
Alpha Microprocessors Motherboard
Software Design Tools

User’s Guide
Order Number: EC–QHUWE–TE

Revision/Update Information: This is a revised document. It
supersedes the Alpha Microprocessors
Motherboard Software Design Tools
User’s Guide, EC–QHUWD–TE.
Compaq Computer Corporation

April 1999

The information in this publication is subject to change without notice.

COMPAQ COMPUTER CORPORATION SHALL NOT BE LIABLE FOR TECHNICAL OR EDITORIAL
ERRORS OR OMISSIONS CONTAINED HEREIN, NOR FOR INCIDENTAL OR CONSEQUENTIAL DAM-
AGES RESULTING FROM THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL. THIS
INFORMATION IS PROVIDED “AS IS” AND COMPAQ COMPUTER CORPORATION DISCLAIMS ANY
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY AND EXPRESSLY DISCLAIMS THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY, FITNESS FOR PARTICULAR PURPOSE, GOOD TITLE AND AGAINST
INFRINGEMENT.

This publication contains information protected by copyright. No part of this publication may be photocopied or
reproduced in any form without prior written consent from Compaq Computer Corporation.

© 1999 Digital Equipment Corporation.
All rights reserved. Printed in U.S.A.

The software described in this publication is furnished under a license agreement or nondisclosure agreement. The
software may be used or copied only in accordance with the terms of the agreement.

COMPAQ, the Compaq logo, the Digital logo, and DIGITAL Registered in U.S. Patent and Trademark Office.

AlphaPC, DECchip, OpenVMS, and Tru64 are trademarks of Compaq Computer Corporation.

8 April 1999

Windows NT is a registered trademark of Microsoft Corporation.
Intel is a registered trademark of Intel Corporation.

Other product names mentioned herein may be the trademarks of their respective companies.

 Contents

Preface

1 Introduction
1.1 Overview . 1–1
1.2 Software Design Tools Summary. 1–1

2 Installation and Setup
2.1 Overview . 2–1
2.2 Tools Created or Modified . 2–1
2.3 Sample Files . 2–2

3 ALIST
3.1 Overview . 3–1
3.2 Command Format . 3–1

4 ASTRIP
4.1 Overview . 4–1
4.2 Command Format . 4–1

5 CLIST
5.1 Overview . 5–1
5.2 Command Format . 5–1

6 CSTRIP
6.1 Overview . 6–1
6.2 Command Format . 6–1

7 GNU Assembler
7.1 Overview . 7–1
7.2 Command Format . 7–1
7.3 PALcode Assembler Instructions Added to GAS . 7–2
7.3.1 hw_ld. 7–2
7.3.2 hw_st. 7–3
7.3.3 hw_ret . 7–4
8 April 1999 iii

7.3.4 hw_mfpr . 7–5
7.3.5 hw_mtpr . 7–5
7.3.6 hw_rei . 7–6
7.3.7 hw_rei_stall . 7–6
7.4 GAS and GLD Programming Considerations. 7–6

8 HAL Assembler
8.1 Overview . 8–1
8.2 Command Format . 8–2
8.3 21264 PALcode Assembler Instructions . 8–4
8.3.1 hw_ld. 8–4
8.3.2 hw_mxpr . 8–4
8.3.3 hw_retx . 8–5
8.3.4 hw_stx. 8–6
8.4 MAPCVT . 8–7

9 HEX32
9.1 Overview . 9–1
9.2 Command Format . 9–1

10 HEXPAD
10.1 Overview . 10–1
10.2 Command Format . 10–1

11 HFCOMP
11.1 Overview . 11–1
11.2 Command Format . 11–1

12 IC4MAT
12.1 Overview . 12–1
12.2 Command Format . 12–1

13 MAKEROM
13.1 Overview . 13–1
13.2 ROM Header Information Fields . 13–1
13.3 Command Format . 13–4

14 PALcode Violation Checker
14.1 Overview . 14–1
14.2 PVC Input Files . 14–1
14.3 Generating PVC Input Files with GAS . 14–2
14.4 Generating PVC Input Files with HAL . 14–3
14.5 Labels. 14–4
14.5.1 Suppressing Error Messages for a Given Instruction . 14–4
14.5.2 Handling Computed Gotos and Subroutine Branches . 14–5
14.5.2.1 Computed Gotos . 14–5
14.5.2.2 Subroutine Branches . 14–6
14.5.2.3 Ignoring a Branch . 14–6
iv 8 April 1999

14.6 Starting and Running PVC . 14–7
14.7 Creating a PVC Environment . 14–7
14.8 PVC Commands . 14–8
14.8.1 add . 14–9
14.8.2 clear flag . 14–10
14.8.3 clear log_file . 14–11
14.8.4 delete . 14–12
14.8.5 do . 14–13
14.8.6 exit . 14–14
14.8.7 go . 14–15
14.8.8 help . 14–16
14.8.9 quit . 14–18
14.8.10 set code_file . 14–19
14.8.11 set cpu . 14–20
14.8.12 set delay . 14–21
14.8.13 set entry_file . 14–22
14.8.14 set flag . 14–23
14.8.15 set freq_file . 14–27
14.8.16 set log_file . 14–29
14.8.17 set map_file. 14–30
14.8.18 set pal_base . 14–31
14.8.19 set pal_end . 14–32
14.8.20 show . 14–33

15 RCSV
15.1 Overview . 15–1
15.2 Command Format . 15–1

16 SREC
16.1 Overview . 16–1
16.2 Command Format . 16–1

17 SROM Packer
17.1 Overview . 17–1
17.2 Command Format . 17–1

18 SYSGEN
18.1 Overview . 18–1
18.2 Command Format . 18–1

19 ULOAD
19.1 Overview . 19–1
19.2 Command Format . 19–1

20 XLOAD
20.1 Overview . 20–1
20.2 Command Format . 20–1
8 April 1999 v

A Support
A.1 Customer Support . A–1
A.2 Alpha Documentation. A–1

 Index
vi 8 April 1999

8 April 1999 vii

Figures

13–1 MAKEROM Fields . 13–1
14–1 PVC Tool Map for GAS and HAL . 14–1

viii 8 April 1999

Tables

1–1 Software Design Tools Summary . 1–1
2–1 Tools and Supported Operating System . 2–1
8–1 HAL MACRO Source Statements . 8–1
14–1 PVC Label Format . 14–4
14–2 PVC Label Type . 14–4

 Preface

Introduction

This document describes the toolset used to develop Alpha microprocessor
motherboard firmware.

Audience

The Alpha Microprocessors Motherboard Software Design Tools are for tool
developers and designers who use the following Alpha microprocessors:

• 21264 (AlphaPC 264DP)

• 21164PC (AlphaPC 164SX)

• 21164 (AlphaPC 164LX)

Content Overview

The information in this document is organized as follows:

• Chapter 1 is a general overview of the software design tools.

• Chapter 2 is an overview of the tools, and it provides information about installation
and sample files.

• Chapter 3 through Chapter 20 describe the tools created or modified for the Alpha
Microprocessors Software Design Tools Kit.

• Appendix A contains information about customer support and associated
documentation.

Conventions

The following conventions are used in this document:

Convention Definition

A percent sign (%) Indicates the Tru64 UNIX operating system command
prompt.

A greater than sign (>) Indicates the Windows NT operating system command
prompt.

A greater than sign and a
percent sign (>%)

Indicates that a command is supported in Windows NT and
the Tru64 UNIX operating systems.
8 April 1999 ix

Square brackets ([]) In a command format, denote optional syntax.

In bit fields, denote extents when used with pairs of num-
bers separated by a colon. For example, [7:3] specifies bits
7, 6, 5, 4, and 3.

Parentheses () In command formats, indicate that if you choose more than
one option, you must enclose the choices in parentheses.

Boldface type Indicates commands and examples of user input.

Italic type Emphasizes important information, indicates variables in
command syntax, and indicates complete titles of manuals.

Monospaced type Indicates an operating system command, a file name, or
directory pathname.

Convention Definition
x 8 April 1999

ls.
 1
Introduction

1.1 Overview

This document describes tools that have been modified or created for designers who
develop firmware for an Alpha microprocessor. With these tools, you can verify your
PALcode and produce data to program SROMs in Intel Hex and Motorola S-record
formats.

1.2 Software Design Tools Summary

Table 1–1 summarizes the tools developed or modified for the software design too

Table 1–1 Software Design Tools Summary

Tool Name Purpose Input Output Options

ALIST Produces a listing of
disassembled code plus
symbolic information

a.out object file List file (default),
-e entry point file,
-m PVC map file

-v, -h, -f

ASTRIP Strips header a.out object file Stripped object file
(executable)

-a, -v, -h, -n, -r

CLIST Produces a listing of
disassembled code plus
symbolic information

coff format
object file

List file (default),
-e entry point file,
-m PVC map file

-v, -h, -f

CSTRIP Strips header coff format file Stripped object file
(executable)

-a, -v, -h, -n, -r

GAS GNU-based assembler
(for 21164 and SROM
code for 21264)

Source a.out (default) -P, -o, -l, -v, -21164,
-21264

HAL Hudson assembler linker
(21264)

Source Binary file and
optional list file

-o, -O, -l, -d, -c, -p#,
-D, -q, -i, -e, -e#, -C,
-s#, -h, -wa, -nt

HEX32 Generates Intel Hex32
output

Executable file Intel Hex32 file
(.hex)

-v, -o

HEXPAD Adds padding to a Hex
file

a.out object file a.out (default) -v, -h, -x, -b

HFCOMP Compresses an input file System ROM
file

Compressed file -v, -h, -t,
-21264, -21164,
-21066, -21064
8 April 1999 Introduction 1–1

Software Design Tools Summary
IC4MAT Generates an Icache
image file and attaches
SROM and write-once
chain output

Stripped binary
executable file

Image file -21264, -21164,
-21164PC, -v, -s,
-l, -a, -d, -b, -m,
-p, -h

MAKEROM Builds a ROM image ROM image files -o output file -l, -c, -x, -s, -f, -i,
-v, -h, -r

PVC Checks for PALcode
violations

Executable file,
entry point file,
map file

Log Not applicable

RCSV Generates an output file
that can be used as an
include file

Source file Include file -h, -v

SREC Generates S-record
format code

-a a.out object
file,
-i executable file

Motorola S-record
format (.sr)

-v, -h, -o

SROM For the 21164, generates
SROM code

Executable file Intel Hex format
(.hex)

-v, -h,
-21164PC
-21164, -21064

SYSGEN Builds an image -a a.out,
-c coff format,
-s stripped
format

-o executable image
file

-v, -h, -e, -p

ULOAD On Tru64 UNIX, down-
loads a file through the
serial port

ROM image files — -load_address,
-serial_port,
-baud_rate,
-xb

XLOAD On Windows NT, down-
loads a file through the
serial port

ROM image files — fast

Table 1–1 Software Design Tools Summary (Continued)

Tool Name Purpose Input Output Options
1–2 Introduction 8 April 1999

 tools
 2
Installation and Setup

2.1 Overview

The Alpha Microprocessors Motherboard Software Design Tools are supported on
Alpha systems running the Tru64 UNIX or Windows NT operating system. To install
the tools, refer to the Alpha Motherboards Software Developer’s Kit Read Me First.

2.2 Tools Created or Modified

Table 2–1 lists the tools that have been created or modified for the software design
and the operating systems that currently support them.

Table 2–1 Tools and Supported Operating System

Tool Name Description Operating System

ALIST Generates a listing file from C source and its
associated assembler

Tru64 UNIX,
Windows NT

ASTRIP Strips header information from an a.out format
executable file

Tru64 UNIX,
Windows NT

CLIST Produces a listing from coff format Tru64 UNIX

CSTRIP Strips header information from a coff format
executable file

Tru64 UNIX

GAS GNU-based assembler Tru64 UNIX,
Windows NT

HAL Hudson assembler linker Tru64 UNIX,
Windows NT

HEX32 Generates Intel Hex32 output Tru64 UNIX,
Windows NT

HEXPAD Adds padding to a Hex file Tru64 UNIX,
Windows NT

HFCOMP Compresses the specified input file using a
Huffman encoding algorithm

Tru64 UNIX,
Windows NT

IC4MAT Converts a stripped binary executable file into
an image file suitable for loading into the
Icache

Tru64 UNIX,
Windows NT

MAKEROM Builds a ROM image by adding header
information and then concatenates the files

Tru64 UNIX,
Windows NT
8 April 1999 Installation and Setup 2–1

Sample Files
2.3 Sample Files

The software design tools include sample files. These files allow users to start up and
perform sample runs on the provided tools. For more details, see the Read Me First doc-
ument supplied with your motherboard.

