-

et.

s
Figure 5–3 HW_RET Instruction Format

Table 5–5 describes the HW_RET instruction fields.

5.4.4 HW_MFPR and HW_MTPR Instructions

The HW_MFPR and HW_MTPR instructions are used to access internal processo
isters. The HW_MFPR instruction reads the value from the specified IPR into the
ger register specified by the RA field of the instruction. The HW_MTPR instruction
writes the value from the integer GPR, specified by the RB field of the instruction,
the specified IPR. Figure 5–4 shows the HW_MFPR and HW_MTPR instructions
mat.

Figure 5–4 HW_MFPR and HW_MTPR Instructions Format

Table 5–5 HW_RET Instruction Fields Descriptions

Extent Mnemonic Value Description

[31:26] OPCODE 1E16 The opcode value.

[25:21] RA — Register number. It should be R31.

[20:16] RB — Target PC of the HW_RET instruction. Bit [0] of the register’s contents
determines the new value of PALmode.

[15:14] HINT 00

01

10

11

HW_JMP — The PC is not pushed onto the prediction stack. The
predicted target is PC + (4*DISP[12:0]).

HW_JSR — The PC is pushed onto the prediction stack. The predicted
target is PC + (4*DISP[12:0]).

HW_RET — The prediction is popped off the stack and used as the targ

HW_COROUTINE — The prediction is popped off the stack and used a
the target. The PC is pushed onto the stack.

[13] STALL — If set, the fetcher is stalled until the HW_RET instruction is retired or
aborted. The 21264 will:

• Force a mispredict

• Kill instructions that were fetched beyond the HW_RET instruction

• Refetch the target of the HW_RET instruction

• Stall until the HW_RET instruction is retired or aborted

If instructions beyond the HW_RET have been issued out of order, they
will be killed and refetched.

[12:0] DISP — Holds a 13-bit signed longword displacement

31 26 25 21 20 16 15 13 12 0

FM-05656.AI4

HINT

STALL

14

DISPRBRAOPCODE

31 26 25 21 20 16 15 0

FM-05657.AI4

8 7

SCBD_MASKRBRAOPCODE INDEX
5–6 Privileged Architecture Library Code 17 February 1999 – Subject To Change

Internal Processor Register Access Mechanisms

sed for

e is
te.
d

 mem-
lemen-

tions

cted

e

ore-
Table 5–6 describes the HW_MFPR and HW_MTPR instructions fields.

5.5 Internal Processor Register Access Mechanisms

This section describes the hardware and software access mechanisms that are u
the 21264 IPRs.

Because the Ibox reorders and executes instructions speculatively, extra hardwar
required to provide software with the correct view of the architecturally-defined sta
The Alpha architecture defines two classes of state: general-purpose registers an
memory. Register renaming is used to provide architecturally-correct register file
behavior. The Ibox and Mbox each have dedicated hardware that provides correct
ory behavior to the programmer. Because the internal processor registers are imp
tation-specific, and their state is not defined by the Alpha architecture, access
mechanisms for these registers may be defined that impose restrictions and limita
on the software that uses them.

For every IPR, each instruction type can be classified by how it affects and is affe
by the value held by that IPR.

• Explicit readers are HW_MFPR instructions that explicitly read the value of the
IPR.

• Implicit readers are instructions whose behavior is affected by the value of the IPR.
For example, each load instruction is an implicit reader of the DTB.

• Explicit writers are HW_MTPR instructions that explicitly write a value into the
IPR.

• Implicit writers are instructions that may write a value into the IPR as a side effect
of execution. For example, a load instruction that generates an access violation is
an implicit writer of the VA, MM_STAT, and EXC_ADDR IPRs. In the 21264, only
instructions that generate an exception will act as implicit IPR writers.

Only certain IPRs, such as those with write-one-to-clear bits, are both implicitly and
explicitly written. The read-write semantics of these IPRs is controlled by software.

Table 5–6 HW_MFPR and HW_MTPR Instructions Fields Descriptions

Extent Mnemonic Value Description

[31:26] OPCODE 1916

1D16

The opcode value for the HW_MFPR instruction.

The opcode value for the HW_MTPR instruction.

[25:21] RA — Destination register for the HW_MFPR instruction. It should be R31 for th
HW_MTPR instruction.

[20:16] RB — Source register for the HW_MTPR instruction. It should be R31 for the
HW_MFPR instruction.

[15:8] INDEX — IPR index.

[7:0] SCBD_
MASK

— Specifies which IPR scoreboard bits in the IQ are to be applied to this
instruction. If a mask bit is set, it indicates that the corresponding IPR sc
board bit should be applied to this instruction.
17 February 1999 – Subject To Change Privileged Architecture Library Code 5–7

Internal Processor Register Access Mechanisms

tain
tain
ght

er the

r

When
f those

rd

ffer-

, that
are

are
t set

ill
tions.

ng

en

ad
t
ad its
5.5.1 IPR Scoreboard Bits

In previous Alpha implementations, IPR registers were not scoreboarded in hardware.
Software was required to schedule HW_MTPR and HW_MFPR instructions for each
machine’s pipeline organization in order to ensure correct behavior. This software
scheduling task is more difficult in the 21264 because the Ibox performs dynamic
scheduling. Hence, eight extra scoreboard bits are used within the IQ to help main
correct IPR access order. The HW_MTPR and HW_MFPR instruction formats con
an 8-bit field that is used as an IPR scoreboard bit mask to specify which of the ei
IPR scoreboard bits are to be applied to the instruction.

If any of the unmasked scoreboard bits are set when an instruction is about to ent
IQ, then the instruction, and those behind it, are stalled outside the IQ until all the
unmasked scoreboard bits are clear and the queue does not contain any implicit o
explicit readers that were dependent on those bits when they entered the queue.
all the unmasked scoreboard bits are clear, and the queue does not contain any o
readers, the instruction enters the IQ and the unmasked scoreboard bits are set.

HW_MFPR instructions are stalled in the IQ until all their unmasked IPR scoreboa
bits are clear.

When scoreboard bits [3:0] and [7:4] are set, their effect on other instructions is di
ent, and they are cleared in a different manner.

If any of scoreboard bits [3:0] are set when a load or store instruction enters the IQ
load or store instruction will not be issued from the IQ until those scoreboard bits
clear.

Scoreboard bits [3:0] are cleared when the HW_MTPR instructions that set them
issued (or are aborted). Bits [7:4] are cleared when the HW_MTPR instructions tha
them are retired (or are aborted).

Bits [3:0] are used for the DTB_TAG and DTB_PTE register pairs within the DTB f
flows. These bits can be used to order writes to the DTB for load and store instruc
See Section 4.3.1.

Bit [0] is used in both DTB and ITB fill flows to trigger, in hardware, a light-weight
memory barrier (TB-MB) to be inserted between a LD_VPTE and the correspondi
virtual-mode load instruction that missed in the TB.

5.5.2 Hardware Structure of Explicitly Written IPRs

IPRs that are written by software are physically implemented as two registers. Wh
the HW_MTPR instruction that writes the IPR executes, it writes its value to the first
register. When the HW_MTPR instruction is retired, the contents of the first register are
written into the second register. Instructions that either implicitly or explicitly read the
value of the IPR access the second register. Read-after-write and write-after-write
dependencies are managed using the IPR scoreboard bits. To avoid write-after-re
conflicts, the second register is not written until the writer is retired. The writer will no
be retired until the previous reader is retired, and the reader is retired after it has re
value from the second register.

Some groups of IPRs are built using a single shared first register. To prevent write-
after-write conflicts, IPRs that share a first register also share scoreboard bits.
5–8 Privileged Architecture Library Code 17 February 1999 – Subject To Change

Internal Processor Register Access Mechanisms

 gen-
 go to

ept-
 the
ger-
d

 pro-

ur
, the
5.5.3 Hardware Structure of Implicitly Written IPRs

Implicitly written IPRs are physically built using only a single level of register, how-
ever the IPR has two hardware states associated with it:

1. Default State—The contents of the register may be written when an instruction
erates an exception. If an exception occurs, write a new value into the IPR and
state 2.

2. Locked State—The contents of the register may only be overwritten by an exc
ing instruction that is older than the instruction associated with the contents of
IPR. If such an exception occurs, overwrite the value of the IPR. When the trig
ing instruction, or instruction that is older than the triggering instruction, is kille
by the Ibox, go to state 1.

5.5.4 IPR Access Ordering

IPR access mechanisms must allow values to be passed through each IPR from a
ducer to its intended consumers.

Table 5–7 lists all of the paired instruction orderings between instructions of the fo
IPR access types. It specifies whether access order must be maintained, and if so
mechanisms used to ensure correct ordering.

Table 5–7 Paired Instruction Fetch Order

Second
Instruction First Instruction

Implicit Reader Implicit Writer Explicit Reader Explicit Writer

Implicit Reader Read transac-
tions can be reor-
dered.

No IPRs in this class. Read transactions can
be reordered.

A variety of of mecha-
nisms are used to
ensure order:
scoreboard bits to stall
issue of reader;
HW_RET_STALL to
stall reader; double
write plus buffer
blocks to force retire
and allow for propo-
gation delay.

Implicit Writer No IPRs in this
class.

The hardware struc-
ture of implicitly writ-
ten IPRs handles this
case.

IPR-specific PALcode
restrictions are required
for this case. An inter-
lock mechanism must
be placed between the
explicit reader and the
implicit writer (a read
transaction).

No IPRs in this class.

Explicit Reader Read transac-
tions can be reor-
dered.

If the reader is in the
PALcode routine
invoked by the excep-
tion associated with
the writer, then order-
ing is guaranteed.

Read transactions can
be reordered.

Scoreboard bits stall
issue of reader until
writer is retired.
17 February 1999 – Subject To Change Privileged Architecture Library Code 5–9

Internal Processor Register Access Mechanisms

the

licit
ction
re-

he
it
ts

d).

ffi-
ET
nsur-

in the
ast
For convenience of implemenation, there is no IPR scoreboard bit checking within the
same fetch block (octaword-aligned octaword).

• Within one fetch block, there can be only one explicit writer (HW_MTPR) to an
IPR in a particular scoreboard group.

• Within one fetch block, an explicit writer (HW_MTPR) to an IPR in a particular
scoreboard group cannot be followed by an explicit reader (HW_MFPR) to an IPR
in that same scoreboard group.

• Within one fetch block, an explicit writer (HW_MTPR) to an IPR in a particular
scoreboard group cannot be followed by an implicit reader to an IPR in that score-
board group. This case covers writes to DTB_PTE or DTB_TAG followed by a LD,
ST, or any memory operation, including HW_RETs without the ‘stall’ bit set.

5.5.5 Correct Ordering of Explicit Writers Followed by Implicit Readers

Across fetch blocks, the correct ordering of the explicit write of the DTB_PTE or
DTB_TAG followed by an implicit reader (memory operation) is guaranteed using
IPR scoreboard bits.

However, there are cases where correct ordering of explicit writers followed by imp
readers cannot be guaranteed using the IPR scoreboard mechanism. If the instru
that implicitly reads the IPR does so before the issue stage of the pipeline, the sco
board mechanism is not sufficient.

For example, modification of the ITB affects instructions before the issue state of t
pipeline. In this case, PALcode must contain a HW_RET instruction, with its stall b
set, before any instruction that implicitly reads the IPR(s) in question. This preven
instructions that are newer than the HW_RET instruction from being successfully
fetched, issued, and retired until after the HW_RET instruction is retired (or aborte

There are also cases when the HW_RET with the STALL bit mechanism is not su
cient. There may be additional propagation delay past the retirement of the HW_R
instruction. In these cases, instead of using a HW_RET, a suggested method of e
ing the ordering is coding a group of 5 fetch blocks, where the first contains the
HW_MTPR to the IPR, the second contains a HW_MTPR to the same IPR or one
same scoreboard group, and where the following 3 fetch blocks each contain at le
one non-NOP instruction.

Explicit Writer Reader reads
second register.
Writer cannot
write second reg-
ister until it is
retired.

Write-one-to-clear
bits, or performance
counter special case.
For example, perfor-
mance counter incre-
ments are typically not
scoreboarded against
read transactions.

Reader reads second
register. Writer cannot
write second register
until it is retired.

Scoreboard bits stall
second writer in map
stage until first writer
is retired.

Table 5–7 Paired Instruction Fetch Order (Continued)

Second
Instruction First Instruction
5–10 Privileged Architecture Library Code 17 February 1999 – Subject To Change

PALshadow Registers
5.5.6 Correct Ordering of Explicit Readers Followed by Implicit Writers

Certain IPRs that are updated as a result of faulting memory operations require PAL-
code assistance to maintain ordering against newer instructions. Consider the following
code sequence:

HW_MFPR IPR_MM_STAT

LDQ rx,(ry)

It is typically the case that these instructions would issue in-order:

• The MFPR is data-ready and both instructions use a lower subcluster. However, the
HW_MFPRs (and HW_MTPRs) respond to certain resource-busy indications and
do not issue when the MBOX informs the IBOX that a certain set of resources
(store bubbles) are busy.

• The LDs respond to a different set of resource-busy indications (load-bubbles) and
could issue around the HW_MFPR in the presence of the former. PALcode assis-
tance is required to enforce the issue order.

One totally reliable method is to insert an MB (memory barrier) instruction before the
first load that occurs after the HW_MFPR MM_STAT. Another method would be to
force a register dependency between the HW_MFPR and the LD.

5.6 PALshadow Registers

The 21264 contains eight extra virtual integer registers, called shadow registers, which
are available to PALcode for use as scratch space and storage for commonly used val-
ues. These registers are made available under the control of the SDE[1] field of the
I_CTL IPR. These shadow registers overlay R4 through R7 and R20 through R23,
when the CPU is in PALmode and SDE[1] is set.

PALcode generally runs with shadow mode enabled. Any PALcode that supports
CALL_PAL instructions must run in that mode because the hardware writes a
PALshadow register with the return address of CALL_PAL instructions.

PALcode may occasionally be required to toggle shadow mode to obtain access to the
overlayed registers.

5.7 PALcode Emulation of the FPCR

The FPCR register contains status and control bits. They are accessed by way of the
MT_FPCR and MF_FPCR instructions. The register is physically implemented like an
explicitly written IPR. It may be written with a value from the floating-point register
file by way of the MT_FPCR instruction. Architecturally-compliant FPCR behavior
requires PALcode assistance. The FPCR register must operate as listed here:

1. Correct operation of the status bits, which must be set when a floating-point
instruction encounters an exceptional condition, independent of whether a trap for
the condition is enabled.

2. Correct values must be returned when the FPCR is read by way of a MF_FPCR
instruction.

3. Correct actions must occur when the FPCR is written by way of a MT_FPCR
instruction.
17 February 1999 – Subject To Change Privileged Architecture Library Code 5–11

PALcode Entry Points

e
rns
gis-
er the
t if
5.7.1 Status Flags

The FPCR status bits in the 21264 are set with PALcode assistance. Floating-point
exceptions, for which the associated FPCR status bit is clear or for which the associated
trap is enabled, result in a hardware trap to the ARITH PALcode routine. The
EXC_SUM register contains information to allow this routine to update the FPCR
appropriately, and to decide whether to report the exception to the operating system.

5.7.2 MF_FPCR

The MF_FPCR is issued from the floating-point queue and executed by the Fbox. No
PALcode assistance is required.

5.7.3 MT_FPCR

The MT_FPCR instruction is issued from the floating-point queue. This instruction is
implemented as an explicit IPR write operation. The value is written into the first latch,
and when the instruction is retired, the value is written into the second latch. There is no
IPR scoreboarding mechanism in the floating-point queue, so PALcode assistance is
required to ensure that subsequent readers of the FPCR get the updated value.