PVC Checks for PALcode violations Tru64 UNIX,
Windows NT

RCSV Generates an output file that can be used as an
include file

Tru64 UNIX,
Windows NT

SREC Takes an arbitrary image and converts it to
Motorola S-record format

Tru64 UNIX,
Windows NT

SROM Embeds instruction cache initialization into
the executable data and generates Intel Hex
format

Tru64 UNIX,
Windows NT

SYSGEN Concatenates the specified input files into one
contiguous image

Tru64 UNIX,
Windows NT

ULOAD Downloads a file through the SROM serial
port

Tru64 UNIX

XLOAD Downloads a file through the SROM serial
port

Windows NT

Table 2–1 Tools and Supported Operating System (Continued)

Tool Name Description Operating System
2–2 Installation and Setup 8 April 1999

8 April 1999 ALIST 3–1

 3
ALIST

3.1 Overview

The ALIST tool produces a listing of disassembled object code and symbolic
information from an a.out style object file generated by GAS. ALIST is also used to
generate the entry point and map file for PVC.

3.2 Command Format

The basic ALIST command format is:

>% alist [-options] [input_file] [> output_file]

The following table lists the options:

If ALIST is specified with no options or file information, then ALIST searches the
current default directory for an a.out file, generates a listing of that object file, and
sends the output to stdout. The list output may be piped to an output file. For example:

% alist osfpal.o > osfpal.lis

To produce an entry points file for PVC, enter this command:

% alist -e osfpal.o > osfpal.ent

To produce a PVC symbols (.map) file, enter this command:

% alist -m osfpal.o > osfpal.map

Option Designation Description

v verbose Gives more information than usual

h help Prints information about how to use ALIST

e entry points Produces entry point output for PVC

m map Outputs PVC symbols from object file

f full information Does not skip the zero location

8 April 1999 ASTRIP 4–1

 4
ASTRIP

4.1 Overview

The ASTRIP tool postprocesses the object file produced by GAS for input into PVC,
SROM, and SREC. This tool is used to strip header information from the object file.

4.2 Command Format

The basic ASTRIP command format is:

>% astrip [-options] input_file [> output_file]

The following table lists the options:

If an output file name is not specified, then the default for the Tru64 UNIX operating
system is the input file name with a .strip extension. For the Windows NT operating
system, the default extension is .stp.

For example, to produce an executable file format for PVC, enter this command:

% astrip osfpal.o > osfpal.nh

Option Designation Description

v verbose Prints more information than usual.

h help Prints information about how to use ASTRIP.

a — Strips all sections, data as well as text, from the
object file.

n number number Strips a specified number of bytes from the front of
the file; a number must be supplied.

r round Rounds the stripped file to an 8-byte boundary. (For
example, if the stripped file is 257 bytes long, then
the file is rounded to 264 bytes.)

 5
CLIST

5.1 Overview

The CLIST tool produces a listing from the coff format object file.

5.2 Command Format

The basic CLIST command format is:

>% clist [-options] [input_file] [> output_file]

The following table lists the options:

If CLIST is specified with no options or file information, it searches the current default
directory for an a.out file, generates a listing of that object file, and sends the output to
stdout. The list output may be piped to an output file. For example:

% clist sample.o > sample.lis

Option Designation Description

v verbose Gives more information than usual

h help Prints information about how to use CLIST

e entry points Produces entry point output for PVC

m map Produces PVC symbols from object file

f full information Does not skip the zero location
8 April 1999 CLIST 5–1

 6
CSTRIP

6.1 Overview

The CSTRIP tool postprocesses a coff format object file. This tool strips header and
trailer information and leaves the code and initialized data in the output file. The output
file can then be loaded onto the motherboard.

6.2 Command Format

The basic CSTRIP command format is:

 >% cstrip [-options] input_file [> output_file]

The following table lists the options:

 If an output file name is not specified, then the default is the input file name with a
.strip extension.

Option Designation Description

v verbose Prints more information than usual.

h help Prints information about how to use CSTRIP.

a — Strips all sections, data as well as text, from the object file.

n number number Strips a specified number of bytes from the front of the file;
a number must be supplied.

r round Rounds the stripped file to an 8-byte boundary. (For
example, if the stripped file is 257 bytes long, then the file is
rounded to 264 bytes.)
8 April 1999 CSTRIP 6–1

 7
GNU Assembler

7.1 Overview

The Free Software Foundation GNU assembler (GAS) takes source files as input and
assembles them into a.out format object files. GAS has been modified to include
support for the PALcode extensions described in the following documents:

• 21264 Alpha Microprocessor Hardware Reference Manual

• Alpha 21164PC Microprocessor Hardware Reference Manual

• Alpha 21164 Microprocessor Hardware Reference Manual

Note that GAS is the assembler for the Alpha 21164 and can also be used for the Alpha
21264. The other assembler, HAL, can be used only for the 21264. For information
about the HAL assembler, see Chapter 8.

More detailed documentation about GAS is available from the Free Software Founda-
tion.

7.2 Command Format

The basic GAS command format is:

>% gas [-options] input_file_list

The following table describes the options:

The input_file_list element is one or more input file names separated by spaces.

Option Description

P Automatically runs the C preprocessor standard with the operating
system. This gives support for C macros, defines, and so on.

o filename Specifies the name of the output object file. The default output file name
is a.out.

l Creates a list output. By default, the list output is sent to stdout;
however, this output can be piped to a file.

v Prints the version number.

21164 Generates code for the Alpha 21164 microprocessor family.
8 April 1999 GNU Assembler 7–1

PALcode Assembler Instructions Added to GAS

The following example generates an object file for PVC:

% gas -P -o osfpal.o osfpal.s

The following example generates a list output and pipes it to a file called hwrpb.lis:

% gas -l hwrpb.s > hwrpb.lis

7.3 PALcode Assembler Instructions Added to GAS

This section contains PALcode assembler instructions that have been added to GAS for
the Alpha microprocessors:

• hw_ld

• hw_st

• hw_ret

• hw_mfpr

• hw_mtpr

• hw_rei

• hw_rei_stall

GAS also contains additional 21264 instructions in the form of FIX and MVI exten-
sions to the Alpha architecture. See the Alpha Architecture Handbook for more infor-
mation about these extensions.

7.3.1 hw_ld

Hardware load instruction.

hw_ld/[options] ra,disp(rb)

You can use one or more of the following options:

Option Description

p Specifies that the effective address is physical

a Uses current mode bits in ALT_MODE IPR

r Read-with-write check on virtual HW_LD instructions

q Quadword data length

v Flags a virtual PTE fetch

l Physical/Lock – The effective address for the hw_ld instruction is
physical. It is the load lock version of hw_ld.

vv
(21264 only)

Virtual/VPTE – Flags a virtual VPTE fetch. Used by trap logic to
distinguish a single translation buffer (TB) miss from a double TB miss.
Kernel mode access checks are performed.

vw
(21264 only)

Virtual/WrChk – The effective address for the hw_ld instruction is
virtual. Access checks for fault-on-read (FOR), fault-on-write (FOW),
read and write protection.

vwa
(21264 only)

Virtual/WrChk/Alt – The effective address for the hw_ld instruction is
virtual. Access checks for FOR, FOW, read and write protection. Access
checks use DB_ALT_MODE IPR.
7–2 GNU Assembler 8 April 1999

 PALcode Assembler Instructions
Added to GAS
The options, if used, must be specified in the order listed in the previous table. For
example, it is illegal to list the q before the p, as shown in the following example.

Incorrect example:

hw_ld/qp $3,42($4)

Correct example:

hw_ld/pq $3,42($4)

There are two variants of the hw_ld instruction:

hw_ldq/[p][a][r][v][l] ra,disp(rb)

hw_ldl/[p][a][r][v][l] ra,disp(rb)

hw_ldq is an abbreviation for hw_ld/q (quadword), and hw_ldl is a variant for the
default (longword) condition.

7.3.2 hw_st

Hardware store instruction.

hw_st/[options] ra,disp(rb)

You can omit options, or use one or more of the following options:

Note that RWC is always set to zero for the write and is not listed as an option. Again,
the options, if used, must be specified in the order listed in the previous table.

There are two variants of the hw_st instruction:

hw_stq/[p][a][c] ra,disp(rb)

hw_stl/[p][a][c] ra,disp(rb)

hw_stq is an abbreviation for hw_st/q (quadword), and hw_stl is a variant for the
default (longword) condition.

Option Description

p Specifies that the effective address is physical

a Use current mode bits in ALT_MODE IPR

q Quadword data length

c Store conditional version of HW_ST

pc
(21264 only)

Physical/Cond – The effective address for the hw_st instruction is
physical. Store the conditional version of the hw_st instruction. The lock
flag is returned in RA.

v
(21264 only)

Virtual – The effective address for the hw_st instruction is virtual.

wa
(21264 only)

Virtual/Alt – The effective address for the hw_st instruction is virtual.
Access checks use DTB_ALT_MODE IPR.
8 April 1999 GNU Assembler 7–3

PALcode Assembler Instructions Added to GAS
7.3.3 hw_ret

Hardware return instruction. The different types affect stack prediction.

hw_ret/jmp (register)

hw_ret/jsr (register)

hw_ret/ret (register)

hw_ret/co (register)

The stall option is set by adding s to the hw_ret instruction; for example:

hw_rets/option (register)

If stall is set, the fetcher is stalled until the hw_ret instruction is retired or aborted. The
21264 will:

• Force a mispredict

• Kill instructions that were fetched beyond the hw_ret instruction

• Refetch the target of the hw_ret instruction

• Stall until the hw_ret instruction is retired or aborted

If instructions beyond the hw_ret have been issued out of order, they will be killed and
refetched.

You can use one of the following options:

The following table describes the argument for this instruction:

Option Description

jmp Specifies to not push the PC onto the prediction stack. The predicted tar-
get is PC + (4*DISP[12:0]).

jsr Specifies to push the PC onto the prediction stack. The predicted target is
PC + (4*DISP[12:0]).

ret Pops the prediction off the stack and uses it as a target.

co Pops the prediction off the stack and uses it as a target. The PC is pushed
back onto the stack.

Argument Description

register Specifies the register that contains the return address. You must choose
R31 as RA.
7–4 GNU Assembler 8 April 1999

 PALcode Assembler Instructions
Added to GAS
7.3.4 hw_mfpr

hw_mfpr/[options] ra,rc

You can use one of the following options:

The Alpha 21164 microprocessor family does not support any options for this instruc-
tion.

The following table describes the arguments:

For example, to read PAL_TEMP(15) into register 3, enter this instruction:

hw_mfpr/p $3,$15

7.3.5 hw_mtpr

This instruction is similar in form to hw_mfpr except that it is writing.

hw_mtpr/[options] ra,rc

You can use one or more of the following options:

The Alpha 21164 microprocessor family does not support any options for this instruc-
tion.

The following table describes the arguments:

Option Field Description

p PAL References a PAL_TEMP register

a ABX References a register in the Abox (load and store unit)

i IBX References a register in the Ibox (instruction fetch and
decode unit)

Argument Description

ra Destination

rc Index into the appropriate internal processor register set, or, for the
21164 microprocessor family, an index of the desired IPR

Option Field Description

p PAL References a PAL_TEMP register

a ABX References an Abox register

i IBX References an Ibox register

Argument Description

ra Source

rc Index into the appropriate internal processor register set, or, for the
21164 microprocessor family, an index of the desired IPR
8 April 1999 GNU Assembler 7–5

GAS and GLD Programming Considerations
7.3.6 hw_rei

hw_rei

This instruction generates a return from PALmode through the exception address IPR.

7.3.7 hw_rei_stall

hw_rei_stall

This instruction is the same as hw_rei except that it inhibits Istream fetch until the
hw_rei itself is issued.

This command applies only to the Alpha 21164 microprocessor family.

7.4 GAS and GLD Programming Considerations

If you create multiple object files that need to be linked together to build your image,
you want to avoid certain pitfalls.

The role of the linker (GLD) is to concatenate object files and resolve references across
object files. Thus, if you have multiple files that require explicit placement of their
code, you must perform a monolithic assembly of those object files.

Because GAS aligns code within segments, you must be careful about how you use the
.= directive to alter the location counter. For example, to start data at address 2000:

.text

 code

.=0x2000

.data

 data

If the .= directive is given in the second segment (.data), then you would get the code
followed by 0x2000 bytes of space followed by the data. This causes the data to be off-
set rather than assigned to the specific address (see the following example). This prob-
lem is independent of the segment type, so that, if .text and .data were replaced with
.text 0 and .text 1, then the results would be the same.

.text

 code

.data

.=0x2000

 data

Do not rely on the.align directive to align code to a page. It is more reliable to use
zeros to align code within a page. See the Alpha Architecture Reference Manual for
more details about pages and page frame numbers (PFNs).
7–6 GNU Assembler 8 April 1999

 8
HAL Assembler

8.1 Overview

The Hudson Assembler Linker (HAL) is an assembly language for programming the
Alpha 21264. Source programs written in HAL MACRO are translated into binary code
by the HAL MACRO assembler, which produces a binary file and, optionally, a listing
file. HAL MACRO source programs contain a sequence of source statements. The
source statements may be any one of the kind shown in Table 8–1.

Table 8–1 HAL MACRO Source Statements

Source Statement Description

Alpha native-mode instructions Manipulates data and performs such functions as addition, data
conversion, and transfer of control. Instructions are usually fol-
lowed in the source statement by operands, which can be any kind
of data needed for completion. The Alpha instruction set is
described in detail in the Alpha Architecture Reference Manual.

Direct assignment statements Equates symbols to values.
8 April 1999 HAL Assembler 8–1

Command Format
More detailed documentation about HAL is available in the HAL V5.00 Reference Manual.

8.2 Command Format

The basic HAL command format is:

>% hal [-options] output_files [-options] input_files

The following table describes HAL command line options.

Assembler directives Guides the assembly process and provides tools for using the
instructions. There are two classes of assembler directives:

General Assembler Directives

• Store data or reserve memory for data storage

• Control the alignment of program parts in memory

• Specify the methods of accessing memory sections in
which a program will be stored

• Specify the entry point of the program or its parts

• Specify the way in which symbols are referenced

• Control the format and content of the listing file

• Display informational messages

• Control the assembler options that are used to interpret
the source program

• Call other operating system commands to retrieve more
MACRO code

MACRO Directives

• Repeat identical or similar sequences of source state-
ments throughout a program without rewriting those
sequences

• Use string operators to manipulate and test the contents
of source statements

Option Description

-o filename Specifies the name of the output binary file.

-O filename Also specifies the name of the output binary file; however, the format
will be in Tru64 UNIX.

-l filename Creates a list output in the specified file.

-d filename Specifies that after parsing all the MACROS in the input files, output a
MACRO library file that contains only the MACRO definitions.

-c filename Reads back in a MACRO library file the definitions created earlier using
the d option.

-p# Specifies the page size to use. The default is 8192 bytes.

Table 8–1 HAL MACRO Source Statements (Continued)

Source Statement Description
8–2 HAL Assembler 8 April 1999

 Command Format

The following example generates the output file pal.exe and the list output pal.lis for
EV6. The two source files are file1.mar and file2.mar.

% hal -o pal.exe -l pal.lis -h EV6 -i file1.mar file2.mar

In the previous example, the -i option is used to indicate the input files, but it is not
necessary.

-D [bft|all] [file] Turns on debugging. The flags are:

• b turns on bison debug information.

• f turns on flex debug information.

• t turns on internal symbol debug information.

• all turns on all debug information.

The file argument redirects the internal symbol debug information (t)
only. Other debug information is always sent to STTDERR.

-q Runs HAL in quiet mode.

-i filename Can be used before input file names, but not needed by HAL.

-e[#] string Specifies a line of code to be parsed by HAL before any input files are
parsed. Enclose the string in double-quotes if it contains spaces. Note that
HAL interprets this line as regular MACRO code if you use just “-e”. If
you use “-e#” (where # is an integer number of 0 or higher), HAL
interprets the line as a .CMD_INPUT and places it into command buffer #.

-C Allows HAL to core/stack dump. Normally, HAL catches this and just
prints an error message.

-s# Specifies the starting address for the link stage. This value can be up to
64 bits and, if not in decimal, you must give the MACRO code radix
operator first. If you do not use this option, the default value is 0.

-h name Enables you to pick which Alpha CPU to assemble for. For this version
of HAL, the only choice is EV6.

Note that you can accomplish the same result by using the
.ARCHITECTURE directive.

-wa Enables HAL to print warning messages if, while evaluating an absolute
expression, it proves to be relocatable. Normally, HAL just files those
equations and checks their values after link time to see if they differ from
earlier ones. If they are the same, no error message is printed.

-nt Turns off the stack trace printing normally done for each message
generated by the .PRINT directive. When this option is not used, the
default is EV5.

Option Description
8 April 1999 HAL Assembler 8–3

21264 PALcode Assembler Instructions

-

8.3 21264 PALcode Assembler Instructions

This section contains PALcode assembler instructions for the 21264 Alpha micropro-
cessor.

8.3.1 hw_ld

Hardware load instruction.
hw_ld[size]/[type] register, [displacement] (register)

The following table describes the arguments.

The following example shows a hardware load that specifies quadword, physical access
to register 1, with a displacement value of 20 decimal:

hw_ldq/p r1, 20(r2)

8.3.2 hw_mxpr

Move from/to an internal process register instruction.
hw_mfpr register, expression [,scoreboard]

hw_mtpr register, expression [,scoreboard]

Arguments Description

size Specifies the size of the memory access. Can be “l” for long-
word or “q” for quadword.

type (optional) Specifies the type of memory access to make. If not used, the
default is a normal virtual access, unless you use the following
choices:

p
pl
v
w

wa

Physical access
Physical access and load lock type
Virtual and VPTE access
Virtual access with read and write protection
checks
Virtual access with read and write using alt-mode
protection checks

register Specifies the register to write for the memory access. Like other
registers in HAL, this can be an absolute expression.

displacement Specifies an expression whose bottom 12 bits are used as the
displacement value. The expression must not contain any unde
fined symbols and must be an absolute expression.
8–4 HAL Assembler 8 April 1999

 21264 PALcode Assembler Instructions
The following table describes the arguments.

The following example shows a move to internal process register 1, specifying the IPR
number and the scoreboard class:

 hw_mtpr r1 EV6__l_CTL

The previous example employs a PALcode definition file, which defines EV6__l_CTL
as <^x11 @8>!^x10>, which specifies ^x11 as the IPR number and ^x10 (class 4) as the
scoreboard. This instruction is therefore equivalent to:

 hw_mtpr r1 ^x11@8, ^x10

You can OR in additional scoreboard bits, as shown in the example. Also, because the
register is a 16-bit field that contains both the IPR number and the index, ^x11@8 places
the register number in the correct position in the 16-bit field.

8.3.3 hw_retx

Hardware return instruction. The different types affect stack prediction.
hw_ret (register)

hw_ret_stall (register)

hw_jmp (register)

hw_jmp_stall (register)

hw_jsr (register)

hw_jsr_stall (register)

hw_jcr (register)

hw_jcr_stall (register)

hw_xxx destregister, (register), [hint]

Arguments Description

register Specifies the register to write/read for the IPR access. Like
other registers in HAL, this can be an absolute expression.

expression Specifies the IPR number that identifies which IPR to access.
The expression must contain no undefined symbols and must be
an absolute expression. This expression should contain both the
index and the scoreboard (16) bits.

scoreboard (optional) Specifies the scoreboard bit for the IPR access. The expression
must contain no undefined symbols and must be an absolute
expression. The expression argument already contains the nor-
mal scoreboard bits. This field is used whenever other score-
board bits should be OR’ed in.
8 April 1999 HAL Assembler 8–5

21264 PALcode Assembler Instructions

r

-

The following table describes the arguments.

The following example shows a hardware return to register 23, with the stall option
specified:

hw_ret_stall (r23)

The 21264 Specifications contain a complete description of stall behavior.

8.3.4 hw_stx

Hardware store instruction.
hw_st[size]/[type] register, [displacement] (register)

The following table describes the arguments.

The following example shows a hardware store that specifies quadword, physical
access to register 1, with a displacement value of 20 decimal:

hw_ldq/p r1, 20(r2)

Arguments Description

destregister Specifies the register in which to place the next PC. Like other
registers in HAL, this can be an absolute expression. This register
is needed only if you use this alternate format. If not, register 31
will be the destination.

register Specifies the register that contains the return address. Like other
registers in HAL, this can be an absolute expression.

hint (optional) Specifies the hint value to use with the instruction. If not speci-
fied, zero will be used. You must specify destregister if you use
hint.

Arguments Description

size Specifies the size of the memory access. Can be “l” for long-
word or “q” for quadword.

type (optional) Specifies the type of memory access to make. If not used, the
default is a normal virtual access, unless you use the following
choices:

p
pc
a

Physical access
Physical access and store conditional type
Virtual and protection checks done using alt-mode

register Specifies the register to read for the memory access. Like othe
registers in HAL, this can be an absolute expression.

displacement Specifies an expression whose bottom 12 bits are used as the
displacement value. The expression must not contain any unde
fined symbols and must be an absolute expression.
8–6 HAL Assembler 8 April 1999

 MAPCVT
8.4 MAPCVT

The MAPCVT tool processes a HAL output listing file into a .map file that the PAL-
code Violation Checker (PVC) can read.

mapcvt [-pvc] input_file output_file

The -pvc option creates a .map file that consists only of PVC labels, which is the typi-
cal use.
8 April 1999 HAL Assembler 8–7

 9
HEX32

9.1 Overview

The HEX32 tool generates an Intel Hex32 (MCS86) file from a stripped executable.

9.2 Command Format

The basic HEX32 command format is:

>% hex32 [-options] [input_file] [output_file]

The following table lists the options:

If input and output files are not specified, then stdin and stdout are used.

Option Designation Description

v verbose Prints more information than usual

o offset Specifies image offset
8 April 1999 HEX32 9–1

 10
HEXPAD

10.1 Overview

The HEXPAD tool uses an Intel Hex file format (see SROM Packer tool in Chapter 17)
to add a specific amount of padding to a file. This tool can be used to fill all unused
bytes in an SROM with a known value.

10.2 Command Format

The basic HEXPAD command format is:

 >% hexpad [-options] input_file [> output_file]

The following table lists the options:

Option Designation Description

v verbose Prints more information than usual

h help Prints information about how to use HEXPAD

x padding size Specifies padded data size in a hexadecimal format

b byte Specifies padding byte
8 April 1999 HEXPAD 10–1

 11
HFCOMP

11.1 Overview

The HFCOMP tool compresses the specified input file using a Huffman encoding algo-
rithm to produce a compressed, executable image that will automatically decompress
itself to the proper memory location when executed. This tool is intended to allow for
more optimal usage of ROM space by reducing the size of ROM images.

When you execute the hfcomp command, the compressed files automatically decom-
press to the location specified by the -t option. If the compressed files are not loaded at
their proper addresses, the decompressed files will relocate to the proper address in
memory when the compressed image is executed.

To use the hfcomp command, the EB_TOOLBOX environment variable must be
defined to indicate the path to the decompression library files, decmp64.img or
decmp164.img. These library files contain the decompression and relocation code that
will ensure that the compressed image is in the correct location before it is decom-
pressed.

HFCOMP will automatically append the proper library file to the front of the com-
pressed image based on the -21xxx option specified on the command line. The com-
pressed code will then be located at offset 0x4000 from the beginning of the image. For
example, if the Debug Monitor firmware (rom.cmp) is loaded at address 0x300000,
then the compressed code begins at 0x304000.