After writing the first latch, the MT_FPCR instruction invokes a synchronous trap to
the MT_FPCR PALcode entry point. The PALcode can return using a HW_RET
instruction with its STALL bit set. This sequence ensures that the MT_FPCR instruc-
tion will be correctly ordered for subsequent readers of the FPCR.

5.8 PALcode Entry Points

PALcode is invoked at specific entry points, of which there are two classes:
CALL_PAL and exceptions.

5.8.1 CALL_PAL Entry Points

CALL_PAL entry points are used whenever the Ibox encounters a CALL_PAL instruc-
tion in the Istream. To speed the processing of CALL_PAL instructions, CALL_PAL
instructions do not invoke pipeline aborts but are processed as normal jumps to the off-
set from the contents of the PAL_BASE register, which is specified by the CALL_PAL
instruction’s function field.

The Ibox fetches a CALL_PAL instruction, bubbles one cycle, and then fetches th
instructions at the CALL_PAL entry point. For convenience of implementation, retu
from CALL_PAL are aided by a linkage register (much like JSRs). PALshadow re
ter R23 is used as the linkage register. The Ibox loads the PC of the instruction aft
CALL_PAL instruction, into the linkage register. Bit [0] of the linkage register is se
the CALL_PAL instruction was executed while the processor was in PALmode.

The Ibox pushes the value of the return PC onto the return prediction stack.
CALL_PAL instructions start at the following offsets:

• Privileged CALL_PAL instructions start at offset 200016.

• Nonprivileged CALL_PAL instructions start at offset 300016.
5–12 Privileged Architecture Library Code 17 February 1999 – Subject To Change

PALcode Entry Points

r

Each CALL_PAL instruction includes a function field that is used to calculate the PC of
its associated PALcode entry point. The PALcode OPCDEC exception flow will be
invoked if the CALL_PAL function field satisfies any of the following requirements:

• Is in the range of 4016 to 7F16 inclusive

• Is greater than BF16

• Is between 0016 and 3F16 inclusive, and IER_CM[CM] is not equal to the kernel
mode value 0

If none of the conditions above are met, the PALcode entry point PC is as follows:

• PC[63:15] = PAL_BASE[63:15]

• PC[14] = 0

• PC[13] = 1

• PC[12] = CALL_PAL function field [7]

• PC[11:6] = CALL_PAL function field [5:0]

• PC[5:1] = 0

• PC[0] = 1 (PALmode)

5.8.2 PALcode Exception Entry Points

When hardware encounters an exception, Ibox execution jumps to a PALcode entry
point at a PC determined by the type of exception. The return PC of the instruction that
triggered the exception is placed in the EXC_ADDR register and onto the return predic-
tion stack.

Table 5–8 shows the PALcode exception entry locations and their offset from the
PAL_BASE IPR. The entry points are listed in decreasing order of priority.

Table 5–8 PALcode Exception Entry Locations

Entry Name Type Offset16 Description

DTBM_DOUBLE_3 Fault 100 Dstream TB miss on virtual page table entry fetch. Use three-
level flow.

DTBM_DOUBLE_4 Fault 180 Dstream TB miss on virtual page table entry fetch. Use four-
level flow.

FEN Fault 200 Floating point disabled.

UNALIGN Fault 280 Unaligned Dstream reference.

DTBM_SINGLE Fault 300 Dstream TB miss.

DFAULT Fault 380 Dstream fault or virtual address sign check error.

OPCDEC Fault 400 Illegal opcode or function field:
 • Opcode 1, 2, 3, 4, 5, 6 or 7
 • Opcode 1916, 1B16, 1D16, 1E16 or 1F16 , not PALmode or

not I_CTL[HWE]
 • Extended precision IEEE format
 • Unimplemented function field of opcodes 1416 or 1C16

IACV Fault 480 Istream access violation or virtual address sign check erro
17 February 1999 – Subject To Change Privileged Architecture Library Code 5–13

PALcode Entry Points
MCHK Interrupt 500 Machine check.

ITB_MISS Fault 580 Istream TB miss.

ARITH Synch. Trap 600 Arithmetic exception or update to FPCR.

INTERRUPT Interrupt 680 Interrupts: hardware, software, and AST.

MT_FPCR Synch. Trap 700 Invoked when a MT_FPCR instruction is issued.

RESET/WAKEUP Interrupt 780 Chip reset or wake-up from sleep mode.

Table 5–8 PALcode Exception Entry Locations (Continued)

Entry Name Type Offset16 Description
5–14 Privileged Architecture Library Code 17 February 1999 – Subject To Change

d

on

ms,
ure
RT.
 6
Initialization and Configuration

This chapter provides information on 21264-specific microprocessor system initializa-
tion and configuration. It is organized as follows:

• Power-up reset flow

• Internal processor register (IPR) reset state

 Initialization is controlled by the reset state machine, which is responsible for four
major operations. Table 6–1 describes the four major operations.

6.1 Power-Up Reset Flow and the RESET_L and DCOK_H Pins

The 21264 reset sequence is triggered using the two input signals: Reset_L and
DCOK_H in a sequence that is described in Section 6.1.1. After Reset_L is deasserted,
the following sequence of operations takes place:

1. The clock forwarding and system clock ratio configuration information is loade
onto the 21264. See Section 6.1.2.

2. The internal PLL is ramped up to operating frequency.

3. The internal arrays built-in self-test (BiST) is run, followed by Icache initializati
using an external serial ROM (SROM) interface.

The 21264 systems, unlike the Alpha 21064 and 21164 microprocessor syste
are required to have an SROM. The SROM provides the only means to config
the system port, and the SROM pins can be used as a software-controlled UA

Table 6–1 21264 Reset State Machine Major Operations

Operation Function

Ramp up Sequence the PLL input and output dividers (Xdiv and Zdiv) to gradually raise the
internal GCLK frequency and generate time intervals for the PLL to re-establish lock.

BiST/SROM Receive a synchronous transfer on the ClkFwdRst_H pin in order to start built-in self-
test and SROM load at a predictable GCLK cycle.

Clock forward interface Receive a synchronous transfer on the ClkFwdRst_H pin in order to initialize the
clock forwarding interface.

Ramp down Sequence the PLL input and output dividers (Xdiv and Zdiv) to gradually lower the
internal GCLK frequency during sleep mode.
17 February 1999 – Subject To Change Initialization and Configuration 6–1

Power-Up Reset Flow and the RESET_L and DCOK_H Pins

, note

e

e +
The Icache must contain PALcode that starts at location 0x780. This code is used to
configure the 21264 IPRs as necessary before causing any offchip read or write
commands. This allows the 21264 to be configured to match the external system
implementation.

4. After configuring the 21264, control can be transferred to code anywhere in mem-
ory, including the noncacheable regions. The Icache can be flushed by a write oper-
ation to the ITB invalidate-all register after control is transferred. This transfer of
control should be to addresses not loaded in the Icache by the SROM interface or
the Icache may provide unexpected instructions.

5. Typically, any state required by the PALcode is initialized and then the console is
started (switching out of PALmode and into native mode). The console code initial-
izes and configures the system and boots an operating system from an I/O device
such as a disk or the network.

Figure 6–1 shows the sequence of events at power-up, or cold reset. In Figure 6–1
the following symbols for constraints and information:

Constraints:

Information:

A Setup (A0) and hold (A1) for IRQ’s to be latched by DCOK (2 ns for each).

B Enough time for Reset_L to propogate through 5 stages of RESET synchronizer (clocked by th
internal framing clock, which is driven by EV6Clk_x). Worst case is 5x8x8 = 320 GCLK cycles,
because Ydiv values above 8 are out of range.

C Min = 1 FrameClk cycle.

a 8 GCLK cycles from DCOK assertion to first “real” EV6Clk_x cycle.

b Approximately 264 GCLK cycles for external framing clock to be sampled and captured.

c 1 FrameClk_x cycle.

d 3 FrameClk_x cycles.

e Approximately 264 GCLK cycles to prevent first command from appearing too early.

f Approximately 700,000 GCLK cycles for BiST + approximately 100,000 GCLK cycles fixed tim
approximately 50,000 GCLK cycles per line of Icache for SROM load.

g 16 GCLK cycles.
6–2 Initialization and Configuration 17 February 1999 – Subject To Change

Power-Up Reset Flow and the RESET_L and DCOK_H Pins
Figure 6–1 Power-Up Timing Sequence

6.1.1 Power Sequencing and Reset State for Signal Pins

Power sequencing and avoiding potential failure mechanisms is described in Section
7.3.

The reset state for the signal pins is listed in Table 6–2.

Table 6–2 Signal Pin Reset State

Signal Reset State Signal Reset State

Bcache

BcAdd_H[23:4] Tristated

BcCheck_H[15:0] Tristated BcTagInClk_H NA (input)

BcData_H[127:0] Tristated BcTagOE_L Tristated

BcDataInClk_H[7:0] NA (input) BcTagOutClk_x Tristated

BcDataOE_L Tristated BcTagParity_H Tristated

BcDataOutClk_x[3:0] Tristated BcTagShared_H Tristated

BcDataWr_L Tristated BcTagValid_H Tristated

BcLoad_L Tristated BcTagWr_L Tristated

BcTag_H[42:20] Tristated BcVref NA (I_DC_REF)

BcTagDirty_H Tristated

IRQ_H

DCOK_H

state

SromOE_L

internal ClkFwdRst

TestStat_H

external Clks

valid

WAIT_NORMALWAIT_SETTLE RAMP1 RAMP2 WAIT_ClkFwdRst0 WAIT_BiST WAIT_ClkFwdRst1

no min no min

End of BiST BiST Fails BiST Passes

A0

a

B

b c

f

C

g

d

e

FM-06486B.FH8

A1

RUN

ClkFwdRst_H

Reset_L
17 February 1999 – Subject To Change Initialization and Configuration 6–3

Power-Up Reset Flow and the RESET_L and DCOK_H Pins

 should
val-

 net-
y
In addition, as power is being ramped, Reset_L must be asserted — this allows the
21264 to reset internal state. Once the target voltage levels are attained, systems
assert DCOK_H. This indicates to the 21264 that internal logic functions can be e
uated correctly and that the power-up sequence should be continued. Prior to DCOK_H
being asserted, the logic internal to the 21264 is being reset and the internal clock
work is running (either clocked by the PLL VCO, which is at a nominal speed, or b
ClkIn_H, if the PLL is bypassed).

The reset state machine is in state WAIT_SETTLE.

System Interface

IRQ_H[5:0] NA (input) SysDataInClk_H[7:0] NA (input)

SysAddIn_L[14:0] NA (input) SysDataInValid_L NA (input)

SysAddInClk_L NA (input) SysDataOutClk_L[7:0] Tristated

SysAddOut_L[14:0] Initially, during power-up reset,
state is not defined. If not during
power-up, preserves previous state.
Then, after the clock forward reset
period (as the external clocks
start), signal driven to NZNOP
until the reset state machine enters
RUN, when it is driven to NOP.

SysDataOutValid_L NA (input)

SysAddOutClk_L Tristated SysFillValid_L NA (input)

SysCheck_L[7:0] Tristated SysVref NA (I_DC_REF)

SysData_L[63:0] Tristated

Clocks

ClkFwdRst_H NA (input) FrameClk_x NA (input)

ClkIn_H
ClkIn_L

NA (input) PLL_VDD NA (I_DC_REF)

EV6Clk_H
EV6Clk_L

NA (input)

Miscellaneous

DCOK_H Must be deasserted until dc voltage
reaches proper operating level.

Tck_H NA (input)

PllBypass_H NA (input) Tdi_H NA (input)

Reset_L NA (input) Tdo_H Unspecified

SromClk_H Tristated TestStat_H Tristated

SromData_H NA (input) Tms_H NA (input)

SromOE_L Tristated Trst_L NA (input)

Table 6–2 Signal Pin Reset State (Continued)

Signal Reset State Signal Reset State
6–4 Initialization and Configuration 17 February 1999 – Subject To Change

Power-Up Reset Flow and the RESET_L and DCOK_H Pins

ost of
ps
f
m

n
to

6.1.2 Clock Forwarding and System Clock Ratio Configuration

When DCOK_H is asserted, the 21264 samples several pins and latches in some initial-
ization state, including the value of the PLL Ydiv divisor, which specifies the ratio of
the system clock to the internal clock, and enables the charge pump on the phase-locked
loop.

Table 6–3 summarizes the pins and the suggested/required initialization state. M
this information is supplied by placing (switch-selectable or hardwired) weak pull-u
or pull-downs on the IRQ_H pins. The IRQ_H pins are sampled on the rising edge o
DCOK_H, during which time the 21264 is in reset and is not generating any syste
activity. During normal operation, the IRQ_H pins supply interrupt requests to the
21264.

It is possible to disable the 21264 PLL and source GCLK directly from ClkIn_x. This
mode is selected via PllBypass_H. The 21264 still produces a divided-down clock o
EV6Clk_x; this output clock, which tracks GCLK, can be used in a feedback loop
generate a locked input clock via an external PLL. The input clock can be locked
against a slower speed system reference clock.

Table 6–3 Pin Signal Names and Initialization State

Signal Name Sample Time Function Value

PllBypass_H Continuous input Select ClkIn_x onto GCLK instead of internal
PLL.

0 Bypass1
1 Use PLL

ClkFwdRst_H Sampling method
according to
IRQ_H[4]

— —

Reset_L Continuous input — —

IRQ_H[5] Rising edge of
DCOK_H

Select 1:1 FrameClk mode.
Internal FrameClk can be generated two ways:

0 Sample with
FrameClk_H

1 Use a copy of
EV6Clk_H1 By sampling FrameClk_H. Used if

FrameClk_H is slower than ClkIn_H.

2 As a direct copy of EV6Clk_H. Used if
FrameClk_H is the same frequency as
ClkIn_H or is DC.
17 February 1999 – Subject To Change Initialization and Configuration 6–5

Power-Up Reset Flow and the RESET_L and DCOK_H Pins

d

rs

L

.
y of
6.1.3 PLL Ramp Up

After the configuration is loaded through the IRQ_H pins, the next phase in the power
up flow is the internal PLL ramp up sequence. Ramping up of the PLL is required to
guarantee that the dynamic change in frequency will not cause the supply on the 21264
to fall due to the supply loop inductance. Clock control circuitry steps GCLK from
power-up/reset clocking to 1/16th operating frequency, to ½ operating frequency, an
finally normal operating frequency.

After the assertion of DCOK_H, the 21264 waits for the deassertion of Reset_L from
the system while the PLL attempts to achieve a lock. The PLL internal ramp divide
are set to divide down the input clock by 16 and the PLL attempts to achieve lock
against an effective input frequency of ClkIn_x/16. Once lock is achieved, the actual
internal frequency (GCLK) is ClkIn_x*(Y div divisor value)/16. There should be a
minimum delay of 100 ms between the assertion of DCOK_H and the deassertion of
Reset_L to allow for this locking The reset state machine is in the WAIT_NOMINA
state.

After the deassertion of Reset_L, the reset state machine goes into the RAMP1 state
The 21264 ramps the internal frequency, by changing the effective input frequenc
the PLL to ClkIn_x/2 for a sufficient lock interval (about 20 µs). The state machine

IRQ_H[4] Rising edge of
DCOK_H

Select method of sampling ClkFwdRst_H to
produce internal ClkFwdRst — either with
external or internal copy of FrameClk_x.

0 Sample with External
FrameClk_x

1 Sample with Internal
Frameclk

IRQ_H[3:0] Rising edge of
DCOK_H

Select Ydiv divisor value. This is the divide-
down factor between GCLK and EV6Clk_x.

When the PLL is in use and the 21264 is
ramped-up to full speed, the VCO adjusts in
order to phase-align (and rate-match)
EV6Clk_x to ClkIn_x. When the PLL is not
in use, and ClkIn_x is bypassed onto GCLK,
EV6Clk_x is slower than ClkIn_x by the
divisor Ydiv.