11.2 Command Format

The basic HFCOMP command format is:

>% hfcomp [-options] input_file output_file

The following table lists the options:

Option Designation Description

v verbose Gives more information than usual

h help Prints information about how to use HFCOMP

t target Target location where decompressed image should go
(default = 0)

21064
(default)

21064 code Generate code for the DECchip 21064
8 April 1999 HFCOMP 11–1

Command Format
21064A 21064A code Generate code for the DECchip 21064A

21066 21066/21068
code

Generate code for the DECchip 21066/21068

21164 21164 code Generate code for DECchip 21164

21164A 21164A code Generate code for DECchip 21164

21164PC 21164PC code Generate code for DECchip 21164PC

21264 21264 code Generate code for DECchip 21264

Option Designation Description
11–2 HFCOMP 8 April 1999

e
 12
IC4MAT

12.1 Overview

The IC4MAT tool is used for the 21264 and performs the same function that the SROM
Packer performs for the 21164: it converts a stripped binary executable file into an
image file suitable for loading into the Icache. Additionally, this command appends the
Cbox information to the front of the ROM. This image typically is loaded into the
CPU’s SROM serial port upon CPU reset.

12.2 Command Format

IC4MAT has the following command format:

>% ic4mat [options] cbox_file exe_file [output_file]

If no options are specified, the default condition is to generate an instruction cach
image for the Alpha 21264 with a maximum cache size of 8KB with no SROM
padding.

The following table lists the options:

Option Designation Description

v verbose Prints more information than usual.

h help Prints help text.

s simulation Generates simulation output.

21264 21264 Generates instruction cache image for DC21264.

l filename
(21264 only)

list Generates a list file based on the Cbox file read.

a
(21264 only)

alias Places Cbox register alias names instead of the standard
register names into the list file.

d
(21264 only)

– Generates a text version of the output file. By default, a
binary file is produced.

b
(21264 only)

base address Icache image base address.

m
(21264 only)

maximum
address

Icache image maximum address.

p
(21264 only)

CPU pass EV6 pass number (default = 3).
8 April 1999 IC4MAT 12–1

Command Format
Example:

 % ic4mat -21264 -v -l test.list test.cbox test.exe test.img

21164PC 21164PC Generates instruction cache image for DC21164PC.

21164 21164 Generates instruction cache image for DC21164.

21064 21064 Generates instruction cache image for DC21064.

21066 21066 Generates instruction cache image for DC21066.

21068 21068 Generates instsruction cache image for DC21068.

Option Designation Description
12–2 IC4MAT 8 April 1999

 13
MAKEROM

13.1 Overview

The MAKEROM tool builds a ROM image by adding header information to the input
files. Each input file generates one header plus the image, which is then concatenated
and written to the output file. These headers are used by the SROM and other software
to identify an image contained in the ROM. MAKEROM can also compress these input
files using a simple repeating byte compression algorithm. The decompression code is
provided in the SROM. Other improved compression techniques that embed appropri-
ate decompression code can also be used, such as the HFCOMP tool.

13.2 ROM Header Information Fields

The ROM header information placed at the beginning of each ROM image contains the
fields shown in Figure 13–1.

Figure 13–1 MAKEROM Fields

Validation Pattern 0x5A5AC3C3

Inverse Validation Pattern 0xA5A53C3C

Header Size (Bytes)

Image Checksum

Image Size (Memory Footprint)

Decompression Flag

Destination Address Lower Longword

Destination Address Upper Longword

ROM Image Size

Optional Firmware ID [31:0]

Optional Firmware ID [63:32]

0x00

0x04

0x08

0x0C

0x10

0x14

0x18

0x1C

0x24

0x28

0x2C

0x30

0x34

0x20

all

all

all

all

all

all

all

all

1+

1+

1+

1+

2+

1+

Firmware ID [15:8]
Reserved [31:24]

Header Rev [7:0]
Header Rev Ext [23:16]

ROM Offset [31:2] ROM Offset Valid [0]

Header Checksum (excluding this field)

31
Offset

Header
Revisions
Supported

FM-05103.AI4

0

8 April 1999 MAKEROM 13–1

ROM Header Information Fields

ntly
• Validation Pattern

The first quadword contains a special signature pattern that is used to verify that
this “special” ROM header has been located. The validation pattern is
0x5A5AC3C3A5A53C3C.

• Header Size (Bytes)

The header size is the next longword. This is provided to allow for some backward
compatibility in the event that the header is extended in the future. When the
header is located, current versions of SROM code determine where the image
begins based on the header size. Additional data added to the header in the future
will simply be ignored by current SROM code. Additionally, the header size = 0x20
implies Version 0 of this header specification. For any other size, see Header Rev to
determine header version.

• Image Checksum

The next longword contains the image checksum. This is used to verify the
integrity of the ROM. Checksum is computed in the same fashion as the header
checksum. Although this field was provided with Version 0 of this header
specification, the checksum was not really computed until Version 1.

• Image Size

The image size is used by the SROM code to determine how much of the system
ROM should be loaded.

• Decompression Flag

The decompression flag tells the SROM code if the MAKEROM tool was used to
compress the ROM image with a “trivial repeating byte algorithm.” The SROM
code contains routines that perform this decompression algorithm. Other
compression/decompression schemes may be employed that work independe
from this one.

• Destination Address

This quadword contains the destination address for the image. The SROM code
will begin loading the image at this address and subsequently begin its execution.

• Header Rev

The revision of the header specifications used in this header. This is necessary to
provide compatibility to future changes to this header specification. Version 0 head-
ers are identified by the size of the header. See Header Size. For Version 1 or
greater headers, this field must be set to a value of 1. The header revision for Ver-
sion 1 or greater headers is determined by the sum of this field and the Header Rev
Ext field. See Header Rev Ext.
13–2 MAKEROM 8 April 1999

 ROM Header Information Fields
• Firmware ID

The firmware ID is a byte that specifies the firmware type. This information facili-
tates image boot options necessary to boot different operating systems.

• Header Rev Ext

The header revision for Version 1 or greater headers is determined by the sum of
this field and the Header Rev field. See Header Rev.

• ROM Image Size

The ROM image size reflects the size of the image as it is contained in the flash
ROM. See Image Size.

• Optional Firmware ID

This optional field can be used to provide additional firmware information such as
firmware revision or a character descriptive string of up to 8 characters.

• ROM Offset

This field specifies the default ROM offset to be used when programming the
image into the ROM.

• ROM Offset Valid

The lower bit of the ROM Offset Valid must be set when the ROM Offset field is
specified. When no ROM Offset is specified, the ROM Offset and ROM Offset
Valid fields will contain zero.

• Header Checksum

The checksum of the header is used to validate the presence of a header beyond the
validation provided by the validation pattern. See Validation Pattern. The header
checksum is computed from the beginning of the header up to but excluding the
header checksum field itself. If there are future versions of this header, the header
checksum should always be the last field defined in the header. The checksum
algorithm used is compatible with the standard BSD4.3 algorithm provided on most
implementations of UNIX.

Firmware ID
Firmware Type
(decimal) Description

DBM 0 Alpha Motherboards Debug Monitor firmware

WNT 1 Windows NT firmware

SRM 2 Alpha System Reference Manual Console

FSB 6 Alpha Motherboards Fail-Safe Booter

Milo 7 Linux Miniloader

VxWorks 8 VxWorks Real-Time Operating System

SROM 10 Serial ROM
8 April 1999 MAKEROM 13–3

Command Format
13.3 Command Format

The basic MAKEROM command format is:

>% makerom [-options][-input_file_options] input_file -o output_file

The following table lists the options:

The following table lists input_file_options:

The following example shows the predefined firmware types:

% makerom -v -iDBM -ftimestmp.fw -l300000 rom.cmp -o rom.rom

makerom [V2.0]
...Output file is rom.rom
...processing input file rom.cmp

Image padded by 3 bytes
Header Size......... 52 bytes
Image Checksum...... 0x1c7d (7293)
Image Size (Uncomp). 122032 (119 KB)
Compression Type.... 0
Image Destination... 0x0000000000300000
Header Version...... 1
Firmware ID......... 0 - Alpha Motherboard Debug Monitor
ROM Image Size...... 122032 (119 KB)
Firmware ID (Opt.).. 0104009504181217
Header Checksum..... 0x0b8d

% cat timestmp.fw
0104009504181217
Version: 1.4 950418.1217

Option Designation Description

v verbose Gives more information than usual

h help Prints information about how to use MAKEROM

r offset Provides optional offset into the ROM where image is located

o output file Specifies output file

Option Designation Description

laddress load Specifies destination address.

c compress Compresses this file. Default is no compression.

xvalue — Sets the optional firmware ID field to the specified
hexadecimal value.

sstring — Sets the optional firmware ID field to the specified
string.

ffile file Sets the optional firmware ID field from information
supplied in the specified file. The file must contain
either a hexadecimal value or a quoted ASCII string.

ifw_id — Specifies the firmware type_number or type_name.
13–4 MAKEROM 8 April 1999

 14
PALcode Violation Checker

14.1 Overview

The PALcode Violation Checker (PVC) tool checks assembly language code for
instruction sequences that could cause unexpected results, and produces warning
messages that describe the violation.

14.2 PVC Input Files

Three input files are required by PVC:

• An executable PALcode image (.exe or .nh)

• A set of PALcode entry points (.ent or .entry)

• A description of PVC symbols (.map)

To generate input files for the Alpha 21064 and Alpha 21164, you need to take the
PALcode source and generate an object file with GAS. To generate input files for
the Alpha 21264, you need to take the PALcode sources and generate .lis and .exe
files with HAL. For more information about GAS, see Chapter 7. For more information about
HAL, see Chapter 8. Figure 14–1 shows the PVC tool map for both assemblers.

Figure 14–1 PVC Tool Map for GAS and HAL

GAS (21064/21164)

Source File

 GAS

Object File (a.out format)
-P -o

CPP

ALIST ASTRIP

-e
.ent

-m
.map

PVC .log

.nh

HAL (21264)

Source Files

 HAL .lis MAPCVT

.exe .map

PVC .log.entry

-l

-o -pvc
8 April 1999 PALcode Violation Checker 14–1

Generating PVC Input Files with GAS

1.

ro-
AS -P

pro-

he

er

 The

uals

rce
tch
e-
14.3 Generating PVC Input Files with GAS

Use the following steps to generate PVC input files with GAS, as shown in Figure 14–

1. To generate an object file, preprocess the PALcode source file with the C prep
cessor (CPP), and then run GAS. Or, combine these two steps by using the G
option. For example:

% gas -P -o filename.o filename.s

This produces an object file used as input for the ALIST and ASTRIP tools to
duce the PVC input files.

2. To generate the executable PALcode image file, use ASTRIP to postprocess t
GAS object file. This extracts the machine code instructions and strips header
information. The following example generates an executable file with no head
(.nh) for PVC:

% astrip filename.o > filename.nh

3. To generate an entry points file, use ALIST to postprocess the GAS object file.
following example generates an entry points file for PVC:

% alist -e filename.o > filename.ent

Note: An entry points file generated by ALIST may require some editing to
remove entries that are not legal PAL entry points (for example, local
labels).

The legal PAL entry points are defined in the Alpha Hardware Reference Man
(specific to your CPU) listed in Appendix A.

The file format is:

offset_value(hex) pal_entry_point_label

Note that offset_value is the offset from the base of the executable code. For
example:

0000 PAL$RESET
0020 PAL$MCHK
0060 PAL$ARITH
00e0 PAL$INTERRUPT

4. To generate a description of PVC symbols derived from labels in the PAL sou
code file, use the ALIST tool again. The file name for the .map file should ma
the file name for the .nh file so that it can be called in automatically with the ex
cutable file. For example:

% alist -m filename.o > filename.map

The format of the output .map file generated by the ALIST tool is:

label address

For example:

pvc$osf11$5000 00004298
pvc$osf28$5000.1 00004430
pvc$osf29$5000.2 000044B8
pvc$osf0$3000 000053BC
pvc$osf1$3000.1 000053C0
pvc$osf2$3000.2 000053D0
pvc$osf3$3000.3 000053E0
14–2 PALcode Violation Checker 8 April 1999

 Generating PVC Input Files with HAL

. For

lis

n

uals

ple:

he
 in
pvc$osf4$3000.4 000053F0
pvc$osf5$3000.5 00005400
pvc$osf6$3000.6 0000540C
pvc$osf31$84 000056F0

14.4 Generating PVC Input Files with HAL

Use the following steps to generate PVC input files with HAL, as shown in Figure 14–1
complete information about HAL, see the HAL V5.00 Reference Manual, included in the
documentation directory of the SDK CD-ROM.

1. Generate a .exe and a .lis file, as shown in the following example:

% hal -o filename.exe -l filename.lis filename1.mar filename2.mar

The executable PALcode image file contains machine code instructions. The .
file is used by the MAPCVT tool.

2. To generate an entry points file, use any editor you choose and edit this file. A
example entry points file is included on the SDK CD-ROM as ebfw/palcode/

dp264/osfpal.entry.

The legal PAL entry points are defined in the Alpha Hardware Reference Man
(specific to your CPU) listed in Appendix A.

The file format is:

offset_value(hex) pal_entry_point_label

Note that offset_value is the offset from the base of the executable code. For
example:

0000 PAL$RESET
0020 PAL$MCHK
0060 PAL$ARITH
00e0 PAL$INTERRUPT

3. To generate a .map file, use the MAPCVT tool, as shown in the following exam

% mapcvt -pvc filename.lis filename.map

The -pvc option creates a .map file that consists only of PVC labels, which is t
typical use. The .map file is a description of PVC symbols derived from labels
the PAL source code file.

The format of the output .map file generated by the MAPCVT tool is:

label address

For example:

pvc$osf11$5000 00004298
pvc$osf28$5000.1 00004430
pvc$osf29$5000.2 000044B8
pvc$osf0$3000 000053BC
pvc$osf1$3000.1 000053C0
pvc$osf2$3000.2 000053D0
pvc$osf3$3000.3 000053E0
pvc$osf4$3000.4 000053F0
pvc$osf5$3000.5 00005400
pvc$osf6$3000.6 0000540C
pvc$osf31$84 000056F0
8 April 1999 PALcode Violation Checker 14–3

Labels

 of

ion
e nor-

ant to
14.5 Labels

Labels are defined in the PALcode source file to allow you to specify additional infor-
mation to PVC. Labels serve the following two functions in PVC:

• To suppress error messages, disabling a specific PALcode restriction for a specific
instruction

• To specify how PVC follows a computed goto or subroutine branch

The label format is:

PVC<$><label_name><$><num>[.<dest>]

Table 14–1 describes the parts of a PVC label.

All label examples in this document use a dollar sign ($) as the delimiter.

The <num> field can be used to give you more detailed information about the type
label, as shown in Table 14–2.

For example, this label specifies a PVC label for a computed goto destination:

PVC$osf123$2000.1

14.5.1 Suppressing Error Messages for a Given Instruction

In some cases, you may decide that your PALcode can violate a PALcode restrict
without harming your code. For these cases, you should use labels to shut off th
mal PVC error checking by following these steps:

1. Place a label at the address of the instruction that causes the message you w
suppress.

Table 14–1 PVC Label Format

Label Part Description

PVC Specifies that the label is a PVC label. It must appear in all uppercase or
all lowercase letters.

<$> Specifies single character delimiter. It must be a dollar sign ($).

<label_name> Provides a unique name for the label. This field is ignored by PVC.

<num> Specifies the label type (error, computed goto, or a subroutine branch).

<dest> Specifies that this label is the destination of a computed goto or a
subroutine branch.

Table 14–2 PVC Label Type

<num> Field Label Type

0–1007 Error

1008 No branch

2000–3999 Computed goto

4000→ Subroutine branch
14–4 PALcode Violation Checker 8 April 1999

 Labels
2. Place the label with the <num> field set to the error number associated with the
message.

For example, during a PVC session, the following message is reported:

Checking the CODE routine, entry point 0:

Error executing instruction HW_MFPR R6, ICCSR at address 4 on cycle 1!!

(PVC #77) You can’t read back from the ICCSR until 3 bubbles after writing it.

You determine that, for this case, the HW_MFPR will not harm your code, so you spec-
ify the following label at address 4 in your PALcode source file:

PVC$123$77:

The 123 string between the delimiters is the label_name and is ignored by PVC. The
77 is the <num> field and specifies to PVC that, if error type 77 occurs at this label
address, then the error is not displayed.

14.5.2 Handling Computed Gotos and Subroutine Branches

Another use of labels is to specify how PVC follows a computed goto or a subroutine
branch. This information cannot be extracted statically; therefore, labels are required
for instructions such as jump to subroutine (JSR) and return from subroutine (RET).
You can also instruct PVC to ignore a certain branch to optimize your PVC run.

14.5.2.1 Computed Gotos

When creating a label for a computed goto, you need one label that designates an
origin, and one or more labels that designate a destination target. All origin and target
pairs must have the same integer between 2000 and 3999 in the <num> field. The
<destination> field of the label is used to designate a target for the goto.

For example, in the .map file, the following is a goto origin:

pvc$osf0$3000 000053BC

The following is an example of target labels for the specified origin:

pvc$osf1$3000.1 000053C0
pvc$osf2$3000.2 000053D0
pvc$osf3$3000.3 000053E0
pvc$osf4$3000.4 000053F0
pvc$osf5$3000.5 00005400
pvc$osf6$3000.6 0000540C

In the following example, register 3 (r3) can have either of two target addresses,
10$ or 20$:

jsr r0, (r3)
halt

Target addresses and code are:

10$: subq r4, r5, r7
20$: subq r4, r6, r7

ret r31, (r0)
8 April 1999 PALcode Violation Checker 14–5

Labels
The following are examples of the appropriate use of labels:

pvcx2000:
jsr r0, (r3)

pvcx2001.1
pvcx2002.1:

halt

pvcx2000.1:
10$: subq r4, r5, r7
pvcx2001:

ret r31, (r0)

pvcx2000.2:
20$: subq r4, r6, r7
pvcx2002:

ret r31, (r0)

Note that the returns are treated just like the initial jsr subroutines.

14.5.2.2 Subroutine Branches

To specify a label for a branch to subroutine (BSR), set the <num> field value to 4000
or higher. To associate all BSRs that go to the same subroutine as well as the RET at the
end of that subroutine, assign the same integer to this field. Use the <destination> field
to specify a RET. For example:

pvc$osf11$5000 00004298
pvc$osf28$5000.1 00004430
pvc$osf29$5000.2 000044B8

Every time PVC finds a BSR marked this way, PVC pushes PC + 4 onto a stack. Then,
when PVC hits a RET that also has a label, it checks the stack to make sure the top
entry matches where it is and goes to that address. For example:

pvcr4000:
bsr r10, subr
bis r31,r31,r31
bis r31,r31,r31
bis r31,r31,r31

pvcs4000:
bsr r10, subr
halt

subr:
mulq r1,#256,r2

pvct4000.1:
ret r31, (r10)

This RET goes back to the correct address both times.

14.5.2.3 Ignoring a Branch

To tell PVC not to follow a certain branch, put a label with the <num> field set to 1008
at the appropriate address. For example, if all the CALL_PAL slots jump to a routine
that checks for OPCDEC, and then branch to other flows, and so on, you are repeatedly
checking OPCDEC. Skipping this branch could improve execution time; however,
because of the reduced checking, this feature should only be used if it dramatically
improves PVC execution time.
14–6 PALcode Violation Checker 8 April 1999

 Starting and Running PVC
14.6 Starting and Running PVC

After you have prepared the input files, you can begin your PVC session. For example:

% pvc

PALcode Violation Checker V3.34

Default Cpu set to Alpha chip 21264 family.

PVC> set code osfpal_21264.exe

PVC> set entry osfpal_21264.entry

PVC> set map osfpal_21264.map

PVC> go

PALcode Violation Checker V3.34

Default Cpu set to Alpha chip 21264 family.

Initializing Alpha dependent tables..
Initializing 21264 dependent tables..
Disassembling executable...
Searching through map file for violation exceptions...
Beginning PALcode check...

End of PALcode check...

PVC> quit

PVC messages, errors, and warnings are sent to stdout (in most cases the terminal
screen). The following example sets up a PVC log file to collect this information:

PVC> set log_file filename.log

If the run is successful, a Run Completed message is displayed. (See Section 14.8 for
other commands you can use during your PVC session.)

14.7 Creating a PVC Environment

To automatically load PVC input files when you begin your PVC session, set up the
following environment variables though your .login file (if you are using Tru64 UNIX
with a C shell) or the Control Panel (if you are using the Windows NT operating
system):

• PVC_PAL — for the executable file

• PVC_ENTRY — for the entry points file

• PVC_MAP — for the .map file

• PVC_CPU — for the CPU type

• PVC_LOG — for the log file

For the Tru64 UNIX operating system with a C shell, the environment variable
command format is as follows:

% setenv PVC_ENTRY ~/user_area/subdir/filename.ent

% setenv PVC_PAL ~/user_area/subdir/filename.exe
8 April 1999 PALcode Violation Checker 14–7

PVC Commands
For the Windows NT operating system, the environment variable command format is as
follows:

> set PVC_ENTRY=drive:\user_area\subdir\filename.ent

> set PVC_PAL=drive:\user_area\subdir\filename.exe

An example of the Tru64 UNIX with a C shell environment variable command format
follows:

% setenv PVC_ENTRY ~/user/pvc/osfpal_21264.entry

% setenv PVC_PAL ~/user/pvc/osfpal_21264.exe

% setenv PVC_MAP ~/user/pvc/osfpal_21264.map

% setenv PVC_CPU 21264

% pvc

When you issue the PVC command, the files load automatically. For example:

PALcode Violation Checker V3.34

Default Cpu set to Alpha chip 21264 family.

PVC> show files

The executable file is /disks/users4/user/pvc/osfpal_21264.exe
The map file is /disks/users4/user/pvc/osfpal_21264.map
The entry point file is /disks/users4/user/pvc/osfpal_21264.entry
There is no log file specified.

PVC> exit

14.8 PVC Commands

This section describes the PALcode Violation Checker (PVC) commands. The
commands are listed in alphabetical order. All PVC commands can be abbreviated to
the first three characters.
14–8 PALcode Violation Checker 8 April 1999

 PVC Commands
14.8.1 add

The add command adds an entry point to the entry point list.

Format

add

_address

_name

Parameters

_address

Specifies the address.

_name

Specifies the entry point name.

Description

The add command allows you to add an entry point for the current PVC session. All
additions are reflected with the show entries command. However, the entry file is not
modified.

Example
% pvc

PALcode Violation Checker V3.34

Default Cpu set to Alpha chip 21264 family.

PVC> add
_address (in hex): 500
_name: pal$arith

PVC> show entries
1: 500 PAL$ARITH

PVC> exit
8 April 1999 PALcode Violation Checker 14–9

PVC Commands
14.8.2 clear flag

The clear flag command clears the specified flag_type parameter.

 Format

clear flag flag_type

Parameters

all

Specifies that all flags are turned off or set to zero.

cycle_count

Specifies that the cycle count is set to zero.

dead_code

Specifies that code never branched to is ignored.

errors

Specifies that errors are not reported.

memory_usage

Specifies that node and cycle usage are set to zero. This flag is not used in the 21264;
however, you can use the cycle_count flag to accomplish the same effect.

permutations

Specifies that the number of code paths is not displayed.

scheduled_code

Specifies that the scheduled output is not displayed.

trace_code

Specifies that code is not displayed while checked.

warnings

Specifies that warnings are not reported.

Description

The clear flag command sets the specified flag_type off or sets the value to zero.

Example
% pvc

PALcode Violation Checker V3.34

Default Cpu set to Alpha chip 21264 family.

PVC> show flags
The warnings flag is set.
The errors flag is set.
PVC> clear flag warnings
PVC> show flags
The errors flag is set.

PVC> exit
14–10 PALcode Violation Checker 8 April 1999

 PVC Commands
14.8.3 clear log_file

The clear log_file command closes any open log file set for your PVC session.

Format

clear log_file

Parameters

None.

Description

The clear log_file command closes the log file. All messages and output are reported
to stdout (the terminal screen).

Example
PVC> clear log_file
Log file closed.
8 April 1999 PALcode Violation Checker 14–11

PVC Commands
14.8.4 delete

The delete command causes PVC to ignore the specified entry points.

Format

delete start_entry_id [- end_entry_id]

Parameters

start_entry_id - end_entry_id

Specifies a range of entry points.