IRQ_H[3:0] Divisor

0011 3
0100 4
0101 5
0110 6
0111 7
0000 8
1000 9
1001 10
1010 11
1011 12
1100 13
1101 14
1110 15
1111 16

DCOK_H Continuous input When deasserted, initializes the internal 21264
reset state machine and keeps the PLL internal
oscillator running at a nominal speed. Asser-
tion, which implies power to the 21264 is
good, causes configuration information to be
sampled.

—

1 The maximum permissible instantaneous change in ClkIn_x frequency is 333MHz (to prevent current
spikes).

Table 6–3 Pin Signal Names and Initialization State

Signal Name Sample Time Function Value
6–6 Initialization and Configuration 17 February 1999 – Subject To Change

Power-Up Reset Flow and the RESET_L and DCOK_H Pins

he

).

ing

ting

rding
ts 264
21264

of
then goes into the RAMP2 state, changing the effective input frequency to ClkIn/1 for
an additional lock interval (about 20 µs). The lock periods are generated by the internal
duration counter, which is driven by GCLK. The counter counts 4108 GCLK cycles
during the ClkIn_x/2 lock interval. Note that GCLK is produced by the output of the
PLL, which is locking to an input clock which is 1/2 of the operating frequency —
therefore, the 4108 cycle interval constitutes a 12-20 µs interval when the operating
frequency is 400–666 MHz. Then, the counter counts 8205 GCLK cycles during t
ClkIn_x/1 lock interval.

6.1.4 BiST and SROM Load and the TestStat_H Pin

The 21264 uses the deassertion of ClkFwdRst_H (which must be deasserted for a min-
imum of one FrameClk_H cycle and then reasserted) to begin built-in self-test (BiST
The reset state machine goes into the WAIT_BiST state. The power-up BiST lasts
approximately 700,000 cycles. The result of the self-test is made available on the
TestStat_H pin. The pin is forced low by the system reset. It is then forced high dur
BiST.

As BiST completes, the TestStat_H pin is held low for 16 GCLK cycles. Then, if BiST
succeeds, the pin remains low. Otherwise, it is asserted. After successfully comple
BiST, the 21264 then performs the SROM load sequence. After the SROM load
sequence is finished, the 21264 deasserts SromOE_L.

6.1.5 Clock Forward Reset and System Interface Initialization

After the deassertion of SromOE_L, the reset state machine enters the
WAIT_ClkFwdRst1 state, where the 21264 waits for the system to deassert
ClkFwdReset_H. The 21264 samples the deasserting edge of ClkFwdReset_H to
take synchronous actions. It uses this synchronous event to reset the clock forwa
interface, start the outgoing clocks, and deassert internal reset. The chip then wai
cycles before issuing commands. The reset state machine is then in RUN and the
begins fetching code at address 0x780.

Table 6–4 lists signals relevant to the power-up flow, provides a short description
each, and any relevant constraints.

Table 6–4 Power-Up Flow Signals and Their Constraints

Signal Name Description Constraint

ClkIn_x Differential clocks that are inputs to
PLL or are bypassed onto GCLK
directly

Clocks must be running before DCOK_H
is asserted.

PLL_VDD VDD supply to PLL PLL_VDD must lead VDD.

VDD VDD supply to the 21264 chip logic
(except PLL)

—

DCOK_H Logic signal to the 21264 that the
VDD supply is good

—

17 February 1999 – Subject To Change Initialization and Configuration 6–7

Internal Processor Register Power-Up Reset State

 lists

AL-

-

s
6.2 Internal Processor Register Power-Up Reset State

Many IPR bits are not initialized by reset. They are located in error-reporting registers
and other IPR states. They must be initialized by initialization PALcode. Table 6–5
the state of all internal processor registers (IPRs) immediately following power-up
reset. The table also specifies which registers need to be initialized by power-up P
code.

Reset_L RESET pin asserted by SYSTEM to
the 21264

Reset_L must be asserted prior to
DCOK_H and must remain asserted for at
least 100 ms after DCOK_H is asserted.
This allows for PLL settling time. Deasser-
tion of Reset_L causes the 21264 to ramp
divisors to their final value and begin BiST.

ClkFwdRst_H
Deassertion #1

Signal asserted by SYSTEM to syn-
chronously commence built-in self-
test and SROM load

ClkFwdRst_H must be deasserted after
PLL has achieved its lock in its final divi-
sor value (about 20 µs). The deassertion
causes built-in self-test to begin on an inter-
nal clock cycle that corresponds to one
framing clock cycle after ClkFwdRst_H is
deasserted. ClkFwdRst_H can be asserted
after one frame clock cycle. See Figure 6–
1.

ClkFwdRst_H
Deassertion #2

Signal asserted by SYSTEM to ini-
tialize and reset clock forwarding
interfaces

ClkFwdRst_H must be deasserted when
the Cbox has loaded configuration informa
tion. This occurs as the first part of the
serial ROM load, after BiST is run. Once
ClkFwdRst_H is deasserted, the interface
is initialized and can receive probe request
from the 21264.

Table 6–5 Internal Processor Registers at Power-Up Reset State

Mnemonic Register Name Reset State Comments

Ibox IPRs

ITB_TAG ITB tag array write X —

ITB_PTE ITB PTE array write X —

ITB_IAP ITB invalidate-all (ASM=0) X —

ITB_IA ITB invalidate all X Must be written to in PALcode.

ITB_IS ITB invalidate single X —

EXC_ADDR Exception address X —

IVA_FORM Instruction VA format X —

IER_CM Interrupt enable current mode X Must be written to in PALcode.

SIRR Software interrupt request X —

ISUM Interrupt summary X —

Table 6–4 Power-Up Flow Signals and Their Constraints (Continued)

Signal Name Description Constraint
6–8 Initialization and Configuration 17 February 1999 – Subject To Change

Internal Processor Register Power-Up Reset State
HW_INT_CLR Hardware interrupt clear X Must be cleared in PALcode.

EXC_SUM Exception summary X —

PAL_BASE PAL base address Cleared —

I_CTL Ibox control IC_EN = 3 All other bits are cleared on reset.

I_STAT Ibox status X Must be cleared in PALcode.

IC_FLUSH Icache flush X —

CLR_MAP Clear virtual-to-physical map X —

SLEEP Sleep mode X —

PCTX Ibox process context PCTX[FPE] is set. All other bits are cleared.

PCTR_CTL Performance counter control X Must be cleared in PALcode.

Ebox IPRs

CC Cycle counter X Must be cleared in PALcode.

CC_CTL Cycle counter control X Must be cleared in PALcode.

VA Virtual address X —

VA_FORM Virtual address format X —

VA_CTL Virtual address control X Must be cleared in PALcode.

Mbox IPRs

DTB_TAG0 DTB tag array write 0 Cleared —

DTB_TAG1 DTB tag array write 1 Cleared —

DTB_PTE0 DTB PTE array write 0 Cleared —

DTB_PTE1 DTB PTE array write 1 Cleared —

DTB_ALTMODE DTB alternate processor mode X PALcode must initialize.

DTB_IAP DTB invalidate all process
ASM = 0

X —

DTB_IA DTB invalidate all process X Must be written to in PALcode.

DTB_IS0 DTB invalidate single (array 0) X —

DTB_IS1 DTB invalidate single (array 1) X —

DTB_ASN0 DTB address space number 0 Cleared —

DTB_ASN1 DTB address space number 1 Cleared —

MM_STAT Memory management status X —

M_CTL Mbox control Cleared —

DC_CTL Dcache control DC_CTL[7:2] are cleared at reset.
DC_CTL[1:0] are set at power up.

DC_STAT Dcache status X Must be cleared in PALcode.

Table 6–5 Internal Processor Registers at Power-Up Reset State (Continued)

Mnemonic Register Name Reset State Comments
17 February 1999 – Subject To Change Initialization and Configuration 6–9

Internal Processor Register Power-Up Reset State
Cbox IPRs

C_DATA Cbox data X Must be read in PALcode.

C_SHFT Cbox shift control X —

Table 6–5 Internal Processor Registers at Power-Up Reset State (Continued)

Mnemonic Register Name Reset State Comments
6–10 Initialization and Configuration 17 February 1999 – Subject To Change

 may

e

et of
 7
Electrical Data

This chapter describes the electrical characteristics of the 21264 and its interface pins.
The chapter contains both ac and dc electrical characteristics and power supply consid-
erations, and is organized as follows:

• Electrical characteristics

• DC characteristics

• Power supply sequencing

• AC characteristics

7.1 Electrical Characteristics

Table 7–1 lists the maximum electrical ratings for the 21264.

Notes: Stresses above those listed under the given maximum electrical ratings
cause permanent device failure. Functionality at or above these
limits is not implied. Exposure to these limits for extended periods of tim
may affect device reliability

Power data is preliminary and based on measurements from a limited s
material.

Table 7–1 Maximum Electrical Ratings

Characteristics Ratings

Storage temperature –55° C to +125° C (–67° F to 257° F)

Junction Temperature 0° C to 100° C (32° F to 212° F)

Maximum dc voltage on signal pins VDD + 400 mV

Minimum dc voltage on signal pins VSS – 400 mV

Maximum power @ indicated VDD
for the following frequencies: Frequency Peak Power

466 MHz 82.0 W @ 2.30 V VDD

500 MHz 91.0 W @ 2.30 V VDD

550 MHz 100.0 W @ 2.30 V VDD

575 MHz 107.5 W @ 2.35 V VDD

600 MHz 109.0 W @ 2.30 V VDD
17 February 1999 – Subject To Change Electrical Data 7–1

DC Characteristics

e.

al

te
lf

 the

p
7.2 DC Characteristics

This section contains the dc characteristics for the 21264. The 21264 pins can be
divided into 10 distinct electrical signal types. The mapping between these signal types
and the package pins is shown in Chapter 3. Table 7–2 shows the signal types.

DC Switching Characteristics for Each Signal Type

Tables 7–3 through 7–12 show the dc switching characteristics of each signal typ

Notes for Tables 7–3 to 7–12

The following notes apply to Tables 7–3 to 7–12.

1. The differential voltage, Vdiff, is the absolute difference between the differenti
input pins.

2. Delta VBIAS is defined as the open-circuit differential voltage on the appropria
differential pairs. Test condition for these inputs are to let the input network se
bias and measure the open circuit voltage. The test load must be ≥ 1M ohm. In nor-
mal operation, these inputs are coupled with a 680-pF capacitor.

3. Functional operation of the 21264 with less than all VDD and VSS pins connected
is not implied.

4. Please see the special supply decoupling and noise requirements for the PLL_VDD
outlined in the 21264 PLL Specification.

5. The test load is a 50-ohm resistor to VDD/2. The resistor can be connected to
21264 pin by a 50-ohm transmission line of any length.

6. DC test conditions set the minimum swing required. These dc limits set the tri
point precision.

7. Input pin capacitance values include 2.0 pF added for package capacitance.

Table 7–2 Signal Types

Signal Type Description

I_DC_POWER Supply voltage pins (VDD/PLL_VDD)

I_DC_REF Input dc reference pin

I_DA Input differential amplifier receiver

I_DA_CLK Input differential amplifier clock receiver

O_OD Open-drain output driver

O_OD_TP Open-drain driver for test pins

O_PP Push-pull output driver

O_PP_CLK Push-pull output clock driver

B_DA_OD Bidirectional differential amplifier receiver — open-drain

B_DA_PP Bidirectional differential amplifier receiver — push-pull
7–2 Electrical Data 17 February 1999 – Subject To Change

DC Characteristics

i-
Note:Current out of a 21264 pin is represented by a – symbol while a + symbol ind
cates current flowing into a 21264 pin.

Table 7–3 VDD (I_DC_POWER)

Parameter Symbol Description Test Conditions Minimum Maximum

VDD Processor core supply voltage — 2.1 V 2.3 V

Power (sleep) Processor power required (sleep) @ VDD = 2.3 V
Note 3

— 19 W1

1 Power measured at 37.5 MHz while running the “Ebox aliveness test.”

PLL_VDD PLL supply voltage (Note 4) — 3.135 V 3.465 Vc

PLL_IDD PLL supply current (running) Freq = 600 MHz — 25 mA

Table 7–4 Input DC Reference Pin (I_DC_REF)

Parameter
Symbol Description Test Conditions Minimum Maximum

VREF DC input reference voltage — 600 mV VDD – 650 mV

| II | Input current VSS ≤ V ≤ VDD — 150 µA

Table 7–5 Input Differential Amplifier Receiver (I_DA)

Parameter
Symbol Description Test Conditions Minimum Maximum

VIL Low-level input voltage Note 6 — VREF – 200 mV

VIH High-level input voltage — VREF + 200 mV —

| II | Input current VSS ≤ V ≤ VDD — 150 µA

CIN Input-pin capacitance Freq =10 MHz — 5.7 pF
Note 7

Table 7–6 Input Differential Amplifier Clock Receiver (I_DA_CLK)

Parameter
Symbol Description Test Conditions Minimum Maximum

Vdiff Differential input voltage — 200 mv Note 1 —

| ∆ VBIAS | Open-circuit differential I ≤ ± 1 µA
Note 2

— 50 mV

| II | Input current VSS ≤ V ≤ VDD — 150 µA

CIN Input-pin capacitance Freq =10 MHz — 5.0 pF
Note 7
17 February 1999 – Subject To Change Electrical Data 7–3

DC Characteristics
Table 7–7 Open-Drain Output Driver (O_OD)

Parameter
Symbol Description Test Conditions Minimum Maximum

VOL Low-level output voltage IOL = 70 mA — 400 mV

 |IOZ | High impedance output current 0 < V < VDD — 150 µA

COD Open-drain pin capacitance Freq = 10 MHz — 5.7 pF
Note 7

Table 7–8 Bidirectional, Differential Amplifier Receiver, Open-Drain Output Driver (B_DA_OD)

Parameter
Symbol Description Test Conditions Minimum Maximum

VIL Low-level input voltage Note 6 — VREF –200 mv

VIH High-level input voltage — VREF + 200 mV —

VOL Low-level output voltage IOL = 70 mA — 400 mV

| II | Input current VSS ≤ V ≤ VDD — 150 µA1

CIN Input-pin capacitance Freq =10 MHz — 5.7 pF
Note 7

1 Measurement taken with output driver disabled.

Table 7–9 Open-Drain Driver for Test Pins (O_OD_TP)

Parameter
Symbol Description Test Conditions Minimum Maximum

VOL Low-level output voltage IOL = 15 mA — 400 mV

| IOZ | High-impedance output current 0 < V < VDD — 150 µA

COD_TP Pin capacitance Freq = 10 MHz — 5.2 pF
Note 7

Table 7–10 Bidirectional, Differential Amplifier Receiver, Push-Pull Output Driver (B_DA_PP)

Parameter
Symbol Description Test Conditions Minimum Maximum

VIL Low-level input voltage — — VREF – 200 mV

VIH High-level input voltage — VREF + 200 mV —

VOL Low-level output voltage IOL = 6 mA — 400 mV

VOH High-level output voltage IOH = –6 mA VDD – 400 mV —

| II | Input current VSS ≤ V ≤ VDD — 150 µA1

CIN Input-pin capacitance Freq =10 MHz — 6.0 pF
Note 7

1 Measurement taken with output driver disabled.
7–4 Electrical Data 17 February 1999 – Subject To Change

Power Supply Sequencing and Avoiding Potential Failure Mechanisms
7.3 Power Supply Sequencing and Avoiding Potential Failure Mech-
anisms

Before the power-on sequencing can occur, systems should ensure that DCOK_H is
deasserted and Reset_L is asserted. Then, systems ramp power to the 21264
PLL_VDD @ 3.3 V and the 21264 power planes (VDD @ 2.2 V, not to exceed 2.3 V
under any circumstances), with PLL_VDD leading VDD. Systems should supply
differential clocks to the 21264 on ClkIn_H and ClkIn_L. The clocks should be
running as power is supplied.