Description

The delete command causes PVC to ignore all entry points specified at or between the
specified start_entry_id and end_entry_id for the rest of the current PVC session. The
remaining entry points are renumbered.

Example
PVC> delete 100 – 119
14–12 PALcode Violation Checker 8 April 1999

 PVC Commands
14.8.5 do

The do command executes a single entry point.

Format

do entry_point

Parameters

entry_point

Specifies the entry_id or the entry point name as displayed when you enter the show
entries command.

Description

The do command executes a single entry point.

Example
% pvc

PALcode Violation Checker V3.34

Default Cpu set to Alpha chip 21264 family.

PVC> set code osfpal_21264.exe

PVC> do 600

Initializing Alpha dependent tables..
Initializing 21264 dependent tables..
Disassembling executable...
Searching through .map file for violation exceptions...

Beginning PALcode check...

End of PALcode check...

PVC> exit
8 April 1999 PALcode Violation Checker 14–13

PVC Commands
14.8.6 exit

The exit command terminates a PVC session.

Format

exit

Parameters

None.

Description

The exit command terminates a PVC session; it has no effect on input files. The exit
and quit commands have the same function.

Example
PVC> exit
%

14–14 PALcode Violation Checker 8 April 1999

 PVC Commands
14.8.7 go

The go command executes all entry points.

Format

go

Parameters

None.

Description

The go command allows PVC to begin checking your code. It executes all entry
points. If you have created a log file, informational messages from your PVC run are
sent to that file; otherwise, they display on the screen. When all entry points have been
executed, you receive a message that the file has completed, and the
PVC> prompt appears.

Example
% pvc

PALcode Violation Checker V3.34

Default Cpu set to Alpha chip 21264 family.

PVC> set code osfpal_21264.exe

PVC> set entry osfpal_21264.entry

PVC> set map osfpal_21264.map

PVC> go

Initializing Alpha dependent tables..
Initializing 21264 dependent tables..
Disassembling executable...
Searching through .map file for violation exceptions...

Beginning PALcode check...

End of PALcode check...

PVC> quit
8 April 1999 PALcode Violation Checker 14–15

PVC Commands
14.8.8 help

The help command displays basic PVC command information.

Format

help

Parameters

None.

Description

The help command displays a list of commands implemented in the current version of
PVC.

Example
% pvc

PALcode Violation Checker V3.34

Default Cpu set to Alpha chip 21264 family.

PVC> help

PVC is primarily used to check for Alpha PALcode violations. It can also
be used to disassemble executable code (set flag trace) and display code
as the CPU would execute it (set flag scheduled_code).

Here is a sample PVC run:

PVC> set cpu 21264
PVC> set code_file pal.exe
PVC> set entry_file pal.entry
PVC> set log_file pal_pvc.log
PVC> go
PVC> exit

For more help enter:

HELP Commands
HELP Flags
HELP Environment_variables

PVC> help commands

set cpu 21264 Check Alpha chip 21264 family.

set cpu 21164 Check Alpha chip 21164 family.

set cpu 21064 Check Alpha chip 21064 family.

set code_file pal.exe PALcode executable.

set map_file pal.map PALcode map file.

set entry_file pal.entry PALcode entry point addresses and names.

set log_file pal.log Optional Log file. Use Clear log_file to
close.

set freq_file pal.freq Optional address usage count file.

go Check all PAL addresses in entry_file.
14–16 PALcode Violation Checker 8 April 1999

 PVC Commands
PVC> help flags

No flag commands are required for a typical PVC run.

The errors and warnings flags are set by default.

There is a clear flag command for each set flag command.
The show flags command will display flags currently set.

PVC> help env

PVC environment variables.

PVC_PAL Executable file (pal.exe)
PVC_MAP Map file (pal.map)
PVC_ENTRY PALcode entry point file (pal.entry)
PVC_LOG Log file (pal.log)
PVC_CPU CPU type

Example command to set a variable under UNIX:

> setenv PVC_PAL ~fred/pvc/pal.exe

Example command to set a variable under Windows NT:

> set PVC_PAL = a:pal.exe

Example command to set a variable under OpenVMS:

> define PVC_PAL sys$login_device:[.pvc]pal.exe

do n Check PAL entry point at address n.

exit Terminal PVC session.

set pal_base n Offset all PAL addresses by n. The
default is 0.

set flag x Set PVC flag x, enter HELP FLAGS for a
list.

Show all Show files, cpu type, and flags set.

set flag all Set all flags.

errors Display restriction errors.

warnings Display restriction warnings and
guidelines.

permutations Report number of code paths.

scheduled_code Display instructions as CPU would
execute them.

dead_code Report code that is not reached.

memory_usage Report address and cycle usage.

cycle_count Report permutation cycle counts.

trace_code Disassemble instructions for each
permutation.
8 April 1999 PALcode Violation Checker 14–17

PVC Commands
14.8.9 quit

The quit command terminates a PVC session.

Format

quit

Parameters

None.

Description

The quit command terminates a PVC session; it has no effect on input files. The quit
and exit commands have the same function.

Example
PVC> quit

%

14–18 PALcode Violation Checker 8 April 1999

 PVC Commands
14.8.10 set code_file

The set code_file command specifies the executable PALcode file.

Format

set code_file filename

Parameters

filename

Specifies a file name that contains machine code instructions.

Description

The set code_file command reads an executable PALcode file into PVC.

For the 21164 and earlier CPUs, this file is normally generated from the GAS object file
and is postprocessed with the ASTRIP tool.

For the 21264, this file is generated from the HAL assembler and is postprocessed with
the MAPCVT tool. See Section 8.4 for more information about MAPCVT.

Example
PVC> set code_file pal.exe

8 April 1999 PALcode Violation Checker 14–19

PVC Commands
14.8.11 set cpu

The set cpu command determines which set of restrictions is used for the current PVC
session.

Format

set cpu cpu_name

Parameters

21264

Specifies the PALcode restrictions for the Alpha 21264 microprocessor family.

21164

Specifies the PALcode restrictions for the Alpha 21164 microprocessor family.

Description

The set cpu command determines which set of PALcode restrictions is used for the
current PVC session. This command should be set before any go or do commands are
given. The default CPU is the 21264.

Example
PVC> set cpu 21264
14–20 PALcode Violation Checker 8 April 1999

 PVC Commands
14.8.12 set delay

The set delay command determines the cache latency.

Format

set delay delay_value

Parameters

delay_value

Specifies the latency for bubbles and cache misses. The default is 5; the maximum
value is FFFFFFFF.

Description

The set delay command determines the cache latency for cache misses.

Example
PVC> set delay 6
Cache latency noted.

Note: The set delay command is not supported for the 21164 and 21264 CPU
families. It can still be issued, but it will not be used.
8 April 1999 PALcode Violation Checker 14–21

PVC Commands
14.8.13 set entry_file

The set entry_file command specifies the entry list file.

Format

set entry_file filename

Parameters

filename

Specifies a file name that contains a list of entry points.

Description

The set entry_file command reads a file containing a list of entry points into PVC.

For the 21164 and earlier CPUs, this file is normally generated from the GAS object file
and is postprocessed with the ALIST tool.

For the 21264, this file is generated from the HAL assembler and is postprocessed with
the MAPCVT tool. See Section 8.4 for more information about MAPCVT.

Example
PVC> set entry_file pal.entry

14–22 PALcode Violation Checker 8 April 1999

 PVC Commands
14.8.14 set flag

The set flag command sets the specified flag type.

Format

set flag flag_type

Parameters

all

Specifies that all flags are set.

cycle_count

Displays the number of CPU cycles per permutation.

dead_code

Displays code that has not been executed. This command can be used in conjunction
with the set pal_base and set pal_end commands to set the boundaries for this
display. Specifies code never branched to.

errors

Displays error messages. This is the default.

memory_usage

Displays node and cycle usage. This flag is not used in the 21264; however, you can
display equivalent information by using the cycle_count flag.

permutations

Displays the number of code paths through the code. For example, a single
if-then-else style construct gives two paths through the code or two permutations.

scheduled_code

Displays the following information per cycle: address being executed, disassembly of
the code being executed, and the stalled cycles waiting for memory.

trace_code

Displays code as it is checked.

warnings

Displays warning messages. This is the default.

Description

The set flag command sets the specified flag_type. By default, errors and warnings
are set and reported. To display flags, see the show flag command. To cancel a flag,
see the clear flag command.
8 April 1999 PALcode Violation Checker 14–23

PVC Commands
Example
$ PVC

PALcode Violation Checker V3.34
Default CPU set to Alpha chip 21264 family.

PVC> set code osfpal_21264.exe
PVC> set entry osfpal_21264.entry
PVC> do powerup

Initializing Alpha dependent tables...
Initializing 21264 dependent tables...
Disassembling executable...
Searching through map file for violation exceptions...

Beginning PALcode check...
PVC>
PVC>
PVC> set flag trace_code
PVC>
PVC> do powerup

Beginning PALcode check...

 Checking the POWERUP routine, entry point 0:

 0 SRL R22, #62, R1

 4 BR R31, 10

 10 BLBC R1, 6640

 Branch not taken from 10:

 14 BR R31, 4000

 4000 BR R1, 4004

 .

 .

 .

 6758 BNE R31, 675c

 Branch not taken from 6758:

 675C HW_RET_STALL (R23)

 Permutation 2 completed normally.

 Branch not taken from 6758 to 675C:

 675C HW_RET_STALL (R23)

 Permutation 3 completed normally.

 A total of 4 permutations were traced.

 End of PALcode check...

 Checking the POWERUP routine, entry point 0:

NOTE:

The PVC scheduler is a much simplified model of the 21264.
It does partially model the Retire, Reg, Queue, map, slot, and
ic stages, but assumes zero latency memories and caches.
It models iq, fp, ipr, map, and register dependent stalls, but
does not model br prediction stalls, mb stalls, or inim stalls.
PVC can be used to check for excessive IPR or register dependency
stalls.
14–24 PALcode Violation Checker 8 April 1999

 PVC Commands
 ======> Scheduling PAL entry address: 0 PERMUTATION (0)

 .

 .

 .

 Permutation (0)

 cycle count: 124

 ebox stall count: 72

 ebox busy count: 116

 instruction count: 98

 ebox issued count: 86

 fbox issued count: 0

 squashed count: 12

 Statistics for POWERUP routine at pal entry address: 0

 Highest cycle count is 206 in Permutation (2)

 Highest ebox stall count is 73 in Permutation (2)

 Highest ebox busy count is 171 in Permutation (2)

 End of Palcode check...

PVC> set flag cycle_count

PVC> do powerup

 Initializing Alpha dependent tables..

 Initializing 21264 dependent tables..

 Disassembling executable....

 Searching through map file for violation exceptions...

 Beginning PALcode check...

 Permutation 0 was 124 cycles long (not counting latencies).

 Permutation 1 was 124 cycles long (not counting latencies).

 Permutation 2 was 206 cycles long (not counting latencies).

 Permutation 3 was 206 cycles long (not counting latencies).

Cycle: 0 Addr 0: SRL R22, #62, R1 Addr 4: BR R31, 10

Cycle: 0 ..pipes u0, u1 not allowed

Cycle: 1 Addr 10: BLBC R1, 6640 Addr 14: BR R31, 4000

Cycle: 1 ..pipes u0, u1 not allowed

Cycle: 2 Addr 4000: BR R1, 4004 ..register dependency (R1,)

Cycle: 2

Cycle: 3 ..Possible ebox Stall (hw_mtpr or hw_mfpr ipr dependency)

Cycle: 3 ..Possible ebox Stall (register dependency R1,)

Cycle: 3 ..Possible ebox Stall (register file write port busy)

Cycle: 4 ..Possible ebox Stall (hw_mtpr or hw_mfpr ipr dependency)

Cycle: 4 ..Possible ebox Stall (register dependency R1,)

Cycle: 4 ..Possible ebox Stall (register file write port busy)

Cycle: 5 Addr 4004: LDAH R1, 0(R1) ..hw_mfpr or hw_mtpr ipr
dependency
8 April 1999 PALcode Violation Checker 14–25

PVC Commands
 Statistics for powerup routine at PAL entry address: 0

 Highest cycle count is 206 in Permutation (2)

 Highest ebox stall count is 73 in Permutation (2)

 Highest ebox busy count is 171 in Permutation (2)

 End of Palcode check...

PVC>
14–26 PALcode Violation Checker 8 April 1999

 PVC Commands
14.8.15 set freq_file

The set freq_file command specifies a file to contain address usage data from PVC.

Format

set freq_file filename

Parameters

filename

Specifies an output file name.

Description

The set freq_file command opens the specified file name to collect address usage
data. Each line contains address usage information for one address in the following for-
mat:

Addr: xxx Freq: n inst_decode

where: Addr: xxx is the PALcode address.

Freq: n is the number of code paths (permutations) to this address.

inst_decode is the disassembled instruction.

Example
% pvc

PALcode Violation Checker V3.34

Default Cpu set to Alpha chip 21264 family.

PVC> set cpu 21264

Cpu set to Alpha chip 21264 family.

PVC> set freq_file freq.log

PVC> do 500

Initializing 21264 dependent tables..
Beginning PALcode check...

Permutation 0 was 165 cycles long (not counting latencies).

Permutation 1 was 148 cycles long (not counting latencies).

Permutation 2 was 299 cycles long (not counting latencies).

Permutation 3 was 283 cycles long (not counting latencies).

 .

 .

 .

Permutation 190 was 276 cycles long (not counting latencies).

Permutation 191 was 276 cycles long (not counting latencies).

Statistics for UNNAMED routine at PAL entry address: 500

 Highest cycle count is 299 in Permutation (2)

 Highest ebox stall count is 117 in Permutation (2)

 Highest ebox busy count is 232 in Permutation (40)

End of PALcode check...
8 April 1999 PALcode Violation Checker 14–27

PVC Commands
\sample output from freq.log\

PVC> exit

Addr: 300 Freq: 1 HW_MFPR R23, EV6_EXC_ADDR; scbd<7:0>=0000

Addr: 304 Freq: 1 HW_MFPR R4, EV6_VA_FORM; scbd<7:0>=1111

Addr: 310 Freq: 1 HW_MFPR R6, EV6_VA; scbd<7:0>=1111

.

.

.

Addr: 6754 Freq: 24 HW_MTPR R31, EV6_IC_FLUSH; scbd<7:0>=0001

Addr: 6758 Freq: 24 BNE R31, 675c

Addr: 675C Freq: 48 HW_RET_STALL (R23)
14–28 PALcode Violation Checker 8 April 1999

 PVC Commands
14.8.16 set log_file

The set log_file command specifies a file to contain error, warning, and informational
messages from PVC.

Format

set log_file filename

Parameters

filename

Specifies a file name to collect output from PVC. If not specified, this information is
displayed on the terminal screen.

Description

The set log_file command opens the specified file name to collect message informa-
tion from the PVC session.

Example
PVC> set log_file pal.log
8 April 1999 PALcode Violation Checker 14–29

PVC Commands
14.8.17 set map_file

The set map_file command specifies the PALcode .map file.

Format

set map_file filename

Parameters

filename

Specifies a file name that contains PVC symbol values. If not specified, PVC assumes
the .map file name is identical to the code_file name.

Description

The set map_file command reads the PALcode .map file into PVC.

For the 21164 and earlier CPUs, this file is normally generated from the GAS object file
and is postprocessed with the ALIST tool. See Section 4 for more information about
using the ALIST tool.

For the 21264, this file is generated from the HAL assembler and is postprocessed with
the MAPCVT tool. See Section 8.4 for more information about MAPCVT.

Example
PVC> set map_file pal.map
14–30 PALcode Violation Checker 8 April 1999

 PVC Commands
14.8.18 set pal_base

The set pal_base command determines the base from which the PAL entry points are
offset.

Format

set pal_base address

Parameters

address

Specifies the new PAL base address; the default is 0.

Description

The set pal_base command determines the base from which the PAL entry points are
offset. For example, if you specify that the pal_base is 10000 and your entry file speci-
fies that pal$arith is 42, then PVC looks 10042 bytes into the file for the code associ-
ated with pal$arith. Thus, you could use the offset to the text (the code) given by
ALIST as the pal_base, rather than strip the object produced by GAS.

Example
% pvc

PALcode Violation Checker V3.34

Default Cpu set to Alpha chip 21264 family.

PVC> set pal_base 10000
PAL base noted. All entry points will be displaced from that offset.

PVC> show all

There is no log file specified.
The CPU is set to 21264.
The warnings flag is set.
The errors flag is set.
The PAL base is 10000.
The PAL end is FFFFFFF.

PVC> exit
8 April 1999 PALcode Violation Checker 14–31

PVC Commands
14.8.19 set pal_end

The set pal_end command specifies the offset to the end of code in the executable
file.

Format

set pal_end���end_address

Parameters

end_address

Specifies the end of code to be checked; the default is FFFFFFF.

Description

The set pal_end command is the offset in the code file to the end of the code. This
allows PVC to predetermine where it looks for dead code (code never branched to). It
never looks beyond pal_end bytes into the code.

Example
% pvc

PALcode Violation Checker V3.34

Default Cpu set to Alpha chip 21264 family.

PVC> set pal_end f10000
PAL end noted. PVC won’t look for dead code past that address.

PVC> show all

There is no log file specified.
The CPU is set to 21264.
The warnings flag is set.
The errors flag is set.
The PAL base is 0.
The PAL end is f10000.

PVC> exit
14–32 PALcode Violation Checker 8 April 1999

 PVC Commands
14.8.20 show

The show command displays the status or value, or both, of the specified show_type
parameter.

Format

show show_type

Parameters

all

Displays file names for all selected files, the current CPU type, pal_base, pal_end, and
any flags selected.

cpu

Displays the currently selected CPU.

entries

Displays all entry points from the entry file (.ent or .entry) last set with the set
entry_file command. The first field on each output line is an entry_id, followed by the
address and entry point name.

files

Displays all input and output files defined (such as executable, entry, map, and log
files).

flags

Displays all flags previously set.

Description

The show command displays the status or value, or both, of the files, flags, and CPU
you have selected. You can also display entry points valid for the current PVC session.
8 April 1999 PALcode Violation Checker 14–33

PVC Commands
Example
% pvc

PALcode Violation Checker V3.34

Default Cpu set to Alpha chip 21264 family.

PVC> show all
There is no log file specified.
The CPU is set to 21264.
The warnings flag is set.
The errors flag is set.
The PAL base is 0.
The PAL end is FFFFFFF.

PVC> show cpu
The CPU is set to 21264.

PVC> set entry_file osfpal_21264.entry

PVC> show entries
1: 0 POWERUP
2: 100 DTBM_DOUBLE_3
3: 180 DTBM_DOUBLE_4
4: 200 FEN
 .
 .
 .
#142: 3F80 PAL_3F80
#143: 3FC0 PAL_3FC0

PVC> show files
The entry point file is osfpal_21264.entry
There is no log file specified.

PVC> show flags
The warnings flag is set.
The errors flag is set.

PVC> exit
14–34 PALcode Violation Checker 8 April 1999

 15
RCSV

15.1 Overview

The RCSV tool takes the RCS version of an input file and generates an output file that
can be used as an include file. The include file contains definitions that describe the
RCS version of the input file. The RCS version is used when building the SROM code.

15.2 Command Format

The RCSV utility command format is:

>% rcsv [-options] [[-file_options] input_file]...[[-file_options] output_file]

The following table describes the options:

An example of the RCSV utility command follows:

% rcsv -v srom.s rcsv.h

Option Designation Description

h help Prints information about how to use SYSGEN

v verbose Prints more information than usual
8 April 1999 RCSV 15–1

8 April 1999 SREC 16–1

 16
SREC

16.1 Overview

The S-record tool (SREC) produces an input file for programming SROMs with device
programmers. SREC generates Motorola S-record output from either an executable file
(such as a file produced by ASTRIP), or an a.out format object file produced by GAS.
The Motorola S-record file can also be loaded through the serial port of a motherboard
with the Alpha Microprocessor Motherboard Debug Monitor load or boot commands.

16.2 Command Format

The SREC command format is:

>% srec [-options] [input_file] [output_file]

The following table lists the options:

Both the input_file and output_file elements are optional, and if none are supplied, then
stdin and stdout, respectively, are used.

For example:

% srec -a artest.o artest.sr

% srec -i artest.exe artest.sr

Option Designation Description

v verbose Prints more information than usual.

h help Prints information about how to use SREC.

a — Input file is a.out format (output of GAS).

i image Input file is image format (output of ASTRIP).

o number — Places object at specified number offset in output file.

8 April 1999 SROM Packer 17–1

 17
SROM Packer

17.1 Overview

The SROM Packer (SROM) tool processes an executable file (such as one produced by
ASTRIP) and packs the bits into an image using the SROM file format required by the
CPU. The resultant image is provided in an Intel Hex file format for programming
ROMs (see HEXPAD) with a device programmer.

The SROM Packer cannot be used to generate images for the Alpha 21264.

17.2 Command Format

The SROM Packer has the following command format:

>% srom [-options] input_file [output_file]

If no options are specified, the default condition is to generate an instruction cache
image for the Alpha 21064 with a maximum cache size of 8KB with no SROM
padding.

The following table lists the options:

If an output file name is not specified, then the default output name on a host system
that runs the Tru64 UNIX operating system is the name of the input file with an .srom
extension. For the Windows NT operating system, the default extension is .srm.

For example:

% srom artest.o artest.srom

Option Designation Description

v verbose Prints more information than usual.

h help Prints information about how to use SROM Packer.

21164PC 21164PC Generates instruction cache image for Alpha 21164PC.

21164 21164 Generates instruction cache image for Alpha 21164.

21064
(default)

21068,
21066, and
21064

Generates instruction cache image for Alpha 21068, 21066, and
21064.

 18
SYSGEN

18.1 Overview

The SYSGEN tool concatenates the parts of an image. SYSGEN arranges the specified
input files into one contiguous image based on information in the file header or
supplied on the command line.

SYSGEN also provides padding between the end of one input file and the next so that
the output is what you expect without regard for the size of the input files.

18.2 Command Format

The SYSGEN utility command format is:

>% sysgen [-options] [[-file_options] input_file]...
[[-file_options] output_file]

The following table describes the file options:

The following table describes the options:

File Option Description

a Specifies a.out file produced by GAS. This is the default.

c Specifies Tru64 UNIX coff object file.

ennn Overrides or supplies entry point or base address of image. The number
supplied is a hexadecimal number. This is required if there is no header
information in the file.

o Specifies output file. If not supplied, defaults to stdout.

p Specifies the byte used for padding between images. The default is
0x00.

s Specifies stripped format file (no header).

Option Designation Description

h help Prints information about how to use SYSGEN

v verbose Prints more information than usual
8 April 1999 SYSGEN 18–1

Command Format
For example:

% sysgen -v -e8000 -s osfpal_dbm.exe -e10000 -s dbm.nh -o dbm.img

 sysgen, system builder [V3.1]

 Padding byte: (0x00)

 Files are:

 osfpal_dbm.exe: (stripped), entry = 0x00008000,0 text, 0 data

 fsb.nh: (stripped), entry = 0x00010000, 0 text, 0 data

 fsb.img: (output), entry = 0x00000000,0 text, 0 data

 00000000 00008000 00006d40 osfpal_dbm.exe pad, base/entry, size

 000012c0 00010000 0000d1b0 fsb.nh pad, base/entry, size

 --- Data sum = 0059576E Data size = 86448 (0x151B0, 84.42 KB) ---

This example concatenates PALcode and Debug Monitor images, osfpal_dbm.exe and
dbm.nh, into a single image dbm.img. The file options supplied with the osfpal_dbm
image indicate that it is based at address 8000. The file options specified with the
dbm.nh image indicate that it is based at address 10000 hexadecimal.
18–2 SYSGEN 8 April 1999

8 April 1999 ULOAD 19–1

 19
ULOAD

19.1 Overview

The ULOAD tool is used on Tru64 UNIX to download a file through the serial port of
your host system to the motherboard running the Alpha Microprocessors Mini-
Debugger.

19.2 Command Format

The ULOAD has the following command format:

>% uload input_file.ext [options]

The full file name and the extension must be specified for the input file. No extensions
are implied.