When enabling the power supply inputs in a system, three failure mechanisms must be
avoided:

1. Bidirectional signal buses must not conflict during power-up. A conflict on these
buses can generate high current conditions, which can compromise the reliability of
the associated chips.

2. Similarly, input receivers should not see intermediate voltage levels that can also
generate high current conditions, which can compromise the reliability of the
receiving chip.

3. Finally, no CMOS chip should see an input voltage that is higher than its internal
VDD. In such a condition, a reasonable level of charge can be injected into the bulk
of the die. This condition can expose the chip to a positive-feedback latchup
condition.

The 21264 addresses those three failure mechanisms by disabling all of its outputs and
bidirectional pins (with three exceptions) until the assertion of DCOK_H. The three
exceptions are Tdo_H, EV6Clk_L, and EV6Clk_H. Tdo_H is used only in the tester

Table 7–11 Push-Pull Output Driver (O_PP)

Parameter
Symbol Description Test Conditions Minimum Maximum

VOL Low-level output voltage IOL = 40 mA — 500 mV

VOH High-level output voltage IOL = –40 mA VDD – 500 mV —

| IOZ | High-impedance output current 0 < V < VDD — 150 µA

COD Open-drain pin capacitance Freq = 10 MHz — 6.0 pF
Note 7

Table 7–12 Push-Pull Output Clock Driver (O_PP_CLK)

Parameter
Symbol Description Test Conditions Minimum Maximum

VOL Low-level output voltage Note 5 — VDD/2 – 325 mV

VOH High-level output voltage Note 5 VDD/2 + 325 mV —

 | IOZ | High-impedance output
current

0 < V < VDD — 40 mA1

1 Measured value includes current from onchip termination structures.
17 February 1999 – Subject To Change Electrical Data 7–5

AC Characteristics

 should

ernal
, or
environment and does not need to be disabled. EV6Clk_L and EV6Clk_H are outputs
that are both generated and consumed by the 21264; thus, VDD tracks for both the
producer and consumer.

On the push-pull interfaces:

• Disabling all output drivers leaves the output signal at the DC bias point of the ter-
mination network.

• Disabling the bidirectional drivers leaves the other consumers of the bus as the bus
master.

On the open-drain interfaces:

• Disabling all output drivers leaves the output signal at the voltage of the open-drain
pull-up.

• Disabling all bidirectional drivers leaves the other consumers of the bus as the bus
master.

To avoid failure mechanism number two, systems must sequence and control external
signal flow in such a way as to avoid zero differential into the 21264 input receivers
(I_DA, I_DA_CLK, B_DA_OD, B_DA_PP, and B_DA_PP). Finally, to avoid failure
mechanism number three, systems must sequence input and bidirectional pins (I_DA,
I_DA_CLK, B_DA_OD, B_DA_PP, and I_DC_REF) such that the 21264 does not see
a voltage above its VDD.

In addition, as power is being ramped, Reset_L must be asserted — this allows the
21264 to reset internal state. Once the target voltage levels are attained, systems
assert DCOK_H. This indicates to the 21264 that internal logic functions can be
evaluated correctly and that the power-up sequence should be continued. Prior to
DCOK_H being asserted, the logic internal to the 21264 is being reset and the int
clock network is running (either clocked by the VCO, which is at a nominal speed
by ClkIn_H, if the PLL is bypassed).

The reset state machine is in state WAIT_SETTLE.

7.4 AC Characteristics

Abbreviations:

The following abbreviations apply to Table 7–13:

• TSU = Setup time

• Duty cycle = Minimum clock duty cycle

• TDH = Hold time

• Slew rate = referenced to signal edge

AC Test Conditions:

The following conditions apply to the measurements that are listed in Table 7–13:

• VDD is in the range between 2.1 V and 2.3 V.

• SysVref is VDD/2 Volts.

• BcVref is 0.75 Volts.
7–6 Electrical Data 17 February 1999 – Subject To Change

AC Characteristics

m-
• The input voltage swing is Vref ± 0.40 Volts.

• All output skew data is based on simulation into a 50-ohm transmission line that is
terminated with 50 ohms to VDD/2 for Bcache timing, and with 50 ohms to VDD
for all other timing.

Timings are measured at the pins as follows:

– For open-drain outputs, timing is measured to (Vol + Vterm)/2. Where Vterm is
the off-chip termination voltage for system signals.

– For non-open-drain outputs, timing is measured to (Vol + Voh)/2.
– For all inputs other than type I_DA_CLK, timing is measured to the point

where the input signal crosses VREF.
– For type I_DA_CLK inputs, timing is measured when the voltage on the co

plementary inputs is equal.

Table 7–13 AC Specifications

Signal Name Type Reference Signal TSU1 TDH2 TSkew Duty Cycle TSlew

SysAddIn_L[14:0 I_DA SysAddInClk_L 400 ps 400 ps NA NA 1.0 V/ns

SysFillValid_L I_DA SysAddInClk_L 400 ps 400 ps NA NA 1.0 V/ns

SysDataInValid_L I_DA SysAddInClk_L 400 ps 400 ps NA NA 1.0 V/ns

SysDataOutValid_L I_DA SysAddInClk_L 400 ps 400 ps NA NA 1.0 V/ns

SysAddInClk_L I_DA NA NA NA NA 45–55% 1.0 V/ns

SysAddOut_L[14:0] O_OD SysAddOutClk_L NA NA ± 300 ps3 NA NA

SysAddOutClk_L O_OD EV6Clk_x NA NA ± 400 ps 45-55% NA

SysData_L[63:0] B_DA_OD SysDataInClk_H[7:0] 400 ps 400 ps NA NA 1.0 V/ns

SysDataOutClk_L[7:0]4 NA NA ± 300 ps3 NA NA

SysCheck_L[7:0] B_DA_OD SysDataInClk_H[7:0] 400 ps 400 ps NA NA 1.0 V/ns

SysDataOutClk_L[7:0]4 NA NA ± 300 ps3 NA NA

SysDataInClk_H[7:0] I_DA NA NA NA NA 45-55% 1.0 V/ns

SysDataOutClk_L[7:0] O_OD EV6Clk_x NA NA ± 400 ps 45-55% NA

BcAdd_H[23:4] O_PP BcTagOutClk_x NA NA ± 300 ps5,6 NA —

BcDataOE_L O_PP BcDataOutClk_x[3:0]7 45-55% —

BcLoad_L O_PP 38-63%8 —

BcDataWr_L O_PP 40-60%9 —

BcData_H[127:0] B_DA_PP BcDataOutClk_x[3:0]10 NA NA ± 300 ps6 45-55% 1.0 V/ns

38-63%8 NA

40-60%9 NA

BcDataInClk_H[7:0] 400 ps 400 ps NA NA NA

BcDataInClk_H[7:0] I_DA NA NA NA NA 45-55%

BcDataOutClk_H[3:0] O_PP EV6Clk_x NA NA ± 400 ps

BcDataOutClk_L[3:0] O_PP EV6Clk_x NA NA ± 400 ps

BcTag_H[42:20] B_DA_PP BcTagInClk_H 400 ps 400 ps NA NA 1.0 V/ns

BcTagValid_H B_DA_PP BcTagOutClk_x NA NA ± 300 ps6 45-55% NA
17 February 1999 – Subject To Change Electrical Data 7–7

AC Characteristics
BcTagDirty_H B_DA_PP 38-63%8 NA

BcTagShared_H B_DA_PP 40-60%9 NA

BcTagParity_H B_DA_PP

BcTagOE_L O_PP

BcTagWr_L O_PP

BcTagInClk_H I_DA NA NA NA NA 45-55%

BcTagOutClk_x O_PP EV6Clk_x NA NA ± 400 ps

IRQ_H[5:0] I_DA DCOK_H 10 ns11 10 ns11 NA NA 100 mV/ns

Reset_L12 I_DA NA NA NA NA 100 mV/ns

DCOK_H13 I_DA NA NA NA NA 100 mV/ns

PllBypass_H14 I_DA NA NA NA NA 100 mV/ns

ClkIn_x15 I_DA_CLK NA NA NA 40–60%16 1.0 V/ns

FrameClk_x17 I_DA_CLK ClkIn_x 400 ps 400 ps NA NA 1.0 V/ns

EV6Clk_x18 O_PP_CLK ClkIn_x NA NA ±1.0 ns YDiv±5% NA

EV6Clk_x19 Cycle Compression Specification: See Note 19

ClkFwdRst_H I_DA FrameClk_x 400 ps 400 ps NA NA 1.0 V/ns

SromData_H I_DA SromClk_H 2.0 ns 2.0 ns NA 100 mV/ns

SromOE_L O_OD EV6Clk_x NA NA ± 2.0 ns

SromClk_H20 O_OD EV6Clk_x NA NA ± 7.0 ns

Tms_H I_DA Tck_H 2.0 ns 2.0 ns NA NA 100 mV/ns

Trst_L21 I_DA Tck_H NA NA NA NA 100 mV/ns

Tdi_H I_DA Tck_H 2.0 ns 2.0 ns NA NA 100 mV/ns

Tdo_H O_OD Tck_H NA NA ± 7.0 ns NA NA

Tck_H I_DA IEEE 1149.1 Port
Freq. = 5.0 MHz Max.

NA NA NA 45-55% 100 mV/ns

TestStat_H O_OD EV6Clk_x NA NA ± 4.0 ns NA NA

1 The TSU specified for all clock-forwarded signal groups is with respect to the associated clock.
2 The TDH specified for all clock-forwarded signal groups is with respect to the associated clock.
3 The TSkew value applies only when the SYS_CLK_DELAY[0:1] entry in the Cbox WRITE_ONCE

chain (Table 4–23) is set to zero phases of delay between forwarded clock out and address/data.
4 The TSkew specified for SysData_L signals is only with respect to the associated clock.
5 These signals should be referenced to BcTagOutClk_x when measuring TSkew, provided that

BcTagOutClkl_x and BcDataOutClk_x have no programmed offset.
6 The TSkew value applies only when the BC_CLK_DELAY[0:1] entry in the Cbox WRITE_ONCE

chain (Table 4–23) is set to zero phases of delay for Bcache clock.
7 The TSkew specified for BcAdd_H signals is only with respect to the associated clock.
8 The duty cycle for 2.5X single data mode 2 GCLK phases high and 3 GCLK phases low.

Table 7–13 AC Specifications (Continued)

Signal Name Type Reference Signal TSU1 TDH2 TSkew Duty Cycle TSlew
7–8 Electrical Data 17 February 1999 – Subject To Change

AC Characteristics

o

-

9 The duty cycle for 3.5X single data mode 3 GCLK phases high and 4 GCLK phases low.
10 The TSkew specified for BcData_H signals is only with respect to the associated clock pair.
11 IRQ_H[5:0] must have their TSU and TDH times referenced to DCOK_H during power-up to ensure

the correct Y divider and resulting EV6Clk_x duty cycle. When the 21264 is executing instructions
IRQ_H[5:0] act as normal asynchronous pins to handle interrupts.

12 Reset_L is an asynchronous pin. It may be asserted asynchronously.
13 DCOK_H is an asynchronous pin. Note the minimum slew rate on the assertion edge.
14 PllBypass_H may not switch when ClkIn_x is running. This pin must either be deasserted during

power-up or the 21264 core power pin (VDD pins) indicating the 21264’s internal PLL will be used.
Note that it is illegal to use PllBypass_H asserted during power-up unless a ClkIn_x is present.

15 ClkIn_x has specific input jitter requirements to ensure optimum performance of the internal 21264
PLL.

16 In PLL bypass mode, duty cycle deviation from 50%–50% directly degrades device operating fre-
quency.

17 The TSU and TDH of FrameClk_x are referenced to the deasserting edge of ClkIn_x.
18 This signal is a feedback to the internal PLL and may be monitored for overall 21264 jitter. It can als

be used as a feedback signal to an external PLL when in PLL bypass mode. Proper termination of
EV6Clk_x is imperative.

19 The cycle or phase cannot be more than 5% shorter than the nominal. Do not confuse this measure
ment with duty cycle. Refer to Appendix F in the 21264 PLL Specifications for the system measure-
ment procedure.

20 The period for SromClk_H is 256 GCLK cycles.
21 When Trst_L is deasserted, Tms_H must not change state. Trst_L is asserted asynchronously but

may be deasserted synchronously.
17 February 1999 – Subject To Change Electrical Data 7–9

terial

 the
 8
Thermal Management

This chapter describes the 21264 thermal management and thermal design
considerations, and is organized as follows:

• Operating temperature

• Heat sink specifications

• Thermal design considerations

8.1 Operating Temperature

The 21264 is specified to operate when the temperature at the center of the heat sink
(Tc) is as shown in Table 8–1. Temperature Tc should be measured at the center of the
heat sink, between the two package studs. The GRAFOIL pad is the interface ma
between the package and the heat sink.

Note: Compaq recommends using the heat sink because it greatly improves
ambient temperature requirement.

Table 8–1 Operating Temperature at Heat Sink Center (Tc)

Tc Frequency

76.9° C 466 MHz

75.1° C 500 MHz

72.7° C 550 MHz

71.5° C 575 MHz

70.3° C 600 MHz
17 February 1999 – Subject To Change Thermal Management 8–1

Operating Temperature
Table 8–2 lists the values for the center of heat-sink-to-ambient (θca) for the 21264 587-
pin PGA. Tables 8–3 through 8–7 show the allowable Ta (without exceeding Tc) at
various airflows.

Table 8–2 qca at Various Airflows for 21264

Airflow (linear ft/min) 100 200 400 800 1000

θca with heat sink type 1 (°C/W) 2.0 1.2 0.65 0.40 0.37

θca with heat sink type 2 (°C/W) 1.4 0.78 0.45 0.33 0.31

θca with heat sink type 31 (°C/W)

1 Heat sink type 3 has a 80 mm × 80 mm × 15 mm fan attached.

 — 0.38 —

Table 8–3 Maximum T a for 21264 @ 466 MHz with Various Airflows

Airflow (linear ft/min) 100 200 400 800 1000

Maximum Ta with heat sink type 1 (°C) — — 26.9 46.1 48.4

Maximum Ta with heat sink type 2 (°C) — — 42.3 51.5 53.1

Maximum Ta with heat sink type 31 (°C)

1 Heat sink type 3 has a 80 mm × 80 mm × 15 mm fan attached.

 — 47.7 —

Table 8–4 Maximum T a for 21264 @ 500 MHz with Various Airflows

Airflow (linear ft/min) 100 200 400 800 1000

Maximum Ta with heat sink type 1 (°C) — — 21.2 41.9 44.4

Maximum Ta with heat sink type 2 (°C) — — 37.8 47.7 49.4

Maximum Ta with heat sink type 31 (°C)

1 Heat sink type 3 has a 80 mm × 80 mm × 15 mm fan attached.

 — 43.6 —

Table 8–5 Maximum T a for 21264 @ 550 MHz with Various Airflows

Airflow (linear ft/min) 100 200 400 800 1000

Maximum Ta with heat sink type 1 (°C) — — — 36.3 39.1

Maximum Ta with heat sink type 2 (°C) — — 31.8 42.7 44.5

Maximum Ta with heat sink type 31 (°C)

1 Heat sink type 3 has a 80 mm × 80 mm × 15 mm fan attached.

 — 38.2 —

Table 8–6 Maximum T a for 21264 @ 575 MHz with Various Airflows

Airflow (linear ft/min) 100 200 400 800 1000

Maximum Ta with heat sink type 1 (°C) — — — 33.5 36.4

Maximum Ta with heat sink type 2 (°C) — — 28.8 40.2 42.1

Maximum Ta with heat sink type 31 (°C)

1 Heat sink type 3 has a 80 mm × 80 mm × 15 mm fan attached.

 — 35.4 —
8–2 Thermal Management 17 February 1999 – Subject To Change

Heat Sink Specifications
8.2 Heat Sink Specifications

Three heat sink types are specified. The mounting holes for all three are in line with the
cooling fins.

Figure 8–1 shows the heat sink type 1, along with its approximate dimensions.

Figure 8–1 Type 1 Heat Sink

Table 8–7 Maximum T a for 21264 @ 600 MHz with Various Airflows

Airflow (linear ft/min) 100 200 400 800 1000

Maximum Ta with heat sink type 1 (°C) — — — 30.7 33.7

Maximum Ta with heat sink type 2 (°C) — — 25.8 37.7 39.6

Maximum Ta with heat sink type 31 (°C) — 32.7 —

1 Heat sink type 3 has a 80 mm × 80 mm × 15 mm fan attached.

25.4 mm
(1.0 in)

32.5 mm
(1.280 in)

80.5 mm
(3.17 in)

80.5 mm
(3.17 in)

FM-06119.AI4
17 February 1999 – Subject To Change Thermal Management 8–3

Heat Sink Specifications
Figure 8–2 shows the heat sink type 2, along with its approximate dimensions.

Figure 8–2 Type 2 Heat Sink

Figure 8–3 shows heat sink type 3, along with its approximate dimensions.

The cooling fins of heat sink type 3 are cross-cut. Also, an 80 mm × 80 mm × 15 mm
fan is attached to heat sink type 3.

25.4 mm
(1.0 in)

44.5 mm
(1.75)

81.0 mm
(3.19 in)

81.0 mm
(3.19 in)

FM-06120.AI4
8–4 Thermal Management 17 February 1999 – Subject To Change

Thermal Design Considerations
Figure 8–3 Type 3 Heat Sink

8.3 Thermal Design Considerations

Follow these guidelines for printed circuit board (PCB) component placement:

• Orient the 21264 on the PCB with the heat sink fins aligned with the airflow direc-
tion.

• Avoid preheating ambient air. Place the 21264 on the PCB so that inlet air is not
preheated by any other PCB components.

• Do not place other high power devices in the vicinity of the 21264.

Do not restrict the airflow across the 21264 heat sink. Placement of other devices must
allow for maximum system airflow in order to maximize the performance of the heat
sink.

80.0 mm
(3.15 in)

Fan Fan
15 mm

(0.59 in)

(1.62 in)

80.0 mm
(3.15 in)

71.5 mm
(2.815 in)

80.0 mm
(3.15 in)

71.5 mm
(2.815 in)

25.4 mm
(1.0 in)

70.65 mm
(2.815 in)

40.0 mm
(1.575 in)

27.3 mm
(1.075 in)

FM-06121.AI4
17 February 1999 – Subject To Change Thermal Management 8–5

ol-
 A
Alpha Instruction Set

This appendix provides a summary of the Alpha instruction set and describes the 21264
IEEE floating-point conformance. It is organized as follows:

• Alpha instruction summary

• Reserved opcodes

• IEEE floating-point instructions

• VAX floating-point instructions

• Independent floating-point instructions

• Opcode summary

• Required PALcode function codes

• IEEE floating-point conformance

A.1 Alpha Instruction Summary

This section contains a summary of all Alpha architecture instructions. All values are in
hexadecimal radix. Table A–1 describes the contents of the Format and Opcode c
umns that are in Table A–2.

Table A–1 Instruction Format and Opcode Notation

Instruction
Format

Format
Symbol

Opcode
Notation Meaning

Branch Bra oo oo is the 6-bit opcode field.

Floating-point F-P oo.fff oo is the 6-bit opcode field .
fff is the 11-bit function code field.

Memory Mem oo oo is the 6-bit opcode field.

Memory/func-
tion code

Mfc oo.ffff oo is the 6-bit opcode field.
ffff is the 16-bit function code in the dis-
placement field.

Memory/
branch

Mbr oo.h oo is the 6-bit opcode field.
h is the high-order 2 bits of the displace-
ment field.
17 February 1999 – Subject To Change Alpha Instruction Set A–1

Alpha Instruction Summary

Qualifiers for operate instructions are shown in Table A–2. Qualifiers for IEEE and
VAX floating-point instructions are shown in Tables A–5 and A–6, respectively.

Operate Opr oo.ff oo is the 6-bit opcode field.
 ff is the 7-bit function code field.

PALcode Pcd oo oo is the 6-bit opcode field; the particular
PALcode instruction is specified in the
26-bit function code field.

Table A–2 Architecture Instructions

Mnemonic Format Opcode Description

ADDF F-P 15.080 Add F_floating

ADDG F-P 15.0A0 Add G_floating

ADDL Opr 10.00 Add longword

ADDL/V — 10.40 —

ADDQ Opr 10.20 Add quadword

ADDQ/V — 10.60 —

ADDS F-P 16.080 Add S_floating

ADDT F-P 16.0A0 Add T_floating

AMASK Opr 11.61 Architecture mask

AND Opr 11.00 Logical product

BEQ Bra 39 Branch if = zero

BGE Bra 3E Branch if ≥ zero

BGT Bra 3F Branch if > zero

BIC Opr 11.08 Bit clear

BIS Opr 11.20 Logical sum

BLBC Bra 38 Branch if low bit clear

BLBS Bra 3C Branch if low bit set

BLE Bra 3B Branch if ≤ zero

BLT Bra 3A Branch if < zero

BNE Bra 3D Branch if ≠ zero

BR Bra 30 Unconditional branch

BSR Mbr 34 Branch to subroutine

Table A–1 Instruction Format and Opcode Notation

Instruction
Format

Format
Symbol

Opcode
Notation Meaning
A–2 Alpha Instruction Set 17 February 1999 – Subject To Change

Alpha Instruction Summary
CALL_PAL Pcd 00 Trap to PALcode

CMOVEQ Opr 11.24 CMOVE if = zero

CMOVGE Opr 11.46 CMOVE if ≥ zero

CMOVGT Opr 11.66 CMOVE if > zero

CMOVLBC Opr 11.16 CMOVE if low bit clear

CMOVLBS Opr 11.14 CMOVE if low bit set

CMOVLE Opr 11.64 CMOVE if ≤ zero

CMOVLT Opr 11.44 CMOVE if < zero

CMOVNE Opr 11.26 CMOVE if ≠ zero

CMPBGE Opr 10.0F Compare byte

CMPEQ Opr 10.2D Compare signed quadword equal

CMPGEQ F-P 15.0A5 Compare G_floating equal

CMPGLE F-P 15.0A7 Compare G_floating less than or equal

CMPGLT F-P 15.0A6 Compare G_floating less than

CMPLE Opr 10.6D Compare signed quadword less than or
equal

CMPLT Opr 10.4D Compare signed quadword less than

CMPTEQ F-P 16.0A5 Compare T_floating equal

CMPTLE F-P 16.0A7 Compare T_floating less than or equal

CMPTLT F-P 16.0A6 Compare T_floating less than

CMPTUN F-P 16.0A4 Compare T_floating unordered

CMPULE Opr 10.3D Compare unsigned quadword less than or
equal

CMPULT Opr 10.1D Compare unsigned quadword less than

CPYS F-P 17.020 Copy sign

CPYSE F-P 17.022 Copy sign and exponent

CPYSN F-P 17.021 Copy sign negate

CVTDG F-P 15.09E Convert D_floating to G_floating

CVTGD F-P 15.0AD Convert G_floating to D_floating

CVTGF F-P 15.0AC Convert G_floating to F_floating

CVTGQ F-P 15.0AF Convert G_floating to quadword

CVTLQ F-P 17.010 Convert longword to quadword

CVTQF F-P 15.0BC Convert quadword to F_floating

Table A–2 Architecture Instructions (Continued)

Mnemonic Format Opcode Description
17 February 1999 – Subject To Change Alpha Instruction Set A–3

Alpha Instruction Summary
CVTQG F-P 15.0BE Convert quadword to G_floating

CVTQL F-P 17.030 Convert quadword to longword

CVTQS F-P 16.0BC Convert quadword to S_floating

CVTQT F-P 16.0BE Convert quadword to T_floating

CVTST F-P 16.2AC Convert S_floating to T_floating

CVTTQ F-P 16.0AF Convert T_floating to quadword

CVTTS F-P 16.0AC Convert T_floating to S_floating

DIVF F-P 15.083 Divide F_floating

DIVG F-P 15.0A3 Divide G_floating

DIVS F-P 16.083 Divide S_floating

DIVT F-P 16.0A3 Divide T_floating

ECB Mfc 18.E800 Evict cache block

EQV Opr 11.48 Logical equivalence

EXCB Mfc 18.0400 Exception barrier

EXTBL Opr 12.06 Extract byte low

EXTLH Opr 12.6A Extract longword high

EXTLL Opr 12.26 Extract longword low

EXTQH Opr 12.7A Extract quadword high

EXTQL Opr 12.36 Extract quadword low

EXTWH Opr 12.5A Extract word high

EXTWL Opr 12.16 Extract word low

FBEQ Bra 31 Floating branch if = zero

FBGE Bra 36 Floating branch if ≥ zero

FBGT Bra 37 Floating branch if > zero

FBLE Bra 33 Floating branch if ≤ zero

FBLT Bra 32 Floating branch if < zero

FBNE Bra 35 Floating branch if ≠ zero

FCMOVEQ F-P 17.02A FCMOVE if = zero

FCMOVGE F-P 17.02D FCMOVE if ≥ zero

FCMOVGT F-P 17.02F FCMOVE if > zero

FCMOVLE F-P 17.02E FCMOVE if ≤ zero

FCMOVLT F-P 17.02C FCMOVE if < zero

Table A–2 Architecture Instructions (Continued)

Mnemonic Format Opcode Description
A–4 Alpha Instruction Set 17 February 1999 – Subject To Change

Alpha Instruction Summary
FCMOVNE F-P 17.02B FCMOVE if ≠ zero

FETCH Mfc 18.8000 Prefetch data

FETCH_M Mfc 18.A000 Prefetch data, modify intent

FTOIS F-P 1C.78 Floating to integer move, S_floating

FTOIT F-P 1C.70 Floating to integer move, T_floating

IMPLVER Opr 11.6C Implementation version

INSBL Opr 12.0B Insert byte low

INSLH Opr 12.67 Insert longword high

INSLL Opr 12.2B Insert longword low

INSQH Opr 12.77 Insert quadword high

INSQL Opr 12.3B Insert quadword low

INSWH Opr 12.57 Insert word high

INSWL Opr 12.1B Insert word low

ITOFF F-P 14.014 Integer to floating move, F_floating

ITOFS F-P 14.004 Integer to floating move, S_floating

ITOFT F-P 14.024 Integer to floating move, T_floating

JMP Mbr 1A.0 Jump

JSR Mbr 1A.1 Jump to subroutine

JSR_COROUTINE Mbr 1A.3 Jump to subroutine return

LDA Mem 08 Load address

LDAH Mem 09 Load address high

LDBU Mem 0A Load zero-extended byte

LDF Mem 20 Load F_floating

LDG Mem 21 Load G_floating

LDL Mem 28 Load sign-extended longword

LDL_L Mem 2A Load sign-extended longword locked

LDQ Mem 29 Load quadword

LDQ_L Mem 2B Load quadword locked

LDQ_U Mem 0B Load unaligned quadword

LDS Mem 22 Load S_floating

LDT Mem 23 Load T_floating

LDWU Mem 0C Load zero-extended word

Table A–2 Architecture Instructions (Continued)

Mnemonic Format Opcode Description
17 February 1999 – Subject To Change Alpha Instruction Set A–5

Alpha Instruction Summary
MAXSB8 Opr 1C.3E Vector signed byte maximum

MAXSW4 Opr 1C.3F Vector signed word maximum

MAXUB8 Opr 1C.3C Vector unsigned byte maximum

MAXUW4 Opr 1C.3D Vector unsigned word maximum

MB Mfc 18.4000 Memory barrier

MF_FPCR F-P 17.025 Move from FPCR

MINSB8 Opr 1C.38 Vector signed byte minimum

MINSW4 Opr 1C.39 Vector signed word minimum

MINUB8 Opr 1C.3A Vector unsigned byte minimum

MINUW4 Opr 1C.3B Vector unsigned word minimum

MSKBL Opr 12.02 Mask byte low

MSKLH Opr 12.62 Mask longword high

MSKLL Opr 12.22 Mask longword low

MSKQH Opr 12.72 Mask quadword high

MSKQL Opr 12.32 Mask quadword low

MSKWH Opr 12.52 Mask word high

MSKWL Opr 12.12 Mask word low

MT_FPCR F-P 17.024 Move to FPCR

MULF F-P 15.082 Multiply F_floating

MULG F-P 15.0A2 Multiply G_floating

MULL Opr 13.00 Multiply longword

MULL/V 13.40

MULQ Opr 13.20 Multiply quadword

MULQ/V 13.60

MULS F-P 16.082 Multiply S_floating

MULT F-P 16.0A2 Multiply T_floating

ORNOT Opr 11.28 Logical sum with complement

PERR Opr 1C.31 Pixel error

PKLB Opr 1C.37 Pack longwords to bytes

PKWB Opr 1C.36 Pack words to bytes

RC Mfc 18.E000 Read and clear

RET Mbr 1A.2 Return from subroutine

Table A–2 Architecture Instructions (Continued)

Mnemonic Format Opcode Description
A–6 Alpha Instruction Set 17 February 1999 – Subject To Change

Alpha Instruction Summary
RPCC Mfc 18.C000 Read process cycle counter

RS Mfc 18.F000 Read and set

S4ADDL Opr 10.02 Scaled add longword by 4

S4ADDQ Opr 10.22 Scaled add quadword by 4

S4SUBL Opr 10.0B Scaled subtract longword by 4

S4SUBQ Opr 10.2B Scaled subtract quadword by 4

S8ADDL Opr 10.12 Scaled add longword by 8

S8ADDQ Opr 10.32 Scaled add quadword by 8

S8SUBL Opr 10.1B Scaled subtract longword by 8

S8SUBQ Opr 10.3B Scaled subtract quadword by 8

SEXTB Opr 1C.00 Sign extend byte

SEXTW Opr 1C.01 Sign extend word

SLL Opr 12.39 Shift left logical

SQRTF F-P 14.08A Square root F_floating

SQRTG F-P 14.0AA Square root G_floating

SQRTS F-P 14.08B Square root S_floating

SQRTT F-P 14.0AB Square root T_floating

SRA Opr 12.3C Shift right arithmetic

SRL Opr 12.34 Shift right logical

STB Mem 0E Store byte

STF Mem 24 Store F_floating

STG Mem 25 Store G_floating

STL Mem 2C Store longword

STL_C Mem 2E Store longword conditional

STQ Mem 2D Store quadword

STQ_C Mem 2F Store quadword conditional

STQ_U Mem 0F Store unaligned quadword

STS Mem 26 Store S_floating

STT Mem 27 Store T_floating

STW Mem 0D Store word

SUBF F-P 15.081 Subtract F_floating

SUBG F-P 15.0A1 Subtract G_floating

Table A–2 Architecture Instructions (Continued)

Mnemonic Format Opcode Description
17 February 1999 – Subject To Change Alpha Instruction Set A–7

Reserved Opcodes
A.2 Reserved Opcodes

This section describes the opcodes that are reserved in the Alpha architecture. They can
be reserved for Compaq or for PALcode.

A.2.1 Opcodes Reserved for Compaq

Table A–3 lists opcodes reserved for Compaq.