The following table lists the options:

To load the file name pc64fsb.cmp into the motherboard’s memory at address
0x300000, at 19200 baud rate, type the following command:

% uload pc64fsb.cmp 300000 /dev/tty01

The ULOAD tool will perform the necessary initialization of the Mini-Debugger, wait
for the Mini-Debugger prompt (SROM), and send the file with the XM command. A
timer displays how much time and how many bytes remain to be sent.

Option Designation Description

load_address Load Address Specifies the HEX physical address in the target
memory, where the image will be loaded.

serial_port Serial Port Specifies the name of the serial line/port to which the
remote terminal is connected.

baud_rate Baud Rate Specifies one of two possible baud rates that may be
specified: 9600 and 19200. The default is 19200.

xb XB Executes the XB command after loading the image.

8 April 1999 XLOAD 20–1

 20
XLOAD

20.1 Overview

The XLOAD tool is used on Windows NT to download a file through the serial port of
your host system to the motherboard running the Alpha Microprocessors Mini-
Debugger.

20.2 Command Format

The XLOAD command has the following format:

DP264> xload input_file load_address console_line [option]

The full file name and the extension must be specified for the input file. No extensions
are implied.

The load address is the HEX physical address in the target memory, where the image
will be loaded.

The console line is the name of the serial line to which the target console is connected.

The following table explains the option:

To load the file name blast.exe into the motherboard’s memory at address 0x4000, at
19200 baud rate, type the following command:

DP264> xload blast.exe 4000 com1 fast

The XLOAD tool will perform the necessary initialization of the Mini-Debugger, wait
for the Mini-Debugger prompt (SROM), and send the file with the XM command. A
timer displays how much time and how many bytes remain to be sent.

Option Designation Description

fast Fast Execute this command at 19200 baud. (The default is
9600 baud.)

 A
Support

A.1 Customer Support

The Alpha OEM website provides the following information for customer support.

A.2 Alpha Documentation

The following table lists some of the available Alpha documentation. You can
download Alpha documentation from the Alpha OEM World Wide Web Internet site:

http://www.digital.com/alphaoem

Click on Technical Information.
Then click on Documentation Library.

URL Description

http://www.digital.com/alphaoem Contains the following links:

• Developers’ Area: Development tools, code examples,
driver developers’ information, and technical white
papers

• Motherboard Products: Motherboard details and
performance information

• Microprocessor Products: Microprocessor details and
performance information

• News: Press releases

• Technical Information: Motherboard firmware and
drivers, hardware compatibility lists, and product
documentation library

• Customer Support: Feedback form

Title Order Number

Alpha Architecture Reference Manual1 EY–W938E–DP

Alpha Architecture Handbook EC–QD2KC–TE

Alpha 21164 Microprocessor Hardware Reference ManualEC–QP99C–TE

Alpha 21164 Microprocessor Data Sheet EC–QP98C–TE
8 April 1999 Support A–1

Alpha 21164PC Microprocessor Hardware Reference
Manual

EC–R2W0A–TE

AlphaPC 264DP Product Brief EC–RBD0A–TE

AlphaPC 264DP User’s Manual EC–RB0BA–TE

AlphaPC 264DP Technical Reference Manual EC–RB0DA–TE

AlphaPC 164SX Motherboard Product Brief EC–R57CA–TE

AlphaPC 164SX Motherboard Windows NT User’s Manual EC–R57DB–TE

AlphaPC 164SX Motherboard DIGITAL UNIX User’s Manual EC–R8P7B–TE

AlphaPC 164SX Motherboard Technical Reference Manual EC–R57EB–TE

AlphaPC 164LX Motherboard Product Brief EC–R2RZA–TE

AlphaPC 164LX Motherboard Windows NT User’s Manual EC–R2ZQF–TE

AlphaPC 164LX Motherboard Tru64 UNIX User’s Manual EC–R2ZPC–TE

AlphaPC 164LX Motherboard Technical Reference Manual EC–R46WC–TE

Alpha Motherboards Software Developer’s Kit Product
Brief

EC–QXQKD–TE

Alpha Motherboards Software Developer’s Kit Read Me
First

EC–QERSJ–TE

Alpha Microprocessors Motherboard Debug Monitor
User’s Guide

EC–QHUVG–TE

Alpha Microprocessors SROM Mini-Debugger User’s
Guide

EC–QHUXD–TE

1 Not available on website. To purchase the Alpha Architecture Reference Manual, contact your local
sales office or call Butterworth-Heinemann (DIGITAL Press) at 1–800–366–2665.

Title Order Number
A–2 Support 8 April 1999

Index

A Document
add command, 14–9

ALIST
command format, 3–1
entry point format, 14–2
input, 14–2
map file format, 14–2

Alpha Microprocessor Motherboard Debug Monitor,
16–1

Assembler instructions
added to GAS, 7–2
added to HAL (21264), 8–4

Assembler programming considerations for GAS,
7–6

ASTRIP
command format, 4–1
default extension, 4–1
input, 14–2

Audience, ix

C
clear flag command, 14–10

clear log_file command, 14–11

CLIST
command format, 5–1

Computed goto labels, 14–5

Concatenate object files, 7–6

Content overview, ix

Conventions
of document, ix

CSTRIP
command format, 6–1
default extension, 6–1

D
delete command, 14–12

do command, 14–13

audience, ix
conventions, ix
introduction, ix
structure of, ix

Documentation
ordering, A–1

E
Entry points file, 14–2, 14–3

Error messages
for PVC, 14–4

Executable PALcode, 14–2

exit command, 14–14

G
GAS

.= directive, 7–6

.align directive, 7–6
assembler considerations, 7–6
assembler instructions, 7–2
command format, 7–1
PVC tools, 14–2

GLD, 7–6

GNU assembler
See GAS

go command, 14–15

Goto labels, 14–5

H
HAL

21264 assembler instructions, 8–4
command format, 8–2
PVC tools, 14–3

help command, 14–16

HEX32
command format, 9–1
8 April 1999 Index–1

HEXPAD
command format, 10–1

HFCOMP
command format, 11–1

Hudson assembler
See HAL

Huffman algorithm, 11–1

hw_ld, 7–2, 8–4

hw_mfpr, 7–5

hw_mtpr, 7–5

hw_rei, 7–6

hw_rei_stall, 7–6

hw_ret, 7–4

hw_st, 7–3

I
IC4MAT

command format, 12–1
Ignoring a branch with labels, 14–6

Installing the tools, 2–1

Introduction
to document, ix

L
Labels for PVC, 14–4

Linker, 7–6

M
MAKEROM, 13–1

command format, 13–4
map file, 14–2, 14–3

MAPCVT
input, 14–3

Motorola S-record, 16–1

O
Overview, 1–1

P
PALcode assembler instructions, 7–2

PALcode assembler instructions (HAL), 8–4

PALcode Violation Checker
See PVC

PVC
command format, 14–7
entry points file, 14–2, 14–3
environment, 14–7
executable files, 14–3
input files, 14–1
labels, 14–4
map file, 14–2, 14–3
running of, 14–7
tool map, 14–1

PVC commands, 14–8
add, 14–9
clear flag, 14–10
clear log_file, 14–11
delete, 14–12
do, 14–13
exit, 14–14
go, 14–15
help, 14–16
quit, 14–18
set code_file, 14–19
set cpu, 14–20
set delay, 14–21
set entry_file, 14–22
set flag, 14–23
set freq_file, 14–27
set log_file, 14–29
set map_file, 14–30
set pal_base, 14–31
set pal_end, 14–32
show, 14–33

PVC labels
computed goto, 14–5
format, 14–4
ignoring a branch, 14–6
subroutine branches, 14–6
suppressing error messages, 14–4
type, 14–4

PVC symbols, 14–2, 14–3

PVC_CPU, 14–7

PVC_ENTRY, 14–7

PVC_LOG, 14–7

PVC_MAP, 14–7

PVC_PAL, 14–7

Q
quit command, 14–18

R
RCSV

command format, 15–1
ROM header, 13–1

ROM image, 13–1
Index–2 8 April 1999

S
set code_file command, 14–19

set cpu command, 14–20

set delay command, 14–21

set entry_file command, 14–22

set flag command, 14–23

set freq_file command, 14–27

set log_file command, 14–29

set map_file command, 14–30

set pal_base command, 14–31

set pal_end command, 14–32

show command, 14–33

SREC
command format, 16–1

SROM format
Motorola S-record, 16–1

SROM Packer
command format, 17–1
default extension, 17–1

Structure
of document, ix

Subroutine branch labels, 14–6

Suppressing error messages for PVC, 14–4

Symbols for PVC, 14–2, 14–3

SYSGEN
command format, 18–1

T
Tool installation, 2–1

Tool list, 2–1

U
ULOAD command format, 19–1

X
XLOAD command format, 20–1
8 April 1999 Index–3

	Contents
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	A

	Figures
	Tables
	Preface
	Introduction
	1.1� Overview
	1.2� Software Design Tools Summary
	Table 1–1� Software Design Tools Summary (Continued)

	Installation and Setup
	2.1� Overview
	2.2� Tools Created or Modified
	Table 2–1� Tools and Supported Operating System (Continued)

	2.3� Sample Files

	ALIST
	3.1� Overview
	3.2� Command Format

	ASTRIP
	4.1� Overview
	4.2� Command Format

	CLIST
	5.1� Overview
	5.2� Command Format

	CSTRIP
	6.1� Overview
	6.2� Command Format

	GNU Assembler
	7.1� Overview
	7.2� Command Format
	7.3� PALcode Assembler Instructions Added to GAS
	7.3.1� hw_ld
	7.3.2� hw_st
	7.3.3� hw_ret
	7.3.4� hw_mfpr
	7.3.5� hw_mtpr
	7.3.6� hw_rei
	7.3.7� hw_rei_stall

	7.4� GAS and GLD Programming Considerations

	HAL Assembler
	8.1� Overview
	Table 8–1� HAL MACRO Source Statements (Continued)

	8.2� Command Format
	8.3� 21264 PALcode Assembler Instructions
	8.3.1� hw_ld
	8.3.2� hw_mxpr
	8.3.3� hw_retx
	8.3.4� hw_stx

	8.4� MAPCVT

	HEX32
	9.1� Overview
	9.2� Command Format

	HEXPAD
	10.1� Overview
	10.2� Command Format

	HFCOMP
	11.1� Overview
	11.2� Command Format

	IC4MAT
	12.1� Overview
	12.2� Command Format

	MAKEROM
	13.1� Overview
	13.2� ROM Header Information Fields
	Figure 13–1� MAKEROM Fields

	13.3� Command Format

	PALcode Violation Checker
	14.1� Overview
	14.2� PVC Input Files
	Figure 14–1� PVC Tool Map for GAS and HAL

	14.3� Generating PVC Input Files with GAS
	14.4� Generating PVC Input Files with HAL
	14.5� Labels
	Table 14–1� PVC Label Format
	Table 14–2� PVC Label Type
	14.5.1� Suppressing Error Messages for a Given Instruction
	14.5.2� Handling Computed Gotos and Subroutine Branches
	14.5.2.1� Computed Gotos
	14.5.2.2� Subroutine Branches
	14.5.2.3� Ignoring a Branch

	14.6� Starting and Running PVC
	14.7� Creating a PVC Environment
	14.8� PVC Commands
	14.8.1� add
	14.8.2� clear flag
	14.8.3� clear log_file
	14.8.4� delete
	14.8.5� do
	14.8.6� exit
	14.8.7� go
	14.8.8� help
	14.8.9� quit
	14.8.10� set code_file
	14.8.11� set cpu
	14.8.12� set delay
	14.8.13� set entry_file
	14.8.14� set flag
	14.8.15� set freq_file
	14.8.16� set log_file
	14.8.17� set map_file
	14.8.18� set pal_base
	14.8.19� set pal_end
	14.8.20� show

	RCSV
	15.1� Overview
	15.2� Command Format

	SREC
	16.1� Overview
	16.2� Command Format

	SROM Packer
	17.1� Overview
	17.2� Command Format

	SYSGEN
	18.1� Overview
	18.2� Command Format

	ULOAD
	19.1� Overview
	19.2� Command Format

	XLOAD
	20.1� Overview
	20.2� Command Format

	Support
	A.1� Customer Support
	A.2� Alpha Documentation

	Index