SUBL Opr 10.09 Subtract longword

SUBL/V 10.49

SUBQ Opr 10.29 Subtract quadword

SUBQ/V 10.69

SUBS F-P 16.081 Subtract S_floating

SUBT F-P 16.0A1 Subtract T_floating

TRAPB Mfc 18.0000 Trap barrier

UMULH Opr 13.30 Unsigned multiply quadword high

UNPKBL Opr 1C.35 Unpack bytes to longwords

UNPKBW Opr 1C.34 Unpack bytes to words

WH64 Mfc 18.F800 Write hint — 64 bytes

WMB Mfc 18.4400 Write memory barrier

XOR Opr 11.40 Logical difference

ZAP Opr 12.30 Zero bytes

ZAPNOT Opr 12.31 Zero bytes not

Table A–3 Opcodes Reserved for Compaq

Mnemonic Opcode Mnemonic Opcode

OPC01 01 OPC05 05

OPC02 02 OPC06 06

OPC03 03 OPC07 07

OPC04 04 — —

Table A–2 Architecture Instructions (Continued)

Mnemonic Format Opcode Description
A–8 Alpha Instruction Set 17 February 1999 – Subject To Change

IEEE Floating-Point Instructions

n.

A.2.2 Opcodes Reserved for PALcode

Table A–4 lists the 21264-specific instructions. See Chapter 2 for more informatio

A.3 IEEE Floating-Point Instructions

Table A–5 lists the hexadecimal value of the 11-bit function code field for the IEEE
floating-point instructions, with and without qualifiers. The opcode for these
instructions is 1616.

Table A–4 Opcodes Reserved for PALcode

21264
Mnemonic Opcode

Architecture
Mnemonic Function

HW_LD 1B PAL1B Performs Dstream load instructions.

HW_ST 1F PAL1F Performs Dstream store instructions.

HW_REI 1E PAL1E Returns instruction flow to the program
counter (PC) pointed to by EXC_ADDR
internal processor register (IPR).

HW_MFPR 19 PAL19 Accesses the Ibox, Mbox, and Dcache
IPRs.

HW_MTPR 1D PAL1D Accesses the Ibox, Mbox, and Dcache
IPRs.

Table A–5 IEEE Floating-Point Instruction Function Codes

Mnemonic None /C /M /D /U /UC /UM /UD

ADDS 080 000 040 0C0 180 100 140 1C0

ADDT 0A0 020 060 0E0 1A0 120 160 1E0

CMPTEQ 0A5 — — — — — — —

CMPTLT 0A6 — — — — — — —

CMPTLE 0A7 — — — — — — —

CMPTUN 0A4 — — — — — — —

CVTQS 0BC 03C 07C 0FC — — — —

CVTQT 0BE 03E 07E 0FE — — — —

CVTST
See
below

 — — — — — — —

CVTTQ
See
below

 — — — — — — —

CVTTS 0AC 02C 06C 0EC 1AC 12C 16C 1EC

DIVS 083 003 043 0C3 183 103 143 1C3

DIVT 0A3 023 063 0E3 1A3 123 163 1E3

MULS 082 002 042 0C2 182 102 142 1C2
17 February 1999 – Subject To Change Alpha Instruction Set A–9

IEEE Floating-Point Instructions
MULT 0A2 022 062 0E2 1A2 122 162 1E2

SQRTS 08B 00B 04B 0CB 18B 10B 14B 1CB

SQRTT 0AB 02B 06B 0EB 1AB 12B 16B 1EB

SUBS 081 001 041 0C1 181 101 141 1C1

SUBT 0A1 021 061 0E1 1A1 121 161 1E1

Mnemonic /SU /SUC /SUM /SUD /SUI /SUIC /SUIM /SUID

ADDS 580 500 540 5C0 780 700 740 7C0

ADDT 5A0 520 560 5E0 7A0 720 760 7E0

CMPTEQ 5A5

CMPTLT 5A6

CMPTLE 5A7

CMPTUN 5A4

CVTQS 7BC 73C 77C 7FC

CVTQT 7BE 73E 77E 7FE

CVTTS 5AC 52C 56C 5EC 7AC 72C 76C 7EC

DIVS 583 503 543 5C3 783 703 743 7C3

DIVT 5A3 523 563 5E3 7A3 723 763 7E3

MULS 582 502 542 5C2 782 702 742 7C2

MULT 5A2 522 562 5E2 7A2 722 762 7E2

SQRTS 58B 50B 54B 5CB 78B 70B 74B 7CB

SQRTT 5AB 52B 56B 5EB 7AB 72B 76B 7EB

SUBS 581 501 541 5C1 781 701 741 7C1

SUBT 5A1 521 561 5E1 7A1 721 761 7E1

Mnemonic None /S

CVTST 2AC 6AC

Mnemonic None /C /V /VC /SV /SVC /SVI /SVIC

CVTTQ 0AF 02F 1AF 12F 5AF 52F 7AF 72F

Mnemonic D /VD /SVD /SVID /M /VM /SVM /SVIM

CVTTQ 0EF 1EF 5EF 7EF 06F 16F 56F 76F

Table A–5 IEEE Floating-Point Instruction Function Codes (Continued)
A–10 Alpha Instruction Set 17 February 1999 – Subject To Change

VAX Floating-Point Instructions

ing-
de
Programming Note:

In order to use CMPTxx with software completion trap handling, it is necessary to
specify the /SU IEEE trap mode, even though an underflow trap is not possible. In order
to use CVTQS or CVTQT with software completion trap handling, it is necessary to
specify the /SUI IEEE trap mode, even though an underflow trap is not possible.

A.4 VAX Floating-Point Instructions

Table A–6 lists the hexadecimal value of the 11-bit function code field for the VAX
floating-point instructions. The opcode for these instructions is 1516.

A.5 Independent Floating-Point Instructions

Table A–7 lists the hexadecimal value of the 11-bit function code field for the float
point instructions that are not directly tied to IEEE or VAX floating point. The opco
for the following instructions is 1716.

Table A–6 VAX Floating-Point Instruction Function Codes

Mnemonic None /C /U /UC /S /SC /SU /SUC

ADDF 080 000 180 100 480 400 580 500

ADDG 0A0 020 1A0 120 4A0 420 5A0 520

CMPGEQ 0A5 4A5

CMPGLE 0A7 4A7

CMPGLT 0A6 4A6

CVTDG 09E 01E 19E 11E 49E 41E 59E 51E

CVTGD 0AD 02D 1AD 12D 4AD 42D 5AD 52D

CVTGF 0AC 02C 1AC 12C 4AC 42C 5AC 52C

CVTGQ See below

CVTQF 0BC 03C

CVTQG 0BE 03E

DIVF 083 003 183 103 483 403 583 503

DIVG 0A3 023 1A3 123 4A3 423 5A3 523

MULF 082 002 182 102 482 402 582 502

MULG 0A2 022 1A2 122 4A2 422 5A2 522

SQRTF 08A 00A 18A 10A 48A 40A 58A 50A

SQRTG 0AA 02A 1AA 12A 4AA 42A 5AA 52A

SUBF 081 001 181 101 481 401 581 501

SUBG 0A1 021 1A1 121 4A1 421 5A1 521

Mnemonic None /C /V /VC /S /SC /SV /SVC

CVTGQ 0AF 02F 1AF 12F 4AF 42F 5AF 52F
17 February 1999 – Subject To Change Alpha Instruction Set A–11

Opcode Summary

 8

with
row.
8

uld
, the

 is
Table A–7 Independent Floating-Point Instruction Function Codes

A.6 Opcode Summary

Table A–8 lists all Alpha opcodes from 00 (CALL_PAL) through 3F (BGT). In the
table, the column headings that appear over the instructions have a granularity of16.
The rows beneath the Offset column supply the individual hexadecimal number to
resolve that granularity.

If an instruction column has a 0 in the right (low) hexadecimal digit, replace that 0
the number to the left of the backslash (\) in the Offset column on the instruction’s
If an instruction column has an 8 in the right (low) hexadecimal digit, replace that
with the number to the right of the backslash in the Offset column.

For example, the third row (2/A) under the 1016 column contains the symbol INTS*,
representing the all-integer shift instructions. The opcode for those instructions wo
then be 1216 because the 0 in 10 is replaced by the 2 in the Offset column. Likewise
third row under the 1816 column contains the symbol JSR*, representing all jump
instructions. The opcode for those instructions is 1A because the 8 in the heading
replaced by the number to the right of the backslash in the Offset column. The
instruction format is listed under the instruction symbol..

 Mnemonic None /V /SV

CPYS 020 — —

CPYSE 022 — —

CPYSN 021 — —

CVTLQ 010 — —

CVTQL 030 130 530

FCMOVEQ 02A — —

FCMOVGE 02D — —

FCMOVGT 02F — —

FCMOVLE 02E — —

FCMOVLT 02C — —

MF_FPCR 025 — —

MT_FPCR 024 — —

Table A–8 Opcode Summary

Offset 00 08 10 18 20 28 30 38

0/8 PAL*
(pal)

LDA
(mem)

INTA*
(op)

MISC*
(mem)

LDF
(mem)

LDL
(mem)

BR
(br)

BLBC
 (br)

1/9 Res LDAH
(mem)

INTL*
 (op)

\PAL\ LDG
(mem)

LDQ
(mem)

FBEQ
(br)

BEQ
(br)

2/A LDBU Res INTS*
(op)

JSR*
(mem)

LDS
(mem)

LDL_L
(mem)

FBLT
(br)

BLT
 (br)
A–12 Alpha Instruction Set 17 February 1999 – Subject To Change

Required PALcode Function Codes

d is
Table A–9 explains the symbols used in Table A–8.

A.7 Required PALcode Function Codes

Table A–10 lists opcodes required for all Alpha implementations. The notation use
oo.ffff, where oo is the hexadecimal 6-bit opcode and ffff is the hexadecimal 26-bit
function code.

3/B Res LDQ_U
(mem)

INTM*
(op)

\PAL\ LDT
(mem)

LDQ_L
(mem)

FBLE
(br)

BLE
(br)

4/C LDWU Res ITFP* FPTI* STF
(mem)

STL
(mem)

BSR
(br)

BLBS
(br)

5/D Res STW FLTV*
(op)

\PAL\ STG
(mem)

STQ
(mem)

FBNE
(br)

BNE
(br)

6/E Res STB FLTI*
 (op)

\PAL\ STS
(mem)

STL_C
(mem)

FBGE
(br)

BGE
(br)

7/F Res STQ_U
 (mem)

FLTL*
(op)

\PAL\ STT
(mem)

STQ_C
(mem)

FBGT
(br)

BGT
(br)

Table A–9 Key to Opcode Summary Used in Table A–8

Symbol Meaning

FLTI* IEEE floating-point instruction opcodes
FLTL* Floating-point Operate instruction opcodes
FLTV* VAX floating-point instruction opcodes
FPTI* Floating-point to integer register move opcodes
INTA* Integer arithmetic instruction opcodes
INTL* Integer logical instruction opcodes
INTM* Integer multiply instruction opcodes
INTS* Integer shift instruction opcodes
ITFP* Integer to floating-point register move opcodes
JSR* Jump instruction opcodes
MISC* Miscellaneous instruction opcodes
PAL* PALcode instruction (CALL_PAL) opcodes

\PAL\ Reserved for PALcode

Res Reserved for Compaq

Table A–10 Required PALcode Function Codes

Mnemonic Type Function Code

DRAINA Privileged 00.0002

HALT Privileged 00.0000

IMB Unprivileged 00.0086

Table A–8 Opcode Summary (Continued)

Offset 00 08 10 18 20 28 30 38
17 February 1999 – Subject To Change Alpha Instruction Set A–13

IEEE Floating-Point Conformance

 the
p-
A.8 IEEE Floating-Point Conformance

The 21264 supports the IEEE floating-point operations defined in the Alpha System
Reference Manual, Revision 7 and therefore also from the Alpha Architecture Hand-
book, Version 4. Support for a complete implementation of the IEEE Standard for
Binary Floating-Point Arithmetic (ANSI/IEEE Standard 754 1985) is provided by a
combination of hardware and software. The 21264 provides several hardware features
to facilitate complete support of the IEEE standard.

The 21264 provides the following hardware features to facilitate complete support of
the IEEE standard:

• The 21264 implements precise exception handling in hardware, as denoted by the
AMASK instruction returning bit 9 set. TRAPB instructions are treated as NOPs
and are not issued.

• The 21264 accepts both Signaling and Quiet NaNs as input operands and propa-
gates them as specified by the Alpha architecture. In addition, the 21264 delivers a
canonical Quiet NaN when an operation is required to produce a NaN value and
none of its inputs are NaNs. Encodings for Signaling NaN and Quiet NaN are
defined by the Alpha Architecture Handbook, Version 4.

• The 21264 accepts infinity operands and implements infinity arithmetic as defined
by the IEEE standard and the Alpha Architecture Handbook, Version 4.

• The 21264 implements SQRT for single (SQRTS) and double (SQRTT) precision
in hardware.

Note: In addition, the 21264 also implements the VAX SQRTF and SQRTG
instructions.

• The 21264 implements the FPCR[DNZ] bit. When FPCR[DNZ] is set, denormal
input operand traps can be avoided for arithmetic operations that include the /S
qualifier. When FPCR[DNZ] is clear, denormal input operands for arithmetic oper-
ations produce an unmaskable denormal trap. CPYSE/CPYSN, FCMOVxx, and
MF_FPCR/MT_FPCR are not arithmetic operations, and pass denormal values
without initiating arithmetic traps.

• The 21264 implements the following disable bits in the floating-point control regis-
ter (FPCR):

– Underflow disable (UNFD)

– Overflow disable (OVFD)

– Inexact result disable (INED)

– Division by zero disable (DZED)

– Invalid operation disable (INVD)

If one of these bits is set, and an instruction with the /S qualifier set generates
associated exception, the 21264 produces the IEEE nontrapping result and su
presses the trap. These nontrapping responses include correctly signed
infinity, largest finite number, and Quiet NaNs as specified by the IEEE
standard.
A–14 Alpha Instruction Set 17 February 1999 – Subject To Change

IEEE Floating-Point Conformance

rated
The 21264 will not produce a Denormal result for the underflow exception. Instead,
a true zero (+0) is written to the destination register. In the 21264 the FPCR under-
flow to zero (UNDZ) bit must be set if underflow disable (UNFD) bit is set. If
desired, trapping on underflow can be enabled by the instruction and the FPCR, and
software may compute the Denormal value as defined in the IEEE Standard.

The 21264 records floating-point exception information in two places:

• The FPCR status bits record the occurence of all exceptions that are detected,
whether or not the corresponding trap is enabled. The status bits are cleared only
through an explicit clear command (MT_FPCR); hence, the exception information
they record is a summary of all exceptions that have occurred since the last time
they were cleared.

• If an exception is detected and the corresponding trap is enabled by the instruction,
and is not disabled by the FPCR control bits, the 21264 will record the
condition in the EXC_SUM register and initiate an arithmetic trap.

The following items apply to Table A–11:

• The 21264 traps on a Denormal input operand for all arithmetic operations unless
FPCR[DNZ] = 1.

• Input operand traps take precedence over arithmetic result traps.

• The following abbreviations are used:

Inf: Infinity

QNaN: Quiet NaN

SNaN: Signalling NaN

CQNaN: Canonical Quiet NaN

For IEEE instructions with /S, Table A–11 lists all exceptional input and output
conditions recognized by the 21264, along with the result and exception gene
for each condition.

Table A–11 Exceptional Input and Output Conditions

Alpha Instructions
21264 Hardware
Supplied Result Exception

ADDx SUBx INPUT

Inf operand ±Inf (none)

QNaN operand QNaN (none)

SNaN operand QNaN Invalid Op

Effective subtract of two Inf operands CQNaN Invalid Op

ADDx SUBx OUTPUT

Exponent overflow ±Inf or ±MAX Overflow

Exponent underflow +0 Underflow

Inexact result Result Inexact

MULx INPUT
17 February 1999 – Subject To Change Alpha Instruction Set A–15

IEEE Floating-Point Conformance
Inf operand ±Inf (none)

QNaN operand QNaN (none)

SNaN operand QNaN Invalid Op

0 * Inf CQNaN Invalid Op

MULx OUTPUT (same as ADDx)

DIVx INPUT

QNaN operand QNaN (none)

SNaN operand QNaN Invalid Op

0/0 or Inf/Inf CQNaN Invalid Op

A/0 (A not 0) ±Inf Div Zero

A/Inf ±0 (none)

Inf/A ±Inf (none)

DIVx OUTPUT (same as ADDx)

SQRTx INPUT

+Inf operand +Inf (none)

QNaN operand QNaN (none)

SNaN operand QNaN Invalid Op

-A (A not 0) CQNaN Invalid Op

-0 -0 (none)

SQRTx OUTPUT

Inexact result root Inexact

CMPTEQ CMPTUN INPUT

Inf operand True or False (none)

QNaN operand False for EQ, True for UN (none)

SNaN operand False for EQ,True for UN Invalid Op

CMPTLT CMPTLE INPUT

Inf operand True or False (none)

QNaN operand False Invalid Op

SNaN operand False Invalid Op

CVTfi INPUT

Inf operand 0 Invalid Op

QNaN operand 0 Invalid Op

Table A–11 Exceptional Input and Output Conditions (Continued)

Alpha Instructions
21264 Hardware
Supplied Result Exception
A–16 Alpha Instruction Set 17 February 1999 – Subject To Change

IEEE Floating-Point Conformance
See Section 2.3 for information about the floating-point control register (FPCR).

SNaN operand 0 Invalid Op

CVTfi OUTPUT

Inexact result Result Inexact

Integer overflow Truncated result Invalid Op

CVTif OUTPUT

Inexact result Result Inexact

CVTff INPUT

Inf operand ±Inf (none)

QNaN operand QNaN (none)

SNaN operand QNaN Invalid Op

CVTff OUTPUT (same as ADDx)

FBEQ FBNE FBLT FBLE FBGT FBGE
LDS LDT
STS STT
CPYS CPYSN
FCMOVx

Table A–11 Exceptional Input and Output Conditions (Continued)

Alpha Instructions
21264 Hardware
Supplied Result Exception
17 February 1999 – Subject To Change Alpha Instruction Set A–17

 B
Products and Documentation

To view current product update and errata revision information, visit the Alpha OEM
World Wide Web Internet site. You can also visit this website for information about
other Alpha microprocessors or help with deciding which documentation best meets
your needs:

http://www.digital.com/alphaoem/

• For documentation needs, click on Technical Information.

• For product update information or information about other Alpha microprocessors,
click on Microprocessor Products.

• For contact information and sales offices, click on Customer Support.

Alpha Products

Alpha Documentation

The following table lists some of the Alpha documentation that is available at the Alpha
OEM website, listed above:

Microprocessor Order Number

Alpha 21264 500-MHz microprocessor 21264-A1

Title Order Number

Alpha Architecture Reference Manual1

1 To purchase the Alpha Architecture Reference Manual, contact your local technical bookstore or call
Butterworth-Heinemann (Digital Press) at 1-800-366-2665.

EY–W938E–DP

Alpha Architecture Handbook EC–QD2KC–TE

Alpha 21264 Microprocessor Product Brief EC–R2YTB–TE

AlphaPC 264DP Product Brief EC-RBD0A-TE
17 February 1999 – Subject To Change Products and Documentation B–1

Index

Numerics
21264, features of, 1–3

32_BYTE_IO Cbox CSR
defined, 4–33

A
Abbreviations, xii

binary multiples, xii
register access, xii

AC characteristics, 7–6

Address conventions, xiii

Aligned convention, xiii

Alpha instruction summary, A–1

AMASK instruction values, 2–7

ARITH synchronous trap, 5–14

B
B_DA_OD pin type, 3–3, 7–2

values for, 7–4
B_DA_PP pin type, 3–3, 7–2

values for, 7–4
BC_BANK_ENABLE Cbox CSR, 4–38

BC_BPHASE_LD_VECTOR Cbox CSR
defined, 4–37

BC_BURST_MODE_ENABLE Cbox CSR
defined, 4–34

BC_CLEAN_VICTIM Cbox CSR
defined, 4–33

BC_CLK_DELAY Cbox CSR
defined, 4–34

BC_CLK_LD_VECTOR Cbox CSR
defined, 4–37

BC_CLKFWD_ENABLE Cbox CSR
defined, 4–34

BC_CPU_CLK_DELAY Cbox CSR
defined, 4–37

BC_CPU_LATE_WRITE_NUM Cbox CSR
defined, 4–34

BC_DDM_FALL_EN Cbox CSR
defined, 4–35

BC_DDM_RISE_EN Cbox CSR
defined, 4–35

BC_DDMF_ENABLE Cbox CSR
defined, 4–34

BC_DDMR_ENABLE Cbox CSR
defined, 4–34

BC_ENABLE Cbox CSR, 4–38

BC_FDBK_EN Cbox CSR
defined, 4–37

BC_FRM_CLK Cbox CSR
defined, 4–34

BC_LAT_DATA_PATTERN Cbox CSR
defined, 4–34

BC_LAT_TAG_PATTERN Cbox CSR
defined, 4–34

BC_LATE_WRITE_NUM Cbox CSR
defined, 4–34

BC_LATE_WRITE_UPPER Cbox CSR
defined, 4–34

BC_PENTIUM_MODE Cbox CSR
defined, 4–34

BC_PERR error status in C_STAT, 4–41

BC_RCV_MUX_CNT_PRESET Cbox CSR
defined, 4–34

BC_RD_RD_BUBBLE Cbox CSR
defined, 4–33

BC_RD_WR_BUBBLES Cbox CSR
defined, 4–33

BC_RDVICTIM Cbox CSR
defined, 4–33

BC_SIZE Cbox CSR, 4–38

BC_SJ_BANK_ENABLE Cbox CSR
defined, 4–33

BC_TAG_DDM_FALL_EN Cbox CSR
defined, 4–34
17 February 1999 – Subject To Change Index–1

BC_TAG_DDM_RISE_EN Cbox CSR
defined, 4–34

BC_WR_RD_BUBBLES Cbox CSR
defined, 4–33

BC_WR_WR_BUBBLE Cbox CSR
defined, 4–33

BC_WRT_STS Cbox CSR, 4–38

BcAdd_H signal pins, 3–3

BcCheck_H signal pins, 3–3

BcData_H signal pins, 3–3

BcDataInClk_H signal pins, 3–3

BcDataOE_L signal pin, 3–4

BcDataOutClk_x signal pins, 3–4

BcDataWr_L signal pin, 3–4

BcLoad_L signal pin, 3–4

BcTag_H signal pins, 3–4

BcTagDirty_H signal pin, 3–4

BcTagInClk_H signal pin, 3–4

BcTagOE_L signal pin, 3–4

BcTagOutClk_x signal pins, 3–4

BcTagParity_H signal pin, 3–4

BcTagShared_H signal pin, 3–4

BcTagValid_H signal pin, 3–4

BcTagWr_L signal pin, 3–4

BcVref signal pin, 3–4

Bidirectional differential amplifier receiver -
open-drain. See B_DA_OD

Bidirectional differential amplifier receiver -
push-pull. See B_DA_PP

Binary multiple abbreviations, xii

Bit notation conventions, xiii

Built-in self-test
load, 6–7

C
C_ADDR Cbox read register field, 4–41

C_DATA Cbox data register, 4–31
at power-on reset state, 6–10

C_SHFT Cbox shift register, 4–32
at power-on reset state, 6–10

C_STAT Cbox read register field, 4–41

C_STS Cbox read register field, 4–41

C_SYNDROME_0 Cbox read register field, 4–40

C_SYNDROME_1 Cbox read register field, 4–40

CALL_PAL entry points, 5–12

Caution convention, xiii

Cbox
data register C_DATA, 4–31
internal processor registers, 4–3
read register, 4–40
shift register C_SHFT, 4–32
WRITE_MANY chain, 4–37
WRITE_MANY chain example, 4–38
WRITE_ONCE chain, 4–32

CC cycle counter register, 4–3
at power-on reset state, 6–9

CC_CTL cycle counter control register, 4–4
at power-on reset state, 6–9

CFR_EV6CLK_DELAY Cbox CSR, defined, 4–36

CFR_FRMCLK_DELAY Cbox CSR, defined, 4–36

CFR_GCLK_DELAY Cbox CSR, defined, 4–36

ClkFwdRst_H signal pin, 3–4
with system initialization, 6–7

ClkIn_x signal pins, 3–4

Clock forwarding, 6–5

CLR_MAP clear virtual-to-physical map register,
4–20

at power-on reset state, 6–9
Conventions, xii

abbreviations, xii
address, xiii
aligned, xiii
bit notation, xiii
caution, xiii
data units, xiv
do not care, xiv
external, xiv
field notation, xiv
note, xiv
numbering, xiv
ranges and extents, xiv
register figures, xiv
signal names, xv
unaligned, xiii
X, xiv

Customer Technology Center, B–1

D
Data types

floating point support, 1–2
integer supported, 1–2
supported, 1–1

Data units convention, xiv

DATA_VALID_DLY Cbox CSR, defined, 4–37

dc
characteristics of, 7–2
input pin capacitance defined, 7–2
test load defined, 7–2
voltage on signal pins, 7–1
Index–2 17 February 1999 – Subject To Change

DC_CTL Dcache control register, 4–29
at power-on reset state, 6–9

DC_PERR error status in C_STAT, 4–41

DC_STAT Dcache status register, 4–30
at power-on reset state, 6–9

Dcache
pipelined, 2–5

DCOK_H signal pin, 3–4
power-on reset flow, 6–1

DCVIC_THRESHOLD Cbox CSR, defined, 4–33

DFAULT fault, 5–13

Do not care convention, xiv

DSTREAM_BC_ERR error status in C_STAT,
4–41

DSTREAM_DC_ERR error status in C_STAT,
4–41

DSTREAM_MEM_ERR error status in C_STAT,
4–41

DTB_ALTMODE alternate processor mode register,
4–26

at power-on reset state, 6–9
DTB_ASN0 address space number register 0

at power-on reset state, 6–9
DTB_ASN0 address space number registers 0, 4–27

DTB_ASN1 address space number register 1, 4–27
at power-on reset state, 6–9

DTB_IA invalidate-all process register, 4–26
at power-on reset state, 6–9

DTB_IAP invalidate-all (ASM=0) process register,
4–26

at power-on reset state, 6–9
DTB_IS0 invalidate single (array 0) register, 4–26

at power-on reset state, 6–9
DTB_IS1 invalidate single (array 1) register, 4–26

at power-on reset state, 6–9
DTB_PTE0 array write 0 register

at power-on reset state, 6–9
DTB_PTE0 array write register 0, 4–25

DTB_PTE1 array write 1 register, 4–25
at power-on reset state, 6–9

DTB_TAG0 array write 0 register, 4–24
at power-on reset state, 6–9

DTB_TAG1 array write 1 register, 4–24
at power-on reset state, 6–9

DTBM_DOUBLE_3 fault, 5–13

DTBM_DOUBLE_4 fault, 5–13

DTBM_SINGLE fault, 5–13

DUP_TAG_ENABLE Cbox CSR, defined, 4–33

E
Ebox

cycle counter control register CC_CTL, 4–4
cycle counter register CC, 4–3
executed in pipeline, 2–5
internal processor registers, 4–1
virtual address control register VA_CTL, 4–4
virtual address format register VA_FORM, 4–6
virtual address register, 4–4

ENABLE_EVICT Cbox CSR, 4–38

ENABLE_PROBE_CHECK Cbox CSR
defined, 4–34

ENABLE_STC_COMMAND Cbox CSR, defined,
4–34

EV6Clk_x signal pins, 3–4

EXC_ADDR exception address register, 4–8
at power-on reset state, 6–8

EXC_SUM exception summary register, 4–14
at power-on reset state, 6–9

Exception condition summary, A–15

External convention, xiv

F
FAST_MODE_DISABLE Cbox CSR

defined, 4–33
Fbox

executed in pipeline, 2–5
FEN fault, 5–13

Field notation convention, xiv

Floating-point control register, 2–5
PALcode emulation of, 5–11

Floating-point instructions
IEEE, A–9
independent, A–11
VAX , A–11

FPCR. See Floating-point control register

FrameClk_x signal pins, 3–5

H
Heat sink center temperature, 8–1

Heat sink specifications, 8–3

HW_INT_CLR hardware interrupt clear register,
4–13

at power-on reset state, 6–9
HW_LD PALcode instruction, 5–3, A–9

HW_MFPR PALcode instruction, 5–6, A–9

HW_MTPR PALcode instruction, 5–6, A–9

HW_REI PALcode instruction, A–9
17 February 1999 – Subject To Change Index–3

HW_RET PALcode instruction, 5–5

HW_ST PALcode instruction, 5–4, A–9

I
I_CTL Ibox control register, 4–16

at power-on reset state, 6–9
PALshadow registers, 5–11

I_DA pin type, 3–3, 7–2
values for, 7–3

I_DA_CLK pin type, 3–3, 7–2
values for, 7–3

I_DC_POWER pin type, 7–2

I_DC_REF pin type, 3–3, 7–2
values for, 7–3

I_STAT Ibox status register, 4–19
at power-on reset state, 6–9

IACV fault, 5–13

Ibox
clear virtual-to-physical map register

CLR_MAP, 4–20
exception address register EXC_ADDR, 4–8
exception summary register EXC_SUM, 4–14
hardware interrupt clear register HW_INT_CLR,

4–13
Ibox control register I_CTL, 4–16
Ibox process context register PCTX, 4–21
Ibox status register I_STAT, 4–19
Icache flush ASM register IC_FLUSH_ASM,

4–20
Icache flush register IC_FLUSH, 4–20
instruction virtual address format register

IVA_FORM, 4–9
internal processor registers, 4–2
interrupt enable and current processor mode

register IER_CM, 4–10
interrupt summary register ISUM, 4–11
ITB invalidate single register ITB_IS, 4–8
ITB invalidate-all ASM (ASM=0) register

ITB_IAP, 4–8
ITB invalidate-all register ITB_IA, 4–8
ITB PTE array write register ITB_PTE, 4–7
ITB tag array write register ITB_TAG, 4–7
PAL base register PAL_BASE, 4–15
performance counter control register

PCTR_CTL, 4–22
sleep mode register SLEEP, 4–20
software interrupt request register SIRR, 4–11

IC_FLUSH Icache flush register
at power-on reset state, 6–9

IC_FLUSH_ASM Icache flush ASM register, 4–20

Icache
flush register IC_FLUSH, 4–20

IEEE floating-point conformance, A–14

IEEE floating-point instruction opcodes, A–9

IER_CM interrupt enable and current processor mode

register, 4–10
at power-on reset state, 6–8

IMPLVER instruction values, 2–7

Independent floating-point function codes, A–11

Information line, B–1

INIT_MODE Cbox CSR, 4–38

Input dc reference pin. See I_DC_REF pin type

Input differential amplifier clock receiver. See
I_DA_CLK pin type

Input differential amplifier receiver. See I_DA pin
type

Instruction fetch, pipelined, 2–3

Instruction slot, pipelined, 2–3

Integer issue queue
pipelined, 2–4

Internal processor registers, 4–1
accessing, 5–7
explicitly written, 5–8
implicitly written, 5–9
ordering access, 5–9
paired fetch order, 5–9
scoreboard bits for, 5–8

INTERRUPT interrupt, 5–14

INVAL_TO_DIRTY_ENABLE Cbox CSR, 4–38

IPRs. See Internal processor registers

IRQ_H signal pins, 3–5

ISTREAM_BC_ERR error status in C_STAT, 4–41

ISTREAM_MEM_ERR error status in C_STAT,
4–41

ISUM interrupt summary register, 4–11
at power-on reset state, 6–8

ITB_IA invalidate-all register, 4–8
at power-on reset state, 6–8

ITB_IAP invalidate-all (ASM=0) register, 4–8
at power-on reset state, 6–8

ITB_IS invalidate single register, 4–8
at power-on reset state, 6–8

ITB_MISS fault, 5–14

ITB_PTE array write register, 4–7
at power-on reset state, 6–8

ITB_TAG array write register, 4–7
at power-on reset state, 6–8

IVA_FORM instruction virtual address format
register, 4–9

at power-on reset state, 6–8

J
JITTER_CMD Cbox CSR, defined, 4–36

Junction temperature, 7–1
Index–4 17 February 1999 – Subject To Change

L
Logic symbol, the 21264, 3–2

M
M_CTL Mbox control register, 4–28

at power-on reset state, 6–9
Mbox

Dcache control register DC_CTL, 4–29
Dcache status register DC_STAT, 4–30
DTB address space number registers 0 and 1

DTB_ASNx, 4–27
DTB alternate processor mode register

DTB_ALTMODE, 4–26
DTB invalidate-all (ASM=0) process register

DTB_IAP, 4–26
DTB invalidate-all process register DTB_IA,

4–26
DTB invalidate-single registers 0 and 1

DTB_ISx, 4–26
DTB PTE array write registers 0 and 1

DTB_PTEx, 4–25
DTB tag array write registers 0 and 1

DTB_TAGx, 4–24
internal processor registers, 4–2, 4–3
Mbox control register M_CTL, 4–28
memory management status register

MM_STAT, 4–27
MBOX_BC_PRB_STALL Cbox CSR, defined,

4–34

MCHK interrupt, 5–14

Mechanical specifications, 3–18

MF_FPCR instruction, 5–12

Microarchitecture
summarized, 2–1

MiscVref signal pin, 3–5

MM_STAT memory management status register,
4–27

at power-on reset state, 6–9
MT_FPCR instruction, 5–12

MT_FPCR synchronous trap, 5–14

N
NoConnect pin type, 3–3

Note convention, xiv

Numbering convention, xiv

O
O_OD pin type, 3–3, 7–2

values for, 7–4
O_OD_TP pin type, 3–3, 7–2

values for, 7–4

O_PP pin type, 3–3, 7–2
values for, 7–5

O_PP_CLK pin type, 3–3, 7–2
values for, 7–5

OPCDEC fault, 5–13

Opcodes
IEEE floating-point, A–9
independent floating-point, A–11
reserved for Compaq, A–8
reserved for PALcode, A–9
summary of, A–12
VAX floating-point, A–11

Open-drain driver for test pins. See O_OD_TP

Open-drain output driver. See O_OD pin type

Operating temperature, 8–1

P
Packaging, 3–19

Paired instruction fetch order, 5–9

PAL_BASE register, 4–15
at power-on reset state, 6–9

PALcode
described, 5–1
entries points for, 5–12
exception entry points, 5–13
HW_LD instruction, 5–3
HW_MFPR instruction, 5–6
HW_MTPR instruction, 5–6
HW_RET instruction, 5–5
HW_ST instruction, 5–4
required function codes, 5–3
reserved opcodes for, 5–3

PALmode environment, 5–2

PALshadow registers, 5–11

PCTR_CTL performance counter control register,
4–22

at power-on reset state, 6–9
PCTX Ibox process context register, 4–21

at power-on reset state, 6–9
PGA location table, 3–12

Pin grid array. See PGA location

Pipeline
Dcache access, 2–5
Ebox execution, 2–5
Fbox execution, 2–5
instruction fetch, 2–3
instruction slot, 2–3
issue queue, 2–4
organization, 2–2
register maps, 2–4
register reads, 2–4

PLL
ramp up, 6–6
17 February 1999 – Subject To Change Index–5

PLL_IDD, values for, 7–3

PLL_VDD signal pin, 3–5

PLL_VDD, values for, 7–3

PllBypass_H signal pin, 3–5

Power
maximum, 7–1
sleep defined, 7–3

Power supply sequencing, 7–5

Power-on
flow signals and constraints, 6–7
reset flow, 6–1
timing sequence, 6–3

PRB_TAG_ONLY Cbox CSR
defined, 4–33

Privileged architecture library code
See PALcode

PROBE_BC_ERR error status in C_STAT, 4–41

Push-pull output clock driver. See O_PP_CLK

Push-pull output driver. See O_PP

R
Ranges and extents convention, xiv

RDVIC_ACK_INHIBIT Cbox CSR
defined, 4–33

Register access abbreviations, xii

Register figure conventions, xiv

Register maps, pipelined, 2–4

RESET interrupt, 5–14

Reset state machine
major operations of, 6–1

Reset_L signal pin, 3–5
power-on reset flow, 6–1

RO,n convention, xii

RW,n convention, xiii

S
Second-level cache. See Bcache

Security holes
with UNPREDICTABLE results, xvi

SET_DIRTY_ENABLE Cbox CSR, 4–38

Signal name convention, xv

Signal pin types, defined, 3–3

Signal pins
sorted alphabetically, 3–8
sorted for PGA location, 3–12

SIRR software interrupt request register, 4–11
at power-on reset state, 6–8

SKEWED_FILL_MODE Cbox CSR
defined, 4–33

SLEEP mode register, 4–20
at power-on reset state, 6–9

Spare pin type, 3–3

SPEC_READ_ENABLE Cbox CSR
defined, 4–34

SROM load, 6–7

SromClk_H signal pin, 3–5

SromData_H signal pin, 3–5

SromOE_L signal pin, 3–5

Storage temperature, 7–1

Supply voltage signal pins. See I_DC_POWER pin
type

SYS_BPHASE_LD_VECTOR Cbox CSR
defined, 4–37

SYS_BUS_FORMAT Cbox CSR, defined, 4–33

SYS_BUS_SIZE Cbox CSR
defined, 4–33

SYS_CLK_DELAY Cbox CSR, defined, 4–35

SYS_CLK_LD_VECTOR Cbox CSR
defined, 4–37

SYS_CLK_RATIO Cbox CSR, defined, 4–33

SYS_CLKFWD_ENABLE Cbox CSR, defined,
4–35

SYS_CPU_CLK_DELAY Cbox CSR
defined, 4–37

SYS_DDM_FALL_EN Cbox CSR
defined, 4–35

SYS_DDM_RISE_EN Cbox CSR
defined, 4–35

SYS_DDMF_ENABLE Cbox CSR
defined, 4–35

SYS_DDMR_ENABLE Cbox CSR
defined, 4–35

SYS_FDBK_EN Cbox CSR
defined, 4–37

SYS_FRAME_LD_VECTOR Cbox CSR
defined, 4–37

SYS_RCV_MUX_CNT_PRESET Cbox CSR
defined, 4–35

SysAddIn_L signal pins, 3–5

SysAddInClk_L signal pin, 3–5

SysAddOut_L signal pins, 3–5

SysAddOutClk_L signal pin, 3–5

SYSBUS_ACK_LIMIT Cbox CSR
defined, 4–33
Index–6 17 February 1999 – Subject To Change

SYSBUS_MB_ENABLE Cbox CSR
defined, 4–33

SYSBUS_VIC_LIMIT Cbox CSR
defined, 4–33

SysCheck_L signal pin, 3–5

SysData_L signal pin, 3–5

SysDataInClk_H signal pin, 3–5

SysDataInValid_L signal pin, 3–5

SysDataOutClk_L signal pin, 3–5

SysDataOutValid_L signal pin, 3–5

SYSDC_DELAY Cbox CSR
defined, 4–37

SysFillValid_L signal pin, 3–5

System clock ratio configuration, 6–5

System initialization, 6–7

SysVref signal pin, 3–5

T
Tck_H signal pin, 3–6

Tdi_H signal pin, 3–6

Tdo_H signal pin, 3–6

Technical support, B–1

Temperatures
maximium average per frequency, 8–2
operating, 8–1

Terminology, xii

TestStat_H signal pin, 3–6
with BiST and SROM load, 6–7

Thermal design characteristics, 8–5

Tms_H signal pin, 3–6

Trst_L signal pin, 3–6

U
UNALIGN fault, 5–13

Unaligned convention, xiii

V
VA virtual address register, 4–4

at power-on reset state, 6–9
VA_CTL virtual address control register, 4–4

at power-on reset state, 6–9
VA_FORM virtual address format register, 4–6

at power-on reset state, 6–9
VAX floating-point instruction opcodes, A–11

VBIAS defined, 7–2

VDD signal pin list, 3–17

VDD, values for, 7–3

Vdiff defined, 7–2

Virtual address support, 1–2

VREF, values for, 7–3

VSS signal pin list, 3–17

W
WAKEUP interrupt, 5–14

WO,n convention, xiii

WRITE_MANY chain, 4–37
example, 4–38

WRITE_ONCE chain description, 4–32

WWW site, B–1

X
X convention, xiv
17 February 1999 – Subject To Change Index–7

	Table of Contents
	1
	2
	3
	4
	5
	6
	7
	8
	A
	B

	Figures
	Tables
	Preface
	Introduction
	1.1� The Architecture
	1.1.1� Addressing
	1.1.2� Integer Data Types
	1.1.3� Floating-Point Data Types

	1.2� 21264 Microprocessor Features

	Internal Architecture
	2.1� 21264 Microarchitecture
	2.2� Pipeline Organization
	2.3� Floating-Point Control Register
	2.4� AMASK and IMPLVER Values
	2.4.1� AMASK
	2.4.2� IMPLVER

	Hardware Interface
	3.1� 21264 Microprocessor Logic Symbol
	3.2� 21264 Signal Names and Functions
	3.3 � Pin Assignments
	3.4 � Mechanical Specifications
	3.5 � 21264 Packaging

	Internal Processor Registers
	4.1� Ebox IPRs
	4.1.1� Cycle Counter Register – CC
	4.1.2� Cycle Counter Control Register – CC_CTL
	4.1.3� Virtual Address Register – VA
	4.1.4� Virtual Address Control Register – VA_CTL
	4.1.5� Virtual Address Format Register – VA_FORM

	4.2� Ibox IPRs
	4.2.1� ITB Tag Array Write Register – ITB_TAG
	4.2.2� ITB PTE Array Write Register – ITB_PTE
	4.2.3� ITB Invalidate All Process (ASM=0) Register – ITB_IAP
	4.2.4� ITB Invalidate All Register – ITB_IA
	4.2.5� ITB Invalidate Single Register – ITB_IS
	4.2.6� Exception Address Register – EXC_ADDR
	4.2.7� Instruction Virtual Address Format Register — IVA_FORM
	4.2.8� Interrupt Enable and Current Processor Mode Register – IER_CM
	4.2.9� Software Interrupt Request Register – SIRR
	4.2.10� Interrupt Summary Register – ISUM
	4.2.11� Hardware Interrupt Clear Register – HW_INT_CLR
	4.2.12� Exception Summary Register – EXC_SUM
	4.2.13� PAL Base Register – PAL_BASE
	4.2.14� Ibox Control Register – I_CTL
	4.2.15� Ibox Status Register – I_STAT
	4.2.16� Icache Flush Register – IC_FLUSH
	4.2.17� Icache Flush ASM Register – IC_FLUSH_ASM
	4.2.18� Clear Virtual-to-Physical Map Register – CLR_MAP
	4.2.19� Sleep Mode Register – SLEEP
	4.2.20� Process Context Register – PCTX
	4.2.21� Performance Counter Control Register – PCTR_CTL

	4.3� Mbox IPRs
	4.3.1� DTB Tag Array Write Registers 0 and 1 – DTB_TAG0, DTB_TAG1
	4.3.2� DTB PTE Array Write Registers 0 and 1 – DTB_PTE0, DTB_PTE1
	4.3.3� DTB Alternate Processor Mode Register – DTB_ALTMODE
	4.3.4� Dstream TB Invalidate All Process (ASM=0) Register – DTB_IAP
	4.3.5� Dstream TB Invalidate All Register – DTB_IA
	4.3.6� Dstream TB Invalidate Single Registers 0 and 1 – DTB_IS0,1
	4.3.7� Dstream TB Address Space Number Registers 0 and 1 – DTB_ASN0,1
	4.3.8� Memory Management Status Register – MM_STAT
	4.3.9� Mbox Control Register – M_CTL
	4.3.10� Dcache Control Register – DC_CTL
	4.3.11� Dcache Status Register – DC_STAT

	4.4� Cbox CSRs and IPRs
	4.4.1� Cbox Data Register – C_DATA
	4.4.2� Cbox Shift Register – C_SHFT
	4.4.3� Cbox WRITE_ONCE Chain Description
	4.4.4� Cbox WRITE_MANY Chain Description
	4.4.5� Cbox Read Register (IPR) Description

	Privileged Architecture Library Code
	5.1� PALcode Description
	5.2� PALmode Environment
	5.3� Required PALcode Function Codes
	5.4� Opcodes Reserved for PALcode
	5.4.1� HW_LD Instruction
	5.4.2� HW_ST Instruction
	5.4.3� HW_RET Instruction
	5.4.4� HW_MFPR and HW_MTPR Instructions

	5.5� Internal Processor Register Access Mechanisms
	5.5.1� IPR Scoreboard Bits
	5.5.2� Hardware Structure of Explicitly Written IPRs
	5.5.3� Hardware Structure of Implicitly Written IPRs
	5.5.4� IPR Access Ordering
	5.5.5� Correct Ordering of Explicit Writers Followed by Implicit Readers
	5.5.6� Correct Ordering of Explicit Readers Followed by Implicit Writers

	5.6� PALshadow Registers
	5.7� PALcode Emulation of the FPCR
	5.7.1� Status Flags
	5.7.2� MF_FPCR
	5.7.3� MT_FPCR

	5.8� PALcode Entry Points
	5.8.1� CALL_PAL Entry Points
	5.8.2� PALcode Exception Entry Points

	Initialization and Configuration
	6.1� Power-Up Reset Flow and the RESET_L and DCOK_H Pins
	6.1.1� Power Sequencing and Reset State for Signal Pins
	6.1.2� Clock Forwarding and System Clock Ratio Configuration
	6.1.3� PLL Ramp Up
	6.1.4� BiST and SROM Load and the TestStat_H Pin
	6.1.5� Clock Forward Reset and System Interface Initialization

	6.2� Internal Processor Register Power-Up Reset State

	Electrical Data
	7.1� Electrical Characteristics
	7.2� DC Characteristics
	7.3� Power Supply Sequencing and Avoiding Potential Failure Mechanisms
	7.4� AC Characteristics

	Thermal Management
	8.1� Operating Temperature
	8.2� Heat Sink Specifications
	8.3� Thermal Design Considerations

	Alpha Instruction Set
	A.1� Alpha Instruction Summary
	A.2� Reserved Opcodes
	A.2.1� Opcodes Reserved for Compaq
	A.2.2� Opcodes Reserved for PALcode

	A.3� IEEE Floating-Point Instructions
	A.4� VAX Floating-Point Instructions
	A.5� Independent Floating-Point Instructions
	A.6� Opcode Summary
	A.7� Required PALcode Function Codes
	A.8� IEEE Floating-Point Conformance

	Products and Documentation
	Index
	Numerics
	A
	B
	C
	D
	E
	F
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

